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Abstract

We study the asynchronous stochastic gradient descent algorithm for distributed
training over n workers which have varying computation and communication
frequency over time. In this algorithm, workers compute stochastic gradients in
parallel at their own pace and return those to the server without any synchronization.
Existing convergence rates of this algorithm for non-convex smooth objectives
depend on the maximum gradient delay τmax and show that an ε-stationary point
is reached after O

(
σ2ε−2 + τmaxε

−1) iterations, where σ denotes the variance of
stochastic gradients.
In this work (i) we obtain a tighter convergence rate of
O
(
σ2ε−2 +

√
τmaxτavgε

−1) without any change in the algorithm where τavg is
the average delay, which can be significantly smaller than τmax. We also provide
(ii) a simple delay-adaptive learning rate scheme, under which asynchronous SGD
achieves a convergence rate of O

(
σ2ε−2 + τavgε

−1), and does not require any
extra hyperparameter tuning nor extra communications. Our result allows to show
for the first time that asynchronous SGD is always faster than mini-batch SGD.
In addition, (iii) we consider the case of heterogeneous functions motivated by
federated learning applications and improve the convergence rate by proving a
weaker dependence on the maximum delay compared to prior works. In particular,
we show that the heterogeneity term in convergence rate is only affected by the
average delay within each worker.

1 Introduction

The stochastic gradient descent (SGD) algorithm [42, 12] and its variants (momentum SGD, Adam,
etc.) form the foundation of modern machine learning and frequently achieve state of the art results.
With recent growth in the size of models and available training data, parallel and distributed versions
of SGD are becoming increasingly important [55, 16, 15]. Without those, modern state-of-the art
language models [43], generative models [39, 40], and many others [49] would not be possible. In
the distributed setting, also known as data-parallel training, optimization is distributed over many
compute devices working in parallel (e.g. cores, or GPUs on a cluster) in order to speed up training.
Every worker computes gradients on a subset of the training data, and the resulting gradients are
aggregated (averaged) on a server.
The same type of SGD variants also form the core algorithms for federated learning applications [33,
23] where the training process is naturally distributed over the user devices, or clients, that keep
their local data private, and only transfer the (e.g. encrypted or differentially private) gradients to the
server.
A rich literature exists on the convergence theory of above mentioned parallel SGD methods, see e.g.
[16, 12] and references therein. Plain parallel SGD still faces many challenges in practice, motivating
research on various approaches to improve efficiency of distributed learning and mini-batch SGD.
This includes for example communication compression techniques [2, 3, 47, 48], decentralized com-

Preprint. Under review.

ar
X

iv
:2

20
6.

08
30

7v
1 

 [
cs

.L
G

] 
 1

6 
Ju

n 
20

22



munication [28, 6, 35, 25] or performing several local SGD steps on workers before communicating
with the server [29, 31, 33, 46].
These approaches use synchronous communication, where workers in each round are required
to wait for the slowest one, before being able to start the next round of computations. In the
presence of such straggler nodes or nodes that have different computation speeds, other workers face
significant idle times. Asynchronous variants of SGD are aimed to solve such inefficiencies and use
available workers more effectively. In asynchronous SGD, each worker starts the next computation
immediately after finishing computing its own gradient, without waiting for any other workers. This
is especially important in the presence of straggler nodes. Asynchronous algorithms were studied
both in distributed and federated learning settings [41, 30, 26, 45, 36]. In this paper we focus on
such challenging asynchronous variants of SGD and provide an improved theoretical analysis of
convergence compared to prior works.
Most existing work has studied the convergence behavior of asynchronous SGD for the setting of
homogeneous distributed training data, where worker’s objectives are i.i.d. . This assumption however
is only realistic e.g. in shared-memory implementations where all processes can access the same
data [41]. Under this assumption, it can be proven that asynchronous SGD finds an ε-approximate
stationary point (squared gradient norm bounded by ε) in O

(
σ2

ε2 + τmax

ε

)
iterations [47], for smooth

non-convex functions. This complexity bound depends on the maximum delay of the gradients τmax

and the gradient variance σ > 0. Unfortunately, the maximal delay is a very pessimistic metric,
not well reflecting the true behavior in practice. For instance, if a worker struggles just once, the
maximum delay is large, while we would still expect reasonable overall convergence.
Two recent works [14, 8] tackle this issue by proposing two new delay-adaptive algorithms that
achieve a convergence rate that depends only on the average delay of the applied gradients, with
Aviv et al. [8] considering only the convex optimization and Cohen et al. [14] providing a rate of
O
(
σ2

ε2 +
τavg
ε

)
for smooth non-convex functions. The average delay can be much smaller than the

maximal delay, and thus these methods are robust to rare stragglers. However, Cohen et al. [14]
requires twice more communications at every step, and an extra hyperparameter to tune. Aviv et al.
[8] analyze only convex functions and assume a bound on the variance of the delays, which can
frequently degrade with the maximum delay τmax. Moreover, those works require the assumption
that gradients are uniformly bounded.
In the realistic case of heterogeneous objective functions, that is in particular relevant in federated
learning applications [23], all the existent convergence rates of asynchronous SGD depend on the
maximum delay [36].
Contributions.
• For standard asynchronous SGD with constant stepsize, and with non-convex L-smooth homo-

geneous objective functions, we prove the tighter convergence rate of O
(
σ2

ε2 +
√
τavgτmax

ε

)
to

ε-small error. Under the additional assumption of bounded gradients, we obtain a convergence
rate of O

(
σ2

ε2 +
τavgG

ε3/2
+

τavg
ε

)
where G is the bound on the norm of gradients. The previously

best known rate was O
(
σ2

ε2 + τmax

ε

)
.

• With homogeneous objective functions, we provide a delay-adaptive stepsize scheme that does
not require tuning of any extra hyperparameters, and converges at the rate of O

(
σ2

ε2 +
τavg
ε

)
for

non-convex L-smooth functions.
• This result allows us to show that asynchronous SGD is always better than mini-batch SGD

regardless of the delays pattern (under assumption that the server can perform operations with
zero time).

• We also consider distributed optimization with heterogeneous objectives where the delays can de-

pend on the nodes and give the convergence rate ofO
(
σ2

ε2 + ζ2

ε2 +

√
τavg

1
n

∑n
i=1 ζ

2
i τ
i
avg

ε
3
2

+
√
τavgτmax

ε

)
,

where ζi’s measure functions heterogeneity and τ̄i is the average delay of node i. This rate im-
proves over the best previously-known results that had worse dependence on the maximum
delay τmax.
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2 Related Work

Asynchronous SGD. The research field of asynchronous optimization can be traced back at least
to 1989 [10]. Recent works are heavily focused on its SGD variants, such as Hogwild! SGD [38]
which deals with coordinate-wise asynchronity. Nguyen et al. [37] provided a tighter convergence
analysis by removing the bounded gradient assumption. Our work does not focus on such a coordinate-
wise asynchrony as it relies on sparsity assumption that is not realistic in modern machine learning
applications. Mania et al. [30] introduces the perturbed iterate framework which enabled theoretical
advances with tighter convergence rates [47, 45]. Leblond et al. [26] focus on asynchronous variance-
reduced methods.
Many works [1, 13, 19, 5, 44, 27, 47, 17] focused on asynchronous SGD variants where workers
communicate with the server without any synchronization, but these communications are considered
to be atomic. All of these works provide convergence guarantees that depend on the maximum
delay τmax with [5, 47] providing the first tight convergence rates under assumption that the delays
are always constant for quadratic and general (convex, strongly convex and non-convex) functions
correspondingly. Stich et al. [45] showed a connection of large batches and delays, although still
depending only on the maximum delay. Even et al. [18] consider a continuized view of the time
(rather than classical per-iteration time) for asynchronous algorithms on a decentralized network.

Delay-adaptive methods. The works [54, 53, 44, 50, 32, 17] considered delay-adaptive schemes
to mitigate adversarial effect of stragglers, however with convergence rates that still depend on the
maximum delay τmax. Only Cohen et al. [14] in the non-convex, and Aviv et al. [8] in the convex
case were able to obtain convergence rates depending on the average delay τavg. Concurrent to our
work, Mishchenko et al. [34] provide a delay-adaptive scheme similar to ours and derive convergence
guarantees depending on the concurrency τC . However, they did not consider asynchronous SGD
with constant stepsizes, nor the bounded gradients case. Moreover, for heterogeneous functions their
method with delay adaptive stepsizes does not converge and only reaches an approximate solution
(up to heterogeniety), while in our work we prove convergence for a different method with carefully
tuned constant stepsizes.

