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Abstract

We consider distributed stochastic variational inequalities
(VIs) on unbounded domain with the problem data being het-
erogeneous (non-IID) and distributed across many devices.
We make very general assumption on the computational net-
work that, in particular, covers the settings of fully decen-
tralized calculations with time-varying networks and central-
ized topologies commonly used in Federated Learning. More-
over, multiple local updates on the workers can be made
for reducing the communication frequency between work-
ers. We extend stochastic extragradient method to this very
general setting and theoretically analyze its convergence rate
in the strongly monotone, monotone, and non-monotone set-
ting when an Minty solution exists. The provided rates have
explicit dependence on network characteristics and how it
varies with time, data heterogeneity, variance, number of de-
vices, and other standard parameters. As a special case, our
method and analysis apply to distributed stochastic saddle-
point problems (SPP), e.g., to training Deep Generative Ad-
versarial Networks (GANs) for which the decentralized train-
ing has been reported to be extremely challenging. In experi-
ments for decentralized training of GANs we demonstrate the
effectiveness of our proposed approach.

1 Introduction
In large scale machine learning (ML) scenarios the train-
ing data is often is split over many client devices (e.g. geo-
distributed datacenters or mobile devices) (Kairouz et al.
2019). Decentralized training methods can train a ML model
to the same accuracy as if all data would be aggregated on
one single server (Lian et al. 2017; Assran et al. 2019).
Training in a non-centralized fashion can offer many ad-
vantages over traditional centralized approaches in core as-
pects such as data ownership, privacy, fault tolerance and
scalability. A particular instance of the decentralized learn-
ing setting is Federated Learning (FL), where the training is
orchestrated by a single entity that communicates with all
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participating clients (McMahan et al. 2016; Kairouz et al.
2019). In contrast, in fully decentralized learning (FD) sce-
narios the devices only communicate with their neighbours
in the network topology (Lian et al. 2017). Such algorithms
are important in scenarios where centralized communication
is expensive or impossible.

There have been tremendous advances recently in the de-
velopment, design and understanding of decentralized train-
ing schemes (Nedić and Ozdaglar 2009; Wei and Ozdaglar
2012; Shi et al. 2015; Lian et al. 2017; Scaman et al.
2017; Uribe, Lee, and Gasnikov 2018; Tang et al. 2018;
Wang and Joshi 2018). In particularly, aspects such as data-
heterogeneity (Tang et al. 2018; Pu and Nedić 2020; Lin
et al. 2021), communication efficiency (through local up-
dates (Lan, Lee, and Zhou 2018; Koloskova et al. 2020)
or compression (Tang et al. 2019; Koloskova, Stich, and
Jaggi 2019a)), or personalization (Vanhaesebrouck, Bellet,
and Tommasi 2017; Bellet et al. 2018) have been studied
recently. However, all these methods have been developed
for single objective loss functions (minimization objective)
and are not applicable to more general problem classes.
For example, the training of Generative Adversarial Net-
works (GANs) (Goodfellow et al. 2014) requires the joint
optimization of the generator and discriminator objective,
i.e. solving a non-convex non-concave saddle-point problem
(SPP). This problem structure makes GANs notoriously dif-
ficult to train in the single machine setting (Gidel et al. 2019;
Chavdarova et al. 2019, 2021) and in particular over decen-
tralized data (Liu et al. 2020; Mukherjee and Chakraborty
2020; Rogozin et al. 2021).

In this paper, we present a novel algorithm for solving de-
centralized SPP, and more generally, decentralized stochas-
tic Minty variational inequalities (MVI) (Minty 1962; Ju-
ditsky, Nemirovski, and Tauvel 2011). In a decentralized
stochastic MVI, the data is distributed over M ≥ 1 de-
vices and each device m ∈ [M ] has access to its local
stochastic oracle Fm(z, ξm) for the operator Fm(z) :=
Eξm∼DmFm(z, ξm). The data ξm follows unknown distri-
butions Dm, different at every node m ∈ [M ]. The devices
are connected via network given as a communication graph

ar
X

iv
:2

10
6.

08
31

5v
2 

 [
m

at
h.

O
C

] 
 9

 O
ct

 2
02

1



and two nodes can exchange information only if they are
connected by an edge in this graph. The goal is, respecting
the communication constraints, to find cooperatively a point
z∗ ∈ Rn such that, for all ∀z ∈ Rn,

1
M

∑M
m=1〈Eξm∼DmFm(z, ξm), z∗ − z〉 ≤ 0. (1)

A special instance of a decentralized MVI is the de-
centralized SPP with local objectives fm(x, y) :=
Eξm∼Dm [fm(x, y, ξm)]:

min
x∈Rnx

max
y∈Rny

[
f(x, y) := 1

M

∑M
m=1 fm(x, y)

]
. (2)

This can be seen by considering z =
[
x
y

]
and the gra-

dient field Fm(z) =
[ ∇xfm(x, y)
−∇yfm(x, y)

]
. In the special case

when f(x, y) is convex-concave, the corresponding operator
F (z) = 1

M

∑M
m=1 EξmFm(z, ξm) is monotone. However,

in the context of GANs—where x and y are the parameters
of the generator and discriminator, respectively—in general
the local fm(x, y) are possibly non-convex, non-concave in
x, y and we cannot assume monotonicity of F in general
(see also (Diakonikolas, Daskalakis, and Jordan 2021)).

In this paper, we develop a novel algorithm for problems
(1) or (2). Gradient descent-ascent scheme on objective (2)
may diverge even in the simple convex-concave setting and
M = 1 worker (Chavdarova et al. 2019). Thus, unlike
(Liu et al. 2020), we use extragradient updates (Korpelevich
1976; Juditsky, Nemirovski, and Tauvel 2011; Gidel et al.
2019) as a building block and combine it with gossip-type
communication protocol (Xiao and Boyd 2004; Boyd et al.
2006) on arbitrary, possibly time-varying, network topolo-
gies. One of the main challenges due to communication con-
straints is a “network error” induced by impossibility of all
the nodes to reach the exact consensus, i.e. to have the same
information on the current iterate of an algorithm. Thus,
each device stores a local variable and only partial consensus
among nodes can be achieved by gossip steps (Kong et al.
2021). Unlike other decentralized algorithms (Scaman et al.
2017; Liu et al. 2020) our method avoids multiple gossip
steps per iteration that leads to better practical performance
and possibility to work on time-varying networks. Moreover,
our method allows multiple local updates between commu-
nication rounds making it suitable for communication- and
privacy-restricted FL or fully decentralized settings (Zinke-
vich et al. 2010).

Our contributions. 1) We develop a novel algorithm,
based on extragradient updates, for distributed stochastic
MVIs with heterogeneous data and, in particular, distributed
stochastic SPP. Our scheme supports very general commu-
nication protocol that covers centralized settings as in Fed-
erated Learning, fully decentralized settings, local steps in
the both centralized/decentralized settings, and time-varying
topology. In particular, we are not aware of earlier works
proposing or analyzing extragradient method with local
steps for the fully decentralized setting or decentralized al-
gorithms for stochastic MVIs over time-varying networks.

2) Under the very general communication protocol and in
the three settings of MVIs with an operator that is strongly-
monotone, monotone, or non-monotone with the Minty con-
dition, we prove convergence for our algorithm and give

an explicit dependence of the rates on the problem param-
eters: characteristics of the network and how it changes with
time, data heterogeneity, variance of the data, number of
devices, and other standard parameters. These theoretical
results clearly translate to the corresponding three settings
of SPP (strongly-convex-strongly-concave, convex-concave,
non convex-concave under Minty condition). All our theo-
retical results are valid in the important heterogeneous data
regime and allow judging in a quantifiable way how differ-
ent properties, e.g., data heterogeneity, scale of the noise in
the data, and network characteristics influence the conver-
gence rate of the algorithm. Even for decentralized setting,
our results are novel for time-varying graphs and three dif-
ferent settings of monotonicity. See also Table 1 that gives
more details on our contribution compared to existing litera-
ture. The main challenge of our analysis is to deal with very
general assumption on the communication protocol and cope
with the errors caused by stochastic nature and heretogene-
ity of the data and limited information exchange between
the nodes of the communication network. As a byproduct
of independent interest, we analyze stochastic extragradient
method with biased oracle on unbounded domains that was
not done so far in the literature.

3) We verify our theoretical results in numerical exper-
iments and demonstrate the practical effectiveness of the
proposed scheme we train DCGAN (Radford, Metz, and
Chintala 2015) architecture on the CIFAR-10 (Krizhevsky,
Nair, and Hinton 2009) dataset.

1.1 Related Work
The research on MVIs dates back at least to 1962 (Minty
1962) with the classic book (Kinderlehrer and Stampacchia
2000) and the recent works (Liu et al. 2019b; Lin, Jin,
and Jordan 2020; Bullins and Lai 2020; Diakonikolas,
Daskalakis, and Jordan 2021). VIs arise in a broad va-
riety of settings: image denoising (Esser, Zhang, and
Chan 2010; Chambolle and Pock 2011), game theory
and optimal control (Facchinei and Pang 2007), robust
optimization (Ben-Tal, Ghaoui, and Nemirovski 2009) or
non-smooth oprimization via smooth reformulations (Nes-
terov 2005; Nemirovski 2004). In ML, MVIs and SPP
arise in training GANs (Daskalakis et al. 2018; Chavdarova
et al. 2019, 2021), reinforcement learning (Omidshafiei
et al. 2017; Jin and Sidford 2020), and adversarial train-
ing (Madry et al. 2018).

Extragradient. The extragradient method (EGM) was
first proposed in (Korpelevich 1976) and extended as
mirror-prox method for deterministic problems in (Ne-
mirovski 2004) and for stochastic ones with bounded vari-
ance in (Juditsky, Nemirovski, and Tauvel 2011). Yet, if the
stochastic noise is not uniformly bounded, the EGM can di-
verge, see (Chavdarova et al. 2019; Mishchenko et al. 2019).

Decentralized algorithms for MVIs and SPP are the
most closely related to our work and we summarize them
in Table 1 and compare with our contribution, e.g. existing
methods do not support arbitrary time-varying network ty-
pologies. The methods that use multiple rounds of gossip
averaging (sparse communication) per iteration (Liu et al.
2020; Beznosikov, Samokhin, and Gasnikov 2021) can give



Reference base method arbitrary network time-varying local updates no multiple gossip steps SM M NM
Liu et al. (Liu et al. 2020) Stoch. ES 4 8 8 8 8 8 4†

Beznosikov et al. (Beznosikov, Samokhin, and Gasnikov 2021) Algorithm 2 Stoch. ES 4 8 8 8 4 4 8
Liu et al. (Liu et al. 2019b) Deter. prox 4 8 8 4 8 8 4
Mukherjee and Chakraborty (Mukherjee and Chakraborty 2020) Deter. ES 4 8 8 4 4 8 8
Rogozin et al. (Rogozin et al. 2021) Deter. ES 4 8 8 4 8 4 8
Beznosikov et al. (Beznosikov, Samokhin, and Gasnikov 2021) Algorithm 3 Stoch. ES 8 8 4 -§ 4 8 8
Deng and Mahdavi (Deng and Mahdavi 2021) Stoch. DA 8 8 4 - 4 8 4‡

Hou et al. (Hou et al. 2021) Stoch. DA 8 8 4 - 4 8 8
Ours Stoch. ES 4 4 4 4 4 4 4
† – homogeneous case, ‡ – non-convex-concave SPP, § – this column does not apply to centralized algorithms.

Table 1: Comparison of approaches for distributed strongly monotone (SM), monotone (M) and non-monotone (NM) VI or, respectively,
strongly-convex-strongly-concave, convex-concave, non-convex-non-concave SPPs.
Definition of columns: base method—the non-distributed algorithm that is taken as a basis for the distributed method, typically it is either
an extragradient (ES) method or descent-ascent (DA); arbitrary network—supporting fully decentralized vs. only centralized topology;
time-varying—decentralized method with time-varying network topology; local updates—method supporting local steps between commu-
nications; no multiple gossip steps—at one global iteration method does not use many iterations of gossip averaging to good accuracy;
SM,M,NM—monotonicity assumption, see Assumption 3.

optimal theoretical rates, but are often unstable in practice.
Thus, it is preferred to have only one sparse communication
per iteration (Liu et al. 2019b; Mukherjee and Chakraborty
2020; Rogozin et al. 2021). The second column of the ta-
ble refers to standard algorithms that are extended to dis-
tributed setting in the corresponding work. In particular, (Liu
et al. 2019b) require expensive proximal updates. The clos-
est work to ours is (Beznosikov, Samokhin, and Gasnikov
2021), where decentralized EGM without local steps is ana-
lyzed in (strongly-)monotone setting. Unlike our more gen-
eral algorithm with local steps and analysis, they require
multiple gossip updates in each iteration which is not desired
in practice. For the FL (centralized) setting, the same work
studies EGM with local steps in the strongly-monotone set-
ting, and (Deng and Mahdavi 2021; Hou et al. 2021) study
descent-ascent method with local steps, and all three do not
consider arbitrary time-varying graphs as we do.

