
Fuzzware: Using Precise MMIO Modeling for Effective Firmware Fuzzing

Tobias Scharnowski1, Nils Bars1, Moritz Schloegel1, Eric Gustafson2, Marius Muench3, Giovanni Vigna2,4,
Christopher Kruegel2, Thorsten Holz1 and Ali Abbasi1

1Ruhr-Universität Bochum, 2UC Santa Barbara, 3Vrije Universiteit Amsterdam, 4VMware

Abstract
As embedded devices are becoming more pervasive in our
everyday lives, they turn into an attractive target for adver-
saries. Despite their high value and large attack surface, ap-
plying automated testing techniques such as fuzzing is not
straightforward for such devices. As fuzz testing firmware on
constrained embedded devices is inefficient, state-of-the-art
approaches instead opt to run the firmware in an emulator
(through a process called re-hosting). However, existing ap-
proaches either use coarse-grained static models of hardware
behavior or require manual effort to re-host the firmware.

We propose a novel combination of lightweight program
analysis, re-hosting, and fuzz testing to tackle these challenges.
We present the design and implementation of FUZZWARE,
a software-only system to fuzz test unmodified monolithic
firmware in a scalable way. By determining how hardware-
generated values are actually used by the firmware logic,
FUZZWARE can automatically generate models that help fo-
cusing the fuzzing process on mutating the inputs that matter,
which drastically improves its effectiveness.

We evaluate our approach on synthetic and real-world tar-
gets comprising a total of 19 hardware platforms and 77
firmware images. Compared to state-of-the-art work, FUZZ-
WARE achieves up to 3.25 times the code coverage and our
modeling approach reduces the size of the input space by
up to 95.5%. The synthetic samples contain 66 unit tests for
various hardware interactions, and we find that our approach
is the first generic re-hosting solution to automatically pass
all of them. FUZZWARE discovered 15 completely new bugs
including bugs in targets which were previously analyzed by
other works; a total of 12 CVEs were assigned.

1 Introduction

Embedded systems have pervaded our everyday lives, facilitat-
ing the transition of our society towards a connected, “smart”
world. Security plays an enabling role, and a first step for
secure connected devices is to proactively identify their secu-
rity vulnerabilities in an efficient and scalable way. One way

to achieve this goal is automated fuzz testing (fuzzing). Un-
fortunately, fuzzing of embedded devices is challenging [39].
Fuzzing on-device is impractical for firmware due to low
fuzzing speeds caused by limited hardware resources [21].
Fuzzing the device in an entirely black-box manner [9] re-
sults in missing feedback and limited crash detection, which
dramatically limits the fuzzer’s effectiveness [21,25,42]. Sim-
ilarly, fuzzing with the device “in-the-loop” [38,39] also leads
to resource constraints due to the need to synchronize hard-
ware and emulated environments.

One way to address the aforementioned inherent issues is
re-hosting, where firmware is executed in an emulated envi-
ronment [17, 51]. Various approaches exist to dynamically
analyze Unix-based firmware via re-hosting [8, 46, 56], but
these approaches do not apply to monolithic firmware, which
consists of a single, opaque binary blob. Modern emulation en-
vironments [5, 50] allow re-hosting even monolithic firmware
by precisely emulating a limited set of hardware. However,
such tools require an analyst to find or manually create soft-
ware equivalents (models) of all hardware peripherals for the
firmware to run, which is a complex and time-consuming task.

Hence, recent work shifted towards automated hardware-
less rehosting, and different strategies to deal with hardware
peripherals have emerged. High-level emulation approaches
attempt to tackle the problem of missing peripheral mod-
els by re-implementing and hooking into known libraries to
avoid hardware accesses altogether [11, 33, 35]. In contrast,
pattern-based modeling approaches model a hardware pe-
ripheral’s registers by matching access patterns to common
static hardware register types [18, 22, 23]. A third direction is
given by tools deploying guided symbolic execution, which
treats hardware registers as sources for symbolic inputs. The
resulting symbolic values are then solved towards the most
promising paths guaranteeing the firmware’s operation [7,57].
All of these strategies allow rehosting of firmware, however,
we show that they hit several limitations when the rehosted
firmware is tested via fuzzing.

To fill this gap, we propose a fine-grained automated mod-
eling approach, which is optimized for use with a coverage-

guided fuzzer. Our approach is driven by the insight that many
accesses to hardware peripherals are short-lived and occur
for reasons unrelated to the firmware’s overall behavior, such
as to check a peripheral’s status or set its configuration. For
the accesses that do influence its behavior, the firmware often
leaves large parts of its input unused, e. g., directly by extract-
ing only a couple of bits from a 32-bit value, or indirectly by
differentiating between only a handful of status values. By
regularly querying more data than it uses, the firmware incurs
significant input overhead while accessing hardware.

To eliminate this overhead, once per unique peripheral ac-
cess, we utilize locally-scoped dynamic symbolic execution
(DSE) and analyze which parts of the hardware-generated
value are actually meaningful to firmware logic. However,
unlike prior approaches, we do not use the DSE engine to
solve towards specific values for exploring specific parts of
the firmware’s functionality. Instead, we use the generated
constraints to infer generic access models geared towards in-
put overhead elimination. These access models are then used
to configure an emulator, and their concrete values are later
served by the fuzzer. An important aspect of this modeling
approach is that at no point during emulation do our models
take actual decisions, or prioritize one decision over another.
The single goal of this modeling is to present the original set
of choices to the fuzzer with as little overhead as possible.
Consequently, the fuzzer can still explore all paths that the
firmware could take based on hardware-generated values.

We implement our approach in a tool named FUZZWARE
and evaluate it against 77 firmware images spanning a total
of 19 hardware platforms. Our evaluation shows that while
consuming 0.5%-2% of the total experiment computation
time, our access models eliminate up to 95.5% of inputs as
input overhead, allowing the fuzzer to focus on mutating only
the relevant 4.5% of hardware-generated values. Compared
to state-of-the-art tools [18, 57], FUZZWARE achieves up to
3.25 times the coverage (over a period of 24 hours), discovers
additional bugs in samples already analyzed by those tools,
and is the first approach to achieve a perfect passing score on
the rehosting unit test benchmark introduced by P2IM [18].
Finally, we show how FUZZWARE can be used to identify
vulnerabilities in complex, real-world targets. To this end, we
analyze the network stacks of two widely-used embedded
firmware frameworks, ZEPHYR [55] and CONTIKI-NG [12].
We discovered 15 previously unknown vulnerabilities, leading
to the assignment of 12 CVEs.

In summary, we make the following contributions:
• We propose a novel, fine-grained access modeling ap-

proach which preserves all paths through firmware logic
and allows a fuzzer to efficiently mutate only meaningful
hardware-generated values.

• We describe and implement FUZZWARE, a highly effi-
cient, self-adapting fuzzing system capable of testing
monolithic firmware images in an OS-agnostic way.

• In several experiments, we show that FUZZWARE out-
performs prior work on testing embedded firmware. Our
prototype found 12 previously unknown vulnerabilities
in core embedded network stacks which we responsibly
disclosed to the affected vendors.

To foster research on this topic, we will release FUZZWARE,
the experimental data sets, and the bug details at https://
github.com/fuzzware-fuzzer/fuzzware.

2 Technical Background

Before explaining the technical details of our approach,
we first discuss different aspects of embedded systems and
firmware that make them interesting and difficult to analyze.

2.1 Monolithic Embedded Systems

Embedded systems are often purpose-built, resource-
constrained devices. The code these systems run is known as
firmware. The firmware of an embedded system is responsible
for all the device’s functions and may or may not contain a
traditional OS. Monolithic firmware images, which are the
focus of this work, contain none of the traditional metadata
found in binary executables. This makes them difficult to
analyze by traditional means.

2.2 Memory-mapped IO

Modern CPU architectures allow for accesses to its periph-
erals via memory-mapped I/O (MMIO). These peripherals
are assigned a region of the device’s physical memory space.
Each of the region’s memory locations, termed MMIO regis-
ters in chip documentation, is accessed via regular load/store
instructions. Rather than behaving like normal memory, these
instructions instead trigger hardware behaviors in the affected
peripheral. For example, consider a button connected to a
GPIO pin of an embedded microcontroller (MCU). The MCU
can check whether the button is pressed by reading from the
MMIO register that represents its GPIO pin. MMIO registers
of different types perform certain roles, such as identification,
status (e. g., whether a button is pressed), configuration, and
data transfer. As such, MMIO registers can quickly change
values at any time. Registers vary in terms of their size (bit-
width) as well as allowing read and/or write operations.

Consider firmware code running on an MCU with a serial
port. Figure 1 shows how the I/O of such an MCU may be
organized. After configuring the serial baud rate, the firmware
waits for a command to initiate a data transfer. The user con-
nects via their own computer to a serial communication port
in the MCU. The firmware notices incoming data by check-
ing the serial peripheral’s status registers and reads the serial
data via the peripheral’s data register. Note that there exists no
standardized source of input, such as stdin. Input into embed-

https://github.com/fuzzware-fuzzer/fuzzware
https://github.com/fuzzware-fuzzer/fuzzware

Flash
Mem.

RAM

MMIO

Timers

I2C

Serial

Power

SPI

0x00000000

0xFFFFFFFF

0x40000000

0x40000000

0xFFFFFFFF

0x40044000

0x40044FFF

Status 1

Status 2

...

Data

...

Config 3

ID

CPU

Registers

Load / Store

TX_RDY=1

MMIO Region

Hello,World!

BAUD=9600

0x12345

PeripheralMemory

Figure 1: Memory layout of a hypothetical embedded system, showing the
correspondence between the memory map, peripherals, and MMIO registers.

ded systems may come from numerous hardware peripherals,
potentially even multiple sources in the same device.

2.3 Interrupts and DMA
In addition to the software-initiated communication channels,
the hardware has two additional means to communicate with
its firmware: First, hardware uses interrupts to notify the soft-
ware of asynchronous events [32]. For example, a serial port
could be configured to trigger an interrupt when data arrives,
allowing it to be processed immediately. The CPU tracks
these interrupts by their interrupt number and maintains a ta-
ble of firmware functions, so-called interrupt service routines
(ISRs), which process new events. Depending on the CPU
model, interrupts can also be selectively disabled, or given
a priority level, allowing some interrupts to take precedence.
The association of the peripheral with its interrupt number de-
pends on the specific CPU model in use and may vary widely,
even within products from the same vendor. The second asyn-
chronous communication channel is called direct memory
access (DMA), which is configured via MMIO. Using DMA,
a peripheral is able to update firmware-accessible regular
memory by talking directly to the memory controller and
without involving the CPU. While interrupts are universally
used as a source of input into firmware, DMA is primarily
used in high-throughput scenarios such as USB.

