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Abstract

The strong lottery ticket hypothesis has highlighted the potential for training deep
neural networks by pruning, which has inspired interesting practical and theoretical
insights into how neural networks can represent functions. For networks with ReLU
activation functions, it has been proven that a target network with depth L can be
approximated by the subnetwork of a randomly initialized neural network that has
double the target’s depth 2L and is wider by a logarithmic factor. We show that a
depth L+ 1 network is sufficient. This result indicates that we can expect to find
lottery tickets at realistic, commonly used depths while only requiring logarithmic
overparametrization. Our novel construction approach applies to a large class of
activation functions and is not limited to ReLUs. Code is available on Github
(RelationalML/LT-existence).

1 Introduction

The Lottery Ticket Hypothesis [13] and, in particular, its strong version [38] postulate that pruning
deep neural networks might provide a promising alternative to training large, overparameterized
neural networks with Stochastic Gradient Descent (SGD). Pruning has the potential to not only
identify small scale neural networks that possess a meaningful, task-specific neural network structure
and generalize better due to regularization [51], but also to reduce the computational burden associated
with deep learning [50, 10, 29].

Also from a theoretical perspective, it has been shown that for every small enough target network a
sufficiently large, randomly initialized neural network, the source network, contains a subnetwork,
the lottery ticket (LT), that can approximate the target up to acceptable accuracy with high probability.
[32] has been the first to provide a probabilistic lower bound on the required network width of the
larger random network. This bound has been improved by [37, 36] to a width that is larger than
a target’s width only by a logarithmic factor. The limitations of these works are that they all are
restricted to ReLU activation functions and assume that the larger random network has twice the
depth of the target network Ls = 2Lt.

However, it is well known that deeper networks tend to have a higher expressiveness, as they
can approximate certain function classes with significantly fewer parameters than their shallow
counterparts [33, 49]. It could therefore reduce the overall sparsity of the target and the LT to allow
the target to utilize more of the source depth Ls for a sparser representation. A lower depth requirment
could also [11] have therefore derived lower bounds for the width of the random network of depth
Ls = Lt + 1, but these can only cover extremely sparse target networks, as the width requirement is
polynomial in the inverse approximation error 1/ϵ.

In contrast, we derive a novel construction that only requires a logarithmic factor. While we utilize
subset sum approximation results like [37], we allow a target network to have almost the same depth
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as the source network with depth Ls ≥ Lt + 1 instead of Ls = 2Lt. Our derivations further apply to
a large class of activation functions that includes but is not limited to ReLUs.

The reduced depth requirement and flexibility in the activation function of our construction can result
in significantly sparser neural network target networks and thus also LTs. For example, f(x) = x2

can be approximated up to error ϵ by a shallow ReLU network with O(1/ϵ) parameters, while a deep
enough network only needs O(log(1/ϵ)) parameters [33]. Also the activation function determines
the possible target sparsity, e.g., x2 can be represented with only 4 parameters for all ϵ > 0 if
ϕ(x) = (max{x, 0})2. Therefore, the potential sparsity of the final lottery ticket depends critically
on the choice of activation functions and architecture of the source network, including its depth and
width. We provide a theoretical foundation that provides flexibility regarding these choices.

Contributions 1) We prove the existence of strong lottery tickets as subnetworks of a larger
randomly initialized source neural network for a large class of activation functions, including ReLUs.
2) We derive a novel construction that requires the source network to have almost the same depth
(L + 1) as the target network, thus, allowing it to leverage the potential representational benefits
associated with larger depth. 3) Despite the reduced depth requirement we keep the width requirement
logarithmic in the approximation error ϵ. 4) Our proofs are constructive and define an algorithm that
approximates a given target network by pruning a source network. We verify in experiments that this
algorithm is successful under realistic conditions.

Related Literature Many pruning methods have been proposed to reduce the number of neural
network parameters during training [22, 35, 19, 13, 43, 24, 50, 14, 39, 28, 27, 48, 40, 6] or thereafter
[41, 23, 20, 9, 26, 34, 52] and have been applied in different contexts, including graph neural
networks [5] and GANs [4]. Furthermore, pruning can have provable regularization and generalization
properties [51]. The algorithms are most useful for structure learning at lower sparsity levels [44, 24]
but at least Iterative Magnitude Pruning (IMP) [19, 13] can fail in identifying LTs that perform
superior to random or smaller dense networks [31]. It can therefore be beneficial to start pruning
from a sparse random architecture rather than a dense network [10, 29], which saves computational
resources. Other options to achieve the latter are to identify and train on core sets [53] and focus
on pruning before training [47, 25, 46, 45, 38]. Yet, iterative pruning methods often perform better
[15, 31] but all face challenges in finding highly sparse LTs [11].

Most of the discussed pruning methods try to find LTs in a ‘weak’ (but powerful) sense by identifying
a sparse neural network architecture that is well trainable starting from its initial parameters. Strong
LTs are sparse subnetworks that perform well with the initial parameters and, hence, do not need
further training [54, 38]. Their existence has been proven for fully-connected feed forward networks
with RELU activation functions by providing lower bounds on the width of the large, randomly
initialized source network [32, 37, 36, 12, 3, 17]. In addition, it was shown that multiple candidate
tickets exist that are also robust to parameter quantization [8]. Our first objective is to extend the
known theory to other activation functions beyond RELUS. Note that the approach that we develop
here has also been partially transferred to convolutional and residual architectures [1]. However, [1]
does not cover activation functions with nonzero intercept (like sigmoids) and their width dependence
on the error ϵ is less advantageous.

2 Constructing Lottery Tickets

Informally, our goal is to show that any deep neural network of width nt and depth Lt or smaller
can be approximated with probability 1 − δ up to error ϵ by pruning a larger randomly initialized
neural network of width O(nt log[ntLt/min{δ, ϵ}]) and depth 2Lt or a network of smaller depth
Lt + 1 and width O(nt log[ntLt log(1/δ)/min{δ, ϵ}]), as long as the target network and the large
random network rely on the same activation functions. Note that we often omit the dependence on δ
in our discussions because we usually care about cases when ϵ < δ. Next we explain the required
background to formalize and prove our claims.

Background and Notation Let a fully-connected feed forward neural network f : D ⊂ Rn0 →
RnL be defined on a compact domain D and have architecture n̄ = [n0, n1, ..., nL], i.e., depth L
and width nl in layer l ∈ (0, ..., L), with continuous activation function ϕ(x). On the relevant
compact domain let ϕ(x) have Lipschitz constant T . It maps an input vector x(0) to neurons x(l)

i as
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x(l) = ϕ
(
h(l)

)
with h(l) = W (l)x(l−1) + b(l), where h(l) is the pre-activation, W (l) ∈ Rnl×nl−1

is the weight matrix, and b(l) ∈ Rnl is the bias vector of layer l. Without loss of generality, let
us assume that each parameter (weight or bias) θ is bounded as |θ| ≤ 1. Primarily, we distinguish
three networks. First, we want to approximate a target network ft with architecture n̄t of depth Lt

consisting of Nt total nonzero parameters. Second, this approximation is performed by a lottery
ticket (LT) fϵ that is obtained by pruning a larger source network fs, which we indicate by writing
fϵ ⊂ fs. Third, this source network is a larger fully-connected feed-forward, randomly initialized
neural network with architecture n̄s and depth Ls. While most LT existence results require exactly
Ls = 2Lt, we show that any Ls ≥ Lt + 1 is sufficient.

(a)

(b)

(c)

x(0) xt(L)

x(0)

x(0)

xt(L)^

xt(L)^

Figure 1: LT construction idea. (a) Tar-
get network ft. (b) L0 = 2Lt construc-
tion of fϵ. (c) L0 = Lt + 1 construction
of fϵ. Subset sum blocks are framed
(purple corresponding to target neurons,
pink to biases). Dashed links only exist
if source network biases in layers l > 1
are initialized to zero.

To simplify the presentation, like most works, we assume a
convenient parameter initialization that we have to choose
with respect to the activation function if we approximate a
target layer with two source network layers. In most cases,
we make the following assumption.
Assumption 2.1 (Convenient initialization). We assume
that the parameters of the source network fs are inde-
pendently distributed as w

(l)
ij ∼ U ([−1, 1]), b

(1)
i ∼

U ([−1, 1]) and b
(l)
i = 0 for l > 1.