2 Algorithm
In this section we present and discuss the proposed algo-
rithm that is based on two main ideas: (i) an extragradient
step, as in the classical methods for VIs (Korpelevich 1976;
Nemirovski 2004), and (ii) gossip averaging (Boyd et al.
2006; Nedić and Ozdaglar 2009) widely used in decentral-
ized optimization methods.

The algorithm can be divided into two phases. The local
phase (lines 4–6) consists of a step of the stochastic extra-
gradient method at each node using only local information.
As in the non-distributed case, the nodes make first an ex-
trapolation step—to “look into the future”—and then an up-
date based on the operator value at the “future” point. This is
followed by the communication phase (line 7), during which
the devices average local iterates with their neighborsN k

m in
the current network graph corresponding to the iteration k.
The averaging process involves the weights wkm,i – elements
of the matrix W k,which is called the mixing matrix:

Definition 1 (Mixing matrix) We call a matrix W ∈
[0; 1]M×M a mixing matrix if it satisfies the following condi-
tions: 1) W is symmetric, 2) W is doubly stochastic (W1 =
1, 1TW = 1T , where 1 denotes the all-one vector), 3) W
is aligned with the network: wij 6= 0 if and only if i = j or

Algorithm 1: Extra Step Time-Varying Gossip Method
parameters:stepsize γ > 0, {Wk}k≥0 – rules or distribu-
tions for selecting mixing matrix in iteration k.
initialize:z0 ∈ Z,∀m : z0

m = z0

1: for k = 0, 1, 2, . . . do
2: Sample matrix W k fromWk

3: for each machine m do
4: Generate independently ξkm ∼ Dk, ξk+1/3

m ∼ Dk
5: z

k+1/3
m = zkm − γFm(zkm, ξ

k
m)

6: z
k+2/3
m = zkm − γFm(z

k+1/3
m , ξ

k+1/3
m )

7: zk+1
m =

∑
i∈Nkm

wkm,iz
k+2/3
i

8: end for
9: end for

edge (i, j) is in the network graph.
Typical choices of mixing matrices are for example (i)

the choice W k = IM − Lk

λmax(Lk)
, where Lk denotes the

Laplacian matrix of the network graph at time k and IM the
identity matrix, or (ii) local rules based on the degrees of
the neighboring nodes (Xiao and Boyd 2004). Note that our
setting allows a great flexibility as in between the iterations
the topology of the communication graph can change, and
the matrix W k, that encodes the current structure of the net-
work, changes accordingly. This is encoded in line 2, where
the matrix W k is generated by some rule Wk which can
have different nature. Examples include deterministic choice
of a sequence of matricesW k, sampling from a time-varying
probability distribution on matrices. Even local steps with no
communication can be encoded with a diagonal matrix W k.
To ensure that it is possible to approach the consensus be-
tween the agents, we need the following assumption on the
mixing properties of the matrix sequence W k.

Assumption 1 (Expected Consensus Rate) We assume
that there exist two constants p ∈ (0, 1] and integer τ ≥ 1
such that for all matrices Z ∈ Rd×M and all integers
l ∈ {0, . . . , T/τ},

EW [‖ZWl,τ − Z̄‖2F ] ≤ (1− p)‖Z − Z̄‖2F , (3)

whereWl,τ = W lτ · . . . ·W (l+1)τ−1, we use matrix notation



Z = [z1, . . . , zM ], Z̄ = [z̄, . . . , z̄] with z̄ = 1
M

∑M
m=1 zm,

and the expectation EW is taken over distributions of W t

and indices t ∈ {lτ, ..., (l + 1)τ − 1}.
This assumption ensures that after τ steps of the gossip

algorithm with such time-varying matrices we improve the
averaging between nodes by the factor of 1

1−p . It is impor-
tant that in this case some matrices W k can be, for example,
the identity matrix (which corresponds to performing local
steps only in this round).

Such an assumption about time-varying networks (more
precisely, about their mixing matrices) first appeared in
(Koloskova et al. 2020) in a different to ours setting of op-
timization problems. As the authors note, Assumption 1 is
tighter than many other already classical assumptions about
time-varying graphs and covers many special cases of de-
centralized and centralized algorithms. For example, if we
fix W k = W for some connected graph we get a decentral-
ized algorithm on a constant topology. If at the same time
we set the matrix W = 1

M 11T , then it is easy to make sure
that then we get an analogue of centralized learning with
averaging over all nodes in one communication step. If we
take the matrixW k = W for some connected graph at every
τ th iteration, and in other cases use W k = IM , we have a
decentralized (or centralized) algorithm with local iterations
and communication once in τ iterations. Generic Assump-
tion 1 covers also many other settings of time-varying de-
centralized topologies, e.g. random topologies, cliques, B-
connected graphs (Jadbabaie, Lin, and Morse 2003; Nedic
et al. 2009). Below we provably show that under an appro-
priate choice of the stepsize our extragradient method prov-
ably converges under such a general assumption that cov-
ers centralized, decentralized settings, local steps in the both
centralized/decentralized settings, and changing topology.
Even for decentralized setting, this is novel for time-varying
graphs and three different settings of monotonicity.

3 Setting and assumptions
In this section we introduce necessary assumptions that are
used to analyze the proposed algorithm.
Assumption 2 (Lipschitzness) For all m, the operator
Fm(z) is Lipschitz with constant L, i.e. for all z1, z2

‖Fm(z1)− Fm(z2)‖ ≤ L‖z1 − z2‖. (4)

This is a standard assumption that is used in the analysis of
all the methods displayed in Table 1.
Assumption 3 We consider three scenarios for the operator
F , namely when F is strongly monotone, monotone and non-
monotone, but with an additional assumption:
(SM) Strong monotonicity. There exists µ > 0 such that

〈F (z1)− F (z2), z1 − z2〉 ≥ µ‖z1 − z2‖2,∀z1, z2. (SM)

(M) Monotonicity. For all z1, z2, it holds that:

〈F (z1)− F (z2), z1 − z2〉 ≥ 0. (M)

(NM) Non-monotonicity. There exists z∗ such that for all z:

〈F (z), z − z∗〉 ≥ 0. (NM)

Assumptions (SM), (M), 2 are standard classical assump-
tions in the literature on VIs. Assumption (NM) is quite
weak and sometimes referred to as the Minty condition. It
is quite standard for the analysis of algorithms for non-
monotone VIs in different settings (Dang and Lan 2015;
Diakonikolas, Daskalakis, and Jordan 2021), including dis-
tributed (Liu et al. 2020, 2019b).

The next assumption is standard for stochastic setting.
Assumption 4 (Bounded noise) Fm(z, ξ) is unbiased and
has bounded variance, i.e. for all z ∈ Z
E[Fm(z, ξ)] = Fm(z), E[‖Fm(z, ξ)− Fm(z)‖2] ≤ σ2. (5)

The last assumption reflects the variability of the local op-
erators compared to their mean and can often be found in
the literature on local and decentralized methods, where it is
called D-heterogeneity.
Assumption 5 (D-heterogeneity.) The values of the local
operator have bounded variablility, i.e. for all z

‖Fm(z)− F (z)‖2 ≤ D2. (6)

4 Main results
In this section, we present the convergence results for the
proposed method under different settings of Assumption 3.
To present the main result, we introduce notation z̄k :=
1
M

∑M
m=1 z

k
m, z̄k+1/3 := 1

M

∑M
m=1 z

k+1/3
m for the averaged

among the devices iterates and ẑk = 1
k+1

∑k
i=0 z̄

i+1/3 for
the averaged among the devices and iterates sequence, a.k.a.
ergodic sequence. Finally, we denote ∆ = τ

p

(
D2τ
p + σ2

)
which plays a role of the consensus error—the error that is
due to impossibility to reach the exact consensus between
the agents. Note that the data heterogeneity appears in the
convergence rates only through the quantity ∆.
Theorem 1 (Main theorem) Let Assumptions 1, 2, 4, 5
hold and the sequences z̄k, ẑk be generated by Algorithm
1 that is run for K > 0 iterations. Then, with an appropri-
ate choice of a constant step γ depending on the problem
parameters listed in the assumptions and the iteration bud-
get K (see the details in the supplementary material), the
following convergence estimates are valid.
• Strongly-monotone case: under Assumption 3(SM) with
γ ≤ p

120Lτ it holds that E
[
‖z̄K+1 − z∗‖2

]
is

Õ
(
‖z0 − z∗‖2 · exp

(
− µKp

240Lτ

)
+ σ2

µ2MK + L2∆
µ4K2

)
; (7)

•Monotone case: under Assumption 3(M) with γ ≤ 1
3L , for

any convex compact C s.t. z0, z∗ ∈ C and maxz,z′∈C ‖z −
z′‖ ≤ ΩC it holds that supz∈C E

[〈
F (z), ẑK − z

〉]
is

O
(
LΩ2
C

K + σΩC√
MK

+

√
LΩ3
C
√

∆√
K

+

√
(∆+L2Ω2

C)ΩC
√

∆

KL

)
(8)

Under the additional assumption that, for all k, ‖z̄k‖ ≤ Ω,
we have that supz∈C E

[〈
F (z), ẑK − z

〉]
is

O
(
LΩ2
C

K + σΩC√
MK

+

√
LΩ3
C
√

∆

K3/4 +

√
((Ω+ΩC)L

√
∆+∆)Ω2

C
K

)
;

(9)



• Non-monotone case: under Assumption 3(NM) with γ ≤
1

4L it holds that E
[

1
K+1

K∑
k=0

‖F (z̄k)‖2
]

is

O
(
L2‖z0−z∗‖2

K + σ2

M + L‖z0 − z∗‖
√

∆ +

√
L‖z0−z∗‖∆3/4

√
K

)
.

(10)

Under an additional assumption that ‖z∗‖ ≤ Ω and, for all

k, ‖z̄k‖ ≤ Ω, we have that E
[

1
K+1

K∑
k=0

‖F (z̄k)‖2
]

is

O
(
L2Ω2

K + σ2

M + (LΩ∆)2/3

K1/3 + LΩ
√

∆
)
. (11)

The proof of the theorem is given in the supplementary
material. We underline that the standard analysis (Juditsky,
Nemirovski, and Tauvel 2011) does not apply for the follow-
ing reasons. Firstly, unlike (Juditsky, Nemirovski, and Tau-
vel 2011) in our problem (1) the feasible set is not bounded,
which is especially important for the analysis in the mono-
tone and non-monotone settings. Secondly, our algorithm
has an additional communication step (Step 7) between the
computational nodes, which leads to impossibility for all the
nodes to have the same information about the global op-
erator F (z) and about the current iterate z. This, in order,
leads to biased oracle that, unlike existing works, has to be
analyzed in the setting of unbounded feasible set, which is
quite challenging. To analyze our variant of the extragradi-
ent method we successfully handle this challenge. Our key
steps are to bound the bias (see, e.g. the last two terms in
the r.h.s. of Lemma 7 that are caused by the network errors),
prove the boundedness in expectation of the sequence of the
iterates for monotone (see Section C.3 of the supplementary
material) and non-monotone (see Section C.4 of the sup-
plementary material) cases, which may be of independent
interest and which we haven’t seen in the literature, even
in the non-distributed setting with biased stochastic oracles.
Proving the boundedness is challenging due to noise caused
by stochasticity and heterogeneity of the data and network
effects due to the imperfect exchange of information. Sur-
prisingly, in the end we still manage to analyze our algo-
rithm under the very general Assumption 1 and we are not
aware of any results with similar generality of the settings:
different networks topologies (including time-varying), dis-
tributed architectures, different monotonicity assumptions.

The provided convergence rates have explicit dependence
on the problem parameters: network that is characterized by
mixing time τ and mixing factor p, data heterogeneity D
(that appears in the convergence rates only through the quan-
tity ∆), variance σ2 of the noise in the data, Lipschitz con-
stant L and strong monotonicity parameter µ, number of de-
vicesM . Thus, our rates allow judging how different proper-
ties, e.g., data heterogeneity, amount of noise, network char-
acteristics influence the convergence of the algorithm. This
opens an opportunity for meta-optimization process if we
can design the network by changingM , τ , p to achieve faster
convergence.

We now discuss the convergence results obtained in the
theorem, and also compare them with the already existing

algorithms (see Table 1) and their guarantees. Firstly, all the
estimates have similar there-component structure. The first
term corresponds to the deterministic setting and is similar
to existing methods for smooth VIs in non-distributed set-
ting. Only in the strongly convex case there is an additional
factor τ/p that increases the condition number L/µ of the
problem. The second (stochastic) term is also standard for
non-distributed setting and corresponds to the stochastic na-
ture of the problem. Note that, for a very general distributed
setting we have managed to obtain the corresponding terms
similar to non-distributed setting. Moreover, we can see the
benefit of exploiting distributed computations: the leading
stochastic term depends on σ2/M that decreases as the num-
berM of nodes increases. The other terms correspond to the
consensus error ∆ and are caused by imperfect communi-
cations between the agents, i.e. that it is impossible for the
agents to have exactly the same information about the cur-
rent iterate. Importantly, in all the cases this error does not
make the overall convergence worse since the dependence
on K is no worse for these terms than the dependence on K
in the stochastic term. In the experimental section we illus-
trate that the network error is not an artefact of the analysis,
but indeed is present in practice.