2.4 Re-Hosting Embedded Systems
Firmware re-hosting is a way to run a firmware binary im-
age without relying on actual hardware. Emulating firmware
in a fully virtualized environment allows multiple emulator
instances to be run in parallel and thus enables effective dy-
namic analysis techniques such as fuzzing. Generally speak-
ing, to re-host firmware, one needs to emulate three main in-
teractions between firmware and hardware: interrupts, DMA,
and MMIO. From these three, MMIO, which we focus on in
this work, represents a significant share and is used univer-
sally. We need to properly handle MMIO accesses to even
reach the parts of firmware that perform DMA. To handle
MMIO behavior in firmware, various approaches take differ-
ent directions. For example, QEMU fully re-implements the

behavior of each MMIO register. While this approach can
precisely emulate MMIO, it requires a significant amount of
engineering effort for each emulated peripheral, as well as
access to full hardware documentation.

An alternative approach to modeling MMIO peripheral be-
havior is approximation. The basic idea is to involve a fuzzer
to handle MMIO accesses just as they would occur in practice.
In its most naïve form, a fuzzer-provided value can directly
be served as a hardware-generated value, whenever firmware
code accesses an MMIO register. This general approach is
appealing, as it allows running the firmware without a priori
knowledge about MMIO usage and handling MMIO accesses
even if no precise implementation of a peripheral is available.
However, as we will discuss next, this is very challenging: a
fuzzer has to provide inputs for an overwhelming amount of
MMIO accesses, many of which are irrelevant to firmware
behavior, and hence such an approach does not scale to real-
world systems.

3 MMIO Access Handling

As discussed in the previous section, firmware universally re-
lies on MMIO accesses. Therefore, handling MMIO accesses
during emulation is crucial to enabling efficient firmware
fuzzing. In the following, we investigate why a naïve fuzzing-
based approach to MMIO access handling exposes the fuzzer
to large amounts of input overhead. Next, we discuss previous
approaches to removing this overhead via MMIO modeling
and their shortcomings in enabling effective, scalable fuzzing.

3.1 Input Overhead

Assume a naïve approach where bits from a random byte
stream generated by a fuzzer are served as hardware-
generated values (i. e., values which, from the firmware’s
perspective, are provided by a hardware MMIO register). We
refer to these bits as the fuzzer-mutated input space which is
then processed by the firmware logic. This input space con-
tains both relevant bits, i. e., bits affecting the firmware logic,
and input overhead. For each MMIO access, we differentiate
between two types of input overhead:

• Full input overhead: No bit provided by the fuzzer is
relevant. In other words, the emulator could have han-
dled the MMIO access statically, e. g., by providing an
arbitrary value.

• Partial input overhead: One or more bits are relevant,
i. e., they influence the firmware logic (e.g., by influenc-
ing control-flow decisions), while other bits do not. For
example, consider firmware code that accesses a 32 bit
wide MMIO register, but actually uses only 8 bits of the
resulting hardware-generated value. If the full 32 bits of
fuzzing input are consumed to serve the access, 24 bits
of partial input overhead are introduced.

u8 serial_getc() {
// Busy-check for data presence
while (mmio->status != HAS_DATA){};
// Indicate read via GPIO
gpio->val = gpio->val | UART_ACTIVE;
// Read full data register
u32 data = mmio->data;
// Mask data part and return
return data & 0xff;

}

!HAS_DATA ... HAS_DATA UART_* D

1

2

3

1 2 3

Figure 2: An example of a function for retrieving input from a serial port
peripheral. The annotations indicate resulting MMIO accesses relating to
overhead (gray) and actual application data (black).

While fundamentally simple, these overhead types govern
the fuzzer’s efficiency: Exposing the fuzzer to input overhead
leads the fuzzer to mutate bits that do not affect firmware logic,
hence wasting resources. To better understand this in practice,
we explore two code examples which are inspired by real-
world firmware and represent typical firmware operations.
Example 1. Figure 2 shows a typical firmware function that
retrieves a character from a serial port. This function waits for
the serial port to have data available (1 in Figure 2), triggers
a GPIO write (e. g., to turn on a busy indicator LED) in 2 ,
and finally returns one byte of data. The waiting for serial
data involves polling for a specific value (1), defined by the
hardware, which indicates that one byte has arrived. Without
modeling, the fuzzer is rather unlikely to feed the correct value
to the MMIO access, thus bottle-necking on the loop until the
correct input is found by chance. As only one specific value
is accepted, this is a prime example of full input overhead
hindering the fuzzing process. While writing to GPIO might
be seen as an MMIO write operation, GPIO bits are typically
packed into registers with 32 bits representing 32 GPIO pins.
Therefore, to perform a GPIO operation without affecting the
nearby bits, we must read 4 bytes (2), flip the desired bit, and
write the result back. The data initially read has no impact
on the program (full input overhead). Eventually, we read the
actual data from the serial port (3). While this serial port is
byte-oriented, the MMIO register itself is typically 4 bytes
wide, i. e., we read 3 bytes more than needed. To prevent any
side-effects of this operation, the firmware masks off only the
data byte and returns it. This is a case of partial input overhead.
As a result, only a single one of the 12 (or more) bytes read
in this function is passed on to firmware logic (marked as a
black square in Figure 2). For this function, a naïve modeling
approach that passes fuzzer input to each MMIO access has
a minimum input overhead of 92%. The actual overhead is
likely even larger if the fuzzer needs multiple attempts to
guess the value of HAS_DATA.
Example 2. Figure 3 shows another set of typical firmware
code constructs that introduce a less obvious source of par-
tial input overhead. The function decides which operation to

 1 void perform_op() {
 2 // Check requested operation
 3 switch (mmio->op) {
 4 case A: handle_A(); break;
 5 case B: handle_B(); break;
 6 case C:
 7 if(mmio->status == SPECIAL) {
 8 handle_C_special(); break;
 9 } else {
10 handle_C_default(); break;
11 }
12 default: housekeeping();
13 }
14 }

Figure 3: An example of a function that takes actions based on MMIO input
using switch/case and if/else constructs.

execute based on a hardware-generated value (Line 3) and, in
one case (Line 7), also checks the peripheral’s status register.
Without further insight, the fuzzer would have to provide 4
bytes (32 bits) for each MMIO access and correctly guess
meaningful values. The fuzzer’s large input space is con-
trasted by the limited number of meaningful values it can find:
The firmware differentiates between only 2 status conditions
(special or non-special) as well as 4 different operations (A,
B, C, or default). These choices can be expressed by only 1
and 2 meaningful bits respectively, resulting in 94% and 97%
partial input overhead.

3.2 Previous MMIO Modeling Approaches
In essence, recently proposed hardware-less rehosting ap-
proaches deploy one of the following strategies to deal with
unknown peripherals:

• High-level emulation gets past the need of modeling
specific hardware peripherals by completely avoiding
MMIO accesses. Previous work abstracts firmware code
that performs low-level MMIO accesses by hooking
into, and manually handling, higher-level library func-
tions [11, 35].

• Pattern-based MMIO modeling tackles MMIO accesses
directly. They allow emulated firmware to perform
MMIO accesses and attempt to reduce the input space by
using access pattern-based heuristics [18, 22, 23]. This
means that one observes accesses to an MMIO register,
matches these observations to common, pre-defined pat-
terns, and assigns a model to that specific MMIO register.
This model then determines how to serve future accesses
to this register.

• Guided Symbolic Execution-based modeling ap-
proaches [7, 57] improve upon pattern-based MMIO
modeling. Instead of assigning static patterns based on
heuristics, accesses to hardware are treated as symbolic
values. Whenever a concrete value for one MMIO
access is needed, the underlying symbolic variable is

solved towards the most promising path, i. e., more
coverage of the firmware logic.

We identify three problems with the current approaches to
MMIO modeling: (1) per-firmware manual effort, (2) incom-
plete overhead elimination, and (3) path elimination.
Per-firmware manual effort. All prior solutions require
manual work when preparing specific firmware for fuzzing
campaigns. For instance, this includes the creation of HAL
abstractions, correcting misclassified MMIO registers, or iden-
tifying alive and kill points to steer the symbolic execution
engine. Although recent approaches [7, 57] deploy heuristics
to reduce the manual involvement, we note that in practical
usage, firmware-specific knowledge is still required, limiting
the flexibility for fuzz testing.
Incomplete overhead elimination. While effective in remov-
ing full input overhead, pattern-based approaches generally
make assumptions about hardware behavior based on con-
ventions of how firmware is “typically” implemented rather
than considering actual firmware logic. However, they are
unable to identify which parts of an input are actually used by
firmware, i. e., they cannot eliminate partial input overheads.

Consider Example 1 from the perspective of pattern-based
register modeling. As pattern-based MMIO modeling ap-
proaches lack insight into firmware-internal logic, they are
unaware of the fact that 3 out of the 4 bytes read from the
serial data register (3 in Figure 2) are discarded. As a result,
these approaches cannot eliminate the 75% of partial input
overhead introduced by the access.

While incomplete overhead elimination does not affect re-
hosting itself, it becomes problematic during fuzz testing: a
fuzzer will spend a significant amount of time mutating values
that have no impact on program logic.
Path elimination. While guided symbolic execution-based
approaches reduce large parts of input overhead, they will-
ingly accept to leave specific parts of the firmware unexplored
during fuzz testing, i. e., eliminating available execution paths
from the firmware. High-level emulation replaces full parts of
the firmware with abstractions, and pattern-based MMIO may
miscategorize certain registers or wrongly conclude that no
relevant options exist for a given MMIO access. Guided sym-
bolic execution-based approaches use heuristics and human
insights to decide which paths are worthwhile to explore.

Although path elimination allows for rehosting of the
firmware, it has severe consequences for fuzz testing. First,
eliminating specific paths may render large parts of the
firmware’s functionality unreachable and in turn impossible
to analyze. Even assuming correct modeling, path elimination
will affect error handling and recovery functions, which may
contain bugs, and should not be dismissed. Furthermore, we
argue that differentiating between regular firmware behavior
and error handling functionality is an undecidable problem
in the general case: Error conditions may be met in firmware
logic with complex diagnostics and recovery attempts. At the

same time, regular firmware behavior that inconspicuously
waits for asynchronous events may appear as an infinite loop
which does not perform any meaningful operations. This di-
rectly reflects on state-of-the-art solutions, which run into
execution stalls without human assistance [18, 57].