Note that also other parameter distributions, e.g. normal
distributions, are covered as long as they contain a uniform
distribution [37], since this allows us to solve subset sum
approximation problems (see appendix for a formal def-
inition). While most works assume zero biases (b(l)i = 0),
as they focus on target networks without biases [32, 37],
we initialize the biases in the first layer as nonzero. This is
sufficient to approximate nonzero target biases, since we
can always construct constant neurons in each layer (see
pink blocks in Fig. 1 (c)).

The convenient parameter initialization can always be
transferred to a realistic one by learning or just applying
an appropriate layer-specific scaling factor λl, as also pro-
posed in LT pruning experiments [54]. For homogeneous
activation functions like RELUS, even a global parame-
ter scaling is sufficient [12]. For instance, let us assume
that our initial parameters in Layer l are distributed as
U ([−σl, σl]). A common choice would be a He [21] or
Glorot [18] initialization with σl ∝ 1/

√
nl. In this case,

we would need to adapt our proofs by replacing {θl} of a
LT by {λlθ

l} with λl = 1/σl to construct the same func-
tion that we have derived for convenient initializations.

For specific activation functions with ϕ(0) ̸= 0 (e.g. SIG-
MOIDS), instead of Assumption 2.1, we will assume an
initialization that has originally been derived to ensure
dynamical isometry for RELUS [2, 16]. Interestingly, this initialization also supports LTs.
Assumption 2.2 (Looks-linear initialization). We assume that the weight matrices of the source

network fs are initialized as W (l) =

[
M (l) −M (l)

−M (l) M (l)

]
, where M (l) and b(l) are distributed as in

Assumptions 2.1.

In general, we measure the approximation error with respect to the supremum norm, which is defined
as ∥g∥∞ := supx∈D ∥g∥1 for any function g and the L1-norm ∥x∥1 :=

∑
i |xi|. In the formulation

of theorems, we also make use of the universal constant C that can attain different values.

Lottery Tickets as Subnetworks [32] were the first to give probabilistic guarantees and provide a
lower bound on the required width of the source network that is polynomial in the width of the target
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network. Their O(n5
tL

2
t/ϵ

2) requirement, or under additional sparsity assumptions O(n2
tL

2
t/ϵ

2), has
been improved to a logarithmic dependency of the form O(n2

t log(ntLt)/ϵ) for weights that follow
an unusual hyperbolic distribution [36] and O(nt log(ntLt/ϵ)) for uniformly distributed weights
[37]. While these assume target networks with zero biases, [12] transferred the approach by [37] to
nonzero biases. All assume that the source network has exactly twice the depth of the target network
(Ls = 2Lt). Only [11] prove existence for extremely sparse tickets for Ls = Lt + 1 but the width
requirements are unrealistic for most target architectures. [3] show how to leverage additional depth
Ls ≥ 2Lt but still assume excessive depth in general. Furthermore, all of these works focus on
RELU activation functions. Both limitations, the focus on RELUS and the Ls = 2Lt requirement
rely on the following construction idea that is also visualized in Fig. 1(a-b). Every layer of the target
network ft is represented by two layers in the lottery ticket fϵ and equipped with RELU activation
functions ϕR(x) = max{x, 0} with the possible exception of the last output layer. We can obtain
two layers by representing the identity as x = ϕR(x)− ϕR(−x) and writing each target neuron x

(l)
t,i

as x(l)
t,i = ϕR

(∑
j w

(l)
t,ijx

(l−1)
t,j + b

(l)
t,i

)
= ϕR

[∑
j w

(l)
t,ijϕR

(
x
(l−1)
t,j

)
− w

(l)
t,ijϕR

(
−x

(l−1)
t,j

)
+ b

(l)
t,i

]
.

The advantage of this 2-layer representation is that (a) we gain the flexibility to select the neurons in
the middle layer among a higher number of available neurons in the source network and (b) these
neurons are univariate so that they depend on a single nonzero parameter and are thus simple to
approximate with high probability. The question is how many nodes n0 in the middle layer of the
source network are required to guarantee an accurate selection. The answer distinguishes previous
work. [37] achieve a factor γ (where ns = γnt) that is logarithmic in ns, ϵ, δ, etc. by solving a
separate subset sum approximation problem for each parameter utilizing results by [30]. [12] transfers
these results to target networks with nonzero biases.

Our first contribution is to extend a similar construction to a wider class of activation functions that
is not restricted to RELUS. We need this result to approximate at least the first layer of our target
network in our second contribution, an L+ 1-construction, as shown in Fig. 1(c). For the remaining
layers, we propose to construct the subset sum blocks for the next layer directly from the previous
layer by sharing nodes in the construction. This has multiple advantages. The obvious one is that we
can use the available depth of the source network to start from a potentially sparser target architecture
to solve a given problem. Also the LT itself consists usually of less neurons. Furthermore, the subset
sum approximation of parameters becomes more efficient.

Subset Sum Approximation In the discussed construction, we generally have multiple random neu-
rons and parameters available to approximate a target parameter z by ẑ up to error ϵ so that |z− ẑ| ≤ ϵ.
Let us denote the independent random variables that we can use for this approximation as X1, ..., Xm.
If they contain uniform distributions, Lueker [30] has shown that m ≥ C log(1/min{ϵ, δ}) is suffi-
cient for the existence of a subset I ⊂ {1...,m} so that the approximation of z by ẑ =

∑
k∈I Xk is

successful with probability at least 1− δ. Standard distributions of interest like uniform and normal
distributions as well as their products have this property [37]. For convenience, a precise corollary is
stated in the appendix as Cor. A.2. Note that C depends on the distributions of the Xk and is usually
larger in the two-layers-for-one than in the one-layer-for-one construction, because the Xk are given
by products Xk = w

(l+1)
0,ik w

(l)
0,kj in the former but Xk = w

(l+1)
0,ik in the latter case.

2.1 Two Layers for One

Our first contribution is to transfer the two-layers-for-one construction to activation functions that
can be different from ReLUs. We will utilize this result also in our one-layer-for-one construction
to represent the first layer of the target network. This is necessary as the input neurons are fixed.
We need to increase their multiplicity in the first layer of the source network to solve subset sum
approximation problems that create target Layer 1 in the LT’s Layer 2.

2.1.1 Activation Functions

The main property of ReLUs ϕR that is utilized in LT existence proofs is that we can represent the
identity as x = ϕR(x)− ϕR(−x). This identity is exact and holds for all inputs x ∈ R. Yet, we can
show that, in combination with the right initialization of the source network, it is sufficient if we can
approximate the identity on an interval that contains 0. This approximation is feasible with most
continuous activation functions that are not constant zero in a neighborhood of 0, as we detail next.
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Assumption 2.3 (Activation function (first layer)). For any given ϵ′ > 0 exists a neighborhood
[−a(ϵ′), a(ϵ′)] of 0 with a(ϵ′) > 0 so that the activation function ϕ can be approximated by ϕ̂(x) on
that neighborhood such that supx∈[−a,a] |ϕ(x)− ϕ̂(x)| ≤ ϵ′, where ϕ̂(x) = m+x+ d for x ≥ 0 and
ϕ̂(x) = m−x+ d for x < 0 with m+,m−, d ∈ R, and m+ +m− ̸= 0. We further assume that, if
a(x) is finite, g(x) = x/a(x) is invertible on an interval ]0, ϵ′′] with ϵ′′ > 0 and limx→0 g(x) = 0.

Most continuous functions and thus most popular activation functions fulfill this assumption. For
instance, RELUS ϕR(x) = max(x, 0) inflict zero error on R (i.e., a = ∞) with m+ = 1, m− = 0,
and d = 0. Similarly, LRELUS can be represented without error by m+ = 1, m− = α, and d = 0
for an α > 0. ϕ(x) = tanh(x) is approximately linear so that | tanh(x)− x| ≤ x3/3 for |x| < π/2,
which can be seen by Taylor expansion of tanh. This implies that the choice m+ = 1, m− = 1, and
d = 0 with a = min{(3ϵ′)1/3, π/2} fulfills our assumption. SIGMOIDS ϕ(x) = 1/(1 + exp(−x))
can be analyzed in the same way with m+ = m− = 0.25, d = 0.5, and a = min{(48ϵ′)1/3, π},
since ϕ(x) = (tanh(x/2) + 1)/2. We should point out that not all continuous functions fulfill this
property. Counterexamples include a shifted ReLU ϕ(x) = ϕR(x− 1) or ϕ(x) = |x|. However, in
our L + 1-construction, almost all activation functions can be arbitrary continuous functions. We
will only ask the activation functions in the first layer to meet our assumption above. How can we
represent the identity with such activation functions?
Lemma 2.4 (Representation of the identity). For any ϵ′ > 0, for a function ϕ(x) that fulfills
Assumption 2.3 with a = a(ϵ′) > 0, and for every x ∈ [−a, a] we have∣∣∣∣x− 1

m+ +m−
(ϕ(x)− ϕ(−x))

∣∣∣∣ ≤ 2ϵ′

m+ +m−
. (1)

Note that RELUS and LRELUS inflict no approximation error so that the above statement holds
also for ϵ′ = 0 and a = ∞. Some activation functions can have other advantages over RELUS. For
instance, functions for which m+ = m− = m and d = 0 like TANH can also be approximated by
|x− ϕ(x)/m| ≤ ϵ′/m and do not need separate approximations of the positive and the negative part.
Furthermore, SIGMOIDS and general activation functions with d ̸= 0 do not need nonzero biases in
the source network, since we can approximate a bias by random variables of the form Xk = wkϕ(0).

