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Abstract   

Possessing the ability to efficiently generate ATP required to sustain cellular functions, 

mitochondria are often considered the ‘powerhouses of the cell’. However, our 

understanding of mitochondria in cell biology was further expanded when we recognized 

that communication between this unique organelle and the rest of the cell regulates 

cellular bioenergetics, metabolism and signaling processes such as mitophagy and 

apoptosis. Here, I investigate signaling between mitochondria and the actin cytoskeleton, 

and how this signaling regulates mitochondrial dynamics and cellular function. 

Specifically, I find that, upon mitochondrial dysfunction, actin polymerizes rapidly 

around the dysfunctional organelle, which we term ‘acute damage-induced actin’ (ADA). 

Hitherto, neither the mechanism of ADA activation nor the cellular role of ADA are well 

understood. 

In this dissertation, I show that that two parallel signaling pathways are required for 

ADA: driven by calcium signaling and ATP depletion, respectively. In the first pathway, 

mitochondrial calcium efflux through the sodium/calcium exchanger NCLX leads to 

elevation of cytosolic calcium, activating protein kinase C (PKC)-β. PKC-β activation in 

turn activates the Rac-GEF Trio, leading to activation of the Rho family GTPase Rac, the 

WAVE complex, and finally the actin-polymerizing Arp2/3 complex. Simultaneously, 

ATP depletion caused by mitochondrial dysfunction activates the energy sensor AMPK. 

AMPK activates in turn the Cdc42 GEF Fgd1, the Rho-family GTPase Cdc42, and finally 

a specific family of actin-polymerizing formin proteins, FMNL formins. Both FMNL 

formins and Arp2/3 s are to assemble mitochondrially-associated actin filaments.   

Next, I elucidated roles for ADA in mitochondrial and cellular dynamics, finding three 

distinct ADA effects. First, ADA stimulates glycolysis in multiple cell types, including 

mouse embryonic fibroblasts (MEFs) and cytotoxic T lymphocytes (CTLs). Second, 

ADA inhibits a specific form of mitochondrial dynamics we term ‘circularization’. Third, 

ADA delays mitochondrial recruitment of the E3 ubiquitin ligase, Parkin, which delays 

mitophagy.  Taken together, I propose that ADA is an acute mechanism for sensing and 

responding to mitochondrial damage, by promoting re-establishment of ATP production 

and giving the cell a ‘pause’ for recovery before the damaged organelle is permanently 

cleared. 
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1.1 The actin cytoskeleton:  

Actin (a 42kDa monomeric protein) is universally abundant in all eukaryotes, ranging 

from 50µM to 200µM in mammalian cells [1-3]. First discovered in muscle and 

described as far back as 1887, actin was successfully purified in 1942 [4].  The actin 

cytoskeleton provides animal cells, which lack a cell wall, with a structural framework – 

allowing them to change their shape, migrate, exchange material and adapt to their 

immediate environment [5]. On top of that, the actin cytoskeleton also provides scaffolds 

for protein and cargo transport within the cell [6], making it a dynamic and versatile 

system and crucial for health and physiology. A general biophysical function of actin is 

to generate force, which it does in two fundamentally different ways:  1) by filament 

growth to push material forward; or 2) as a substratum for myosin motor proteins, which 

provide a pulling force. 

There are six actin genes in humans, four α-actin in various types of muscle, and two 

non-muscle actins, β-actin and γ-actin [7]. Our focus here is on non-muscle cells. β- and 

γ-actin are identical in all but four amino acids. 

Interestingly, actin belongs in the same super-family as the glycolytic enzyme 

hexokinase, with both proteins binding to adenosine triphosphate (ATP) in a central cleft 

[7]. A recent paper found that the yeast hexokinase Glk1 polymerizes into filaments to 

inhibit its hexokinase activity after a nutrient shift [8]. Actin as a monomer is not an 

effective ATPase, but once it polymerizes into a filament, ATP hydrolysis efficiency 

increases [9]. 

In cells, the basic building block of the actin cytoskeleton are not actin monomers but 

rather actin filaments, double-stranded helical (right-handed twist) polymers (7nm in 

diameter) [10]. The actin filament is polar, meaning there are two different ends - called 

the barbed and the pointed end respectively [7]. Each actin subunit adds 2.7nm in length 

to a filament [7]. 

There are two distinct phases to actin polymerization: nucleation and elongation. 

Nucleation requires monomers to sequentially dimerize then trimerize, both steps being 

unfavorable. The trimeric actin ‘seed’ can elongate rapidly to generate the actin filament. 

Thus, actin filament assembly is limited by the nucleation phase, with dimerization the 
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most unfavorable step [5]. During elongation, the barbed end is the more dynamic end, 

having on-rates and off-rates ~10 fold faster than the pointed end [11].  

One key feature of actin is how quickly it transitions between monomers and filaments - 

being able to generate and disassembly extensive filament networks within seconds to 

minutes [12-14].  Therefore, to achieve the rapid and precise mobilization of the actin 

cytoskeleton for specific purposes, cells possess a myriad of actin-associated proteins that 

regulate the location and structure of actin networks. Figures 1.1 and 1.2 showcase a 

bird’s eye view and a cross section of a mammalian cell, giving a taste of the diversity in 

cellular actin-associated structures. 

1.1.1 Proteins controlling actin dynamics  

To control actin polymerization and depolymerization, cells rely on a number of actin-

binding proteins (Figure 1.3 and Figure 1.4) [5, 15]. An overall picture of cellular actin 

dynamics is that several of these proteins essentially prevent spontaneous nucleation 

(profilin, thymosin) and elongation (capping protein). Nucleation factors allow filament 

creation when and where needed.  

Elongation factors allow extended filament growth where appropriate. Depolymerization 

factors (cofilin, working with other proteins) accelerate filament disassembly, 

1) Nucleation factors, which initiate new filaments from monomers.  Three 

important nucleation factor classes are: 

a. Arp2/3 complex.  “Arps” are actin related proteins that share between 17% 

and 52% sequence with actin. There are 11 Arps in eukaryotes. Arp2 and 

Arp3 combine with 5 other subunits to form the Arp2/3 complex, which 

acts as a barbed end nucleus and remains at the pointed end after 

nucleation. The complex is inactive and requires two activators: 1) a 

nucleation promoting factor (NPF; Table 1.1) and 2) the side of a pre-

existing filament. 

This second activator results in a highly characteristic 70˚ branch upon 

Arp2/3-mediated nucleation.  Mammalian NPFs include WASP/N-WASP, 

Scar/WAVE (explained more in the later section 1.1.4), WASH, 

WHAMM, and Dip/WISH.  Cortactin is another Arp2/3 complex-binding 

protein that reinforces branches. There are multiple instances of Arp2/3 
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complex-induced actin networks assembling around mitochondria (section 

1.4).  In these cases, actin polymerizes in a dense ‘cloud’ that surrounds 

the mitochondrion. Cortactin can also be found around mitochondria. In 

mouse embryonic fibroblasts (MEFs), knocking out cortactin elongates 

mitochondria length [16]. 

b. Formins represent a diverse protein family (15 in mammals) [17] that 

promote nucleation and remain at the barbed end during elongation [18]. 

Structurally, formins are defined by the eponymous formin homology 

(FH) domains 1 and 2. Most formins are dimers, and the FH2 domains 

regulate nucleation and processively move with the growing barbed end of 

an actin filament during elongation. FH1 domains bind profilin-bound 

actin monomers and delivery them onto the growing filament. One key 

difference between formin- and Arp2/3 complex-mediated actin assembly 

is that formins generate linear actin filaments. Examples include mDia1, 

mDia2, INF2, FMNL (explained more in section 1.1.5), and FMN2 

(Table 1.2). 

c. Tandem WH2 domain-containing proteins.  The exact mechanism of actin 

assembly for this class of actin polymerizing factors is still poorly 

understood, but they promote nucleation and elongation [19]. Examples 

include Spire1/2, Cordon Bleu (Cobl), and leiomodin (Lmod).  

Of note, mitochondrially-localized Spire1C (an isoform of Spire1) is 

reported to participate in calcium-induced mitochondrial division 

alongside formin INF2 [20].  

2) Elongation factors either allow or inhibit barbed end growth in cells: 

a. Capping proteins bind tightly to barbed ends and stops elongation.  The 

major capping protein is a hetero-dimer and is expressed in all eukaryotes 

[7].  Capping proteins can be counter-acted by the next two protein 

classes. 

b. Formins.  After nucleating a filament, the formin remains at the growing 

barbed end, allowing elongation even in the presence of capping protein. 
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c. Ena/VASP proteins.  Similar to formins, these proteins bind near the 

barbed end, antagonizing capping proteins.  Mammals have three such 

proteins:  VASP, Mena and EVL. Ena/VASP proteins can be found in 

focal adhesions, stress fibers, lamellipodial and filopodia [21].  

3) Profilin is a small (13kDa protein) and abundant protein that binds actin 

monomers. Most unpolymerized actin is profilin-bound. Profilin plays a number 

of important roles. Profilin-bound monomers cannot nucleate, and only add to the 

barbed end (and not to the pointed). Profilin also accelerates recharging of 

depolymerized actin with ATP [22, 23]. In addition to its other functions, profilin 

can bind most formins, and works together with formins to accelerate elongation.  

The three mammalian profilins are: PFN1, 2 and 3.   

4) Thymosins are very small (~5kDa) proteins that bind actin monomers and 

“sequester’ actin, preventing nucleation or addition to either end. Thymosins have 

shown to be at higher concentration than actin in some cell types, but are 

somewhat mysterious due to their small size [24]. Mammals possess at least three 

thymosins: thymosin β4 (TMSB4 gene), the best characterized; thymosin β10 

(TMSB10); and thymosin β10 (TMSB15). 

5) Cofilin is largely associated with depolymerization. Cofilin preferentially binds to 

ADP(adenosine diphosphate)-actin sections of filaments, generally near the 

pointed end [7].  Cofilin-mediated severing in these regions is often an important 

step in filament depolymerization and cofilin works with other proteins in this 

role, including cyclase-associated protein (CAP), twinfilin, coronin and Aip1.  

Sometimes, however, cofilin-mediated severing promotes actin polymerization by 

creating new barbed ends. Cofilin phosphorylation inhibits actin binding [25, 26]. 

There are three mammalian cofilins:  Cofilin1, Cofilin2 and Destrin.  

Mitochondrially-associated cofilin1 might modulate mitochondrial dynamics [27, 

28]. 

1.1.2 Proteins controlling actin organization 

A number of actin-binding proteins organize filaments, including (Figure 1.5A-C): 

1) Arp2/3 complex.  This nucleation factor automatically causes filament branching 

when it nucleates, through its ability to bind both pointed ends and filament sides.  
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Repeated Arp2/3-mediated nucleation leads to tree-like ‘dendritic networks’ that 

can be extensive and dense, such as those found in the lamellipodia [29], or in a 

more limited manner around endosomes [30]. 

2) Crosslinking and bundling proteins.  These proteins bind two actin filaments to 

create networks or bundles.  α-actinin and filamin favor networks, while fascin 

creates parallel bundles.  Filament spacing by fascin is tight (~8nm [31]); while 

spacing by α -actinin (~35nm [32]) or filamin (~80nm[33]) are wider. FMNL 

formins can also bundle filaments [34], as well as some gelsolin family proteins, 

IQGAP1, EPS8 and paladin. 

3) ERM proteins (ezrin, radixin and moesin) link actin filaments to the plasma 

membrane [35]. I-BAR proteins such as IRSp53, MTSS1, IRTKSS, ABBA and 

Pinkbar can also serve this function. 

4) Tropomyosins bind along the actin filament and modulate filament stability 

through interactions with myosins or other actin-binding proteins (Figure 1.3).  

Mammals have four tropomyosin genes with multiple splice variants, leading to a 

diversity that is poorly understood [36]. 

1.1.3 Myosins 

The wide variety of myosin motors serve three general purposes (Figure 1.5D-F): 

1) Cargo transport.  Some myosins travel along an actin filament, towing cargo 

behind [37].  Examples are the myosin I, myosin V, myosin VI and myosin 19 

classes.  All myosins except myosin VI move toward the barbed end. 

2) Actin network contraction by the myosin II class, which forms bi-polar filaments, 

pulling actin filaments in opposite directions [38].  There are > 10 ‘muscle’ 

myosins that assemble sarcomeric structures in specific muscle types. Mammals 

also have three non-muscle myosin IIs:  NMIIA, NMIIB and NMIIC [39], 

important for contractile structures like the cytokinetic ring, stress fibers and 

retraction fibers. 

3) Load-resisting anchors.  In some situations, myosins maintain cellular structure in 

the face of a significant counter force.  Examples include myosin I, myosin II, 

myosin VI, and myosin 19 [40, 41]. 
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1.1.4 More about the WAVE regulatory complex 

The ubiquitously expressed WAVE regulatory complex (WRC) is an important NPF, that 

activates the Arp2/3 complex [42]. NPFs (including WAVEs, WASP/N-WASP, WASH, 

WHAMM and DIP/WISH) contain a carboxy-terminal WCA (WASP Homology 2 

(WH2)-central-acidic) domain [43] necessary for Arp2/3 complex activation. The WRC 

is a five subunit complex of ~400kDa [44]. In mammals, the subunits are WAVE 

(containing the WCA), Sra1, Nap1/Hem2 (or hematopoietic-specific Hem1), Abi1/2 and 

HSPC300. There are three WAVE genes, WAVE1, 2 and 3. with WAVE2 being the most 

widely expressed. Interestingly, removal of any single WRC subunit often eliminates the 

expression of all other subunits [45]. 

WAVE’s WCA is sequestered in the complex [46]. The Rho-family GTPase Rac1 

activates WAVE by releasing the WCA [47]. Aside from Rac1, phospholipids like 

phosphatidylinositol (3,4,5)-triphosphate (PIP3) and a number of transmembrane proteins 

can promote further activation [48, 49] or recruit WRC to specific membranes. 

Phosphorylation in the WCA domain also provides additional fine tuning [50]. 

The WRC is widely known to promote lamellipodia formation at the leading edge [51, 

52] but we recently found that the WRC can also be found near mitochondria. WRC 

activity triggers ‘acute damage-induced actin’ (ADA) after mitochondrial dysfunction 

(Chapter III). 

Mutations of the WRC have been implicated in many different diseases, including 

neurological disorders, immune deficiencies and cancer progression [42]. Other non-

canonical roles of WRC (or through individual subunits) are being determined as well. 

Recently, it was shown that Hem1 on its own can bind to mTORC2. In CD4+ T cells, 

Hem1 lost disrupted both WRC function and cellular growth through the 

phosphoinositide 3-kinase (PI3K)/AKT/mTORC2 pathway, leading to 

immunodeficiencies [53]. Abi1 can also work independently as a signal transducer in 

Ras-mediated cell transformation [54] or as an activator of another NPF, N-WASP [55]. 

