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Abstract

Locally Checkable Labeling (LCL) problems are graph problems in which a
solution is correct if it satisfies some given constraints in the local neighborhood
of each node. Example problems in this class include maximal matching,
maximal independent set, and coloring problems. A successful line of research
has been studying the complexities of LCL problems on paths/cycles, trees,
and general graphs, providing many interesting results for the LOCAL model of
distributed computing. In this work, we initiate the study of LCL problems in
the low-space Massively Parallel Computation (MPC) model. In particular, on
forests, we provide a method that, given the complexity of an LCL problem in
the LOCAL model, automatically provides an exponentially faster algorithm for
the low-space MPC setting that uses optimal global memory, that is, truly linear.

While restricting to forests may seem to weaken the result, we emphasize that
all known (conditional) lower bounds for the MPC setting are obtained by lifting
lower bounds obtained in the distributed setting in tree-like networks (either
forests or high girth graphs), and hence the problems that we study are chal-
lenging already on forests. Moreover, the most important technical feature of
our algorithms is that they use optimal global memory, that is, memory linear
in the number of edges of the graph. In contrast, most of the state-of-the-art al-
gorithms use more than linear global memory. Further, they typically start with
a dense graph, sparsify it, and then solve the problem on the residual graph,
exploiting the relative increase in global memory. On forests, this is not possi-
ble, because the given graph is already as sparse as it can be, and using optimal
memory requires new solutions.
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1 Introduction

The Massively Parallel Computation (MPC) model, introduced in [KSV10] and later refined
by [ANOY14, BKS17, GSZ11], is a mathematical abstraction of modern data processing plat-
forms such as MapReduce [DGO8|, Hadoop [Whil2|, Spark [ZCF"10], and Dryad [IBY"07].
Recently, tremendous progress has been made on fundamental graph problems in this model,
such as maximal independent set (MIS), maximal matching (MM) [GU19, CDP20|, and col-
oring problems [CFGT19a, CDP21b]. All these problems, and many others, fall under the
umbrella of Locally Checkable problems, in which the feasibility of a solution can be checked
by inspecting local neighborhoods. They also serve as abstractions for fundamental primitives
in large-scale graph processing and have recently gained a lot of attention [BCM 21, BBO'21,
CDP21b, DFKL21, BBE"20, Cha20, GGJ20|. Locally checkable labelings (LCLs) are locally
checkable problems restricted to constant degree graphs. They are defined through a set of
feasible configurations from the viewpoint of each individual node. A more formal definition of
LCLs is deferred to Section 2.

LCLs have been a rich source of research in various models of computation, because they can
be seen as a starting point to understand locally checkable problems in general, and this holds
independently from the model. For example, in the distributed setting, techniques developed
to understand LCLs [BFHT16] have then been used to prove lower bounds in the unbounded
degree setting, which the LCL setting does not include, e.g., for the the maximal independent set
problem, or the A-coloring problem [BBH19, BBO20, BBKO22]. In the distributed LOCAL
model of computing, a lot is known about LCLs: for example, if the graph on which we want to
solve the problem is a tree, then there is a discrete set of possible complexities, and in some cases,
given an LCL, we can even automatically decide its distributed time complexity. Our goal is to
bring to the parallel setting, and in particular to the MPC model, the knowledge that researchers
developed about LCLs in the distributed setting, while also developing new techniques that can
be used in the parallel setting. We show that, on forests, the mere knowledge of what is the
distributed complexity of a problem is enough to obtain blazingly fast algorithms in the MPC
setting. In particular, we obtain MPC algorithms that are exponentially faster than the best
distributed ones. We summarize our main result.

The complexity of any LCL problem on forests in the MPC model is exponentially lower
than its distributed complexity, even when using optimal memory bounds.

More in detail, in our work, we solve LCL problems in forests in the most restrictive low-space
MPC model with linear total memory, which is the most scalable variant of the MPC model.
Our results provide an automatic method that, for all LCL problems, yields an algorithm that
solves the given problem ezponentially faster than its optimal distributed counterpart. The
resulting algorithms are component-stable [GKU19, CDP21al, which implies that the solutions
in individual connected components are independent of the other components. Our results are
in some sense optimal: for problems that in the LOCAL model can be solved in n°}), finding
more-than-exponentially faster component-stable algorithms would violate the widely-believed
1 vs. 2 cycle conjecture in the MPC setting.



Why do we care about trees and forests? All known conditional lower bounds? for
problems in the MPC setting are derived by lifting lower bounds that hold in the LOCAL model
of distributed computing [GKU19, CDP21al. Most of the lower bounds known in the LOCAL
model are actually proved either on trees or on high-girth graphs (where the neighborhood of
each node corresponds to a tree): see, e.g., [KMW16, BBKO22, BBH*19, BBO20, BFHT16].
It follows that essentially all the conditional lower bounds known in the MPC setting already
hold on forests®. Despite this fact, with a few exceptions, there is no work on upper bounds on
forests in the MPC model—a gap we aim to fill.

Moreover, understanding the complexity of problems on trees has been already shown to
be essential in the LOCAL model: it is typically the case that interesting problems are already
challenging on trees, and often even in regular balanced trees of small degree. In fact, most
lower bounds known in the LOCAL model hold exactly in this setting. Due to the lifting, the
same statement adapted to forests is true for all recent MPC lower bounds. Hence, to decrease
the relevance of trees and forests, we either need completely new lower bound techniques in the
LOCAL model coupled with completely new lifting theorems, or completely new lower bound
techniques for the MPC model.

At first glance it may seem that our results are easy to achieve, because we restrict to forests.
Conversely, we would like to emphasize that many state-of-the-art algorithms for problems like
MIS and coloring work as follows |[GU19, CDP20]: start with a dense graph which requires a
lot of memory to store, sparsify it, and then use the freed global memory to solve the problem
faster on the sparsified part. On forests, this is not possible, because the given graph is already
as sparse as it can be.

The MPC Model. In the MPC model, we have M machines who communicate in an
all-to-all fashion. We focus on problems where the input is modeled as a graph with n vertices,
m edges and maximum degree A; we call this graph the input graph. Fach node has a unique
ID of size b = O(logn) bits from a domain {1,2,..., N}, where N = poly(n). Each node and
its incident edges are hosted on a machine(s) with S = O(n®) local memory, where § € (0,1)
and the units of memory are words of O(logn) bits. When the local memory is bounded by
O(n®), the model is called low-space (or sublinear). The number of machines is chosen such
that M = m/S = ©(m/n%). For trees, where m = ©(n), this results in ©(n'~%) machines, that
is, a total memory (or global memory) of M - S = ©(n). For simplicity*, we assume that each
machine ¢ simulates one virtual machine for each node and its incident edges that i hosts, such
that the local memory restriction becomes that no virtual machine can use more than O(n?)
memory.

During the execution of an MPC algorithm, computation is performed in synchronous,
fault-tolerant rounds. In each round, every machine performs some (unbounded) computation
on the locally stored data, then sends/receives messages to/from any other machine in the
network. Each message is sent to exactly one other machine specified by the sending machine.

2Proving unconditional lower bounds for the MPC model would imply a major breakthrough in circuit
complexity and seems out of reach [RVW18].

3 As lifting lower bounds from the LOCAL model to the MPC model requires hereditary graph classes one
cannot immediately lift a lower bound in the LOCAL model that holds on trees. Instead, a lower bound in the
LOCAL model on trees implies the same lower bound in the LOCAL model for forests which can then be lifted
to a lower bound for MPC algorithms on forests.

“In practice, it is assumed that the virtual machines can be shuffled between physical machines, such that
the sum of the memory of the virtual machines hosted on any single physical machine is O(n‘s).



All messages sent and received by each machine in each round, as well as the output, have
to fit into local memory. The time complexity is the number of rounds it takes to solve a
problem. Upon termination, each node (resp. its hosting machine) must know its own part of
the solution. For example in the case of node-coloring, the machine hosting node « must decide
on the color of u upon termination of the algorithm.

Unlike in most other works, our algorithms employ O(m-+n) words of total memory, which is
the strictest possible as it is only enough to store a constant number of copies of the input graph.
Note that if we were to allow superlinear O(m!*+%) global memory in our constant-degree setting,
many LOCAL algorithms with complexity O(logn) could be trivially sped up exponentially
in the low-space MPC model by applying the well-known graph exponentiation technique by
Lenzen and Wattenhofer [LW10]. A crucial challenge that comes with the linear global memory
restriction is that only a small fraction of n!=? of the (virtual) machines can simultaneously
utilize all of their available local memory. Thus, with strictly linear global memory we are forced
to develop new techniques which must avoid gathering local neighborhoods, i.e., fundamentally
divert from direct simulations of message passing algorithms.

1.1 The Distributed Complexity Landscapes

In the last decade, there has been tremendous progress in understanding the complexities of
LCLs in various models of distributed and parallel computing. A prime example is the LOCAL
model [Lin87|, where the input graph corresponds to a message passing system, and the nodes
must output their part of the solution according only to local information about the graph. An-
other example is the CONGEST model, which is a LOCAL model variant where the message size
is restricted to O(logn) bits [Pel00]. A curious fact about LCLs in the distributed setting is the
existence of complexity gaps, that is, some complexities are not possible at all. For example, it is
known that there are no LCLs with a distributed time complexity in the LOCAL and CONGEST
model that lies between w(log®n) and o(logn). In these two models, the whole complexity
landscape of LCL problems is now understood for some important graph families. For instance,
a rich line of work [NS95, CHL 19, CP19, BHOS19, BBOS18, BBET20, Cha20] recently came
to an end when a complexity gap between w(1) and o(log* n) was proved [GRB22]|, completing
the randomized /deterministic complexity landscape of LCL problems in the LOCAL model for
trees. In the CONGEST model, the authors of [BCM 21| showed that, on trees, the complexity
of an LCL problem is asymptotically equal to its complexity in the LOCAL model, whereas the
same does not hold in general graphs. In the randomized /deterministic LOCAL and CONGEST
models, recent work showed that the complexity landscapes of LCL problems for rooted regular
trees are fully understood [BBO™ 21|, while the complexity landscapes of LCL problems in the
LOCAL model for rings and tori have already been known for some while [BHK™17|. Even for
general (constant-degree) graphs, the LOCAL complexity landscape of LCL problems is almost
fully understood [NS95, BFH*16, CKP19, CP19, GS17, FG17, GHK18, BHK'18, BBOS18,
RG20, GGR21], only missing a small part of the picture related to the randomized complexity
of Lovasz Local Lemma (LLL).

In the case of trees, for deterministic algorithms in the LOCAL model, it is known that there
is a discrete set of possible complexities, that we divide into four categories:

— Tiny regime: contains the complexities O(1) and ©(log™ n).

— Example problems: maximal independent set, maximal matching, (A + 1)-vertex



coloring®, (2A — 1)-edge coloring, and trivial problems (e.g., all nodes must output
0).

— Mid regime: contains the complexity O(logn).

— Example problems: sinkless orientation [BFH' 16|, 3-coloring, and A-coloring.

— High regime: contains the complexities ©(n'/*), for all k € N.

— Example problems: 2-coloring and 23-coloring [CP19].

Moreover, it is known that randomness can help only in the mid regime, and in particular
that some problems requiring O (logn) for deterministic algorithms have randomized complexity
©(loglogn), which constitutes our fourth category—Low regime. Problems residing in the
low regime include sinkless orientation and A-coloring.

On forests, the complexity landscape in the LOCAL model is the same as on trees. While
this is intuitively evident, it can also be shown formally using an analogous approach to the
one used in the proof of [GRB22, Lemma 3.3].

1.2 Our Contributions

Our main contribution is showing that, given any LCL problem (see Definition 2.2) on trees that
has deterministic (resp. randomized) complexity 7" in the LOCAL model, we can automatically
obtain an MPC algorithm with deterministic (resp. randomized) complexity O(log T") on forests.
In particular, we prove the following.

Theorem 1.1. Consider an LCL problem on trees with deterministic time complezity f(n)
and randomized time complezity g(n) in the LOCAL model. This problem has deterministic
time complezity O(log f(n)) and randomized time complezity O(log g(n)) in the low-space MPC
model on forests using optimal O(m +n) words of global memory. The provided algorithms are
component-stable.

Put differently, a problem in the LOCAL model can only have a deterministic complexity
f(n) € {6(1),0(log* n),O(logn)} U{O(n'/*) | k € N}, and we show that it is enough to know
the asymptotic value of f(n) in order to obtain a deterministic MPC algorithm with complexity
O(log(f(n))) € {O(1),0(loglog* n), O(loglogn),O(logn)}.

Moreover, it is known that for all f(n) ¢ ©O(logn), the LOCAL randomized complexity of
the problem is the same as the deterministic one. Instead, for f(n) € ©(logn), the LOCAL
randomized complexity g(n) can be either O(logn) or O(loglogn). If it is O(loglogn), then
we provide an MPC algorithm with randomized complexity O(logloglogn). If we dismiss
the component-stability requirement, we can obtain the same O(logloglogn) runtime with a
deterministic MPC algorithm.

Theorem 1.2. Consider an LCL problem on trees with randomized time complexity g(n) =
©(loglogn) in the LOCAL model. This problem has deterministic time complezity O(logloglogn)
in the low-space MPC model on forests using optimal O(m + n) words of global memory. This
algorithm is component-unstable.

®We denote the maximum degree of the graph by A.



By |[GKU19, CDP21a], we know that Theorem 1.1 is in some sense optimal: if a problem
requires 7' deterministic rounds in the LOCAL model, then it requires (min{log 7’ loglogn})
rounds in the low-space MPC setting for component-stable algorithms, assuming that the infa-
mous 1 vs. 2 cycle conjecture holds [BKS17, GKU19, RVW18]. In contrast, Theorem 1.2 shows
that one can break the conditional lower bound of Q(loglogn) for deterministic MPC algorithms
for all LCL problems in the aforementioned class by diverting to component-unstable algorithms.
Achieving the same result even for a single problem without dismissing the component-stability
requirement would be a major breakthrough, as it would falsify the conjecture.

As a subroutine for solving all problems that belong to the high regime in O(logn) MPC
rounds, we also develop an O(logn) round MPC algorithm for rooting a forest. This rooting
algorithm is component-stable, and may be of independent interest, since it is also compatible
with arbitrary degrees (see Lemma A.1).

Additional observations. There is a long line of research that provided algorithms for
MPC that are exponentially faster than the best algorithms for the LOCAL model. Most
existing results achieved these speedup results by using additional global memory, that is,
w(m) words [BBD'19, GGJ20, CDP21b, CDP21a]. We emphasize that, deviating from the
usual approach, all of our results use optimal MPC parameters, in the sense that we work in
the low-space setting with O(n?) words of local memory and O(m +n) words of global memory.

Hence, our contribution is twofold, on the one hand we prove that we can indeed achieve this
exponential speedup for all LCLs, while on the other hand we show that this exponential speedup
can be achieved without requiring any additional memory. Furthermore, graph problems in trees
and forests are widely unexplored, despite their central role that we have already elaborated
on. It is known that a 4-coloring, MIS, and maximal matching can be found in O(loglogn)
rounds [GGJ20|. However, the coloring result heavily relies on randomness and the MIS and
matching results require a (small) overhead in the total memory. To compare, our results
deterministically yield a 3-coloring in O(loglogn) rounds with linear total memory. It is not
clear whether randomness can even help in the case of 3-coloring, which is a significant difference
to the case of 4-coloring. Furthermore, it is not clear whether the previous approaches to MIS
and matching can be extended to work deterministically with the same runtime and with linear
total memory. While the previous work is designed for arbitrary degree graphs, it is not clear
whether the algorithms could be tuned to work faster with constant degrees.

Open Questions. In the tiny regime, our results extend to general graphs (see Theo-
rem 3.1). In the low regime, our results extend to general graphs if we allow slightly more
global memory (see Theorem 6.5). Once we reach the mid regime, i.e., logarithmic distributed
complexities, we do not know the behaviour in general graphs. This leads to an interesting
open question. As mentioned, the asymptotic complexity of any problem on trees is identical
in the LOCAL and CONGEST model, and the same is true (modulo the exact complexity of the
LLL in both models) on general graphs as long as the complexity is sublogarithmic [BCM*21].
However, there is a an exponential separation between the models for complexities that are at
least logarithmic [BCM™21]. Does such a separation between the complexity of an LCL in the
LOCAL model and the MPC model also hold for large complexities? Here, of course, we would
want to have a doubly exponential separation.

Interestingly, current conditional lower bounds for the MPC model cannot prove MPC lower
bounds that are w(loglogn). So, while our results in the high regime show that any problem



on forests can be solved in O(logn) rounds in the MPC model, it remains unclear whether we
cannot improve on this bound, even without falsifying the 1 vs. 2 cycle conjecture.

Component-stability. The term of a component-stable MPC algorithm has been intro-
duced in [GKU19| in the context of lifting distributed lower bounds to the MPC setting. By
their definition, informally, an algorithm is component-stable if the output of a node does not
change if other connected components in the graph are altered (see Definition 2.5).

While initially believed that it might be an artifact of their lifting techniques, Czumayj,
Davies and Parter [CDP21a| showed the contrary, i.e., they showed that component-unstable
algorithms can beat the conditional lower bounds of [GKU19|. Their results hold assuming their
revised definition of component-stability, which is argued to be more robust (see Definition 2.7).
Under their definition, it is not strictly easier nor harder to design algorithms to be component-
stable, as compared to the definition of [GKU19]. The main difference is that they allow the
output of component-stable algorithms to depend on the total number of nodes in the graph
and the maximum degree. In our work, we adopt the revised definition of component-stability
[CDP21al. See Section 2.2 and the discussion therein for further details.

1.3 Challenges & Key Techniques

We now provide an overview of the challenges that we had to tackle in order to prove our
results, and a very high level explanation of the key techniques that we used to solve them.

The tiny regime serves as a good warm-up to see why using an optimal amount of global
memory is difficult. The most technically involved part is the high regime, where we obtain an
O(logn)-time MPC algorithm for any LCL problem.

Graph Exponentiation. A reoccurring challenge for all regimes lies in respecting the
linear global memory, which roughly means that on average, every node can use only a constant
amount of memory. This is particularly unfortunate because almost all recent MPC results—
and in particular all that achieve exponential speedups—rely on the memory-intense graph
exponentiation technique [LW10]. Informally, this technique enables a node to gather its 2*-
hop neighborhood in k communication rounds. Doing this in parallel for every node in the
graph results in a A?" overhead in global memory. For this technique to be useful, k£ has to
be w(1), yielding a non-constant multiplicative increase in the global memory requirement. In
order to use this technique but not violate linear global memory, we develop new solutions that
are discussed in the following paragraphs.

Tiny regime f(n) = ©(1) and f(n) = O(log"n): Handling the ©(1) complexity is
trivial, since any LOCAL algorithm for LCLs can be simulated in the MPC setting. For the
O©(log* n) class, it is known from prior work that all problems can be solved in the LOCAL
model in a very specific way: reduce to the problem of computing a distance-k coloring with
a small enough number of colors, where k is a constant that depends on the problem. In a
distance-k c-coloring, each node is assigned a color in {1,...,c} such that nodes at distance
at most k£ have different colors. Such a coloring can be computed in O(log* n) rounds in the
LOCAL model, and it could be computed easily in the MPC setting in O(loglog* n) rounds,
by exploiting the graph exponentiation technique, if we allow an additional O(log*n) factor
overhead in the amount of global memory.



We show that this overhead is not required, by developing a novel MPC algorithm for
coloring. The algorithm that we provide reduces the problem of coloring a general graph to
coloring directed pseudoforests, that is, graphs where all edges are oriented and every node
has at most one outgoing edge. Then, we show that in directed pseudoforests, it is possible to
solve the coloring problem through a variant of graph exponentiation that only requires keeping
track of a constant number of IDs. This way, the memory use of each node is constant, and
the global memory is linear.

High regime f(n) = @(nl/k), for all £ € N:  We explicitly provide, for any solvable LCL,
a novel algorithm that has a runtime of O(logn). Essentially, we solve each tree in the forest
separately, hence we will consider trees in the following argumentation. On a high level, our
algorithm first roots the tree using our O(log n)-time tree rooting algorithm (see Appendix A),
and then proceeds in two phases. In the first phase, roughly speaking, the goal is to compute,
for a substantial number of nodes v, the set of possible output labels that can be output at v
such that the label choice can be extended to a (locally) correct solution in the subtree hanging
from v. This is done in an iterative manner, proceeding from the leaves towards the root. The
second phase consists of using the computed information to solve the given LCL from the root
downwards.