The challenge in utilizing this lemma is to incorporate the error that is inflicted by the approximation
of the identity in addition to the pruning error into the analysis of the total approximation error. The
allowed interval size a also influences which variables can enter our subset sum blocks and could
affect our width requirement if we would not initialize our parameters in the right way.

2.1.2 Lottery Ticket Existence (Two-for-One)

Our first goal is to identify a LT fϵ that approximates a single hidden layer neural network ft(x) : D ⊂
Rn0 → R with ft(x) = ϕt

(∑n0

j=1 wt,jxj + bt

)
. We could easily extend this result to approximate

each layer of a multilayer neural network but we will discuss a more promising alternative that
uses the following result for approximating the first layer only. fϵ can be obtained by pruning a
fully-connected source network fs of depth Ls = 2 with ns,1 hidden neurons that are equipped with
the activation function ϕ0, which can be different from the outer ϕt. The additional layer in fs has
the purpose to create multiple copies of input nodes that can be used in subset sum approximations.

To achieve this despite the potential non-linear activation function ϕ0 in the hidden layer, we have
to approximate the identity with the help of ϕ0. The precise approximation can pose two additional
challenges in comparison with the standard construction for RELUS. (a) If the piece-wise linear
approximation of ϕ0 in Assumption 2.3 holds only on a finite neighborhood of 0 with a(ϵ) < ∞,
we can only use parameters that render the approximation valid. Thus, the success of our approach
relies on an appropriate parameter initialization in the first layer of the source network fs. (b) A
nonzero intercept (d ̸= 0) in the approximation of ϕ0 demands for a different initialization scheme
to avoid the need for large bias approximations. For simplicity, let us first assume that ϕ0 fulfills
Assumption 2.3 with zero intercept (d = 0).
Theorem 2.5 (LT Existence (Two-for-One)). Assume that ϵ′, δ′ ∈ (0, 1), a target network ft(x) :

D ⊂ Rn0 → Rn1 with ft,i(x) = ϕt

(∑n0

j=1 wt,ijxj + bt,i

)
, and two-layer source network fs

with architecture [n0, ns,1, n1] and activation functions ϕ0 in the first and ϕt in the second layer
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are given. Let ϕ0 fulfill Assumption 2.3 with a(ϵ′′) > 0 and d = 0, ϕt have Lipschitz constant
Tt, and M := max{1,maxx∈D,i |xi|}. Let the parameters of fs be conveniently initialized as
w

(1)
ij , b

(1)
i ∼ U [−σ, σ] and w

(2)
ij ∼ U [−1/(|m+ + m−|σ), 1/(|m+ + m−|σ)], b(2)i = 0, where

σ = min {1, a(ϵ′′)/M} with ϵ′′ = g−1
(
ϵ′/
(
CTtn0

M
|m++m−| log

(
n0

min
{

δ′
nt,1

, ϵ′
TtM

}))). Then, with

probability at least 1 − δ′, fs contains a subnetwork fϵ′ ⊂ fs so that each output component i is
approximated as maxx∈D |ft,i(x)− fϵ′,i(x)| ≤ ϵ′ if

ns,1 ≥ Cn0 log

(
n0

min{ϵ′/(TtM), δ′/nt,1}

)
.

Proof Outline. The construction of a LT consists of three steps. First, we prune the hidden neurons
of fs to become univariate. Second, we identify neurons in the hidden layer for which we can
approximate ϕ0 for small inputs according to Assumption 2.3. Third, if ns,1 is large enough, we
can select subsets Ij and Ib of the hidden neurons with small inputs so that we can use Cor. A.2 on
subset sum approximation to approximate the parameters of the target. The resulting subnetwork
of fs is of the following form fϵ′,i(x) = ϕt

(∑
k∈I w

(2)
ik ϕ0

(
w

(1)
kj xj

)
+
∑

k∈Ib
w

(2)
ik ϕ0

(
b
(1)
k

))
,

where I = ∪jIj and
∑

k∈Ij
w

(2)
ik w

(1)
kj can be used to approximate wt,ij . fϵ,i qualifies as LT if

|ft,i(x) − fϵ′,i(x)| ≤ ϵ′. A straight-forward series of bounds shows that we can achieve this

if ∆j =
∣∣wt,ijxj −

∑
k∈Ij

w
(2)
ik ϕ0

(
w

(1)
kj xj

) ∣∣ ≤ ϵ′/(Tt(n0 + 1)) for each j. This also ap-

plies to the approximation of bt,i, respectively. We would like to approximate ϕ0

(
w

(1)
kj xj

)
≈

µ±(w
(1)
kj xj)w

(1)
kj xj ± ϵ′′, where µ±(x) = m+x if x ≥ 0 and µ±(x) = m−x otherwise. Note

that µ±(x) + µ±(−x) = m+ + m− for all x ̸= 0. By construction, the activation function
approximation is valid, as |w(1)

kj xj | ≤ Ma(ϵ′′)/M = a(ϵ′′). Hence, we can split the error
into two subset sum approximation problems and the activation function approximation error:
∆j ≤ M

|µ±(xj)|
|m++m−|

∣∣wt,ij − |m+ + m−|
∑

k∈I+
j
w

(2)
ik w

(1)
kj

∣∣ + M
(
1 − |µ±(xj)|

|m++m−|

)∣∣wt,ij − |m+ +

m−|
∑

k∈I−
j
w

(2)
ik w

(1)
kj

∣∣ + ∣∣∑k∈Ij
w

(2)
ik

(
ϕ0(w

(1)
kj xj) − µ±(w

(1)
kj xj)w

(1)
kj xj

)∣∣, where Ij is split into

indices I+j for which w
(1)
kj > 0 and I−j all the ones for which w

(1)
kj < 0. The first two terms can be

bounded according to Cor. A.2 with probability 1− δ′′ if C log
(

1
min{ϵ′/(2(n0+1)MTt),δ′′}

)
random

variables Xk are available to choose from I±j , since the random variables Xk = |m++m−|w(2)
ik w

(1)
kj

are distributed as Xk ∼ U [−1, 1]U [0, 1] or Xk ∼ U [−1, 1]U [−1, 0] and thus contain a uniform
distribution U [−1, 1] as shown by [37]. We can solve 2(n0 + 1)nt,1 independent subset sum approx-
imation problems with probability 1 − δ′ if each problem is solved with δ′′ = δ′/(2(n0 + 1)nt,1)

and if we have in total Cn0 log
(

n0

min{ϵ′/(MTt),δ′/nt,1}

)
random variables available.

The full proof is given in the appendix. A key result of our construction is that the activation function
approximation error does not affect the width requirement. As long as we choose the scaling factor
σ small enough, we can achieve a small enough error. Note that for RELUS, the above theorem
reduces to known results [12], since σ = 1, m+ + m− = 1, a = ∞, and d = 0. LRELUS
have the same advantageous property and are now covered in addition. The only difference is that
m+ +m− = 1 + α. Another new insight is that also activation functions with finite approximation
support a(ϵ′′) < ∞ support the existence of lottery tickets with the right parameter initialization with
0 < σ < 1. Interestingly, they can still achieve the same realistic width requirement.

Even though the theorem does not provide details on the universal constant, the minimum width
requirement in this construction would be achieved by a linear activation function ϕ0(x) = x, which
does not require a distinction between positive and negative w

(1)
kj , has a(ϵ′′) = ∞, does not inflict

any approximation error, and is homogeneous, which makes it easy to transfer the above results to
realistic parameter initialization schemes.

Remember that only ϕ0 in the first layer needs to fulfill Ass. 2.3. ϕt is an arbitrary continuous
function. However, it is relatively uncommon in practice to combine different activation functions in
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the same neural network so that ϕ0 ̸= ϕt. Regardless, RELU neural networks have been observed to
learn the identity in the first layers (close to the input) [42]. For these reasons it could be beneficial in
general to equip at least the first layer with linear activation functions.

