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ABSTRACT

Statistical fault localization aims at detecting execution features that
correlate with failures, such as whether individual lines are part of
the execution. We introduce SFLKit, an out-of-the-box workbench
for statistical fault localization. The framework provides straight-
forward access to the fundamental concepts of statistical fault lo-
calization. It supports five predicate types, four coverage-inspired
spectra, like lines, and 38 similarity coefficients, e.g., TARANTULA
or OCHIAL for statistical program analysis.

SFLKit separates the execution of tests from the analysis of the re-
sults and is therefore independent of the used testing framework. It
leverages program instrumentation to enable the logging of events
and derives the predicates and spectra from these logs. This instru-
mentation allows for introducing multiple programming languages
and the extension of new concepts in statistical fault localization.
Currently, SFLKit supports the instrumentation of python programs.
SFLKit is highly configurable, requiring only the logging of the re-
quired events.
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1 INTRODUCTION

The basic concept of statistical fault localization is easy to explain.
Suppose a particular line in the program is executed primarily on
failing runs. In that case, its execution correlates with a failure and
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Figure 1: Statistical fault localization [7]. The middle() func-
tion takes three values and returns the one that is neither the

minimum nor the maximum; Line 6 most strongly correlates
with failure.

gives essential hints on the failure causes, notably a possible loca-
tion. The seminal TARANTULA paper [7] uses a middle() function
to illustrate the concept, shown in Figure 1. middle(x, y, z)is
supposed to return the “middle” of the three values x, y, z—the
value that is neither the minimum, nor the maximum of the three:
middle(5, 3, 4), for instance, correctly returns 4.

However, the middle() code in Figure 1 is faulty, as middle(2,
1, 3) returns 1 rather than 2. By feeding middle() various values
and observing the executed lines, we can determine that the execu-
tion of Line 6 has the strongest correlation with failure. Line 6 also
happens to be the fault location—it should return x rather than y.

What works well in a small example does not necessarily scale to
large systems. On a large scale, statistical fault localization can suffer
from reporting a multitude of potentially suspicious lines [14, 15].
Various statistical approaches have been suggested over the past
two decades, each improving over the previous benchmark results,
to make fault localization more precise [14]. However, each of these
approaches introduces their unique infrastructure that with custom
debugging loggers, custom predicates and custom spectra [2, 6, 8].
Yet, for research, we’d like to be able to select and combine these
elements in a modular, reusable fashion.

This paper introduces SFLKit, a modular statistical fault local-
ization framework that provides easy-to-use essential concepts of
statistical debugging and spectrum-based fault localization. SFLKit
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is highly configurable and effortless to extend with new approaches,
making it a great base for future research and education.

2 BACKGROUND

2.1 Spectrum-Based Fault Localization

Spectrum-Based Fault Localization (SBFL) [7] is a technique to lo-
calize the code location of a fault, founded on so-called program
spectra, which describe a program’s execution. Typically such an
approach considers a faulty program and a test set comprising at
least one failing test. This approach then collects coverage infor-
mation for each test case as the spectrum and correlates each code
element, described by the coverage, with the failure by calculating
a suspiciousness score. This score ranks how likely a specific code
location is faulty. The general idea behind SBFL is that elements
often executed in failing test cases and not so often in passing ones
are more likely to be faulty. In recent years, this technique became
more popular as part of automated program repair and was the
subject of some studies in this context [16].

In practice, SBFL techniques consider executed lines and use
a similarity coeflicient to compute the suspiciousness. Different
approaches vary only in the choice of this similarity coefficient.
This research trend results in an uncountable number of possible
coefficients [5, 9, 12]. TARANTULA [7, 8] was one of the first metrics
introduced to SBFL and is still a popular choice.

SFLKit implements four spectra and 38 similarity coefficients
that a user can leverage (see Table 1).

2.2 Statistical Debugging

In contrast to SBFL, statistical debugging (SD) leverages predicates
on the code that can be true, false, or not executed. Depending on
the result of these predicates, SD allows for deriving properties that
need to hold for producing the fault. While SBFL relies on similarity
coefficients to measure the suspiciousness of an element, SD relies
on the standardized metrics Failure, Context, and Increase [11].