Asynchronous federated learning. In typical federated learning (FL) applications [33], clients or
workers frequently have very different computing powers/speed. This makes especially appealing for
practitioners to use asynchronous algorithms for FL [46, 36, 7, 52, 22, 9, 21, 51] with many of these
works focusing on correcting for unequal participation ratio of different clients [51, 21, 22, 9, 52] by
implementing variance reduction techniques on the server. Nguyen et al. [36] introduce the FedBuff
algorithm that is very close to the algorithm that we consider in this work and show its practical
superiority over classical synchronous FL algorithms.

3 Setup

We consider optimization problems where the components of the objective function (i.e. the data for
machine learning problems) is distributed across n nodes (or clients),

min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

[
fi(x) = Eξ∼Di Fi(x, ξ)

]]
. (1)

Here fi : Rd → R denotes the local loss function that is accessible to the node i, i ∈ [n] := {1, . . . n}.
Each fi is a stochastic function fi(x) = Eξ∼Di Fi(x, ξ) and clients can only access stochastic
gradients∇Fi(x, ξ). This setting covers deterministic optimization if Fi(x, ξ) = fi(x), ∀ξ. It also
covers empirical risk minimization problems by setting Di being a uniform distribution over a local
dataset {ξ1i . . . ξ

mi
i } of size mi. In this case the local functions fi can be written as finite sums:

fi(x) = 1
mi

∑mi
j=1 Fi(x, ξ

j
i ).

Assumptions. For our convergence analysis we rely on following standard assumptions on the
functions fi and Fi:

Assumption 1 (bounded variance). We assume that there exists a constant σ ≥ 0 such that

Eξ∼Di ‖∇Fi(x, ξ)−∇fi(x)‖ ≤ σ2 , ∀i ∈ [n],∀x ∈ Rd . (2)

3



Algorithm 1 ASYNCHRONOUS SGD

input Initial value x(0) ∈ Rd

1: sever selects a set of active workers C0⊆ [n] and sends them x(0)

2: for t = 0, . . . , T − 1 do
3: active workers Ct are computing stochastic gradients in parallel at the assigned points
4: once a worker jt finishes compute, it sends∇F (x(t−τt), ξt) to the server
5: server updates x(t+1) = x(t) − ηt∇F (x(t−τt), ξt)
6: server selects subsetAt⊆ [n] of inactive workers, i.e. (Ct\{jt})∩At=∅, and sends them x(t+1)

7: update active worker set Ct+1 = Ct\{jt} ∪ At
8: end for

Assumption 2 (bounded function heterogeneity). We assume that there exists n constants ζi ≥ 0,
i ∈ [n] such that

‖∇fi(x)−∇f(x)‖22 ≤ ζ
2
i , ∀x ∈ Rd , and define ζ2 := 1

n

∑n
i=1 ζ

2
i . (3)

Assumption 3 (L-smoothness). Each function fi : Rd → R, i ∈ [n] is differentiable and there exists
a constant L ≥ 0 such that

‖∇fi(y)−∇fi(x)‖ ≤ L ‖x− y‖ . ∀x,y ∈ Rd . (4)

For only some of the results we will assume a bound on the gradient norm.
Assumption 4 (bounded gradient). Each function fi : Rd → R, i ∈ [n] is differentiable and there
exists a constant G ≥ 0 such that

‖∇fi(x)‖22 ≤ G
2 , ∀x ∈ Rd . (5)

4 Homogeneous Distributed Setting

We start with an important special case of problem (1) where the objective functions are identical
for all workers, i.e. fi(x) ≡ fj(x) for all i, j ∈ [n], such as in the case of homogeneously (i.i.d.)
distributed training data. Consequently, this implies that Assumption 2 holds with ζi = 0, i ∈ [n].
Many classical works have focused on asynchronous algorithms under this homogeneous setting (e.g.
[5, 47, 1, 19, 44, 27], see the related work for more references). This setting commonly appears in the
datacenter setup for distributed training [15], where all nodes (or GPUs) have access to the full dataset
or data distribution. Moreover, this special case allows us to present our main ideas in a simplified
way, without complicating the presentation due to heterogeneity. We will later see that most of the
results in this section can also be obtained as a corollary of the more general heterogeneous functions
case (Section 5) by setting ζi = 0 i ∈ [n].

4.1 Algorithm
We consider standard asynchronous SGD (also known as delayed SGD, or SGD with stale updates)
as presented in Algorithm 1, see e.g. [5, 47, 1, 19, 44, 27]. First, the server initializes training
by selecting an initial active worker set C0 and assigning x(0) to these workers. Throughout the
algorithm, the active workers compute gradients at their own speed, based on their local data. On
line 4, once some worker (which we denote as jt) finishes computing its gradient, it sends the result
to the server. On line 5 the server incorporates the received—possibly delayed—gradient, using a
stepsize ηt that can depend on the gradient delay τt. The gradient delay τt is defined as the difference
between the iteration at which worker jt started to compute the gradient and the iteration t at which it
got applied. We index the stochastic noise of the gradients ξt by iteration t to highlight that previous
iterates x(t′) for t′ ≤ t do not depend on this stochastic noise. However, the client selects the data
sample ξt at iteration t− τt when the computation starts. After that, on lines 6-7 the server selects
the new active workers out of the ones that are currently inactive (including worker jt) and assigns
them the latest iterate x(t+1).
In contrast to previous works, we explicitly define the set of workers that are busy with computations
at every step t as Ct (the active workers set). Note that this does not pose any restrictions. A main
advantage of allowing the sets Ct to be different at every step t lies in the possibility to also cover
mini-batch SGD as a special case, which we discuss in Example 2. Our theoretical results depend on
the size of these sets Ct, a.k.a. the concurrency.
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Definition 1 (Concurrency). The concurrency τ (t)C at step t is defined as the size of the active worker
set Ct, i.e. τ (t)C = |Ct|. We also define the maximum and average concurrency as

τC = max
t
{τ (t)C } , τ̄C = 1

T+1

∑T
t=0 τ

(t)
C .

Note that in many practical scenarios, we have a constant concurrency of n over time, meaning that
all n workers are active at every step, and thus τC = τ̄C = n.
We discuss two important practical examples that fit into our Algorithm 1:
Example 2 (Mini-batch SGD). Mini-batch SGD with batch size n can be seen as a special case of
Algorithm 1, as follows: The server (i) in line 1 selects all n workers, C0 = [n]; (ii) in line 6 does
not select new workers while the gradients from the same batch have not been fully applied yet, i.e.
At = ∅ if t mod n 6= 0; (iii) in line 6 selects At = [n] if t mod n = 0 to start a new batch.
Example 3 (Asynchronous SGD with maximum concurrency). In practical implementations one
should always aim to utilize all resources available and thus (i) in line 1 select all available workers
C0 = 0; (ii) in line 6 select the worker that finished its computations At = {jt} so that workers are
always busy with jobs.