Also a ’looks-linear‘ parameter initialization can be of great benefit, in particular, if the intermediary
activation function ϕ0 has a nonzero intercept d ̸= 0, as shown next.

Theorem 2.6 (LT Existence (Two-for-One) with Nonzero Intercept). Thm. 2.5 applies also to
activation functions ϕ0 that fulfill Assumption 2.3 with d ̸= 0 if the parameters are initialized
according to Assumption 2.2 with M

(l)
0 distributed as the weights in Thm. 2.5.

Proof Outline. We can closely follow the steps of the previous proof. The major difference is that
we approximate ϕ0 (x) ≈ µ±(x)x + d so that the activation function approximation produces an
additional error term, i.e.,

∣∣∣d∑k∈Ij
w

(2)
ik

∣∣∣. In principle, we could have modified the bias subset sum

approximation by approximating bt,i + d
∑

j

∑
k∈Ij

w
(2)
ik instead of bt,i. Yet,

∑
j

∑
k∈Ij

w
(2)
ik could

be a large number, with which we would need to multiply our width requirement, if each w
(2)
ik is

initialized as in Thm. 2.5. In contrast, with the looks-linear initialization we can choose w(2)
ik′ = −w

(2)
ik

so that
∑

k∈Ij
w

(2)
ik =

∑
k∈I+

j
w

(2)
ik +

∑
k′∈I−

j
w

(2)
ik′ =

∑
k∈I+

j
w

(2)
ik −

∑
k∈I+

j
w

(2)
ik = 0.

As for RELUS [12], we could use these results to approximate every layer of a target multi-layer
feed-forward neural network for general activation functions by pruning two layers of a source
network with double the depth as the target network, as visualized in Fig. 1 (b). As alternative, next
we propose to prune a source network that has almost the same depth as the target network.

2.2 One Layer for One

Our second major contribution is to show how we can approximate intermediate target layers by
pruning a single layer of the source network. This is achieved by connecting subset sum approximation
blocks directly as visualized in Fig. 1 (c). The main idea is to create, instead of a single target neuron,
ρ copies to support subset sum approximations in the next layer.

In comparison with the two-layer-for-one construction, we have to solve a higher number of subset
sum approximation problems but this number is only higher by a logarithmic factor and can be
integrated in the universal constant C. It is usually negligible. In total, the lottery ticket might also
consist of a higher number of parameters, i.e., link weights, but a smaller number of neurons, which
is the more critical case to reduce computational costs [34]. The benefits usually outweigh the costs,
as we need less random variables to guaranty a successful subset sum approximation and, most
importantly, can use almost the full depth of the source network to find a sparser representation of the
target network. Furthermore, source networks of lower depth are easier to train and thus also more
amenable to pruning algorithms that utilize gradient based algorithms.

Interestingly, we can further relax our requirements on the activation functions, as they only influence
the error propagation through the network but are not involved anymore in creating random variables
for the subset sum approximation problems. Let us start with the approximation of a single layer.

Theorem 2.7. Assume that ϵ′, δ′ ∈ (0, 1), a target network layer ft(x) : D ⊂ Rnt,l → Rnt,l+1

with ft,i(x) = ϕt

(∑nt,l

j=1 wt,ijxj + bt,i
)
, and one source network layer fs with architecture

[ns,l+1, ns,l+2] and the same activation function ϕt are given. Let ϕt have Lipschitz constant
T , and define M := max{1,maxx∈D,i |xi|}. Let the parameters of fs be initialized according to
Assumption 2.1. Then, with probability at least 1− δ′, fs contains a subnetwork fϵ′ ⊂ fs so that ρ
copies of each output component i are approximated as maxx∈D |ft,i(x)− fϵ′,i′(x)| ≤ ϵ′ if

ns,l+1 ≥ Cnt,l log

(
nt,l

min{ϵ′/(MT ), δ′/(ρnt,l+1)}

)
.

Proof. For each target input neuron j, we assume that we can create multiple copies (with index
set Ij) that we can use then as basis for subset sum approximations of target weights w

(l+1)
t,ij .

Similarly, for biases we reserve neurons Ib in the first layer that are pruned so that we have ϕt(c) =
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1 or another constant. Particularly parameter efficient would be ϕt(0) = d. Thus, our lottery
ticket is of the form fϵ′,i′(x) = ϕt

(∑nt,l

j=1 xj

∑
k∈Ii′j⊂Ij

w
(l+2)
i′k +

∑
k∈Ii′b⊂Ib

w
(l+2)
i′k ϕt(c). The

subsets Ii′j and Ii′b are chosen so that |w(l+1)
t,ij −

∑
k∈Ii′j⊂Ij

w
(l+2)
i′k | ≤ ϵ′/(MT (nt,l + 1)) and

|b(l+1)
t,i −

∑
k∈Ii′b⊂Ib

w
(l+2)
i′k ϕt(b

(l+1)
k | ≤ ϵ′/T (nt,l + 1), which can be achieved by subset sum

approximation based on the random variables Xk = w
(l+2)
i′k ∼ U [−1, 1]. In total, we have to solve

maximally ρnt,l+1(nt,l + 1) of these problems and can thus spend δ′/(ρnt,l+1(nt,l + 1)) on each of
them. Note that we only need a separate subset sum block for each input target neuron and not for its
ρ copies, as we can reuse each block in the construction of each output.

The advantage the construction above is that we can skip the approximation of the identity func-
tion. The real challenge, however, lies in the derivation of the required multiplicative factor ρ for
approximating a multi-layer target network.

2.3 Multi-layer Lottery Ticket Existence

Our main result is to derive realistically achievable lower bounds on the width of a source network
that has depth Ls = Lt+1. To prove the existence of LTs that approximate general multi-layer target
networks using the last theorems, we have to overcome two challenges. First, when we consider
multiple network layers, we need to understand how much error we can afford to make in each target
parameter approximation for general activation functions beyond RELUS to stay below the global
error bound, as error can get amplified when signal is sent through multiple layers. Second, we need
to identify the required layer-wise width scaling factor ρ in Thm. 2.7.
Lemma 2.8 (Error propagation). Let two networks f1 and f2 of depth L have the same architecture
and activation functions with Lipschitz constant T . Define Ml := supx∈D

∥∥x(l)
∥∥
1
. Then, for any

ϵ > 0 we have ∥f1 − f2∥∞ ≤ ϵ, if every parameter θ1 of f1 and corresponding θ2 of f2 in layer l
fulfils |θ1 − θ2| ≤ ϵl for

ϵl :=
ϵ

nlL

[
TL−l+1 (1 +Ml−1)

(
1 +

ϵ

L

) L−1∏
k=l+1

(∥∥∥W (k)
1

∥∥∥
∞

+
ϵ

L

) ]−1

.

For suitable target networks, this requirement essentially becomes ϵl = Cϵ/(nlL). This is an advanta-
geous estimate in comparison with [1], which derives a smaller allowed error ϵl ∝ ϵ/(Nt

∏L
s=l N

(s)
t )

that is anti-proportional to the total number of nonzero parameters Nt and a product over nonzero
parameters in the upper layers. Our estimate can be used in two-layers-for-one as well as one-layer-
for-one LT constructions. The latter follows as our main result.
Theorem 2.9 (LT existence (L + 1 construction)). Assume that ϵ, δ ∈ (0, 1), a target network
ft(x) : D ⊂ Rn0 → RnL with architecture n̄t of depth Lt, Nt nonzero parameters, and a source
network fs with architecture n̄s of depth Ls = Lt + 1 are given. Let ϕt be the activation function of
ft in the layers l ≥ 2 of fs with Lipschitz constant T , ϕ0 be the activation function of the first layer
of f0 fulfilling Assumption 2.3, and M := max{1,maxx∈D,l

∥∥∥x(l)
t

∥∥∥
1
}. Let the parameters of fs be

initialized according to Ass. 2.1 for l > 2 and Thm. 2.5 or 2.6 for l ≤ 2. Then, with probability at
least 1− δ, fs contains a subnetwork fϵ ⊂ fs so that each output component i is approximated as
maxx∈D |ft,i(x)− fϵ′,i(x)| ≤ ϵ if

ns,l+1 ≥ Cnt,l log

(
1

min{ϵl+1, δ/ρ}

)
for l ≥ 1, where ϵl+1 is defined by Lemma 2.8 and ρ = CN1+γ

t log(1/min{minl ϵl, δ}) for any

γ > 0. Furthermore, we require ns,1 ≥ Cnt,1 log
(

1
min{ϵl+1,δ/ρ}

)
.