Following these insights, we conclude that an effective
rehosting solution for fuzz testing must avoid path elimination,
while at the same time reducing the per-firmware manual
effort and eliminate as much input overhead as possible, which
is directly reflected in our design.

4 Design

In the following, we introduce the design of FUZZWARE, a
generic firmware fuzzing approach that allows a fuzzer to
efficiently explore firmware behavior by precisely eliminating
both partial and full input overhead.

To this end, we base our modeling on lightweight pro-
gram analysis techniques that allow us to spot partial uses
of hardware-generated values. To analyze the behavior of
firmware code, we employ dynamic symbolic execution
(DSE) [43]. DSE allows us to generate a set of constraints
representing all possible uses of a hardware-generated value.
Evaluating these constraints allows us to narrow down the
set of values to be explored by the fuzzer. Typically, using
symbolic execution for modeling introduces high computa-
tion costs due to the state explosion problem. We avoid this
drawback by using local DSE, where DSE is used only to ex-
ecute the code in the context of a specific MMIO access. We
describe the details of limiting the DSE’s scope in Section 4.3.

4.1 Prerequisites and Threat Model

FUZZWARE has the following prerequisites and threat model:

Prerequisites. FUZZWARE shares two basic prerequisites
with all other re-hosting systems: First, we assume that we
are able to obtain a binary firmware image for the target de-
vice. Second, just like other re-hosting systems, we assume
basic memory mappings such as RAM ranges and the broad
MMIO space to be provided. Depending on the target CPU
architecture, these generic ranges may be standardized [1].

Threat Model. Given no additional knowledge about the
specific hardware environment of a given binary firmware
image, we assume during fuzzing that an attacker is able
to control the inputs provided to the firmware. Commonly,
these inputs may correspond to the contents of an incoming
network packet read via MMIO, data received via a serial
interface, or sensory data such as temperature measurements.
We analyze situations where an attacker has less control over
hardware-generated values in Section 6.4.

ISA Emulator

Fuzzing Engine

Raw Input

MMIO Access Model

Firmware

..
Fuzzware Emulator

Figure 4: FUZZWARE’s MMIO access handling design. The fuzzing engine
generates a raw input file. Upon MMIO accesses, chunks of the input file are
consumed by MMIO access models and translated into (potentially larger)
hardware-generated values, which are then served to the emulated firmware.
Once the raw input is exhausted, coverage feedback is provided to the fuzzing
engine to guide the fuzzing process.

4.2 FUZZWARE’s Emulator

We now describe the design of FUZZWARE’s emulation com-
ponent. Figure 4 shows that, from a high-level point of view,
FUZZWARE uses an ISA emulator and a coverage-guided
fuzzing engine (fuzzer). As FUZZWARE aims to eliminate
partial input overhead, we introduce access models, a mech-
anism to translate small amounts of fuzzing input bits into
values that are meaningful to firmware logic, while eliminat-
ing input overhead in the process.

We start by loading a given monolithic firmware image into
the ISA emulator. We set up a harness that dynamically inter-
cepts all MMIO accesses, i. e., memory operations performed
by the emulated firmware code on all addresses within MMIO
regions. The harness is provided a raw input (i. e., a plain bi-
nary file) generated by the coverage-guided fuzzer; then, it
starts firmware code emulation. The raw input is consumed
in chunks to serve MMIO accesses. Whenever firmware code
performs an MMIO access, the harness checks whether we al-
ready assigned an MMIO access model to this specific access.
If a model is available, and depending on the type of input
overhead, the harness may be able to handle the access with-
out consuming any raw input (in case of full input overhead).
Otherwise, the harness consumes a chunk of raw input and
translates it into a hardware-generated value via the model
(partial input overhead). The hardware-generated value is
then used to serve the MMIO access. The emulator runs the
firmware code until the fuzzer’s raw input is exhausted and it
can no longer serve MMIO accesses. We term this emulation
cycle an emulation run. As an emulation run is concluded, the
harness restores firmware to its clean state, and reports cov-
erage feedback for the previous emulation run to the fuzzer.
Based on this feedback, the fuzzer generates another raw input
and provides it to the harness for the next emulation run.

However, if during emulation a specific MMIO access has
no model assigned yet, raw input chunks are used as hardware-
generated values without translation. In parallel to ongoing
fuzzing, FUZZWARE initiates modeling of each newly seen

MMIO access context (the pair of current program counter and
MMIO address). In a separate emulator instance, we create a
snapshot of the firmware’s state (i. e., register and memory)
right before the MMIO access. We use symbolic execution
from this snapshot to derive a matching model (described in
detail in Section 4.3). We then re-configure the emulator with
new models, allowing the fuzzer to more effectively discover
further firmware logic with less input overhead.

We bootstrap this fuzzing loop by providing no initial
MMIO access models. Models are continuously generated
and added to the emulator configuration while the fuzzer is
active. This design provides a generic, self-adapting firmware
emulation environment, which allows a fuzzing engine to
explore unknown firmware with minimized input overhead.

4.3 Modeling Approach
As previously explained, for each MMIO access context (i.e.,
program counter and accessed MMIO address), we construct
an access model. To do so, we replay the input for which the
new MMIO access is performed, and snapshot the emulator’s
register and memory state just before firmware would perform
the MMIO access. We pass this snapshot on to our DSE en-
gine for modeling, and symbolically execute the code, starting
from the snapshot. Each MMIO access observed during the
symbolic execution is treated as a separate symbolic variable.

Modeling Analysis Scope. We track the first MMIO access
(as well as any additional accesses from the same access con-
text), to follow whether the resulting symbolic variable is still
alive, i. e., at least one symbolic expression in memory or a
register still depends on it. The symbolic execution continues
until one of the following events occurs:

1. All tracked symbolic variable are dead (i. e., not alive),
2. the current function returns,
3. a tracked symbolic variable is leaving the scope of the

analysis (i. e., it is written to global memory or to a stack
frame of a function higher in the call stack), or

4. a pre-defined limit of computation resources is exhausted
(timeout, number of symbolic states, or number of DSE
steps was reached).

Using these exit conditions, we narrow down DSE to a small,
manageable scope, in which we are able to observe all actions
that firmware takes based on an MMIO access. At the same
time, we do not model uses of a hardware-generated value
beyond this scope. The rationale behind this scoping decision
lies in the short-lived nature of MMIO register states (see
Section 2.2), which forces firmware to frequently access and
quickly discard hardware-generated values. As we will show
in Section 6.1, our evaluation supports this notion.

Upon hitting one of the exit conditions, the modeling logic
analyzes the resulting symbolic states. Each symbolic state
corresponds to a possible path that firmware code could take
depending on hardware-generated values. A symbolic state
has a set of different path constraints, i. e., conditions that

Table 1: MMIO Access Models. HW denotes the Hamming Weight.

Model Type Overhead Parameters # Fuzzing Bits Output
Constant full constant - constant value
Passthrough full - - stored value
Bitextract partial bitmask HW(bitmask) filled bitmask
Set partial constants log2|constants| selected value
Identity none - full access size fuzzing bits

hardware-generated values need to adhere to, as well as possi-
ble symbolic expressions containing tracked variables which
are still alive. These symbolic states are then used as input to
assign and configure a model for the analyzed MMIO access.

Model Design Considerations. Based on the previous dis-
cussions, two aspects are central to our model design: First,
models provide reproducible translations. Performing an emu-
lation run for a given raw input multiple times has to result in
identical firmware executions. We require identical behavior
as we generate MMIO access snapshots for modeling in sep-
arate emulator instances, in parallel to ongoing fuzzing. To
keep translations reproducible, we derive hardware-generated
values exclusively from chunks of fuzzing input. Second, we
design our models to preserve firmware code paths. While
we aim to eliminate as much input overhead as possible, we
conservatively apply models that do not make firmware code
paths unavailable in the process. Thus, we only model ac-
cesses based on variable uses that we can fully observe. In
case a live variable leaves our analysis scope, we base our
modeling on the constraints that firmware logic has already
placed on the modeled variable (e. g., a bit mask has been
applied before data gets returned, see 3 in Figure 2).

Error Handling and Execution Stalls. Naturally, by pre-
serving all firmware code paths, we also allow the fuzzer to
exercise error paths. This is intentional: Contrary to previous
modeling approaches, we explicitly do not try to prioritize
specific paths or remove entire paths that appear uninteresting
(cf. Section 3.2). Instead, we find that code which handles
irregular conditions may contain bugs, and should likewise be
included in the analysis. This inevitably leads to inputs that
result in stalled firmware execution. However, we note that
these cases are seamlessly dealt with by the fuzzer: When-
ever execution is stalled, the fuzzer will recognize missing
code coverage. Consequently, the corresponding inputs will
be discarded as uninteresting, and the mutation engine will
quickly yield inputs with more significant code coverage. We
want to stress that this conscious decision to explore error
handling does not only allow for discovery of bugs which
may be missed otherwise, but also enables truly robust and
automated fuzzing of firmware, as neither a human analyst
nor heuristics are needed to identify interesting paths.

4.4 FUZZWARE Model Definitions
We define a total of five generic MMIO access models that
can be assigned from a DSE-produced set of symbolic states.

Each of these models provides a blueprint to the emulator
for how to handle a specific MMIO access and systemati-
cally remove input overhead, full or partial, either for typical
control-flow based MMIO uses (i. e., taking different actions
based on a value) or data-based MMIO uses (i. e., reading data
and dismissing all or parts of it). Some of these generic mod-
els accept parameters by specification. We use the symbolic
states to first assign a generic model and then instantiate it via
parameters for the given MMIO access. The generic models
contain a specification for the emulator on how to apply the
model parameters to determine a hardware-generated value.
For models handling full input overhead, model parameters
alone are sufficient to handle the access, without consuming
any fuzzing input. For models handling partial input over-
head, the emulator requires fuzzing input to apply the model.
In these cases, it uses the model’s parameters to translate a
fuzzing input chunk into a hardware-generated value.

We now detail our five generic models. For each one, Ta-
ble 1 shows which type of input overhead it handles (Over-
head), which parameters it uses (Parameters), how many raw
fuzzing bits an access consumes (# Fuzzing Bits), and how
models use parameters to translate the raw fuzzing input into
the hardware-generated value (Output).

1) Constant Model. This model describes MMIO accesses
where a specific constant is used as part of a comparison,
which must be satisfied to allow execution to proceed (see 1

in Figure 2).