Failure is the probability a failure occurs under the condition that
a predicate evaluates to true.

Context is the probability that a failure occurs when the predicate
is observed.

Increase describes how much the predicate being true increases
the probability of a failure occurring. The Increase of a pred-
icate p is calculated as

Increase(p) = Failure(p) — Context(p)

The most common example of SD is to leverage the condition of
branches, which was introduced by Liblit et al. [11].

SFLKit supports five types of predicates that cover various pro-
gram properties, allowing for tracking different program behaviors
that could lead to a fault (see Table 1).

3 DESIGN AND IMPLEMENTATION

We designed our framework such that we can separate it into two
stages. The first is the collecting of execution features. This stage
represents a debugging logger where we collect events during the
program’s execution to capture its behavior. It is entirely inde-
pendent of statistical fault localization and allows for using our
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Figure 2: A description of the meta-level instrumentation
used in our statistical fault localization framework.

framework as a debugging logger. We describe this phase in Sec-
tion 3.1. The second stage is analyzing the collected features with
concepts of statistical fault localization. We explain this phase in
Section 3.2.

3.1 Collecting Execution Features

The base of our statistical fault localization framework is an instru-
mentation of the source code that enables the logging of specified
events.

This concept leverages the abstract syntax tree (AST) of the
source code and an interface enabling the visiting of a node of the
AST on a meta-level. Each event we use comes with a factory to
produce it. The factory represents the visitor on the meta-level and
only produces the instrumentation for the single event it represents.

For example, we implemented a line event that gets triggered
every time a line (or a statement in other programming languages)
occurs. The overall visitor, in this case for Python, calls every meta-
visitor for each node. The event factory knows the injections and
modifications of the code for each node. With this design, we can ex-
tend our framework with new programming languages and events
while the events are independent.

Our framework accomplishes the instrumentation in three steps
on the AST.

(1) Parse the source code to an abstract syntax tree (AST). Visit
each node of the AST. We leverage the ast module coming
with Python for our Python support.

(2) Call the corresponding meta-level visitor on the AST node
that knows the statements it needs to inject.

(3) Combine all injections and changes to modify the source
code.

The implementation of our instrumentation allows the exten-
sion with other programming languages without modifying the
core functionalities by implementing the event factories for a new
programming language and an AST visitor visiting all nodes and
combining the results of these factories.

Figure 2 provides an overview of the instrumentation process in
our statistical fault localization framework.

Our current implementation supports solely Python programs be-
cause we did our experiments and evaluation in this programming
language.
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Table 1: The implemented concepts of statistical fault localization. The first column describes the type of the concept, the
second the number of implemented concepts of this type, and the last column lists the concepts.

Type Number Concepts

Events 11 LineEvent, BranchEvent, DefEvent, UseEvent, FunctionEnterEvent, FunctionExitEvent, FunctionErrorEvent,
LoopBeginEvent, LoopHitEvent, LoopEndEvent, ConditionEvent

Spectra 4 Lines[7], Functions, DefUse Pairs[17], Loops[13]

Similarity Coefficients [5, 9, 12] 38 AMPLE[4], AMPLE2[4], Anderberg, ArithmeticMean, Binary, CBIInc, Cohen, Crosstab[21], Dice, DStar[20],

Euclid, Fleiss, GP02[23], GP03[23], GP13[23], GP19[23], Goodman, Hamann, HammingEtc, HarmonicMean,
Jaccard[3], Kulczynskil, Kulczynski2, M1, M2, Naish1[10], Naish2[10], Ochiai[1], Ochiai2[1], PairScoring,
qe, RogersAndTanimoto, Rogotl, Rogot2, RusselAndRao, Scott, SimpleMatching, Sokal, SorensenDice,
Tarantula[7], Wong1[22], Wong2[22], Wong3[22], Zoltar

Predicates 5 Branch[11], Scalar Pairs[11], Variable Predicates, Return Predicates[11], Condition

The core of our statistical fault localization framework are events
collected during the execution of the program under test. In detail,
a unit test is suitable for extracting the execution events with our
framework. These events inject their required statements into the
target program as part of the instrumentation.