1.1.5 More about FMNL family formins 

FMNLs represent a distinct formin sub-family, with three mammalian FMNLs: FMNL1, 

FMNL2 and FMNL3. Biochemically, FMNLs are weak nucleators but they are proficient 

in filament elongation and bundling [56-59]. FMNLs are N-terminally myristolyated and 
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localize preferentially to the plasma membrane and the Golgi [60, 61]. FMNL2 and 

FMNL3 are found in filopodia and interact with the actin-bundler fascin [62-65]. High 

activities of FMNL2 and FMNL3 are linked to poor prognosis in cancer patients and 

increased probability of metastasis [66-68].  

Strikingly, knocking out FMNL2/3 in melanoma and fibroblasts limits cell migration and 

lamellipodia structure [60], suggesting that lamellipodial actin assembly requires the 

coordinated action of the Arp2/3-complex and FMNL formins. We hypothesize that 

something similar occurs around mitochondria for ADA (Chapter III).  
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1.2 The mitochondrion: a unique organelle 

While mitochondria are commonly called ‘powerhouses of the cell’ and ATP production 

is perhaps the most critical function of the organelle, the organelle also provides a host of 

other functions related to apoptosis [69-71], calcium signaling and buffering [72-74], 

immune defence [75-77], generation of metabolic derivatives for macromolecule 

synthesis [78-80], lipid synthesis and exchange [81, 82], amongst others. In addition, 

maintenance of mitochondrial health is now appreciated as crucial to overall cellular 

homeostasis, especially in long-lived cells like neurons, and pathways for mitochondrial 

disposal by mitophagy are important processes. For these reasons, mitochondrial biology 

is a subject of intense interest. 

1.2.1 Mitochondria possess two membranes with specific characteristics 

Mitochondria contain two lipid membranes that are distinct from each other [83]. The 

OMM is lipid-rich, highly fluid and relatively permeable to low-molecular weight solutes 

(< 5kDa) [84]. In rat liver cells, the phospholipid composition of the OMM is 44-59% 

phosphatidylcholine (PC), 20-35% phosphatidylethanolamine (PE), 5-20% 

phosphatidylinositol (PI) and the rest consisting of phosphatidylserine (PS), phosphatidic 

acid (PA), cardiolipin (CL) and lysophospholipids [82, 85]. The outer mitochondrial 

membrane (OMM) participates in mitochondrial signaling and provides a platform for 

receptors and tethering proteins [86, 87].  

In contrast, the inner mitochondrial membrane (IMM) folds to form a unique architecture 

consisting of invaginations called cristae (Figure 1.6A, B), is protein-rich and crucial for 

metabolism, hosting complexes vital for mitochondrial respiration [88-90]. The lipid 

composition of IMM in rat liver cells consists of 38-45% PC, 32-39% PE, 14-23% CL, 2-

7% PI with the remaining mostly consisting of PS, PG and lysophospholipids [82, 85]. 

CL is selectively abundant in the IMM and is a negatively charged (-2) lipid that 

stabilizes the membrane morphology [82]. On the other hand, sphingolipids and 

cholesterol are not major constituents of mitochondria [82]. 

Between the OMM and IMM lies a constricted region called the intermembrane space 

(IMS) and the interior of the mitochondrion is called the matrix. 
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1.2.2 Mitochondria possess its own genome  

The mitochondrion is the only metazoan organelle with its own genome, called the 

‘nucleoid’ or mitochondrial DNA (mtDNA), located in the matrix. Mammalian mtDNA 

is a ~16kb circular double-strand structure that encodes 13 protein-coding genes, 22 

tRNAs and two ribosomal RNAs (rRNAs) (Table 1.3) [91].  

All the other ~1400 mitochondrial proteins, however, are encoded by nuclear genes and 

are imported into the mitochondria through elaborate machineries [92]. PGC1α is a key 

transcriptional regulator that promotes gene expression to supply mitochondrial proteins 

during organelle biogenesis [93]. Laudable efforts have been made to characterize the full 

mitochondrial proteome, with the MitoCarta initiative [94] and the MITOMICS dataset 

[95] being valuable resources. Interestingly, the mRNAs of mitochondria proteins are 

enriched on the OMM, suggesting translation at close proximity before eventual import 

[96]. 

Each mitochondrion possesses multi-copies of mtDNA. How the copies are distributed is 

still unknown. However, regulation of mtDNA replication and distribution are less 

rigorous compared with the nuclear genome [97]. The mtDNA replisome is required for 

mtDNA synthesis and consists of three components: 1) The mitochondrial polymerase γ 

(Pol γ) (encoded by the POLG gene). Pol γ contains two subunits, a catalytic subunit 

(POLG1) and a processivity subunit (POLG2) [98]. 2) A helicase known as Twinkle [99], 

and 3) A single-stranded DNA binding protein [100].  

Besides replication, the mitochondrial transcription factor A (TFAM) [101] packages 

mtDNA into a nucleoid and facilitates transcription [101, 102]. All the proteins of the 

mtDNA replisome and transcription are nuclear-encoded. 

Similar to nuclear DNA, mtDNA is prone to damage from environmental factors or 

replication mistakes. Mitochondria possess corrective abilities like short and long patch 

base excision repair (BER) or single-strand break (SSB) repair [103]. However, unlike 

the nuclear genome, double-stranded breaks (DSBs) of the mtDNA result in rapid 

degradation rather than serious repair attempts [104, 105]. Due to the existence of 

disorders linked to mtDNA, engineering the mitochondrial genome offers therapeutic 

promise [106]. 
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Why do mitochondria need its own genome? Currently, the answers are still speculative, 

but all proteins encoded in the mitochondria are relatively hydrophobic. Delivering these 

hydrophobic proteins to mitochondria is avoided by their local synthesis [107].  

1.2.3 Mitochondrial dynamics 

Mitochondria in cells are not static, uniform ‘pill-shaped’ structures (Figure 1.6C-E). 

Instead, they exhibit dynamic behaviors (also known as ‘mitochondrial dynamics’). 

Directed movement of mitochondria (called ‘mitochondrial transport’) is important for 

organelle distribution [108], especially true for polarized cells like neurons, which need 

to deliver mitochondria across long distances in the axons [109, 110].  

In addition, the mitochondrial network undergoes constant remodelling that is balanced 

by two counteracting processes, mitochondrial division and fusion [111, 112]. Division 

splits one mitochondrion into two [113]; while fusion does the opposite and combines 

mitochondria together [114, 115]. Both division and fusion have distinct molecular 

mechanisms and signaling cues [116-118]. Remodeling of the cristae represents another 

form of mitochondrial dynamics [119]. 

1.2.3a Mitochondrial division/fission 

Two major ways of mitochondrial division are recently characterized (Figure 1.6F, G). 

They can occur either at the middle of the organelle (midzone) or at the periphery [120]. 

The main, central protein facilitating division is a dynamin-related GTPase, Drp1 [121]. 

Drp1 is a cytosolic protein that needs to be recruited by OMM-bound adaptor proteins 

such as mitochondrial fission factor (Mff), mitochondrial dynamics proteins of 49 kDa 

and 51 kDa (MiD49/51) [122-125]. Both Mff and MiD49/51 recruit and bind Drp1 

independently of one another [126]. Mitochondrial fission protein 1 (Fis1), on the other 

hand – although a known receptor of Drp1 in yeast [127] - has a more debatable role as 

an adaptor for Drp1 in mammalian cells [128-131].  

Midzone and peripheral divisions are both Drp1-dependent, but the receptor differs. Fis1 

regulates midzone division while Mff mediates peripheral division. Midzone division is 

also associated to healthier mitochondria, while periphery division is driven by a stress 

response, like an accumulation of reactive oxygen species (ROS) for example.  
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A majority of mitochondrial division events (~88% of events in Cos-7 cells [132], mainly 

midzone divisions [120]) occur at mitochondrial-endoplasmic reticulum (ER) contact 

sites (MERCs), which mark regions of Drp1 recruitment [133]. Here, we define a MERC 

to be a temporally stable regions with less than 30nm of resolvable distance between the 

two parties [134, 135]. Elegant studies in MERCs revealed that the ER wraps itself 

around the mitochondrion before constriction and final scission [132]. Interestingly, 

during midzone division, mtDNA synthesis occurs at the same MERCs prior to division 

[136].   

Besides the ER, contact with two other organelles may contribute to mitochondrial 

division: lysosomes [137-139] and Golgi-derived vesicles [140]. The Higgs lab and 

others have also shown that actin plays a role in mitochondrial division, likely related to 

MERCs, and will be discussed in section 1.4.1. 

What are the functional roles of mitochondrial division? Firstly, division is required for 

segregating mitochondria population between mother and daughter cells [141, 142]. 

Mitochondrial division is also important in neurons, where smaller mitochondria are 

transported from the soma out to the neurites [143, 144].  A recent report also suggested 

that mitochondrial division distributes mitochondrial RNA granules [145] across the 

mitochondrial network. Lastly, mitochondrial division is essential for mitochondrial 

quality control through mitophagy. Surprisingly however, in certain mitophagic 

situations, division can be Drp1-independent [146, 147]. The budding of mitochondrial-

derived vesicles (MDVs) for cargo degradation does not require Drp1 either [148].  

1.2.3b Mitochondrial damage and circularization 

Mitochondrial damage through the loss of mitochondrial membrane potential is thought 

to result in massive division known as mitochondrial ‘fragmentation’. Morphologically, 

the entire mitochondrial population converts from an elongated network to small discrete 

units. While most studies observe this fragmentation after long periods of damage (in 

hours of protonophore treatment) [149, 150], there are several reports of fragmentation 

within minutes, acting in an actin-dependent manner [16, 151, 152]. In contrast however, 

several other detailed studies, including my own work, suggest something different [153-

156].  
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In the early stages of mitochondrial damage by uncouplers (within 30 min), we and 

others observe that mitochondria do not divide. Instead, the IMM re-organizes itself to 

form a ‘donut’ morphology under confocal imaging. An elegant electron microscopy 

study found that the IMM is reorganized extensively during circularization while the 

OMM remains intact [156]. We term this phenomenon ‘mitochondrial circularization’ 

(Chapter II and III). Circularization is Drp1-independent [154, 156]. Importantly, we 

found that circularization does not require actin either (Chapter II), and is in fact 

inhibited by actin. 

1.2.3c Mitochondrial fusion 

As mitochondrial fusion is not the major theme for this thesis, it is only briefly described. 

Successful mitochondrial fusion is a two-step process where opposite OMMs and IMMs 

fuse sequentially [114, 157] . Fusion of the OMM relies on dynamin GTPases Mitofusin1 

and 2 (Mfn1/2) [158]; while IMM fusion is dependent on a dynamin-like GTPase Opa1 

and CL [159, 160].  Mitochondrial fusion is essential for cellular survival [161-163], 

preserving mitochondrial DNA (mtDNA) integrity [164, 165] and safeguards the genome 

from mutations [166]. Recent research has found that mitochondrial fusion can occur at 

the same MERCs where the division machineries are found [167].  

It is worth noting that mitochondrial membrane potential (Δψm) is essential for fusion 

[150]. A mitochondrion without membrane potential cannot fuse. Hence, if a 

mitochondrion is partially depolarized (with ~50%  membrane potential assessed by 

TMRE staining in live-cell imaging), it will attempt to fuse with healthy counterparts to 

regain its membrane potential [167].   

Taken together, mitochondrial fusion is instrumental in maintaining cellular health. The 

current consensus is that hyperconnected mitochondria are associated with higher 

respiration rates [150, 168-170], increased ATP production [171, 172] and considered 

advantageous to cells with high energy demands [173]. 
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1.3 Cellular bioenergetics: a primer 

All living cells require a constant supply of energy with the common currency being 

ATP. In healthy cells, ATP concentration is maintained around 10-fold higher than ADP, 

which is orders of magnitude away from the hydrolysis reaction equilibrium [174]. 

Hence, achieving and maintaining this healthy ADP/ATP ratio requires constant ATP 

production, largely through carbohydrate (glucose) and/or fat (fatty acid) oxidation [91, 

175]. Regulation of these processes is critical and energy-sensing proteins like AMPK 

and several glycolytic enzymes are sensitive to fluctuations in cytosolic ADP/ATP ratio. 

AMPK will be further elaborated in section 1.3.5.  

The second thing to consider is how cells store and transfer electrons. Catabolic pathways 

converting food (like glucose) into energy are essentially a flow of electrons down an 

energy gradient [175]. In many situations, the terminal electron acceptor is often oxygen, 

which is reduced to H2O. Important intracellular electron carriers and redox 

intermediaries includes: 

1)  NAD+ (nicotinamide adenine dinucleotide)/NADH (reduced) pool –associated 

with ATP production. 

2) NADP+ (nicotinamide adenine dinucleotide phosphate)/NADPH (reduced) – 

associated with macromolecule synthesis or photosynthesis in plants. 

3) reduced glutathione/oxidized glutathione (GSH/GSSG) – associated with redox 

stress. 

4) ubiquinone/ubiquinol (reduced) (UQ/UQH2) - mobile electron carriers within the 

IMM.  

These electron carriers are highly compartmentalized in cells. For example, neither 

NAD+/NADH nor NADP+/NADPH are capable of crossing subcellular membranes [176, 

177]. Therefore, spatial and temporal control of electron carriers is important issues, as 

the imbalance of these species are implicated in conditions like cancer [178] and aging 

[179]. Given that changes to ADP/ATP or electron carriers are highly dynamic (within 

seconds or minutes), targeted fluorescent probes are now used to assess local levels of 

ATP [180], ADP/ATP [181] or NAD+/NADH [182-184] in real time. 

Below, I will elaborate on ATP production, starting with glucose metabolism and 

glycolysis.  
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1.3.1 Glycolysis: oxygen independent ATP production  

Glycolysis is one of the first metabolic pathway elucidated (Figure 1.7) [185] and refers 

to the splitting of one glucose molecule into two molecules of pyruvate, the terminal 

product. In humans, the normal fasting plasma glucose is maintained at 3.9-5.5mM (70-

100mg/dL) [186, 187]. Glucose transporters (GLUT – 14 proteins identified for humans 

[188]) facilitate the glucose uptake in cells, with GLUT1-4 being the most commonly 

expressed [189]. 

Once inside the cell, glucose breakdown requires ten biochemical reactions, all in the 

cytosol. ATP is initially consumed in early steps (the investment phase) before net ATP 

production is realized in the latter steps (the payoff phase) [185]. It might seem counter 

intuitive why ATP should be consumed first, but there are good reasons for this [185]. 