2) Passthrough Model. This model is assigned to accesses
where the hardware-generated value is determined to not af-
fect the firmware’s state. We treat the MMIO access like a
regular memory access. These include, for example, accesses
to configuration registers (see 2 in Figure 2).

3) Bitextract Model. The bitextract model is used when only
a portion of the bits read from MMIO are used by the firmware.
For example, this is the case when four bytes are read from
an MMIO register and a bitmask is applied to only retain a
few bits while the others are discarded (see 3 in Figure 2).
Note that similar effects occur for bit shifts, truncations, and
equivalent instruction composites.

Examples: A 4 byte-wide MMIO access is performed with
a model-computed bit mask of 0x00ff0000. The emulator
consumes a byte of fuzzing input, e. g., 0x4e. The emulator
serves 0x004e0000 as the hardware-generated value for the
MMIO access. For a bit mask of 0xfff0000f and a consumed
raw input chunk 0xabf8, the emulator serves 0xabf00008.

4) Set Model. The set model handles the situation where a
(part of the) hardware-generated value is checked against dif-
ferent values to determine control flow. The model is applied
in case a discrete list of values can be precomputed such that
each value represents exactly one of the possible control-flow
options. A chunk of raw fuzzing input is interpreted as the
fuzzer’s choice from among the different options for each
individual access. Possible instances include status and iden-

tification registers, where the firmware performs different
actions based on the hardware-generated value (see Figure 3).

Example: A 2 byte-wide MMIO access is performed for a
model-computed list of four precomputed values [1,5,7,128].
The emulator consumes 2 bits of fuzzing input, e. g., 0x1. The
emulator serves 0x0005 as the hardware-generated value.
5) Identity Model. This model is assigned if DSE determines
that all bits of a hardware-generated value are meaningful
(i. e., used by firmware). It is also used as a fallback in case an
unconstrained symbolic variable escapes the analysis scope,
or if DSE does not complete within its resource limits. In
these situations, we conservatively assume that every bit of the
hardware-generated value may later be used by the firmware.
Thus, we allow the fuzzer to try all values and therefore to
discover all firmware paths. As we will show in Section 6.1,
this fallback is rarely required in practice.
Model Computation By Example. For further explanation,
we re-visit the busy check of the serial peripheral’s status
shown in 1 in Figure 2. While stepping through the loop,
our symbolic execution reaches the comparison and splits the
execution into two states—one which exits the loop and an-
other which takes an additional loop iteration. By generating
multiple of these states and inspecting path constraints, we
can show that for each state that exits the loop, the hardware-
generated value has to be equal to HAS_DATA during the last ac-
cess, while prior accesses had to be different from HAS_DATA.
Consequently, firmware execution does not continue without
the hardware-generated value being equal to HAS_DATA. We
can use this information to assign the Constant Model, pa-
rameterized with the value of HAS_DATA. Similarly, for the
GPIO update in 2 , DSE will show that the queried hardware-
generated value is only written back to an MMIO address,
but not involved in a constraint on the execution state other-
wise. Hence, we assign the Passthrough Model. Finally, for 3 ,
DSE shows that while no constraints exist on the path itself, a
masked part of the hardware-generated value is returned from
the function. As the DSE terminates on the function boundary
(to avoid path explosion), we assign a Bitextract Model.

4.5 Interrupt, Timer and DMA Handling.
As described in Section 2.1, interrupts are an asynchronous
source of input into firmware logic. As an ISA emulator
does not contain any notion of peripherals to raise interrupts,
this behavior has to be triggered by FUZZWARE. Per default,
FUZZWARE raises each of the currently-enabled interrupts in
a rolling fashion after a certain number of basic blocks is exe-
cuted. The set of enabled interrupts is tracked by examining
the state of the CPU’s interrupt controller during execution.

Among other peripheral behavior, FUZZWARE mimics
interrupt-based timer peripherals this way. To provide ad-
ditional flexibility in exploring how firmware logic reacts
to specifically-timed events, FUZZWARE allows precise con-
trol over both when and which interrupts should be raised.

Similar to how fuzzing input is used by access models to
determine hardware-generated values, fuzzing input can be
used to determine the timing of the next interrupt, as well as
its number. This allows the fuzzer to discover the influence of
very specific interrupt timings on firmware behavior.

Note that FUZZWARE can support some forms of DMA by
defining transfer buffers as MMIO regions. However, FUZZ-
WARE currently does not explicitly model DMA in an auto-
mated way given that this is out of scope for this work.

5 Implementation

We implement a prototype of FUZZWARE targeting the ARM
Cortex-M standard. We chose this platform due to its wide
adoption in practice and projected future popularity [4]. The
implementation is designed such that support for other tar-
geted ISAs is possible in the future.

5.1 FUZZWARE’s Emulator

Our implementation is based on Unicorn Engine [49] as the
base ISA emulator and we use legacy AFL [54] as the fuzzing
engine for a fair comparison with other modeling approaches.
We also integrated AFL++ [19] for its extended feature set
and baseline performance. We handle MMIO accesses by
registering memory access hooks for MMIO regions with
the native Unicorn API. We handle hooked read accesses
by writing the output of the assigned model (as described in
Section 4.3) to the accessed MMIO address before the read
operation is performed. We associate a memory access with
its corresponding model by its MMIO access context, i. e., the
pair of program counter and MMIO address. If no associated
model exists, we default to handling the access according to
the Identity Model. We use three generic files as initial fuzzing
inputs (each 512 bytes in size): All zero-bits, all one-bits, and
concatenated 32-bit values with a shifting 1-bit each.

Empirically, we have found that consuming raw fuzzing
input provided by an unmodified byte-oriented fuzzer on
a bit-granular level conflicts with the heuristics that drive
the fuzzer’s input mutation process. Consequently, to handle
MMIO accesses, we consume raw inputs on a byte-granular
level. For example, while each access to a set model with four
elements requires a minimum of two bits of fuzzing input, a
byte is consumed in our current implementation.

Timers and Interrupts. Timers and interrupts are a source of
nondeterminism in firmware execution. As discussed in Sec-
tion 4.3, we require emulation runs to be fully reproducible.
To achieve precisely reproducible timing behavior, we mea-
sure elapsed time by the number of emulated basic blocks.
We also extended the Unicorn Engine with an implementation
of the interrupt controller (NVIC) and the system tick timer
(SysTick), which are defined in the Cortex-M standard.

5.2 MMIO Access Modeling
For DSE, we chose angr [44, 45] as an engine, as it—just like
Unicorn Engine—readily supports a wide range of ISAs and
lends itself well to including more architectures.

After loading a firmware state snapshot into angr and cre-
ating a symbolic variable for the hardware-generated value
representing the tracked MMIO access, we track the variable’s
liveness via reference counting. We increment the reference
count whenever DSE writes a symbolic expression containing
the tracked variable to a register or to memory, and we decre-
ment the count whenever such an expression gets overwritten.
To track whether register value assignments from a concrete
restored state snapshot influence modeling results, we taint
registers after loading the snapshot.

Upon hitting an exit condition as described in Section 4.3,
we check the live symbolic expressions and constraints on
the resulting states for adherence to each model definition as
detailed in the following.
1) Constant Model: All tracked variables are no longer ref-
erenced, but constrain the resulting states. A single common
value v for the latest tracked variable exists between all result-
ing states with the following property: For any previous-to-
last variable, assigning v does not satisfy the state constraints.
The constant value v parameterizes the model.
2) Passthrough Model: All tracked variables are no longer
referenced and do not constrain any of the resulting states.
3) Bitextract Model: All state constraints and symbolic ex-
pressions remain unchanged after a bit mask has been applied
to each tracked symbolic variable in each state. The bit mask
with the lowest Hamming weight parameterizes the model.
4) Set Model: All variables are no longer referenced, but
constrain the resulting states. For each state and reference-
counted variable, a value can be found that does not satisfy
the path constraints of any of the other states. In other words,
the sets of constraints on each path form partitions of the
input space between states. The minimum representative of
each partition is chosen as a value in the configured set, which
parameterizes the model.
5) Identity Model: None of the above models apply, or no
model was found within DSE limits.

If multiple models apply, the one with the highest reduction
of input overhead is chosen. As the limit for the DSE com-
putation, we set the default run time to 5 minutes per model
and a maximum of 1,000 symbolically executed basic blocks,
which we have found to work well in practice.

6 Evaluation

We evaluate FUZZWARE by considering the following re-
search questions:

RQ 1 How computationally expensive is the implemented
symbolic execution-based modeling?

RQ 2 How many optimized modeling opportunities does
FUZZWARE miss due to its conservative scoping?

RQ 3 Are FUZZWARE’s MMIO access models applicable to
a wide variety of firmware and hardware platforms?

RQ 4 How does FUZZWARE perform compared to previous
methods in fuzzing monolithic firmware?

RQ 5 Can FUZZWARE be used to uncover previously un-
known bugs in real-world firmware?

To answer these questions, we performed different experi-
ments, targeting 77 different firmware images for 19 different
hardware platforms, summarized in Table 4 in the appendix.
First, we quantified the amount of input overhead that ac-
cess modeling eliminates and studied how this translates into
code coverage. Second, we applied FUZZWARE to a set of
real-world firmware samples used in concurrent work. Third,
we used FUZZWARE to test network stacks of widely-used
embedded firmware frameworks with the goal of uncovering
network packet processing bugs. Finally, we analyzed the root
causes of the crashing test cases produced by FUZZWARE.

6.1 Access Modeling for Fuzzing
In a first step, we focus on the costs and the general applica-
bility of FUZZWARE’s access modeling on the fuzzing-based
firmware exploration process (RQ 1, RQ 2, and RQ 3).

For the initial part of our evaluation, we use two sets of
firmware targets: First, we created a unified application-level
program from which we generate firmware images for ten
hardware platforms supported by ARM’s Mbed OS [36].
We use a unified application as from a modeling point of
view (and probably counter-intuitively), compiling the same
application-level program for 10 different boards will look
vastly different, while compiling 10 different application-level
programs for the same board will effectively look the same
to MMIO modeling. This is why we reach diversity by com-
piling the same program for 10 boards. To expand on the
application-level diversity, we also test FUZZWARE on the 661

unit tests originally published by the authors of P2IM [18].
Our test application repeatedly triggers hardware platform-

specific driver behavior by calling different high-level Mbed
OS APIs, which then resolve to its platform-specific driver
functions and thus trigger MMIO accesses. The test applica-
tion then prompts the user for a password over the serial port.
If the correct password was entered, the firmware exposes
a vulnerable function accepting input from the serial port.
We use this application to repeatedly trigger the underlying
hardware-specific driver implementations for each platform.