Before we move to the specific comments for each set-
ting, we remark that theK-dependent terms can be made ar-
bitrarily small by increasing the total budget of iterations K
and choosing the corresponding step γ. Further, the any-time
convergence can be achieved by a restart technique when
once in a while we increase the budget K and restart the al-
gorithm with the new fixed stepsize. It is also possible, based
on the estimates in the above theorem for strongly mono-
tone and monotone cases, to achieve any desired accuracy
by choosing an appropriate K and the corresponding step γ.
• Strongly-monotone case: In the centralized setting

with local updates our rate is slightly better than in
(Beznosikov, Samokhin, and Gasnikov 2021). Unlike our al-
gorithm, centralized algorithms with local steps for SPP in
(Deng and Mahdavi 2021; Hou et al. 2021) are based on
gradient descent-ascent that may diverge in the stochastic
setting even for bilinear problems. Moreover, their analysis
implies a very small stepsize γ ∼ µp

L2τ (cf. ours γ ∼ p
Lτ )

that greatly slows down the convergence of the algorithm.
For the decentralized setting (Beznosikov, Samokhin, and

Gasnikov 2021) propose an optimal algorithm with the rate
matching the lower bound which they give. Our rate is worse
probably because of the generality of the Assumption 1. On
the other hand, we do not rely on many gossip iterations
at once that should be avoided in practice. Also, our algo-
rithm is more general, allowing us to work with time-varying
topology and local steps even in the decentralized setting.
• Monotone case: The quantity

supz∈C E
[〈
F (z), ẑK − z

〉]
in the estimates reflects

the stochastic nature of the problem and is a counterpart
of the standard restricted gap (or merit) function (Nesterov
2007): GapC(u) := supz∈C [〈F (z), u− z〉]. When F is
a monotone operator, if GapC(û) = 0 and C contains a
neighborhood of û, then (Nesterov 2007; Antonakopoulos,
Belmega, and Mertikopoulos 2019) û is a solution to (1)
and even more: it is a strong solution to the corresponding



variational inequality, i.e., for all z, 〈F (û), û−z〉 ≤ 0. Thus,
GapC(u) is an appropriate measure of suboptimality in this
setting and (8) guarantees that after a sufficient number of
iterations, we obtain an approximate solution in expectation.
Importantly, for (8), neither z nor z̄k are assumed to be
bounded. As in the previous works on non-distributed
algorithms for MVIs (Nesterov 2007; Antonakopoulos,
Belmega, and Mertikopoulos 2019), we use GapC(u) for an
arbitrary compact set C that contains z0 and z∗ (this can be
a large set). Further, (9) is a refined version of the general
result (8) under additional assumptions of boundedness. If
boundedness does not hold, we still have (8). Moreover, (8)
and (9) hold for the same method and to run the algorithm,
there is no need to know in advance whether the generated
sequence is bounded or not.

Only (Beznosikov, Samokhin, and Gasnikov 2021; Ro-
gozin et al. 2021) consider MVIs with monotone operator
in distributed setting. Our algorithm is more general than
theirs: our algorithm supports time-varying networks and
local steps in between communications. The algorithm in
(Beznosikov, Samokhin, and Gasnikov 2021) uses multiple
gossip steps between the updates of the iterates. On the one
hand, this allows decrease the consensus error ∆. On the
other hand, this leads to an additional factor in the number
of communications compared to our estimates: the first term
in their bound is

√
χ times larger than ours, where χ > 1

is some condition number of the mixing matrix. Moreover,
multiple gossip steps may be impractical if the communica-
tion is performed through unstable channels or is expensive
by some reason. The paper (Rogozin et al. 2021) considers
only deterministic setting.
• Non-monotone case: Here the same as in the previ-

ous case remark on the boundedness of z̄k, z∗ assumed to
obtain (11) can be repeated. Further, in this setting the con-
vergence is guaranteed up to some accuracy that is governed
by the stochastic nature of the problem (the σ2 term) and by
the distributed nature of the problem (∆ terms). With this
respect the results are similar to non-distributed stochastic
extragradient method (Barazandeh, Tarzanagh, and Michai-
lidis 2021) and distributed method in the homogeneous case
(Liu et al. 2020). To the best of our knowledge, convergence
up to arbitrarily small accuracy can be guaranteed only for
deterministic distributed methods (Liu et al. 2019b), i.e. in
a much simpler setting than ours. Moreover, the methods
of (Liu et al. 2019b) are not the most robust since they re-
quire evaluating the proximal operator of a function and it
is assumed that this can be done in closed-form, which is
computationally expensive and may not hold in practice.

Note that based on our result it is possible to achieve con-
vergence up to arbitrarily small accuracy if one considers
the homogeneous case (D = 0). Indeed, choosing the right
batch size, for example, ∼ Kα with α > 0, one can replace
σ2 by σ2

Kα in (10) and (11) and get convergence.

5 Experiments
We present two set of experiments to validate the per-
formance of Algorithm 1. In Section 5.1 we verify the
proven convergence guarantee on a strong-monotone and on

a monotone bilienar problem, and in Section 5.2 we explore
the non-monotone case with application of GAN training.
Extended details about the exerimental setup can be found
in the appendix.

5.1 Verifying Theoretical Convergence Rate
First, we focus on verifying whether the Algorithm 1 be-
haviour is predicted by the theoretical convergence rate
(Theorem 1).

Setup. We consider a distributed bi-linear SPP (2) with
objective functions fm(x, y) = a

2‖x‖
2 + b

2x
>y − a

2‖y‖
2 +

c>mx, where x, y, cm ∈ Rn, a, b ∈ R and m ∈ {1, . . . ,M}.
This set of functions satisfy Assumptions 2, 3, 5 with
constants µ = a, L = a2 + b2

4 , D = maxm ‖cm − c̄‖. In
this section we use a ring topology on M = 9 nodes, with
uniform averaging weights, and we set the dimension n = 2,
a = b = 1 and we set D = 1 and keep τ = 1. The value
of the parameter p in this setting is approximately 0.288
(Koloskova, Stich, and Jaggi 2019b, Table 1). To satisfy
Assumption 4, we generate stochastic gradients by adding to
the real gradients unbiased Gaussian noise with variance σ2.

Convergence Behaviour. In Figure 1 we show the con-
vergence of Algorithm 1 with a fixed stepsize on a strongly-
monotone (a = 1) and monotone (a = 0) instance. In the
strongy-convex case we see linear convergence up to the
level of the heterogenity parameter and the noise. The con-
vergence on the non-strongly monotone problem is stronger
affected by the noise, but interestingly we also see linear
convergence (with oscillations) when there is no noise. Note
that convergence to some limit accuracy is expected since
when a constant stepsize is used in stochastic optimiza-
tion/stochastic variational inequalities with strong convexi-
ty/monotonicity, the algorithm is usually guaranteed to con-
verge to a vicinity of the solution, see, e.g., Theorem 2 in
(Mishchenko et al. 2019). This is also in accordance to The-
orem 1 which for a fixed stepsize gurantees convergence to
some non-zero limit accuracy and says that the error to drop
to zero one needs to choose a decreasing stepsize. We ad-
ditionally validate in the Appendix A.2 that with decreasing
stepsize, algorithm can converge to zero error.

Figure 1: Impact of the stochastic noise in strongly monotone (left)
and monotone (right) cases.

Depencence on the Heterogenity parameterD. In a sec-
ond set of experiments we aim to verify the dependence on
the data heterogeneity parameter D. Therefore, we consider
the setting when σ2 = 0. From our theory, equation (7),
we predict that the most significant term in the convergence
rate (when σ2 = 0) scales as O

(
D2

p2K2

)
(since the primary



Figure 2: Verifying the O
(

D2

p2K2

)
convergence for the strongly

monotone noiseless (σ̂2 = 0) case.

goal of this experiment is to study the dependence on p,
D, K, we omit all the other fixed parameters for simplic-
ity). We repeat experiments for different a > 0 (strongly-
monotone case) with number of iterations needed until the
error 1

M

∑M
m=1 ‖zkm − z∗‖2 < ε, for different ε. In all these

experiments the step size is tuned individually.
First, we verify the power of K. For this experiment, we

keep D,L, µ, p constant and vary the accuracy ε. We can
seen from the leftmost subplot in Figure 2 that the num-
ber of iterations scale as K ∝ 1√

ε
, confirming the predicted

T = O
(

1
K2

)
dependency. Next, we measure the number of

iteration it takes to reach error ε = 0.01 while varying D.
The middle plot shows that the number of iterations scales
proportional to D (showing D ∝ K). Lastly, we depict the
time to reach ε = 0.01 while changing the graph parameter
p and again observe 1

p ∝ K. All together, these experiments
verify the O

(
D2

p2K2

)
term in the convergence rate.

5.2 GANs
Our algorithm allows you to combine different communi-
cation topologies of devices, as well as local steps in dis-
tributed learning. This is what we want to compare in the
next experiment with GAN (in Appendix A.1, we discuss
how close the theory is to GANs.).

Data and model. We consider the CIFAR-10
(Krizhevsky, Nair, and Hinton 2009) dataset. It con-
tains 60000 images (but we increased the size of data by
4 times due to transformations and adding noise), equally
distributed over 10 classes. We simulate a distributed setup
of 16 nodes on two GPUs, we are using Ray (Moritz
et al. 2018b). To emulate the heterogeneous, we partition
the dataset into 16 subsets. For each subset, we select a
major class that forms 20% of the data, while the rest of
the data split is filled uniformly by the other classes. As a
basic architecture we choose DCGAN (Radford, Metz, and
Chintala 2015), conditioned by class labels, similarly to
(Mirza and Osindero 2014) (the network architecture can be
found in Appendix A.1). We chose Adam (Kingma and Ba
2014) as the optimizer. We make one local Adam step, and
then one gossip averaging step with time-varying matrix
W—similar to how it works in Algorithm 1.

Setting. We compare the following three topologies:
• Full. Full graph at the end of each epoch, otherwise local
steps. This means that we make 120 communication rounds
(by communication round we mean the exchange of infor-
mation between a pair of devices) in an epoch.
• Local. Full graph at the end of each 5th epoch, otherwise
local steps. This means that we make 24 communication
rounds in an epoch (in average: 4 epochs without commu-

nications and 1 epoch with 120 rounds).
• Clusters. At the end of each epoch, clique clusters of size
4 are randomly formed (in total 4 cliques). This means that
we make 24 rounds of communication in an epoch.

It turns out that the communication budget of the first ap-
proach is higher is 5 times higher.

We use the same learning rate for the generator and dis-
criminator equal to 0.002. The rest of the parameters and
features of the architecture are contained in the Appendix.

Results. The results of the experiment can be found on
Figure 3 and Figure 4. Note that all methods from the point
of view of local epochs worked approximately the same
and produced similar pictures. But from the point of view
of communications, Local and Cluster topologies are much
better. In turn, it can also be noted that the Cluster topology
is slightly ahead of Local.
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Figure 3: Comparison of three topological approaches in DCGAN
distributed decentralized learning on CIFAR-10. FID Score and In-
ception Score in terms of the number of communications (top row),
and Scores in terms of local epochs (bottom row). The experiment
was repeated 5 times on different data random splitting, the maxi-
mum and minimum deviations are depicted in the plots by shade.

(a) Cluster (b) Local (c) Full

Figure 4: Pictures generated by DCGAN trained distributed on dif-
ferent communication topologies: (a) Cluster, (b) Local, (c) Full.

6 Conclusion
We developed a novel algorithm to efficiently solve decen-
talized MVIs and SPPs. Our method is the first extragradient
method with local steps for time-varying network topolo-
gies. We give convergence analyses for the SM, M and NM
cases. In numerical experiments we verified that that the de-
pendency of our result on the data parameter D is tight in
the SM case, and cannot be further improved in general. By
training DCGAN on a decentralized topology we demon-
strate that our method is effective on practical DL tasks.
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Konečný, J.; Korolova, A.; Koushanfar, F.; Koyejo, S.; Lepoint, T.; Liu, Y.;
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Supplementary Material
A Experiments

We implement all methods in Python 3.8 using PyTorch (Paszke et al. 2019) and Ray (Moritz et al. 2018a) and run on a machine
with 24 AMD EPYC 7552 @ 2.20GHz processors, 2 GPUs NVIDIA A100-PCIE with 40536 Mb of memory each (Cuda 11.3).

A.1 Additional information about experiments with GANs
As mentioned in the main part of the paper we use DCGAN (Radford, Metz, and Chintala 2015), conditioned by class labels,
similarly to (Mirza and Osindero 2014). See architecture in Figure 5. In Table 2 see hyperparameters for all experiments.

a) Generator b) Discriminator

Figure 5: DCGAN architecture.

Hyperparameters
Batch size =64
Weight clipping for the discriminator =0.01
Learning rate for generator and discriminator =0.002
Initialization: normal
Other parameters: default in PyTorch

Table 2: Hyperparameters for DCGAN training.