While this outline sounds simple, there are a number of intricate challenges that require
the development of novel techniques, both in the design of the algorithm and its analysis. For
instance, the depth of the input tree may be w(logn) (which prevents us from performing the
above ideas in a sequential manner), and the storage of the required completability information
grows exponentially when using graph exponentiation, exceeding the available global memory.
Our key technical contributions are the following.

— The design of a process that allows for interleaving graph exponentiation steps and com-
pressing the graph (and compatibility information) such that the process is also reversible
(second phase of the algorithm). The main challenge here is that multiple graph expo-
nentiation processes executed on individual parts of the tree have to be merged, simulta-
neously or at different times, into one process during the execution.

— The design of a fine-tuned potential function for the analysis of the complex algorithm re-
sulting from addressing the aforementioned issues and the highly non-sequential behavior
arising from interleaving graph exponentiation steps.

Mid regime f(n) = ©(logn):  We would wish to use the algorithm of Chang and Pettie
[CP19] as a black box. On a very high level idea, their LOCAL algorithm uses O(logn) rounds
to compute a rake-and-compress decomposition of size O(logn), which is essentially the classic
H-partition by Miller and Reif [MR89]. Then, compatibility information of the given LCL
problem (see Section 5 for more details) is propagated layer by layer to the top, and then labels
are fixed at the top and propagated down.

Applying known MPC techniques like graph exponentiation to speed up this process does not
work out of the box for several reasons. First, the compatibility information they propagate
grows exponentially, which creates congestion in the MPC model. Secondly, since the input
graph is as sparse as it could possibly be, the direct application of graph exponentiation would
violate the optimal global memory bounds we are striving for. We resolve the first issue by first
observing that the compatibility information can be reduced to constant size in every iteration.



The second issue is remedied by interleaving exponentiation steps with memory freeing steps
in a balanced way.

Low regime g(n) = ©(loglogn): With an additional O(logn) factor of global memory,
this result is easy to obtain. Previous work [BCM™21] has a constant time reduction to instances
of size N = logn, resulting in a LOCAL algorithm with runtime poly(log N) = poly(loglogn).
A straightforward application of graph exponentiation would yield an MPC algorithm with
runtime O(logloglogn). Exploiting additional global memory in this manner has been used in
a similar setting in [CDP21a|. However, without the additional memory it is harder to solve
the small instances in triple logarithmic time. The work around for this memory issue is to
use our mid regime algorithm on the small instances, yielding a memory efficient algorithm
with runtime O(logloglogn). To the best of our knowledge there is no other paper that can
efficiently deal with such occurring small instances—small instances occur also in many other
problems like MIS and graph coloring—with optimal global memory.

1.4 Further Related Work

For many of the classic graph problems, simple O(logn)-time MPC algorithms follow from
classic literature in the LOCAL model and PRAM [ABI86, Lin87, Lub85]. In particular in the
case of bounded degree graphs, it is often straightforward to simulate algorithms from other
models. However, it is usually desirable to get algorithms that run much faster than their
LOCAL counterparts. If the MPC algorithms are given linear ©(n) or even superlinear ©(n'*+°)
local memory, fast algorithms are known for many classic graph problems.

In the sublinear (or low-space) model, [CFGT19b] provided a randomized algorithm for the
(A + 1)-coloring problem that, combined with the new network decomposition results [RG20,
GGR21], yields an O(logloglogn) MPC algorithm, that is exponentially faster than its LO-
CAL counterpart. A recent result by Czumaj, Davies, and Parter [CDP21b| provides a de-
terministic O(logloglogn)-time algorithm for the same problem using derandomization tech-
niques. For many other problems, the current state of the art in the sublinear model is still
far from the aforementioned exponential improvements over the LOCAL counterparts, at least
in the case of general graphs. For example, the best known MIS, maximal matching, (1 + €)-
approximation of maximum matching, and 2-approximation of minimum vertex cover algo-
rithms run in 6(\/logA + Vloglogn) time [GU19]|, whereas the best known LOCAL algorithm
has a logarithmic dependency on A [Ghal6|. For restricted graph classes, such as trees and
graphs with small arboricity® «, better algorithms are known [BFU19, BBD19]. Through a
recent work by Ghaffari, Grunau and Jin, the current state of the art for MIS and maximal
matching are O(y/Iog o - log log o 4 log log n)-time algorithms using O(n + m) words of global
memory [GGJ20].

As for lower bounds, [GKU19] gave conditional lower bounds of Q(loglogn) for component-
stable sublinear MPC algorithms for constant approximation of maximum matching and mini-
mum vertex cover, and MIS. In addition, the authors provided a lower bound of ©(logloglogn)
for LLL. Their hardness results are conditioned on a widely believed conjecture in MPC about
the complexity of the connectivity problem, which asks to detect the connected components

5The arboricity of a graph is the minimum number of disjoint forests into which the edges of the graph can
be partitioned.



of a graph. It is argued that disproving this conjecture would imply rather strong and sur-
prising implications in circuit complexity [RVW18]. When assuming component-stability, they
also argue that all known algorithms in the literature are component-stable or can easily be
made component-stable with no asymptotic increase in the round complexity. However, recent
work [CDP21a| gave a separation between stable and unstable algorithms, and that some par-
ticular problems (e.g., computing an independent set of size (n/A)) can be solved faster with
unstable algorithms than with stable ones.

It is also worth discussing the complexity of rooting a tree, as it is an important subroutine
in our high regime. On the randomized side, [BFU19| gave an O(log d-loglogn) time algorithm,
where d is the diameter of the graph. On the deterministic side, Coy and Czumaj [CC22| gave
an O(logn) time algorithm using (component-unstable) derandomization methods, which is the
current state of the art. In Appendix A we provide a totally different rooting algorithm that is
also deterministic and takes O(logn) time, but is component-stable. We note that [KLM™14]
uses similar techniques in a more general setting, but in w(logn) time.

1.5 Outline

After the formal introduction of LCL problems and other notations in Section 2, we start
proving the exponential speedup for the different regimes Theorem 1.1 in separate sections. In
Section 3, we warm-up with the tiny regime. In Section 4, we present the algorithm for our
most involved result, the high regime. In Appendix A we present the rooting algorithm that is
used as a subroutine in the high regime. Due to its complexity and length, the formal analysis
for the high regime is deferred to Appendix B. In Sections 5 and 6, we present the speedup for
the low and mid regime, respectively. As the proof of Theorem 1.2 requires the same techniques
as the speedup for the mid regime, its proof is also presented in Section 5. Some of our speedup
results use a description of a distributed algorithm with the claimed runtime to obtain the
speedup. In Section 7 we show that such a description can be inferred merely by knowing the
distributed complexity class in which the problem resides. The section also contains additional
reasons why our results apply to forests, for all the cases not reasoned elsewhere. Lastly, in
Appendix C, we describe the MPC broadcast tree for completeness, which is an important
primitive of the model, and is used implicitly throughout the paper.

2 Definitions and Notation

We work with undirected, finite, simple graphs G = (V, E) with n = |V| nodes and m = |E|
edges such that F C [V]?2 and VN E = (). Let deg(v) denote the degree of a node v in G and
let A denote the maximum degree of G. The distance dg (v, u) between two vertices v,u in G
is the length of a shortest v — u path in G; if no such path exists, we set dg(v,u) := co. The
greatest distance between any two vertices in G is the diameter of G, denoted by diam(G). For
asubset S C V, we use G[S] to denote the subgraph of G induced by nodes in S. Let G*, where
k € N, denote the k:th power of a graph G, which is another graph on the same vertex set, but
in which two vertices are adjacent if their distance in G is at most k. In the context of MPC,
G* is the resulting virtual graph after performing log k steps of graph exponentiation [LW10].

For each node v and for every radius k € N, we denote the k-hop (or k-radius) neighborhood
of v as N*(v) = {u € V : d(v,u) < k}. The topology of a neighborhood N¥(v) of v is simply
G[N*(v)]. However, with slight abuse of notation, we sometimes refer to N*(v) both as the



node set and the subgraph induced by node set N*(v). Neighborhood topology knowledge is
often referred to as vision, e.g., node v sees N¥(v). In trees and forests, the number n of nodes
and the number m of edges are asymptotically equal, and we may use them interchangeably
throughout the paper when reasoning about global memory.

2.1 LCL Definitions

In their seminal work [NS95], Naor and Stockmeyer introduced the notion of a locally checkable
labeling problem (LCL problem or just LCL for short). The definition they provide restricts
attention to problems where nodes are labeled (such as vertex coloring problems), but they
remark that a similar definition can be given for problems where edges are labeled (such as
edge coloring problems). A modern way to define LCL problems that captures both of the
above types of problems (and combinations thereof) labels half-edges instead, i.e., pairs (v, e)
where e is an edge incident to vertex v. Let us first define a half-edge labeling formally, and
then provide this modern LCL problem definition.

Definition 2.1 (Half-edge labeling). A half-edge in a graph G = (V, E) is a pair (v,e), where
v €V is a vertex, and e € E is an edge incident to v. A half-edge (v,e) is incident to some
vertex w if v =w. We denote the set of half-edges of G by H = H(G). A half-edge labeling of
G with labels from a set ¥ is a function g: H(G) — X.

We distinguish between two kinds of half-edge labelings: input labelings that are part of
the input and output labelings that are provided by an algorithm executed on input-labeled
instances. Throughout the paper, we will assume that any considered input graph G comes
with an input labeling gi,: H(G) — i, and will refer to X, as the set of input labels; if the
considered LCL problem does not have input labels, we can simply assume that 3, = { L} and
that each node is labeled with L. Then, Definition 2.3 details how a correct solution for an
LCL problem is formally specified.

Definition 2.2 (LCL). An LCL problem, LCL for short, is a quadruple II = (3in, Xout, 7, P)
where Xy and Yoy are finite sets (of input and output labels, respectively), r > 1 is an integer,
and P is a finite set of labeled graphs (P, pin,pout). The input and output labeling of P are
specified by pim: H(P) — Sin and pout: H(P) — Sous, respectively.”

Recall that N"(v) denotes the subgraph of G induced by all nodes at distance at most r
from v. This naturally extends to labeled graphs.

Definition 2.3 (Solving an LCL). A correct solution for an LCL problem II = (3in, Xout, 7, P)
on a graph (G, gin) labeled with elements from Y, is a half-edge labeling gowt: H(G) — Zout
s.t. for each node v € V(G), the neighborhood N"(v) in (G, gin, gout) S tsomorphic to some
member of P. We require that the isomorphism respects® the input and output labelings of
N"(v) and the member of P. We say that an algorithm A solves an LCL problem II on a graph
class G if it provides a correct solution for Il for every G € G.

"Note that the original definition given in [NS95] considers centered graphs; however, since we only consider
trees, considering uncentered graphs instead suffices.

8In other words, any two half-edges (in N”(v) and the member of P, respectively) that are (implicitly)
mapped to each other via the isomorphism are required to have identical input and output labels.
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Note that the LCL definitions above implicitly require that graph class G has constant
degree. It is often useful to rephrase a given LCL in a way that minimizes the integer r in the
LCL definition. In fact, since we only consider trees, any LCL can be rephrased in a special form,
called node-edge-checkable LCL, where r is essentially set to 1.” While the formal definition of
a node-edge-checkable LCL appears complicated, the intuition behind it is simple: essentially,
we have a list of allowed output label combinations around nodes, a list of allowed output label
combinations on edges, and a list of allowed input-output label combinations, all of which a
correct solution for the LCL has to satisfy.

Definition 2.4 (Node-edge-checkable LCL). Let A be some non-negative integer constant. A
node-edge-checkable LCL is a quintuple 11 = (i, Xout, N, E, g) where Ly, and Yoy are finite
sets, N ={N1,...,Na} consists of sets N of cardinality-i multisets with elements from Yout,
£ is a set of cardinality-2 multisets with elements from Lou, and g: Sin — 2% is a function
mapping input labels to sets of output labels. We call N1U- - -UNA and € the node constraint and
edge constraint of II, respectively. Furthermore, we call each element of N a node configuration,
and each element of £ an edge configuration. For a node v, denote the half-edges of the form
(v,e) for some edge e by hy,... ,hgeg(v) (in arbitrary order). For an edge e, denote the half-
edges of the form (v,e) for some node v by h§,hS (in arbitrary order). A correct solution for
IT is a half-edge labeling gout: H(G) — Yout such that

1. for each node v, the multiset of outputs assigned by gous to hY, ..., hgeg(v) s an element

of Ndeg(v) ’

2. for each edge e, the cardinality-2 multiset of outputs assigned by gous to h{,h§ is an
element of £, and

3. for each half-edge h € H(G), we have gous(h) € g(1), where v = gin(h) is the input label
assigned to h.

On trees, each LCL II (with parameter r in its definition) can be transformed into a node-
edge-checkable LCL IT' by the standard technique of requiring each node v to output, on each
incident half-edge h, an encoding of its entire r-hop neighborhood (including input labels,
output labels, and a marker indicating which of the half-edges in the encoded tree corresponds
to half-edge h). From the definition of IT', it follows immediately that I’ is equivalent to II in
the sense that any solution for IT can be transformed (by a deterministic distributed algorithm)
in constant time into a solution for II’, and vice versa. Hence, for the purposes of this work,
we can safely restrict our attention to node-edge-checkable LCLs.

2.2 Component-stability

The term of a component-stable MPC algorithm has been introduced in [GKU19] in the context
of lifting distributed lower bounds to the MPC setting. It was later revised by Czumaj, Davies
and Parter [CDP21a] and argued to be made more robust.

Definition 2.5 (Component-stability, [GKU19|). An MPC algorithm is component-stable if the
outputs of nodes in different connected components are independent. Formally, assume that for
a graph G, Dg denotes the initial distribution of the edges of G among the M machines and

¥ Arguably, this can be seen as 7 = 1/2, which might provide a better intuition.

11



the assignment of unique IDs to the nodes of G. For a subgraph H of G let Dy be defined as
Da restricted to the nodes and edges of H. Let H, be the connected component of node v. An
MPC algorithm A is called component-stable if for each node v € V, the output of v depends
(deterministically) on the node v itself, the initial distribution and ID assignment Dy, of the
connected component H, of v, and on the shared randomness Sy;.

In their revised definition, [CDP21a] assume the setting where all input graphs are legal.

Definition 2.6 (Legal graph). A graph G is called legal if it is equipped with functions ID,
name: V(G) — [poly(n)] providing nodes with IDs and names, such that all names are fully
unique and all IDs are unique in every connected component.

Definition 2.7 (Component-stability (revised), |[CDP21a|). A randomized MPC algorithm
Appc is component-stable if its output at any node v is entirely, deterministically, dependent
on the topology and IDs (but independent of names) of v’s connected component (which we will
denote CC(v)), v itself, the exact number of nodes n and mazimum degree A in the entire
input graph, and the input random seed S. That is, the output of Appc at v can be expressed
as a deterministic function Apypc(CC(v),v,n,A,S). A deterministic MPC algorithm Apnpc is
component-stable under the same definition, but omitting dependency on the random seed S.

As opposed to [GKU19|, [CDP21a] allow the output of component-stable algorithms to
depend on the total number of nodes in the graph and the maximum degree of the graph.
Additionally, they assume the following setting: all input graphs are legal (see Definition 2.6),
i.e., all nodes have an ID that is unique in every connected component, and a name that is
unique across the whole input graph. Assuming the above setting, the output of a component-
stable algorithm is allowed to depend on the IDs of all nodes in the same components, but not
the names.

In our work, we adopt the revised definition of component-stability [CDP21a]. In all of our
algorithms, nodes from different components only communicate in order to maintain a certain
global synchrony. This synchrony influences when certain steps are executed and hence the
execution of our algorithms. However, the output at each node is not influenced by the global
communication.

Theorem 1.2 shows that the lower bounds for component-stable algorithms can be beaten
for a large class of problems on trees and forests even with optimal memory. The long term
effect of the term component-stable in this setting is unclear, but it provides room for many
interesting open questions. One interesting aspect would be to see under which circumstances
one can obtain algorithms with stronger component dependent guarantees, e.g., one may want
to develop algorithms for which not just the output of a node, but also the time until it
has computed its output can only depend on the size of its component. Our algorithms do
not meet this stronger definition. Besides an ID space dependence our algorithms have the
following runtime behaviour. In the low and mid regime the time until we know the output of a
node depends on the number of nodes in the largest connected component. In the high regime
this time depends on the number of nodes in the whole graph. Going from trees to forests in
the high regime relies on the recent beautiful (deterministic) connected components algorithm
by Czumaj and Coy [CC22, BDE'20].
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3 The Tiny Regime

In this section, we show that any LCL problem on general graphs that can be solved in the
LOCAL model in O(log* n) rounds, can be solved in the MPC model in O(loglog™ n) rounds. By
combining this result with known gaps in the landscape of possible complexities in the LOCAL
model [CKP19]|, we obtain the following result.

Theorem 3.1. Let 11 be an LCL problem on general graphs. Assume that there is a deterministic
algorithm for the LOCAL model that solves I1 in o(logn) rounds, or a randomized algorithm
that solves it in o(loglogn) rounds. Then, the problem II can be solved deterministically in
O(loglog® N) rounds in the low-space MPC model using O(m + n) words of global memory,
where N = poly(n) is the size of the ID space. The algorithm works even if the graph consists
of disconnected components, and it is components-stable.

The rest of this section is devoted to proving Theorem 3.1.

A Universal Algorithm. In the LOCAL model, it is known that, if an LCL can be solved
with an algorithm A in o(logn) deterministic rounds, or in o(loglogn) randomized rounds,
then it can also be solved with a deterministic algorithm A’ that requires just O(log* n) rounds
[CKP19]. In order to prove this result, [CKP19] shows how to convert any such algorithm A
into an algorithm A’ that works as follows (for some constant k that depends on the problem
IT and the algorithm A):

1. Compute a distance-k O(A?*)-coloring of the graph;
2. Run a k-round algorithm B that uses the computed coloring to produce the final output.

In [CKP19] is shown that the constant k, and the k-round algorithm B, can be mechanically
determined from the original algorithm A. The runtime of algorithm A’ is O(log* n) rounds
since this is the runtime for the first step, while the second step only requires constant time.

Why it Works. The high-level purpose of computing the coloring in Item 1 is to provide
new identifiers at the nodes that are unique up to distance k and come from a much smaller
space than the original identifiers (that are part of the setting in the LOCAL model). Roughly
speaking, this ensures that the k-hop view of any node that interprets the computed colors as
identifiers is consistent with the node living in a constant-sized graph (with a constant-sized
identifier space).

In [CKP19], it is argued why this approach works, and on a high level, the reason can be
summarized as follows. For some sufficiently large constant k, algorithm A can be executed
on all graphs of a suitable constant size with a runtime of just k rounds. Since each node
of the original graph executing this k-round algorithm cannot distinguish between living in
the original graph with the generated new identifiers and living in (a suitable) one of these
constant-sized graphs (on all of which the algorithm is correct), the k-round algorithm must
also be correct on the (much larger) original graph. This is just a high-level sketch of the proof
presented in [CKP19]; there are a number of intricate details that have to be taken care of and
are explained in [CKP19].
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How We Proceed. For our purpose, we do not actually need to know the details of [CKP19]
on how A’ is constructed as a function of A, and we just use the following statement that comes
from [CKP19]: if the problem II can be solved in o(logn) deterministic rounds or o(loglogn)
randomized rounds, then it can also be solved in O(log*n) deterministic rounds using an
algorithm that first applies Item 1 and then applies Item 2. In fact, in our case, we are not
even given the algorithm A as input: we just know that the problem can be solved in o(logn)
deterministic or o(loglogn) randomized rounds, but we are not given an algorithm A with such
a complexity. Hence, we cannot apply the construction of [CKP19| directly.

In Section 7, we show that this is not an issue, in the sense that, if an algorithm exists, then
it can be found by brute force. To show that, we use the following two important ingredients
presented in [NS95]:

— Any constant time algorithm that solves an LCL in the LOCAL model can be transformed
into an algorithm that does not require nodes to have IDs.

— For every k, it is decidable whether there exists a k-round algorithm that solves a given
problem in a setting where we do not have IDs and we are given a (suitable) distance-k
coloring. The reason is that, in this setting, there are only a finite number of possible
algorithm candidates (and they can be enumerated), and given a candidate, it is possible
to check if it constitutes a correct algorithm by using a centralized offline procedure.