Firstly, phosphorylation of glucose to glucose 6-phosphate generates a negatively-

charged molecule that traps glucose for further processing [185]. Secondly, glycolysis 

relies on substrate-level phosphorylation. Phosphorylated metabolites, like 1,3-

bisphosphoglycerate, transfer their phosphoryl (PO3) group to ADP to produce ATP 

[185]. For complete glycolysis, 2 net ATP molecules and 2 NADH reducing equivalents 

are released for every glucose molecule.  

The third step of glycolysis, phosphofructokinase (PFK), is often considered the rate 

limiting step and is a focus of regulation. PFK is also a key sensor of the ADP/ATP ratio, 

with AMP allosterically activating and ATP allosterically inhibiting [190], allowing rapid 

response to changing cellular ATP. In section 1.3.5, I will discuss other glycolytic 

regulatory mechanisms. 

1.3.1a What to do with NADH?  

Tracing the flow of electrons, NAD+ accepts electrons from glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH- step six) [175].  Cytosolic NADH can be subsequently 

imported into the mitochondria through shuttle pathways (e.g. the malate-aspartate shuttle 

[191]) and combine with the mitochondrial NAD+/NADH pool. During rapid glycolysis, 

however, this mechanism can be insufficient. A buildup of intracellular NADH (reductive 

stress) is undesirable as it inhibits GAPDH activity and slows down glycolysis [192]. In 

the next section. We will learn another mechanism to convert NADH to NAD+. 
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1.3.1b Pyruvate: Metabolite at a crossroad  

After glycolysis, pyruvate has two major fates, which is largely dependent on oxygen 

availability, glycolytic rate and other factors. In the presence of oxygen, pyruvate is 

translocated into the mitochondria and utilized in the tricarboxylic acid (TCA) cycle 

(described in section 1.3.2). In the absence of oxygen, pyruvate becomes an electron 

acceptor [185], converting lactate by lactate dehydrogenase to regenerate NAD+[175, 

193]. For some proliferating cancer cells, the pressure to recover NAD+ can even 

overcome ATP demands to drive high glycolytic output [178].  

Like NADH, lactate accumulation is undesirable, and cytosolic lactate (and protons) 

translocate into the extracellular environment through monocarboxylate transporters 

(MCT) [194, 195]. There is a misconception that lactate in the circulation is a metabolic 

‘waste product’ [196], when in fact, it is actually a valuable carbon substrate. Lactate is 

utilized as fuel in different contexts, for example by regulatory T cells in the tumor 

microenvironment (TME) [197], by neurons during periods of high energy demand [198], 

and by cardiac muscle at all times [199]. Moreover, lactate is now known as a key 

signaling molecule [200] and even regulates gene expression through histone lactylation 

[201].  

Besides pyruvate to lactate conversion, other metabolic pathways to regenerate NAD+ are 

also available in the cytosol to buffer reductive stress during hypoxia [202]. 

1.3.1c Glycolysis beyond ATP production 

Cells use glycolysis for purposes beyond ATP production. Stimulated with growth 

factors, cells consume high amounts of glucose to support biosynthesis in different ways 

[79, 203]: 

1) Glucose 6-phosphate channels into the pentose phosphate pathway as a building 

block for nucleotide synthesis [79]. 

2) NADH can be converted to NADPH for anabolic reactions through cytosolic or 

mitochondrial NAD kinases [204, 205]. 

3) Fructose 6-phosphate is a precursor for UDP-N-acetylglucosamine (UDP-

GlcNAc) [206, 207], an essential component for protein post-translational 

modification [208].   
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1.3.1d Glucose and fructose: A tale of two carbohydrates 

Apart from glucose, fructose is another major dietary carbohydrate in the modern world 

[209]. Metabolism of fructose by ketohexokinase-c eventually produces glyceraldehyde 

and dihydroxyacetone phosphate [210], which enter glycolysis at the ATP payoff phase. 

This finding has raised health concerns, since fructose breakdown bypasses the regulatory 

PFK step [209]. Excess glucose- or fructose-derived energy is converted to fatty acids in 

the liver and stored as triglycerides in white adipocytes. Therefore, carbohydrate 

consumption is now linked with increasing rates of worldwide obesity [211] and the 

prevalence of non-alcoholic fatty liver disease [209]. 

1.3.2 The tricarboxylic acid cycle (TCA) cycle 

In terms of ATP generation. Mitochondria use a series of redox reactions to drive ADP 

phosphorylation. The following reactions take place either in the mitochondrial matrix or 

across the IMM. The realization that mitochondria participate in oxygen-dependent ATP 

production came in the late 1940s, through biochemical assays (with isolated rat liver 

mitochondria) done by Albert Lehninger [212, 213]. Metabolites like pyruvate, are 

funneled into the TCA cycle to facilitate ATP production. 

After glycolysis, cytosolic pyruvate is imported into the mitochondrial matrix, converted 

either to acetyl coenzyme A (acetyl-CoA) through pyruvate dehydrogenase or into 

oxaloacetate by pyruvate carboxylase [214] and enters one of the most well-described 

pathways of metabolism – the TCA cycle (also known as the citric acid cycle or the 

Krebs cycle) (Figure 1.8A) [215]. This hallmark finding was first introduced in the 

1930s by Sir Hans Krebs, who performed a good portion of the work on pigeon breast 

muscle [216].  

The TCA cycle consists of eight reactions [217].  In the canonical first step, citrate 

synthase combines the two carbons of acetyl-CoA with the four carbons of oxaloacetate 

to form citrate. In the next seven steps, citrate is progressively catabolized, generating 

reducing equivalents (three NADH and one FADH2), as well as one GTP, while two CO2 

are released to regenerate oxaloacetate [217]. Isocitrate decarboxylation by isocitrate 

dehydrogenase is the rate limiting step [218]. In addition, several key enzymes are 

calcium-activated: pyruvate dehydrogenase [219], isocitrate dehydrogenase and α-

ketoglutarate [220]. 
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In the presence of oxygen, NADH and FADH2 are the electron sources for the electron 

transport chain (ETC – section 1.3.3b). One step in the TCA cycle, succinate 

dehydrogenase, is also a component of the respiratory chain (Complex II) and supplies its 

FADH2-derived electrons directly [221].  

1.3.2a The TCA cycle: beyond generating reducing equivalents 

Mirroring glycolysis, ATP production is one of the many functions of the TCA cycle. 

Multiple TCA intermediates are employed as signaling molecules or building blocks for 

anabolic processes [222] : 

1) Oxaloacetate is involved in the synthesis of aspartate, a precursor of pyrimidine 

bases and asparagine [223, 224].  

2) α-ketoglutarate can be converted to glutamate [79], which in turn, be used for 

synthesizing non-essential amino acids like proline [205].  

3) Citrate exported from the mitochondrion through the citrate/malate antiporter 

(Figure 1.8B) [225] is cleaved by cytosolic ATP citrate lyase (ACL) into acetyl-

CoA and oxaloacetate [226, 227].  

Acetyl-CoA is further used for fatty acid synthesis [228] or imported into the 

nucleus for histone acetylation [229, 230].   

Oxaloacetate, on the other hand, is converted into malate, re-enters the 

mitochondria and fed back into the TCA cycle [225]. Highly proliferating cells 

like embryonic stem cells engage this non-canonical TCA loop. In contrast, 

terminally differentiated cells (e.g. differentiated myotubes) prefer the 

conventional TCA cycle [225].  

 

Taken together, TCA cycle intermediates are not single-use molecules but actively 

branch off for diverse functions - supporting the notion that metabolic networks are 

constantly multitasking to maintain cell viability [175]. Experimental techniques to track 

metabolites, like fluorescent reporters [231] or stable isotope tracing [232, 233] are 

currently used to determine the spatiotemporal fate of these metabolites. 
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1.3.3 Oxidative phosphorylation: oxygen dependent ATP production 

1.3.3a The chemiosmotic theory  

Peter Mitchell, a British biochemist and Nobel laureate, was the person who brought 

about a paradigm shift in the field of cellular bioenergetics. In his time, how ATP forms 

from the oxidation of food in the mitochondria was still a mystery. To solve this puzzle, 

Mitchell proposed in his 1961 seminal paper [234] that the link between oxidation and 

ATP synthesis is a proton gradient: the redox energy derived from reducing equivalents 

(like NADH) is used to generate a proton electrochemical gradient across a membrane, 

which in turn, drives ATP synthesis.  

Mitchell’s scheme is referred to as the ‘chemiosmotic theory’; and he coined the phrase 

‘protonmotive force’ (pmf or Δp) to describe this proton electrochemical gradient [235].  

It is astonishing to note that when he proposed this idea, there were still no experimental 

findings to support the hypothesis [236]. However, he persisted and wrote two privately 

published books, elaborating and refining the details of the chemiosmotic theory [235, 

237].  

Unsurprisingly, the chemiosmotic theory caused controversy in the field, and was not 

accepted until critical studies confirmed its basic principles. One of the most important 

biochemical study was conducted in 1974 by Racker and Stockenius (Figure 1.9) [238], 

where they found that ATP synthase can indeed utilize a bacteriorhodopsin-driven proton 

gradient to produce ATP. Mitchell would later go on to win the Nobel Prize in Chemistry 

in 1978 for revolutionizing the field of cellular bioenergetics [239].  

1.3.3b The proton circuit in the mitochondria and oxidative phosphorylation 

Nowadays, we have a much better understanding of the mechanism behind mitochondrial 

chemiosmosis [221, 240]. The pmf across the IMM is maintained through the ETC (or 

respiratory chain), which comprises of four large protein complexes I-IV (Figure 1.10). 

Complexes, I, III and IV possess the ability to translocate protons out of the matrix [240], 

while Complex II does not. The driving force for proton translocation is oxidation of 

TCA-derived NADH and FADH2, with the electrons passed between complexes 

(I→III→IV or II→III→IV) to the terminal electron acceptor, oxygen, to form water 

[240].  
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The pmf (expressed in mV) is a function of two components, ΔpH: the pH gradient 

across the membrane (a concentration term, defined as the pHIMS minus the pHmatrix) and 

Δψm: the mitochondrial membrane potential across the membrane (an electrical term) [91, 

240, 241], where: 

𝑝𝑝𝑝𝑝𝑝𝑝 =  ∆ψ𝑚𝑚 − 61 ΔpH 

In mitochondria isolated from rat livers, the overall pH of the matrix is around 7.5-8.2 

while the pH of the IMS is around 7, giving an ΔpH ranging from -0.5 to -1.2 pH units. 

Meanwhile, the Δψm measures around 150 to 180mV; giving an overall pmf from 180 to 

220mV [241]. The pmf in a single mitochondrion is surprisingly dynamic, local 

variations in pH [242] and Δψm [243] have been observed between cristae. 

To generate ATP, protons re-enter the matrix through ATP synthase, driving 

phosphorylation of ADP into ATP. Hence, the process of harnessing the pmf for ATP 

production is called ‘oxidative phosphorylation’.  

Other proton re-entry pathways are also available, which make up the proton ‘leak’ 

component [244, 245]. Even in healthy mitochondria, a basal amount of leakage helps 

relieve the pmf [246]. The uncoupling protein 1 (UCP1) in brown adipocytes [247] and 

the ADP/ATP carrier (AAC) [248] are alternate proton re-entry pathways. Both can be 

activated by fatty acids, superoxide or lipid peroxidation products [246]. 

1.3.4 Complexes of the electron transport chain (ETC) 

Here we shall briefly review some key aspects of each individual complex of the ETC. 

More on this topic can be found in [91, 221, 249]: 

Two key electron carries in the ETC are ubiquinone (UQ) [250] and cytochrome c. UQ is 

a lipid-soluble organic molecule that is reduced by either complex I or complex II to form 

ubiquinol (UQH2). UQH2 diffuse in the IMM to complex III, which is oxidized back to 

UQ [250]. Cytochrome c is a protein bound peripherally to the IMS face of the IMM, and 

shuttles electrons from complex III to complex IV. 

1.3.4a Complex I 

The function of mitochondrial complex I is to couple electron transfer from NADH to 

UQ with proton movement. Bovine mitochondrial complex I contains 45 subunits and a 

combined mass of ~980kDa [221], and is an L-shaped structure, divided into a 



21 
 

hydrophobic module and an hydrophilic arm [251]. Seven of the complex I subunits are 

encoded by mtDNA, and are all found in the hydrophobic domain [221]. The hydrophilic 

arm is the region where NADH is oxidized. At the base of the hydrophilic domain, a 

tightly but non-covalently bound flavin mononucleotide (FMN) cofactor accepts 

electrons from NADH and reduces to FMNH2. The electrons from reduced FMN are then 

transferred up a series of nine iron-sulfur (Fe-S) centers - moving towards the 

hydrophobic module and the IMM. The final and exact site of electron transfer to UQ is 

still in debate but it is thought to happen at a crucial N2 Fe-S center (with a UQ binding 

chamber proposed) [252]. This binding chamber is strategically positioned close to the 

inner leaflet of the IMM (~30 Angstroms between UQ binding and IMM) [221].  

How complex I couples redox reactions with proton transport is still an unresolved 

question [91]. One explanation is that during electron transfer, conformational changes in 

the hydrophilic arm is ‘sensed’ by the hydrophobic region for proton translocation [221]. 

Rotenone, a potent complex I inhibitor, prevents the transfer of electrons from the N2 Fe-

S center to UQ [251]. Structural analysis reveals that rotenone binds to a pocket very 

close to the N2 Fe-S center, at a distance around 10.1 Angstroms away [251]. 

Complex I is also a major center of ROS formation in the ETC [253], which occurs at the 

FMN region in the hydrophilic arm. Even at basal condition, fully reduced FMN leaks 

electrons to nearby oxygen to produce O2•- [254]. This situation is exacerbated if 

rotenone inhibits complex I and reduced FMN passes on electrons to nearby oxygen 

instead to produce high quantities of ROS [255]. Other inhibitors, like mucidin [256] or 

metformin [257], can inhibit complex I without forming ROS, although the mechanism 

for metformin action is still an active investigation [258]. 

Complex I deficiency is linked to the pathogenesis of multiple diseases and disorders, 

including Parkinson’s disease [259], T cell exhaustion [260] and cardiovascular failures 

[261]. 

1.3.4b Complex II 

The function of complex II is to transfer electrons from FADH2 to UQ, and is thus a 

second route to introduce electrons to the ETC. Complex II is unique in the ETC for three 

reasons. Firstly, none of its four subunits in mammals are encoded by mtDNA. Secondly, 
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complex II is the only enzyme in the TCA cycle (succinate dehydrogenase). Thirdly, 

complex II does not translocate protons across the IMM like the other complexes do.  