The full proof is presented in the appendix. While the layer-wise constructions are explained by
the proofs of Thms. 2.6, 2.5, and 2.7, yet with updated ϵl, the main challenge is to determine the
increased number of subset sum problems that have to be solved to derive the scaling factor ρ. Note
that ρ only enters the logarithm and is negligible. By updating C, we in fact have the same asymptotic
dependence ns,l+1 ≥ Cnt,l log (nt,lL/min{ϵ, δ}) as in the two-layers-for-one construction.
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3 Experiments

To demonstrate that our theoretical results make realistic claims, we present three sets of experiments
that highlight different advantages of the L+ 1-construction and the 2L-construction. In all cases,
we emulate our constructive existence proofs by pruning source networks to approximate a given
target network. All experiments were conducted on a machine with Intel(R) Core(TM) i9-10850K
CPU @ 3.60GHz processor and GPU NVIDIA GeForce RTX 3080 Ti.

Table 1: LT pruning results on MNIST. Averages and 0.95 standard confidence intervals are reported
for 5 independent source network initializations. Parameters are counted in packs of 1000.

CONSTR. TARGET L+ 1 2L

% ACC. # PARAM. % ACC. # PARAM. % ACC. # PARAM.

RELU 97.99 18.6 97.78 ± 0.05 1106.5 ± 0.9 97.96 ± 0.02 119.2 ± 0.04
LRELU 97.88 18.6 97.63 ± 0.08 1102.4 ± 0.9 97.84 ± 0.06 119.2 ± 0.1
TANH 98.2 18.6 98.07 ± 0.07 660.3 ± 0.4 98.14 ± 0.03 67.0 ± 0.06
SIGMOID 98.08 18.6 98.08 ± 0.02 669.7 ± 0.4 98.07 ± 0.02 67.4 ± 0.05

LeNet on MNIST As our proofs suggest, pruning involves solving multiple subset sum approxi-
mation problems. Each is an NP-hard problem in general, as the size of the power set and thus the
number of potential solutions scales exponentially in the base set size m, i.e., as 2m. However, as
a set size of m = 15 and even smaller is sufficient for our purpose, we could solve each problem
optimally by exhaustively evaluating all 2m solutions. To reduce the size of the associated LTs, we
instead identify the smallest subset consisting of up to 10 variables out of m = 20 to achieve an
approximation error that does not exceed 0.01.

What should be our target network? As the influential work [13], we use Iterative Magnitude
Pruning (IMP) on LeNet networks with architecture [784, 300, 100, 10] to find LTs that achieve a
good performance on the MNIST classification task [7]. Using the Pytorch implementation of the
Gihub repository open_lth1 with MIT license, we arrive at a target network for each of four considered
activation functions after 12 pruning steps: RELU, LRELU, SIGMOID, and TANH. Their performance
and number of nonzero parameters are reported in Table 1 in the target column alongside our results
for the (L+1)-construction and our 2L construction, which achieve a similar performance. Note that,
while the L+ 1 construction relies in this case on a higher number of parameters, it uses less neurons
and a smaller depth, which are the relevant criteria for fast computations and network training.

ResNet18 on Tiny-ImageNet We have obtained more large-scale target networks by fine-tuning a
ResNet18 model that was originally trained on ImageNet data and available for download on Pytorch
for transfer learning. We replaced the last fully-connected classification layer by a fully-connected
network with widths [512, 512, 200] and activation function of interest in the first layer and trained the
full ResNet model on the tiny-ImageNet training data. Similarly to experiments of [1], we estimated
the pruning error of LTs for the fully-connected classification network based on a statistic of solving
105 different subset sum approximation problems. The subset sum base set size in the one-layer-
for-one construction is m = 10, while we used m = 15 in the two-layer-for-one construction. Note
that this difference is possible because the subset sum base set consisting of uniformly distributed
random variables in the one-layer-for-one construction can be smaller than variables that are products
of uniform random variables as in the two-layers-for-one construction.

Both constructions approximate target parameters up to maximum error ϵl = 0.001. The reported
performance is evaluated on the tiny-ImageNet test data for a model that concatenates the residual
target layers and a fully-connected LTs (see Table 2). In this case, because of the different base set
sizes, we sometimes find the L+ 1-construction to be more parameter efficient.

Representational Benefits of the L + 1-construction In the previous experiments, we have
constructed one target network and used different source networks to demonstrate the validity of
our proofs and constructions. The more realistic set-up is, however, that the source network is given

1https://github.com/facebookresearch/open_lth
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Table 2: LT pruning results on tiny-ImageNet. Averages and 0.95 standard confidence intervals are
reported for 3 independent source network initializations. Parameters are counted in packs of 105.

CONSTR. TARGET L+ 1 2L

% ACC. # PARAM. % ACC. # PARAM. % ACC. # PARAM.

RELU 73.08 2.06 73.09 ± 0.04 19.14 ± 0.005 73.06 ± 0.05 21.8 ± 0.004
LRELU 73.0 2.06 72.96 ± 0.04 19.14 ± 0.01 72.92 ± 0.03 21.8 ± 0.006
TANH 73.73 2.06 73.75 ± 0.04 11.36 ± 0.01 73.72 ± 0.08 10.98 ± 0.01
SIGMOID 72.69 2.1 72.69 ± 0.01 19.14 ± 0.002 72.67 ± 0.06 21.86 ± 0.01

and thus the depth of the LT is predetermined as Ls − 1 or Ls/2, respectively. As a consequence,
the 2L- and the L+ 1-construction would approximate different target network representations. If
the target of depth Lt = Ls − 1 is much sparser than the target network of depth Lt = Ls/2, our
L+ 1-construction might be more effective than our 2L-construction. The general challenge with
this argument is that we cannot exclude the case that there might exist a much sparser target network
of depth Lt = Ls/2 than we thought or could identify.

Keeping this caveat in mind, we have still constructed two types of target networks for a problem
for which [11] has derived a relatively sparse solution. The circle target of depth Lt = 25 (for the
L+ 1-construction) consists of 190 nonzero parameters and has a maximum width of 16, while the
Lt = 13 target network (for the 2L-construction) consists of 2133 parameters and has a maximum
width of 1024. Both target networks are equipped with ReLU activation functions and achieve
a similar test accuracy: 99.86% is achieved by the Lt = 13 = Ls/2 target and 99.76% by the
Lt = 25 = Ls − 1 target.

In the following we report the properties of the lottery ticket that we identify by pruning the source
network with a subset sum base set size of m = 15 in the two layer construction and base set
size m = 10 in the one layer construction as averages over 3 independent runs with 0.95 standard
significance intervals.

2L-construction: Acc: 99.5± 0.6, number of parameters: 98393± 288, maximum width: 15375.

L+ 1-construction: Acc: 99.8± 0.01, number of parameters: 18891± 133, maximum width: 170.

In this example, the L+1-construction results in a sparser lottery ticket consisting of fewer parameters
and considerably smaller maximum width. The reason is that we could leverage almost the full depth
of source network to obtain a much sparser target network representation for the L+ 1-construction.

4 Discussion

We have shown that randomly initialized fully-connected feed forward neural networks contain lottery
tickets with high probability for a wide class of activation functions by deriving two types of construc-
tions: (a) The (2Lt)-construction assumes that the larger random source network has at least double
the depth of the target network and is wider only by a logarithmic factor O(nt log(ntLt/min{δ, ϵ})
in the approximation error and the LT existence probability. (b) The (Lt + 1)-construction allows
for potentially sparser target network representations, as these can utilize almost the full available
depth Ls = Lt + 1 of the source network. Remarkable about this result is that asymptotically, we
can maintain the logarithmic overparametrization. While this suggests a slightly less advantageous
scaling in δ for the (Lt + 1)-construction, the constant is smaller for the (Lt + 1)-construction and
most of the time we can choose a similar or smaller source width than in the (2Lt)-construction. We
have also demonstrated in experiments that the LT for the (Lt = Ls − 1)-construction will often
consist of fewer parameters than the LT corresponding to the (Ls/2)-construction, but this does not
always have to be the case.