4.2 Theoretical analysis: Constant stepsizes
We first formally define the average and maximum delays.

Definition 4 (Average and maximum delays). Let {τt}T−1t=0 be the delays of the applied
gradients in Algorithm 1. We define {τCTi }i∈CT \{jT } as the delays of gradients which are
in flight at time T , that is they have remained unapplied at the last step. Each τCTi is
equal to the difference between the last iteration T and the iteration at which worker i
started to compute its last gradient. We then define the average and the maximum delays as

τavg =
1

T + |CT | − 1

( T−1∑
t=0

τt +
∑

i∈CT \{jT }

τCTi

)
, τmax = max

{
max

t=1,...T−1
τt, max

i∈CT \{jT }
τCTi

}
. (6)

We further provide a key observation on the connection between the average delay and the average
concurrency. This observation, is one of the essential elements for achieving an improved analysis.
Remark 5 (Key Observation). In Algorithm 1 the average concurrency τ̄C is connected to the
average delay τavg as

τavg =
T + 1

T + |CT | − 1
τ̄C

T>|CT |
= O(τ̄C) . (7)

We explain this observation on a simple example. Assume that the concurrency is constant at every
step (τC = τ̄C), and that all workers except one are responding very rarely. Then on steps 4–5 of
Algorithm 1 only this one responding worker would mostly participate. This means that for this one
worker the delay τt would be frequently equal to zero, and the overall average delay will be small.
Next, we provide our theoretical results. We first focus on the Asynchronous SGD Algorithm 1 under
constant stepsizes, i.e. ηt ≡ η. This setting was studied in many works such as [1, 19, 5, 27, 47]
Theorem 6 (Constant stepsizes). Under Assumptions 1, 3, there exists a constant stepsize ηt ≡ η

such that for Algorithm 1 it holds that 1
T+1

∑T
t=0

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O
(
σ2

ε2
+

√
τCτmax

ε

)
iterations. (8)

If we additionally assume bounded gradient Assumption 4, then 1∑T
t=0 |At|

∑T
t=0 |At|

∥∥∇f(x(t))
∥∥2
2
≤

ε after

O
(
σ2

ε2
+
τCG

ε3/2
+
τC
ε

)
iterations. (9)

Under constant concurrency, we can directly connect τC to the average delay τavg due to Remark 5.
We highlight again that in practice, to get the best utilization of the available resources, practical
implementations choose the maximum concurrency possible, which is equal to n.
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Corollary 7. If in Algorithm 1 the concurrency is constant at every step (thus τC = τ̄C ), then under
the same conditions as in Theorem 6 the convergence rate of Algorithm 1 is

O
(
σ2

ε2
+

√
τavgτmax

ε

)
and O

(
σ2

ε2
+
τavgG

ε3/2
+
τavg
ε

)
(10)

for the case without and with bounded gradient Assumption 4 correspondingly.

The previously best known convergence rate for Asynchronous SGD 1 under constant stepsizes was
given in [47] and is equal to O

(
σ2

ε2 + τmax

ε

)
. In our theorem we improved the delay dependence

from τmax to √τavgτmax in the last term without any change in the algorithm, only by taking
into account concurrency that is usually fixed in practical implementations anyways. No other
work previously made an assumption on the number of computing workers in their theoretical
analysis. √τavgτmax could be much smaller than τmax in the presence of rare straggler devices.
With an additional assumption of bounded gradients, the dependence on the maximum delay can be
completely removed.

4.3 Theoretical analysis: Delay-adaptive stepsizes
In many cases, the bounded gradient Assumption 4 is unrealistic [37], meaning that the gradient
bound G is often large and thus the rate (9) is loose. In this section we show that by weighting the
stepsize down for the gradients that have a large delay, once can remove the dependence on the
maximum delay τmax without assuming bounded gradients (Assump. 4).
Theorem 8 (Delay-adaptive stepsizes). There exist a parameter η ≤ 1

4L such that if we set the
stepsizes in Algorithm 1 dependent on the delays as

ηt =

{
η τt ≤ τC ,
< min{η, 1

4Lτt
} τt > τC ,

(11)

then for Algorithm 1, under Assumptions 1, 3 it holds that 1∑T
t=0 ηt

∑T
t=0 ηt

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O
(
σ2

ε2
+
τC
ε

)
iterations. (12)

In our theorem, the stepsize ηt in the case of large delays τt > τC can be an arbitrary value between 0
and min{η, 1

4Lτt
}. Setting the stepsize ηt ≡ 0 is equivalent to dropping these gradients.

Proof sketch of Theorem 8. We give the intuitive proof sketch for the case when we drop gradients
with τt > τC and we deal with the general case in the Appendix. We know that τavg ≈ τ̄C ≤ τC
from Remark 5. It also holds that the number of gradients that have delay larger than the average
delay τavg is smaller than half of all the gradients (≤ T

2 ) because delays are bounded below by
zero (τt ≥ 0 ∀t). Thus, dropping the gradients with the delay τt > τC , or equivalently setting their
stepsize ηt ≡ 0, will degrade the convergence rate at most by half, while the maximum delay among
the applied ones now is equal to τC . Thus we can apply result from [47] with τmax = τC .

Corollary 9. If in Algorithm 1 the concurrency is constant at every step (thus τC = τ̄C ), then under
the same conditions as in Theorem 8 the convergence rate of Algorithm 1 is equal to

O
(
σ2

ε2
+
τavg
ε

)
. (13)

4.4 Discussion
Comparison to synchronous optimization. Mini-batch SGD with batch size n has the same
degree of parallelism as Algorithm 1 with constant concurrency n, i.e. it has n workers computing
gradients in parallel. Mini-batch SGD needs O

(
σ2

nε2 + 1
ε

)
[20] batches of gradients to reach an

ε-stationary point, and thus needs O
(
σ2

ε2 + n
ε

)
gradients, as the batch-size is equal to n. On the

contrary, asynchronous SGD Algorithm 1 with stepsizes chosen as in (11) achieves exactly the same
rate (13) since τavg = τC = n, while its expected per-iteration time is faster than that of mini-batch
SGD, as no workers have to wait for others. Thus, our result shows that asynchronous SGD is always
faster than mini-batch SGD regardless of the delay pattern. A small note that in our reasoning we
implicitly assumed that the sever can perform its operations in negligible time.
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Tuning the stepsize. It is worth noting that our stepsize rule (11) does not introduce any additional
hyperparameters to tune compared to the constant stepsize case or to synchronous SGD. τC is usually
known and can be easily controlled by the server, especially in the practical constant concurrency
case. Thus, to implement such a stepsize rule (11) one needs to tune only stepsize η, and in case of
τt > τC set stepsize ηt ≤ η

τt
.

Average v.s. maximum delay. In a homogeneous environment when every worker computes
gradients with same speed during the whole training, the average and maximum delays would be
almost equal. However, occasional straggler devices will usually be present. In this case the maximum
delay is much larger than the average delay.
Consider a simple example with n = 2 workers, where the first worker computes gradients very fast,
while the second worker returns its gradient only at the end of the training at the last iteration T . In
this case the average delay τavg = 2 is a small constant, while the maximum delay τmax = T . In this
case the rate depending only on the maximum delay τmax would guarantee convergence only up to a
constant accuracy ε = O(1). While both rates with√τmaxτavg and with τavg guarantee convergence
up to an arbitrary small accuracy.

Comparison to other methods. Cohen et al. [14] recently proposed the PickySGD algorithm that
achieves a convergence rate ofO

(
σ2

ε2 +
τavg
ε

)
(same as (13)). Their algorithm discards gradients based

on the distance between the current point and the delayed one
∥∥x(t) − x(t−τt)

∥∥. The disadvantage of
their method is that it requires sending points x(t−τt) along with the gradients thus incurring twice
more communications at every step. Their method also requires tuning an extra hyperparameter. In
this work we achieve the same convergence rate with a much simpler method that does not require
any additional communications nor additional tuning compared to synchronous SGD.
[8] also recently proposed the delay-adaptive algorithm with convergence rate depending on the
average delay τavg for the convex and strongly convex cases. Although, our convergence rates are for
the non-convex case and are not directly comparable to theirs, we highlight some key differences in
their analysis. First, their convergence rate depends not only on τavg but also on the variance στ of
the delays, which can degrade with the maximum delay. Second, they require the bounded gradient
Assumption 4. In Theorem 6 we show that under Assumption 4 no modifications to the algorithm are
needed to completely remove the dependence on the maximum delay τmax (9).

Tightness. As we explained in Example 2, mini-batch SGD is covered by Algorithm 1. We know
that mini-batch SGD convergence is lower bounded by Θ

(
σ2

nε2 + 1
ε

)
[4] in terms of batches processed

and thus by Θ
(
σ2

ε2 + n
ε

)
in terms of the gradients computed. Our convergence rate given in Theorem 6

coincides with this lower bound as in this case concurrency τC = n, τavg = τ̄C = n
2 .

5 Heterogeneous Distributed Setting

In this section we consider more general problems of the form (1) where the functions fi are different
on different nodes. This setting is motivated for example by federated learning [33, 23], where every
node (client) possesses its own private data, possibly coming from a different data distribution, and
thus has its own different local loss function fi.
The setting here is therefore more general than the one considered in previous Section 4, and we will
see that some of the results (with the constant stepsizes) in the homogeneous case follow as a special
case of the more general results we present in this section.