Now we will try to discuss the question of how close the GAN model is to the assumptions that we made in the theoretical part.
First of all, we note that the goal of the DCGAN experiment is to study how the network topology influences the convergence
of the algorithm. Even if the assumptions do not hold, we see that the algorithm performs quite well and is flexible w.r.t. choice
of the topology. In the theory, we use pretty standard assumptions usually used by the community. In particular, Assumptions
2 and 4 are classic and are often used in the literature, including the literature on neural networks training. Assumption 5 holds
with a small constant D when the data is uniformly split among the devices. It is very easy to realize this splitting when we
compute on a cluster with a large number of pictures (data). But in Section 5.2 we look at a more complex setup and make
the distribution of pictures not uniform, but heterogeneous. In fact, the constant D exists for any data partitioning, since the
gradients can be considered to be bounded because we show that the iterates of the method are bounded. Assumption 3 (NM)
is also used in the literature on the analysis of GANs (Liu et al. 2020; Mertikopoulos et al. 2018; Liu et al. 2019a). Moreover,
this assumption holds in some nonconvex minimization problems. For example, it holds in both theory and practice when we
use SGD for training neural networks (Li and Yuan 2017; Kleinberg, Li, and Yuan 2018; Zhou et al. 2019).

A.2 Additional Experiments with Decreasing Stepsize
Our theoretical results in Theorem 1 hold for (optimally chosen) fixed stepsizes. That is, one has to choose the optimal stepsize
in dependency of the target accuracy ε (this is standard for theoretical results of this kind). However, in case when the desired



target accuracy ε is not known, or not determined, one can resort to decreasing stepsizes. In this section, we numerically
illustrate that Algorithm 1 can reach arbitrary small error when using decreasing stepsizes.

For that, we consider the same setup as in the main paper Section 5.1, Figure 1, left, i.e. strongly-monotone bi-linear objective
functions distributed over the ring topology. We consider two cases: with and without stochastic noise σ, i.e. we fix σ = 0 and
σ = 100. We decrease stepsize during training as γk = α

k+β , where k is the current iteration number. We set α = 40, β = 800

in the noiseless case and α = 15, β = 150 with σ2 = 100. In Figure 6 we can see that with decreasing stepsizes, algorithm
indeed does not have a limiting accuracy, in contrast to constant stepsizes and the sublinearly converges to zero in both cases.

Figure 6: Convergence of Algorithm 1 with decreasing stepsizes in the noiseless (left) and stochastic (right) cases.

B Basic Facts
Upper bound for a squared sum. For arbitrary integer n ≥ 1 and arbitrary set of vectors a1, . . . , an we have(

n∑
i=1

ai

)2

≤ m
n∑
i=1

a2
i (12)

Cauchy-Schwarz inequality. For arbitrary vectors a and b and any constant c > 0

2〈a, b〉 ≤ c‖a‖2 + c−1‖b‖2, (13)

‖a+ b‖2 ≤ (1 + c)‖a‖2 + (1 + c−1)‖b‖2. (14)

Cauchy-Schwarz inequality for random variables. Let ξ and η be real valued random variables such that E[ξ2] <∞ and
E[η2] <∞. Then

E[ξη] ≤
√

E[ξ2]E[η2]. (15)
Frobenius norm of product. For given matrix A and B

‖AB‖F ≤ ‖A‖F ‖B‖2. (16)

C Missing proofs
C.1 Notation
To begin with, we introduce auxiliary notation:
• Average z and g values across all devices:

z̄k :=
1

M

M∑
m=1

zkm, ḡk :=
1

M

M∑
m=1

gkm =
1

M

M∑
m=1

Fm(zkm, ξ
k
m),

z̄k+1/3 = z̄k − γḡk, z̄k+2/3 = z̄k − γḡk+1/3, z̄k+1 = z̄k+2/3 (17)

The last fact: z̄k+1 = z̄k+2/3 follows from that one step of gossip preserves the average.
• Matrix notation of z, z̄, g and ḡ:

Zk := [zk1 , . . . , z
k
M ], Z̄k := [z̄k, . . . , z̄k],

Gk := [gk1 , . . . , g
k
M ], Ḡk := [ḡk, . . . , ḡk],

Φk := [F1(zk1 ), . . . , FM (zkM )], Φ̄k :=

[
1

M

M∑
m=1

Fm(zkm), . . .

]
,



following this notation one can rewrite iteration of the Algorithm 1 and ”averaged” iteration (17):

Zk+1/3 = Zk − γGk, Z̄k+1/3 = Z̄k − γḠk,
Zk+2/3 = Zk − γGk+1/3, Z̄k+2/3 = Z̄k − γḠk+1/3, (18)

Zk+1 = Zk+2/3W k, Z̄k+1 = Z̄k+2/3.

• Error difference between devices:

Err(k) =
1

M

M∑
m=1

‖zkm − z̄k‖2. (19)

C.2 Proof of Theorem 1, strongly-monotone case.
We begin the proof with the following lemma:
Lemma 1 Let z, y ∈ Rn. We set z+ = z − y, then for all u ∈ Rn:

‖z+ − u‖2 = ‖z − u‖2 − 2〈y, z+ − u〉 − ‖z+ − z‖2.
Proof: Simple manipulations give

‖z+ − u‖2 = ‖z+ − z + z − u‖2

= ‖z − u‖2 + 2〈z+ − z, z − u〉+ ‖z+ − z‖2

= ‖z − u‖2 + 2〈z+ − z, z+ − u〉 − ‖z+ − z‖2

= ‖z − u‖2 + 2〈z+ − (z − y), z+ − u〉 − 2〈y, z+ − u〉 − ‖z+ − z‖2

= ‖z − u‖2 − 2〈y, z+ − u〉 − ‖z+ − z‖2.
�

Apply this Lemma two times with z+ = z̄k+2/3, z = z̄k, u = z∗ and y = γḡk+1/3

‖z̄k+2/3 − z∗‖2 = ‖z̄k − z∗‖2 − 2γ〈ḡk+1/3, z̄k+2/3 − z∗〉 − ‖z̄k+2/3 − z̄k‖2,

and with z+ = z̄k+1/3, z = z̄k, u = zk+2/3, y = γḡk:

‖z̄k+1/3 − z̄k+2/3‖2 = ‖z̄k − z̄k+2/3‖2 − 2γ〈ḡk, z̄k+1/3 − z̄k+2/3〉 − ‖z̄k+1/3 − z̄k‖2.
Summing up the two previous inequalities, we have

‖z̄k+2/3 − z∗‖2 + ‖z̄k+1/3 − z̄k+2/3‖2 = ‖z̄k − z∗‖2 − ‖z̄k+1/3 − z̄k‖2

− 2γ〈ḡk+1/3, z̄k+2/3 − z∗〉 − 2γ〈ḡk, z̄k+1/3 − z̄k+2/3〉.
A small rearrangement gives

‖z̄k+2/3 − z∗‖2 + ‖z̄k+1/3 − z̄k+2/3‖2

= ‖z̄k − z∗‖2 − ‖z̄k+1/3 − z̄k‖2

− 2γ〈ḡk+1/3, z̄k+1/3 − z∗〉+ 2γ〈ḡk+1/3 − ḡk, z̄k+1/3 − z̄k+2/3〉
≤ ‖z̄k − z∗‖2 − ‖z̄k+1/3 − z̄k‖2

− 2γ〈ḡk+1/3, z̄k+1/3 − z∗〉+ γ2‖ḡk+1/3 − ḡk‖2 + ‖z̄k+1/3 − z̄k+2/3‖2,
Next we take the full expectation and get

E
[
‖z̄k+2/3 − z∗‖2

]
= E

[
‖z̄k − z∗‖2

]
− E

[
‖z̄k+1/3 − z̄k‖2

]
− 2γE

[
〈ḡk+1/3, z̄k+1/3 − z∗〉

]
+ γ2E

[
‖ḡk+1/3 − ḡk‖2

]
.

With z̄k+1 = z̄k+2/3 we deduce the following inequality per step of Algorithm

E
[
‖z̄k+1 − z∗‖2

]
= E

[
‖z̄k − z∗‖2

]
− E

[
‖z̄k+1/3 − z̄k‖2

]
− 2γE

[
〈ḡk+1/3, z̄k+1/3 − z∗〉

]
+ γ2E

[
‖ḡk+1/3 − ḡk‖2

]
. (20)

It turns out that we need to estimate two terms: −2γE
[
〈ḡk+1/3, z̄k+1/3 − z∗〉

]
and γ2E

[
‖ḡk+1/3 − ḡk‖2

]
. For this, we prove

two more auxiliary lemmas.



Lemma 2 Under Assumptions 2, 3, 4 it holds:

−2γE
[
〈ḡk+1/3, z̄k+1/3 − z∗〉

]
≤ −γµE

[
‖z̄k+1/3 − z∗‖2

]
+
γL2

µ
E [ Err(k + 1/3)] . (21)

Proof: First of all, we use the independence of all random vectors ξi = (ξi1, . . . , ξ
i
m) and select only the conditional expec-

tation Eξk+1/3 on vector ξk+1/3:

−2γE
[
〈ḡk+1/3, z̄k+1/3 − z∗〉

]
= −2γE

[〈
1

M

M∑
m=1

Eξk+1/3 [Fm(zk+1/3
m , ξk+1/3

m )], z̄k+1/3 − z∗
〉]

(5)
= −2γE

[〈
1

M

M∑
m=1

Fm(zk+1/3
m ), z̄k+1/3 − z∗

〉]

= −2γE

[〈
1

M

M∑
m=1

Fm(z̄k+1/3), z̄k+1/3 − z∗
〉]

+ 2γE

[〈
1

M

M∑
m=1

[Fm(z̄k+1/3)− Fm(zk+1/3
m )], z̄k+1/3 − z∗

〉]
= −2γE

[〈
F (z̄k+1/3), z̄k+1/3 − z∗

〉]
+ 2γE

[〈
1

M

M∑
m=1

[Fm(z̄k+1/3)− Fm(zk+1/3
m )], z̄k+1/3 − z∗

〉]
.

Further, we take into account that for the solution z∗ it holds that 〈F (z∗), z̄k+1/3 − z∗〉 ≥ 0, and then we have:

−2γE
[
〈ḡk+1/3, z̄k+1/3 − z∗〉

]
= −2γE

[〈
F (z̄k+1/3)− F (z∗), z̄k+1/3 − z∗

〉]
+ 2γE

[〈
1

M

M∑
m=1

[Fm(z̄k+1/3)− Fm(zk+1/3
m )], z̄k+1/3 − z∗

〉]
(SM)
≤ −2γµE

[
‖z̄k+1/3 − z∗‖2

]
+ 2γE

[〈
1

M

M∑
m=1

[Fm(z̄k+1/3)− Fm(zk+1/3
m )], z̄k+1/3 − z∗

〉]
.

By (13) with µ > 0 we get

−2γE
[
〈ḡk+1/3, z̄k+1/3 − z∗〉

]
≤ −2γµE

[
‖z̄k+1/3 − z∗‖2

]
+ γµE

[∥∥∥z̄k+1/3 − z∗
∥∥∥2
]

+
γ

µ
E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(z̄k+1/3)− Fm(zk+1/3
m )]

∥∥∥∥∥
2


= −γµE
[
‖z̄k+1/3 − z∗‖2

]
+

γ

µM2
E

∥∥∥∥∥
M∑
m=1

[Fm(z̄k+1/3)− Fm(zk+1/3
m )]

∥∥∥∥∥
2


≤ −γµE
[
‖z̄k+1/3 − z∗‖2

]
+

γ

µM
E

[
M∑
m=1

∥∥∥Fm(z̄k+1/3)− Fm(zk+1/3
m )

∥∥∥2
]

(4)
≤ −γµE

[
‖z̄k+1/3 − z∗‖2

]
+
γL2

µM
E

[
M∑
m=1

∥∥∥z̄k+1/3 − zk+1/3
m

∥∥∥2
]
.

Definition (19) ends the proof.