It was recently found that under hypoxic stress or complex III/IV inhibition, complex II 

works in reverse to oxidize UQH2 back to UQ while reducing fumarate to succinate 

[262]. This reversed complex II activity enables complex I to continue depositing 

electrons into the ETC to regenerate mitochondrial NAD+. Succinate is now regarded as a 

key signaling metabolite [250]. The accumulation of succinate have various effects on 

cellular function, including T cell proliferation, brown adipocyte differentiation, amongst 

others [250, 263]. 

1.3.4c Complex III 

Complex III consists of 11 subunits (one encoded by mtDNA) and catalyzes UQH2 and 

cytochrome c reduction, while moving four protons from the matrix to the IMS. The 

mechanism was first proposed by Mitchell and is known as the ‘Q cycle’ (Figure 1.11) 

[264, 265]. Complex III contains two catalytic sites, one called the Qp site and resides 

close to the IMS. The other is called the Qn site, which is situated close to the lumen. A 

unique Fe-S protein called the ‘Rieske protein’ is also loosely tethered to complex III in 

the IMS and haem C of cytochrome c.  

Various compounds inhibit complex III function, including antimycin A, myxothiazol 

and stigmatellin. Antimycin A binds to the Qn site and prevents the formation of an 

radical intermediate UQ•- (ubisemiquinone), thereby blocking reduction of UQ into 

UQH2 [91]. In contrast, myxothiazol blocks the Qp site while stigmatellin blocks the 

transfer of electrons to the Rieske protein [91]. 

Antimycin A treatment is a potent trigger for complex III-mediated ROS generation 

[255]. By blocking Qn site activity, UQ•- starts accumulating at the Qp site, leaking 

electrons to nearby oxygen to generate O2•- [254]. O2•- is released from complex III on 

both sides of the IMM [254]. ROS formation for Myxothiazol is context dependent, 

experiments have shown that it can induces ROS formation on its own [266] but also 

inhibit ROS during hypoxia [267]. Stigmatellin, on the other hand, has an inhibitory 

effect on H2O2 production from complex III [268]. 
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1.3.4d Complex IV 

Complex IV the last complex in the ETC, consisting of 13 subunits (three encoded by 

mtDNA). It accepts two electrons from cytochrome c to reduce O2 to H2O [269], coupled 

with protons pumping out into the IMS. How this coupling occur is still poorly 

understood.  

What is known however, is that electrons are first passed from cytochrome c to a 

bimetallic copper center (CuA) and subsequently to a haem a3/CuB catalytic site, which 

serves as the center for oxygen reduction. As for proton transport, there are two putative 

proton routes (called the D- and the K- channels, after a critical Asp and Lys residue 

respectively) that connect the mitochondrial matrix to the catalytic site /CuB and the IMS. 

It is still unknown which path protons take to exit into the IMS. Overall, eight protons are 

utilized from the mitochondrial matrix for each O2, four protons end up in H2O and four 

are pumped across the IMM [249].  

A recent report suggested that metformin can inhibit complex IV activity (~20% 

reduction) in liver models [270]. 

1.3.4e ATP synthase 

The mitochondrial F0F1-ATP synthase is a remarkable nanomachine consisting of 16 

subunits (two encoded by mtDNA [271]). Detailed explanation here is beyond the scope 

of this thesis but excellent resources are available [272, 273]. Briefly, ATP synthase 

consist of two functional domains, the membrane-intrinsic F0 sector (in the IMM) and the 

membrane-extrinsic F1 sector (in the matrix). The two domains are connected by central 

and periphery stalks. The F1 domain is the catalytic part of the enzyme, and 

phosphorylates ATP from ADP and Pi. On the other hand, the F0 part contains a motor, 

which generates rotary action using the pmf. The rotational energy of the F0 motor is 

transmitted to the catalytic F1 domain through the central stalk, which is physically 

attached to the F0 motor. Meanwhile, the peripheral stalk acts as a stator to hold sections 

of the F1 domain static relative to the rotary elements of the complex [274]. 

In the mitochondria, ATP synthase dimerizes at the highly curved base of the cristae 

ridge [275]. There is evidence to suggest that these dimers contribute to IMM folding and 

cristae formation [276]. Oligomycin, a potent inhibitor of the ATP synthase [277, 278] 
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binds to the Fo domain of the complex, although the exact binding site(s) is still an area of 

investigation [279]. 

1.3.4f Organization of ETC complexes 

On the IMM, the ETC complexes can function independent of one another. However, 

curiously enough, complex I, III and IV organize themselves together into a 

supramolecular assembly known as the ‘respirasome’[280, 281], containing all the 

necessary mobile electron carriers UQ/UQH2 and cytochrome c to facilitate efficient 

electron transfer. The exact reasonings for forming the respirasome is still an area of 

active research, some hypotheses being: 

1) A respirasome offers a favorable way to select out ETC complexes from the 

protein-rich IMM and stabilize them on the membrane. 

2) To reduce the chance of unfavorable and irreversible aggregation with other 

unrelated protein, preventing erroneous degradation of ETC complexes [280].  

3) To minimize the diffusion distances for UQ/UQH2 and cytochrome c (also known 

as substrate channeling) [280], increasing catalysis efficiency [249, 282].  

In mammalian cells, the respirasome occupies the planar, straight surfaces of the 

mitochondrial cristae [283]. Therefore, respirasome function is closely tied to IMM 

integrity. Remodeling of the IMM can lead to instabilities of the supercomplexes, 

bringing about undesirable effects on respiratory functions and overall cellular health 

[284].  

There is no known experimental evidence yet to suggest that complex II forms a 

supercomplex in mammalian systems. However, a very recent preprint reports that the 

respiratory supercomplex purified from Tetrahymena thermophila (a unicellular 

eukaryote) contained all four members of the ETC (I-IV) [285]. This gives rise to the 

possibility that complex II can indeed assemble as a part of the respirasome given the 

right conditions. 

1.3.4g Oxygen: indispensable but in excess? 

Since oxygen is essential for oxidative phosphorylation, it might be worthwhile to 

consider how this important molecule factors into cell culture experiments. As a matter of 

fact, standard, routine cell culture have oxygen levels drastically different from their in 

vivo tissue sources [286]. Apart from the pulmonary veins in the lungs, most human 
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tissues contain oxygen levels (5-10%) which are much lower compared to atmospheric 

air (21%) [286]. 

To make matters worse, cells are grown in supraphysiological levels of glucose (10 -

25mM glucose in standard media solutions, which is 2-5 fold more than fasting plasma 

glucose!), we might be observing molecular changes (or missing key observations) for 

cells that have rewired their biological behaviors based off an abundance of oxygen and 

nutrients. In the future, more physiological media [287, 288] and cell culture conditions 

might be beneficial in helping us make the next important discoveries in cell biology. 

1.3.4h A quick note about protonophores 

To disrupt the pmf, many studies employ mitochondrial uncouplers like carbonyl cyanide 

m‐chlorophenylhydrazone (CCCP) [289], or carbonilcyanide p-

triflouromethoxyphenylhydrazone (FCCP) [290] as pharmacological treatments. 

Dinitrophenol (DNP), another protonophore, was once used for weight loss in the 1930s 

[291] but was banned due to dangerous hyperthermic effects [292-294]. Sorafenib, an 

FDA-approved cancer drug, also disrupts mitochondrial pmf [295]. 

These compounds dissipate the pmf across the inner mitochondrial membrane in seconds 

(also called ‘mitochondrial depolarization’) [156, 295-297].  CCCP and FCCP have at 

least two other effects:  1) they cause the TCA cycle and the ETC to operate and consume 

substrates (including oxygen) at their maximum rates, representing an ‘out of control’ 

respiration [240, 298, 299]; and 2) they cause ATP synthase to work ‘in reverse’, 

hydrolyzing ATP to pump protons out of the matrix to recover the pmf, even draining 

glycolytically generated ATP if required [91, 300-302].   

We used to think of protonophores’ action as a black box in the past, where protons are 

indiscriminately transported across the IMM. However, a recent breakthrough study 

found that this is not the case. Instead, these protonophores depolarize the IMM by 

binding and activating the proton leak channels. AAC and UCP1 are both stimulated by 

protonophores to allow proton re-entry [303]. 

1.3.5 Energy sensing in the cell: AMPK and glycolytic enzymes 

Regulation of glycolysis and oxidative phosphorylation is dependent on the energetic 

state of the cell. How do cells sense energetic changes in the cytoplasm and respond? 

Several key metabolic enzymes are sensitive to cytosolic ADP/ATP ratio.  
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1.3.5a AMPK 

One key enzyme is the AMP-activated protein kinase (AMPK) (Figure 1.12) [304]. 

AMPK in mammals exist as a heterotrimeric complex including a catalytic α subunit and 

two regulatory subunits: β and γ. Multiple isoforms exist in mammals for each subunit, 

two α (α1, α2), two β (β1, β2) and three γ subunits (γ1, γ2, γ3) [305].  

AMPK is activated by phosphorylation of the ‘activation loop’ of the α subunit, mainly at 

a highly conserved Thr172 [306]. The major upstream kinase targeting Thr172 is the liver 

kinase B1 (LKB1 or STK11) [307].  

Aside from the α subunit, the other interesting part is the γ subunit, which contains the 

regulatory adenine nucleotide-binding sites [304, 308]. In a state where cells are well-fed, 

ATP is bound to the γ subunit, clamping the kinase in an inactive conformation [309]. 

However, when there is an energy shortage and ADP accumulates, cytosolic adenylate 

kinases catalyze phosphate transfer from one ADP to another, producing one ATP and 

one AMP [174]. AMP outcompetes ATP on the γ subunit [310, 311], triggering a 

conformational change of the whole complex [174] for three effects [308]: 1) it makes 

AMPK more susceptible to LKB1 phosphorylation at Thr172. 2) it decreases the rate of 

dephosphorylation of Thr172 by phosphatases. 3) it allosterically activates 

phosphorylated AMPK. These three mechanisms act synergistically, making AMPK 

sensitive to even small increases in AMP. 

Apart from AMP activation, AMPK can be activated through calcium signaling. 

Increased cytosolic calcium activates the calcium-sensitive kinase CaMKK2, which 

phosphorylates AMPK at Thr172 [312, 313]. 

1.3.5b AMPK and mitochondria 

Activation of AMPK enables the cell to initiate transcriptional changes and fine-tune its 

bioenergetics [304]. Recently, it was found that AMPK also modulates mitochondrial 

dynamics [314]. Mitochondrial dysfunction causes AMPK to phosphorylate the Drp1 

receptor Mff on the OMM, driving Drp1 recruitment and mitochondrial division. 

AMPK is also an important kinase for mitophagy [315]. AMPK phosphorylates the 

serine/threonine kinase ULK1, which subsequently phosphorylates the E3 ubiquitin 

ligase Parkin, activating Parkin for downstream mitophagy (see section 1.3.8). It should 

be noted that AMPK activation in this context is rapid, occurring within two minutes of 
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CCCP treatment. We found that this rapid AMPK activation is also crucial for ADA 

around depolarized mitochondria (Chapter III). 

1.3.5c Other energy-sensing enzymes in the cell 

AMPK aside, three other metabolic enzymes respond to ATP levels independently [174]:  

1) Phosphofructokinase (PFK), which is allosterically activated by AMP and 

inhibited by ATP to regulate glycolysis.  

2) Glycogen phosphorylase, which is responsible in the breakdown of glycogen, the 

storage form of glucose. Glycogen phosphorylase is activated by ↑ADP/ATP ratio 

3)  Fructose-1,6-bisphosphatase (FBPase), which is involved in the de novo 

synthesis of glucose (gluconeogenesis) in the liver and reverses the PFK step. The 

reactions of FBPase and PFK are distinct from one other. FBPase is inhibited with 

↑ADP/ATP ratio.  

1.3.6 Shifting between glycolysis and oxidative phosphorylation: an open mystery 

still 

1.3.6a The Pasteur effect 

How and why cell shifts between glycolysis to oxidative phosphorylation is still poorly 

understood. The detailed experiments of Louis Pasteur (19th century) showed that baker’s 

yeast ferment simple sugars (like glucose) to produce ethanol in the absence of oxygen 

[316, 317] but the presence of oxygen suppressed fermentation. Hence, he identified, 

rightly, that cells would convert glucose to ethanol (or lactate in humans) as a response to 

hypoxia. The metabolic switches – shifting from respiration to fermentation/glycolysis 

during hypoxia and high oxygen tension inhibiting glycolysis became collectively known 

as the ‘Pasteur effect’.  

Currently, it is known that any conditions causing defects in mitochondrial ATP 

production (ETC inhibition, loss of Δψm etc.) accelerates glycolysis [91]. One 

physiological situation where metabolic switching matters is the tumor microenvironment 

(TME), where immune cells must survive [318, 319]. 

Interestingly, by studying Pasteur’s original findings, Otto Warburg made his own 

ground-breaking and profound contribution years later.  
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1.3.6b The Warburg effect: past and present 

In the 1920s, Warburg observed that cultured tumor tissues have high, abnormal rates of 

glucose utilization and lactate secretion, even in the presence of abundant oxygen [320]. 

This propensity of cancer cells to preferentially rely on anaerobic metabolism became 

known as the ‘Warburg effect’ [321] or ‘aerobic glycolysis’ [322].  

Warburg himself concluded that mitochondria in cancer cells were ‘impaired’ [323, 324], 

since oxygen could no longer suppress glycolysis anymore [325]. Thus, this phenomenon 

can be considered a ‘weakening’ of the Pasteur effect [326].  

In one of his later papers, Warburg further suggested that transformation of a normal cell 

to a cancerous cell happens in two-stages [323]. The first stage occurs when normal cells 

encounter irreversible respiration injury, setting them on the path to become cancerous. 

The second phase of carcinogenesis represents a period of adaptation for the injured cells 

to maintain their viability - cells which could not adapt die from a lack of energy while 

others succeed by replacing ATP production from respiration to glycolysis [327]. 

His conclusion has been a topic of controversy since, not least because his own 

experiments [328] and by other laboratories [329] revealed persistent oxygen 

consumption in tumor tissues; suggesting that cancer cells’ mitochondria might not be 

totally impaired after all.  

Today, the current consensus is that the Warburg effect should be more broadly defined. 

It is certainly true that cancer cells employ glycolytic metabolism even under high 

oxygen tension. For example, lung tumors in the airway are highly glycolytic during 

tumorigenesis [330, 331].  However, apart from injuries to mitochondria [332-334] 

(which might impact its oxygen-sensing capacity [335, 336]), the Warburg effect can be 

considered a ‘damage’ to the proper regulations of glycolysis [329] or cytosolic oxygen-

sensing pathways [337-339].  