Our instrumentation can collect the execution events during a
test run and put them aside for later analysis. The critical compo-
nent here is a shared library that is part of the instrumentation.
When the program logs an event, it tells the shared library to write
the determined event into the log. The analysis can then read the
log and construct the needed data from this log. This separation
allows for using our framework as an execution event logger.

Table 1 provides an overview of the implemented events.

3.2 Analyzing Execution Features

To analyze the execution features, we leverage the logged events
to rebuild a model that we can modify while replaying the events.

This model is a practical way of keeping track of the program’s
behavior during the execution and enables our framework to derive
the spectra and predicates used for future analysis.

For each run, for which a log exists, SFLKit builds a model and
checks what spectra and predicates are observed and, in addition,
how they evaluate, i.e., for predicates to true or false. It leverages
these observations to calculate a variety of suspiciousness scores de-
fined by the user. The suspiciousness scores provide an overview of
how likely an analysis object correlates with the fault to investigate.

We implemented many previously introduced analysis objects
like lines, branches, or def-use pairs. As a novel aspect, we introduce
a new predicate we are not aware already exists to the best of
our knowledge. We based this novel analysis subject on existing
coverage criteria.

Conditions We introduce condition predicates derived from con-
dition coverage. For this predicate, we log sub-condition
events that occur whenever a sub-condition occurs, e.g., all
terms of the test of an if-statement. The predicate checks
whether a sub-condition being true (or false) correlates with
the program’s failure.

After extracting all analysis objects, we evaluate them with the
defined similarity coefficients or, in the case of predicates, with the
Increase metric as explained in Section 2.2.

Table 1 provides an overview of the supported program spectra,
predicates, and similarity coefficients.

Similarity
Coefficients

Spectra

Event
Logs

= Model

\ Predicates

Figure 3: An overview of the analysis stage of our statistical
fault localization framework.

4 TOOL USAGE

We provide our workbench as a Python package that is instal-
lable by running pip install . inside the root directory of the
framework. After installing the package, the various concepts are
accessible by importing sflkit in a Python script. The easy-to-
use access points to SFLKit are sflkit.instrument(config) and
sflkit.analyze(config) that take the path to a config file and ex-
ecute the instrumentation and the analysis of the execution events.

Consider the example in Figure 1. Figure 4 shows an example of
a config file for this scenario. sflkit.instrument(config) lever-
ages the predicates to investigate, extract the needed events, and
then instruments the target path as described in Section 3.1 to the
instrumentation path. sflkit.analyze(config) parses the events
from passing and failing parameters, builds a model for each run,
and then analysis the executed lines and computes the in metrics
provided OCHIAI [1, 2], JACCARD [3], and TARANTULA [7, 8] on these
lines.

All these steps allow for an individual execution and can be
interfered with at any time to leverage intermediate results.

In addition, our tool provides a command-line interface that
leverages these configuration files. To execute the command-line
interface, a user needs to run python sfl.py instrument -c
config and python sfl.py analyze -c config where config
is the path to the config file.

5 EXPERIMENTAL EVALUATION

We investigated bugs from the BugsInPy [18, 19] benchmark to test
SFLKit under authentic conditions. This collection of real-world
faulty Python programs comprises 501 subjects with passing and
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2 path = middle.py

3 language = Python
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6 predicates = Line

7 metrics = Ochiai,Tarantula,Jaccard
8 passing = events/passing
9 failing = events/failing
10

11

12 path = tmp.py

Figure 4: An example of a config file for SFLKit

failing tests that we can leverage. In addition, the benchmark pro-
vides a patch file for each bug that we can use to extract the code
locations that contribute to the fau

BugsInPy provides the test file for each bug that contains the
tests that trigger it. We used only the test cases in the provided
file because these are more likely to relate to the fault. In addition,
using only these tests instead of all provided test files significantly
speeds up our evaluation.