We use the above ingredients as follows. If we just know that II can be solved in o(logn)
deterministic rounds or o(loglogn) randomized rounds, even if no algorithm is given, we can
use [CKP19] to claim that there exists a k for which there is a k-round algorithm B that solves
II given a distance-k coloring, and then use the first ingredient to claim that this algorithm
does not need the presence of IDs. Finally, we use the second ingredient to say that if we try
increasing values of k, we are going to find the algorithm B that we need.

From the above discussion, in order to prove Theorem 3.1, we only need to show how to
compute a distance-k O(A?*)-coloring in O(loglog* n) deterministic MPC rounds.

3.1 LOCAL Algorithm

We start by presenting an algorithm for computing such a coloring in the LOCAL model. While
computing such a coloring in the LOCAL model is easy, we present an algorithm amenable to
be converted into a faster MPC algorithm. This algorithm is not new: it has been already
presented in [GPS88, PRO1], and we report it here, with minor modifications, for completeness.

Lemma 3.2. For any constant k, the distance-k O(A%)—coloﬁng problem on general graphs
can be solved in the LOCAL model with a deterministic algorithm running in O(log™n) rounds.

Proof. We present an algorithm that is able to compute an O(A?2) coloring of a given graph G,
where A is the maximum degree of G, in O(log* n) rounds. By simulating such an algorithm on
G*, the k-th power of G, which has maximum degree A*, we obtain the claimed result. Note
that the running time is also asymptotically the same, since k is a constant.

The algorithm works as follows. At the beginning, each edge is oriented arbitrarily. Then,
each node marks its incident outgoing edges with different numbers from {1,...,A}. In this
way, we decomposed our graph G into A edge-disjoint directed subgraphs G1,...,Ga, where
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each G; is the graph induced by edges marked i. Also, notice that by construction, for each i,
each node in G; has at most a single outgoing edge, and hence each G; is a directed pseudoforest.

Assume we can color each directed pseudoforest with 3 colors in O(log® n) rounds. Then, we
can obtain a proper coloring for the nodes of G with 32 colors, by letting each node construct
the tuple c(v) = (¢1(v),...,ca(v)), where ¢;(v) is the color of v in G;. In fact, consider two
neighboring nodes u and v connected through an edge e. Assume that e is oriented from u to v,
and that u marked e with value . Then, in G;, u and v are neighbors, and hence they obtained
different colors c;(u) and ¢;(v), implying that c(u) # c(v). Once a 3®-coloring is obtained,
we can then spend O(3%) rounds to reduce the number of colors to O(A2), by using a simple
greedy algorithm.

We now show that each pseudoforest can be 3-colored efficiently. Let P be an arbitrary
pseudotree. At first, we can use the IDs of the nodes to produce a poly(n)-coloring of P. Then
we apply 1 round of Linial’s coloring algorithm [Lin92] in order to obtain an O(logn)-coloring
of P. While this step of coloring is not necessary for the LOCAL algorithm, it allows us to
reduce the amount of information that we will later need to transmit in the MPC algorithm.
Nodes can then spend T' = O(log* n) rounds to gather the color of their successors in P at
distance at most 7', and it is known that, with this information, nodes can compute a proper
coloring of P, by simulating O(log* n) steps of a color reduction algorithm for directed paths
[GPS88, CV86]. O

3.2 MPC Implementation

We now show how to convert the LOCAL algorithm into an exponentially faster low-space MPC
algorithm. The LOCAL algorithm consists of two main steps: The distance-k O(A?*)-coloring
and the k-round algorithm. Since k and A are constant, the latter step is trivial, and the
former step can be computed efficiently using graph exponentiation, where nodes keep track of
the IDs of the two outermost nodes, and the colors of all nodes in between. Lemma 3.5 of the
following paragraph proves the former step, completing the proof for Theorem 3.1. Component-
stability and compatibility with disconnected components follows directly from the fact that
all arguments are local, i.e., nodes in separate components never communicate, and that the
runtime depends only on .

Distance-k Coloring We show that the initial distance-k coloring can be computed in
O(loglog* n) low-space MPC rounds, while respecting linear global memory. First, we observe
that using the standard graph exponentiation technique, we can compute the kth power of a
graph; for constant k, the memory overhead is only a constant. Then, we will apply techniques
similar to the ones used in the LOCAL model in Lemma 3.2.

Observation 3.3. For an input graph G with n nodes, m edges, and mazimum degree A,
the power graph G* can be computed deterministically in O(logk) low-space MPC rounds with
O(AF) words of local and O(m + n - AF) words of global memory, as long as AF < n?.

Observation 3.4. FEvery k-round LOCAL algorithm can be simulated in O(logk) low-space
MPC rounds with O(A®) words of local and O(m + n - AF) words of global memory, as long as
AF < n®. If the LOCAL algorithm is deterministic, then the MPC algorithm is deterministic as
well.
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Proof. Using Observation 3.3, we can collect the k-hop neighborhood of each node and hence,
simulate a k-round LOCAL algorithm in an additional O(1) low-space MPC rounds. Observe
that this also holds for general graphs. O

Lemma 3.5. The distance-k O(A?F)-coloring problem on general graphs can be solved in the
low-space MPC model with a O(loglog* n+log k)-time deterministic algorithm, as long as AF <
nd. The algorithm requires O(AF) words of local and O(m +n - AF) words of global memory. If
k and A are constants, the runtime reduces to O(loglog* n) and we require O(1) words of local
and O(m + n) words of global memory.

Proof. Using Observation 3.3, we can first compute G* in O(log k) rounds, and operate on G*
instead of the input graph G henceforth. The application of Observation 3.3 requires O(AF)
words of local memory and O(m+n-AF) words of global memory. Then, similarly to Lemma 3.2,
we can reduce the coloring problem to O(1)-coloring of directed pseudoforests that are initially
colored with O(logn) colors.

Next, our goal is to use the graph exponentiation technique such that each node can collect
the topology and the colors of its O(log™ n) successors in its pseudoforest in O(loglog™ n) time.
Here, we have to take care of the subtle detail that the color of a successor is not enough to
determine the machine on which this successor lies. Suppose that each node is initially labeled
with its O(loglogn)-bit color and its O(logn)-bit identifier that encodes both the identity
(color) of the node and the machine containing the node. Then, in round 1, each node knows
the identifier and the color of its successor. For an inductive argument, suppose that each node
u knows the identifier the successor v; in distance 7 and the vector of colors of all nodes in
between u and v;, on the directed path from u to v;. Then, in O(1) MPC rounds, u can learn
the identifier of the 2i:th successor v9; and the colors of all nodes between w and vy;. After
learning the identifier of vo;, node u can forget about the identifier of v; and hence, u only
keeps track of one identifier. By induction, node u learns the colors of its O(log* n) successors
in O(loglog* n) MPC rounds.

Using the vector of colors of the successors, in O(1) MPC rounds, each node can simulate
the O(log* n)-time LOCAL algorithm to obtain an O(A?*)-coloring. This requires O(log* n -
loglogn+logn) = O(logn) bits of memory per node per pseudoforest that the node belongs to,
counting the colors of the successors and the identifier of the furthest successor. Altogether, this
results in a global memory requirement of O(nlogn - AF) bits which fits O(n - A*) words. [

4 The High Regime

In this section, we will prove that all solvable LCL problems on forests, i.e., all LCL problems
that have a correct solution on every forest, can be solved deterministically in O(logn) time in
the low-space MPC model using O(m + n) words of global memory. Our proof is constructive:
we explicitly provide, for any solvable LCL, an algorithm that has a runtime of O(logn). In
fact, our construction can be used to find an O(logn)-time algorithm A even for unsolvable
LCLs, with the guarantee that on any instance that admits a correct solution the given output
will be correct (while the algorithm detects it if no solution exists). We show the following
theorem.

Theorem 4.1. For any solvable LCL problem I1 on a forest, there is an O(logn)-time deter-
ministic low-space MPC algorithm that is component-stable and uses O(m + n) words of global
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memory.

The runtime bound of Theorem 4.1 follows from Corollary 4.6, Lemmas 4.4, 4.9 and 4.14,
and the implementation details that we provide in Appendix B.3. Its correctness is proven in
Lemmas 4.4 and B.22. We elaborate on this in Appendix B.4. In particular, in Appendix B.4
we provide a method to solve any LCL on forests if we can solve it on trees. Hence, w.l.o.g.,
we can restrict attention to trees and will do so for the remainder of the discussion of the high
regime.

4.1 High-level Overview of the Algorithm and Its Analysis

Consider an arbitrary solvable LCL problem II on trees. Throughout this section, we will
assume that the LCL is given as a node-edge-checkable LCL (Definition 2.4), which we can do
w.l.o.g., as observed in Section 2. In the following, we will give a slightly simplified view of the
algorithm A we will use to solve II in O(logn) time. On a high level, algorithm 4 proceeds
in 2 phases. Assume that already before the first phase we root the input tree by using the
algorithm described in Appendix A.

In the first phase, which we will refer to as the leaves-to-root phase, roughly speaking, the
goal is to compute, for a substantial number of edges e = (u,v), the set of output labels that
can be output at half-edge (v, €) such that the label choice can be extended to a (locally) correct
solution in the subtree hanging from v via e. This is done in an iterative manner, proceeding
from the leaves towards the root. When, at last, the root has computed this set of output
labels for each incident half-edge, it can, on each such half-edge, select an output label from
the computed set such that the obtained node configuration is contained in the node constraint
of II and the input-output constraints of II (given by the function g in the definition of II)
are satisfied. Such a selection must exist due to the fact that II has a correct solution on the
considered instance. We refer to these sets as the completability information.

The second phase, which we will refer to as the root-to-leaves phase, consists of completing
the solution from the root downwards, by iteratively propagating the selected solution further
towards the leaves. With the same argumentation as at the root, certain nodes v can select an
output label at the half-edge leading to its parent and output labels from the sets computed
on its incident half-edges leading to its children such that the obtained node configuration is
contained in the node constraint of II, the obtained edge configuration on the edge from v to
its parent is contained in the edge constraint of 1I, and the input-output constraints of II are
satisfied. The fact that the selected labels come from the sets computed in the first phase ensures
that after each choice the current partial solution is part of a correct global solution. While
this outline sounds simple, there are a number of intricate challenges to make the mentioned
ideas work in O(logn) rounds while staying within the memory bound of O(m + n).

Unfortunately, if the depth of the input tree is w(logn) the outlined approach has w(logn)
steps and running them sequentially is insufficient for an O(logn)-time algorithm. In order to
mitigate this issue, we will not only process the leaves of the remaining unprocessed tree in each
iteration, but also the nodes of degree 2, inspired by the rake-and-compress decomposition by
Miller and Reif [MR89] which guarantees that after O(logn) iterations of removing all degree-
1 and degree-2 nodes all nodes have been removed. The advantage of degree-2 nodes over
higher-degree nodes w.r.t. storing completability information (as in the above outline) is that
they form paths, which by definition only have two endpoints; the idea, when processing such a
path, is to simply store in the two endpoints the information for which pairs of labels at the two
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half-edges at the ends of the path there exists a correct completion of the solution inside the
path. This allows to naturally add processing degree-2 nodes to the leaves-to-root phase, while
for the root-to-leaves phase, the information stored at the endpoints s,t of a path essentially
allows us to start extending the current partial solution on the path itself (and thereafter on
the subtrees hanging from nodes on the path) one step after the output labels at s and ¢ are
selected. Note that the degrees of nodes change throughout the process due to the removal of
nodes and hence new nodes might become degree-2 nodes after every step of the algorithm.

Unfortunately, there are further challenges in obtaining an O(logn) runtime. In the leaves-
to-root phase, even when using graph exponentiation, processing a path of degree-2 nodes of
length L involves coordination between its endpoints and takes Q(log L) time, whereas the
O(logn) time guarantee of the rake-and-compress technique crucially relies on the fact that
each iteration (optimally, an iteration would remove all leaves and all degree-2 nodes) can
be performed in constant time. Hence, essentially, we will only perform one step of graph
exponentiation on paths in each iteration. Here, a new obstacle arises: before the graph
exponentiation is finished, new nodes (that just became degree-2 nodes due to all except one of
their remaining children being conclusively processed in the most recent iteration) might join
the path. Nevertheless, we will show that this process still terminates in logarithmic time by
designing a fine-tuned potential function that is inspired by the idea of counting how many
nodes from certain groups of degree-2 nodes are contained in any fixed “pointer chain” from
some leaf to the root.

Another issue is that we have to be able to store the completability information (recall, the
sets) that we compute in the leaves-to-root phase until we use it (again) in the root-to-leaves
phase. Recall that the graph exponentiation technique adds new edges/pointers. Even on paths
their number can be up to logarithmic in n per node (even on average), yielding a logarithmic
overhead in global memory.

In order to remedy this problem, we perform preprocessing before the leaves-to-root phase,
and, as a result thereof, postprocessing after the root-to-leaves phase. The preprocessing can
be thought of as a more memory-efficient (hence relatively slower) version of (a few iterations
in) the leaves-to-root phase. It differs by processing the degree-2 nodes, i.e., paths, in a way
that guarantees that the number of new edges introduced by the graph exponentiation (which
we should rather call pointer forwarding at this point) on each path in each iteration is only
a constant fraction of the length of the respective path. This is achieved by finding, in each
iteration, a maximal independent set (MIS) on each path, letting only MIS nodes forward
pointers, and removing the MIS nodes afterwards. The preprocessing runs for O (loglogn)
iterations, and computing an MIS on paths in each of them takes O(log* N) time, where N is
the size of the ID space. Note that due to the removal of vertices and the way we treat paths,
new paths can appear in each iteration and we need to pay the O(log* N) runtime in each
iteration, yielding a runtime of O(loglogn -log® N) for the preprocessing, which is much less
than the target runtime of O(logn) rounds.

We will show that the number of remaining nodes is O(n/logn) after the preprocessing.
This property ensures that the memory overhead of O(logn) edges per node introduced in the
leaves-to-root phase does not exceed the desired global memory of O(m + n) words. The post-
processing runs for ©(log logn) iterations and is conceptually very similar to the preprocessing.
We simply iteratively extend the partial solution (computed so far) on the edges that were
processed during preprocessing, analogous to the approach in the root-to-leaves phase. Lastly,
we also have to ensure that the local memory restrictions of low-space MPC are not exceeded;
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we take care of this in Appendix B.3.

4.2 The Algorithm

In this section, we provide the desired algorithm that can be implemented in O(logn) time in the
low-space MPC model and prove its correctness. The details about the exact implementation
in the MPC model are deferred to Appendix B.3. Let IT = (X, Xout, N, €, g) be the considered
LCL, and let G denote the input tree. Before describing the algorithm, we need to introduce
the new notion of a compatibility tree. In a sense, a compatibility tree is a structure that stores
the constraints that a given LCL imposes for a given input tree, i.e., the constraints that two
labels on an edge or deg(v) labels around a node v have to satisfy (as well as which output
labels can be used at which half-edge, which the LCL encodes via input labels) are explicitly
encoded on the edge and around the node.

Definition 4.2. A compatibility tree is a rooted tree T' (without input labels) where each edge
(u,v) is labeled with a subset Sy, of Yout X Lout, and each node w is labeled with a tuple Sy,
consisting of tuples of the form (sg,)ecinc(w) where inc(w) denotes the set of edges incident to w,
and s, € Yout for each e € inc(w). A correct solution for a compatibility tree is an assignment
gout: H(T) = Sout s.t.

1. for each edge e = (u,v), we have (gout((u,€)), gout ((v,€))) € Syw, and

2. for each node w, there exists a tuple (s§,)ceinc(w) € Sw such that, for each edge e € inc(w),
we have gout((w, €)) = s¢,.

Now, we are set to describe the desired algorithm. The algorithm starts by rooting G,
using the method described in Appendix A. We denote the root by r. Then, we transform G
(which from now on will denote the rooted version of the input tree) into a compatibility tree
G’ by iteratively removing nodes of degree 1 and 2 (while suitably updating the edge set) and
assigning a subset Sy, resp. Sy, to each remaining edge (u, v), resp. remaining node w. We call
this step preprocessing (resp. postprocessing when extending the solution back to the removed
nodes) and formally define it in Section 4.2.1. Next, we design an algorithm A’ that computes
a correct solution for the compatibility tree G’. Algorithm A’ is divided into algorithms A} and
Af;, which largely correspond to Phase I (Section 4.2.2) and Phase II (Section 4.2.3) mentioned
in the high-level overview. Algorithm Af finds a correct solution for G’, and algorithm Aj;
transforms the obtained solution into a correct solution for LCL II on G.

4.2.1 Reducing the LCL to a Small Compatibility Tree (Pre- and Postprocessing)

In this section, we show how to transform the rooted tree G into a compatibility tree with
O(n/logn) nodes, where n is the number of nodes of G, and how to transform any correct
solution for G’ into a correct solution for the given LCL IT on G. In other words, we show
how to reduce the problem of solving II on G to the problem of finding a correct solution for
a compatibility tree with fewer nodes. The idea behind this approach is that the new, smaller
instance can be solved in logarithmic time without exceeding the desired global memory of
O(m + n) words. To obtain a good overall runtime, we will also show how to perform the
reduction (and recover the solution) in O(loglogn - log® N) = O(loglogn - log* n) rounds.
Recall, that N denotes the size of our ID space.
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We start by describing how to obtain G’ from G. To this end, we will first transform G into
a compatibility tree Gy, and then iteratively derive a sequence G1,Go, ..., G; of compatibility
trees from Gy, where t € O(loglogn) is a parameter we will choose later.

We define G in the natural way, by essentially encoding the given LCL II. The nodes and
edges of G are precisely the same as in G. For any edge (u,v) with input labels ¢, and ¢, at
the two half-edges belonging to (u,v), we set Sy, to be the set of all pairs (£, ') € Zgut X Zout
such that the multiset {¢, ¢’} is contained in the edge constraint £ of II, and we have £ € g(i,,)
and £' € g(1,). For any node w, we set Sy, to be the set of all tuples (£°)ccinc(w) such that the
multiset {¢¢ | e € inc(w)} is contained in Ngeg(w).- Note that the asymmetric nature of this
definition comes from the fact that we only need to require compatibility with the function ¢
once, in the constraints for nodes or (as we chose) for edges. From the definition of Gg, we
obtain directly the following observation.

Observation 4.3. A half-edge labeling of G is a correct solution for LCL 11 if and only if it is
a correct solution for the compatibility tree Gy (under the natural isomorphism between G and
the graph underlying Gy ).

We now describe how to obtain G; from G;_1, for any 1 < i <t. We transform G;_1 into G;
in two steps. In the first step, we start by finding an MIS Z on the subgraph of G;_; induced
by all nodes of degree precisely 2. Then, for each node v € Z with incident edges e = (u,v)
and ¢’ = (v,w), we remove e and ¢ from G;_; and replace them by a new edge €’ = (u,w).
Furthermore, for the new edge, we set Sy, to be the set of all label pairs (¢,£") € Xout X Zout
such that there exist labels £1, ¢y satisfying (£,41) € Syy, (b2,€') € Sy, & = £1, and s& = L.
From the perspective of the nodes u and w, the new edge €’ replaces the old edges e¢ and ¢/,
respectively, in the indexing hidden in the definition of the tuples S, and S,,. Call the obtained
graph G)_;.

In the second step, executed after the first step has finished, each edge e* = (z,y) such
that x is a leaf is removed together with x. Moreover, for such a removed edge, we set S, to
be the set of all tuples (£;)ccinc(y) such that there exist labels £, ' such that (in G}_,) we have
(€,0") € Syy and there exists some tuple (sf)ccine(y) With sy = £; (for all e # e*) and sg* =/.
(Here the first occurrence of inc(y) denotes the set of edges incident to y after removing e*,
while the second occurrence denotes the set before removing e*.) If a node y of G_; has
multiple children that are leaves, then we can think of removing the respective edges one by
one, each time updating S,. However, for the actual computation, node y can perform all of
these steps at once.

We obtain the following lemma.

Lemma 4.4. Let 1 < i <t. If there exists a correct solution for G;_1, then there also exists a
correct solution for G;. Moreover, given any correct solution for G;, we can transform it into
a correct solution for G;_1 in a constant number of rounds in the low-space MPC model using
O(m + n) words of global memory. Finally, given Gi_1, we can compute G; in O(log" N) =
O(log™ n) rounds in the described setting.