1.3.6c Cancer metabolism: an ongoing investigation 

In one sense, Warburg correctly inferred that cancer cells adapt readily for survival. In 

fact, cancer cells will do whatever is necessary to gain a metabolic advantage. In certain 

tumors, active mitochondria operate together with accelerated glycolysis [340]; while in 

other situations, slow-growing cancer cells might prefer oxidative phosphorylation and 

faster proliferative cells more glycolytic [340].  
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Hence, to address the unresolved puzzle of Warburg’s observation - a better 

understanding of the metabolic flexibility in cancer cells [203] and the metabolic 

regulation of host immunity [341, 342] are crucial, allowing better diagnostics and more 

precise treatments [343]. For example, teasing out the metabolic effects of 

immunotherapies like programmed cell death protein 1 (PD-1) blockade [344] is 

currently a hot topic of research [345, 346]. 

How does ADA around mitochondria influence cellular metabolism? In Chapter IV of 

this dissertation, we will explore this question. Our findings suggest that actin assembly 

upon mitochondrial dysfunction stimulates a ‘glycolytic switch’, adding mechanistic 

insight to one part of the Pasteur effect. 

1.3.7 Calcium signaling in mitochondria 

The late Nobel laureate Otto Loewi once remarked: “Ja Kalzium, das ist alles.”, which is 

roughly translated as “Yes, calcium is universal” [347]. Intracellular calcium is a vital 

signaling ion. Excitable cells like neurons [348] and pancreatic β-cells [349] release 

neurotransmitters or insulin after extracellular calcium influx through voltage-gated 

calcium channels. For most other cell types, a number of receptor-activated pathways 

trigger ER calcium release into the cytosol through ER-localized inositol-trisphosphate 

receptors (IP3Rs) [350, 351] or ryanodine receptors in skeletal and cardiac muscles [352]. 

It is likely that ryanodine receptor-like pathways exist in many cells, but are poorly 

characterized.  

Mitochondria have also been regarded as important regulators of intracellular calcium 

signaling after it was first demonstrated that isolated mitochondria could accumulate 

calcium [353].  

1.3.7a The cytosol is a calcium ‘desert’ 

In a ‘resting’ cell, mitochondrial and cytosolic free calcium levels are approximately 

0.1µM. Stimuli that trigger increased cytosolic calcium also often induce a mitochondrial 

calcium rise [351, 354, 355], bringing ions in either from the extracellular medium (1.8 

mM) or from the ER (250-600 μM) [356, 357]. Calcium ionophores like ionomycin 

induces both calcium influx from the extracellular space and triggers significant ER 

calcium release [12, 358, 359], while agonists like histamine activate ER calcium release 

through IP3Rs. 
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From the numbers, there is an ~18,000-fold difference in calcium between the 

extracellular environment and the cytosol; and a ~5,000-fold difference between the ER 

lumen and cytosol.  Cells maintain a low basal intracellular calcium concentration (a 

calcium ‘desert’) for good reasons. One important reason is that calcium, unlike 

magnesium, do not bind water tightly and readily precipitates out as calcium phosphate 

[360]. This precipitation is detrimental to the cell and it invests a significant amount of 

energy to regulate cytoplasmic calcium levels through ion channels (pumps and 

exchangers) [361]. Also, many magnesium-requiring enzymes (like actin) bind calcium 

with higher affinity than they do magnesium, leading to altered activity. The ATP-

dependent pumps maintaining the calcium gradient include SERCA (ER) [362, 363], the 

PMCA pump (plasma membrane, PM) [364], and the Na+/K+-ATPase (PM, which 

indirectly powers calcium efflux through the Na+/Ca2+ exchanger NCX in the PM) [365]. 

In addition to these pumps, the mitochondria help sequester any excess cytosolic calcium, 

having a buffering capacity of ~0.2 to 2µM in isolated brain mitochondria [366]. 

Interestingly, the mitochondrion stores a portion of its calcium as solid-phase calcium 

phosphate (or organo-phosphate) granules [367]. The estimated concentration of calcium 

in these granules is around 1.9 M [367], which makes the mitochondria a vital reservoir 

of calcium apart from the ER.  

Mitochondria cannot buffer calcium indefinitely though and overaccumulation causes 

opening of mitochondrial permeability transition pores (mPTPs) [368]. Once assembled, 

this nonspecific channel allows hydrophilic molecules up to 1500 Da to pass [369, 370], 

swelling and rupturing the organelle which eventually leads to cell necrosis [371]. The 

molecular identity of this pore is still unknown. 

Mitochondria also accept calcium from the ER through MERCs [372-375]. Various 

extracellular stimuli (e.g. hormones, growth factors, neurotransmitters) can induce ER 

calcium release [376], along with signals originating from the mitochondria. ROS 

released from mitochondria is shown to trigger IP3R-mediated calcium efflux, which then 

gets imported into the mitochondria at MERCs [377]. 

How does calcium transport across the OMM and IMM to enter the mitochondrial 

lumen? Crossing the OMM is generally unproblematic, as this membrane is permeable to 

cations like calcium. The main entry point through the OMM involves the 30-35kDa 
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voltage-dependent anion channel (VDAC) [378], which contains calcium binding sites 

and does not restrict calcium movement. [379-381].  

1.3.7b IMM calcium entry 

Once inside the IMS, calcium must transverse the IMM which is a selective membrane 

impermeable to even the smallest cation (the proton) [84]. The molecular identity of the 

IMM calcium channel was unknown for many years [382, 383]. The breakthrough came 

in the early 2010s through careful studies by several groups [384-386]. Nowadays, we 

know that a multiprotein channel called the ‘mitochondrial uniporter channel’ is 

responsible for IMM calcium entry.  

This channel is made up of several proteins. The channel-forming protein is the 

mitochondrial calcium uniporter (MCU), containing two transmembrane domains (TM1 

and TM2). Four MCU proteins assemble the tetrameric pore [387].  

Other subunits include: 

1)  The essential mitochondrial response element (EMRE) [388], a scaffolding 

protein that helps to stabilize the tetrameric pore. 

2) The mitochondrial calcium uniporter regulator 1 (MCUR1) [389]. 

3) The mitochondrial calcium uptake 1,2 and 3 (MICU1/2/3) [390-392]. To function, 

MICU1 forms a homodimer or heterodimer with either MICU2 or MICU3 [393]. 

MICU3 is a brain-specific isoform [394]. MICUs interact electrostatically with 

MCU in the IMS [395] and binds to local calcium using EF hands [393]. At low 

calcium levels, MICUs physically occlude the MCU pore to prevent cation entry 

[387]. Conversely, at high calcium concentrations, MICUs dissociate from the 

MCU, opening the pore. Therefore, mitochondrial calcium uptake is regulated by 

the calcium-sensing MICUs.  

1.3.7c IMM calcium efflux 

The major IMM calcium release pathway that is applicable to this thesis is the 

mitochondrial Na+/Ca2+/Li+ exchanger (NCLX). The molecular discovery of NCLX 

occurred roughly the same time as for MCU [396].  

This exchanger has been suggested to import 3 Na+ for each Ca2+ exit [397]. Regulation 

of NCLX is still poorly understood but mitochondrial membrane potential and 

phosphorylation of the exchanger are required [398]. A loss of Δψm has been associated 
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with the inhibition of NCLX but NCLX phosphorylation by protein kinase A (PKA) can 

override this Δψm-induced inhibition of NCLX [399].  

Hence, calcium efflux via NCLX has been shown in hypoxic experiments [267] and 

ischemic models [400] where the IMM depolarizes. In our context, we found that calcium 

efflux by NCLX after CCCP treatment is an initial trigger for ADA (Chapter III). 

One important method to interrogate NCLX activity is through the small molecule 

inhibitor CGP37157 [397, 401]. Although CGP37157 is considered a selective and potent 

inhibitor, there are studies suggesting that it possess off-target effects on PM calcium 

transporters and channels [397, 402].  

1.3.7d Mitochondrial calcium and respiration 

How does mitochondrial Ca2+ regulate cellular metabolism? Firstly, Ca2+ activates several 

key enzymes of the TCA cycle (Figure 1.8), which increases their affinities for substrates 

to drive an efficient TCA cycle [220, 403]. Hence, MCU-mediated Ca2+ uptake has been 

demonstrated to stimulate ATP synthesis [394]. In addition, reports also suggest that 

complexes I, III, IV [404] and the ATP synthase [405] increase their activities in the 

presence of Ca2+, but the exact mechanisms for these situations are still unclear. 

1.3.8 The mitophagy process: PINK1/Parkin dependent clearance 

Cellular health is tightly linked to mitochondrial health. When mitochondria get 

damaged, proper clearance of is required to maintain homeostasis. The mitochondrial 

turnover process is called ‘mitophagy’, which is a specific form of autophagy [406, 407]. 

In a canonical mitophagy model, loss of membrane potential causes stabilization of the 

serine/threonine kinase PINK1 on the OMM (Figure 1.13) [406, 408].  PINK1 then 

phosphorylates both ubiquitin [409, 410] and the E3 ubiquitin ligase Parkin [411-413], 

causing Parkin recruitment to ubiquitinate a number of OMM substrates.  Next, 

autophagy receptors including p62, NBR1, NDP52, optineurin (OPTN) and TAX1BP1 

bind ubiquitinated OMM proteins [406, 414] and tether the organelle with the 

autophagosome for engulfment [415]. The completed autophagosome is then delivered to 

the lysosome for degradation [415].  

Besides mitophagy, PINK1/Parkin also drive MDV budding for organelle removal [416]. 

Defects in PINK1/Parkin have been implicated in immune deficiency disorders [417] and 
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neurodegenerative diseases [418]. How actin plays an active role in PINK1/Parkin 

mitophagy are described in section 1.4.4 and Chapter V. 

Other mitophagy models that do not involve PINK1/Parkin include the OMM proteins 

FUNDC1 [419] or BNIP3/NIX [420].  
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1.4 Actin and mitochondria coming together: what we know so far 

The attention to actin and mitochondria has significantly increased over the course of the 

past 20 years. It is now established that actin participates in mitochondrial biology in a 

variety of contexts, which we divide into four categories: 

1) To stimulate mitochondrial division 

2) To induce or inhibit mitochondrial motility 

3) As actin clouds in interphase and mitotic cells 

4) In several stages of the mitochondrial damage response 

1.4.1 Mitochondrial division and the formin INF2 

A role for actin in mitochondrial fission was first suggested almost 20 years ago [154], 

with the molecular players starting to emerge in recent years.  In our current mechanism 

(Figure 1.14), an ER-bound isoform of the formin INF2 nucleates a meshwork of 

cytosolic actin filaments [12, 421, 422], some of which interact with mitochondria.  A 

second actin polymerization factor, the mitochondrially-bound Spire1C, might also be 

involved in this actin assembly [20].  Notably, Arp2/3 complex is not required for 

mitochondrial fission through this mechanism (Chapter II).  Myosin II also plays a role 

here [1, 423], and the actin bundler fascin has been linked to INF2-polymerized actin in 

cancer cells [424].   

We refer to this INF2-mediated polymerization as ‘calcium-induced actin’ (CIA) because 

it is triggered by increased cytoplasmic calcium.  CIA brings about mitochondrial 

division in two ways.  First, CIA stimulates ER-to-mitochondrial calcium transfer, 

through stabilized MERCs.  The increased mitochondrial matrix calcium causes IMM 

constriction in a Drp1-independent manner [12].  Second, CIA stimulates Drp1 

recruitment to mitochondria [12, 425, 426].  Biochemically, Drp1 binds actin filaments 

and actin synergizes with Mff to promote Drp1 GTPase activity [3, 427].  In cells, actin-

stimulated Drp1 oligomerization may be initiated on the ER, which contains a population 

of ER-localized Mff [425]. The current model is that CIA may help in both recruitment 

and oligomerization of Drp1 - either on the ER or on actin filaments - before Drp1 finally 

translocate onto the mitochondria for constriction.  
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Interestingly, two distinct ‘types’ of mitochondrial division were recently identified: 

‘midzone’ division occurs in healthy mitochondria, whereas ‘peripheral’ division occurs 

in damaged mitochondria. Midzone division is dependent on associated ER and INF2, but 

not for division at the periphery (Figure 1.6F, G) [120].  

1.4.2 Actin inhibiting microtubule-based mitochondrial motility 

Mitochondrial distribution and motility are largely driven by kinesin- or dynein-motors 

moving along microtubules (Figure 1.15) [110]. These motors link up with the 

mitochondria through two intermediaries:  Milton (also called TRAK) and Miro.  

Regulation of mitochondrial movement is important. A recent study identified that 

increased cytoplasmic glucose causes post-translational modification of Milton by N-

acetylglucosamine (O-GlcNAcylation) [428].  Modified Milton recruits and binds to 

FHL2.  This Milton-FHL2 complex promotes actin polymerization around the 

mitochondria, thereby arresting microtubule-based movement.  While this actin bears 

some resemblance to cycling peri-mitochondrial actin (section 1.4.3) or ADA, its 

assembly mechanisms apart from FHL2 are still unknown. 

1.4.3 Mitochondrially-associated actin in interphase and mitotic cells 

Some cultured cells during interphase display ‘clouds’ of actin filaments around a sub-set 

of mitochondria (Figure 1.15) [429], with the cloud dynamically circling around the cell 

within 15 min. Presence of the cloud correlates with increased Drp1-dependent 

mitochondrial fission but these mitochondria often re-fuse after the actin cloud passes. 

This actin cloud is Arp2/3 complex dependent [429].  

During the mitotic stage, another actin cloud develops which possess greater speed and 

actin density than interphase clouds. Mitotic clouds makes a full revolution in 6 min 

[430] and restricts mitochondrial motility. However, in a minority of cases (13%), a 

mitochondrion can break free and propel away with an actin ‘tail’ (~250 nm/sec). 

Morphologically, this Arp2/3 complex-dependent tail contains two main strands that are 

helically entwined, similar to the distinctive tails behind Rickettsia at a specific stage in 

its infection cycle [431]. While this actin-based motility is not important for overall 

symmetrical distribution of mitotic mitochondria, it does increase mixing of 

mitochondrial populations. 
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1.4.4 Actin and mitochondrial dysfunction, mitophagy   

Rapid actin polymerization (within 5mins of treatment) around damaged mitochondria, 

which we call ADA (acute damage-induced actin), was first described in mouse 

embryonic fibroblasts [16] using the protonophore FCCP (Figure 1.16) and forms the 

central theme of this dissertation.  

At the beginning of this project, the distinction between CIA (section 1.4.1) and ADA 

was murky. In Chapters II and III, we shall discuss how CIA and ADA are 

fundamentally different from each other. Although cytoplasmic calcium is involved in 

both actin responses, calcium alone is necessary but insufficient for ADA, and a parallel 

signaling pathway is required (Chapter III). The comparison between CIA and ADA 

highlights the point that cellular actin is polymerized based on distinct signaling cues to 

promote unique functional outcomes. 