We have mainly discussed the scenario, in which the source network has exactly depth Ls = Lt + 1,
but not all target network representations become sparser with increasing depth. What if the sparsest
target representation has depth Lt + 1 < Ls? With the help of Lemma 2.4, we could simply add
layers that approximate the identity and thus construct a target with depth Lt = Ls − 1. In future, it
could be interesting to leverage excessive depth to distribute subset sum blocks on multiple layers
instead, as it has been proposed for RELUS [3].
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A Subset Sum Approximation

In the discussed LT constructions, we generally have multiple random neurons and parameters
available to approximate a target parameter z by ẑ up to error ϵ so that |z − ẑ| ≤ ϵ. Let us denote
these random parameters in the source network as Xi. If these contain a uniform distribution, as
defined below, we can utilize a subset of them for approximating z.
Definition A.1. A random variable X contains a uniform distribution if there exist constants α ∈
(0, 1], c, h > 0 and a distribution G1 so that X is distributed as X ∼ αU [c− h, c+ h] + (1− α)G1.

[3] extended results by [30] to solve subset sum approximation problems if the random variables
are not necessarily identically distributed. In addition, they also cover the case |z| > 1. The general
statement follows below.
Corollary A.2 (Subset sum approximation [30, 3]). Let X1, ..., Xm be independent bounded random
variables with |Xk| ≤ B. Assume that each Xk ∼ X contains a uniform distribution with potentially
different αk > 0 (see Definition A.1) and c = 0. Let ϵ, δ ∈ (0, 1) and t ∈ N with t ≥ 1 be given.
Then for any z ∈ [−t, t] there exists a subset S ⊂ [m] so that with probability at least 1− δ we have
|z −

∑
k∈S Xk| ≤ ϵ if

m ≥ C
max

{
1, t

h

}
mink{αk}

log

 B

min
(

δ
max{1,t/h} ,

ϵ
max{t,h}

)
 .

In the two-layers-for-one construction, each Xk is given by a product Xk = w
(l+1)
0,ik w

(l)
0,kj . Products of

uniform distributions or normal distributions generally contain a uniform distribution [37]. However,
αi < 1 is smaller for such products. In consequence, we can utilize a higher fraction of available
parameters in case of a one-layer-for-one construction in comparison with a two-layers-for-one
construction. Yet, this insight only affects the universal constant and is thus of minor influence.

B Proofs

B.1 Proof of Lemma 2.4

Statement (Representation of the identity). For any ϵ′ > 0, for a function ϕ(x) that fulfills Assump-
tion 2.3 with a = a(ϵ′) > 0, and for every x ∈ [−a, a] we have∣∣∣∣x− 1

m+ +m−
(ϕ(x)− ϕ(−x))

∣∣∣∣ ≤ 2ϵ′

m+ +m−
. (2)

Proof. According to Assumption 2.3, for any x ∈ [−a(ϵ′), a(ϵ′)] we have |ϕ(x)−(µ±(x)x+d)| ≤ ϵ′,
where µ±(x) = m+x if x ≥ 0 and µ±(x) = m−x otherwise. It follows that

|ϕ(x)− ϕ(−x)− (µ±(x)x+ d− µ±(−x)x− d)| ≤|ϕ(x)− µ±(x)x+ d)|
+ |ϕ(−x)− µ±(−x)x+ d| ≤ 2ϵ′.

(3)

Note that µ±(x)x+d−µ±(−x)x−d = µ±(x)−µ±(−x) = (m++m−)x. Thus, dividing Eq. (3)
by (m+ +m−) proves the statement.

B.2 Proof of Theorem 2.5

Statement (LT Existence (Two-for-One)). Assume that ϵ′, δ′ ∈ (0, 1), a target network layer ft(x) :
D ⊂ Rn0 → Rn1 with ft,i(x) = ϕt

(∑n0

j=1 wt,ijxj + bt,i

)
, and two source network layers fs are

given with architecture [n0, ns,1, n1] and activation functions ϕ0 in the first and ϕt in the second
layer. Let ϕ0 fulfill Assumption 2.3 with a > 0 and d = 0, ϕt have modulus of continuity
ωt, and M := max{1,maxx∈D,i |xi|}. Let the parameters of fs be conveniently initialized as
w

(1)
ij , b

(1)
i ∼ U [−σ, σ] and w

(2)
ij ∼ U [−1/(|m+ +m−|σ), 1/(|m+ +m−|σ)], b(2)i = 0, where σ =

min {1, a(ϵ′′)/M} with ϵ′′ = g−1

(
ω−1
t (ϵ′) /

(
Cn0

M
|m++m−| log

(
n0

min{δ′/nt,1,ω
−1
t (ϵ′)/M}

)))
.
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Then, with probability at least 1 − δ′, fs contains a subnetwork fϵ′ ⊂ fs so that each output
component i is approximated as maxx∈D |ft,i(x)− fϵ′,i(x)| ≤ ϵ′ if

ns,1 ≥ Cn0 log

(
n0

min{ω−1
t (ϵ′) /M, δ′/nt,1}

)
.

Proof. The construction of a LT consists of three main steps. First, we prune the hidden neurons of
fs to univariate form. Second, we identify neurons in the hidden layer for which we can approximate
ϕ0 for small inputs according to Assumption 2.3. Third, if ns,1 is large enough, we can select
subsets Ij and Ib of the hidden neurons with small inputs so that we can use Thm. A.2 on subset sum
approximation to approximate the parameters of the target network. The resulting subnetwork of fs
is of the following form fϵ′,i(x) = ϕt

(∑
k∈I w

(2)
ik ϕ0

(
w

(1)
kj xj

)
+
∑

k∈Ib
w

(2)
ik ϕ0

(
b
(1)
k

))
, where

I = ∪jIj and
∑

k∈Ij
w

(2)
ik w

(1)
kj can be used to approximate wt,ij . λfϵ,i qualifies as LT if

|ft,i(x)− λfϵ′,i(x)| = |ϕt(x
(1)
t,i )− ϕt(x

(1)
ϵ′,i)| ≤ ωt

(
|x(1)

t,i − x
(1)
ϵ′,i|
)
≤ ϵ′, (4)

where the last inequality holds if we can show that |x(1)
t,i − x

(1)
ϵ′,i| ≤ ω−1

t (ϵ′). Thus, let us bound

|x(1)
t,i − x

(1)
ϵ′,i| =

∣∣∣∣∣∣
n0∑
j=1

wt,ijxj −
∑
k∈Ij

w
(2)
ik ϕ0

(
w

(1)
kj xj

)+

[
bt,i −

∑
k∈Ib

w
(2)
ik ϕ0

(
b
(1)
k

)]∣∣∣∣∣∣
≤ n0 max

x∈D,j

∣∣∣∣∣∣wt,ijxj −
∑
k∈Ij

w
(2)
ik ϕ0

(
w

(1)
kj xj

)∣∣∣∣∣∣+
∣∣∣∣∣bt,i − ∑

k∈Ib

w
(2)
ik ϕ0

(
b
(1)
k

)∣∣∣∣∣ .
(5)

Thus, we have to ensure that each summand∣∣∣∣∣∣wt,ijxj −
∑
k∈Ij

w
(2)
ik ϕ0

(
w

(1)
kj xj

)∣∣∣∣∣∣ ≤ ω−1
t (ϵ′)

(n0 + 1)
. (6)

This also applies to the approximation of bt,i, respectively. To achieve this, we would like to

approximate ϕ0

(
w

(1)
kj xj

)
≈ µ±(w

(1)
kj xj)w

(1)
kj xj , where µ±(x) = m+x if x ≥ 0 and µ±(x) = m−x

otherwise. This is valid, as |w(1)
kj xj | ≤ Ma(ϵ′′)/M = a(ϵ′′) by construction, as long as we pick ϵ′′

small enough. We thus obtain∣∣∣∣∣∣wt,ijxj −
∑
k∈Ij

w
(2)
ik ϕ0

(
w

(1)
kj xj

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣wt,ijxj −
∑
k∈Ij

µ±(w
(1)
kj xj)w

(2)
ik w

(1)
kj xj

∣∣∣∣∣∣︸ ︷︷ ︸
≤ω

−1
t (ϵ′)

2(n0+1)
by subset sum approx.

+

∣∣∣∣∣∣
∑
k∈Ij

w
(2)
ik

(
ϕ0

(
w

(1)
kj xj

)
− µ±(w

(1)
kj xj)w

(1)
kj xj

)∣∣∣∣∣∣︸ ︷︷ ︸
≤ω

−1
t (ϵ′)

2(n0+1)
by activation funct. approx.