�



Lemma 3 Under Assumptions 2, 4 it holds that

E
[
‖ḡk+1/3 − ḡk‖2

]
≤ 5L2E

[
‖z̄k+1/3 − z̄k‖2

]
+

10σ2

M

+ 5L2E [Err(k + 1/3)] + 5L2E [Err(k)] . (22)

Proof: Consider the following chain of inequalities:

E
[
‖ḡk+1/3 − ḡk‖2

]
= E

∥∥∥∥∥ 1

M

M∑
m=1

Fm(zk+1/3
m , ξk+1/3

m )− 1

M

M∑
m=1

Fm(zkm, ξ
k
m)

∥∥∥∥∥
2


(12)
≤ 5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(zk+1/3
m , ξk+1/3

m )− Fm(zk+1/3
m )]

∥∥∥∥∥
2


+ 5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(zk+1/3
m )− Fm(z̄k+1/3)]

∥∥∥∥∥
2
+ 5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(z̄k+1/3)− Fm(z̄k)]

∥∥∥∥∥
2


+ 5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(zkm)− Fm(z̄k)]

∥∥∥∥∥
2
+ 5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(zkm, ξ
k
m)− Fm(zkm)]

∥∥∥∥∥
2


(12)
≤ 5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(zk+1/3
m , ξk+1/3

m )− Fm(zk+1/3
m )]

∥∥∥∥∥
2


+ 5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(zkm, ξ
k
m)− Fm(zkm)]

∥∥∥∥∥
2


+
5

M

M∑
m=1

E
[∥∥∥Fm(zk+1/3

m )− Fm(z̄k+1/3)
∥∥∥2
]

+
5

M

M∑
m=1

E
[∥∥Fm(zkm)− Fm(z̄k)

∥∥2
]

+ 5E
[∥∥∥F (z̄k+1/3)− F (z̄k)

∥∥∥2
]

(4),(19)
≤ 5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(zk+1/3
m , ξk+1/3

m )− Fm(zk+1/3
m )]

∥∥∥∥∥
2


+ 5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(zkm, ξ
k
m)− Fm(zkm)]

∥∥∥∥∥
2


+ 5L2E [Err(k + 1/3)] + 5L2E [Err(k)] + 5L2E
[
‖z̄k+1/3 − z̄k‖2

]
= 5E

Eξk+1/3

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(zk+1/3
m , ξk+1/3

m )− Fm(zk+1/3
m )]

∥∥∥∥∥
2


+ 5E

Eξk
∥∥∥∥∥ 1

M

M∑
m=1

[Fm(zkm, ξ
k
m)− Fm(zkm)]

∥∥∥∥∥
2


+ 5L2E [Err(k + 1/3)] + 5L2E [Err(k)] + 5L2E
[
‖z̄k+1/3 − z̄k‖2

]
.

Using independence of each machine and (5), we get:

E
[
‖ḡk+1/3 − ḡk‖2

]
≤ 10σ2

M
+ 5L2E [Err(k + 1/3)] + 5L2E [Err(k)] + 5L2E

[
‖z̄k+1/3 − z̄k‖2

]
.

�



Let’s go back to the proof of Theorem and connect (20), (21) and (22):

E
[
‖z̄k+1 − z∗‖2

]
≤ E

[
‖z̄k − z∗‖2

]
− E

[
‖z̄k+1/3 − z̄k‖2

]
− γµE

[
‖z̄k+1/3 − z∗‖2

]
+
γL2

µ
E [Err(k + 1/3)]

+ γ2

(
5L2E

[
‖z̄k+1/3 − z̄k‖2

]
+

10σ2

M
+ 5L2E [Err(k + 1/3)] + 5L2E [Err(k)]

)

By (14) with c = 1, a = z̄k+1/3 − z∗ and b = z̄k+1/3 − z̄k we get

E
[
‖z̄k+1 − z∗‖2

]
≤
(

1− γµ

2

)
E
[
‖z̄k − z∗‖2

]
− (1− 5γ2L2 − γµ)E

[
‖z̄k+1/3 − z̄k‖2

]
+

(
γL2

µ
+ 5γ2L2

)
E [Err(k + 1/3)] + 5γ2L2E [Err(k)] +

10γ2σ2

M
. (23)

Choosing γ ≤ 1
3L gives

E
[
‖z̄k+1 − z∗‖2

]
≤
(

1− γµ

2

)
E
[
‖z̄k − z∗‖2

]
+

(
γL2

µ
+ 5γ2L2

)
E [Err(k + 1/3)] + 5γ2L2E [Err(k)] +

10γ2σ2

M
. (24)

Now we need to bound E [Err(k)] and E [Err(k + 1/3)]. For this we need one more lemma.
Lemma 4 Under Assumptions 2, 4, 5, 1 it holds that

E [Err(k)] ≤
(

1− 3p

4

)
E[Err(hτ)] +

144γ2L2τ

p

k−1∑
j=hτ

E [Err(j + 1/3)]

+

(
72D2τ

p
+ 8σ2

) k−1∑
j=hτ

γ2 (25)

E [Err(k + 1/3)] ≤
(

1− 3p

4

)
E[Err(hτ)] +

216γ2L2τ

p

k−1∑
j=hτ

E [Err(j + 1/3)] +
216γ2L2τ

p
E [Err(k)]

+

(
108D2τ

p
+ 12σ2

) k−1∑
j=hτ

γ2 +

(
108D2τ

p
+ 12σ2

)
γ2. (26)

where we define h = bk/τc − 1.
Proof: Using matrix notation introduced in (18) one can get

M · E [Err(k)] = E‖Xk − X̄k‖2F = E‖Xk − X̄hτ − X̄k + X̄hτ‖2F

= E

[∥∥∥∥∥Xhτ
hτ∏

i=k−1

W i − X̄hτ − γ
k−1∑
j=hτ

Gj+1/3

j∏
i=k−1

W i

−

X̄hτ
hτ∏

i=k−1

W i − X̄hτ − γ
k−1∑
j=hτ

Ḡj+1/3

j∏
i=k−1

W i

∥∥∥∥∥
2

F

]

= E

[
Eξk−1+1/3

[∥∥∥∥∥Xhτ
hτ∏

i=k−1

W i − X̄hτ −

(
X̄hτ

hτ∏
i=k−1

W i − X̄hτ

)

− γ
k−1∑
j=hτ

(Φj+1/3 − Φ̄j+1/3)

j∏
i=k−1

W i

− γ
k−1∑
j=hτ

(Gj+1/3 − Φj+1/3 − Ḡj+1/3 + Φ̄j+1/3)

j∏
i=k−1

W i

∥∥∥∥∥
2

F

]]
.



Taking into account that onlyGk−1+1/3 and Φk−1+1/3 depend on ξk−1+1/3, as well as the unbiasedness ofGk−1+1/3, we have

M · E [Err(k)] = E

[∥∥∥∥∥Xhτ
hτ∏

i=k−1

W i − X̄hτ −

(
X̄hτ

hτ∏
i=k−1

W i − X̄hτ

)

− γ
k−1∑
j=hτ

(Φj+1/3 − Φ̄j+1/3)

j∏
i=k−1

W i

− γ
k−2∑
j=hτ

(Gj+1/3 − Φj+1/3 − Ḡj+1/3 + Φ̄j+1/3)

j∏
i=k−1

W i

∥∥∥∥∥
2

F

]

+ γ2E

[∥∥∥(Gk−1+1/3 − Φk−1+1/3 − Ḡk−1+1/3 + Φ̄k−1+1/3)W k−1
∥∥∥2

F

]
.

We want to continue the same way, but note that Xk−1+1/3 (and Φk−1+1/3, Φ̄k−1+1/3) depends on ξk−2+1/3, then we apply
(14) with c = β1 and get

M · E [Err(k)] ≤ (1 + β1)E

[∥∥∥∥∥Xhτ
hτ∏

i=k−1

W i − X̄hτ −

(
X̄hτ

hτ∏
i=k−1

W i − X̄hτ

)

− γ
k−2∑
j=hτ

(Φj+1/3 − Φ̄j+1/3)

j∏
i=k−1

W i

− γ
k−2∑
j=hτ

(Gj+1/3 − Φj+1/3 − Ḡj+1/3 + Φ̄j+1/3)

j∏
i=k−1

W i

∥∥∥∥∥
2

F

]

+ (1 + β−1
1 )γ2E

[∥∥∥Φk−1+1/3 − Φ̄k−1+1/3
∥∥∥2

F

]

+ γ2E

[∥∥∥Gk−1+1/3 − Φk−1+1/3 − Ḡk−1+1/3 + Φ̄k−1+1/3
∥∥∥2

F

]
.

We also use (16) in last two lines. Now, similarly, we split terms that depend on Xk−2+1/3 with c = β2.

M · E [Err(k)] ≤ (1 + β1)(1 + β2)E

[∥∥∥∥∥Xhτ
hτ∏

i=k−1

W i − X̄hτ −

(
X̄hτ

hτ∏
i=k−1

W i − X̄hτ

)

− γ
k−3∑
j=hτ

(Φj+1/3 − Φ̄j+1/3)

j∏
i=k−1

W i

− γ
k−3∑
j=hτ

(Gj+1/3 − Φj+1/3 − Ḡj+1/3 + Φ̄j+1/3)

j∏
i=k−1

W i

∥∥∥∥∥
2

F

]

+ (1 + β−1
1 )γ2E

[∥∥∥Φk−1+1/3 − Φ̄k−1+1/3
∥∥∥2

F

]

+ (1 + β1)(1 + β−1
2 )γ2E

[∥∥∥Φk−2+1/3 − Φ̄k−2+1/3
∥∥∥2

F

]

+ (1 + β1)γ2E

[∥∥∥Gk−2+1/3 − Φk−2+1/3 − Ḡk−2+1/3 + Φ̄k−2+1/3
∥∥∥2

F

]

+ γ2E

[∥∥∥Gk−1+1/3 − Φk−1+1/3 − Ḡk−1+1/3 + Φ̄k−1+1/3
∥∥∥2

F

]
.



One can continue this way for all terms, setting βi = 1
α−i , where α ≥ 4τ . Then for all i = 0, . . . , (k − 1− hτ)

(1 + β1)(1 + β2) . . . (1 + βi) =
α

α− i
.

Note that k − 1− hτ ≤ 2τ , hence for all i = 0, . . . , (k − 1− hτ)

(1 + β1)(1 + β2) . . . (1 + βi) ≤ (1 + β1)(1 + β2) . . . (1 + βk−1−hτ ) ≤ α

α− 2τ
≤ 2.

Additionally, 1 + β−1
i ≤ α, then

M · E [Err(k)] ≤ α

α− 2τ
E

[∥∥∥∥∥Xhτ
hτ∏

i=k−1

W i − X̄hτ −

(
X̄hτ

hτ∏
i=k−1

W i − X̄hτ

)∥∥∥∥∥
2

F

]

+ 2γ2α

k−1∑
j=hτ

E

[∥∥∥Φj+1/3 − Φ̄j+1/3
∥∥∥2

F

]

+ 2γ2
k−1∑
j=hτ

E

[∥∥∥Gj+1/3 − Φj+1/3 − Ḡj+1/3 + Φ̄j+1/3
∥∥∥2

F

]
.

With α = 4τ
(

1 + 2
p

)
we get

M · E [Err(k)] ≤

(
1 +

1

1 + 4
p

)
E

[∥∥∥∥∥Xhτ
hτ∏

i=k−1

W i − X̄hτ −

(
X̄hτ

hτ∏
i=k−1

W i − X̄hτ

)∥∥∥∥∥
2

F

]

+
24γ2τ

p

k−1∑
j=hτ

E

[∥∥∥Φj+1/3 − Φ̄j+1/3
∥∥∥2

F

]

+ 2γ2
k−1∑
j=hτ

E

[∥∥∥Gj+1/3 − Φj+1/3 − Ḡj+1/3 + Φ̄j+1/3
∥∥∥2

F

]
.

Next, one can note that ‖A− Ā‖2F ≤ ‖A‖2F and hence

M · E [Err(k)] ≤

(
1 +

1

1 + 4
p

)
E

[∥∥∥∥∥Xhτ
hτ∏

i=k−1

W i − X̄hτ

∥∥∥∥∥
2

F

]

+
24γ2τ

p

k−1∑
j=hτ

E

[∥∥∥Φj+1/3 − Φ̄j+1/3
∥∥∥2

F

]

+ 2γ2
k−1∑
j=hτ

E

[∥∥∥Gj+1/3 − Φj+1/3 − Ḡj+1/3 + Φ̄j+1/3
∥∥∥2

F

]
(3)
≤ (1− p)

(
1 +

1

1 + 4
p

)
E

[∥∥∥∥∥Xhτ − X̄hτ

∥∥∥∥∥
2

F

]

+
24γ2τ

p

k−1∑
j=hτ

E

[∥∥∥Φj+1/3 − Φ̄j+1/3
∥∥∥2

F

]

+ 2γ2
k−1∑
j=hτ

E

[∥∥∥Gj+1/3 − Φj+1/3 − Ḡj+1/3 + Φ̄j+1/3
∥∥∥2

F

]
. (27)



It is easy to see that (1− p)
(

1 + 1
1+ 4

p

)
≤ (1− p)

(
1 + p

4

)
≤
(
1− 3p

4

)
. It remains to estimate

E
[∥∥∥Φj+1/3 − Φ̄j+1/3

∥∥∥2

F

]
=

M∑
m=1

E∥∥∥∥∥Fm(zj+1/3
m )− 1

M

M∑
i=1

Fi(z
j+1/3
i )

∥∥∥∥∥
2


(12)
≤ 3

M∑
m=1

[
E
∥∥∥Fm(zj+1/3

m )− Fm(z̄j+1/3)
∥∥∥2

+ E

∥∥∥∥∥Fm(z̄j+1/3)− 1

M

M∑
i=1

Fi(z̄
j+1/3)

∥∥∥∥∥
2

+ E

∥∥∥∥∥ 1

M

M∑
i=1

Fi(z̄
j+1/3)− 1

M

M∑
i=1

Fi(z
j+1/3
i )

∥∥∥∥∥
2 ]

(6)
≤ 3

M∑
m=1

[
D2 + E

∥∥∥∥∥ 1

M

M∑
i=1

Fi(z̄
j+1/3)− 1

M

M∑
i=1

Fi(z
j+1/3
i )

∥∥∥∥∥
2

+ E
∥∥∥Fm(zj+1/3

m )− Fm(z̄j+1/3)
∥∥∥2
]

(4)
≤ 6ML2E [Err(j + 1/3)] + 3MD2.

and

E
[∥∥∥Gj+1/3 − Φj+1/3 − Ḡj+1/3 + Φ̄j+1/3

∥∥∥2

F

]

=

M∑
m=1

E∥∥∥∥∥Fm(zj+1/3
m , ξj+1/3

m )− Fm(zj+1/3
m )− 1

M

M∑
i=1

(
Fi(z

j+1/3
i , ξ

j+1/3
i )− Fi(zj+1/3

i )
)∥∥∥∥∥

2


(12)
≤ 2

M∑
m=1

[
E
∥∥∥Fm(zj+1/3

m , ξj+1/3
m )− Fm(zj+1/3

m )
∥∥∥2

+ E

∥∥∥∥∥ 1

M

M∑
i=1

(
Fi(z

j+1/3
i , ξ

j+1/3
i )− Fi(zj+1/3

i )
)∥∥∥∥∥

2 ]
(5)
≤ 4Mσ2.