Proof. The first statement follows directly from the definition of G;. For the second statement,
observe that from the definition of Gj, it follows that any correct solution for G; provides a
partial solution for G;_1 (under the natural transformation that subdivides edges and adds the
“removed” leaves with their incident edges) that is part of a correct solution for G;_; (and this
factors through G)_; in the obvious way). Hence, we can first obtain a correct solution for G}_;
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by extending the provided solution on the removed leaves with their incident edges, and then
obtain a correct solution for G;_1 by doing the same on the subdivided edges. Note that the
first extension can be performed by the nodes that are incident to the leaves (all of which have
only constantly many output labels to determine), and the second extension by the computed
nodes in the MIS Z (which we can do in parallel since no two nodes in Z are neighbors). The
third statement follows from the definition of G;, the fact that an MIS can be computed in
O(log" N) = O(log™ n) rounds (already in the LOCAL model), and the above observation about
parallelization. O

Next, we bound the number of nodes of G;, which we denote by n;.
Lemma 4.5. For any 1 <1i <t, we have n; <2/3-n;_1.

Proof. By the construction of (G;, all nodes that are contained in GG;_1 but not in G; are either
leaves or degree-2 nodes in GG;_1. In particular, as the set of leaves is the same in G;_; and

', all leaves of G;_; are not contained in G;. Regarding degree-2 nodes in G;_1, we observe
that at least a third of them must be part of the chosen MIS since (i) each degree-2 node must
be in the MIS or have an MIS node as neighbor, and (ii) each MIS node covers at most three
nodes (in the sense that it is equal or adjacent to them).

Also, since the average degree of a node in a tree is below 2, the number of leaves in a tree
is larger than the number of nodes of degree at least 3. Hence, when going from G;_1 to Gj,
at least half of the nodes of degree # 2 are removed, and in total we obtain that the number
of nodes that are removed is at least 1/3 - n;, which proves the lemma. O

Now, by setting ¢ := 2loglogn and G’ := G, we obtain the following straightforward
corollary.

Corollary 4.6. The number of nodes of G' is at most n/logn.

Moreover, by Observation 4.3, Lemma 4.4, and Lemma 4.5, we know that we can compute
G’ in O(loglogn -log* N) = O(loglogn - log* n) rounds, that there is a correct solution for G’
(provided the LCL IT admits a correct solution on G), and that we can transform any correct
solution for G’ into a correct solution for IT on G in O(loglogn) rounds. The stated runtimes
are under the premise that we can implement all of the O(loglogn) steps without running into
memory issues, which we will show to be the case in Appendix B.3. (Note that Lemma 4.4
only makes statements about single steps.)

4.2.2 Phase I (leaves-to-root)

In Phase I, we maintain a set of pointers (u,v), which encode the output labels that can be
chosen at u and v such that the solution can be correctly completed on the path between u
and v and the subtrees hanging from this path. The goal is to increase the lengths of these
pointers, until we obtain leaf-to-root pointers that allow us (in Phase II) to fix output labels
at the root that can be completed to a correct solution on the whole tree. The algorithm in
Phase I proceeds in iterations ¢ = 1,2, .... Before explaining the steps taken in each iteration,
we need to introduce some definitions.

A pointer is simply a pair (u, v) of nodes such that v is an ancestor of u in G’, i.e., v is a node
on the path from u to the root r, and v # u. We say that a pointer (u,v) starts in u and ends
in v; we also call (u,v) an incoming pointer when considering node v, and an outgoing pointer
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when considering node u. On each pointer p = (u,v), we store several pieces of information
which are required for Phase II:

1. a set pairs, C Yout X Xout (encoding completability information as outlined above),

2. a node pred,, which might also be empty, i.e., pred, € V(G') U{L} (encoding the infor-
mation about which node created the pointer), and

3. pair (firsty, last,) where first, is the first and last, the last edge on the unique path from
u to v (possibly first, = last)).

The initial pointer set Py is set to E(G), where for each pointer p = (u,v), we set pairs,, :=
Suv, pred, = L, and first,, = last, = (u,v). We also maintain a set of active pointers which is
initially set to actg := Py. Throughout Phase I, we will guarantee that the set of active pointers
contains, for each node u # r, at most one pointer starting in u, and no pointers starting in the
root . We call a node active in iteration ¢ if it is the root r or has exactly one outgoing active
pointer at the end of iteration ¢ — 1, i.e., one outgoing pointer in act;_1. For active nodes, we
will denote the unique pointer starting in node u # r by p(u). Finally, for each node u that is
not a leaf, we also maintain a tuple M (u) = (M®(u))ccinc(u) Such that each element M€(u) is
either a subset of ¥, or the special label undecided. (The purpose of these tuples is to store
completability information about subtrees hanging from w via different edges). The multiset
for node w is initially set to My(u) := (undecided,...,undecided).

In iteration ¢, the pointer set is updated from P;_; to P;, the active pointer set from act;_1
to act;, and, for each non-leaf node u, the tuple M;_1(u) is updated to M;(u). For each i > 0,
we will ensure that act; C P; and P; C Pi41 (if both are defined). In order to specify the
precise update rules, we need two further definitions.

The first definition specifies which nodes (during the iterative process explained above)
should be intuitively regarded as degree-2 nodes (because for all incident edges (to children) ex-
cept one, the corresponding subtree has already been completely processed w.r.t. completability
information) and which as nodes of degree at least 3. (Degree-1 nodes will only play a pas-
sive role in the update rules.) The second definition provides an operation that combines two
pointers into a larger one.

Definition 4.7 (k-nodes). We call a node u # r a 2-node if u has at least one incoming active
pointer and for any two incoming active pointers p,p’, we have last, = last, . For a 2-node u,
we call the unique incoming edge e satisfying that for any incoming active pointer p we have
last, = e, the relevant in-edge of u. We call a node u # r a 3-node if u has (at least) two
incoming actie pointers p,p’ satisfying last, # last,y. For a node u that is a 3-node or the root
r, an incoming edge e is called a relevant in-edge of u if there is an incoming active pointer p
satisfying last, = e. We call a node w # r a 1-node if u has no incoming active pointer.

Definition 4.8 (Merge). Let v be a 2-node, p = (u,v) and p' = (v,w) two active pointers
starting and ending in v, respectively, and M(v) = {M®(v)}ecinc(v) the current tuple at v.
(Note that our construction of the update rules will guarantee (as shown in Observation B.3)
that (for any 2-node v) we have M€(v) = undecided if and only if e = last, or e = firsty.)
Then, we set merge(p, p') = (u, w). Furthermore, we set Pairs epge(p,pr) t0 be the set of all label
pairs (£,€') such that there exists a tuple (£°)ccinc(v) of output labels s.t.

1. (Ee)eeinc(v) € Sy,
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2. 1° € M®(v), for each e € inc(v) \ {lasty, first,y }, and
3. (£,0%%) € pairs,, and (£frster gy € pairs,, .

Finally, we set pred = v, firstperge( = firsty, and lasterge(p,pr) = lasty.

merge(p,p’) p,p’)

The above definition ensures that the new pointer (u,w) satisfies the property that w is
an ancestor of u, i.e., (u,w) is indeed a pointer. Now, we are set to define precisely how the
sets and tuples we maintain throughout the iterations change. The update rules for iteration
1 > 1 are as follows. We emphasize that update rules 2 and 3 are executed “in parallel” for all
2-nodes, 3-nodes, and the root, i.e., there are no dependencies between these steps. Algorithm
Aj is defined as follows.

1. Start by setting act; :== P; := 0, and M;(u) = M;_1(u) for each node u.

2. For each active 2-node u (with outgoing pointer p(u)), and each incoming active pointer
p € act;_1, add the pointer merge(p, p(u)) to act,.

3. For each node w that is a 3-node or the root r do the following. Start by asking, for
each relevant in-edge e = (v,u) of u, whether there is some incoming active pointer
p = (w,u) € act;—; such that last, = e and w is a leaf. If the answer is “no” for at least
one relevant in-edge, or if u = r, then

(a) for all relevant in-edges e for which the answer is “no”, add all incoming active
pointers p’ € act;—; with last, = e to act;, and

(b) for all relevant in-edges e = (v,u) for which the answer is “yes”, (only) change
M¢(u) (from undecided) to the set of all labels £ satisfying that there exists a pair
(¢/,0") € pairs, with £ = £ and (¢') € Sy.

If the answer is “yes” for all relevant in-edges and u # r, then change the answer to “no”
on precisely one arbitrarily chosen relevant in-edge, and proceed as in the previous case
(i.e., execute steps 3a and 3b).

4. For each node u # r that has an outgoing active pointer, set p(u) to be the unique pointer
in act; starting in .

5. Set P; := P;_1 U act;.

Algorithm A] terminates after the first iteration ¢ satisfying act; = (.

An Example for Phase I (leaves-to-root). Consider the compatibility tree given in Fig-
ure 1, for ¢ = 0. The considered output label set is Yoy = {0,1,2}. For each edge (u,v) in
the tree, the associated label pair set S, is defined as (0,1), (1,2), which, for simplicity, we
will write in the form 01, 12. For each node w that is not a leaf or the root, the associated set
Sy is defined as the set of all tuples (of length deg(w)) with pairwise distinct entries (e.g., if w
is of degree 3, each tuple in S,, is a permutation of (0,1,2)). For the leaves and the root, the
associated tuple set is given below or above the node.

In iteration ¢ = 1, three merge operations are performed by the three non-root nodes
of degree 2. In each merge operation, two pointers p = (u,v), p’ = (v,w), each labeled with
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Figure 1: An example execution of the algorithm in Phase I.
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01,12, are merged into a larger pointer (u,w) with label 01,11, 12. The label of the new pointer
contains, e.g., the pair 12 since labeling half-edge (u, (u,v)) with 1 and half-edge (w, (v, w))
with 2 can be completed to a labeling of all inbetween half-edges such that the labeling respects
the constraints Sy, Sy, and Sy, namely by labeling (v, (u,v)) with 2, and (v, (v,w)) with 1.
Moreover, the two dashed pointers are removed from the set of active pointers in iteration 1
as they start in a leaf z and end in a 3-node or the root. Consequently, the two leaves in
which the pointers start become inactive in iteration 1 (which is illustrated by coloring them
gray). The two nodes y in which the pointers end update their set M (y), by setting the entry
corresponding to the removed pointer from undecided to the set of all labels that (when written
at half-edge (y, (x,y))) are completable downwards, i.e., for which a label at the respective leaf
x exists that respects S, and S;,. We illustrate the entries that change from undecided to
some set by circling them, e.g., the changed entry of M (r) is the circled set consisting of the
labels 1 and 2.

In iteration ¢ = 2, three merge operations are performed, by the two non-root 2-nodes. In
iteration ¢ = 3, no merge operations are performed as there is no 2-node. Furthermore, the
left child z of the root (which is a 3-node) obtains “yes” as answer for the question it asks in
step 3 of the update rules, for both relevant in-edges. Thus, z changes the answer to “no” for
one of the relevant in-edges, arbitrarily chosen (in our case the left one). For the other relevant
in-edge e, all pointers p with last, = e are removed from the set of active pointers, and the
corresponding entry in the set M(z) is changed from undecided to {1}. This also causes three
nodes to become inactive. In iteration ¢ = 4, the newly born 2-node performs three merge
operations. In iteration ¢ = 5, all pointers ending in the root are removed from the set of active
pointers due to the existence of a pointer starting in a leaf with the same “last edge”. This
step causes the set of active pointers to become empty, upon which the algorithm in Phase I
terminates. In Appendix B.1, we show that Phase I is well-defined and analyze it. In particular,
we prove the following lemma that bounds the number of iterations in Phase 1.

Lemma 4.9. Algorithm A terminates after O(logn) iterations.

4.2.3 Phase II (root-to-leaves)

Let Pg, denote the set of pointers at the end of the last iteration of Phase I. In Phase II, we
will go through the pointers of some subset of Pg, in some order and “fix” them, i.e., for each
such pointer p = (u, v) we assign to the two half-edges (u, first,) and (v, last,) a label from Xy
each. In order to describe the order in which we process the pointers, we group the pointers
we want to process into sets time(1), time(2),.... We will process each of the pointers in set
time() in parallel in iteration i.

Define time(1) to be the set of all pointers p = (u,r) € Pgy, for which u is a leaf. For each
i > 2, define time(7) to be the set of all pointers p’ s.t. there is a pointer p = (u,v) € time(i —1)
satisfying (1) p’ = (u,pred,), (2) p’ = (pred,,v), or (3) p’ = (w,pred,) where w is a leaf and
the edge last,, does not lie on the path from u to v.

Next, we collect some insights about the pointers in time(:). The proofs are deferred to
appendix B.2. We start with Lemma 4.10 which provides information about the leaf-root
pointers produced in Phase I. We continue with Lemma 4.11 which highlights which pointers
in time(4) are “produced” by some pointer in time(i — 1).

Lemma 4.10. For each edge e incoming to the root r, there is precisely one pointer p = (u,r) €
Pen such that u is a leaf and last, = e.
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Lemma 4.11. Let p = (u,v) be a pointer in Ps, with pred, # L. Then pred,, has degree at
least 2 in G'. Moreover,

1. if pred, has degree 2, then (u,pred,), (pred,,v) € Py,, and

2. if pred, has degree at least 3, then (u,pred,), (pred,,v) € Pgy, and for each edge e
incoming at pred,, that does not lie on the path from u to v, there is exactly one pointer
P = (w, pred,) € Phy such that w is a leaf and last,y = e.

The next lemma shows that the sets time(¢) yield a partition of the edge set in a natural way.
For this result we need to introduce a bit of notation. We call a pointer (u,v) such that (u,v)
is an edge of G’ a basic pointer. Moreover, we denote by done(i) the set of all basic pointers
contained in time(1)U- - -Utime(7). For simplicity, also define done(0) := (). Finally, for any two
nodes w, v such that v is an ancestor of u, we denote by between(u, v) the set of all edges (w, )
such that 1) (w,z) = (y,v), or 2) y is an ancestor of w, but u is not an ancestor of w, where y
is the child of v that lies on the path from u to v. In other words, between(u,v) is the set of
all edges that can be reached both from u without crossing v, and from v without crossing u.
For simplicity, for any pointer p = (u, v), we also define between(p) := between(u, v).

Lemma 4.12. Consider any i > 1, and any edge ¢ = (u,v) € E(G'). If done(i — 1) does
not contain the pointer p = (u,v), then there is exactly one pointer (w,z) € time(i) such that
e € between(w,x). If done(i — 1) contains the pointer p = (u,v), then there is no pointer
(w,x) € time(i) such that e € between(w, ).

For any ¢ > 1, and any pointer p = (u,v) € time(i), define succ(p) to be the set of all
pointers p’ € time(i+ 1) satisfying (1) p’ = (u, pred,,), (2) p’ = (pred,, v), or (3) p’ = (w, pred,)
where w is a leaf and the edge last, does not lie on the path from u to v. If pred, = L, set
succ(p) == (. We obtain the following observation.

Observation 4.13. For any i > 2, and any pointer p’ € time(i), there is exactly one pointer
p € time(i — 1) such that p’ € succ(p). For any i > 1, and any pointer p = (u,v) € time(1) with
pred,, # L, we have succ(p) = {(u, pred,), (pred,,v),p1, ..., pdeg(predp)_g} where each pj is a
pointer starting in a leaf, ending in pred,, and satisfying last,, = e;, where ey, . .. ; €deg(pred,,)—2
are the deg(predp) — 2 edges incoming to pred, that do not lie on the path from u to v.

Algorithm Aj;. Now we describe algorithm Aj; formally. The algorithm proceeds in itera-
tions ¢ = 1,2, ... where in each iteration i, we process all pointers contained in time(i). When
processing a pointer p = (u,v), we assign some output label from ., to each so-far-unlabeled
half-edge from {(u, first,), (last,, v)}. Due to Observation 4.13, it suffices to explain

(a) how we choose those output labels for each pointer in time(1),

(b) for each already processed pointer p with pred, # L, how we choose those output labels
for each pointer in succ(p).

For point (a), let p1 = (u1,7),...,pr = (ug,r) denote the pointers in time(1). By Lemma 4.10,
we know that k& = deg(r) and, for each edge e incident to r, there is precisely one pointer
p; with last,, = e. Recall Definitions 4.2 and 4.8. We first assign labels to the half-edges
incident to r. More precisely, for each edge e € inc(r), assign to half-edge (r,e) some label
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Jout ((r, €)) = £ such that, for the obtained tuple (£°)ccinc(r), We have (£°)ccine(r) € S, and
(¢ € M¢®(r), for each e € inc(r). For each pointer p;, we assign to half-edge (uj,first,,)
a label gous((uy, firsty;)) = £ s.t. G N= pairs, and (£*) € Sy;. For point (b), let
p = (u,v) denote an already processed pointer with pred, # L. Note that, for the two pointers
p" = (u,pred,) and p" := (pred,, v), the half-edges (u, first,/) and (last,~,v) have already been
assigned output labels since p has already been processed; denote those output labels by ¢ and
¢', respectively. However, by Lemma 4.12 and Observation 4.13, these are the only half-edges
that are already labeled, out of all the half-edges that “by definition” have to be labeled after
processing the pointers in succ(p). Out of these unlabeled half-edges, we first assign an output
to all half-edges incident to pred,. Concretely, for each edge e € inc(pred,,), assign to half-edge
(pred,, ) some label gout((pred,, e)) := £¢ such that, for the obtained tuple (£9) ecinc(pred,))s We
have

L. (ﬁe)eeinc(predp) € Spredp

2. £° € M¢(pred,), for each e € inc(pred,) \ {last,, first,~ }
3. (0, 0%%) ¢ pairs,, and (£t g1y e pairs,,,

Finally, for each pointer p"” = (w,pred,) where w is a leaf and last,» does not lie on the
path from u to v, we assign to half-edge (w,first,) a label gout((w, firstyn)) == £* such that
(%, 0125ty e pairs,» and (£*) € Sy. By Observation 4.13, this finishes the processing of all
the pointers in succ(p). The algorithm in Phase II terminates in the first iteration ¢ in which
time(i) = (). This concludes the description of Af;. In Appendix B.2, we show that Ajf; is
well-defined and analyze Aj;. In particular, we will prove the following lemma that bounds the
number of iterations in Phase II.

Lemma 4.14. Algorithm Aj; terminates after O(logn) iterations.

5 The Mid Regime

In this section, we will prove that all LCL problems on trees with deterministic complexity
n°1) in the LOCAL model can be solved deterministically in roughly O(loglogn) time in the
low-space MPC. In particular, we prove the following.

Theorem 5.1 (Mid regime). Consider a forest consisting of (disjoint) connected components
Ci,...,Cy, each C; of size n;. Furthermore, consider an LCL problem 11 that can be solved in
O(log z) rounds by a deterministic LOCAL algorithm on instances with at most z nodes. There
is a deterministic low-space MPC algorithm that solves 11 in O(loglog max;{n;}) + O(log* N)
time using O(m+n) words of global memory where N is the size of the ID space. The algorithm
18 component-stable.

As the proof of Theorem 1.2 requires the same techniques as the proof of Theorem 5.1, we
also present the proof of Theorem 1.2 at the end of this section.

In previous work, Chang and Pettie showed that in the LOCAL model, there are no LCL
problems on trees whose complexity lies between w(logn) and n°Y) [CP19]. In other words,
they showed a complexity gap, giving rise to the LOCAL complexity class ©(logn). They obtain
their result by showing that any problem in this range admits a canonical way to solve it using
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a rake-and-compress decomposition (described in Section 5.1) and a careful method that labels
the tree, layer by layer (of the decomposition).

In order to prove Theorem 5.1, in Section 5.1, we show that both their rake-and-compress
decomposition (see Section 5.1) and their labeling method (see Section 5.2) can be sped up to
O(loglogn) in MPC, while using strict memory parameters.

5.1 Rake-and-Compress Decomposition

In this section, we give a O(log log n)-time low-space MPC algorithm for computing a rake-and-
compress decomposition. In particular, we prove the following.

Lemma 5.2 (Rake-and-Compress). Consider a constant-degree forest consisting of (disjoint)
connected components C1,...,Cy, each C; of size n;. There is a deterministic low-space MPC
algorithm that computes a rake-and-compress decomposition in O(loglog max;{n;})+O(log* N)
time using O(m+n) words of global memory where N is the size of the ID space. The algorithm
18 component-stable.

Informally, the rake-and-compress decomposition of a graph is a disjoint set of nodes, such
that the sets (or in other words layers) are enumerated, and every node v has at most two
neighbors in the same or higher layers. The precise properties of the decomposition are given
in Observation 5.4.