To provide the baseline data for our evaluation, we fuzz
each of the ten Mbed OS targets for 24 hours, once with

1Originally, this data set consisted of 70 firmware unit tests [18], but a
recent errata removed four of them for validity reasons.

MMIO access modeling enabled and one time with MMIO
access modeling disabled. We repeated this experiment ten
times to account for the fuzzer’s inherent nondeterminism as
recommended by Klees et al. [29]. We used a 40-core Intel
Xeon Gold 6230 CPU @ 2.10 GHz machine running Ubuntu
18.04.4 LTS and assigned each FUZZWARE instance two CPU
cores. We visualize the time spent to discover the individ-
ual characters of the password in Figure 6 in the appendix.
Based on these experiments, we collected additional metrics
on several aspects of FUZZWARE’s operation.

Costs of Model Generation. To evaluate the (one time) com-
putation costs incurred by our modeling (RQ 1), we collected
the start and completion timings of all model generation jobs.
On average, 62 models have been generated during a 24-hour
experiment for a single firmware image, which took an aver-
age of 6.34 minutes (6 seconds per model) to compute.

Input Overhead Elimination. After analyzing the costs in-
curred by modeling, we quantify its overall elimination of
input overhead. Table 2 shows how much input overhead (M)
different models eliminated and how much fuzzing input (F)
they consumed. As described in Section 5, the current imple-
mentation of access models operates with byte granularity.
Every second row shows the input overhead reduction for an
assumed bit-granular model implementation. The resulting
data shows that in total, the current implementation eliminates
a minimum of 49.3% and a maximum 83.4% of the input
space (in ARCH_PRO and NUCLEO_L152RE, respectively).
When considering a bit-granular implementation, these values
increase to 49.7% and 95.5%, respectively. Over all runs, the
input space was reduced by nearly 80% and could have been
reduced by nearly 90% with bit-granularity. We can also see
that depending on the target, input overhead differs signifi-
cantly. It is worth mentioning that depending on the firmware
sample, some model types simply do not apply. If the bit-
widths of MMIO accesses exactly match the amounts of data
actually used within firmware code, Bitextract optimizations
are not required (see ARCH_PRO).

To determine the opportunities of input overhead reduction
that FUZZWARE might have missed (RQ 2), we re-visited the
cases where an Identity model was assigned, meaning that no
input overhead was eliminated for the given MMIO accesses.
In total, of the 623 unique models that were generated during
the experiment, 34 have been assigned the Identity Model.
We manually verified that in 19 instances, full values were
used within firmware logic, leaving no room for overhead
reduction. The remaining 15 cases (less than 2.5% of the
623 models) involved processing where DSE resource limits
applied. In these cases, modeling conservatively assigned an
Identity model and fell back to allowing the fuzzer to try all
values. This ensures that we are not assigning a wrong model
which could hide parts of firmware code from the analysis.
Only rarely encountering this fallback is expected: firmware
typically processes a hardware-generated value immediately

Table 2: Percentage of fuzzing input (F) used and overhead reduction (M)
achieved, per model type. We analyze how much fuzzing input each model
consumes (if the model consumes any) and how much input overhead each
model eliminates (the Identity model does not eliminate input overhead).
(CN: Constant, PT: Passthrough, ID: Identity)

Target CN PT Set Bitextract ID Total
M M M F M F F M F

ARCH_PRO bytes 45.8 3.3 0.1 0.5 0 49.3 50.7
bits 0.6 0.1 0 50.3 49.7 50.3

EFM32GG_STK3700 45.2 0.4 0.3 0.1 33.8 11.3 79.8 20.2
0.4 0.0 33.9 11.3 8.8 79.9 20.1

EFM32LG_STK3600 46.3 0.4 0.3 0.1 34.7 11.6 81.7 18.3
0.4 0.0 34.7 11.5 6.6 81.9 18.1

LPC1549 48.6 1.6 0.2 0.1 0 50.4 49.6
0.3 0.0 0 49.6 50.4 49.6

LPC1768 46.6 3.3 0.1 0.5 0 50.1 49.9
0.6 0.1 0 49.4 50.5 49.5

MOTE_L152RC 34.4 0.5 20.0 6.7 28.4 9.5 83.3 16.7
25.9 0.8 34.3 3.6 0.5 95.1 4.9

NUCLEO_F103RB 32.3 0.7 20.8 6.9 28.6 9.5 82.2 17.8
26.8 0.9 34.9 3.2 1.3 94.7 5.3

NUCLEO_F207ZG 25.7 1.0 22.2 7.4 29.2 13.5 78.1 21.9
28.7 0.9 38.5 4.2 1.1 93.8 6.2

NUCLEO_L152RE 34.4 0.6 20.4 6.8 28.0 9.3 83.4 16.6
26.4 0.9 34.2 3.2 0.5 95.5 4.5

UBLOX_C027 43.6 8.2 0.1 0.4 0 51.9 48.1
0.5 0.0 0 47.7 52.3 47.7

Total bytes 35.9 0.8 15.6 5.2 27.1 9.5 79.4 20.6
bits 20.2 0.7 32.0 4.5 5.9 89.0 11.0

after reading it, as MMIO register states are short-lived, and
may quickly change values.

MMIO Access Model Generality. The authors of P2IM pub-
lished a set of 46 firmware images comprising 66 unit test
cases. These are designed to test the ability of an emulation
system to deal with diverse types of common hardware periph-
erals on different combinations of firmware and hardware plat-
forms (eight hardware peripherals, three MCUs, and three OS
libraries), as well as interrupt-based and synchronous input
passing mechanisms. For these 66 test cases, previous work
achieves passing rates of 83% and 95%2, respectively [18,57].
Regarding RQ 3, we reproduced these test cases by running
FUZZWARE for 10 minutes. FUZZWARE passed all of the 66
test cases. Consequently, FUZZWARE is the first automated
and generic emulation system to pass 100% of the P2IM unit
test cases, demonstrating the robustness of its models, its gen-
eral applicability, and the advantage of approaches not relying
on path elimination.

6.2 Comparison with the State of the Art
To assess FUZZWARE’s efficacy, we compare it with
µEMU [57] and P2IM [18], two state-of-the-art tools for
hardware-less re-hosting. Like FUZZWARE, they support
generic monolithic firmware fuzzing without significant man-
ual intervention. As the evaluation data set, we use the 21
real-world firmware samples presented in µEMU, which in-
cludes 10 samples previously tested by P2IM.

For each sample, we performed five 24-hour fuzzing itera-
tions for each target on virtualized dual core machines running
on Intel Xeon Silver 4114 CPUs at 2.20 GHz on Ubuntu

2Based on the remaining 66 of 70 unit tests, adjusted from 79% and 93%.

24:0024:0024:0024:00

24:0024:0024:0000:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

CNC

00:00 06:00 12:00 18:00 24:0024:00

24:00

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000
Drone

00:00 06:00 12:00 18:00
0

100

200

300

400

500

600
Heat Press

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

Reflow Oven

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400
Soldering Iron

00:00 06:00 12:00 18:00
0

100

200

300

400

500

600

700

800

900
Console

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000

3,500
Gateway

00:00 06:00 12:00 18:00
0

100

200

300

400

500

600

700
PLC

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

1,400

1,600
Robot

00:00 06:00 12:00 18:00
0

100

200

300

400

500

600

700
Steering Control

Fuzzware P2IM uEmu

#
B

B
s

F
o
u
n
d

Time (hh:mm)

Figure 5: Uniquely discovered basic blocks for P2IM real-world firmware samples over five 24h runs. Displayed are the median number of discovered basic
blocks, alongside with minima and maxima over the individual runs.

18.04.4 LTS. For all experiments, we re-used exact input
seeds where provided, and used the configurations published
alongside the tools where applicable. For FUZZWARE, we
always use its default configuration except for five firmware
samples in which we reproduce part of µEMU’s configura-
tions. In four of these cases, we disable interrupts (3D_printer,
RF_door_lock, Thermostat, xml_parser), while in the fifth
case, we add support for DMA operations by manually defin-
ing pass-through models for two DMA buffer address MMIO
registers (utasker_Mobus). In contrast to FUZZWARE’s min-
imal configuration overhead, the most recent target configu-
rations of µEMU available at the time of writing3 (1) specify
custom definitions of input peripherals, (2) apply custom con-
figurations to tweak exploration parameters to the target, and
(3) specify custom path validity information (alive points
and/or kill points). This customization requires a human ana-
lyst with domain knowledge of the respective target. As noted
by the µEMU authors, without further human assistance, P2IM
is unable to analyze the 11 samples introduced by µEMU [57].

Hence, we compare the fuzzing performance of all three
systems on the 10 targets supported by P2IM, visualized in
Figure 5, and provide the data for all experiments, including
the ones for the 11 remaining firmware samples in Table 5
in the appendix. The results show that FUZZWARE consis-
tently discovers (significantly) more basic blocks compared
to the state of the art. In one case (CNC), FUZZWARE doubles
P2IM’s coverage and triples µEMU’s coverage. For the targets
in Figure 5, FUZZWARE yields on average ~44% more code
coverage than P2IM and ~61% more coverage than µEMU
(~57% when averaged over all targets). In 19 out of 21 times,
the minimum coverage achieved by FUZZWARE exceeds the
maximum coverage of the prior approaches. In other words,
even the worst run of FUZZWARE performs better than the
best run of µEMU and P2IM. With the exception of PLC

3Our evaluation bases on git commits 5b12949325 and 67e50000bb of
the uEmu-real_world_firmware and uEmu repositories, respectively.

and LiteOS_IOT, where FUZZWARE showed variable perfor-
mance, all results are statistically significant according to the
Mann–Whitney U test, as recommended by Klees et al. [29].

One interesting aspect in Figure 5 is that P2IM often out-
performs µEMU. We believe the reason for this to be the
aggressive path elimination that is at the core of µEMU’s
invalidity-guided approach (cf. Section 3): The framework
deploys heuristics to decide on viable paths and provides hard-
ware values accordingly. When no clear distinction can be
made, this choice is left to randomness, which either makes
large parts of the firmware available for analysis or removes
them entirely from the ongoing run. This may also explain
why individual runs perform better than P2IM. Further, we
assume both approaches to path elimination are also respon-
sible for the fact that basic block discovery graphs flatline
early. FUZZWARE does not eliminate paths, resulting in a
higher code coverage. We discuss path elimination and code
coverage in Section 7.