(7)

Let us first focus on the subset sum approximation. It helps to split the index set Ij into indices I+j
for which w

(1)
kj > 0 and I−j all the ones for which w

(1)
kj < 0. Furthermore, note that if w(1)

kj > 0 it

holds that µ±(w
(1)
kj xj)/(m+ +m−) = |µ±(xj)/(m+ +m−)| = 1− |µ±(−xj)/(m+ +m−)|. In
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consequence, we have∣∣∣∣∣∣wt,ijxj −
∑
k∈Ij

µ±(w
(1)
kj xj)w

(2)
ik w

(1)
kj xj

∣∣∣∣∣∣ ≤ M

∣∣∣∣∣∣wt,ij −
∑
k∈Ij

µ±(w
(1)
kj xj)w

(2)
ik w

(1)
kj

∣∣∣∣∣∣
≤ M

|µ±(xj)|
|m+ +m−|

∣∣∣∣∣∣∣wt,ij − |m+ +m−|
∑
k∈I+

j

w
(2)
ik w

(1)
kj

∣∣∣∣∣∣∣︸ ︷︷ ︸
≤ ω

−1
t (ϵ′)

2M(n0+1)

+M

(
1− |µ±(xj)|

|m+ +m−|

) ∣∣∣∣∣∣∣wt,ij − |m+ +m−|
∑
k∈I−

j

w
(2)
ik w

(1)
kj

∣∣∣∣∣∣∣︸ ︷︷ ︸
≤ ω

−1
t (ϵ′)

2M(n0+1)

Thm. A.2 can guaranty a small enough error with probability 1 − δ′. As we have to solve two
subset sum approximation problems per parameter and thus 2(n0 + 1)nt,1 in total, we need to
solve each of them successfully with probability at least 1 − δ′/(2(n0 + 1)nt,1), which can be
seen with the help of a union bound. The random variables that are used in the approximation
are given by Xk = |m+ + m−|w(2)

ik w
(1)
kj . The initial scaling of the random variables is exactly

chosen so that Xk is given by the product of two uniform random variables Xk ∼ U [−1, 1]U [0, 1] or
Xk ∼ U [−1, 1]U [−1, 0], which contain a normal distribution as shown by [36]. Therefore, Thm. A.2
states that if

n ≥ C log

(
n0

min
{
δ′/nt,1, ω

−1
t (ϵ′) /M

}) (8)

random variables are available for each subset sum approximation and thus n ≥
Cn0 log

(
n0/min{δ, ω−1

t (ϵ′) /M}
)

in total, we can achieve the desired subset sum approxima-
tion error.

It is left to show how we can obtain the necessary activation function approximation in Eq. (7). The
relevant term vanishes for a(ϵ′′) = ∞ and the claim follows directly. In the following, we discuss
therefore only the case that a(ϵ′′) is finite.∣∣∣∣∣∣
∑
k∈Ij

w
(2)
ik

(
ϕ0

(
w

(1)
kj xj

)
− µ±(w

(1)
kj xj)w

(1)
kj xj

)∣∣∣∣∣∣ ≤
∑
k∈Ij

∣∣∣w(2)
ik

∣∣∣ ∣∣∣ϕ0

(
w

(1)
kj xj

)
− µ±(w

(1)
kj xj)w

(1)
kj xj

∣∣∣
≤
∑
k∈Ij

∣∣∣w(2)
ik

∣∣∣ ϵ′′ ≤ |Ij |
|m+ +m−|σ

ϵ′′ ≤ C log

(
n0

min
{
δ, ω−1

t (ϵ′) /M
}) M

|m+ +m−|
ϵ′′

a(ϵ′′)
,

where we have used that
∣∣∣w(2)

ik

∣∣∣ ≤ 1
|m++m−|σ with σ = a(ϵ′′)

M and the fact that the approximation
of the activation function is valid with ϵ′′ by construction. Note that the required number of subset
elements |Ij | in the subset sum approximation is usually much smaller than the used upper bound of
the whole set size as given by Eq. (8). To arrive at the end of the proof, we only have to choose ϵ′′

small enough so that the whole term is bounded by
ω−1

t (ϵ′)
2(n0+1) . Interestingly, this choice only affects

the scaling in the initialization of the random variables but not directly our width requirement. We
can always find an appropriate ϵ′′ and accordingly also scaling factor σ = a(ϵ′′)

M , as the function
g(ϵ′′) = ϵ′′

a(ϵ′′) is invertible on a suitable interval ]0, ϵ′]. We can therefore define

ϵ′′ = g−1

 ω−1
t (ϵ′)

Cn0 log

(
n0

min{δ′/nt,1,ω
−1
t (ϵ′)/M}

)
M

|m++m−|

 . (9)
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We also need that limϵ′′→0 g(ϵ
′′) = 0 to make sure that we can always find a suitable ϵ′′ for any

choice of ϵ′. Furthermore, note that, if m+ = m− = m, we do not need to distinguish w
(1)
kj > 0

and w
(1)
kj < 0 to do separate approximations. In this case, we only need to solve n0 + 1 subset sum

approximation problems.

To give an example for g, let us recall that for tanh (and sigmoids) we have a(ϵ′′) = Cϵ′′1/3. In
consequence, g(ϵ′′) = ϵ′′

a(ϵ′′) = Cϵ′′2/3 and thus g−1(y) = Cy3/2 so that ϵ′′ is of order ϵ′′ =

C (ϵ′/ log(1/ϵ′))
2/3 in this case.

B.3 Proof of Thm. 2.6

Statement (LT Existence (Two-for-One) with Non-Zero Intercept). Thm. 2.5 applies also to activation
functions ϕ0 that fulfill Assumption 2.3 with d ̸= 0 if the parameters are initialized according to
Assumption 2.2 with M

(l)
0 distributed as the weights in Thm. 2.5.

Proof. We can closely follow the steps of the previous proof. The major difference is that we
approximate ϕ0 (x) ≈ µ±(x)x+ d. This turns the activation function approximation in Eq. 7 into∣∣∣∣∣∣wt,ijxj −

∑
k∈Ij

w
(2)
ik ϕ0

(
w

(1)
kj xj

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣wt,ijxj −

∑
k∈Ij

µ±(w
(1)
kj xj)w

(2)
ik w

(1)
kj xj

∣∣∣∣∣∣︸ ︷︷ ︸
≤ω

−1
t (ϵ′)

2(n0+1)
by subset sum approx.

+

∣∣∣∣∣∣
∑
k∈Ij

w
(2)
ik

(
ϕ0

(
w

(1)
kj xj

)
− µ±(w

(1)
kj xj)w

(1)
kj xj − d

)∣∣∣∣∣∣︸ ︷︷ ︸
≤ω

−1
t (ϵ′)

2(n0+1)
by activation funct. approx.

+

∣∣∣∣∣∣d
∑
k∈Ij

w
(2)
ik

∣∣∣∣∣∣ .
(10)

In principle, we could have modified the bias subset sum approximation by approximating bt,i +

d
∑

j

∑
k∈Ij

w
(2)
ik instead of bt,i. Yet,

∑
j

∑
k∈Ij

w
(2)
ik could be a large number, with which we would

need to multiply our width requirement, if each w
(2)
ik is initialized as in Thm. 2.5. In contrast, with

the looks-linear initialization we can choose w
(2)
ik′ = −w

(2)
ik so that

∑
k∈Ij

w
(2)
ik =

∑
k∈I+

j
w

(2)
ik +∑

k′∈I−
j
w

(2)
ik′ =

∑
k∈I+

j
w

(2)
ik −

∑
k∈I+

j
w

(2)
ik = 0. The extra term vanishes and we only need to

solve half of the subset sum approximation problems than in the previous theorem, i.e. only (n0 + 1),
with probability δ′/(n0 + 1). Thus, we could also bound

n ≥ C log

(
n0

min
{
δ, ω−1

t (ϵ′) /(2M)
}) (11)

with a smaller C than in Thm. 2.5 but we do not derive the precise constant anyways.

Note that even in the case m+ = m− = m, if d ̸= 0, we distinguish the cases w(1)
kj > 0 and w

(1)
kj < 0

to do separate approximations, as this leads to a vanishing
∑

k∈Ij
w

(2)
ik = 0.