In Section 5.1.1, we summarize the LOCAL rake-and-compress algorithm of [CP19|. Then,
in Section 5.1.2, we describe our low-space MPC algorithm and prove Lemma 5.2.

5.1.1 Decomposition in LOCAL

The algorithm consists of two steps: a decomposition step, where nodes are partitioned into
layers and a postprocessing step, where we compute an («a, #)-independent set (Definition 5.3),
in O(log™ N) time |[Lin92| and adjust the layers slightly. Recall that N denotes the size of the
ID space.

Definition 5.3 ((«, 5)-independent set). Let P be a path. A set I C V(P) is called an (o, 3)-
independent set if the following conditions are met: (i) I is an independent set, and I does not
contain either endpoint of P, and (ii) each connected component induced by V(P) — I has at
least o vertices and at most 8 vertices, unless |V (P)| < «, in which case I = ().

1. Suppose [ is some constant depending on the LCL problem. The algorithm begins with
U = V(@) and i = 1, repeats Steps (a)-(c) until U = (), then proceeds to Step 2.

(a) For each v € U:

i. Compress. If v belongs to a path P such that |V (P)| > [ and degy(u) = 2 for
each u € V(P), then tag v with ic.

ii. Rake. If degy(v) = 0, then tag v with ig. If degy(v) = 1 and the unique
neighbor u of v in U satisfies either (i) degy; > 1 or (ii) degy; = 1 and ID(v) >
ID(u), then tag v with ig.

(b) Remove from U all vertices tagged ic or ip and set i < i + 1.
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2. Initialize V; as the set of all vertices tagged i¢ or ig. The graph induced by V; consists of
unbounded length paths, but we prefer constant length paths. For each edge {u, v} such
that v is tagged i and u is tagged ic, promote v from V; to V1. For each path P that
is a connected component induced by vertices tagged ic, compute an (I, 2[)-independent
set Ip of P, and then promote every vertex in Ip from V; to V4.

Observation 5.4. The following properties of the rake-and-compress decomposition are either
evident or proven by Chang and Pettie [CP19, Section 3.9].

— Define G; as the graph induced by nodes in layer i or higher: UJL:z Vj. For each v € V;,
degg, (v) < 2.

— Define P; as the set of connected components (paths) induced by the nodes in V; with
more than one node. For each P € P;, | < |V(P)| < 2l and degg, (v) = 2 for each node
veV(P).

— The graph G, contains only isolated nodes, i.e., Py, = 0.

— At least a constant Q(1/1) fraction of vertices in U are eliminated in each iteration,
resulting in a runtime of O(logn) and decomposition size L = O(logn).

As a consequence, each vertex v € V; falls into exvactly one of two cases: (i) v has degg, (v) <
1 and has no neighbor in V;, or (ii) v has degg, (v) = 2 and is in some path P € P;.

5.1.2 Decomposition in MPC

Let us first define a helper function.

— Peel(r): compute the lowest r layers of the decomposition by simulating Step 1 of the
LOCAL algorithm r times.

Recall that by Observation 5.4, at least a constant €(1/1) fraction of nodes are eliminated in
each simulation. When taking a closer look into [CP19], the exact fraction is 1/2(1+1) > 1/4i.
Hence, we can state that at most a constant 1 — 1/4l fraction of nodes is left in the graph
after each step of the LOCAL algorithm. Set constant ¢ <— argmin.{c | (1 — 1/40)¢ < 1/A},
and observe that since A and [ are constants, ¢ is also constant. Our MPC algorithm is the
following.

1. Fori=0,...,loglogn’ phases: perform c steps of Peel(2), and then perform one graph
exponentiation step.

2. Perform Peel(dlogn) until the graph is empty.

3. Simulate Step 2 of the LOCAL algorithm.

Proof of Lemma 5.2. Correctness follows from [CP19, Section 3.9|, as we only simulate their
algorithm. Let us bound the time complexity. In Step 1, during any phase %, each node sees its
2%-radius neighborhood due to graph exponentiation. This vision enables each node to perform
c steps of Peel(2%), which altogether takes constant time. After loglog nd phases, all nodes see
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their ¢ log n-radius neighborhoods and Step 1 terminates. In Step 2, nodes perform Peel(d log n)
until the graph is empty, which takes O(1/0) = O(1) time, since there are O(logn) layers in
the decomposition in total by Observation 5.4. Since the vision of each node is § logn and Step
2 of the LOCAL algorithm takes O(log* b) time, we can simulate it in O(1) time. We conclude
that the algorithm runs in O(loglogn) + O(log™ b) time.

In Step 1, during any phase 4, performing c steps of Peel(2?) results in simulating Step 1 of
the LOCAL algorithm 2°c times. Hence, after applying Peel(2¢), in any phase 4, there are at most
n-(1—1/41)%"¢ < n/A% nodes left in the graph. Since the graph exponentiation step of phase
i requires at most A% memory per node, we conclude that each phase (and hence the whole
algorithm), requires at most O(m-+n) words of global memory. After loglogn® phases, all nodes
see their § log n-radius neighborhoods. Since A is constant, the § log n-radius neighborhood of
any node contains at most O(né) nodes and the local memory is always respected.

Observe that all of our arguments are local, i.e., nodes in separate components do not
communicate. Hence, the algorithm is component-stable when the input graph is a forest, in
which case the runtime becomes O(loglog max;{n;}) + O(log* N). O

5.2 The Labeling Method

Suppose that we are given the rake-and-compress decomposition described in Section 5.1. Let
us adopt the same node-labeled LCL problem definition as [CP19|. Note that this definition
includes port-numberings and is hence equivalent to our previous definition of half-edge labeled
LCLs (Definition 2.2).

Definition 5.5 (LCL, Chang and Pettie [CP19]). Fiz a class G of possible input graphs and
let A be the maximum degree in any such graph. An LCL problem 11 for G has a radius r,
constant size input and output alphabets Yin, Yout, and a set C of acceptable configurations.
Note that Xy, and Yoy can include 1. Fach C € C is a graph centered at a specific vertex,
in which each vertex has a degree, a port numbering, and two labels from Xi, and YXou. Given
the input graph G(V, E, ¢in) where ¢in : V(G) — Ziy, a feasible labeling output is any function
dout : V(G) — Xout such that for each v € V(G), the subgraph induced by N"(v) (denoting
the r-neighborhood of v together with information stored there: vertex degrees, port numberings,
input labels, and output labels) is isomorphic to a member of C. A complete labeling output is
such that for each v, ¢out(v) # L. An LCL can be described explicitly by enumerating a finite
number of acceptable configurations.

Let us revisit some other definitions and results of [CP19] before introducing our algorithm.

Definition 5.6 (Class, Chang and Pettie [CP19]). Consider a rooted tree T' with a root v and
an LCL problem 11 as in Definition 5.5. The (equivalence) class of T', denoted CLASS(T) is the
set of all possible node labelings of the r-hop neighborhood of v such that the labeling can be
extended to a complete feasible labeling of T (with respect to the LCL problem I1). Note that for
constant-degree trees, the number of equivalence classes is constant.

Lemma 5.7. Consider a graph G, an LCL problem 11 as in Definition 5.5, and the rake-and-
compress decomposition described in Section 5.1. Recall that the decomposition is parameterized
by a constant £ that depends on the input LCL and that G; denotes the graph induced by the
nodes in layer i or higher.

Let P = (v1,v9,...,v;), for some x € [£,2(] be a path induced by nodes in G; with degree 2
and let s = vy and t = v,. Moreover, let graph TYUT>U. . .UT,, denoted by H = (T1,Ts,...,T;),
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correspond to the sequence of disjoint trees rooted from nodes (vi,va,...,v;). Then, there exists
a tree HT with two dedicated nodes s and t™ such that the following holds.

Let G be the connected component of G — H that is adjacent to node s in G. Notice that
s € Gg. Then, if graph Gs is not empty, graph Gg+ is created by connecting a copy of G
to a copy of HY wia a single edge {u,s™} such that w € G and st € HT. The graph Gy is
constructed identically but using a disjoint copy of H™.

Then, if graphs G4+ and G+ admit feasible node labelings ¢g§t and ¢f:lt, then the input graph
G admits a feasible node labeling ¢, such that for any v € G — H, we have ¢*(v) = ¢85, (v) if
v € Gy and ¢%, (v) = @i (v) if v € Gy. Furthermore, the graph HT can be computed with the
knowledge of CLASS(T;) for each i.

Proof. The existence of H is rigorously proven by Chang and Pettie [CP19, Lemma 9] through
pumping, tree surgery and pre-commitment techniques. The same previous work describes the
computation of graph Ht [CP19, Proof of Lemma 13]. O

Note that in Definition 5.6 and lemma 5.7 we talk about rooted trees and rooted subtrees
hanging from nodes in a path. One could rightfully assume that we either root the tree before-
hand or assume a rooted tree as input. However, we do none of the previous. Instead, when
talking about a tree T, rooted at node v in layer 7, we simply refer to the subgraph induced by
nodes in layers < ¢ that are connected to v.

The Algorithm First, we divide the nodes into batches according to which layer they belong
to in the decomposition. Let ¢ be such that for all 7, [U;>;4. Vil < |U;5; Vil - AL ie., if we
remove ¢ layers from the decomposition, the number of nodes drops by a factor of at least A. By
Observation 5.4, we know that c is a constant. Let us define nodes in layers Vi,..., V. as batch
By. For i > 0 and as long as A% < n?, let us define nodes in layers Vigi—1)eet1s - -5 Vigit121).c
as batch i; see Figure 2. Note that there are O(loglogn) batches as defined previously, and
assuming that there is enough layers, batch i always consists of 2¢c layers. All nodes that do not
belong to any batch, as defined previously, are defined as batch By. The algorithm starts with
running O(loglogn) phases, each of which is executed in a constant number of MPC rounds
and consists of the following steps.

1. In the start of phase i, our communication graph is G?. We process the i:th batch by
simulating 2°c iterations of the following local process. If a node v has neighbors only in
higher layers, it locally computes CLASS(v) and informs its (unique) neighbor about the
class. If a node v has neighbors in the same layer, then it must be part of a constant
length path. Each node that is not an endpoint of such a path, locally computes its class
and informs the endpoints of the class. Once an endpoint s learns of all classes on the
path, it locally replaces the path with graph H' as described in Lemma 5.7. Then s
locally computes CLASS(s) and informs its parent (if any) of the class.

2. As the second step, for all but the last phase, each node in batch Bj~; and in batch By,
performs one step of graph exponentiation. Note that the nodes that have computed
their classes, i.e., nodes in batch Bj<; do not participate in graph exponentiation. Thus,
we obtain G2 as our communication graph for batches > i and batch Br. We make
the exception for the last phase as we do not want to violate local memory of the nodes

in batch By,.
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Figure 2: The first four batches, where each batch i contains 2° - ¢ layers and at most n/ A2 -1
nodes: (a) number of nodes in a batch, (b) number of layers in a batch.

Since we process one batch in each phase, all numbered batches are processed in O(loglogn)
phases. If batch By is non-empty, its communication graph is GOUogn) and the algorithm
proceeds by simulating the local process described above until all nodes in By, has derived their
class.

Once all nodes have computed their class, we process the batches in the reversed order.
The (local) roots begin by choosing a label that can be extended to a valid labeling on the
whole graph. Then, once a node learns the feasible label of its parent (nodes have at most
one neighbor in a higher layer), it can choose an extendable label. Similarly, once the parents
of both endpoints of a layer-induced path of HT have decided on their labels, the endpoints
choose a valid labeling of the original layer-induced path of H.

Proof of Theorem 5.1. We prove the the algorithm of Section 5.2, since the rake-and-compress
algorithm is already proven in Section 5.1.

By the definition of a class and by Lemma 5.7, the local process in Step 1 is always possible
and all nodes can compute their class. The existence of the valid labels for each node is again
provided by the definition of a class and by Lemma 5.7.

Let us bound the time complexity of the algorithm. First, let us analyze the complexity of
computing the class of each node. Each phase i indeed takes constant time, since simulating 2°-¢
iterations of the local process takes O(1) time due to the communication graph in batches > ¢
being G%'. As mentioned previously, after O(loglogn) phases, all batches except By, have been
processed and the communication graph of batch By, is G2U°8™)  Note that by Observation 5.4,
batch By, contains O(logn) layers. Hence, simulating the local process of our algorithm on our
communication graph G©{egn)
class. Next, let us analyze the complexity of computing the label of each node. Using the
communication graph created throughout the algorithm, we process the batches in the reverse
order, which requires the same number of MPC rounds as computing the class. Since obtaining
the rake-and-compress decomposition required for this process takes O(loglogn) + O(log* N)
time, the overall runtime of the algorithm is O(loglogn) + O(log* N).

Let us analyze the memory requirement. The local memory bound is respected, since a

takes constant time, after which all nodes have computed their
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batch i is defined such that A2 < n? and a node in batch i executes at most 7 steps of graph
exponentiation, resulting in a neighborhood containing at most A2 nodes. Note that batch By,
performs the same number of graph exponentiation steps as does the last numbered batch and
hence, local memory bounds are not violated. Now for the global memory bound. Consider
batch i. By the definition of ¢, we have that batch i contains at most ;s wi_1)..Vj| <

n-A~2=D nodes. Since batch i executes at most 4 steps of graph exponentiation, the memory
required to store the communication graph per numbered batch is at most | | i>@i-1).c Vi A% <
n - A. Now recall that nodes in batch Bj, performs the same number of graph exponentiation
steps as does the last numbered batch. Observe that the size of By, has the same upper bound
as the last numbered batch. Hence, storing the communication graph of Bj also requires at
most n - A memory. The number of batches is trivially upper bounded by the number of layers
and hence, the global memory use is bounded by O(nlogn).

By separating the nodes in the first cloglogn layers and computing their classes prior to the
execution and their labels after the other nodes have been handled, we can drop the requirement
to sharp O(n). This is evident as separating the first cloglogn layers leaves us with at most
n/logn nodes. This scheme contributes only an additive O(loglogn) term to the runtime. One
source of memory issues during execution could be sending messages of w(1) size. Since our
messages only contain class information (Definition 5.6), and since there are only a constant
number of classes, our messages are of constant size.

Observe that all of our arguments are local, i.e., nodes in separate components do not
communicate. Hence, the algorithm works equally on a forest, in which case the runtime
becomes O(loglog max;{n;}) + O(log™ N). O

6 The Low Regime

In this section, we prove the following theorem.

Theorem 6.1 (Low regime). Any LCL problem on trees with randomized LOCAL complexity
o(logn) can be solved with a randomized algorithm in O(logloglogn)+ O(log* b) rounds in the
low-space MPC model with O(m + n) words of global memory where IDs and words have b bits.
The algorithm is component-stable.

In order to prove the above theorem, we restate the main theorem of our mid regime, and
introduce an important result from a previous work, for which we also give a proof sketch.

Theorem 5.1 (Mid regime). Consider a forest consisting of (disjoint) connected components
Ci,...,Cy, each C; of size n;. Furthermore, consider an LCL problem II that can be solved in
O(log z) rounds by a deterministic LOCAL algorithm on instances with at most z nodes. There
is a deterministic low-space MPC algorithm that solves I1 in O(loglog max;{n;}) + O(log* N)
time using O(m+n) words of global memory where N is the size of the ID space. The algorithm
18 component-stable.

Lemma 6.2 ([BCM*21, CP19]). Let II be an LCL (possibly on general graphs) with a sublog-
arithmic randomized LOCAL algorithm A. Then there exists a constant ty, and an LCL 11"
(whose definition only depends on II and A) and an O(1)-time CONGEST reduction such that:

1. given a to-distance coloring with f(A) colors (for some function f) reduces solving II to
solving II” on several independent connected components C1,...,C} each of size at most
|C;i| < N = O(logn) while IDs use b = O(logn) bits and > |C;| < n holds.
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2. If the input graph is a tree (general graph), then the LCL problem II” can be solved in
O(log z) rounds (polylogz rounds) by a deterministic LOCAL algorithm on instances
with at most z nodes.

Proof sketch. Any LCL II with randomized sublogarithmic LOCAL complexity can be solved
via the following normal form:

1. Determine (without communication) a constant time ¢ algorithm Ay for II that errs with
a small constant probability and uses a constant number of random bits per node.

2. Determine good random bits for each node to execute Ag such that it errs at no node.

3. Execute the constant time algorithm Ay with the computed random bits.

Step 2 is most involved. In fact, one can show that the problem II' of determining good
random bits for the nodes is also an LCL problem and additionally it is a so-called LLL problem
with a polynomial LLL criterion and a constant dependency degree. For more details on LLLs
see [BCM™*21]. The crucial point is that such LLL problems can be solved via the shattering
method: Given a suitable constant distance coloring one can, in a constant number of rounds,
set the random bits of some nodes such that remaining nodes, w.h.p, form small components
C1,...,Ck, each of size < N = O(logn). One core technical difficulty in [BCM*21] is to show
that the remaining problem on each component is a proper LCL problem IT” that on trees has an
O(log z) deterministic LOCAL algorithm on instances of size z. On general graphs the problem
IT” can be solved in poly log z rounds via the LLL algorithm of [RG20, FG17] on instances of
size z as the problem is also an LLL problem.

All parts of this reduction, except for solving II” on the small components, can clearly be
executed in a constant number of rounds. O

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. We apply Lemma 6.2. All steps of the constant time reduction from
Lemma 6.2 can clearly be executed in O(1) rounds in the MPC model. A distance-ty coloring
can be computed in O(loglog* n) rounds using Lemma 3.5. Hence, it remains to solve the LCL
problem II” on several independent instances each of size at most N in parallel. Further, the
lemma provides us with the fact that II” can be solved with a deterministic O(logz) round
algorithm on instances of size z. Using Theorem 5.1, we obtain that II” can be solved in
O(loglog z) rounds on instances of size z. Using this on each component in parallel (setting
z = N) we obtain an O(loglog N) = O(logloglogn) rounds algorithm. Note that when
applying both lemmas IDs use the b = O(log n) bits.

The global space constraints are met as Y |C;| < n and the algorithm from Theorem 5.1
only requires linear global space. All used subroutines are component-stable. O

We say an algorithm solves the connected components problem if each node in each con-
nected component C outputs min,cc I.D,. Note, that by definition, the output of an algorithm
solving the connected components algorithm cannot depend on other components, that is, any
connected components algorithm is component-stable by definition. °

Observation 6.3. Any connected components algorithm is component-stable by definition.

"Note that its crucial that we define the problem slightly different than typically, see e.g., [CC22|, where
each nodes in a connected component can output any arbitrary number as long as they output the same number
and the number is not used by any other component.
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The connected component algorithm by [BDE"20, CC22]: The crucial ingredient
of the deterministic connected components algorithm by [CC22] are two deterministic subrou-
tines, one to compute large matchings in paths/cycles, and one to solve a certain set-cover
instance. Solving these problems deterministically is sufficient to derandomize the algorithm
by [BDET20]. While the problems at hand are irrelevant for this paragraph, the way they are
solved is interesting. Via the method of conditional expectation the random bits of a shared
random seed are deterministically chosen in a suitable way to compute the output from it. Here,
all parts of the graph, in particular all different components, use the same seed. Changes in one
component of the graph can incur changes in chosen seed, and hence can influence the output of
other components of the graph. Thus, the used technique is inherently non component-stable.
However, due to Observation 6.3 we obtain the following theorem.

Theorem 6.4 (|[BDE"20, CC22|). There is a deterministic component-stable algorithm to solve
the connected components problem with components C1,...,Cy in O(logmax; diam(G[C;])) +
loglog max; |C;|) rounds.

Proof Sketch. Tt is immediate that the algorithms of [BDE ™20, CC22]| can solve the aforemen-
tioned version of connected components. In the pen-ultimate state the algorithm has several
virtual nodes (connected via a clique) vy, ..., vy for each connected component C, and each of
these nodes has an associated set containing some of the IDs of the nodes in the component.
The ID of each node appears in exactly one set. Hence, one can easily determine the minimum
ID of the component.

The runtime of the algorithm is stated as O(log max; diam(G|[C;])) + loglogn). However,
the O(loglogn) term stems from the fact that the level of a virtual node cannot grow beyond
O(loglogn). In fact, the level is associated with the number of nodes that the virtual node has
come in contact with and it cannot grow beyond the O(loglog |C;|) where the node stems from
component C;. O

Theorem 6.5. Any LCL problem on general graphs with randomized LOCAL complexity o(logn)
can be solved with a randomized component-stable algorithm in O(loglogn) rounds in the low-
space MPC model using O(nlogn) words of global memory.