Alongside the significant increase in coverage and automa-
tion, FUZZWARE uncovered previously unreported bugs in
three targets. Manual root cause analysis showed that FUZZ-
WARE identified one concurrency issue (Soldering Iron), a
missing pointer verification (CNC), and an unchecked AT
command parsing crash (GPSTracker). For all three targets,
the discovery of additional bugs found by FUZZWARE coin-
cides with a significant increase in code coverage.

Regarding RQ 4, the results indicate that our access mod-
eling allows a fuzzer to clearly outperform the current state of
the art. Towards RQ 5, we observe that FUZZWARE is able to
identify bugs in real-world firmware and also find new bugs
that previous work does not locate.

6.3 Fuzzing New Targets

Fuzzing Targets. To expand on RQ 3 and RQ 5, we used
FUZZWARE to test different functionalities of the core net-

work stacks of two popular embedded firmware frameworks:
Zephyr [55], and Contiki-NG [12]. Both projects are well-
maintained, with hundreds of contributors, and backing com-
panies such as Intel and Google.

We chose the radio layer implementations of these two
systems as a fuzzing target. Connected devices heavily rely
on network stacks, and the corresponding low-level parsing
code exposes a universal attack surface. As successful attacks
can potentially propagate from one device to another, flaws
in these types of interfaces put whole fleets of devices at risk.

We based all of the firmware images on code samples
demonstrating uses of different network stacks. Similar to
the rationale for re-using identical application-level code in
Section 6.1, logic within higher layers (such as the application
layer) does not influence the inner workings of lower layers
(e. g., low-level radio packet processing).

Bug Case Studies. In total, FUZZWARE discovered 12 dis-
tinct bugs in these targets, for which 12 CVEs have been
assigned after a coordinated disclosure. In the following, we
provide case studies for some of these bugs. A full overview
of these bugs can be found in Table 6 in the appendix.

CVE-2020-12141. In the tested version of Contiki-NG, the
Simple Network Management Protocol (SNMP) parsing logic
of incoming SNMP messages did not correctly validate the
user-supplied size of the variably-sized community field. This
lead the logic to access the user-supplied buffer out of bounds,
resulting in a firmware crash (DoS).

CVE-2021-3321. As a translation layer from radio frames
to IPv6 packets, the IPv6 over Low-Power Wireless Per-
sonal Area Networks (6LoWPAN) standard defines a cus-
tom header compression mechanism. Before decompression,
Zephyr checked the required size of the decompressed header
payload, and would correctly allocate an appropriately-sized
destination buffer to hold the decompressed contents. The
logic did not check, however, whether the source frame was
actually large enough to hold the compressed header payload.
As a result, it consumed more bytes from the frame-holding
buffer than available, leading to a size field integer underflow,
followed by a corruption of memory.

CVE-2021-3330. To transport IPv6 packets from small radio
frames, 6LoWPAN defines a fragmentation layer. To differ-
entiate between the start and subsequent entries of a list of
fragments, frames are assigned the fragment types FRAG1
and FRAGN, respectively. When encountering a FRAGN frag-
ment, the reassembly logic would insert the fragment to the
start of the fragment list, and correctly check that its contents
are marked for insertion at the beginning of the reassembled
buffer. Before reassembling, however, the logic did not check
whether a FRAG1 fragment is present. Assuming a FRAG1
fragment to be present, the fragment sorting logic would predi-
cate its algorithm on a pre-sorted first element. Using a crafted
set of input fragments which exactly match the required over-
all size, but does not contain a FRAG1 fragment, the sorting

Table 3: Root cause categories of unique crashes generated by FUZZWARE.

Firmware Set #Unique #Security #Unchecked #False
Crashes Issues Initialization Positives

Synthetic Samples 10 10 - -
P2IM 16 9 7 -
µEMU 19 9 9 1
Zephyr 12 10 - 2
Contiki-NG 4 4 - -

Total 61 42 16 3

logic can be tricked into creating an unintended cyclic refer-
ence within the list, which translates into an eventual integer
underflow, followed by a buffer overflow.

This experiment shows that our modeling approach allows
a fuzzer to effectively test and find bugs in well-maintained,
widely-used real-world firmware code (RQ 5).

6.4 False Positive Crash Analysis

Finally, we investigated the crashes produced by FUZZWARE.
To this end, we deduplicated the crashing test cases generated
across the previous experiments and performed a manual root
cause analysis. Table 3 shows the results of the experiment.

Our analysis showed that 42 out of the 61 unique crashes
corresponded to security issues, and 16 crashes occurred as
firmware logic does not robustly handle initialization, e. g.,
by not checking the return value of initialization APIs. The
three remaining test cases related to omitted firmware checks.
We identify these three crashes as false positives, since the
bugs exist in the firmware, but will not occur on real hard-
ware. Two of these crashes occurred in Zephyr: In the first
case, the length of a radio packet was implicitly assumed to
have a maximum value of 127, while a full byte of hardware-
generated MMIO value was used without checks in a size
variable (maximum value: 255). This leads to a buffer over-
flow for size values greater than 127. In the other case, an
interrupt handler used a pointer variable without initialization
checks. It assumed the variable to be initialized when an inter-
rupt was raised. If an interrupt was raised by the fuzzer before
this initialization was performed, interrupt handling would
result in a NULL pointer dereference. The third false positive
crash was caused in the µEMU utasker_USB sample, where
the USB receive channel number register field CHNUM may
have a maximum value of 15, but only less USB channels are
actually in use, leading to another out-of-bounds access.

In essence, the results show that we abstract away hardware
from firmware in the fuzzing process. This implies that if a
bug exists in the software regardless of the hardware envi-
ronment, FUZZWARE might identify it. However, it does not
guarantee that the bug can be triggered in a specific real hard-
ware deployment. On the contrary, it might just demonstrate
that the software developers are trusting a specific hardware.
Becoming aware of these types of issues may have some
upside: the same firmware running in a different hardware en-

vironment might suffer from a security vulnerability (since the
hardware cannot be trusted). This way, FUZZWARE pinpoints
possible security issues, even before the code is deployed in a
different hardware environment.

7 Discussion

In this section, we further discuss our design decisions, the
applicability of FUZZWARE outside our prototype implemen-
tation, and possible future research directions.

Direct Memory Access (DMA). As discussed in Section 4.5,
while FUZZWARE allows handling DMA via additional con-
figuration, automatically modeling DMA is not the focus of
this work. However, we see one central contribution of this
work towards automated DMA handling: As DMA-handling
firmware code is often part of more complex code (where,
in practice, heavy MMIO use is inevitable), achieving a high
baseline code coverage (as we show is the case with FUZZ-
WARE in Section 6) is a prerequisite to even triggering any
use of DMA. The authors of DICE [37], while recently de-
scribing a generic DMA handling approach, encountered this
issue: Their evaluation shows that previous firmware fuzzing
systems are unable to reach DMA logic for more than a third
(36%) of detected DMA, which can likely be attributed to
missing firmware code coverage.

Using Access Models outside FUZZWARE. The tight inte-
gration of FUZZWARE’s MMIO access models in the fuzzing
process raises the question whether those models can be used
independently. Luckily, once these models are generated, the
only information needed to serve a request are access size, lo-
cation, and program counter value – information which is read-
ily available in other analysis frameworks. To demonstrate
that this allows interoperability, we integrated FUZZWARE
generated models into avatar2 [38] as so-called pyperipherals.
This enables dynamic analysis capabilities beyond fuzzing,
such as taint analysis using the PANDA framework [16].

Merits of Path Elimination. Previous approaches (e.g., [7,
18, 57]) eliminate code paths to steer firmware execution.
As we describe in Section 3.2, eliminating paths bears the
risk of excluding relevant functionality from the analysis,
either by removing error handling or by forcing execution
into complex error handling routines, away from ordinary
functionality. As a heuristics-based classification of “correct”
code paths is error prone, and a misclassification requires
manual intervention to remediate, we aimed for robustness
in a fully automated setting by avoiding such classification
attempts. To facilitate automation, FUZZWARE allows hitting
stuck cases (such as hitting tight infinite error loops), and
relies on the fuzzing engine to avoid them based on timeouts
and coverage feedback. Future work could improve upon this
in a middle ground approach by identifying and eliminating
stuck cases that can be safely removed without reducing the
amount of reachable firmware logic.

Implicit Peripheral Semantics. During our evaluation, we
found that implicit assumptions made by firmware about the
behavior of its surrounding hardware account for some of the
crashing test cases. The underlying notion could open up po-
tential future research: Intuitively, we assume that the way in
which firmware code is built and operates exposes information
about the implicit assumptions it makes about its surrounding
hardware. This may include assumed size limits, as well as
the expected order in which certain events are assumed to
occur. Further analyses could use this type of information to
derive increasingly complex models of peripheral behavior.

8 Related Work

Coverage-guided fuzzers, such as AFL [54] and more ad-
vanced approaches [3, 6, 19, 41, 47, 52], have found numerous
critical bugs in major applications and OSes. One important
line of research focuses on increasing the quality of fuzzing
inputs, for instance via taint tracking [10,41], symbolic execu-
tion [20,47,52], or by additional program state analysis [2,3].
While we can leverage the described techniques to improve
our work, the fuzzers implementing them target desktop appli-
cations and are not directly applicable to embedded systems.

Multiple studies apply black-box fuzzing to embedded de-
vices [9,31,40], but generally suffer from a lack of coverage in-
formation and the inability to reset the device to a known state.
This challenge is commonly overcome by re-hosting embed-
ded systems’ firmware [17,51]. Recent work uses QEMU [5],
especially for emulating Linux-based firmware [8, 14, 28, 56].
Unfortunately, these approaches heavily rely on the abstrac-
tions provided by the Linux kernel and, thus, are not applica-
ble to monolithic firmware as analyzed in our work.

Similar to using abstractions provided by the Linux kernel,
one rehosting approach builds on top of the hardware ab-
straction layers present in many firmware images [11, 33, 35].
Unfortunately, identifying and modeling those abstractions
still requires target-specific knowledge and manual effort,
even with the automation presented in HALUCINATOR [11].

Hardware-in-the-loop approaches (e. g., [13, 26, 27, 30, 38,
48, 53]) avoid the need for abstractions by forwarding hard-
ware accesses to a physical device during emulation. While
this allows for dynamic analysis of firmware, these approaches
have limited applicability to fuzz testing. On top of forward-
ing being a typical bottle-neck for most of these systems, they
require one instance of the target hardware per fuzzing thread,
as the hardware state and fuzzer must be kept consistent.