Apart from CCCP, we found that other stimuli like ETC inhibitors and hypoxia can 

generate ADA (Chapters IV). ADA is crucial for a variety of cellular dynamics - 

mitochondrial circularization (Chapter II and III), metabolic shift to glycolysis 

(Chapter IV) and Parkin recruitment (Chapter V). 

After ADA, a second round of peri-mitochondrial actin polymerization, which we term 

“PDA” (prolonged damage-induced actin) occurs after 1-2 hours of persistent Δψm loss 

[432, 433].  The functions of PDA is distinct from ADA. Firstly, it prevents re-fusion of 

damaged mitochondria with healthy ones [432]. Myosin VI-mediated actin cages isolate 

damaged mitochondria from neighboring populations [432] and the caged mitochondria 

are sealed for destruction in mitophagy. Secondly, PDA also disperses mitoaggregates for 

efficient autophagosomal engulfment [433]. PDA is currently known to be N-WASP, 

Arp2/3 complex and formin(s) dependent. 

1.4.5 Actin and glycolysis  

Two examples of actin-mediated glycolytic regulation have recently been revealed.  

In the first example, aldolase A is inactive when bound to cortical actin at the plasma 

membrane. Stimulation with insulin, however, activates the PI3K signaling cascade, 

eventually activating both Rac1 and WRC, remodelling the actin cytoskeleton and 

disassembles the cortical actin network to release aldolase A. Once released from actin, 

aldolase is activated [434]. 
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In the second example, cells in a stiff extracellular matrix (ECM) experience high 

physical tension and remodel their actin cytoskeleton to build stress fibers, shifting their 

metabolism toward glycolysis. Stress fibers help sequester an E3 ubiquitin ligase called 

TRIM21. Under normal circumstances, TRIM21 targets PFK for ubiquitination and 

degradation. With TRIM21 immobilized on stress fibers, excess PFK elevates glycolysis. 

Cancer cells like non-small-cell lung carcinomas maintain these actin stress fibers (even 

on a soft ECM) to sustain high glycolytic rates [435]. 

In Chapter IV of my thesis, we found that in addition to stress fibers and cortical actin, 

ADA is a potential driver of glycolysis. Unlike the pre-existing models, the glycolytic 

activation we observe is rapid, occurring within 5-min of mitochondrial dysfunction. 

ADA-mediated glycolysis is particularly crucial for cells in physiology (5mM glucose) or 

hypoglycemic (<2mM glucose) and hypoxic (1% O2) conditions.  

The exact mechanisms for this effect are still unknown. And we speculate whether the 

abovementioned models [434, 435] or Arp2/3 complex-dependent glucose uptake [436] 

might be responsible. However, our finding has opened new avenues to explore. Simply, 

cells have devised multiple ways to accelerate glycolysis by remodeling their intracellular 

actin cytoskeletal landscape.  
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Figure 1.1: Actin-based structures, viewed from above the cell. A hypothetical mammalian 

cell, migrating toward the top of the page and attached to a second cell on the right.  Cellular 

structures/processes known to use actin are labeled by name, with actin indicated by brown 

shading.  Actin-based functions that are somewhat distinct from the canonical functions are 

denoted by letters.  (A) Actin assembly around mitochondria, inhibiting microtubule-mediated 

mitochondrial translocation (microtubule in green, kinesin in blue).  (B) Myosin-based 

mitochondrial motility along an actin filament. Myosin in purple. (C) Actin polymerization 

around a damaged mitochondrion (ADA), which induces several downstream responses.  Damage 

indicated by lightning bolt.  (D) ‘Cycling’ actin polymerization around several mitochondria.  (E) 

CIA:  calcium-activated actin polymerization by the ER-bound formin INF2 (ER in green).  Actin 

plays a major role in regulating cell dynamics in the nucleus too, which are beyond the scope of 

this dissertation. (F) MRTFA (Myocardin Related Transcription Factor A, blue circle) nuclear 

entry, regulated by actin monomer binding.  In the nucleus, the MRTFA-Serum response factor 

(SRF) complex is a major transcription factor. (G) Actin monomer as part of a chromatin 

remodeling complex.  (H)  Actin-based motility of chromatin toward the nuclear periphery.  (I) 

Actin involvement in transcription regulation.   
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Figure 1.2: Actin-based cellular structures viewed in cross section. A side view of a cell, 

emphasizing several points: ruffles are dorsal structures; peripheral ruffles and dorsal ruffles are 

distinct structures; podosomes and invadopodia are ventral; the lamellipodium is weakly attached 

to the substratum. Ventral stress fibers are attached at both ends to focal adhesions, whereas 

dorsal stress fibers are only attached to focal contacts near the leading edge. Important organelles 

like mitochondria, ER and Golgi are not shown. Figure adapted from [437].       
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Figure 1.3: Proteins controlling actin dynamics.  A) Polymerization of actin alone.  The two 

initial steps of actin polymerization (dimerization and trimerization) are unfavorable, and 

collectively called ‘nucleation’. Subsequent monomer additions (elongation) are much more 

favorable. In cells, monomer addition occurs preferentially at the filament barbed end, rather than 

the pointed end.  ATP hydrolysis by the actin subunit is generally slower than the polymerization 

rate, resulting in an ATP-rich region at the barbed end and an “ADP-Pi” rich region (Pi = 

phosphate) in the middle of the filament.  Pi release is slower, resulting in an “ADP” region at the 

pointed end.  B – barbed end. P - pointed end. B) Three abundant proteins that are central to 

cellular actin dynamics.  1) profilin binds actin monomers, allowing them to add to barbed ends 

but not pointed ends. 2) Capping protein binds the barbed end, blocking elongation. 3) Cofilin 

binds ADP-bound filament regions near the pointed end, resulting in filament severing.  4) the 

severed filament releases ADP-bound actin monomers from both the barbed and pointed ends.  5) 

Profilin re-binds the ADP-bound actin monomer, and cofilin releases.  6) Profilin accelerates 

nucleotide exchange on actin, resulting in ATP re-charging.  C) Tropomyosins bind along the 

actin filament.  Tropomodulins bind at pointed ends of tropomyosin-bound filaments, capping 

these ends. Nucleotide dynamics are not shown in this panel, for simplicity.   
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Figure 1.4: Actin nucleation and elongation factors.  A) Arp2/3 complex-mediated nucleation, 

requiring both an activating protein (bound to an actin monomer) and an existing actin filament 

for activation, resulting in a branched filament. B - barbed end. P - pointed end. B) Formin-

mediated nucleation, with the formin remaining at the barbed end, and working with profilin in 

filament elongation, while blocking capping protein access. C) Ena/VASP proteins at barbed end, 

mediating elongation while blocking capping protein access. D) Tandem WH2 motif-containing 

protein nucleating a filament, then releasing.  There are several open questions with these 

proteins, including if/how fast they release from the pointed end, and whether they are able to 

interact with barbed ends as well. 
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Figure 1.5: Actin-organizing proteins, and myosins.  A) Dendritically branched network 

assembled by Arp2/3 complex. B) Fascin-mediated filament bundle in a filopodium, linked to the 

plasma membrane (PM) by an ERM protein.  Barbed ends are toward the filopodial tip. C) 

Filaments crosslinked by α-actinin, into either a loose bundle (top) or a network (bottom). D) 

Myosin-mediated cargo translocation, either toward the barbed end (myosin I, V, myosin 19) or 

pointed end (myosin VI). B – barbed end. P – pointed end. E) Contraction of anti-parallel actin 

filaments by the myosin II oligomer, causing the actin filaments to move in the direction of the 

black arrows. F) Myosin I as a static tether, resisting a counter-acting force.  Direction of myosin 

force is black arrow, direction of counter-force is blue arrow. 
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Figure 1.6: Mitochondria and their dynamics. A) A transmission electron micrograph of a 

single mitochondrion in human osteosarcoma U2-OS cell. This image is from a thin section 

(~50nm in thickness). Therefore, the ‘spherical’ or ‘ovoid’ appearance is likely an artifact due to 

sample preparation for electron microscopy imaging, and the full mitochondrion is probably 

much longer (see panel B). B) A confocal fluorescence micrograph of a mouse embryonic 

fibroblast (MEF) with a mitochondrially-targeted green fluorescent protein, showing that 

mitochondria can exist as a branched network. C) Model of mitochondrial dynamics in the cell. 

Mitochondria are dynamic organelles that divide and fuse according to cellular needs. Both 

division and fusion require distinct molecular partners. D) and E) Confocal fluorescence 

micrographs of U2-OS cells expressing a mitochondrially-targeted red fluorescent protein.  Scale 

bars: 5µm.  D) the mitochondrial morphology is elongated. E) the mitochondrial morphology is 

fragmented. Corresponds to (C). Scale bar: 5µm. F) and G) Drp1-dependent mitochondrial 

division comes in at least two distinct flavors. For midzone division (F), the event is associated 

with the ER, replicating mtDNA and actin filaments. Midzone division is vital to maintain 

cellular homeostasis and cell growth. G) For peripheral division, mitochondrial stressors like a 

drop in mitochondrial membrane potential (ψm) trigger the asymmetrical division which is 

assisted by lysosome recruitment. After division, the smaller unit is targeted for organelle 

clearance. (A): image courtesy of Dr. S. Kamerkar (Higgs lab, Dartmouth College) and Dr. R.V. 

Stan (Department of Biochemistry and Cell Biology, Dartmouth College). (C): Adapted from 

[438]. (F) and (G): Adapted from [439]. 
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Figure 1.7: The ten steps of glycolysis in the cytosol. Cells initially invest ATP to generate 

glycolytic intermediates before receiving a ‘payoff’ later in the process. One glucose molecule 

generates a net product of 2 ATP, 2 reducing equivalents (NADH) and 2 pyruvate molecules. 

Steps 1 (hexokinase), 3 (phosphofructokinase) and 10 (pyruvate kinase) are irreversible reactions. 

Pyruvate after glycolysis has two fates, lactate production or import into the mitochondria for 

further processing in the TCA cycle. Glycolytic intermediates can be diverted for other cellular 

purposes. For example, as building blocks for biosynthesis or signaling molecules. To regenerate 

NAD+, pyruvate can be converted to lactate. Figure adapted from [185]. 
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Figure 1.8: The traditional and non-canonical TCA cycle. A) In the mitochondrial matrix, 

pyruvate is converted into acetyl-CoA [440] before entering the eight chemical reactions of the 

TCA cycle, centered on the cyclic catabolism and recovery of citrate. Alternately, pyruvate can 

be converted directly into oxaloacetate [441]. The reducing equivalents released are the fuel for 

the ETC afterwards. For a complete catalytic cycle, three NADH, 1 FADH2 along with one GTP 

are produced. Enzymes which are sensitive to mitochondrial calcium are highlighted in yellow. 

Succinate dehydrogenase (in green) is also a step in the ETC (complex II). Metabolite 

intermediates of the TCA cycle can be diverted for other cellular purposes. For example, as 

building blocks for biosynthesis or signaling molecules. Glutamine enters the TCA cycle by 

conversion to glutamate by glutaminase, and subsequently to α-ketoglutarate by glutamate 

dehydrogenase or other mitochondrial aminotransferases (whole process called ‘glutaminolysis’ 

[442]).  B) In addition to the traditional TCA cycle, a non-canonical citrate cycle exists for fast 

proliferating cells [225]. The citrate/malate uniporter shuttles and exchanges metabolites into the 

cytosol for processing. It is still unclear what the exact roles of this alternate TCA cycle are and 

how the setup affects cellular bioenergetics [443]. What is clear is that NADH or FADH2 

generating steps in the mitochondria are bypassed and NAD+ is replenished in the cytosol instead. 

(A): Adapted from [444]. (B): Adapted from [225]. 
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Figure 1.9: The biochemical assay by Racker and Stoeckenius [238] that confirmed 

Mitchell’s chemiosmotic theory. A) ATP synthase and bacteriorhodopsin are incorporated into 

the same membrane vesicle. B) ADP and Pi are added to the outside of the vesicles. C) In the 

dark, no ATP is synthesized. D) In the presence of light, bacteriorhodopsin pumps protons into 

the vesicle and the proton gradient across the membrane is utilized by ATP synthase to produce 

ATP. Figure adapted from [249]. 
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Figure 1.10: The mitochondrial ETC in metazoans. A) Pathway of electron transfer for 

NADH. Complex I translocates four protons for two electrons donated from NADH oxidation. 

Electrons from complex I are carried by the ubiquinone (UQ)/ubiquinol (UQH2) pool at the 

hydrophobic core of the IMM. Electrons at complex III are transferred to cytochrome c. Each 

cytochrome c shuttles one electron from complex III to IV, where oxygen is the terminal acceptor 

electrons. pmf across the IMM drives ATP production through ATP synthase. B) Same as (A) but 

complex II shown instead of complex I. Complex II is incapable of transporting protons across 

the IMM. Figure adapted from [91]. 
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Figure 1.11: The Q cycle in complex III. A) The first UQH2 comes into the Qp site where it 

donates one electron to the Rieske protein, generating UQ•- and releasing protons into the IMS 

(1). Next, UQ•- donates the second electron to cyt bL to become UQ (2). UQ moves into the Qn 

site while cyt bL transfers the electron to cyt bH (3). At the Qn site, cyt bH reduces UQ back into 

UQ•- (4). B) The second UQH2 comes into the Qp site and does the same as the first UQH2 – 

donating one electron to the Rieske protein and cyt bL each (1-2). Here the UQ returns to the 

general pool instead of transport into the Qn site. cyt bL follows the same steps to transfer electron 

to cyt bH. The UQ•- at the Qn site then accepts the electron, along with 2 protons from the matrix 

to regenerate UQH2 (4). Afterwards, this UQH2 returns to the general pool as well. Figure 

adapted from [91]. 
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Figure 1.12: AMPK regulation in the cell. AMPK can be activated by upstream kinase 

CaMKK2 or LKB1. Phosphorylated AMPK regulates catabolic and anabolic reactions. AMP has 

three general effects on AMPK: 1) it makes AMPK more susceptible to LKB1; 2) it inhibits 

protein phosphatase from dephosphorylating AMPK and 3) allosterically activates AMPK further 

after phosphorylation. ATP antagonizes all three effects. Figure adapted from [174]. 
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Figure 1.13: PINK1/Parkin mitophagy. A) In healthy conditions, PINK1 is recruited to the 

mitochondrion but gets imported into the IMM where it is cleaved by mitochondrial protease 

presenilin-associated rhomboid-like protein (PARL) [445] and degraded. B) When mitochondria 

are damaged, however, PINK1 stabilizes on the OMM, driving E3 ubiquitin ligase Parkin 

recruitment and phosphorylation. Once activated, Parkin ubiquitinate OMM substrates to tag the 

organelle for clearance by mitophagy. 
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Figure 1.14: Actin and mitochondrial division. The top row shows a progression of 

mitochondrial division at MERCs. The mitochondrial genome replicates at the contact site, 

followed by Drp1-independent pre-constriction. Drp1 is then recruited, followed by fission. The 

bottom row shows models for actin involvement at two fission steps. At the left: actin 

polymerized by ER-bound INF2 (calcium-induced actin, CIA) and mitochondrially-bound Spire 

1C leads to enhanced ER-mitochondrial contact in a myosin II-dependent manner. Enhanced 

organelle-organelle contact allows more efficient calcium transfer from ER to mitochondria, 

leading to “pre-constriction” of both IMM and OMM (driven by IMM constriction). At the right, 

the actin filaments bind Drp1, allowing transfer of these small oligomers to OMM receptors for 

further oligomerization, leading to full ring assembly and OMM constriction. 
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Figure 1.15: Actin and mitochondrial motility. A) Interphase cell. Left: Increased O-

GNAcylation of the protein Milton leads to actin recruitment around mitochondria, resulting in 

inhibition of kinesin-mediated (yellow) or dynein-mediated (orange) mitochondrial transit along 

microtubules. Center/top: myosin 19 can mediate mitochondrial motility toward filopodial tips. 