Proof. Apply Lemma 6.2. First, compute a to-distance coloring via Lemma 3.5 in O(loglog™ n)
rounds. The constant number of rounds of the reduction can clearly be executed in O(1) rounds
in the MPC model. To solve the problem II” on all components C1,...,C}, each of size < N
in parallel, we first run the connected components algorithm from Theorem 6.4. It runs in
O(log |C;i]) = O(log N) = O(loglog n) rounds. Afterwards, every node knows the minimum ID
in its component. We use a deterministic load balancing algorithm to send all < N nodes of
C;, including their incident edges, to the same machine, where we can solve IT”. No additional
global space is required.

We next prove the result for O(nlogn) words of global memory. The problem II” can be
solve in T' = poly log z rounds in the LOCAL model on instances of size z via [RG20] as 11" is
not just an LCL but also an LLL problem with a polynomial criterion. Now, we perform graph
exponentiation for log T rounds after which every node knows its T-hop neighborhood, which
is enough to determine its output. In the worst case, during the exponentiation, each node of
C; learns all of Cj, that is the total number of words that we need is Zle |ICi|> < O(n-N) =
O(nlogn). O
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Theorem 1.2. Consider an LCL problem on trees with randomized time complezity g(n) =
O©(loglogn) in the LOCAL model. This problem has deterministic time complezity O(log loglogn)
in the low-space MPC model on forests using optimal O(m + n) words of global memory. This
algorithm is component-unstable.

Proof. In [CDP21a|, Czumaj, Davies, and Parter provided a deterministic component-unstable
counterpart of the constant time reduction in Lemma 6.2. Essentially, the reduction in [BCM 21|
uses the poly A = O(1)-round shattering framework of [FG17] for so called Lovasz Local Lemma
instances. The aforementioned authors replace this shattering phase with a deterministic shat-
tering procedure that uses optimal global memory and poly A = O(1) rounds. O

7 An Automatic Procedure

In our results we claim that, if we just know the complexity of a problem in the distributed set-
ting, then we can directly obtain an exponentially faster MPC algorithm. In some of our proofs
we will assume something stronger: that we are given a problem, its distributed complexity,
and LOCAL algorithm with such a complexity. We now show that assuming that an algorithm
for a problem is given is not stronger than assuming that just its asymptotic complexity is pro-
vided. In order to do so, we now consider all the possible complexities that a problem can have
in the distributed setting (as discussed in Section 1.1) and show how to obtain a distributed
algorithm for free. In this way, given the complexity of a problem in the distributed setting,
one can first apply the following procedure, and then apply our speedup results to obtain an
exponentially faster MPC algorithm.

Lemma 7.1. Consider an LCL problem on trees, for which we are given its deterministic
time complezity f(n) (resp. its randomized time complexity g(n)) in the LOCAL model. It is
possible to automatically find a LOCAL algorithm with deterministic time complezity f(n) (resp.
randomized time complexity g(n)).

Proof. In [NS95], it is shown that for any LCL IT and for any given k, it is possible to decide
whether IT can be solved in k& rounds. Moreover, if the answer is affirmative, one also obtains
an algorithm. Hence, if we already know that f(n) = O(1), we can use this method to get an
algorithm for free.

In [CKP19], it is shown that any f(n) = O(log™ n) solvable problem can be solved in a very
specific way: first compute a distance-d O(A??)-coloring, for some specific value of d, and then
apply a constant time algorithm. Also, observe that if we know what is the right value for d,
then we can use the method for the f(n) = O(1) = k case to find the algorithm. But we may
not know d, and we cannot just start testing for £k = 1,2, ..., because when testing for d = 1
for example, there may not exist any constant time algorithm that solves the problem if given
an O(A)-coloring, so the procedure may not find ant valid &, and just diverge. But we can test
differently: we proceed in iterations, and in each iteration ¢ we check all possible values of k
and d satisfying k,d < 1.

If the problem satisfies f(n) = Q(logn), then, by [CP19, Cha20], we know that we can
automatically decide what is the right asymptotic value of f(n), and throughout the process,
also obtain a LOCAL algorithm for free.

If g(n) # ©(loglogn), then we know by prior work that f(n) = g(n), and hence in that
case we already showed how to obtain an algorithm. If g(n) = ©(loglogn), then in particular
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we know that g(n) = o(logn). For all problems falling into this category, we know that they
can be sped up to O(loglogn) as follows (see [CP19)]):

— Convert the o(logn)-rounds randomized algorithm into a k& = O(1)-rounds randomized
algorithm that has small enough local failure probability p = ¢(k,II) for some function
¢ defined in [CP19]| (where the local failure probability is the probability that a given
specific node fails to produce a correct solution).

— Use a distributed LLL algorithm to find good random bits, such that if we run the obtained
algorithm with them, it does not fail. This part requires O(loglogn) on trees.

We observe that the same techniques used to prove that we can find a constant time algorithm
by brute force (see [NS95, Theorem 4.3]) also extend to the randomized case. In particular, we
can use the procedure of [NS95| to decide whether there exists a k-round randomized algorithm
that uses at most b random bits on each node and that locally fails with probability at most
p, for any constant k, b, and p. Hence, we can test b and k (and p = ¢(k,II)) in phases to find
such an algorithm, since by assumption it exists. This algorithm, combined with LLL, gives an
O(loglogn) algorithm for free. O]

Remark 7.2. For the ease of presentation, most of our paper is written from the viewpoint of a
single tree. However, we want to point out that all our algorithms work on forests, too. For the
tiny, high and the mid regime this is reasoned in detail in the respective proofs. For constant
time algorithms this is immediate. In Section 3, we reasoned that the speedup in the tiny
regime applies also to forests. The main reason is that our asymptotic runtime solely depends
on the size of the ID space. Hence, these algorithms are component-stable as long as another
component cannot change the ID space. The same is true for the low regime in Section 6 for
the following reasons. The algorithm is based on a constant time shattering procedure that is
component-stable and a post-shattering phase which relies on the component-stable algorithm of
the mid regime. However, as the shattering phase requires a sufficiently large constant distance
coloring, the same ID space dependency as in the tiny regime applies.
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A Rooting

In this section, we describe a novel low-space MPC algorithm that roots a forest deterministically
in O(logn) time. Rooting entails orients the edges of the graph such that in each connected
component, they point towards a unique root.

Lemma A.1 (Rooting). Consider an arbitrary-degree forest consisting of (disjoint) connected
components Cq,...,Cy, each C; of size n;. There is a deterministic, component-stable, low-
space MPC algorithm that roots the forest in O(log max;{n;}) time using O(m + n) words of
global memory.

The rooting algorithm is an essential subroutine in the high regime, but it may also be of
independent interest. We start by introducing the technique of path exponentiation, which is
used to contract long paths in logarithmic time in a memory efficient way. By leveraging the fact
that in trees, at least half of the nodes are of degree < 3, one could apply path exponentiation in
a straightforward manner to root a tree in O(log2 n) time. Our main contribution is pipelining
this process, reducing the runtime to O(logn), and solving numerous small challenges that arise
along the way.

Path Exponentiation. Let us introduce path exponentiation, which is a logarithmic
time technique to compress a path such that upon termination, the endpoints share a virtual
edge (defined next). The technique is memory efficient in the sense that in addition to the input
edges (i.e., edges incident to a node in the input graph), all nodes in a path keep at most two
virtual edges in memory. Counsider a path P with endpoints s,t and internal nodes in P\ {s,t}.
Leaf node are considered to be endpoints, and degree-2 nodes are consider to be internal nodes.
Nodes in P always keep their input edges in memory. Path exponentiation is initialized by
duplicating all edges in P and calling this new path the virtual graph. Nodes connected by a
virtual edge are called virtual neighbors. A new virtual edge {v,w} can be created by node u
if there previously existed virtual edges {u,v} and {u,w}. In practice, creating a virtual edge
{v,w} entails node u informing v the ID of w and w the ID of v, i.e., node u connects nodes v
and w. Path exponentiation is executed only on this virtual graph. So henceforth, when talking
about neighbors and edges, we refer to virtual neighbors and edges, unless specified otherwise.

In each (path) exponentiation step, endpoints and internal nodes are handled separately.
During exponentiation, an internal node u has exactly two neighbors and it can be one of three
types: (1) neither neighbor is an endpoint (2) one neighbor is an endpoint and one is an internal
node (3) both neighbors are endpoints. In each exponentiation step, an internal node u does
the following.

— Node v communicates with its neighbors to learn if it is of type 1, 2 or 3
— For each node type:

1. Connects its neighbors v and w with an edge and removes edges {u,v} and {u,w}.

2. Connects its internal neighbor v to its endpoint neighbor s (or t) with an edge. It
removes the edge {u, v}, but keeps the edge {u, s} (or {u,t}) in memory.

3. Connects its endpoint neighbors s and ¢ with an edge and keeps edges {u, s} and
{u,t} in memory.
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Figure 3: Path exponentiation on a path with 8 nodes. All edges are virtual, and solid edges
emphasize the edges that endpoints keep track of. Exponentiation terminates in 3 steps, after
which, internal nodes are connected to both endpoints and endpoints are connected by an edge.

If we perform the former exponentiation steps as is, both endpoints will aggregate one edge
for each node in the path, which may break local and global memory restrictions. To resolve
this issue, we implicitly assume the following scheme. If a node is connected to an endpoint, it
keeps track if is the furthest away from said endpoint in the input graph, among all nodes that
are connected to the endpoint. Immediately after initializing path exponentiation, the furthest
away node is the neighbor of the endpoint in the input graph. During exponentiation:

— If a node is the furthest away from an endpoint, when creating a new edge between an
endpoint and an internal node, it informs both nodes of the new edge.

— If a node is not the furthest away from an endpoint, when creating a new edge between
an endpoint and an internal node, it only informs the internal node of the new edge.

— If a node is an endpoint, upon receiving a new edge, it drops the old one.

This scheme results in endpoints s and ¢ effectively doing nothing during path exponentia-
tion, except keeping track of the latest edge connecting them to an internal node. Eventually,
exponentiation terminates when s and ¢ get connected and all internal nodes have two edges,
one for each endpoint. As the shortest distance between s and ¢ in the virtual graph decreases
by at least a factor of 3/2 in each step, path exponentiation terminates in O(logn) time. Due to
the aforementioned memory saving scheme, all nodes in P keep at most two edges in memory,
resulting in O(m + n) global memory.

A.1 Rooting Algorithm

The algorithm is split into two parts. First we find the root node (Appendix A.1.1), dur-
ing which we set a collection of unoriented paths aside. Then, during postprocessing (Ap-
pendix A.1.2), we orient said paths in parallel, resulting in a total runtime of O(logn), local
memory O(n?), and global memory O(m + n). We emphasize that we execute the following
algorithms on the virtual graph, and not on the input graph. Initially, the virtual graph is an
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identical copy of the input graph. Also, when talking about neighbors and edges, we refer to
virtual neighbors and edges, unless specified otherwise.

A.1.1 Finding the Root

The high level idea is straightforward: perform path exponentiation in all current paths (note
that now, endpoints are either leaf nodes or nodes of degree > 3), and when an endpoint of a
path is a leaf that is connected to the other endpoint, we set the path aside (this will become
apparent later). For this to work, one major issue must be addressed. An endpoint of degree
> 3 can turn into a degree-2 node, extending the current path. The difficulty in this scenario
stems from the fact that some nodes are in the middle of path exponentiation and some have
not yet started. We resolve this issue by defining nodes that were endpoints of degree > 3 in
the previous phase, but are nodes of degree 2 in the current phase, as midpoints.

1. In phase i, each node u in a path first identifies if it is an endpoint, a midpoint, or an
internal node.

— If w is a leaf node that is connected to the other endpoint, we set the path containing
u aside®. Note that this also applies to paths of length 1.

— If w is an endpoint that is not connected to the other endpoint, it does nothing
except act as endpoint for the corresponding internal nodes.

— If w is a midpoint such that both of its neighbors are other midpoints or endpoints,
it transforms into an internal node and acts as such henceforth.

— If u is a midpoint such that at least one of its neighbors is an internal node, it does
nothing except act as endpoint node for the corresponding internal nodes.

— If w is an internal node (or a midpoint that has turned into an internal node), it
performs path exponentiation.

*Setting path P aside entails leaf node s informing the other endpoint ¢ that the orien-
tation is going to be from s to t, so that the algorithm can proceed. The internal nodes
of the path do not need to be informed that they are set aside, since they will not do
anything for the remainder of the algorithm. Also, instead of P, we are actually setting
aside P \ t, since t may be of high degree and has to remain in the graph. Observe that
this means that both endpoints of the path we are setting aside are leaves that know
the orientation of the path. The edges of the paths remain unoriented until the root is
found, after which these paths are oriented in parallel during the postprocessing in Ap-
pendix A.1.2. Note that if both endpoints of a path are leaves, the algorithm terminates
and the higher ID node is chosen as the root.

Proof of Lemma A.1, Finding the root. Since we only orient paths connected to at least one
leaf node, we end up with a valid orientation and a unique root.

Consider endpoints s and ¢ of some path during some phase. The aim of the algorithm is
essentially to construct edge {s,t}. Now consider a current shortest (virtual) path P, between
s and t. Observe that the nodes responsible for eventually creating edge {s,t} constitute P,.
Hence, all other nodes are redundant and can be thought of as removed.
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In order to analyze the number of nodes that are removed in a phase, we want to first count
the number of internal nodes in paths such as P,. Since a midpoint is always incident to an
internal node (otherwise it would transform into an internal node), at least 1/3 of all nodes in
P, are internal nodes. This is evident from the “worst case” where two consecutive midpoints
are followed by one internal node.

Since all internal nodes in P, perform path exponentiation, the number of internal nodes
in P, drops by a factor of at least 3/2 in one phase. Observe that in addition to removing at
least 1/3 of the internal nodes in all paths such as P,, we also remove all leaf nodes. Since
the average degree of a node in a tree is < 2, the number of leaves in a tree is larger than the
number of nodes of degree > 3. Hence, in each phase, we remove at least 1/3-2/3 = 2/9 of all
of the nodes in the graph, and the algorithm finds the root after O(logn) phases.

The only memory usage stems from path exponentiation, where in each path, in addition to
the input edges (i.e., edges incident to a node in the input graph), all nodes keep at most two
virtual edges in memory. Observe that endpoints can partake in multiple path exponentiations.
However, since endpoints keep track of only one virtual edge (per path exponentiation), it is
easy to see that an endpoint can never have more virtual edges than input edges. Hence, local
memory O(n°) and global memory O(m + n) are respected. O

A.1.2 Postprocessing

Before initializing this part, we first we have to ensure that the root finding has terminated,
which can be done using the broadcast tree (Appendix C) in constant time. Then, we can
start orienting the paths that were set aside by the root finding algorithm. Recall that they are
paths where both endpoints are leaves that know the orientation. We want to orient all edges
in these (possibly very long) paths in parallel.

1. Consider performing path exponentiation on a path P such that when an edge is created
between an endpoint and an internal node, it is oriented according to the orientation
information at the endpoint. Upon termination, all nodes orient their input edges ac-
cording to the orientation of their virtual edges. Note that this requires nodes to keep
track which virtual edge corresponds to which edge in the input graph.

Proof of Lemma A.1, Postprocessing. Observe that an oriented edge is created only by nodes
that already have an oriented edge (are of type 2 or 3 in Path Exponentiation) and hence, the
orientation will be correct. As we only perform path exponentiation, the runtime is O(logn).
Clearly, this only has a constant overhead compared to path exponentiation. Hence, local
memory O(n?) and global memory O(m + n) are respected. O

Proof of Lemma A.1, Arbitrary degree and component-stability. The extension to arbitrary-degree
trees is straightforward, since all meaningful operations are performed on degree-2 nodes. If all
edges of a node fit into one machine, nothing changes from the constant-degree case. Other-
wise, we can use the broadcast tree structure Appendix C) for every node v with degree w(n?).
If some node u wants to communicate with v, the communication happens with the machine
storing edge {u,v}.

Component-stability and the compatibility with forests is simple to argue about. The only
communication between disconnected components happens in the beginning of postprocessing,
when all components wait until the root has been found in all components. Clearly, this does
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not affect the resulting rooting in each component. It does however affect the runtime, since
smaller components may have to wait until larger components have found the root. Hence, the
runtime becomes O(log max;{n;}). O

B The High Regime Algorithm (Analysis and Implementation
Details)

B.1 Analysis of Phase I

In this section, we will analyze Phase I of algorithm A’ defined in Section 4.2.2. In particular,
we will prove that Phase I, i.e., the leaves-to-root phase, terminates after O(logn) iterations.

Properties of the Phase I Algorithm. We start by collecting some properties of the
defined process. They imply, in particular, that the update rules are well-defined.

Observation B.1. Fach node has, at any point in time, at most one outgoing active pointer.

Proof. This directly follows from the fact that, in the beginning, each node has at most one
outgoing active pointer, and in each iteration, each active pointer is either merged into a larger
pointer (if it points to a 2-node), or left unchanged or removed. O

Observation B.2. If a node is inactive, it can never become active again. If a node is an
X -node, where X € {1,2,3}, it will never in the further course of the process become a'Y -node,
where Y € {1,2,3} and Y > X.

Proof. The observation follows from the definitions of the 1-, 2-, and 3-nodes, the definition of
merge(+, ), and the fact that the only new active pointers that are produced during our process
are created via merge(-,-). O

Observation B.3. For any 2-node v with relevant in-edge € and outgoing edge €”, we have
M¢(v) = undectded if and only if e € {€/,€"}.

Proof. Due to the design of the update rules, if e is an outgoing edge (for v), then M¢€(v)
remains undecided indefinitely, and if e is an incoming edge, then M¢(v) is set to some label
set L # undecided in the first iteration at the end of which there is no active pointer p ending
in v and satisfying last, = e. (Note that we use here that there cannot have been a merge of
two pointers starting and ending in v so far since otherwise v would not have any incoming
pointers and could not be a 2-node, by Observation B.2.) Since the design of the update rules
ensures that once there is no active pointer p ending in v and satisfying last, = e, this property
does not change thereafter, we obtain the lemma statement, by the definition of a relevant
in-edge. O

Observation B.4. At the end of each iteration, it holds that for each active pointer (u,v), the
unique path from u to v does not contain a 3-node, except possibly u and/or v. Also, if the path
from u to v contains a 2-node w # u, then the relevant in-edge of w is the edge incoming to w
that lies on this path.
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Proof. These statements follow since they hold in the beginning of the process and do not
change during the process as the merge operation is only “performed” by active 2-nodes (whose
relevant in-edge will lie on the path corresponding to the pointer(s) they produce). Here, we
implicitly use Observation B.2 and the fact that a 2-node never changes its relevant in-edge
(which follows with an analogous argument to the one used in the proof of Observation B.2). [

Observation B.5. Let p = (u,v) and p' = (w,z) be two active pointers at an end of an
iteration, and assume that the unique paths from u to v and from w to x intersect in at least
one edge. Then there is a directed path that contains all of these four nodes.

Proof. Suppose for a contradiction that this is not the case, which implies that no directed
path contains both u and w, and let y denote the lowest common ancestor of v and w. In
the beginning, node y is an active 3-node. At the point when y stops being an active 3-node
(which has to happen due to Observation B.4), the update rules ensure that there is at most
one incoming edge e at y such that there exist an active pointer (z,a) such that the unique
path from z to a contains e. Now, the contradiction follows from an analogous argument to
the one used in the proof of Observation B.4. O

Lemma B.6. At the end of each iteration it holds that (a) for each active node u, all nodes on
the path from u to r are active, and (b) for any two active nodes u,v such that v is an ancestor
of u, the node x node v points to is an ancestor of the node w node u points to, or w = x.

Proof. Suppose for a contradiction that the lemma statement is false, and let ¢ be the first
iteration such that at the end of iteration ¢ the statement is not satisfied.