Finally, we get

E [Err(k)] ≤
(

1− 3p

4

)
E[Err(hτ)] +

144γ2L2τ

p

k−1∑
j=hτ

E [Err(j + 1/3)] +

(
72D2τ

p
+ 8σ2

) k−1∑
j=hτ

γ2.

The estimate for E [Err(k + 1/3)] is done in a similar way; it is enough to note just that ME [Err(k + 1/3)] = E‖Xk − γGk −
X̄k + γḠk‖2F . In the course of the proof, we need to take α = 4τ

(
1 + 2

p

)
− 1 and to add β0 = 1

α for term connecting

with Gk − Ḡk. Then (1 + β0)(1 + β1)(1 + β2) . . . (1 + βi) ≤ (1 + β0)(1 + β1)(1 + β2) . . . (1 + βk−1−hτ ) ≤ α+1
α−2τ ≤ 3,

(1 + β−1
i ) ≤ α+ 1. And we get

E [Err(k + 1/3)] ≤
(

1− 3p

4

)
E[Err(hτ)] +

216γ2L2τ

p

k−1∑
j=hτ

E [Err(j + 1/3)] +
216γ2L2τ

p
E [Err(k)]

+

(
108D2τ

p
+ 12σ2

) k−1∑
j=hτ

γ2 +

(
108D2τ

p
+ 12σ2

)
γ2.

�

The previous Lemma is valid for k ≥ (h+1)τ . For further analysis we also need estimates for the case when (h+1)τ > k ≥ hτ :



Lemma 5 Under Assumptions 2, 4, 5, 1 it holds that for (h+ 1)τ > k ≥ hτ

E [Err(k)] ≤
(

1 +
p

4

)
E[Err(hτ)] +

144γ2L2τ

p

k−1∑
j=hτ

E [Err(j + 1/3)]

+

(
72D2τ

p
+ 8σ2

) k−1∑
j=hτ

γ2 (28)

E [Err(k + 1/3)] ≤
(

1 +
p

4

)
E[Err(hτ)] +

216γ2L2τ

p

k−1∑
j=hτ

E [Err(j + 1/3)] +
216γ2L2τ

p
E [Err(k)]

+

(
108D2τ

p
+ 12σ2

) k−1∑
j=hτ

γ2 +

(
108D2τ

p
+ 12σ2

)
γ2. (29)

where we define h = bk/τc − 1.

Proof: We only modify (27), because we cannot use (3) for such k.

M · E [Err(k)]≤

(
1 +

1

1 + 4
p

)
E

[∥∥∥∥∥ (Xhτ − X̄hτ
) hτ∏
i=k−1

W i

∥∥∥∥∥
2

F

]

+
24γ2τ

p

k−1∑
j=hτ

E

[∥∥∥Φj+1/3 − Φ̄j+1/3
∥∥∥2

F

]

+ 2γ2
k−1∑
j=hτ

E

[∥∥∥Gj+1/3 − Φj+1/3 − Ḡj+1/3 + Φ̄j+1/3
∥∥∥2

F

]
(16)
≤

(
1 +

1

1 + 4
p

)
E

[∥∥∥∥∥Xhτ − X̄hτ

∥∥∥∥∥
2

F

]

+
24γ2τ

p

k−1∑
j=hτ

E

[∥∥∥Φj+1/3 − Φ̄j+1/3
∥∥∥2

F

]

+ 2γ2
k−1∑
j=hτ

E

[∥∥∥Gj+1/3 − Φj+1/3 − Ḡj+1/3 + Φ̄j+1/3
∥∥∥2

F

]
.

�

Further proof is reduced to solving recurrent (24), (25), (26), (28) and (29). Note that in the general case E [Err(k + 1/3)]
may be less than E [Err(k)], but since recurrent (26) is stronger than (25), we assume for simplicity that E [Err(k + 1/3)] ≥
E [Err(k)]. Then the resulting recurrences are written as follows (Here we additionally use that γ ≤ p

120τL ):

E
[
‖z̄k+1 − z∗‖2

]
≤
(

1− γµ

2

)
E
[
‖z̄k − z∗‖2

]
+

(
γL2

µ
+ 10γ2L2

)
E [Err(k + 1/3)] +

10γ2σ2

M

≤
(

1− γµ

2

)
E
[
‖z̄k − z∗‖2

]
+

2γL2

µ
E [Err(k + 1/3)] +

10γ2σ2

M
.

(
1− 216γ2L2τ

p

)
E [Err(k + 1/3)] ≤

(
1− 3p

4

)
E[Err(hτ + 1/3)] +

216γ2L2τ

p

k−1∑
j=hτ

E [Err(j + 1/3)]

+

(
216D2τ

p
+ 24σ2

) k−1∑
j=hτ

γ2.



(
1− p

64

)
E [Err(k + 1/3)] ≤

(
1− 3p

4

)
E[Err(hτ + 1/3)] +

p

64τ

k−1∑
j=hτ

E [Err(j + 1/3)]

+

(
216D2τ

p
+ 24σ2

) k−1∑
j=hτ

γ2.

E [Err(k + 1/3)] ≤
(

1− p

2

)
E[Err(hτ + 1/3)] +

p

64τ

k−1∑
j=hτ

E [Err(j + 1/3)]

+

(
225D2τ

p
+ 25σ2

) k−1∑
j=hτ

γ2.

In the last inequality, we took into account that 0 < p ≤ 1, in particular,
(
1− 3p

4

) (
1− p

64

)−1 ≤ 1− p
2 . Analogically,

E [Err(k + 1/3)] ≤
(

1 +
p

2

)
E[Err(hτ)] +

216γ2L2τ

p

k−1∑
j=hτ

E [Err(j + 1/3)] +
216γ2L2τ

p
E [Err(k)]

+

(
108D2τ

p
+ 12σ2

) k−1∑
j=hτ

γ2 +

(
108D2τ

p
+ 12σ2

)
γ2.

With rk = E
[
‖z̄k − z∗‖2

]
, ek = E [Err(k + 1/3)], a = µ

2 , B = 2L2

µ and C = 10σ2

M and A = 225D2τ
p + 25σ2 we get

rk+1 ≤ (1− γa) rk + γBek + γ2C. (30)

ek ≤
(

1− p

2

)
ehτ +

p

64τ

k−1∑
j=hτ

ej +A

k−1∑
j=hτ

γ2, k ≥ (h+ 1)τ. (31)

ek ≤
(

1 +
p

2

)
ehτ +

p

64τ

k−1∑
j=hτ

ej +A

k−1∑
j=hτ

γ2, hτ ≤ k < (h+ 1)τ. (32)

For such sequences, we can apply the following lemma:
Lemma 6 If non-negative sequence {ek} satisfy (31) and (32) with some constants 0 < p̃ ≤ 1, τ ≥ 1, A ≥ 0. Then for
non-negative sequence {wk} it holds that

ek ≤
8γ2Aτ

p
.

Proof: We start from (31) and substitute all ej for j ≥ (h+ 1)τ from k − 1 to (h+ 1)τ :

ek ≤
(

1− p

2

)
·
(

1 +
p

64τ

)
ehτ +

p

64τ

(
1 +

p

64τ

) k−2∑
j=hτ

ej +A
k−1∑
j=hτ

γ2 +
p

64τ
·A

k−2∑
j=hτ

γ2

≤
(

1− p

2

)
·
(

1 +
p

64τ

)τ
ehτ +

p

64τ

(
1 +

p

64τ

)τ (h+1)τ−1∑
j=hτ

ej

+A
(

1 +
p

64τ

)k−(h+1)τ
(h+1)τ−1∑
j=hτ

γ2 +A

k−1∑
j=(h+1)τ

(
1 +

p

64τ

)k−1−j
γ2.

Then we substitute all ej for hτ ≤ k < (h+ 1)τ using (32):

ek ≤
(

1− p

2
+

p

64τ

(
1 +

p

2

))
·
(

1 +
p

64τ

)τ
ehτ +

p

64τ

(
1 +

p

64τ

)τ+1
(h+1)τ−2∑
j=hτ

ej

+A
(

1 +
p

64τ

)k−(h+1)τ+1
(h+1)τ−2∑
j=hτ

γ2 +A

k−1∑
j=(h+1)τ−1

(
1 +

p

64τ

)k−1−j
γ2.



With p
64τ

(
1 + p

2

)
≤ p

16τ

(
1− p

2

)
we get

ek ≤
(

1− p

2

)(
1 +

p

16τ

)(
1 +

p

64τ

)τ
ehτ +

p

64τ

(
1 +

p

64τ

)τ+1
(h+1)τ−2∑
j=hτ

ej

+A
(

1 +
p

64τ

)k−(h+1)τ+1
(h+1)τ−2∑
j=hτ

γ2 +A

k−1∑
j=(h+1)τ−1

(
1 +

p

64τ

)k−1−j
γ2.

Making the same way for the rest ej , we have

ek ≤
(

1− p

2

)(
1 +

p

16τ

)2τ

ehτ +A

k−1∑
j=hτ

(
1 +

p

64τ

)k−1−j
γ2.

Then one can note that
(
1 + p

64τ

)k−1−j ≤
(
1 + p

16τ

)2τ ≤ exp(p/8) ≤ 1 + p
4 for p ≤ 1 and then

ek ≤
(

1− p

4

)
ehτ + 2A

k−1∑
j=hτ

γ2.

It remains to run recursion for ehτ :

ek ≤ 2Aγ2
k−1∑
j=0

(
1− p

4

)b(k−j)/τc
.

For p ≤ 1 it holds that
(
1− p

4

)1/τ ≤ exp(−p/4τ) ≤ 1− p
4τ , hence

ek ≤ 2Aγ2
k−1∑
j=0

(
1− p

4τ

)k−j
≤ 8γ2Aτ

p
.

�

Substitute the estimate for ek in (30):

rk+1 ≤ (1− γa) rk +
8γ3ABτ

p
+ γ2C.

Running the recursion from 0 to K gives

rK+1 ≤ (1− γa)
K
r0 +

8γ2ABτ

ap
+
γC

a
≤ exp (−γaK) r0 +

8γ2ABτ

ap
+
γC

a
.

Finally, we need tuning of γ ≤ 1
d = p

120Lτ :

• If 1
d ≥

ln(max{2,ar0K/C})
aK then γ = ln(max{2,ar0K/C})

aK gives

Õ
(

exp (− ln (max{2, ar0K/C})) r0 +
ABτ

a3pK2
+

C

a2K

)
≤ Õ

(
exp

(
−aK

d

)
r0 +

ABτ

a3pK2
+

C

a2K

)
.

• If 1
d ≤

ln(max{2,ar0K/C})
aK then γ = 1

d gives

Õ
(

exp

(
−aK

d

)
r0 +

ABτ

ad2p
+
C

ad

)
≤ Õ

(
exp

(
−aK

d

)
r0 +

ABτ

a3pK2
+

C

a2K

)
.

What in the end gives that

rk+1 = Õ
(

exp

(
−aK

d

)
r0 +

ABτ

a3pK2
+

C

a2K

)
.

This completes the proof of the strongly-convex–strongly-concave case.
�



C.3 Proof of Theorem 1, monotone case
Note that in the proof of inequality (20) we can take an arbitrary z instead of z∗. Rearranging terms, we obtain for an arbitrary
z:

2γE
[
〈ḡk+1/3, z̄k+1/3 − z〉

]
= E

[
‖z̄k − z‖2

]
− E

[
‖z̄k+1 − z‖2

]
−E

[
‖z̄k+1/3 − z̄k‖2

]
+ γ2E

[
‖ḡk+1/3 − ḡk‖2

]
. (33)

Next we need two bounds: a lower bound for the l.h.s. that relates it with the true operator F , and an upper bound for the last
term in the r.h.s. that is given by Lemma 3.