5.1 Algorithm
We consider asynchronous SGD as given in Algorithm 2. Close variants of this algorithm were studied
in several prior works [36, 46]. In order to simplify the presentation, we consider that concurrency is
constant over time (and thus τC = τ̄C in Definition 1). In order to allow for client subsampling often
implemented in practical FL applications, we allow the concurrency τC to be smaller than overall
number of workers n. The same concurrency model was recently considered in the practical FedBuff
algorithm [36].
The algorithm is very similar to the homogeneous Algorithm 1 with two key differences: at line 6,
the server selects clients out of all clients, and does so uniformly at random, regardless of the current
active worker set Ct. This means that the same client can get sampled several times, even if it didn’t

7



Algorithm 2 ASYNCHRONOUS SGD with concurrency τC

input Initial value x(0) ∈ Rd, n clients, concurrency τC
Server:

1: sever selects uniformly at random a set of active clients C0 of size τC and sends them x(0)

2: for t = 0, . . . , T − 1 do
3: active clients Ct are computing stochastic gradients in parallel at the assigned points
4: once some client jt finishes compute, it sends∇Fjt(x(t−τt), ξt) to the server
5: server updates x(t+1) = x(t) − ηt∇Fjt(x(t−τt), ξt)

6: sever selects a new client kt ∼ Uniform[1, n] and sends it x(t+1)

7: update the active worker multiset Ct+1 = Ct\{jt} ∪ {kt}
8: end for

finish its previous job(s) yet (thus Ct is a multiset). In this case, the assigned jobs would just pile up
on this client.

5.2 Theoretical analysis
We first note that our key observation on the delays (Remark 5) holds for Algorithm 2 as well.
Moreover, as we have a constant concurrency τC at every step, τavg = O(τC).

Definition 10. Denote a (possibly empty) set {τCT ,ik }k to be the set of delays from gradients of the
client i that are left unapplied at the last iteration of the Algorithm 2.

We define the average delay of a client i as

τ iavg =
1

Ti

 ∑
t : jt=i

τt +
∑
k

τCT ,ik


where Ti is the number of times the client i got sampled during lines 1 and 6 of Algorithm 2.
Assumption 5. The average delay τ iavg is independent from the number of times Ti the client i got
sampled.

Theorem 11 (constant stepsizes). Under Assumptions 1, 2, 3, 5 there is exist a constant stepsize
ηt ≡ η such that for Algorithm 2 it holds that 1

T+1

∑T
t=0

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O

σ2

ε2
+
ζ2

ε2
+

√
τavg

1
n

∑n
i=1 ζ

2
i τ

i
avg

ε
3
2

+

√
τavgτmax

ε

 iterations, (14)

Under Assumptions 1, 2, 3 and additional bounded gradient Assumption 4, it holds that
1

T+1

∑T
t=0

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O
(
σ2

ε2
+
ζ2

ε2
+
τavgG

ε
3
2

+
τavg
ε

)
iterations. (15)

We note that the leading 1
ε2 term is affected by heterogeneity ζ2 because at every step we apply

gradient from only one client. This term is usually present in the federated learning algorithms with
client subsampling see e.g. [24].

5.3 Discussion
Comparison to other works. The recent FedBuff algorithm [36] is similar to our Algorithm 2.
Their algorithm allows clients to perform several local steps and the server to wait for more than 1
client to finish compute (aka buffering), which we did not include for simplicity as these aspects are
orthogonal to the effect of delays.
Disregarding these two orthogonal changes, the FedBuff algorithm is almost equivalent to our
Algorithm 2 with a key difference: they assume that the client jt that finishes computation at every
step comes from the uniform distribution over all the clients. This is unrealistic to assume in practice

8



because the server cannot control which clients finish computations at every step. In Algorithm 2 we
have the more realistic assumption only on the sampling process of the clients (on line 6) that can be
controlled by the server. This reflects practical client sampling in federated learning.
The convergence rate of FedBuff [36] under the bounded gradient assumption is
O
(
σ2

ε2 + ζ2

ε2 + (ζ2+1)τmaxG
2

ε

)
. In contrast, in Theorem 11 we completely remove the depen-

dence on the maximum delay τmax under bounded gradients (as in Equation (15)).

Delays. We note that for Theorem 11 we did not impose any assumption on the delays. Thus, our
result allows clients and the delays on these clients to be dependent, meaning that some of the clients
could be systematically slower than others. Interestingly, the middle heterogeneity term (the term
with ζi) is not affected by the maximum delay at all, but is affected by the average delay within each
individual client. If all the heterogeneity parameters are equal, i.e. ζi = ζj ,∀i, j, then the middle
term will be affected only by the overall average delay τavg .

Gradient clipping. Practical implementations of FL algorithms usually apply clipping to the
gradients in order to guarantee differential privacy [23]. This automatically bounds the norm of all
applied gradients, making the the constant G2 in Assumption 4 small. Although we do not provide
formal convergence guarantees of asynchronous SGD with gradient clipping, we envision that its
convergence rate would depend only on the average delay, similar to the bounded gradient case (9),
thus making the algorithm robust to stragglers.

Delay-adaptive stepsizes. For homogeneous functions we have shown that delay-adaptive stepsizes
result in a convergence rate dependent only on the average delay τavg without assuming bounded
gradients (as in Equation (11)). However in the heterogeneous case this is not so straightforward.
Delay-adaptive learning rate schemes will introduce a bias towards the clients that compute quickly,
and Algorithm 2 would converge to the wrong objective.
It is interesting to note that current popular schemes implemented in practice for FL over-selects the
clients at every iteration [11]. The server waits only for some percentage (e.g. 80%) of sampled clients
and discards the rest. Such a scheme also introduces a bias towards fast workers. A delay-adaptive
learning rate scheme is expected to introduce less bias as the gradients are still applied but with the
smaller weight. We leave this question for future practical investigations, as it is not the focus of our
current work.

Independent delays. If the delays and the clients are independent (e.g. coming from the same
distribution for all of the clients), then the convergence rate of Algorithm 2 will simplify to
O
(
σ2

ε2 +
ζτavg

ε
3
2

+
√
τavgτmax

ε

)
(without needing bounded gradient assumption). In this case it is

also possible to use delay-adaptive stepsizes (similar to Theorem 8) to completely remove the
dependence on the maximum delays τmax without assuming bounded gradients.

Extensions. We can extend the Algorithm 2 and our theoretical analysis to allow clients to perform
several local steps, before sending back the change in x. We can also extend Algorithm 2 to allow the
server to wait for the first K clients to finish computations rather than just one, similar to [36]. These
extensions are straightforward and we excluded them here for simplicity of presentation.
Finally, we can also extend Algorithm 2 to sample new clients as soon as some previous client
finished compute, without waiting for the server update on the line 5.

5.4 Estimating Speedup over Synchronous SGD
Assume we have n clients, each of which having a different but constant time to compute a gradient
{∆i}ni=1. W.l.o.g. we assume that ∆i are ordered as ∆1 ≤ ∆2 ≤ · · · ≤ ∆n.
Lemma 12. In expectation, the asynchronous Algorithm 2 needs

∆̄ =
1

n

n∑
i=1

∆i

time to compute τC gradients, while mini-batch SGD with batch size τC needs

∆̃ =

n∑
i=1

αi∆i
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time to compute a batch of τC gradients, where αi = iτC−(i−1)τC
nτC . It is also always holds that

∆̄ ≤ ∆̃.

With this lemma we can precisely estimate how much faster the asynchronous algorithm is compared
to the classic synchronous mini-batch one. Note that αi are increasing with i with a rate of O(iτC ),
thus in mini-batch SGD, the large delays get a much higher weight than the small delays, especially
when the batch size τC is large.
For example, consider 1000 clients, 900 of which compute their update every 10s, while 100 of
them computes their update every 60s. Then the expected time for τC gradients of the asynchronous
algorithm will be 15s, while synchronous mini-batch SGD (with τC = 10) will take a significantly
longer time of 42.5s for the same number of gradients.