Consider first the case that property (b) does not hold, which implies that at the end of
iteration 7, there are active nodes u, v with active pointers p = (u,w), p’ = (v, z) such that v is
an ancestor of u, and w an ancestor of x. Let y and z denote the nodes u and v, respectively,
were pointing to at the beginning of iteration 7. Due to the minimality of ¢, we have that z is
an ancestor of y, or y = z, and that y and z are active at the beginning of round i. The pointer
(u,w) must be the result of a merge operation in iteration 4, as otherwise w = y, which would
imply that w cannot be an ancestor of x. Hence, at the beginning of iteration ¢, the active
pointer starting at y must be (y,w). Also, at the beginning of iteration i, we must have z = z,
or the pointer starting at z must be (z,x) (as otherwise we could not have the active pointer
p' = (v,z) at the end of iteration 7). In the latter case, we obtain y # z (as otherwise w = z),
and we see that the nodes y, z, z, w satisfy that, at the beginning of iteration 4, z is an ancestor
of y, w is an ancestor of z, z points to z, and y points to w, which yields a contradiction to
the minimality of . Hence, we can assume that z = x. This implies that, at the beginning
of iteration ¢, z is not an active 2-node (as otherwise v would not point to = at the end of
iteration 7); since z is an active node (by Observation B.2) and has an incoming pointer (from
v), it must be a 3-node. Since w is an ancestor of x = a, and we (still) have y # z, we see that
for the active pointer (y,w) at the beginning of iteration 4, the path from y to w contains a
3-node that is distinct from both y and w, yielding a contradiction to Observation B.4.

Now consider the second case, namely that property (a) does not hold, which implies that
at the end of iteration 4, there are two vertices u, v such that v is the parent of u, u is active,
and v is inactive. Due to the minimality of ¢ and Observation B.2, v (as well as u) must have
been active at the beginning of iteration 7. By the design of the update rules, the only way in
which v can have become inactive at the end of iteration i is that the node w node v points to
at the beginning of iteration i is a 3-node that some leaf z satistying last, ,,) = last(, ., points

43



to as well, at the beginning of iteration ¢. Let y denote the end of the active pointer starting
in uw at the beginning of iteration i.

If u lies on the path from z to w, then, by property (b), we have that y is an ancestor of
w, or y = w. The former cannot be true, as otherwise we would have an active pointer (from
u to y) at the beginning of iteration ¢ such that the corresponding path contains an internal
node that is a 3-node (namely w), which would contradict Observation B.4. However, also the
latter cannot be true, as otherwise u would have become inactive at the end of iteration ¢ since
last(, ) = last(, ). Hence, u does not lie on the path from z to w.

If y # v, we the two active pointers (u,y) and (x,w) at the beginning of iteration i yield
a contradiction to Observation B.5. Hence, y = v. Observe that ¢ > 2, as at at the beginning
of iteration 1, the only pointers we have are the directed edges of G’, and the pointer (z,w) is
not such a pointer (as it contains the internal node v; we have = # v as x is a leaf while v has
a child, namely u). Hence, iteration ¢ — 1 exists, and at the beginning of iteration i — 1, node u
must have pointed to node v and node v cannot have been a 2-node, as otherwise we could not
have an active pointer (u,v) at the beginning of iteration i. Since, at the beginning of iteration
i — 1, node v had an incoming active pointer (from w), it cannot have been a 1-node either, so
it must have been a 3-node. Now consider the node z leaf © was pointing to at the beginning
of iteration 7 — 1. As the active pointer starting in x at the beginning of iteration i is (x,w),
there are only 3 possibilities, due to the design of the update rules: 1) z = w, or 2) z # v lies
on the path from v to w, or 3) z # v lies on the path from x to v and there is an active pointer
from z to w. In either case, we obtain a contradiction to Observation B.4. O

Lemma B.7. When a node stops being an active 3-node, it becomes an active 2-node. When
a node stops being an active 2-node, it becomes an active 1-node. When a node stops being an
active node, it turns from an active 1-node into an inactive 1-node, and remains an inactive
1-node until the end of Phase I. In particular, there are no inactive 2- or 3-nodes.

Proof. Consider an active node u that becomes inactive at the end of some iteration i. By the
update rules, v can only become inactive due to having an active pointer to some node v # u
at the beginning of iteration 4, and v having another incoming active pointer from some leaf
w (where, potentially, w = wu) such that last(,,y) = last(y ). In particular, u lies on the path
from w to v. At the beginning of iteration 7, node v cannot be a 3-node or a 2-node with
the relevant in-edge not lying on the path from w to v, since otherwise u # w, and the active
pointer (w,v) together with node u would yield a contradiction to Observation B.4. At the
beginning of iteration 4, node u also cannot be a 2-node with the relevant in-edge lying on the
path from w to v as otherwise u would have an incoming active pointer from some node x # w
on the path from w to w, yielding a contradiction to Lemma B.6. Hence, u is a 1-node at the
beginning of iteration 7. By Observation B.2, the inactive node that u becomes at the end of
iteration ¢ must be a 1-node, and u will remain an inactive 1-node.

Now consider an active 3-node that stops being an active 3-node at the end of some iteration
i. By the above discussion, u is still active at the end of iteration 4, and, by the design of the
update rules, u retains at least one relevant in-edge, which implies that it becomes a 2-node.

Finally, consider an active 2-node that stops being an active 2-node at the end of some
iteration 7. Again, we obtain that u is still active at the end of iteration 4, and, again by the
design of the update rules, we see that there can be at most one edge e incoming at u such
that there exists an active pointer p satisfying last, = e, which implies that u is a 1-node at
the end of iteration i (as u stops being an active 2-node). O
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Due to Lemma B.7, we will not have to distinguish between active and inactive 2-nodes (or
3-nodes) in the remainder of the paper as we know that such nodes cannot be inactive.

Bounding the Number of Iterations. In the following, we will fix some notation that is
required to prove that the number of iterations until Phase I terminates is in O(logn). We
will denote the induced tree consisting of active nodes at the end of iteration i by T;; we set
Ty == G'. Due to Lemma B.6, we know that 7T; is indeed a (rooted) subtree of G/, and that its
root is the root of G’, namely r; we also know that, for any ¢ > 1, tree T} is an induced subtree
of T;_1, due to Observation B.2. For each T;, we denote the maximal connected components
consisting of non-root degree-2 nodes by B;1,..., B; ., in an arbitrary, but fixed, order. Here
z; denotes the number of such maximal connected components in 7;. We call the B; ; blocks of
T;. For simplicity, we will also use B; ; to denote the set of nodes of B; ;. In the following we
will collect some insights about the T; and B; ;.

Lemma B.8. Consider some iteration i > 1. Any leaf u # r of T; is also a leaf of T;_1.
Moreover, any leaf u # r of T; is also a leaf of G'.

Proof. For a contradiction, suppose that, for some i > 1, tree T; contains a leaf u # r that is
not a leaf of T;_1. Note that u cannot have any incoming active pointer at the end of iteration
i, and therefore must be a 1-node at that point in time. Let v be a child of w in T;_1, and
let w denote the node v is pointing to at the end of iteration ¢ — 1. Due to our assumption,
v is active at the end of iteration 7 — 1, but inactive at the end of iteration i. Due to the
design of our update rules, the only way in which this can happen is that at the end of iteration
i — 1, w is a 3-node or the root, and there is an active pointer (z,w) from some leaf x with
last ;) = last(, ). Observe that, by Lemma B.7, u cannot be a 3-node at the end of iteration
i—1 (as it is a 1-node at the end of iteration ¢), which implies w # u. Hence, w is an ancestor
of u, and, by Observation B.4 and Lemma B.6, it follows that at the end of iteration ¢ — 1, the
active pointer starting at u must end in w, and last(, ,,) = last(, ). But this implies, again by
the design of the update rules, that if v becomes inactive at the end of iteration ¢, then so does
u. This yields a contradiction to the fact that u is active at the end of iteration 1.

Since we showed that any leaf u # r in the tree of active nodes at the end of some iteration
is also a leaf in the tree of active nodes at the end of the previous iteration, we obtain, by
applying this argumentation iteratively, that v must also be a leaf in Ty = G'. O

Corollary B.9. Consider some iteration i > 1, and some block B; ;. Let u be a node in B; ;.
If u is in some block B;_ j, then B;_y j C B;j (considered as node sets).

Proof. Let u be as described in the lemma, and suppose, for a contradiction, that there is some
node v # u satisfying v € B;_; ;7 and v ¢ B;;. By the definition of blocks, either v is an
ancestor of u, or u is an ancestor of v. In the former case, observe that, due to Lemma B.6,
all ancestors of u in T;_; are also contained in T;, which implies that v is a degree-2 node in
T; belonging to B; j, yielding a contradiction. In the latter case, observe that v and its child
in T;_1 must be contained in 7; as otherwise some node on the path from v to u must be a
leaf in T; while not being a leaf in T;_;1, which would contradict Lemma B.8. Now we obtain a
contradiction in an analogous way to the previous case. O

For each block B;; with i > 1, we denote the set of blocks B;_; j» that have non-empty
intersection with B; ; by prev(B; ;). Due to Corollary B.9, we know that the union of all node
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sets contained in prev(DB; ;) is a subset of B; ;. Moreover, for each block B;; with i > 1, we
denote the set of vertices in B;; that are not contained in some B € prev(B; ;) by new(B; ;).
We will also need the notion of a pointer chain.

Definition B.10 (Pointer chain). A pointer chain (from a node cy to a node c,) at the end
of some iteration i is a finite sequence C' = (co, ..., cy) of nodes such that for any 1 < j <y,
there is an active pointer (cj—1,c;) at the end of iteration i. We call a pointer chain a leaf-root
pointer chain if ¢y is a leaf in G' and ¢, = r.

Note that any pointer chain at the end of some iteration ¢ consists only of active nodes, i.e.,
of nodes from T; (this holds for the last node in the pointer chain due to Lemma B.6).

Observation B.11. For any iteration i, and any leaf uw # r in T;, there exists a leaf-root
pointer chain from u to r at the end of iteration 1.

Proof. This follows directly from the definition of a pointer, Lemma B.6, and Lemma B.8. [

In order to maintain a certain guarantee (given in Lemma B.12) throughout Phase I (that
will help us to bound the number of iterations), we will need to assign an integer value k; ; to
each block B; ; that, roughly speaking, provides an upper bound for the number of nodes from
B; j contained in any leaf-root pointer chain. Define prev(k; ;) to be the set of all indices j’
such that B;_y j» € prev(B; ;). For each block By j, we set ko = |By;|. For each block B; ;
with ¢ > 1, we set

ki ;= |neW(Bi7j)| +1/2- Z ki—l,j’ .

j'eprev(k; ;)

Lemma B.12. Consider a leaf-root pointer chain C' = (co,...,cy = ) at the end of some
iteration i > 0 (where we set the end of iteration O to be the starting point of our process). For
each block B; j, the number of nodes contained in C' N B; ; is at most k; ;.

Proof. We prove the statement by induction in ¢. For ¢ = 0, the statement trivially holds,
by the definition of kg ;. Now, consider some ¢ > 1, and assume that the statement holds for
i—1. Let C = (co,...,cy) be an arbitrary leaf-root pointer chain at the end of iteration 1,
and let C" = (¢{, = ¢, ¢}, . .. ,cfy,) denote the leaf-root pointer chain starting at cg at the end of
iteration ¢ — 1. By the design of the update rules, the definition of the function merge(-,-), and
Lemma B.6, the sequence C' is a subsequence of C’, i.e., C' is obtained from C’ by removing
elements. Furthermore, we observe that any (non-root) degree-2 node in 7;_; with an incoming
active pointer at the end of iteration i — 1 must be a 2-node (by the definition of a 2-node), and
any (non-root) node u of degree at least 3 in 7T;_; must be a 3-node at the end of iteration i — 1
(as, for each child v of v in T;_, there must be an active pointer (v, u), due to Observations B.4
and B.5).

Consider an arbitrary block B; ;, and an arbitrary block B;_; j € prev(B; ;). Due to the

definitions of a pointer and a block, the nodes in C'NB;_; j» form a subsequence of C’ consisting

of consecutive nodes c,, ..., c;. By the definition of merge(-,-) and the fact that the nodes in
Cc" = (c;, . ,c;) are degree-2 nodes in T;_1 (and hence 2-nodes at the end of iteration T;_1),

we see that for any two consecutive nodes in C”, at most one of the nodes is contained in C'
(by the design of the update rules). Moreover, as merge operations are only “performed” by
2-nodes, any node in C’ that is a (non-root) node of degree at least 3 in 7;_; (and hence a
3-node) will be contained in C', which implies that ¢}, is not contained in C' (as C;J_l is contained
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in C' and points to c; 1 at the end of iteration 7). Hence, we can conclude that for each B;_q j/,
we have |C N Bifl,j/| < 1/2 . |C/ N Biflyj/| < 1/2 . kifl,j/'
By Corollary B.9, we have

Bi,j = neW(Biyj) U U B,
Beprev(B;,j)

which yields

|CN Byl < [new(Bi;)|+ Y, |CnB
BGprev(Bm-)

<hew(Bip)l+ > (1/2- ki) = ki

j/EpI‘eV(kJiJ)

as desired. [

In order to bound the number of iterations in Phase I, we will make use of a potential
function argument. Recall that z; denotes the number of blocks of T;. For each i > 0 (such
that Phase I has not terminated after ¢ — 1 iterations), set ®; := @, + @7 where @, is the
number of leaves in T;, and @/ = Zlgjgzi ki .

Lemma B.13. Consider any iteration ¢ > 1 such that Phase I does not terminate at the end
of iteration i ori+ 1. Then ®;11 <7/8- ®;_;.

Proof. For i’ € {i —1,i}, let X; denote the number of leaves that are contained in T}, but not
in Ty y1. By Lemma B.8, Xy = @), — @}, ,.

By the definition of the k,; and new(B, ;) (as well as Corollary B.9), we have @}, <
1/2-®7 4| new(i' +1)|, where new(:’ +1) denotes the set of (non-root) nodes in Ty that have
degree 2 in Ty but not in Tjy. Recall (from the proof of Lemma B.12) that any (non-root)
node of degree at least 3 in Ty must be a 3-node at the end of iteration i’, and observe that
any leaf in T;; must be a 1-node at the end of iteration 7’. By the design of the update rules,
it follows that to any node u from the set new(i’ + 1), we can assign a leaf f, of T such that
there is an active pointer (f,,u) at the end of iteration ¢, and f,, becomes inactive at the end of
iteration i’ +1. As f,, # fu for any two nodes u # v’ from new(#’+1) (due to Observation B.1),
we obtain |new(:s’ 4+ 1)| < X/, which implies

h1 <1/2-®0 + Xy

As the next step, we bound @}, in terms of ®}. Let stay(i’) be the set of all leafs u of Ty
such that at the end of iteration i’ the active pointer starting in v does not end in a 3-node or
the root. Since all (non-root) nodes that have degree at least 3 in 7 are 3-nodes at the end of
iteration ¢’ (as already observed above), any node u € stay(i’) must point to some (non-root)
degree-2 node f, in Ty. For any two distinct nodes u,u’ € stay i, the nodes f,, and f,, must lie
in different blocks of T} (due to Observation B.4), and each block By ; containing such a node
fu must satisfy ki ; > 1 (as the leaf-root pointer chain starting in « contains at least one node
of By ;, namely f,,). Hence, |stay(i')] < ®7. Moreover, the design of the update rules ensures
that out of all the leaves in Ty that point to a 3-node or the root at the end of iteration 4’, at
least half will become inactive at the end of iteration i’ + 1. Thus, we obtain

@;,H < |stay(i')| +1/2- (<I>§, — |stay(i')\)
=1/2- (9} + [stay(i)]) <1/2- (@} + ®})
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To finish our calculations, we consider two cases. Let us first consider the case that ;’_ 1>
1/3-®,_,, which implies ®, ; < 3/4-®,_;. Then, using the equations and inequalities derived
above, we obtain

;=0 + &) < () — Xi1) + (1/2- @)1 + Xi1)
=, +1/2-®
:1/2‘(131‘_14-1/2- ;71
<T7/8- Dy .

Similarly to above, we see that
G <O +1/2-07 <P, |

which implies
D1 <T7/8-D;; .
Now, consider the case that ®/ ; < 1/3-®._,. Using the inequalities derived earlier, we

obtain
< 1/2- (B, + @ 4) <2/3-®]_,

and
Pl <1/2-®) |+ X, <P+ P, — D] .

Similarly to the previous case, we see that
Dip1 < Of+1/2- B < B +1/2- (WL, + @), — @)
=1/2-®] ; +1/2- (<b;—1 + <I>;)
<1/2-0) , +5/6-,_,
<5/6-D;_1 .

Hence, in both cases, we have ®;1; < 7/8- ®;_1, as desired. O

Using Lemma B.13, we are finally able to bound the number of iterations in Phase I and
prove Lemma 4.9.

Lemma B.14 (Restating Lemma 4.9). Algorithm A} terminates after O(logn) iterations.

Proof. Suppose for a contradiction that there is no constant ¢ such that Aj always terminates
after at most ¢-logn iterations. Observe that &g = @[, + ® < n+n = 2n.!! By Lemma B.13,
there exists some constant ¢ such that ®.155, < 1. By the definition of ®;, it follows that the
tree Tr.1ogn Of active nodes obtained after ¢ -logn iterations does not contain any leaves (apart
from, potentially, the root). This implies that there is no active pointer after c-logn iterations,
which implies that A} terminates after at most c-logn iterations, yielding a contradiction. [

"Note that the compatibility tree G’ has actually only O(n/logn) nodes, by Corollary 4.6, but upper
bounding this by n suffices.
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B.2 Analysis of Phase II

In this section, we will analyze Phase II of algorithm A’ defined in Section 4.2.3. In particular,
we will prove that Phase II terminates after O(logn) iterations. We will start by providing the
missing proofs for Lemmas 4.10 to 4.12 and Observation 4.13.

Lemma B.15 (Restating Lemma 4.10). For each edge e incoming to the root r, there is
precisely one pointer p = (u,r) € Pay such that w is a leaf and last, = e.

Proof. Fix an arbitrary edge e incoming to the root r. In the beginning of Phase I, there is an
active pointer p’ that ends in r and satisfies last,y = e. Due to the design of the update rules
for Phase I, this can only change once such a pointer that additionally starts in a leaf has been
added to the pointer set. As at the end of Phase I, there is no active pointer left, it follows
that there is at least one pointer p that ends in r and satisfies last, = e.

In order to show that there is at most such pointer, consider the first iteration ¢ in which
such a pointer appeared in the set of active pointers (and therefore also in the set of pointers).
By Observation B.5, there can only be one such pointer at the end of iteration ¢. Moreover,
due to the design of the update rules, no pointer p” satisfying last,” = e is added to the set of

pointers in any later iteration (as no active pointer p”’ satisfying last,» = e remains at the end
of iteration i 4+ 1). It follows that for edge e, there is precisely one pointer as described in the
lemma. O

Lemma B.16 (Restating Lemma 4.11). Let p = (u,v) be a pointer in Pg, with pred, # L.
Then pred,, has degree at least 2 in G'. Moreover,

1. if pred, has degree 2, then (u,pred,), (pred,,v) € Pgn, and

2. if pred, has degree at least 3, then (u,predp),(predp,v) € Prhn, and for each edge e
incoming at pred, that does not lie on the path from u to v, there is exactly one pointer
p' = (w, pred,,) € Pay such that w is a leaf and last, = e.

Proof. Since pred,, # L, the pointer p must be the result of a merge operation, which, by the
definition of merge(:, -), implies that pred,, is an internal vertex of the path from u to v. Hence,
deg(pred,) > 2.

First, consider the case that deg(predp) = 2. From the design of the update rules of Phase I
and the definition of merge(+, -), it follows directly that at some point during Phase I, there must
have existed active pointers (u,pred,), (pred,,v). This implies (u, pred,,), (pred,,v) € Pp.

Now, consider the case that deg(pred,) > 3. Analogously to the previous case, we obtain
(u, pred,), (pred,, v) € Pgy. Now what is left to be shown follows from an analogous argu-
mentation to the one provided in the proof of Lemma 4.10, with only one difference: for the
considered edge e incoming at pred,, it could also be the case that, at the point in Phase I
where the property that there is an active pointer p” that ends in pred,, and satisfies last,» = e
becomes false, this happens due to step 2, and not due to step 3, of the update rules. However,
observe that any vertex x can “perform” merge operations in at most one iteration during Phase
I (where the node considered to perform a merge operation is the node pred,» where p" is the
pointer created during the merge operation) since, by the design of the update rules, the merge
operations of that iteration will make sure that no active pointer that ends in = remains (which
cannot change thereafter). Observe further that for x = pred,,, each of those merge operations
must have merged two pointers where the one incoming at pred, (let us call it g) satisfies
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last, = €' where €’ is the edge incoming at pred, that lies on the path from u to v. Hence,
the aforementioned difference only applies to pointers ¢ ending at pred,, satisfying last, = e,
and since the lemma statement only concerns pointers p’ with last, # €, that difference is
irrelevant, and we can simply apply the argumentation from the proof of Lemma 4.10. O

Lemma B.17 (Restating Lemma 4.12). Consider any i > 1, and any edge e = (u,v) € E(G").
If done(i — 1) does not contain the pointer p = (u,v), then there is exactly one pointer (w,x) €
time(i) such that e € between(w, z). If done(i — 1) contains the pointer p = (u,v), then there
is no pointer (w, ) € time(i) such that e € between(w, x).