The recent trend of pattern-based MMIO modeling was
introduced by PRETENDER [22], which still required a
hardware-in-the-loop recording phase. This hardware depen-
dency was later resolved by P2IM [18], and then addressed
by µEMU [57], as extensively discussed in Sections 3 and 6.

Various further approaches integrating dynamic symbolic
execution in the rehosting process to infer correct values
for hardware accesses have been proposed [7, 15, 24, 34].

LAELAPS [7], a recent and representative approach targeting
monolithic firmware, allows to steer the execution to inter-
esting locations by involving a human analyst. Unlike FUZZ-
WARE, this human-in-the-loop approach is not designed for
automated fuzz testing, as fuzzing a specific firmware image
with LAELAPS requires significant target-specific manual ef-
fort, and its emulation does not scale well due to frequent
invocations of the expensive symbolic execution engine.

9 Conclusion

In this work, we presented a novel approach for model-
ing MMIO interactions to effectively fuzz test a monolithic
firmware binary. Our access models are based on deeper in-
sights into firmware logic and, consequently, allow one to
eliminate types of input overhead that have previously been
inaccessible to existing MMIO modeling approaches. Apply-
ing these models results in a drastically improved fuzzing
effectiveness over the current state of the art.

10 Acknowledgements

This work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972, and
by NWO under 628.001.030 "Tropics" and NWA-ORC Inter-
Sect. In addition, this material is based upon work supported
by DARPA under agreement number HR001118C0060, and
by ONR under agreements N00014-17-1-2011 and N00014-
17-1-2897. This material is based on research sponsored by
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA or the
U.S. Government.

References

[1] ARM. DUI 0552A: Cortex-M3 devices generic user
guide, 2019.

[2] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi,
and Thorsten Holz. Ijon: Exploring deep state spaces via
fuzzing. In IEEE Symposium on Security and Privacy,
2020.

[3] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. Redqueen: Fuzzing
with input-to-state correspondence. In Symposium on
Network and Distributed System Security (NDSS), 2019.

[4] Aspencore. Embedded markets study: Integrating IoT
and advanced technology designs, application develop-
ment & processing environments. EETimes Embedded,
2019.

[5] Fabrice Bellard. QEMU, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,
2005.

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as Markov chain.
In ACM Conference on Computer and Communications
Security (CCS), 2016.

[7] Chen Cao, Le Guan, Jiang Ming, and Peng Liu. Device-
agnostic firmware execution is possible: A concolic ex-
ecution approach for peripheral emulation. In Annual
Computer Security Applications Conference (ACSAC),
2020.

[8] Daming D Chen, Maverick Woo, David Brumley, and
Manuel Egele. Towards automated dynamic analysis
for Linux-based embedded firmware. In Symposium on
Network and Distributed System Security (NDSS), 2016.

[9] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun
Zuo, Zhiqiang Lin, XiaoFeng Wang, Wing Cheong Lau,
Menghan Sun, Ronghai Yang, and Kehuan Zhang. IoT-
Fuzzer: Discovering memory corruptions in IoT through
app-based fuzzing. In Symposium on Network and Dis-
tributed System Security (NDSS), 2018.

[10] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In IEEE Symposium on Security and
Privacy, 2018.

[11] Abraham Clements, Eric Gustafson, Tobias
Scharnowski, Paul Grosen, David Fritz, Christo-
pher Kruegel, Giovanni Vigna, Saurabh Bagchi, and
Mathias Payer. HALucinator: Firmware re-hosting
through abstraction layer emulation. In USENIX
Security Symposium, 2020.

[12] Contiki-NG. https://github.com/contiki-ng/
contiki-ng, 2020. Accessed: October 5, 2021.

[13] Nassim Corteggiani, Giovanni Camurati, and Aurélien
Francillon. Inception: System-wide security testing of
real-world embedded systems software. In USENIX
Security Symposium, 2018.

[14] Andrei Costin, Apostolis Zarras, and Aurélien Francil-
lon. Automated dynamic firmware analysis at scale: a
case study on embedded web interfaces. In ACM Sym-
posium on Information, Computer and Communications
Security (ASIACCS), 2016.

https://github.com/contiki-ng/contiki-ng
https://github.com/contiki-ng/contiki-ng

[15] Drew Davidson, Benjamin Moench, Thomas Ristenpart,
and Somesh Jha. FIE on firmware: Finding vulnerabili-
ties in embedded systems using symbolic execution. In
USENIX Security Symposium, 2013.

[16] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim
Leek, and Ryan Whelan. Repeatable reverse engineer-
ing with PANDA. In Program Protection and Reverse
Engineering Workshop, 2015.

[17] Andrew Fasano, Tiemoko Ballo, Marius Muench,
Tim Leek, Alexander Bulekov, Brendan Dolan-Gavitt,
Manuel Egele, Aurélien Francillon, Long Lu, Nick Gre-
gory, et al. Sok: Enabling security analyses of embedded
systems via rehosting. In ACM Symposium on Infor-
mation, Computer and Communications Security (ASI-
ACCS), 2021.

[18] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scal-
able and hardware-independent firmware testing via au-
tomatic peripheral interface modeling. In USENIX Se-
curity Symposium, 2020.

[19] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. Afl++: Combining incremental steps of
fuzzing research. In USENIX Workshop on Offensive
Technologies (WOOT), 2020.

[20] Patrice Godefroid, Michael Y Levin, David A Molnar,
et al. Automated whitebox fuzz testing. In Symposium
on Network and Distributed System Security (NDSS),
2008.

[21] Emre Güler, Cornelius Aschermann, Ali Abbasi, and
Thorsten Holz. AntiFuzz: Impeding fuzzing audits of
binary executables. In USENIX Security Symposium,
2019.

[22] Eric Gustafson, Marius Muench, Chad Spensky, Nilo
Redini, Aravind Machiry, Yanick Fratantonio, Da-
vide Balzarotti, Aurélien Francillon, Yung Ryn Choe,
Christophe Kruegel, et al. Toward the analysis of embed-
ded firmware through automated re-hosting. In Sympo-
sium on Recent Advances in Intrusion Detection (RAID),
2019.

[23] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye,
Koushik Sen, and Michael Grace. PARTEMU: Enabling
dynamic analysis of real-world TrustZone software us-
ing emulation. In USENIX Security Symposium, 2020.

[24] Evan Johnson, Maxwell Bland, YiFei Zhu, Joshua Ma-
son, Stephen Checkoway, Stefan Savage, and Kirill
Levchenko. Jetset: Targeted firmware rehosting for
embedded systems. In USENIX Security Symposium,
2021.

[25] Jinho Jung, Hong Hu, David Solodukhin, Daniel Pagan,
Kyu Hyung Lee, and Taesoo Kim. Fuzzification: Anti-
fuzzing techniques. In USENIX Security Symposium,
2019.

[26] Markus Kammerstetter, Daniel Burian, and Wolfgang
Kastner. Embedded security testing with peripheral
device caching and runtime program state approxima-
tion. In Conference on Emerging Security Information,
Systems and Technologies (SECUWARE), 2016.

[27] Markus Kammerstetter, Christian Platzer, and Wolfgang
Kastner. Prospect: Peripheral proxying supported em-
bedded code testing. In ACM Symposium on Infor-
mation, Computer and Communications Security (ASI-
ACCS), 2014.

[28] Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon
Kim, Yeongjin Jang, and Yongdae Kim. Firmae: To-
wards large-scale emulation of iot firmware for dynamic
analysis. In Annual Computer Security Applications
Conference (ACSAC), 2020.

[29] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In ACM
Conference on Computer and Communications Security
(CCS), 2018.

[30] Karl Koscher, Tadayoshi Kohno, and David Molnar.
SURROGATES: Enabling near-real-time dynamic anal-
yses of embedded systems. In USENIX Workshop on
Offensive Technologies (WOOT), 2015.

[31] Karl Koscher, Stefan Savage, Franziska Roesner, Shwe-
tak Patel, Tadayoshi Kohno, Alexei Czeskis, Damon Mc-
Coy, Brian Kantor, Danny Anderson, Hovav Shacham,
et al. Experimental security analysis of a modern auto-
mobile. In IEEE Symposium on Security and Privacy,
2010.

[32] Edward Ashford Lee and Sanjit Arunkumar Seshia. In-
troduction to Embedded Systems: A Cyber-Physical Sys-
tems Approach. The MIT Press, 2nd edition, 2016.

[33] Wenqiang Li, Le Guan, Jingqiang Lin, Jiameng Shi, and
Fengjun Li. From library portability to para-rehosting:
Natively executing microcontroller software on com-
modity hardware. In Symposium on Network and Dis-
tributed System Security (NDSS), 2021.

[34] Yingtong Liu, Hsin-Wei Hung, and Ardalan Amiri Sani.
Mousse: a system for selective symbolic execution of
programs with untamed environments. In European
Conference on Computer Systems, 2020.

[35] Dominik Maier, Lukas Seidel, and Shinjo Park.
BaseSAFE. In ACM Conference on Security and Pri-
vacy in Wireless and Mobile Networks (WiSec), 2020.

[36] Mbed OS. https://www.mbed.com/en/platform/
mbed-os/, 2020. Accessed: October 5, 2021.

[37] Alejandro Mera, Bo Feng, Long Lu, Engin Kirda, and
William Robertson. DICE: Automatic emulation of
DMA input channels for dynamic firmware analysis. In
IEEE Symposium on Security and Privacy, 2021.

[38] Marius Muench, Aurélien Francillon, and Davide
Balzarotti. Avatar2: A multi-target orchestration plat-
form. In Workshop on Binary Analysis Research (BAR),
2018.

[39] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien
Francillon, and Davide Balzarotti. What you corrupt is
not what you crash: Challenges in fuzzing embedded
devices. In Symposium on Network and Distributed
System Security (NDSS), 2018.

[40] Collin Mulliner, Nico Golde, and Jean-Pierre Seifert.
SMS of death: From analyzing to attacking mobile
phones on a large scale. In USENIX Security Sympo-
sium, 2011.

[41] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. VUzzer:
Application-aware evolutionary fuzzing. In Symposium
on Network and Distributed System Security (NDSS),
2017.

[42] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi,
Simon Wörner, and Thorsten Holz. Hyper-Cube: High-
dimensional hypervisor fuzzing. In Symposium on Net-
work and Distributed System Security (NDSS), 2020.

[43] Edward Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In IEEE Symposium on Secu-
rity and Privacy, 2010.