6 Conclusion

In this paper we study the asynchronous SGD algorithm both in homogeneous and heterogeneous
settings. By leveraging the notion of concurrency—the number of workers that compute gradients in
parallel—we show a much faster convergence rate for asynchronous SGD, improving the dependence
on the maximum delay τmax over prior works, for both homogeneous and heterogeneous objectives.
Our proof technique also allows to design a simple delay-adaptive stepsize rule (11) that attains a
convergence rate depending only on the average delay τavg that neither requires any additional tuning,
nor additional communication. Our techniques allows us to demonstrate that asynchronous SGD is
faster than mini-batch SGD for any delay pattern.
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A Proofs

In this section we provide the proofs of all the theoretical results stated in the main paper.

A.1 Proof of Remark 5
First, we prove our key observation given in Remark 5.

Remark 5 (Key Observation). In Algorithm 1 the average concurrency τ̄C is connected to the
average delay τavg as

τavg =
T + 1

T + |CT | − 1
τ̄C

T>|CT |
= O(τ̄C) . (7)

Proof. Define {τCti }i∈Ct as the set of delays of the gradients that are left in the active worker set
before iteration t is performed, i.e. each τCti is equal to the difference between the current iteration t
and the iteration at which worker i started to compute its current gradient for t > 0, and τC0i = 1 for
all i ∈ C0, that is the initial set of active workers. For simplicity we denote

τ active,t
sum :=

∑
i∈Ct

τCti .

We also define τ applied,t
sum as the sum of all delays of gradients applied before iteration t is performed,

i.e.

τ applied,t
sum :=

t−1∑
j=0

τj .

At the zero-th iteration we have that

τ applied,0
sum = 0 , τ active,0

sum = τ
(0)
C , (16)

as no gradients were applied yet.
We claim that

τ applied,t+1
sum + τ active,t+1

sum = τ applied,t
sum + τ active,t

sum + τ
(t+1)
C . (17)

Indeed, one of the gradients from Ct got applied and its delay moved from τ active,t
sum to τ applied,t+1

sum . The
newly selected active workers in line 6 of Algorithm 1 have delay zero, as they just started their
computations in this step. And all of the current active workers in Ct+1 (of size |Ct+1| = τ

(t+1)
C ) got

an increase by 1 due to increase of the iteration count from t to t+ 1.
Using the initial conditions (16) and (17) we can conclude that

τ applied,T
sum + τ active,T

sum =

T∑
t=0

τ
(t)
C = (T + 1)τ̄C .

Note that the left hand side is exactly equal to (T + |CT | − 1)τavg from our Definition 4. Thus,

τavg =
T + 1

T + |CT | − 1
τ̄C = O (τ̄C) ,

where the last equality holds if T > |CT |.

A.2 Useful inequalities

Lemma 13. For an arbitrary set of n vectors {ai}ni=1, ai ∈ Rd∥∥∥∥∥
n∑
i=1

ai

∥∥∥∥∥
2

≤ n
n∑
i=1

‖ai‖2 . (18)
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A.3 Proof of Theorems 6, (8) and 8
We first recall both of the theorems
Theorem 6 (Constant stepsizes). Under Assumptions 1, 3, there exists a constant stepsize ηt ≡ η

such that for Algorithm 1 it holds that 1
T+1

∑T
t=0

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O
(
σ2

ε2
+

√
τCτmax

ε

)
iterations. (8)

If we additionally assume bounded gradient Assumption 4, then 1∑T
t=0 |At|

∑T
t=0 |At|

∥∥∇f(x(t))
∥∥2
2
≤

ε after

O
(
σ2

ε2
+
τCG

ε3/2
+
τC
ε

)
iterations. (9)

Theorem 8 (Delay-adaptive stepsizes). There exist a parameter η ≤ 1
4L such that if we set the

stepsizes in Algorithm 1 dependent on the delays as

ηt =

{
η τt ≤ τC ,
< min{η, 1

4Lτt
} τt > τC ,

(11)

then for Algorithm 1, under Assumptions 1, 3 it holds that 1∑T
t=0 ηt

∑T
t=0 ηt

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O
(
σ2

ε2
+
τC
ε

)
iterations. (12)

We first give a common lemma that will be used in the proofs for both of the theorems.
Lemma 14 (Descent Lemma). Under Assumptions 1 and 3, if in Algorithm 1 the stepsize ηt < 1

2L
then it holds that

Et+1 f(x(t+1)) ≤ f(x(t))− ηt
2

∥∥∥∇f(x(t))
∥∥∥2
2
− ηt

4

∥∥∥∇f(x(t−τt))
∥∥∥2 + Lη2t σ

2 +
ηtL

2

2

∥∥∥x(t) − x(t−τt)
∥∥∥2
2
, .

Proof. Because the function f is L-smooth, we have

Et+1 f(x(t+1)) = Et+1 f
(
x(t) − ηt∇F (x(t−τt), ξt)

)
≤ f(x(t))− ηt Et+1

〈
∇f(x(t)),∇F (x(t−τt), ξt)

〉
︸ ︷︷ ︸

=:T1

+Et+1
L

2
η2t

∥∥∥∇F (x(t−τt), ξt)
∥∥∥2
2︸ ︷︷ ︸

=:T2

We first estimate the second term as

T1 = −ηt
〈
∇f(x(t)),∇f(x(t−τt))

〉
= −ηt

2

∥∥∥∇f(x(t))
∥∥∥2 − ηt

2

∥∥∥∇f(x(t−τt))
∥∥∥2 +

ηt
2

∥∥∥∇f(x(t))−∇f(x(t−τt))
∥∥∥2

For the last term, we add and subtract ∇f(x(t−τt)), and use that Et+1∇F (x(t−τt), ξt) −
∇f(x(t−τt)) = 0

T2 = Et+1

∥∥∥∇F (x(t−τt), ξt)−∇f(x(t−τt))
∥∥∥2
2

+
∥∥∥∇f(x(t−τt))

∥∥∥2
2

(2)
≤ σ2 +

∥∥∥∇f(x(t−τt))
∥∥∥2
2
.

Combining this together and using L-smoothness to estimate
∥∥∇f(x(t))−∇f(x(t−τt))

∥∥2
2
,

Et+1 f(x(t+1)) ≤ f(x(t))− ηt
∥∥∥∇f(x(t))

∥∥∥2
2
− ηt

2
(1− Lηt)

∥∥∥∇f(x(t−τt))
∥∥∥2
2

+
ηtL

2

2

∥∥∥x(t) − x(t−τt)
∥∥∥2
2

+ Lη2t σ
2 .

Applying η < 1
2L we get statement of the lemma.
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A.3.1 Proof of Theorem 6, convergence rate (8)

Lemma 15 (Estimation of the residual). Under Assumptions 1 and 3, the iterates of Algorithm 1 with
the constant stepsize ηt ≡ η with η ≤ 1

2L
√
τmaxτC

satisfy

1

T + 1

T∑
t=0

E
∥∥∥x(t) − x(t−τt)

∥∥∥2
2
≤ 1

4L2(T + 1)

T∑
t=0

E
∥∥∥∇f(x(t−τt))

∥∥∥2 +
σ2η

2L
.

Proof. We start with unrolling the difference and use that E∇F (x(j−τj), ξ(j−τj)) = ∇f(x(j−τj)).

E
∥∥∥x(t) − x(t−τt)

∥∥∥2
2

= E

∥∥∥∥∥∥
t−1∑

j=t−τt

η∇F (x(j−τj), ξj)

∥∥∥∥∥∥
2

(5)
≤ E

∥∥∥∥∥∥
t−1∑

j=t−τt

η∇f(x(j−τj))

∥∥∥∥∥∥
2

+ τtη
2σ2

(18)
≤ τt E

t−1∑
j=t−τt

η2
∥∥∥∇f(x(j−τj))

∥∥∥2 + τtη
2σ2 .

Using that η ≤ 1
2L
√
τmaxτC

,

E
∥∥∥x(t) − x(t−τt)

∥∥∥2
2
≤ 1

4L2τC

t−1∑
j=t−τt

E
∥∥∥∇f(x(j−τj))

∥∥∥2 + τtη
2σ2 .

Summing over T ,
T∑
t=0

E
∥∥∥x(t) − x(t−τt)

∥∥∥2
2
≤ 1

4L2τC

T∑
t=0

t−1∑
j=t−τt

E
∥∥∥∇f(x(j−τj))

∥∥∥2 +

T∑
t=0

τtη
2σ2

≤ 1

4L2τC

T∑
t=0

t−1∑
j=t−τt

E
∥∥∥∇f(x(j−τj))

∥∥∥2 + (T + 1)τavgη
2σ2 .