Proof. We prove the statement by induction in i. For ¢ = 1, we have done(i — 1) = 0, so
p ¢ done(i — 1). By Lemma 4.10, for each edge ¢’ incident to r, there is exactly one pointer
per € time(1) with last, , = ¢/, and p. is guaranteed to be a leaf-root pointer. By the definition
of between(-), it follows that e is contained in between(p./) where €’ is the unique edge incident
to r that lies on the path connecting e with r, and that e is not contained in between(p”) for
any pointer p” # p. from time(1). This covers the base of the induction.

For the induction step assume that the lemma statement holds for i — 1 (where i > 2);
we aim to show that it then also holds for 7. Consider first the case that done(i — 1) does
not contain the pointer p = (u,v). Then also done(i — 2) does not contain the pointer p =
(u,v), and the induction hypothesis guarantees that there is exactly one pointer p’ = (y,z2) €
time(i — 1) such that e € between(p’). By the definitions of time(i) and between(-), the only
pointers p” € time(i) that could possibly satisfy e € between(p”) are (y,pred, ), (pred,, z),
and some (a, pred,,) where a is a leaf and last(a,predp,) does not lie on the path from y to z.
Now, Lemma 4.11 (together with the definition of time(i)) guarantees that e is contained in
between(p”) for exactly one of those possible choices for p”, since the sets between(y, pred,,),
between(pred,,, z), between (b1, pred,,), .. ., between(bdeg(predp,)_g, pred,, ) are pairwise disjoint
and their union is between(y, z). (Here, by, .. .,bdeg(predp,)_g are the starting vertices of the
precisely deg(pred,, ) — 2 pointers p”’ € time(i) ending in pred,, and satisfying that last,~ does
not lie on the path from y to z, whose existence is guaranteed by Lemma 4.11.) Hence, there
is exactly one pointer (w,z) € time(i) such that e € between(w, z), as desired.

Now consider the second case, i.e., that done(i — 1) contains the pointer p = (u,v). By
the induction hypothesis, there is no pointer p’ # p contained in time(i — 1) such that e €
between(p’). By the definitions of time(i) and between(:) (and the fact that pred, = 1), it
follows that there is no pointer (w, x) € time(7) such that e € between(w, ), as desired. O

Observation B.18 (Restating Observation 4.13). For any i > 2, and any pointer p’ € time(i),
there is exactly one pointer p € time(i — 1) such that p’ € succ(p). Moreover, for anyi > 1, and
any pointer p = (u,v) € time(1) with pred, # L, we have succ(p) = {(u, pred,,), (pred,, v), p1,

. pdeg(predp)_Q} where each pj is a pointer starting in a leaf, ending in pred,, and satisfying
last,, = ej, where e1,..., €deg(pred,)—2 0T€ the deg(pred,) — 2 edges incoming to pred,, that do
not lie on the path from u to v.

Proof. The observation follows from the definition of time(-), Lemmas 4.11 and 4.12. O

Next, we show that Aj; is well-defined and correct.
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Well-Definedness and Correctness. From the description of the algorithm in Phase II
it is not clear that the labels with certain properties the algorithm is supposed to output do
actually exist. In order to show that the algorithm is well-defined, we first need a helper lemma
based on the following definitions.

Definition B.19. Let e = (u,v) be an edge in G'. We denote the set of vertices that have
ancestor u or are equal to u by Vg, the set of edges with at least one endpoint in V. by E., and
the set of half-edges (w,€’) with ¢’ € E, by H.. A labeling of the half-edges in H, (with a label
from 3oyt each) is a correct solution for H if it is a correct solution on the compatibility subtree
CSe induced by Ve U {u} where we do not have any constraint for node u (in the definition of
a correct solution for a compatibility tree (see Definition 4.2)).

Definition B.20. Let u,v be two nodes such that v is an ancestor of u. We denote the set
of nodes that are an endpoint of some edge in between(u,v) by Vi, ., and the set of half-edges
(w,e) with e € between(u,v) by Hy,. A labeling of the half-edges in H,, (with a label from
Yout each) is a correct solution for H, , if it is a correct solution on the compatibility subtree
CS,,» induced by V,,, where we do not have any constraint for nodes u and v (in the definition
of a correct solution for a compatibility tree).

Lemma B.21. At the beginning of Phase I (i.e., for i = 0), and after any iteration i, the
following two properties hold.

1. For any half-edge (u,e) satisfying M€ (u) # undecided, the set M¢(u) contains precisely
the output labels £ such that there exists a labeling of the half-edges in H, that is a correct
solution on C'Se and labels (u,e) with £.

2. For any pointer p = (v, w) € P;, the set pairs,, contains precisely the pairs (¢, ') of output
labels such that there exists a labeling of the half-edges in H, ,, that is a correct solution
on CSy and labels (v, firsty,) with ¢ and (lasty, w) with £'.

Proof. We prove the statement by induction in the first iteration ¢ in which M€¢(u) was set to
some label set L # undecided, resp. in which p was added to the set of pointers. The base
of the induction is implied by the initialization of M€¢(u) and the pointer set at time ¢ = 0.
The induction step directly follows from the precise definition of the two steps in the update
rules that create new pointers and change the values M¢(u), namely step 2 (which relies on the
precise definition of the merge operation) and step 3b, respectively. O

Now, we are set to show that the algorithm for Phase II is well-defined and correct.

Lemma B.22. Assuming that a correct solution for the compatibility tree G' exists, the algo-
rithm Ay for Phase II is well-defined and correct.

Proof. As the first step, we show that each time Ajf; is supposed to choose some output label
that has to be contained in M¢(u) for some half-edge (u,e), we have M€¢(u) # undecided.
From the description of Ajf;, it follows that when the above situation occurs, the half-edge
(u,e) in question is 1) incident to the root, or 2) incident to some node of the form pred, for
some pointer p = (v,w) € Psyp and e does not lie on the path from v to w. If (u,e) is incident
to the root, i.e., if u = r, then Lemma 4.10, together with the design of the update rules and
the fact that at the end of Phase I no active pointer remains, implies that M¢(u) # undecided.
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In the other case, observe that the existence of p implies that at some point during Phase I,
pred, was a 2-node with relevant in-edge on the path from v to w (due to the design of the
update rules). Now, Observation B.3 yields the desired inequality.

Next, we show by induction that at each step of Afj, labels with the required properties
are available and the partial solution produced by choosing such labels is part of some correct
global solution. Note that, due to Lemma 4.12 and Observation 4.13, it suffices to show the
induction step for each set succ(p) of pointers separately as the processing of two distinct sets
succ(p),suce(p’) is independent of each other (due to the facts that the half-edges considered
when processing succ(p) are separated by some already selected output label from the half-edges
considered when processing succ(p’), and that the correctness of a solution for a compatibility
tree is defined via constraints on edges and constraints on nodes). For simplicity, we will use
the notation from the description of Aj; in the following.

For the base of the induction, observe that for the first step of point (a), there is a choice of
output labels with the described properties due to Lemma B.21 (in conjunction with the very
first step of this proof) and the fact that a correct solution for G’ exists. Moreover, the obtained
partial solution is part of some correct global solution due to the properties required in the first
step of point (a) (and Lemma B.21). Observe also that the same holds for the second step of
point (a): Lemma B.21 together with the fact that there exists a correct global solution that
respects the partial coloring computed so far ensures that labels with the required properties
exist; the properties (and Lemma B.21) in turn imply that the new obtained partial solution
is still part of some correct global solution. (A bit more concretely, the fact that the partial
solution after the first step of point (a) is extendable to a correct global solution implies that
there must be a label ¢* as described in the second step of point (a) since pairspj contains all
label pairs that can be completed to a correct solution inside the subtree hanging from last,,
(by Lemma B.21) and the condition (£*) € S,; just states that the output is correct “at u;”;
the fact that the resulting output label pair (at the half-edges (r,first,;) and (last,,,u;)) is
contained in pairspj implies that the new partial solution can still be extended to a correct
global solution, again due to the characterization of pairs,, given in Lemma B.21.)

For the induction step, an analogous argumentation shows that, also for point (b), the
extendability of the obtained partial solution implies the availability of labels with the stated
properties, and the properties of the labels imply the extendability of the new obtained partial
solution to a correct global solution.

To prove the correctness of the algorithm and conclude the proof, given the above, it
suffices to show that each half-edge becomes labeled at some point. To this end, observe that
Lemma 4.12, Observation 4.13, and the definition of time(-) imply that any pointer p € Pgy
is containedagree in at most one time(7). Since there are only finitely many pointers in Py,
there must be some positive ¢ such that time(i) = (); hence Aj; terminates. Since Lemma 4.12
implies that all basic pointers have been processed when Aj; terminates, we obtain the desired
statement that each half-edge becomes labeled. O

Bounding the Number of Iterations. What is left to be done is to bound the number of
iterations in Phase II.

Lemma B.23 (Restating Lemma 4.14). Algorithm Aj; terminates after O(logn) iterations.

Proof. Let p = (u,v) be some pointer contained in some time(i) satisfying pred, # L, and let
p’ € succ(p). Let j, resp. j’, denote the first iteration in Phase I such that p, resp. p’, was an
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active pointer at the end of iteration j (possibly j = 0 or 7/ = 0). Our first goal is to show that
Jj <.

To this end, observe that, due to the design of the update rules in Phase I (and the fact
that the (active) outgoing pointer of a node can only grow), p must be the result of the merge
operation merge(q,q’), where ¢ = (u, pred,) and qJ = (pred,,v), and this merge must have
been performed in iteration j. Hence, ¢ and ¢’ must have been active pointers in iteration
j — 1, which implies that, if p’ € {q,¢'}, then j < j, as desired. Thus, assume that p’ ¢ {q,q¢'},
which, by Observation 4.13, implies that p’ = (w, pred,) for some leaf w, and last, does not
lie on the path from u to v. Since, at the end of iteration j — 1, node pred,, is a 2-node with
its relevant in-edge lying on the path from u to v (as merge(q,¢’) is performed in iteration j),
each active pointer ¢” ending in pred,, at the end of iteration j — 1 must satisfy that last,~ lies
on the path from u to v, and this fact cannot change in the further course of Phase I. Hence,
p’ must have been active before iteration j — 1, and, again, we obtain j' < j.

By Observation 4.13, we can conclude that for any pointer p’ in any time(i'), there must
be a pointer p in time(i’ — 1) such that the first iteration in Phase I at the end of which p
was active is strictly larger than the first iteration in Phase I at the end of which p’ was active
(where we consider the starting configuration to be “at the end of iteration 0”). This implies
that time(:” 4+ 2) = (), where ¢” is the number of iterations in Phase I. Hence, Algorithm Aj;
terminates after O(logn) iterations, by Lemma 4.9. O

B.3 Implementation in the MPC Model

In this section, we describe how to implement algorithm A from Section 4 in the low-space
MPC model. As the implementation of the rooting is provided in Appendix A, we can focus on
the main two phases.

We first consider the preprocessing of A from Section 4.2.1, i.e., the part of the algorithm
where we bring the number of nodes down to O(n/logn), and the part where the solution
computed on the compatibility tree in Section 4.2.3 is transformed into a solution for the con-
sidered LCL, i.e., algorithm Aj;. Both parts can be implemented in a straightforward manner,
due to Lemma 4.4, unless we run into memory issues due to the fact that we have to execute
O(loglogn) of the iterations described in Section 4.2.1, instead of just one. Note that a global
memory overhead can only be possibly produced by the new edges that are introduced in the
graphs G1,Go, ..., Gy since the node set only shrinks during that process and the memory
required for the “compatibility information” of the compatibility graphs cannot be asymptot-
ically larger than the memory required for storing the edges. Moreover, as the total number
of edges (produced during the process) that are incident to any particular vertex is at most
O(loglogn), we cannot run into issues with the local memory. Hence, it suffices to show that
the total number of edges produced during the O(loglogn) iterations does not exceed O(n).
However, this directly follows from the fact that for each new edge that is introduced during
those iterations, a node is removed.

For the remainder of the section, we consider the part of A from Section 4.2.2, i.e., algorithm

I, that solves the compatibility tree. We start by collecting all information that has to
be stored during A’. For simplicity, we already assign this information to the nodes of the
compatibility tree G’. We observe that unless a node has to store more than n?
total amount of information to be stored is in w(n), the algorithm can be naively implemented
by standard techniques. Soon we will see that the total amount of information to be stored is

words or the

o3



in O(n), and the only issue to be taken care of is that the local memory of “nodes” is exceeded.
We will explain later how to resolve this issue.
For Phase I (see Section 4.2.2), we maintain two pieces of information, namely

1. a set of pointers, and

2. the sets M (u).

For each pointer p, some additional information (pairs,, pred,, first,, last,), and whether it is
active or not) has to be stored, but since the memory required for this additional information
is only a constant multiple of the memory required to store the pointer itself (in particular
as there are only a constant number of output labels in ¥,,¢), we can ignore this information.
Moreover, as the design of the update rules in Phase I ensures, the number of pointers produced
in each iteration is upper bounded by the number of nodes of the compatibility tree, which is
O(n/logn), by Corollary 4.6. Since, by Lemma 4.9, there are only O(logn) iterations in Phase
I, the total number of pointers that have to be stored is in O(n); hence, our global memory of
O(m + n) is not exceeded. We already note that we will store each pointer p = (u,v) at both
of its endpoints; the overhead introduced by this does not change the required global memory
asymptotically.

Together with a set M(u), we also have to store the information about all the leaf-root
pointers in Pg, that end in w (in order to perform the steps in Phase II); however, by the
design of the update rules of Phase I and the fact that degrees are bounded (and |Yqyu¢| is
constant), all of this information requires just a constant number of words to be stored. We
will store each set M (u) and its associated information in node u; as the required amount of
memory per node is constant (in words), we can ignore this information in the remainder of
this section.

For the implementation of Phase II, the information stored in Phase I is still required, but
will not be changed or expanded. Note that the characterization of the pointers in time(7),
given by Observation 4.13, provides a straightforward implementation: the pointers that are
processed in iteration 1 are easily identified (as they are the only leaf-root pointers in Pgy,), and
the pointers to be processed in any later iteration are precisely those in a set of the form succ(p),
where p is a pointer processed in the previous iteration. Observe also that, by Lemma 4.11,
Observation 4.13 and the fact that degrees are bounded, each node is involved in the processing
of only a constant number of pointers in each iteration. Hence, each iteration of Phase II can
be easily implemented in a constant number of rounds.

From the description of the update rules of Phase I, it is easy to see that, again, each
iteration (now of Phase I) can be performed in constant time provided that we can perform all
merge operations (i.e., step 2) in constant time. From the above discussion, it follows that, in
order to obtain the desired runtime of O(logn) rounds for the complete algorithm A, the only
thing left to be done is to show that we can perform the merge operations in each iteration in
constant time while storing the pointers in a way that does not exceed the local memory of the
machines. In the following, we explain how to achieve this. Note that the merge operation that
creates a pointer (u,w) from (u,v) and (v, w) can be understood as v forwarding (the head of)
pointer (u,v) to node w.

Pointer Forwarding Tree. Our approach relies on a broadcast tree structure that we cre-

ate for each node with a large number of incoming active pointers (see Definition C.1 of Ap-
pendix C). Each node v creates a n’-ary virtual rooted tree, where the idea is to store the
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incoming active pointers in the leaves of the tree. Importantly, different nodes might be stored
at different machines, but since the number of incoming active pointers is bounded by O(n),
the communication tree has constant depth which allows us to perform operations efficiently.

To perform the actual pointer forwarding, consider a non-virtual node v and suppose that
v wants to forward its incoming active pointers to the non-virtual node u in which the active
pointer starting from v ends. Notice that the active pointers incoming to v are stored in the
leaves of the virtual tree T, rooted at v and similarly for u in the tree T}, rooted at u. Now, we
can simply attach the tree T, to the node in T), that currently stores the pointer (u,v) (for u).
Thereby, the pointers previously incoming to v are now stored in the broadcast tree of u, and
are therefore incoming to u.

This might, however, result in the depth of the broadcast tree increasing by an additive
term of 1/§. To mend this, consider the following balancing process.

Observation B.24. Let T, be a virtual rooted tree of depth d = O(1/§) of at most n nodes.
Then, in O(1/6) rounds, we can reduce the depth to 2/ such that all the leaf nodes of T, are
still leaf nodes.

Proof. The root initiates the following operation. First, using converge-cast, it learns the
number n, of nodes in each (virtual) tree rooted from each of its child v. Then, the root
creates a new no-ary virtual tree T* of depth O(1/§). Proportionally to the number n,, root
u assigns subtrees of T to child v, such that all incoming pointers corresponding to v fit into
the subtree. Clearly, this is possible since n, < n and the new virtual node is assigned to at
most nd children of u. This process is recursively continued until the leaves of T* are assigned
to the leaves of T;,. Then, we can change the pointers from the old broadcast tree nodes to
the new ones, and we have obtained our broadcast tree of depth O(1/d). Notice that a naive
implementation results in a 1/6 number of converge-casts, but the number of leaves per subtree
can be pre-computed and stored. O

B.4 Proof of Theorem 4.1

Before executing anything, we first run the deterministic connected components algorithm
from [CC22] on G? (which is another graph on the same vertex set, but in which two vertices
are adjacent if their distance in G is at most 2) that runs in O(log D) + O(log,, , logn) =
O(log n) rounds with O(m + n) words of global memory. The algorithm is component-stable,
if, when contracting (during the algorithm of [CC22]), we aggregate the minimum ID for every
component. Using this minimum ID, all nodes can compute the size of their component using
the aggregation tree structure (see Definition C.1 in Appendix C).

Before running the algorithm of Section 4, we root the input graph using the method
described in Appendix A, which is compatible with forests and is component-stable.

Regarding the algorithm itself, all arguments are local, i.e., nodes in separate components
do not communicate, the algorithm is component-stable. Furthermore, since every node knows
n;, which is the size of component 7 it belongs to, we can substitute n with n; in all global
memory arguments of the section. Since ) n; = n, the global memory bound holds. As we
now can apply our algorithm on each component separately, we can in the rest of the proof
assume that we are given a single tree.

The runtime bound follows from Corollary 4.6 and Lemmas 4.4, 4.9 and 4.14 as these
bound the runtimes of Phase I (leaves-to-root), Phase II (root-to-leaves), and of each iteration
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of the preprocessing phase and the postprocessing phase. Additionally, each of the steps can
be implemented under the memory constraints given by the low-space MPC model, as argued
in Appendix B.3.

For the correctness, Lemma B.22 shows that we obtain a valid solution of the compatibility
tree that is procuded after the preprocessing. Then, Lemma 4.4 shows that the postprocessing
phase transforms the latter solution correctly to a solution of the original LCL on the actual
input graph.

C The Broadcast Tree

A commonly used subroutine in the MPC model is the broadcast (converge-cast, aggregation)
tree. The MPC broadcast tree is constant-depth n-ary tree structure. It enables broadcasting
messages to all machines in constant time while respecting the O(n?) local memory and O(m+n)
global memory bounds. It is often assumed to exist without much discussion [GGJ20, BFU19,
BBD ™19, GSZ11]. Let us restate its formal definition for completeness.

Definition C.1 (Aggregation Tree Structure, [BKM20]). Assume that an MPC algorithm re-
cetwes a collection of sets Ay, ..., Ar with elements from a totally ordered domain as input. In
an aggregation tree structure for Ay, ..., Ag, the elements of Ai,..., Ay are stored in lexico-
graphically sorted order (they are primarily sorted by the number i € {1,...,k} and within each
set A; they are sorted increasingly). For each i € {1,...,k} such that the elements of A; appear
on at least 2 different machines, there is a tree of constant depth containing the machines that
store elements of A; as leafs and where each inner node of the tree has at most /'S children. The
tree is structured such that it can be used as a search tree for the elements in A; (i.e., such that
an in-order traversal of the tree visits the leaves in sorted order). Each inner node of these trees
1s handled by a separate additional machine. In addition, there is a constant-depth aggregation
tree of degree at most /'S connecting all the machines that store elements of Ay, ..., Ay.
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