[44] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser,
Christopher Kruegel, and Giovanni Vigna. Firmalice:
Automatic detection of authentication bypass vulnera-
bilities in binary firmware. In Symposium on Network
and Distributed System Security (NDSS), 2015.

[45] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, et al. SoK: (state of) the art of war: Offen-
sive techniques in binary analysis. In IEEE Symposium
on Security and Privacy, 2016.

[46] Prashast Srivastava, Hui Peng, Jiahao Li, Hamed
Okhravi, Howard Shrobe, and Mathias Payer. Firmfuzz:
automated iot firmware introspection and analysis. In
ACM Workshop on Security and Privacy for the Internet-
of-Things (IoT S&P), 2019.

[47] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In Symposium on Network and Distributed
System Security (NDSS), 2016.

[48] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli,
Hang Zhang, Zheng Zhang, Ardalan Amiri Sani, and
Zhiyun Qian. Charm: Facilitating dynamic analysis of
device drivers of mobile systems. In USENIX Security
Symposium, 2018.

[49] Unicorn Engine. https://www.unicorn-
engine.org/, 2017. Accessed: October 5, 2021.

[50] Wind River SIMICS. https://www.windriver.com/
products/simics/, 2020. Accessed: October 5, 2021.

[51] Christopher Wright, William A Moeglein, Saurabh
Bagchi, Milind Kulkarni, and Abraham A Clements.
Challenges in firmware re-hosting, emulation, and anal-
ysis. ACM Computing Surveys (CSUR), 2021.

[52] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A practical concolic execution
engine tailored for hybrid fuzzing. In USENIX Security
Symposium, 2018.

[53] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and
Davide Balzarotti. Avatar: A framework to sup-
port dynamic security analysis of embedded systems’
firmwares. In Symposium on Network and Distributed
System Security (NDSS), 2014.

[54] Michal Zalewski. american fuzzy lop. http://
lcamtuf.coredump.cx/afl/, 2017. Accessed: Octo-
ber 5, 2021.

[55] Zephyr Project. https://www.zephyrproject.org/,
2020. Accessed: October 5, 2021.

[56] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song,
Hongsong Zhu, and Limin Sun. FIRM-AFL: High-
throughput greybox fuzzing of IoT firmware via aug-
mented process emulation. In USENIX Security Sympo-
sium, 2019.

[57] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. Au-
tomatic firmware emulation through invalidity-guided
knowledge inference. In 30th USENIX Security Sym-
posium (USENIX Security 21). USENIX Association,
2021.

https://www.mbed.com/en/platform/mbed-os/
https://www.mbed.com/en/platform/mbed-os/
https://www.unicorn-engine.org/
https://www.unicorn-engine.org/
https://www.windriver.com/products/simics/
https://www.windriver.com/products/simics/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://www.zephyrproject.org/

A Appendix

Table 4: Hardware platforms and firmware samples used in FUZZWARE’s evaluation.

Platform Firmware Samples
ARCH_PRO Password_Discovery
EFM32GG_STK3700 Password_Discovery
EFM32LG_STK3600 Password_Discovery
LPC1549 Password_Discovery
LPC1768 Password_Discovery
MAX32600 RF_Door_Lock, Thermostat
MK64FN1M0VLL12 P2IM unit tests, Console
MOTE_L152RC Password_Discovery
NUCLEO_F207ZG Password_Discovery
SAM3X8E P2IM unit tests, Heat_Press, Steering_Control
SAM3X/A GPS tracker
SAMR21 6LoWPAN_Sender, 6LoWPAN_Receiver
STM32F103RB Password_Discovery, P2IM unit tests, Drone, Gateway, Reflow_Oven, Robot, Soldering_Iron
STM32F103RE 3Dprinter
STM32F429ZI CNC, PLC, utasker_MODBUS, utasker_USB
STM32L152RE Password_Discovery, XML_Parser
STM32L431 LiteOS_IoT
STM32L432KC Zepyhr_SocketCan
UBLOX_C027 Password_Discovery

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

22

24
ARCH_PRO

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

22

24
EFM32GG_STK3700

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

22

24
EFM32LG_STK3600

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

22

24
LPC1549

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

22

24
LPC1768

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

22

24
MOTE_L152RC

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

22

24
NUCLEO_F103RB

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

22

24
NUCLEO_F207ZG

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

22

24
NUCLEO_L152RE

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

22

24
UBLOX_C027

With Modeling Without Modeling

#Characters Solved

T
im

e
S
p
en

t
in

 H
o
u
rs

Figure 6: Time spent by FUZZWARE for character discovery on 10 synthetic firmware samples over ten 24h runs with and without modeling. Shown are individual
timings (dots), the mean and 66% intervals. Each dot represents the point of time at which the character was solved by one run. Thus, if all ten runs succeed in
finding a character, ten dots exist for this character. A high number of dots indicates consistency in finding the character, while dots positioned low indicate high
speed in solving that character.

Table 5: FUZZWARE (FW.) vs P2IM vs µEMU coverage generation over five 24-hour fuzzing iterations. We compare the minimum (#BB min), average (#BB
avg), maximum (#BB max), and total number of basic blocks (#BB total) discovered across all runs by each system. We account for targets used by both P2IM
and µEMU (upper part) and such only evaluated by µEMU (lower part). Bold numbers indicate the best result in each category. The last two columns show the
p-value according to the Mann-Whitney U test between the runs of FUZZWARE and P2IM, and between FUZZWARE and µEMU. For all but two cases the p-value
(p < 0.01) indicates statistical significance of the results.

Target #BB in #BB min #BB avg #BB max #BB total p-value
target P2IM µEMU FW. P2IM µEMU FW. P2IM µEMU FW. P2IM µEMU FW. to P2IM to µEMU

CNC 3614 1096 416 2422 1252 786 2560 1578 1136 2646 1599 1140 2722 < 0.01 < 0.01
Drone 2728 1268 1456 1830 1270 1457 1836 1275 1459 1847 1275 1461 1850 < 0.01 < 0.01
Heat Press 1837 527 492 537 532 493 544 536 493 547 536 494 550 < 0.01 < 0.01
Reflow O. 2947 815 797 1188 815 829 1189 815 875 1191 815 880 1191 < 0.01 < 0.01
Soldering I. 3656 1302 837 2080 1302 947 2117 1302 1271 2134 1302 1283 2145 < 0.01 < 0.01
Console 2251 779 583 805 779 615 805 779 662 805 779 662 805 < 0.01 < 0.01
Gateway 4921 1756 1623 2423 1768 1738 2622 1804 1905 2881 1806 1977 2984 < 0.01 < 0.01
PLC 2303 505 436 465 507 436 603 513 436 647 513 451 649 0.07 < 0.01
Robot 3034 1131 999 1267 1158 1004 1296 1190 1014 1340 1192 1017 1340 < 0.01 < 0.01
Steering C. 1835 498 489 598 498 497 609 498 506 613 498 506 613 < 0.01 < 0.01

6LoWPAN_Recv. 6977 - 2477 3056 - 2501 3099 - 2520 3142 - 2572 3155 - < 0.01
6LoWPAN_Send. 6980 - 1688 2914 - 2342 3066 - 2522 3144 - 2550 3166 - < 0.01
RF_door_lock 3320 - 605 782 - 664 1675 - 679 2262 - 679 2641 - < 0.01
Thermostat 4673 - 907 2274 - 936 2747 - 980 3082 - 1020 3545 - < 0.01
3D_printer 8045 - 854 889 - 854 977 - 854 1217 - 855 1221 - < 0.01
GPSTracker 4194 - 587 1006 - 588 1016 - 588 1027 - 602 1040 - < 0.01
LiteOS_IOT 2423 - 657 737 - 740 954 - 804 1342 - 804 1343 - 0.26
utasker_Modbus 3780 - 1043 1247 - 1049 1297 - 1057 1326 - 1113 1327 - < 0.01
utasker_USB 3491 - 594 1587 - 961 1669 - 1121 1718 - 1150 1807 - < 0.01
zephyr_socket. 5943 - 2176 2553 - 2282 2722 - 2396 2869 - 2456 2884 - < 0.01
xml_parser 9376 - 1717 3185 - 1781 3602 - 1861 4012 - 1955 4334 - < 0.01

Table 6: Overview of CVE-Assigned Bugs found by FUZZWARE

CVE Product Version Tested Description
CVE-2020-10064 Zephyr OS 2.2.0 Improper Input Frame Validation in ieee802154 Processing
CVE-2020-10066 Zephyr OS 2.2.0 Incorrect Error Handling in Bluetoot HCI core
CVE-2020-10065 Zephyr OS 2.2.0 Missing Size Checks in Bluetooth HCI over SPI
CVE-2020-12141 Contiki NG 4.4 Missing size check during SNMP message decoding
CVE-2020-12140 Contiki NG 4.4 Details omitted due to patch status
CVE-2021-3319 Zephyr OS @d969ac..1cc42d Incorrect 802154 Frame Validation for Omitteed Source/Dest Address
CVE-2021-3320 Zephyr OS @d969ac..1cc42d Type Confusion in 802154 ACK Frames Handling
CVE-2021-3321 Zephyr OS @d969ac..1cc42d Integer Underflow in IEEE 802154 Fragment Reassembly Header Removal
CVE-2021-3322 Zephyr OS @d969ac..1cc42d Unexpected Pointer Aliasing in IEEE 802154 Fragment Assembly
CVE-2021-3323 Zephyr OS @d969ac..1cc42d Integer Underflow in 6LoWPAN IPHC Header Uncompression
CVE-2021-3329 Zephyr OS @d969ac..1cc42d Details omitted due to patch status
CVE-2021-3330 Zephyr OS @d969ac..1cc42d Linked-list corruption leading to large out-of-bounds write while sorting for forged fragment list

	Introduction
	Technical Background
	Monolithic Embedded Systems
	Memory-mapped IO
	Interrupts and DMA
	Re-Hosting Embedded Systems

	MMIO Access Handling
	Input Overhead
	Previous MMIO Modeling Approaches

	Design
	Prerequisites and Threat Model
	Fuzzware's Emulator
	Modeling Approach
	Fuzzware Model Definitions
	Interrupt, Timer and DMA Handling.

	Implementation
	Fuzzware's Emulator
	MMIO Access Modeling

	Evaluation
	Access Modeling for Fuzzing
	Comparison with the State of the Art
	Fuzzing New Targets
	False Positive Crash Analysis

	Discussion
	Related Work
	Conclusion
	Acknowledgements
	Appendix