We now observe that the number of times each of the gradients
∥∥∇f(x(j−τj))

∥∥2 appears in the right
hand side is bounded by τ (j)C − 1 because this many gradients started to be computed before the
iteration j and will get applied at some iteration t > j. Thus,

T∑
t=0

E
∥∥∥x(t) − x(t−τt)

∥∥∥2
2
≤ 1

4L2

T∑
t=0

E
∥∥∥∇f(x(t−τt))

∥∥∥2 + (T + 1)
σ2η

2L
,

where for the last σ term we estimated η ≤ 1
2L
√
τmaxτC

and used that both τavg ≤ τC and τavg ≤ τmax.
Dividing the inequality by T + 1 we get the statement of the lemma.

Next, we give the proof of the first part of Theorem 6.

Proof of Theorem 6, convergence rate (8). We start by averaging with T and dividing by η the de-
scent Lemma 14.

1

T + 1

T∑
t=0

(
1

2
E
∥∥∥∇f(x(t))

∥∥∥2
2

+
1

4
E
∥∥∥∇f(x(t−τt))

∥∥∥2) ≤ 1

η(T + 1)

(
f(x(0))− f?

)
+ Lησ2

+
1

T + 1

L2

2

T∑
t=0

E
∥∥∥x(t) − x(t−τt)

∥∥∥2
2
.

We next apply Lemma 15 to the last term and get

1

T + 1

T∑
t=0

(
1

2
E
∥∥∥∇f(x(t))

∥∥∥2
2

+
1

4
E
∥∥∥∇f(x(t−τt))

∥∥∥2) ≤ 1

η(T + 1)

(
f(x(0))− f?

)
+ Lησ2

+
1

8(T + 1)

T∑
t=0

E
∥∥∥∇f(x(t−τt))

∥∥∥2 +
Lησ2

4
.
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And thus,

1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 2

η(T + 1)

(
f(x(0))− f?

)
+ 4Lησ2 .

It is only left to choose a stepsize η. Similar to previous works [47], we chose it as

η = min

{
1

2L
√
τmaxτC

;

(
r0

2Lσ2(T + 1)

) 1
2

}
≤ 1

2L
√
τmaxτC

,

where we defined r0 = f(x(0))− f?. With this choice of stepsize we indeed have that

• If 1
2L
√
τmaxτC

≤
(

r0
2Lσ2(T+1)

) 1
2

then η = 1
2L
√
τmaxτC

, and

1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤

4Lr0
√
τmaxτC

T + 1
+

(
r0

2Lσ2(T + 1)

) 1
2

4Lσ2 = O
(

σ√
T

+

√
τmaxτC
T

)

• Otherwise if 1
2L
√
τmaxτC

>
(

r0
2Lσ2(T+1)

) 1
2

1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 2

(
8Lσ2r0
(T + 1)

) 1
2

= O
(

σ√
T

)

A.3.2 Proof of Theorem 8

Lemma 16 (Estimation of the residual). Under Assumptions 1 and 3, the iterates of Algorithm 1 with
the stepsizes ηt chosen as in (11), which we repeat here for readability

ηt =

{
η τt ≤ τC ,
< min{η, 1

4Lτt
} τt > τC ,

with η ≤ 1
4LτC

satisfy

T∑
t=0

ηt

∥∥∥x(t) − x(t−τt)
∥∥∥2
2
≤ 1

16L2

T∑
t=0

ηt

∥∥∥∇f(x(t−τt))
∥∥∥2 +

σ2

4L

T∑
t=0

η2t .

Proof.

ηt

∥∥∥x(t) − x(t−τt)
∥∥∥2
2

= ηt

∥∥∥∥∥∥
t−1∑

j=t−τt

ηj∇F (x(j−τj), ξj)

∥∥∥∥∥∥
2

(2)
≤ ηt

∥∥∥∥∥∥
t−1∑

j=t−τt

ηj∇f(x(j−τj))

∥∥∥∥∥∥
2

+ ηt

t−1∑
j=t−τt

η2jσ
2

(18)
≤ ηtτt

t−1∑
j=t−τt

η2j

∥∥∥∇f(x(j−τj))
∥∥∥2 + ηt

t−1∑
j=t−τt

η2jσ
2 .

We use that each of the stepsizes ηt ≤ 1
4Lmax{τt,τC} . Thus,

ηt

∥∥∥x(t) − x(t−τt)
∥∥∥2
2
≤ 1

4L

t−1∑
j=t−τt

η2j

∥∥∥∇f(x(j−τj))
∥∥∥2 +

1

4LτC

t−1∑
j=t−τt

η2jσ
2 .

Summing over T , and using that each of the gradients
∥∥∇f(xj−τj )

∥∥2 would appear at most τ (j)C − 1
times (see the discussion in the proof of Lemma 15)

T∑
t=0

ηt

∥∥∥x(t) − x(t−τt)
∥∥∥2
2
≤ 1

4L

T∑
t=0

τCη
2
t

∥∥∥∇f(x(t−τt))
∥∥∥2 +

σ2

4L

T∑
t=0

η2t .

Using again that ηt ≤ 1
4Lmax{τt,τC} we get the statement of the lemma.
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Proof of Theorem 8. We start by summing the descent Lemma 14 over the iterations t = 0, . . . , T .
T∑
t=0

ηt

(
1

2
E
∥∥∥∇f(x(t))

∥∥∥2
2

+
1

4
E
∥∥∥∇f(x(t−τt))

∥∥∥2) ≤ (f(x(0))− f?
)

+ Lσ2
T∑
t=0

η2t +
L2

2

T∑
t=0

ηt

∥∥∥x(t) − x(t−τt)
∥∥∥2
2
.

Next, we substitute Lemma 16 into the last term,
T∑
t=0

ηt

(
1

2
E
∥∥∥∇f(x(t))

∥∥∥2
2

+
1

4
E
∥∥∥∇f(x(t−τt))

∥∥∥2) ≤ (f(x(0))− f?
)

+ Lσ2
T∑
t=0

η2t

+
1

32

T∑
t=0

ηt

∥∥∥∇f(x(t−τt))
∥∥∥2 +

σ2L

8

T∑
t=0

η2t .

Rearranging we thus get
T∑
t=0

ηt E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 2

(
f(x(0))− f?

)
+ 4Lσ2

T∑
t=0

η2t .

We note that due to our choice of stepsizes (11), ηt ≤ η, it also holds that
∑T
t=0 ηt ≥

∑
t:τt≤τC η ≥

T+1
2 η since there are at least half of the iterations with the delay smaller than the average.

Using this, we estimate

1∑T
t=0 ηt

T∑
t=0

ηt E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 4

(T + 1)η

(
f(x(0))− f?

)
+ 8Lσ2η2 .

It remains to tune the stepsize η, i.e. to pick is such as to minimize the right hand side of this
expression. See Lemma 17 in [25].

A.4 Proof of Theorem 6, convergence rate (9)

To prove the last claim of Theorem 6 we take another approach and follow the perturbed iterate
analysis [30].
We introduce a virtual sequence x̃t defined as

x̃(0) = x(0), x̃(t+1) = x̃(t) − η
∑
i∈At

∇F (x(t), ξt+τ̂ it ),

where we define A0 := C0, and τ̂ it is the delay with which the corresponding gradient will be
computed. That is, if we denote j = t+ τ̂ ti , then it will hold that j − τj = t. This defines a virtual
sequence and we do not have access to it during the execution of Algorithm 1.
Lemma 17 (Descent lemma). Under Assumptions 1 and3, if in Algorithm 1 the stepsize ηt < 1

2LτC
then it holds that

Et+1 f(x̃(t+1)) ≤ f(x̃(t))− η

4
|At|

∥∥∥∇f(x(t))
∥∥∥2
2

+
η

2
|At|L2

∥∥∥x(t) − x̃(t)
∥∥∥2 +

Lη2σ2|At|
2

.

Proof. Because function f is L-smooth, we have

Et+1 f(x̃(t+1)) = Et+1 f

(
x̃(t) − η

∑
i∈At

∇F (x(t), ξ(t+τ̂
i
t ))

)

≤ f(x̃(t))− η|At| 〈∇f(x̃(t)),∇f(x(t))〉︸ ︷︷ ︸
=:T1

+Et+1
L

2
η2

∥∥∥∥∥∑
i∈At

∇F (x(t), ξt+τ̂ it )

∥∥∥∥∥
2

2︸ ︷︷ ︸
=:T2

.