B.4 Proof of Lemma 2.8

Statement (Error propagation). Let two networks f1 and f2 of depth L have the same architecture
and activation functions with Lipschitz constant T . Define Ml := supx∈D

∥∥∥x(l)
1

∥∥∥
1
. Then, for any

ϵ > 0 we have ∥f1 − f2∥∞ ≤ ϵ, if every parameter θ1 of f1 and corresponding θ2 of f2 in layer l
fulfils |θ1 − θ2| ≤ ϵl for

ϵl :=
ϵ

nlL

[
TL−l+1 (1 +Ml−1)

(
1 +

ϵ

L

) L−1∏
k=l+1

(∥∥∥W (k)
1

∥∥∥
∞

+
ϵ

L

) ]−1

.
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Proof. Using the Lipschitz continuity of the activation function, we obtain for each component of the
difference between the two networks

|f1,i(x)− f2,i(x)| =

∣∣∣∣∣∣ϕ
∑

j

w
(L)
1,ijx

(L−1)
1,j + b

(L)
1,i

− ϕ

∑
j

w
(L)
2,ijx(L− 1)2,j + b

(L)
2,i

∣∣∣∣∣∣
≤ T

∣∣∣∣∣∣
∑
j

(w
(L)
1,ijx

(L−1)
1,j − w

(L)
2,ijx(L− 1)2,j) + b

(L)
1,i − b

(L)
2,i

∣∣∣∣∣∣ ≤ T
∑
j

|w(L)
1,ij − w

(L)
2,ij ||x

(L−1)
1,j |

+ T
∑
j

|w(L)
2,ij ||x

(L−1)
2,j − x

(L−1)
1,j |+ T |b(L)

1,i − b
(L)
2,i |

≤ T
[
ϵL

∥∥∥x(L−1)
1

∥∥∥
1
+ (1 + ϵL)

∥∥∥x(L−1)
2 − x

(L−1)
1

∥∥∥
1
+ ϵL

]
≤ T

[
ϵL (1 +Ml−1) + (1 + ϵL)T

∥∥∥W (L−1)
2 x

(L−2)
2 + b

(L−1)
2 −W

(L−1)
1 x

(L−2)
1 − b

(L−1)
1

∥∥∥ ]
≤ ϵL (1 +Ml−1) + (1 + ϵL)T

2
[ ∥∥∥W (L−1)

2

(
x
(L−2)
2 − x

(L−2)
1

)∥∥∥
1
+
∥∥∥(W (L−1)

2 −W
(L−1)
1

)
x
(L−2)
1

∥∥∥
1

+
∥∥∥b(L−1)

2 − b
(L−1)
1

∥∥∥
1

]
≤ ϵL (1 +Ml−1) + (1 + ϵL)T

2
[ (∥∥∥W (L−1)

1

∥∥∥
∞

+ nL−1ϵL−1

)
×
∥∥∥x(L−2)

2 − x
(L−2)
1

∥∥∥
1
+ nL−1ϵL−1

∥∥∥x(L−2)
1

∥∥∥
1
+ nL−1ϵL−1

]
≤ ϵL (1 +Ml−1) + (1 + ϵL)T

2nL−1ϵL−1(1 +ML−2) + (1 + ϵL)T
2
(∥∥∥W (L−1)

1

∥∥∥
∞

+ nL−1ϵL−1

)
×
∥∥∥x(L−2)

2 − x
(L−2)
1

∥∥∥
1
,

(12)

where we have assumed that each |w(L)
1,ij | ≤ 1. The above lemma further assumes that each parameter

in layer L of network 2 is maximally |w(L)
2,ij | ≤ |w(L)

1,ij | + ϵL ≤ 1 + ϵL. In addition, it claims that∥∥∥x(L−1)
1

∥∥∥
1
≤ ML−1. Repeating the above arguments iteratively for

∥∥∥x(l)
2 − x

(l)
1

∥∥∥
1
, we arrive at the

following bound

|f1,i(x)− f2,i(x)| ≤TϵL(1 +ML−1)

+

L−1∑
l=1

TL−l+1(Ml−1 + 1)nlϵl(1 + ϵL)

L−1∏
k=l+1

(∥∥∥W (k)
1

∥∥∥
∞

+ nkϵk

)
.

(13)

We have to ensure that this expression is smaller or equal to ϵ. This can by achieved by assigning to
each term that is related to a layer l the maximum error ϵ/L. It follows that also ϵl ≤ ϵ/(Lnl) so that

TL−l+1(Ml−1 + 1)nlϵl(1 + ϵL)

L1∏
k=l+1

(∥∥∥W (k)
1

∥∥∥
∞

+ nkϵk

)
(14)

≤ TL−l+1(Ml−1 + 1)nlϵl

(
1 +

ϵ

L

) L1∏
k=l+1

(∥∥∥W (k)
1

∥∥∥
∞

+
ϵ

L

)
≤ ϵ

L
(15)

Solving the last inequality for ϵl proves our claim.

B.5 Proof of Theorem 2.9

Statement (LT existence (L+ 1 construction)). Assume that ϵ, δ ∈ (0, 1), a target network ft(x) :
D ⊂ Rn0 → RnL with architecture n̄t of depth L, Nt non-zero parameters, and a source network
fs with architecture n̄0 of depth L + 1 are given. Let ϕt be the activation function of ft and the
layers l ≥ 2 of fs with Lipschitz constant T , ϕ0 be the activation function of the first layer of
fs fulfilling Assumption 2.3, and M := max{1,maxx∈D,l

∥∥∥x(l)
t

∥∥∥}. Let the parameters of fs be
conveniently initialized according to Assumption 2.1 for l ≥ 2 and Thm. 2.5 or 2.6 for l ≤ 1. Then,
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with probability at least 1− δ, fs contains a subnetwork fϵ ⊂ fs so that each output component i is
approximated as maxx∈D |ft,i(x)− fϵ′,i(x)| ≤ ϵ if for l ≥ 1

ns,l+1 ≥ Cnt,l log

(
1

min{ϵl+1, δ/ρ}

)
,

where ϵl+1 is defined by Lemma 2.8 and ρ = CN1+γ
t log(1/min{minl ϵl, δ}) for any γ > 0.

Furthermore, we require ns,1 ≥ Cnt,1 log
(

1
min{ϵl+1,δ/ρ}

)
.

Proof. The proofs of Thms. 2.6, 2.5, and 2.7 have already explained the main parts of the construction.
The missing piece is the choice of appropriate modification of δ by ρ ≥ ρ′ =

∑L
l=1 ρ

′
l, where ρ′

counts the increased number of required subset sum approximation problems to approximate the L
target layers with our lottery ticket and ρl counts the same number just for Layer l.

For each non-zero parameter, we will need two solve at least one subset sum approximation problem
or sometimes two in case of the first target layer. We denote the number of non-zero parameters in
Layer l as Nl. Thus, if our target network is fully-connected and all parameters are non-zero, we
have Nl = nt,l(nt,l−1 + 1) and in total Nt =

∑L
l=1 nt,l(nt,l−1 + 1).

Let us start with counting the number ρ′L of required subset sum approximation problems in the last
layer because it determines how many neurons we need in the previous layer. This in turn defines
how many subset sum approximation problems we have to solve to construct this previous layer.

The last layer requires us to solve exactly ρ′L = NL subset sum problems, which can be solved
successfully with high probability if ns,L−1 ≥ Cnt,L−1 log(1/min{ϵL, δ/ρ′}). We will only
need to construct a subset of these neurons with the help of Layer L − 2, i.e., exactly the neu-
rons that are used in the lottery ticket. If ns,L−1 is large, this might require only 2 − 3 neu-
rons per parameter. For simplicity, however, we bound this number by the total number of avail-
able neurons. To reconstruct one set of neurons, we need approximate NL−1 parameters. As
we have to maximally construct C log(1/min{ϵL, δ/ρ′}) sets of these neurons, we can bound
ρ′L−1 ≤ CNL−1 log(1/min{ϵL, δ/ρ′}.

Note that we can solve all of these subset sum approximation problems with the help of nt,L−2 ≥
CNL−2 log(1/min{ϵL−1, δ/ρ

′} neurons and this number does not increase by the fact that we have
to construct not only nt,L−1 neurons but a number of neurons that is increased by a logarithmic factor.
The higher number of required neuron approximations only affects the number of required subset sum
approximation problems and thus the needed success probability of each parameter approximation
via ρ.

Repeating the same argument for every layer, we derive ρ′l ≤ CNl log(1/min{ϵl+1, δ/ρ
′},

which could also be shown formally by induction. In total we thus find ρ′ =
∑L

l=1 ρ
′
l ≤

CNl log(1/min{minl ϵl, δ/ρ
′}) ≤ CNt log(1/min{minl ϵl, δ/ρ}). A ρ that fulfills ρ ≥

CNt log(1/min{minl ϵl, δ/ρ}) would therefore be sufficient to prove our claim. ρ =

CN1+γ
t log(1/min{ϵ, δ}) for any γ > 0 works, as CNγ

t ≥ log(Nt).
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