Given the narrow filopodial diameter (100-200 nm), it is unclear how mitochondria adapt for this 

transit. Right: actin clouds assemble around sub-sets of mitochondria, with the cloud moving 

between mitochondria in a uniform direction over time (here shown clockwise). The actin cloud 

does not enhance mitochondrial motility, but does correspond to an increase in mitochondrial 

division. B) Mitotic cell. Left: the actin cloud shown in the interphase cell can transition to a 

mitotic actin cloud, which increases in both filament density and speed of rotation around the cell. 

As with interphase clouds, the associated mitochondria are less motile. However, the clouds can 

give rise to helical actin ‘tails’, which cause rapid (250 nm/sec) translocation of the associated 

mitochondrion to randomize mitochondrial inheritance. Right: a network of actin filaments 

assembles throughout the mitotic cytoplasm (outside of the spindle zone), which results in myosin 

19-mediated mitochondrial tethering to the network, allowing appropriate mitochondrial 

distribution to daughter cells. 
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Figure 1.16: Two types of actin-induced by mitochondrial damage. Treatment with a number 

of mitochondrial inhibitors (CCCP, antimycin, rotenone, oligomycin, hypoxia, metformin) leads 

to rapid actin polymerization around the mitochondrion (ADA), which has two effects: glycolytic 

stimulation, and inhibition of IMM rearrangements (‘circularization’). ADA is transient, and 

circulation ensues after actin depolymerization. After approximately 1 hr, a second round of actin 

polymerization occurs (PDA), which has three demonstrated effects that favor mitophagy: 1) 

inhibition of fusion, even if the damaged mitochondrion repolarizes; 2) dispersal of mitochondrial 

aggregates; and 3) recruitment of core autophagy components. The roles and mechanisms of 

action for ADA is the focus of the thesis. 
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                              Table 1.1: NPFs for Arp2/3 complex activation 

NPF # members* Regulation Role 
WASP 2 (WAS, WASL) Cdc42 [446, 447], PIP2 [446, 

447], Nck [448], tyrosine 
phosphorylation [449] 

Filopodia [450], phagocytosis 
[451], immune synapse [452], 
podosomes [453], invadopodia 

[454], endocytosis [455], 
pathogen motility [456, 457], 

prolonged mitochondrial 
damage (PDA) [432] 

 
WAVE 3 (WASF1, 

WASF2, WASF3) 
Rac1[48, 458, 459], PIP3[48, 51], 
tyrosine/serine phosphorylation 

[48, 50], IRSp53 [460], Nck [461] 

Lamellipodia [43, 462], cell 
migration [52, 462, 463], acute 

mitochondrial dysfunction 
(ADA) (Chapter III) 

 
WASH 1 (WASHC1) WASH regulatory complex [464, 

465], USP7 deubiquitylation 
[466] 

Endosome formation [464], 
sorting and transport [464, 
467-469], autophagosome 

formation [470, 471]  
WHAMM 1 (WHAMM) Rab1 [472] ER-Golgi transport [473], 

Golgi organization [473], 
autophagosome formation 

[474] 
JMY 1 (JMY) DNA damage [475] Cell motility [476], vesicle 

trafficking [477], Oocyte 
division [478], 

Autophagosome formation 
[479, 480], transcription [476, 
481, 482], neurite outgrowth 

[483]   
DIP** 1 (NCKIPSD) Phosphorylation [484, 485] Lamellipodia [486, 487], 

endocytosis [488] 
Cortactin 2 (CTTN, HS1) Tyrosine/Serine phosphorylation 

[489-494], lysine acetylation 
[495], Nck  [496] 

Invadopodia formation [489], 
Cell- cell adhesion [497], 

lamellipodia [498], 
immunological synapse [499, 
500], mitochondrial division 

[16] 

*Number (names) of distinct genes in mammals.  

**only NPF that can induce un-branched filaments through Arp2/3 complex [501]. 
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                           Table 1.2: 15 mammalian formins (Adapted from [4]) 

Full name # members 

(human 

isoforms) 

Associated structures or 

processes 

Associated diseases 

Dia (Diaphanous) 3 (Dia1, 

Dia2, Dia3) 

Stress fibers [18], 

contractile ring [502], 

microtubule stabilization 

[503], cell migration [504] 

Deafness [505], 

diabetic retinopathy 

[506], microcephaly 

syndrome [507] 

Daam (Disheveled-

associated activators of 

morphogenesis) 

2 (Daam1, 

Daam2) 

Planar cell polarity [508], 

axonal growth cone [509] 

Unknown 

FMNL/FRL (Fromin-

related proteins 

identified in 

leukocytes) 

3 (FMNL1, 

FMNL2, 

FMNL3) 

Cell migration [56], cell-

cell contact [510], acute 

mitochondrial dysfunction  

(ADA) (Chapter III) 

Cancer metastasis 

[511] 

INF (‘inverted’ 

formins) 

2 (INF1, 

INF2) 

Calcium-induced actin 

(CIA), mitochondrial 

division [12], nuclear actin 

[512] 

Focal segmental 

glomerulosclerosis 

[513], Charcot-

Marie-Tooth disease 

[514] 

FHOD (Formin 

homology domain 

containing proteins) 

2 (Fhod1, 

Fhod3) 

Stress fibers [515] Cardiac disorders 

[516] 

Delphilin GRID2IP Purkinje cells [517] Unknown 

FMN (the founding 

family of ‘formins’) 

2 (FMN1, 

FMN2) 

Oogenesis [518], DNA 

damage response [519] 

Polydactyly [520], 

intellectual disability 

[521] 
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Table 1.3: The 13 protein-coding mitochondrial genes, and the ETC subunits they 

encode (Adapted from [522]) 

Protein Gene name Complex 

NADH dehydrogenase 1 MT-ND1 I 

NADH dehydrogenase 2 MT-ND2 I 

NADH dehydrogenase 3 MT-ND3 I 

NADH dehydrogenase 4 MT-ND4 I 

NADH dehydrogenase 4L MT-ND4L I 

NADH dehydrogenase 5 MT-ND5 I 

NADH dehydrogenase 6 MT-ND6 I 

Cytochrome B MT-CYB III 

Cytochrome C oxidase I MT-CO1 IV 

Cytochrome C oxidase II MT-CO2 IV 

Cytochrome C oxidase III MT-CO3 IV 

ATP synthase 6 MT-ATP6 V 

ATP synthase 8 MT-ATP8 V 
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Distinguishing acute damage-induced actin from other 

forms of mitochondrially-associated actin 
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Two distinct actin filament populations have effects on mitochondria, 
with differences in stimuli and assembly factors 
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2.1 Abstract 

Recent studies show that mitochondria and actin filaments work together in two contexts: 

(1) increased cytoplasmic calcium induces cytoplasmic actin polymerization that 

stimulates mitochondrial fission and (2) mitochondrial depolarization causes actin 

assembly around mitochondria, with roles in mitophagy. It is unclear whether these two 

processes utilize similar actin assembly mechanisms. Here, we show that these are 

distinct actin assembly mechanisms in the acute phase after treatment (<10 min). 

Calcium-induced actin assembly is INF2 dependent and Arp2/3 complex independent, 

whereas depolarization-induced actin assembly is Arp2/3 complex dependent and INF2 

independent. The two types of actin polymerization are morphologically distinct, with 

calcium-induced filaments throughout the cytosol and depolarization-induced filaments 

as ‘clouds’ around depolarized mitochondria. We have previously shown that calcium-

induced actin stimulates increases in both mitochondrial calcium and recruitment of the 

dynamin GTPase Drp1 (also known as DNM1L). In contrast, depolarization-induced 

actin is temporally associated with extensive mitochondrial dynamics that do not result in 

mitochondrial fission, but in circularization of the inner mitochondrial membrane (IMM). 

These dynamics are dependent on the protease Oma1 and independent of Drp1. Actin 

cloud inhibition causes increased IMM circularization, suggesting that actin clouds limit 

these dynamics. 
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2.2 Introduction 

Mitochondria have traditionally been viewed as energy-generating organelles, through 

oxidation of metabolic substrates and creation of a proton gradient across the inner 

mitochondrial membrane (IMM), with the subsequent passage of protons back into the 

matrix being coupled to ATP synthesis  [212, 523]. However, it is increasingly clear that 

mitochondria communicate frequently with the rest of the cell and are therefore important 

signaling organelles. For example, mitochondrial release of cytochrome c triggers cell 

death [71], mitochondrially-generated reactive oxygen species activate hypoxia-related 

genes [524, 525] and mitochondrial heat shock proteins promote cytosolic calcium-

mediated signaling [73, 74]. Mitochondria also participate in innate immunity by serving 

as platforms for downstream signaling to facilitate anti-microbial host cell responses [76].  

Finally, changes in the IMM proton gradient have immediate signaling effects, with IMM 

depolarization causing stabilization of the PINK1 protein kinase, whose downstream 

targets include the PARKIN E3 ubiquitin ligase [406]. Mitochondrial depolarization also 

activates an IMM protease, Oma1, which proteolytically cleaves the dynamin-family 

GTPase Opa1 [526-528]. 

A growing number of studies suggests that actin polymerization participates in 

mitochondrial communication and dynamics.  During apoptosis, both a C-terminal actin 

fragment [529] and the actin-binding protein cofilin translocate to mitochondria, with 

evidence that translocation of active cofilin is important for downstream cytochrome c 

release and apoptotic response [530]. Inhibition of ATP synthase by oligomycin results in 

mitochondrial fission, which is attenuated by the actin polymerization inhibitors 

cytochalasin D or latrunculin A [154]. In another study, actin and myosin II were shown 

to play a role in translocation of the dynamin GTPase Drp1 to mitochondria, resulting in 

mitochondrial fission [531].   

We have previously found that elevated cytosolic calcium activates the endoplasmic 

reticulum (ER)-bound formin INF2, which stimulates actin polymerization that leads to 

mitochondrial fission [3, 12, 422, 425, 426]. INF2-mediated actin polymerization 

stimulates constriction of both mitochondrial membranes during fission:  IMM 

constriction is enhanced by increased calcium transfer from ER to mitochondrion, and 

OMM constriction is enhanced by increased Drp1 recruitment.  This pathway also 
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requires non-muscle myosin II [12, 423] , and the mitochondrially-bound SPIRE 1C 

protein might also participate [20]. 

A somewhat different type of mitochondrially-associated actin polymerization has been 

reported in several studies. Dissipation of the mitochondrial proton gradient using the 

uncoupler FCCP causes rapid accumulation of an extensive cloud of actin filaments 

around depolarized mitochondria [20].  Similar actin clouds were observed in both 

unstimulated cells and cells treated with the uncoupler CCCP and were shown to be 

dependent on both Arp2/3 complex and formin activity [429, 432]. On a similar time 

scale as actin cloud formation, mitochondria become less elongated, consistent with an 

increase in mitochondrial fission [20, 429].  At a later stage after mitochondrial 

depolarization, a second wave of actin polymerization encircles depolarized 

mitochondria, and is proposed to prevent their fusion with other mitochondria in a 

myosin VI-dependent manner [432].  

These studies raise a question concerning actin polymerization and mitochondrial 

function.  Are there multiple ways in which actin interacts with mitochondria, or do these 

studies represent variations on a common actin polymerization pathway?    Our present 

work attempts to clarify this issue. We show that calcium-induced actin polymerization is 

INF2-dependent and Arp2/3-independent, whereas depolarization-induced actin 

polymerization is Arp2/3-dependent and INF2-independent. Although both processes are 

rapid, calcium-induced actin polymerization is faster than depolarization-induced actin 

polymerization in U2-OS cells and is less tightly associated with mitochondria. 

Spontaneous mitochondrial depolarization causes Arp2/3-dependent actin polymerization 

around the depolarized mitochondria similar to that of CCCP-induced actin filaments. 

While mitochondrial depolarization results in extensive mitochondrial shape changes on a 

similar time course to actin polymerization, these shape changes are not dependent on 

actin polymerization or Arp2/3 complex. In fact, the shape changes are due to IMM 

dynamics and are dependent on the IMM protease Oma1. Inhibition of actin cloud 

assembly causes an increase in CCCP-induced mitochondrial shape changes, suggesting 

that actin clouds inhibit these shape changes.  In summary, we show that two distinct 

types of actin filaments, differing in morphology and assembly mechanisms, have 

differing effects on mitochondria. 
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2.3 Results 

2.3.1 Distinct actin polymerization mechanisms induced by mitochondrial 

depolarization or cytoplasmic calcium 

We compared the actin bursts stimulated by the calcium ionophore ionomycin with those 

induced by the mitochondrial depolarizer CCCP in U2-OS cells, using live-cell imaging 

of actin filaments (GFP-F-tractin) and mitochondrial matrix (mito-BFP).  In serum-

containing medium, 4μM ionomycin treatment results in a transient increase in 

cytoplasmic calcium, with a T1/2 of <5 sec and a return to baseline within 2 min [12], 

while 20μM CCCP causes mitochondrial depolarization within 30 sec and persisting for 

at least 10 min, as measured by the polarization marker tetramethylrhodamine methyl 

ester (20nM TMRE) [296] (Figure S2.1A).  Both stimuli induce transient actin 

polymerization responses that differ in morphology and kinetics. Morphologically, 

ionomycin-induced actin polymerization occurs throughout the cytosol, whereas CCCP-

induced actin polymerization occurs as “clouds” that are closely associated with 

mitochondria (Figure 2.1A; Figure S2.1B).   These features are best appreciated in a 

medial Z-plane, (Figure S2.1B), due to less interference from basal actin stress fibers.  