We estimate the second term as

T1 = −
〈
∇f(x(t)),∇f(x̃(t))

〉
= −1

2

∥∥∥∇f(x(t))
∥∥∥2 − 1

2

∥∥∥∇f(x̃(t))
∥∥∥2 +

1

2

∥∥∥∇f(x(t))−∇f(x̃(t))
∥∥∥2

≤ −1

2

∥∥∥∇f(x(t))
∥∥∥2 +

1

2

∥∥∥∇f(x(t))−∇f(x̃(t))
∥∥∥2 .
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For the last term, using the notation ± a = a− a = 0 ∀a,

T2 = Et+1

∥∥∥∥∥∑
i∈At

∇F (x(t), ξt+τ̂ it )± |At|∇f(x(t))

∥∥∥∥∥
2

2

(2)
≤ |At|σ2 + |At|2

∥∥∥∇f(x(t))
∥∥∥2
2
.

Combining this together, using L-smoothness to estimate
∥∥∇f(x(t))−∇f(x̃(t))

∥∥2
2

we get

Et+1 f(x̃(t+1)) ≤ f(x̃(t))−
(
η

2
|At| −

η2L|At|2

2

)∥∥∥∇f(x(t))
∥∥∥2
2

+
η

2
|At|L2

∥∥∥x(t) − x̃(t)
∥∥∥2 +

Lη2σ2|At|
2

.

Using that η ≤ 1
2LτC

≤ 1
2L|At| we get statement of the Lemma.

Lemma 18 (Estimation of the residual). Under Assumptions 1, 3, iterated of Algorithm 1 with the
constant stepsize ηt ≡ η with η ≤ 1

2LτC
satisfy

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
≤ τ2Cη2G2 + η2τCσ

2 .

Proof.

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2

= E

∥∥∥∥∥∥
∑
j∈Ct

η∇F (x(j), ξj+τ̂j )

∥∥∥∥∥∥
2

2

(2)
≤ E

∥∥∥∥∥∥
∑
j∈Ct

η∇f(x(j))

∥∥∥∥∥∥
2

2

+ η2τ
(t)
C σ2

(18)
≤ τ

(t)
C

∑
j∈Ct

η2 E
∥∥∥∇f(x(j))

∥∥∥2
2

+ η2τ
(t)
C σ2

(5)
≤ (τ

(t)
C )2η2G2 + η2τ

(t)
C σ2 .

We are now ready to prove the second claim of Theorem 6.

Proof of Theorem 6, convergence rate (9). We start by summing over t = 0, . . . , T the descent
Lemma 17. We also divide it by η,

T∑
t=0

1

4
|At|

∥∥∥∇f(x(t))
∥∥∥2
2
≤ 1

η

(
f(x(0))− f?

)
+
Lησ2

2

T∑
t=0

|At|+
L2

2

T∑
t=0

|At|
∥∥∥x(t) − x̃(t)

∥∥∥2 .
We further use Lemma 18 for the last term

T∑
t=0

1

4
|At|

∥∥∥∇f(x(t))
∥∥∥2
2
≤ 1

η

(
f(x(0))− f?

)
+
Lησ2

2

T∑
t=0

|At|+
L2

2

(
τ2Cη

2G2 + η2τCσ
2
) T∑
t=0

|At| .

We further use that η ≤ 1
2LτC

for the last σ term and divide the full inequality by 1
4WT , where we

definedWT =
∑T
t=0 |At|

1

WT

T∑
t=0

|At|
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 4

ηWT

(
f(x(0))− f?

)
+ 4Lησ2 + 2L2τ2Cη

2G2 .

Note that because at every step t only one of the gradients is getting applied, T ≤
∑T
t=0 |At| ≤

T + τC ≤ 2T for T ≥ τC .
It is left to tune the stepsize using Lemma 17 in [25] to get the final convergence rate.
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A.5 Proof of the Theorem 11
We first re-state the theorem

Theorem 11 (constant stepsizes). Under Assumptions 1, 2, 3, 5 there is exist a constant stepsize
ηt ≡ η such that for Algorithm 2 it holds that 1

T+1

∑T
t=0

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O

σ2

ε2
+
ζ2

ε2
+

√
τavg

1
n

∑n
i=1 ζ

2
i τ

i
avg

ε
3
2

+

√
τavgτmax

ε

 iterations, (14)

Under Assumptions 1, 2, 3 and additional bounded gradient Assumption 4, it holds that
1

T+1

∑T
t=0

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O
(
σ2

ε2
+
ζ2

ε2
+
τavgG

ε
3
2

+
τavg
ε

)
iterations. (15)

We utilize again the perturbed iterate technique [30]. We introduce a virtual sequence x̃(t) as

x̃(0) = x(0) x̃(t+1) = x̃(t) − η∇Fkt(x(t), ξt+τ̂t),

where we define τ̂t as the delay with which the corresponding gradient will be computed. If we
denote j = t+ τ̂t, then it holds that j − τj = t.

Lemma 19 (Descent Lemma). Under Assumptions 1, 2, 3, for Algorithm 2 with the stepsize ηt ≤ 1
4L

it holds that

Et+1 f(x̃(t+1)) ≤ f(x̃(t))− η

4

∥∥∥∇f(x(t))
∥∥∥2
2

+
Lη2σ2

2
+ Lη2ζ2 +

ηL2

2

∥∥∥x(t) − x̃(t)
∥∥∥2
2
. (19)

Proof. Because the function f is L-smooth, we have

Et+1 f(x̃(t+1)) = Et+1 f
(
x̃(t) − η∇Fkt(x(t), ξt+τ̂t)

)
≤ f(x̃(t))− η 〈∇f(x̃(t)),∇f(x(t))〉︸ ︷︷ ︸

=:T1

+Et+1
L

2
η2
∥∥∥∇Fkt(x(t), ξt+τ̂t)

∥∥∥2
2︸ ︷︷ ︸

=:T2

,

where expectation is taken over both the stochastic noise ξ and sampled index jt. We estimate terms
T1 and T2 separately

T1 = −η
2

∥∥∥∇f(x(t))
∥∥∥2 − η

2

∥∥∥∇f(x̃(t))
∥∥∥2 +

η

2

∥∥∥∇f(x(t))−∇f(x̃(t))
∥∥∥2

≤ −η
2

∥∥∥∇f(x(t))
∥∥∥2 +

η

2

∥∥∥∇f(x(t))−∇f(x̃(t))
∥∥∥2 .

For the last term, using the notation ± a = a− a = 0 ∀a,

T2 = Et+1

∥∥∥∇Fkt(x(t), ξt+τ̂t)±∇fjt(x(t))±∇f(x(t))
∥∥∥2
2

(2)
≤ σ2 + 2Ekt

∥∥∥∇fkt(x(t))−∇f(x(t))
∥∥∥2
2

+ 2
∥∥∥∇f(x(t))

∥∥∥2
2

(3)
≤ σ2 + 2ζ2 + 2

∥∥∥∇f(x(t))
∥∥∥2
2
.

Combining this together and using L-smoothness to estimate
∥∥∇f(x(t))−∇f(x̃(t))

∥∥2
2

we get

Et+1 f(x̃(t+1)) ≤ f(x̃(t))−
(η

2
− Lη2

)∥∥∥∇f(x(t))
∥∥∥2
2

+
η

2
L2
∥∥∥x(t) − x̃(t)

∥∥∥2 +
Lη2σ2

2
+ Lη2ζ2 .

Applying η ≤ 1
4L we get statement of the lemma.
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A.5.1 Proof of Theorem 11, convergence rate (14)

Lemma 20 (Estimation of the distance
∥∥x(t) − x̃(t)

∥∥2
2
). Under Assumptions 1, 2, 3, for Algorithm 2

with the stepsize ηt ≤ 1
4L
√
τCτmax

it holds that

1

T + 1

T∑
t=0

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
≤ ησ2

4L
+

2η2τC
T + 1

1

n

n∑
j=1

ζ2j τ̄j +
1

8L2(T + 1)

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
.

Proof.