The lower bound is given by the following Lemma.

Lemma 7 Let the operator F satisfy Assumption 4. Then, for any fixed z we have

E
[
〈ḡk+1/3, z̄k+1/3 − z〉

]
≥ E

[〈
F (z̄k+1/3), z̄k+1/3 − z

〉]
(34)

−γL
2

2
E
[
‖z̄k+1/3 − z̄k‖2

]
− 1

2γ
EErr(k + 1/3)− L

√
EErr(k + 1/3)

√
E‖z̄k − z‖2 (35)

Proof: We take into account the independence of all random vectors ξi = (ξi1, . . . , ξ
i
m) and select only the conditional expec-

tation Eξk+1/3 on vector ξk+1/3

E
[
〈ḡk+1/3, z̄k+1/3 − z〉

]
= E

[〈
1

M

M∑
m=1

Eξk+1/3 [Fm(zk+1/3
m , ξk+1/3

m )], z̄k+1/3 − z

〉]
(5)
= E

[〈
1

M

M∑
m=1

Fm(zk+1/3
m ), z̄k+1/3 − z

〉]

= E

[〈
1

M

M∑
m=1

Fm(z̄k+1/3), z̄k+1/3 − z

〉]

−E

[〈
1

M

M∑
m=1

[Fm(z̄k+1/3)− Fm(zk+1/3
m )], z̄k+1/3 − z

〉]
= E

[〈
F (z̄k+1/3), z̄k+1/3 − z

〉]
−E

[〈
1

M

M∑
m=1

[Fm(z̄k+1/3)− Fm(zk+1/3
m )], z̄k+1/3 − z

〉]
.

Next we estimate from below the last term in the r.h.s. Since, for any κ > 0, it is true that −2〈a, b〉 ≥ − 1
2κ‖a‖

2 − κ
2 ‖b‖

2,
taking κ = γL2 and using the Cauchy-Schwarz, we obtain

−E

〈
1

M

M∑
m=1

[Fm(z̄k+1/3)− Fm(zk+1/3
m )], z̄k+1/3 − z̄k + z̄k − z

〉

≥ −γL
2

2
E‖z̄k+1/3 − z̄k‖2 − 1

2γL2
E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(z̄k+1/3)− Fm(zk+1/3
m )]

∥∥∥∥∥
2

−E

[∥∥∥∥∥ 1

M

M∑
m=1

[Fm(z̄k+1/3)− Fm(zk+1/3
m )]

∥∥∥∥∥ ‖z̄k − z‖
]

(4)
≥ −γL

2

2
E
[
‖z̄k+1/3 − z̄k‖2

]
− L2

2MγL2
E

[
M∑
m=1

∥∥∥z̄k+1/3 − zk+1/3
m

∥∥∥2
]

− L

M
E

[
M∑
m=1

∥∥∥z̄k+1/3 − zk+1/3
m

∥∥∥ ‖z̄k − z‖]
(19)
≥ −γL

2

2
E
[
‖z̄k+1/3 − z̄k‖2

]
− 1

2γ
EErr(k + 1/3)− L

√
EErr(k + 1/3)

√
E‖z̄k − z‖2,



where in the last inequality we used also that

E

[
1

M

M∑
m=1

∥∥∥z̄k+1/3 − zk+1/3
m

∥∥∥ ‖z̄k − z‖] ≤

√
E
(

1
M

M∑
m=1

∥∥∥z̄k+1/3 − zk+1/3
m

∥∥∥)2√
E‖z̄k − z‖2

≤

√
1
ME

M∑
m=1

∥∥∥z̄k+1/3 − zk+1/3
m

∥∥∥2√
E‖z̄k − z‖2

(19)
=
√
EErr(k + 1/3)

√
E‖z̄k − z‖2

Combining the above, we obtain the statement of the Lemma.
�

Combining inequality (33) with Lemma 3 and Lemma 7, rearranging the terms, and using the monotonicity of the operator
F , i.e. (SM) with µ = 0, we obtain, for any z

2γE
[〈
F (z), z̄k+1/3 − z

〉]
≤ 2γE

[〈
F (z̄k+1/3), z̄k+1/3 − z

〉]
≤ E

[
‖z̄k − z‖2

]
− E

[
‖z̄k+1 − z‖2

]
−E

[
‖z̄k+1/3 − z̄k‖2

]
+ 5γ2L2E

[
‖z̄k+1/3 − z̄k‖2

]
+

10σ2γ2

M
+ 5L2γ2E [Err(k + 1/3)] + 5L2γ2E [Err(k)]

+L2γ2E
[
‖z̄k+1/3 − z̄k‖2

]
+ Err(k + 1/3)

+2γL
√

EErr(k + 1/3)
√

E‖z̄k − z‖2

≤ E
[
‖z̄k − z‖2

]
− E

[
‖z̄k+1 − z‖2

]
+

10σ2γ2

M

+5L2γ2E [Err(k + 1/3)] + 5L2γ2E [Err(k)]

+Err(k + 1/3) + 2γL
√
EErr(k + 1/3)

√
E‖z̄k − z‖2

≤ E
[
‖z̄k − z‖2

]
− E

[
‖z̄k+1 − z‖2

]
+

10σ2γ2

M
+ (1 + 5γ2L2)E [Err(k + 1/3)]

+5γ2L2E [Err(k)] + 2γL
√
EErr(k + 1/3)

√
E‖z̄k − z‖2, (36)

where in the last but one inequality we used the choice γ ≤ 1
L
√

6
. Further, by Lemma 6, we have, for any z,

2γE
[〈
F (z), z̄k+1/3 − z

〉]
≤ E

[
‖z̄k − z‖2

]
− E

[
‖z̄k+1 − z‖2

]
+

10σ2γ2

M
+ (1 + 5γ2L2) · 8γ2τ

p
·
(

225D2τ

p
+ 25σ2

)
+5γ2L2 · 8γ2τ

p
·
(

225D2τ

p
+ 25σ2

)
+2γL

√
8γ2τ

p
·
(

225D2τ

p
+ 25σ2

)√
E‖z̄k − z‖2

≤ E
[
‖z̄k − z‖2

]
− E

[
‖z̄k+1 − z‖2

]
+

10σ2γ2

M

+(1 + 10γ2L2) · 8γ2τ

p
·
(

225D2τ

p
+ 25σ2

)
+γL

√
32γ2τ

p
·
(

225D2τ

p
+ 25σ2

)√
E‖z̄k − z‖2

≤ E
[
‖z̄k − z‖2

]
− E

[
‖z̄k+1 − z‖2

]
+ ξ

+
√
η
√

E‖z̄k − z‖2, (37)



where we denote ∆ := 32 · τp ·
(

225D2τ
p + 25σ2

)
, ξ := (1 + 10γ2L2)γ2∆ + 10σ2γ2

M , η = γ4L2∆.

Unbounded iterates First, we consider the general case when the iterates z̄k are not assumed to be bounded. We carefully
analyze this sequence and prove that this sequence can not go too far from any solution to the variational inequality. This allows
us to obtain the final convergence rate bound. Let us denote rk(z) :=

√
E‖z̄k − z‖2 and let z∗ be a solution to the variational

inequality. Then, we have

rk(z) ≤
√

2E‖z̄k − z∗‖2 + 2‖z − z∗‖2 ≤
√

2E‖z̄k − z∗‖2 +
√

2‖z − z∗‖2

=
√

2rk(z∗) +
√

2‖z − z∗‖,
(rk(z))2 ≤ 2E‖z̄k − z∗‖2 + ‖z − z∗‖2 = 2(rk(z∗))2 + 2‖z − z∗‖2.

Thus, from (37), we have, for any z and any k ≥ 0,

2γE
[〈
F (z), z̄k+1/3 − z

〉]
≤ rk(z)2 − rk+1(z)2 + ξ +

√
ηrk(z), (38)

and summing these inequalities from k = 0 to K, we obtain, for any z,

2γ(K + 1)E
[〈
F (z), ẑK − z

〉]
≤ r0(z)2 + (K + 1)ξ +

√
η

K∑
k=0

rk(z)

≤ 2r0(z∗)2 + 2‖z − z∗‖2 + (K + 1)ξ

+
√
η

(
√

2(K + 1)‖z − z∗‖+
√

2

K∑
k=0

rk(z∗)

)
, (39)

where ẑK = 1
K+1

K∑
k=0

z̄k+1/3.

Our next goal is to bound from above

r0(z∗)2 + (K + 1)ξ +
√

2η

K∑
k=0

rk(z∗).

Taking z = z∗ in (38) and using the fact that z∗ is a solution to the variational inequality, we obtain, for any k ≥ 0

0 ≤ 2γE
[〈
F (z∗), z̄k+1/3 − z∗

〉]
≤ rk(z∗)2 − rk+1(z∗)2 + ξ +

√
ηrk(z∗).

Thus, for all k ≥ 0,

rk+1(z∗)2 ≤ rk(z∗)2 + ξ +
√
ηrk(z∗).

Summing these inequalities from k = 0 to K, we obtain

rK+1(z∗)2 ≤ r0(z∗)2 + (K + 1)ξ +
√
η

K∑
k=0

rk(z∗).

Note that this inequality holds for arbitrary K ≥ 0. We next use the following

Lemma 8 (Lemma B.2 in (Gorbunov, Dvurechensky, and Gasnikov 2018)) Let α, a0, . . . , aN−1, b, R1, . . . , RN−1 be non-
negative numbers and

Rl 6
√

2 ·

√√√√( l−1∑
k=0

ak + bα

l−1∑
k=1

Rk

)
l = 1, . . . , N.

Then, for l = 1, . . . , N ,

l−1∑
k=0

ak + bα

l−1∑
k=1

Rk 6


√√√√ l−1∑
k=0

ak +
√

2bαl

2

.



Choosing α = 1, b =
√
η, a0 = r0(z∗)2 + ξ, ak = ξ, k = 1, ...,K − 1, Rk = rk(z∗), we obtain

r0(z∗)2 + (K + 1)ξ +
√
η

K∑
k=0

rk(z∗) ≤
(√

r0(z∗)2 + (K + 1)ξ + (K + 1)
√

2η
)2

≤ 2r0(z∗)2 + 2(K + 1)ξ + 4(K + 1)2η

Combining the last inequality with (39), we obtain

2γ(K + 1)E
[〈
F (z), ẑK − z

〉]
≤ r0(z∗)2 + 2‖z − z∗‖2 +

√
2η(K + 1)‖z − z∗‖

+
(
2r0(z∗)2 + 2(K + 1)ξ + 4(K + 1)2η

)
≤ 3r0(z∗)2 + 2‖z − z∗‖2 + 2(K + 1)ξ

+
√

2η(K + 1)‖z − z∗‖+ 6(K + 1)2η,

Dividing both sides of the inequality by 2γ(K + 1) and using the definitions ∆ := 32 · τp ·
(

225D2τ
p + 25σ2

)
, ξ := (1 +

10γ2L2)γ2∆ + 10σ2γ2

M , η = γ4L2∆, we obtain, for all z ∈ C

E
[〈
F (z), ẑK − z

〉]
≤ 2

‖z0 − z∗‖2 + ‖z − z∗‖2

γ(K + 1)
+
ξ

γ
+ ‖z − z∗‖

√
η

2γ2
+ 3(K + 1)

η

γ

≤ 2
‖z0 − z∗‖2 + ‖z − z∗‖2

γ(K + 1)
+

10σ2γ

M
+ (1 + 10γ2L2)γ∆

+γL‖z − z∗‖
√

∆ + 3(K + 1)γ3L2∆

≤ 4Ω2
C

γ(K + 1)
+

10σ2γ

M
+ γ∆

+γLΩC
√

∆ + 8(K + 1)γ3L2∆,

where in the last inequality we used that z0, z, z∗ ∈ C and maxz,z′∈C ‖z − z′‖ ≤ ΩC and that K ≥ 1.
Choosing

γ = min

{
1

3L
,

(
2Ω2
CM

5(K + 1)σ2

) 1
2

,

(
Ω2
C

6(K + 1)2L2∆

) 1
4

}
,

which implies

4Ω2
C

γ(K + 1)
= O

(
LΩ2
C

K
+

σΩC√
MK

+

√
LΩ3
C
√

∆
√
K

)
,

we obtain

sup
z∈C

E
[〈
F (z), ẑK − z

〉]
= O

(
LΩ2
C

K
+

σΩC√
MK

+

√
LΩ3
C
√

∆
√
K

+

√
(∆ + L2Ω2

C)ΩC
√

∆

KL

)
.

Bounded iterates Let us now consider the situation under the additional assumption that for all k the iterations of the algo-
rithm satisfy ‖z̄k‖ ≤ Ω. In this case, summing (37) from k = 0 to K, we obtain, for any z,

2γ(K + 1)E
[〈
F (z), ẑK − z

〉]
≤ ‖z0 − z‖2 + (K + 1)ξ +

√
η

K∑
k=0

√
E‖z̄k − z‖2

≤ ‖z0 − z‖2 + (K + 1)ξ + 2(K + 1)
√
η(Ω + ‖z‖).