We selected three bugs for each project included in BugsInPy to
investigate, if possible. Several programs have no failing tests. Even
the tests that should trigger the bug did not fail, so we skipped them
for our selection. Moreover, some applications have no passing tests,
which we excluded too because there would be no logical expla-
nation for a particular code location to be faulty. In addition, we
did not investigate matplotlib/matplotlib and pandas-dev/pandas
because both come with a tremendous number of test cases that
take too long to run in our cross-validation setup for which we
needed to execute each subject multiple times. Moreover, we needed
to exclude explosion/spaCy, since there were no suitable subjects
as specified by our criteria. However, we want to investigate the
subjects we skipped in further evaluating our statistical fault local-
ization framework.

Besides this subject selection, we could not leverage each pro-
vided test in our evaluation. We excluded such test cases that
changed the outcome because of our instrumentation. We noticed
two reasons for this. The first is that some of the tests verified the
integrity of the source code, i.e., it was not altered, which we did.
The other reason is that a few tests ran into performance issues
when instrumented. These performance issues are something we
want to investigate further.

Table 2 provides an overview of all the bugs and tests we lever-
aged to test our framework. We investigated 41 subjects from 15
of BugsInPy’s 17 projects with a combined number of 1,823 test
cases. Moreover, the chosen subjects demonstrate the scalability of
SFLKit, with subjects comprising up to 68,801 lines of code.

We investigated lines as an analysis target for these real-world
experimentations. We calculated the precision, recall, precision@k,
and recall@k on the suggestions the analysis returns concerning the
actual faulty lines. We leveraged the OCHIAI [1, 2], the JACCARD [3],
and the TARANTULA [7, 8]similarity coeflicients for the experimental
evaluation. Table 3 demonstrates the results of this evaluation.

Marius Smytzek and Andreas Zeller

Table 2: The subjects of BugsInPy we investigated. Bugs,
#Bugs, #Tests, #lines donate to the number of bugs per subject,
the bugs we investigated, the number of tests we leveraged,
and the average lines of code analyzed per bug, respectively.

Project Bugs #Bugs #Tests #Lines
cool-RR/PySnooper 3 1 5 216
ansible/ansible 18 3 245 53,651
psf/black 23 3 341 145
cookiecutter/cookiecutter 4 3 26 997
tiangolo/fastapi 16 3 20 4,268
jakubroztocil/httpie 5 3 37 2,128
keras-team/keras 45 3 199 21,747
spotify/luigi 33 3 211 14,894
huge-success/sanic 5 3 158 4,023
scrapy/scrapy 40 3 53 10,962
nvbn/thefuck 32 3 65 3,953
tornadoweb/tornado 16 3 146 23,868
tqdm/tqdm 9 3 153 3,744
ytdl-org/youtube-dl 43 3 164 68,801
Total 501 41 1,823 639,772

Table 3: The results of the experimental evaluation. p@k
donates to precision@k and r@k to recall@k, respectively.
p@1 and r@1 are equivalent to precision and recall.

Coefficient k=1 k=3 k=5 k=10
p@l r@1 p@3 r@3 p@5 r@5 p@10 r@10

OCHIAI 022 0.13 0.21 0.14 0.18 0.16 0.12 0.17

JACCARD 022 0.13 022 0.14 0.18 0.16 0.12 0.17

TARANTULA 0.27  0.15 025 0.16 0.22 0.18 0.14 0.19

Average 0.237 0.139 0.228 0.149 0.194 0.163 0.130 0.178

SFLKit produced meaningful results for the investigated subjects,
with an average precision of 0.237 and a recall of 0.139, aligning
with similar experiments, e.g., Jiang et al. [6].

6 CONCLUSION

In this paper, we presented SFLKit, a statistical fault localization
framework that is accessible and out-of-the-box usable for real-
world applications. The framework provides all common key com-
ponents of statistical debugging and spectrum-based fault localiza-
tion.

SFLKit leverages extendable program instrumentation to log
execution features as occurring events and derives a model from
these features. Leveraging this model, our framework provides
various analyses for statistically correlating these execution features
with failures.

SFLKit opens the door for uniform and comparable future re-
search in the area of statistical fault localization. Our framework is
available as open source at

https://github.com/uds-se/sflkit
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