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2

= E η2
∥∥∥∥∥∑
i∈Ct

∇Fji(x(i), ξi+τ̂i)

∥∥∥∥∥
2

2

(2)
≤ η2τCσ

2 + η2 E

∥∥∥∥∥∑
i∈Ct

∇fji(x(i))

∥∥∥∥∥
2

2

(18)
≤ η2τCσ

2 + 2η2 E

∥∥∥∥∥∑
i∈Ct

∇fji(x(i))−∇f(x(i))

∥∥∥∥∥
2

2

+ 2η2 E

∥∥∥∥∥∑
i∈Ct

∇f(x(i))

∥∥∥∥∥
2

2

(18)
≤ η2τCσ

2 + 2η2τ
(t)
C E

∑
i∈Ct

ζ2ji + 2η2τC E
∑
i∈Ct

∥∥∥∇f(x(i))
∥∥∥2
2
.

Averaging over T , we get

1

T + 1

T∑
t=0

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
≤ η2τCσ2 + 2η2τC

1

T + 1

T∑
t=0

E
∑
i∈Ct

ζ2ji + 2η2τC
1

T + 1

T∑
t=0

E
∑
i∈Ct

∥∥∥∇f(x(i))
∥∥∥2
2
.

We note that in the second term each of ζj appears exactly τsumj times, where τsumj is the sum of the
all the delays that happened on the node j. In the last term, we estimate the number of appearance of
each of

∥∥∇f(x(i))
∥∥2
2

bt τmax, thus

1

T + 1

T∑
t=0

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
≤ η2τCσ2 + 2η2τC E

1

T + 1

n∑
j=1

ζ2j τ
sum
j + 2η2τCτmax

1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
,

we further use that number of times Tj that every node j got sampled are equal in expectation because
of uniform sampling in line 6 of Algorithm 2. Thus,

1

T + 1

T∑
t=0

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
≤ η2τCσ2 + 2η2τC

1

T + 1

1

n

n∑
j=1

ζ2j τ̄j + 2η2τCτmax
1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
.

Using that η ≤ 1
4L
√
τCτmax

we get the statement of the lemma.

Proof of Theorem 11, (14). First, averaging the descent Lemma 17,

1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 4

η(T + 1)

(
f(x0)− f(xT )

)
+ 2Lησ2 + 4Lηζ2 +

2L2

T + 1

T∑
t=0

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
.

Now plugging in the result of Lemma 20, we get

1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 4

η(T + 1)

(
f(x0)− f(xT )

)
+ 2Lησ2 + 4Lηζ2 +

Lησ2

2

+
4L2η2τC
T + 1

1

n

n∑
j=1

ζ2j τ̄j +
1

4(T + 1)

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
.

Rearranging terms we thus get

1

2(T + 1)

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 4

η(T + 1)

(
f(x0)− f(xT )

)
+ 3Lησ2 + 4Lηζ2 +

4L2η2τC
T + 1

1

n

n∑
j=1

ζ2j τ̄j

It is only left to tune the stepsize using Lemma 17 in [25].
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A.5.2 Proof of Theorem 11, convergence rate (15).

Lemma 21 (Estimation of the distance
∥∥x(t) − x̃(t)

∥∥2
2
). Under Assumptions 1, 2, 3, 4 for Algorithm 2

with the stepsize ηt ≡ η ≤ 1
4LτC

it holds that

1

T + 1

T∑
t=0

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
≤ ησ2

4L
+ η2τ2CG

2 .

Proof. We start our proof similar way as before

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2

= E η2
∥∥∥∥∥∑
i∈Ct

∇Fji(x(i), ξi+τ̂i)

∥∥∥∥∥
2

2

(2)
≤ η2τCσ

2 + η2 E

∥∥∥∥∥∑
i∈Ct

∇fji(x(i))

∥∥∥∥∥
2

2

(18)
≤ η2τCσ

2 + η2τC
∑
i∈Ct

E
∥∥∥∇fji(x(i))

∥∥∥2
2

(5)
≤ η2τCσ

2 + η2τ2CG
2

≤ ησ2

4L
+ η2τ2CG

2

where on the last line we used that stepsize η ≤ 1
4LτC

.

Proof of the Theorem 11, (15). We start by averaging the descent Lemma 17,

1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 4

η(T + 1)

(
f(x0)− f(xT )

)
+ 2Lησ2 + 4Lηζ2 +

2L2

T + 1

T∑
t=0

E
∥∥∥x(t) − x̃(t)

∥∥∥2
2
.

We now plug in the results of Lemma 21 and get

1

T + 1

T∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2
2
≤ 4

η(T + 1)

(
f(x0)− f(xT )

)
+ 3Lησ2 + 4Lηζ2 + 2L2η2τ2CG

2 .

It is only left to tune the stepsize using Lemma 17 in [25].

A.6 Proof of Lemma 12
In this section we prove Lemma 12 that estimates expected execution time of Algorithm 2 with
concurrency τC = C, and the expected time of mini-batch SGD with the same concurrency i.e. batch
size equal to τC = C.

Proof. We start by proving the first claim.

Time of Asynchronous Algorithm 2. Assume the concurrency is C = 1. Then, Algorithm 2
is synchronous, and as we sample every client with equal probability (line 6 of Algorithm 2), the
expected time to compute one gradient is equal to 1

n

∑n
i=1 ∆i.

To calculate the estimated time with concurrency C > 1 we can view the Algorithm 2 as having C
independent copies of the previous process run in parallel. Thus, in the same time 1

n

∑n
i=1 ∆i in

expectation Algorithm 2 will compute C gradients.

Time of Mini-batch SGD. The expected time of mini-batch SGD of size C is equal to
Emax{∆i1 , . . . ,∆iC} with each ij ∼ Uniform[1, n]. Denote a random variable X =
max{∆i1 , . . . ,∆iC} that takes values within ∆1, . . .∆n. Since ij are independent from each other,

Pr [X ≤ ∆k] =

C∏
j=1

Pr
[
∆ij ≤ ∆k

]
=

C∏
j=1

Pr [X ≤ ∆k] =

C∏
j=1

Pr [ij ≤ k] =

(
k

n

)C
.
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Thus,

Pr [X = ∆k] =
kC − (k − 1)C

nC
.

And therefore,

EX =

n∑
k=1

Pr [X = ∆k] ∆k .

B Experiments

In this set of experiments we aim to illustrate the dependence on the maximum delay τmax in
Theorem 6, as depicted in Equation (8). For this, we set the stochastic noise σ to zero. In this case
Theorem 6, Equation (8) predicts that to reach an ε accuracy, Algorithm 1 needs T = O

(√
τmaxτC
ε

)
iterations. In our experiments we fix τC = 2, ε = 10−14. Since τC = 2, we have two workers.
We vary the relative speed of the second worker, and thus affecting the maximum delay: if the
second worker is x times slower than the first worker, then the maximum delay τmax = x. We
measure the time T to reach the accuracy ε. Since all the other parameters are constant, it holds that
T = C1

√
τmax.

We perform experiments on two different functions:

(i) quadratic function f(x) = 1
2 ‖Ax− b‖22, x,b ∈ R10, bi ∼ N (0, 1), i ∈ [1, 10], A ∈

R10×10 is a random matrix with λmax(A) = 2, λmin(A) = 1 and the rest of eigenvalues are
equally spaced in between.

(ii) logistic regression function f(x) = 1
m

∑m
j=1 log(1 + exp(−bja>j x)), where each bj is

sampled uniformly at random from the set {−1, 1}, and aj ∼ N (0, 1)
20, x ∈ R20, m =

100.

We estimate the error as the average over the last 30 iterations ε̂T = 1
30

∑29
i=0 ‖∇f(xT−i)‖2. We

tune the stepsize η for every experiment separately over the logarithmic grid between 10−5 and 102

ensuring that the optimal stepsize value is not on the edge of the grid.
Figure 1 shows the resulting dependence of T on τmax for the quadratic function (i), and Figure 2
for the logistic regression function (ii). In both cases we see that T has linear dependence on

√
τmax

confirming our theory.
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Figure 1: Verification of
√
τmax dependence on random quadratic function (i). We see

that T has linear dependence on
√
τmax
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Figure 2: Verification of
√
τmax dependence on random logistic regression function (ii).

We see that T has linear dependence on
√
τmax
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