Dividing both sides of this inequality by 2γ(K + 1) and using the definitions ∆ := 32 · τp ·
(

225D2τ
p + 25σ2

)
, ξ := (1 +

10γ2L2)γ2∆ + 10σ2γ2

M , η = γ4L2∆, we obtain, for all z ∈ C

E
[〈
F (z), ẑK − z

〉]
≤ ‖z0 − z‖2

2γ(K + 1)
+
ξ

γ
+ (Ω + ‖z‖)

√
η

γ2

≤ ‖z0 − z‖2

2γ(K + 1)
+

10σ2γ

M
+ (1 + 10γ2L2)γ∆

+(Ω + ‖z‖)γL
√

∆

≤ Ω2
C

2γ(K + 1)
+

10σ2γ

M
+ 10γ3L2∆

+γ((Ω + ΩC)L
√

∆ + ∆),

where in the last inequality we used that z0, z, z∗ ∈ C and maxz,z′∈C ‖z − z′‖ ≤ ΩC and that K ≥ 1.

Similar to the above case, choosing

γ = min

{
1

3L
,

(
Ω2
CM

20(K + 1)σ2

) 1
2

,

(
Ω2
C

60(K + 1)2L2∆

) 1
4

,

(
Ω2
C

(K + 1)((Ω + ΩC)L
√

∆ + ∆)

) 1
2

}
,

we obtain

sup
z∈C

E
[〈
F (z), ẑK − z

〉]
= O

(
LΩ2
C

K
+

σΩC√
MK

+

√
LΩ3
C
√

∆

K3/4
+

√
((Ω + ΩC)L

√
∆ + ∆)Ω2

C
K

)
. (40)

�

C.4 Proof of Theorem 1, non-monotone case

The proof starts very similar to the strongly-monotone case. In particular, we can get (20). Lemma 3 does not need modification,
but we will change Lemma 2:

Lemma 9 Under Assumptions 2, 4 it holds:

−2γE
[
〈ḡk+1/3, z̄k+1/3 − z∗〉

]
≤ 2γL

√
E
[
‖z̄k+1/3 − z∗‖2

]√
E [Err(k + 1/3)]

+ γLE
[
‖z̄k+1/3 − z̄k‖2

]
+ γLE [Err(k + 1/3)] . (41)

Proof: First of all, we use the independence of all random vectors ξi = (ξi1, . . . , ξ
i
m) and select only the conditional expec-



tation Eξk+1/3 on vector ξk+1/3 and get the following chain of inequalities:

−2γE
[
〈ḡk+1/3, z̄k+1/3 − z∗〉

]
= −2γE

[〈
1

M

M∑
m=1

Eξk+1/3 [Fm(zk+1/3
m , ξk+1/3

m )], z̄k+1/3 − z∗
〉]

(5)
= −2γE

[〈
1

M

M∑
m=1

Fm(zk+1/3
m ), z̄k+1/3 − z∗

〉]

= −2γE

[〈
1

M

M∑
m=1

Fm(z̄k+1/3), z̄k+1/3 − z∗
〉]

+ 2γE

[〈
1

M

M∑
m=1

[Fm(z̄k+1/3)− Fm(zk+1/3
m )], z̄k+1/3 − z∗

〉]
= −2γE

[〈
F (z̄k+1/3), z̄k+1/3 − z∗

〉]
+ 2γE

[〈
1

M

M∑
m=1

[Fm(z̄k+1/3)− Fm(zk+1/3
m )], z̄k+1/3 − z∗

〉]
(NM)
≤ 2γE

[〈
1

M

M∑
m=1

[Fm(z̄k+1/3)− Fm(zk+1/3
m )], z̄k+1/3 − z∗

〉]

≤ 2γE

[
‖z̄k+1/3 − z∗‖ ·

∥∥∥∥∥ 1

M

M∑
m=1

Fm(z̄k+1/3)− Fm(zk+1/3
m )

∥∥∥∥∥
]

≤ 2γE

[
‖z̄k+1/3 − z∗‖ · 1

M

M∑
m=1

∥∥∥Fm(z̄k+1/3)− Fm(zk+1/3
m )

∥∥∥]
(4)
≤ 2γLE

[
‖z̄k+1/3 − z∗‖ · 1

M

M∑
m=1

∥∥∥zk+1/3
m − z̄k+1/3

∥∥∥]

≤ 2γLE

[
‖z̄k − z∗‖ · 1

M

M∑
m=1

∥∥∥zk+1/3
m − z̄k+1/3

∥∥∥]

+ 2γLE

[
‖z̄k+1/3 − z̄k‖ · 1

M

M∑
m=1

∥∥∥zk+1/3
m − z̄k+1/3

∥∥∥]

(15),(13)
≤ 2γL

√
E [‖z̄k − z∗‖2] ·

√√√√√E

( 1

M

M∑
m=1

∥∥∥zk+1/3
m − z̄k+1/3

∥∥∥)2


+ γLE
[
‖z̄k+1/3 − z̄k‖2

]
+ γLE

( 1

M

M∑
m=1

‖z̄k+1/3 − zk+1/3
m ‖

)2
 .

By (12) it is easy to see that

E

( 1

M

M∑
m=1

‖z̄k+1/3 − zk+1/3
m ‖

)2
 ≤ E

[
1

M

M∑
m=1

‖z̄k+1/3 − zk+1/3
m ‖2

]
.

This completes the proof.

�



As a result, we have an analogue of (23):

E
[
‖z̄k+1 − z∗‖2

]
≤ E

[
‖z̄k − z∗‖2

]
− E

[
‖z̄k+1/3 − z̄k‖2

]
+ 2γL

√
E [‖z̄k − z∗‖2]

√
E [Err(k + 1/3)]

+ γLE
[
‖z̄k+1/3 − z̄k‖2

]
+ γLE [Err(k + 1/3)]

+ γ2

(
5L2E

[
‖z̄k+1/3 − z̄k‖2

]
+

10σ2

M
+ 5L2E [Err(k + 1/3)] + 5L2E [Err(k)]

)
.

Choosing γ ≤ 1
5L gives

1

2
E
[
‖z̄k+1/3 − z̄k‖2

]
≤ E

[
‖z̄k − z∗‖2

]
− E

[
‖z̄k+1 − z∗‖2

]
+ 2γL

√
E [‖z̄k − z∗‖2]

√
E [Err(k + 1/3)]

+ (5γ2L2 + γL)E [Err(k + 1/3)] + 5γ2L2E [Err(k)] +
10γ2σ2

M
.

Next we work with

E
[
‖z̄k+1/3 − z̄k‖2

]
= γ2E

∥∥∥∥∥ 1

M

M∑
m=1

Fm(zkm, ξ
k
m)− Fm(zkm) + Fm(zkm)− Fm(z̄k) + Fm(z̄k)

∥∥∥∥∥
2


(14)
≥ γ2

2
E
∥∥F (z̄k)

∥∥2 − γ2E

∥∥∥∥∥ 1

M

M∑
m=1

Fm(zkm, ξ
k
m)− Fm(zkm) + Fm(zkm)− Fm(z̄k)

∥∥∥∥∥
2


(14)
≥ γ2

2
E
∥∥F (z̄k)

∥∥2 − 2γ2E

∥∥∥∥∥ 1

M

M∑
m=1

Fm(zkm, ξ
k
m)− Fm(zkm)

∥∥∥∥∥
2
− 2γ2E

∥∥∥∥∥ 1

M

M∑
m=1

Fm(zkm)− Fm(z̄k)

∥∥∥∥∥
2


(4)
≥ γ2

2
E
∥∥F (z̄k)

∥∥2 − 2γ2σ2

M
− 2γ2L2

M

M∑
m=1

E
[∥∥zkm − z̄k∥∥2

]
=
γ2

2
E
∥∥F (z̄k)

∥∥2 − 2γ2σ2

M
− 2γ2L2E [Err(k)] .

Connecting with previous gives

γ2

4
E
[
‖F (z̄k)‖2

]
≤ E

[
‖z̄k − z∗‖2

]
− E

[
‖z̄k+1 − z∗‖2

]
+ 2γL

√
E [‖z̄k − z∗‖2]

√
E [Err(k + 1/3)]

+ (γL+ 5γ2L2)E [Err(k + 1/3)] + 6γ2L2E [Err(k)] +
11γ2σ2

M
.

With result of Lemma 6 we get

γ2

4
E
[
‖F (z̄k)‖2

]
≤ E

[
‖z̄k − z∗‖2

]
− E

[
‖z̄k+1 − z∗‖2

]
+ 2γL

√
E [‖z̄k − z∗‖2]

√
8γ2τ

p
·
(

225D2τ

p
+ 25σ2

)
+ γ2

(
11σ2

M
+

8(γL+ 11γ2L2)τ

p
·
(

225D2τ

p
+ 25σ2

))
.



Summing over all k from 0 to K and averaging gives:

E

[
1

K + 1

K∑
k=0

‖F (z̄k)‖2
]
≤ 4‖z0 − z∗‖2

γ2(K + 1)
−

4E
[
‖zK+1 − z∗‖2

]
γ2(K + 1)

+
44σ2

M

+

√
32L2τ

p
·
(

225D2τ

p
+ 25σ2

)
· 1

K + 1

K∑
k=0

√
E [‖z̄k − z∗‖2]

+
8(γL+ 11γ2L2)τ

p
·
(

225D2τ

p
+ 25σ2

)
. (42)

Unbounded iterates We rewrite (42) as follows

E
[
‖z̄K+1 − z∗‖2

]
≤ ‖z0 − z∗‖2 +

11γ2(K + 1)σ2

M

+

√
2γ4L2τ

p
·
(

225D2τ

p
+ 25σ2

)
·
K∑
k=0

√
E [‖z̄k − z∗‖2]

+
γ2(K + 1)(γL+ 11γ2L2)τ

2p
·
(

225D2τ

p
+ 25σ2

)
.

Then we can use Lemma 8 with Rk =
√
E [‖z̄k − z∗‖2], b =

√
2γ4L2τ

p ·
(

225D2τ
p + 25σ2

)
, for k ≥ 1 ak = γ2(γL+11γ2L2)τ

2p ·(
225D2τ

p + 25σ2
)

+ 11γ2σ2

M , a0 = ‖z0 − z∗‖2 + γ2(γL+11γ2L2)τ
2p ·

(
225D2τ

p + 25σ2
)

+ 11γ2σ2

M and get

K∑
k=0

ak + b

K∑
k=1

Rk ≤


√√√√ K∑
k=0

ak +
√

2b(K + 1)

2

≤ 2

K∑
k=0

ak + 4b2(K + 1)2,

which gives
K∑
k=1

Rk ≤
1

b

K∑
k=0

ak + 4b(K + 1)2.

Substituting this in (42) with the same notation, we have

γ2(K + 1)

4
E

[
1

K + 1

K∑
k=0

‖F (z̄k)‖2
]
≤

K∑
k=0

ak + b

(
1

b

K∑
k=0

ak + 4b(K + 1)2

)
.

and

E

[
1

K + 1

K∑
k=0

‖F (z̄k)‖2
]
≤ 8

γ2(K + 1)

K∑
k=0

ak +
16b2(K + 1)

γ2
.

Finally, we get

E

[
1

K + 1

K∑
k=0

‖F (z̄k)‖2
]

= O

(
‖z0 − z∗‖2

γ2(K + 1)
+

(γL+ γ2L2)τ

p
·
(
D2τ

p
+ σ2

)

+
σ2

M
+

(K + 1)γ2L2τ

p
·
(
D2τ

p
+ σ2

))
.

As before, we denote ∆ := 32 · τp ·
(

225D2τ
p + 25σ2

)
. Choosing γ = min

{
1

4L ;
(
‖z0−z∗‖2

(K+1)2L2∆

)1/4
}

, we obtain

E

[
1

K + 1

K∑
k=0

‖F (z̄k)‖2
]

= O

(
L2‖z0 − z∗‖2

K
+ L‖z0 − z∗‖

√
∆

+
σ2

M
+

√
L‖z0 − z∗‖∆3/4

√
K

)
,

which completes the proof of (10).



Bounded iterates Under the additional assumption that ‖z∗‖ ≤ Ω and ‖z̄k‖ ≤ Ω, from (42), we obtain

E

[
1

K + 1

K∑
k=0

‖F (z̄k)‖2
]

= O

(
‖z0 − z∗‖2

γ2(K + 1)
+

(γL+ γ2L2)τ

p
·
(
D2τ

p
+ σ2

)

+
σ2

M
+

√
L2Ω2τ

p
·
(
D2τ

p
+ σ2

))
.

With γ = min

{
1

4L ;
(

Ω2

(K+1)L∆

)1/3
}

we have

E

[
1

K + 1

K∑
k=0

‖F (z̄k)‖2
]

= O

(
L2Ω2

K
+
σ2

M
+

(LΩ∆)2/3

K1/3
+ LΩ

√
∆

)
.
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