However, actin polymerization in response to both stimuli is apparent at the basal surface 

as well (Figure 2.1A).  Kinetically, ionomycin-induced actin dynamics are more rapid 

than those induced by CCCP (Figure 2.1B), both in the polymerization (T1/2 actin 

polymerization values:  12.2 ± 5.9 sec and 133 ± 78.1 sec respectively) and 

depolymerization phases (T1/2:  29.4 ± 12.9 sec and 79.31 ± 38.9 sec respectively) 

(Figure S2.2A).  

We next examined the actin assembly factors required for ionomycin- and CCCP-induced 

actin polymerization.  Past results have shown that ionomycin-induced actin 

polymerization requires the formin INF2 [12-14, 426].  However, INF2 is not required 

for CCCP-induced actin polymerization, tested using either CRISPR-mediated INF2 KO 

(Figure 2.1C) or siRNA-induced INF2 knock-down (Figure S2.2B, C).  Control 

experiments show that ionomycin-induced actin polymerization is abolished in INF2 KO 

cells (Figure S2.2D).  These results show that INF2 is not required for depolarization-

induced actin polymerization. 
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Arp2/3 complex has been shown to contribute to mitochondrially-associated actin 

polymerization in HeLa cells in the absence of stimulation [429], and to actin 

polymerization that occurs after prolonged CCCP treatment [432].  We used the Arp2/3 

complex inhibitor CK666 to test Arp2/3 complex involvement in the rapid actin bursts 

induced by ionomycin and CCCP.   A 30-min pre-treatment with 100μM CK666 

abolishes the CCCP-induced actin burst (Figure 2.1D), while having no clear effect on 

the ionomycin-induced actin burst (Figure 2.1E).   

These results show that actin polymerization induced by increased cytoplasmic calcium 

and by mitochondrial depolarization differ in three ways:  kinetically, morphologically, 

and in nucleation mechanism.  Calcium-induced actin polymerization is INF2-dependent 

and Arp2/3 complex-independent, whereas depolarization-induced actin polymerization 

is Arp2/3 complex-dependent and INF2-independent. 

2.3.2 Spontaneous mitochondrial depolarization triggers Arp2/3 complex-mediated 

actin clouds 

Mitochondria periodically undergo transient depolarization in the absence of uncoupler 

treatment [532].  We asked whether actin polymerization faithfully accompanies such 

transient depolarization in U2-OS cells, using TMRE. Occasional loss of TMRE 

fluorescence occurs in sub-populations of mitochondria (Figure 2.2A).  These 

depolarization events are generally transient, having a mean duration of 143.7 ± 106.5 sec 

(Figure 2.2E).  Actin polymerization accompanies the majority (87.3% ± 6.3) of 

depolarization events (Figure 2.2A-C), with an appreciable lag between depolarization 

and actin polymerization, taking an average time of 129.8 ± 95.0 sec (Figure S2.2E).  

The actual polymerization T1/2 (measured from the first detectable polymerization) is 57.2 

± 54.1 sec (Figure S2.2F). 

We asked whether Arp2/3 complex is involved in actin polymerization induced by 

spontaneous mitochondrial depolarization. To this end, we pre-treated U2-OS cells with 

CK666 for 30 min prior to imaging. Spontaneous depolarization of sub-populations of 

mitochondria still occurs in CK666 pretreated cells, similar to control cells (Figure 

2.2A).  In fact, the frequency of spontaneous depolarization events is somewhat higher in 

CK666-treated cells (Figure 2.2D), while the average duration of depolarization events is 

not significantly different (Figure 2.2E).  CK666 treatment, however, strongly reduces 

the actin polymerization events that occur after spontaneous depolarization (Figure 2.2A-
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C).  These results further support the finding that the actin polymerization occurring 

around depolarized mitochondria is mediated by Arp2/3 complex in U2-OS cells. 

2.3.3 Actin polymerization is not required for depolarization-induced mitochondrial 

shape change 

In addition to inducing actin polymerization, CCCP-triggered mitochondrial 

depolarization induces rapid mitochondrial shape changes (Figure 2.1A).  While these 

shape changes have often been described as mitochondrial fragmentation [149, 533], 

there is also evidence for other changes such as circularization [154, 155].  Using the 

mitochondrial matrix marker mito-BFP in live-cell microscopy, we observe extensive 

rearrangement of the matrix compartment, that can occur at any point along the 

mitochondrion, including at mitochondrial branches (Figure 2.3A).  The end result of 

these rearrangements is circularization of the mitochondrion.  In the absence of CCCP, 

circularization occurs in a sub-set of depolarized mitochondria, typically those that have 

been depolarized for a prolonged period (Figure 2.3B, C). 

We also used dual-color live-cell imaging to observe the dynamics of both the OMM 

(Tom20-GFP) and the matrix (Mito-dsRed) in the same cell.  Interestingly, the matrix 

marker undergoes circularization, while the OMM marker remains intact across the 

center of this circularized region (Figure 2.3B).  This result is consistent in all cases 

analyzed (Figure S2.3A) and is similar to those previously reported by others [156], 

suggest that the IMM is the primary membrane undergoing rearrangement during 

depolarization-induced mitochondrial circularization. 

To verify this result, we used fixed cell microscopy, first fixing cells with glutaraldehyde.  

Upon CCCP treatment for 20 min, numerous circular mitochondria are observed (Figure 

2.3C). The mitochondrial matrix marker (transfected mito-GFP) displays a characteristic 

hollow donut shape, while the OMM marker (anti-Tom20 is intact throughout the circle. 

A similar pattern occurs upon formaldehyde fixation, although OMM staining is less 

regular in this case (Figure S2.3B).   Using an antibody against the beta subunit of ATP 

synthase (an IMM protein) shows a similar result, although the ATP synthase staining is 

more irregular than the GFP matrix protein (Figure S2.3C). 
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We asked whether actin polymerization is required for these mitochondrial shape 

changes, quantifying shape change as the number of circular matrix structures 

(‘centroids’) present per overall mitochondrial area at specific timepoints after CCCP 

addition.  Interestingly, while the actin sequestering drug latrunculin A eliminates CCCP-

induced actin polymerization (Figure 2.4A), it does not inhibit mitochondrial 

rearrangement (Figure 2.4B, C).  In fact, the number of CCCP-induced centroids is 

moderately increased by 500nM LatA treatment.  Similarly, Arp2/3 complex inhibition 

by CK666 also increases CCCP-induced mitochondrial shape change (Figure 2.4D, E).  

CCCP-induced mitochondrial shape change also occurs in INF2-KO cells (Figure 

S2.3D).  Finally, we examined the presence of actin filaments around mitochondria at the 

time of circularization for CCCP-treated cells.  Of 96 circularization events examined, 

actin polymerization preceded 93 of these events, but had fully depolymerized prior to 

circularization for 85 events.  These results suggest that actin polymerization is not 

required for the acute mitochondrial shape changes that occur upon CCCP treatment, and 

may even be inhibitory to these shape changes.   

We also assessed whether mitochondrial fission was up-regulated during the early stages 

of CCCP-induced mitochondrial depolarization.  For this purpose, we used a live-cell 

assay to quantify fission rate [12, 425, 426], because fixed-cell methods to assess fission 

based on change in mitochondrial length are confounded by the apparent length change 

induced by circularization.  Our results suggest that CCCP treatment does not increase 

the number of fission events in the first 30 min, contrary to the fission increase induced 

by ionomycin (Figure S2.4A).  In addition, we evaluated the effect of Drp1 depletion on 

CCCP-induced actin clouds and mitochondrial circularization. Drp1 suppression by 

siRNA has no clear effect on actin cloud assembly (Figure S2.4B, C), and causes a slight 

increase in mitochondrial circularization both prior to and at all time points during CCCP 

treatment (Figure S2.4D, E).  The constitutive nature of the circularization increase 

suggests that acute CCCP induced mitochondrial shape changes are not due to Drp1 

dependent mitochondrial dynamics.  The increase in circularization upon Drp1-KD might 

be explained by a constitutive elevation in Opa1 processing (Figure S2.4B).  Combined, 

these results suggest that the major morphological change to mitochondria in response to 

depolarization is remodeling of the IMM, resulting in circular mitochondria in which the 

OMM remains intact. 
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2.3.4 Mitochondrial shape changes depend on the IMM protease Oma1 

Since CCCP-induced mitochondrial shape change appears to be due largely to IMM 

rearrangement, we asked which IMM proteins could be mediating these changes.  One 

candidate is the IMM dynamin family protein Opa1, since Opa1 mediates fusion of IMM 

[534], is important for cristae structure [535-537], and also might play a role 

mitochondrial fission [535].  Opa1 can be proteolytically processed by two IMM 

proteases, Oma1 and Yme-1, with consequences for both mitochondrial fission/fusion 

balance and for cristae ultrastructure [438].  Five distinct bands for Opa1 can be resolved 

by SDS-PAGE, resulting both from splice variation and differential proteolytic 

processing (Figure 2.5A).   

CCCP treatment induces Opa1 proteolytic processing on a similar time scale to both actin 

polymerization and mitochondrial rearrangement, with increases in short Opa1 bands (S3, 

S4, S5) within 5 min, and almost complete disappearance of long forms (L1 and L2) by 

30 min (Figure 2.5A, B), similar to past results [526-528].  CK666 treatment causes 

accelerated CCCP-induced Opa1 proteolytic processing (Figure 2.5C).  Conversely, 

CCCP-induced Opa1 processing is abolished upon siRNA-mediated KD of Oma1 

(Figure 2.5A, B), similar to past results [526, 538].  In contrast, Yme1 KD has no effect 

on depolarization-induced Opa1 processing (Figure 2.5A).  Therefore, we reasoned that 

Oma1 processing of Opa1 might be involved in mediating depolarization-induced 

mitochondrial shape changes. 

We assessed the effect of Oma1-KD or Opa1-KD on CCCP-induced actin polymerization 

and mitochondrial shape changes.  CCCP-induced actin polymerization is unaffected by 

either Oma1-KD (Figure 2.5D) or Opa1-KD (Figure S2.5A, D). Due to the highly 

fragmented mitochondria resulting from Opa1-KD (Figure S2.5C), it is difficult to assess 

the role of Opa1 in CCCP-induced mitochondrial shape change.  In contrast, 

mitochondria in Oma1-KD cells are similar in morphology to those in control cells, 

allowing examination of shape change upon CCCP treatment.  Oma1-KD cells fail to 

undergo significant CCCP-induced shape changes, as judged by quantifying 

circularization for 20 min after stimulation (Figure 2.5E).  In addition, the increase in 

CCCP-induced circles caused by CK-666 treatment is strongly suppressed by Oma1-KD 

(Figure 2.5F).  As a further test of this effect, we mixed control cells (transfected with a 

GFP-mito marker) and Oma1-KD cells (transfected with a Ds-red mito marker) and 
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imaged the two cell types in the same field upon CCCP treatment. While mitochondria in 

the control cells undergo CCCP-induced shape changes, mitochondria in the Oma1-KD 

cells do not (Figure 2.5F). 

These results suggest that the rapid changes in mitochondrial morphology induced by 

CCCP are due to changes in IMM structure through Oma1-mediated proteolysis, rather 

than through actin-mediated effects on the OMM.  
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2.4 Discussion 

A growing number of studies show that actin can functionally interact with mitochondria 

[12, 20, 154, 422, 426, 429, 432, 529-531]. In this paper we show that there are at least 

two distinct types of mitochondrially-associated actin, differing in cellular stimulus, 

assembly mechanism, and functional consequences. Mitochondrial depolarization 

triggers assembly of a dense cloud of actin filaments around the depolarized 

mitochondria, whereas increased cytosolic calcium triggers actin polymerization 

throughout the cytosol.  Both actin filament populations are transient, with the calcium-

induced actin being more rapid both in assembly and disassembly.  Depolarization-

induced actin is Arp2/3 complex-dependent and INF2-independent, while calcium-

induced actin is INF2-dependent and Arp2/3 complex-independent. Inhibition of 

depolarization-induced actin polymerization causes a greater degree of Oma1-dependent 

mitochondrial shape change, suggesting that actin polymerization inhibits these changes.  

Inhibition of calcium-induced actin polymerization causes reduced mitochondrial calcium 

entry and Drp1 recruitment, with downstream inhibition of mitochondrial fission, which 

we have shown previously [12, 422]. 

Several studies have shown similar types of actin clouds to those that we observe after 

depolarization [20, 429, 432].  In two cases, these clouds were triggered after 

mitochondrial depolarization [20, 432], while in one case the clouds assembled without 

stimulation, were not associated with depolarization, and progressed in a cyclic pattern 

around the cell [429].  Both the depolarization-induced and the depolarization-

independent clouds were blocked by Arp2/3 complex inhibition [429, 432].  Therefore, 

multiple mechanisms may exist to activate Arp2/3 complex around mitochondria.  In 

addition, these studies show formins are involved in Arp2/3 complex-mediated actin 

assembly around mitochondria [429, 432].  In our work, we find that INF2 is not the 

responsible formin in the case of depolarization-induced clouds.  Mammals possess 15 

distinct formin proteins [17, 539], and it will be interesting to identify which formin(s) 

participate(s) in actin cloud assembly. 

One question concerns the activation mechanisms for INF2 and Arp2/3 complex in these 

processes.  We recently showed that cytosolic calcium activates INF2 through a 

mechanism involving HDAC6-mediated deacetylation of actin [540].  The mechanism by 

which mitochondrial depolarization activates Arp2/3 complex is less clear.  Arp2/3 
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complex is directly activated by members of the nucleation-promoting factor (NPF) 

family, which includes WASP/N-WASP, WAVE proteins, WASH, Dip/WISH, 

WHAMM, JMY, and cortactin [541].  The NPF responsible for depolarization-induced 

Arp2/3 complex activation has yet to be identified.  WHAMM is an attractive candidate, 

being recruited to early autophagosomes to promote Arp2/3 complex activity during 

starvation-induced non-specific autophagy [474]. Since long-term CCCP incubation leads 

to mitophagy and an overall increase in autophagosomes [151, 413, 542-544]. WHAMM 

may also regulate actin clouds around mitochondria.  JMY is another strong candidate, 

due to its role in autophagosome formation after cell stress [545]. Finally, previous 

results show that downregulation of cortactin results in elongated and interconnected 

mitochondria [20], so cortactin is also a candidate Arp2/3 complex activator. 

Another question is how IMM depolarization can activate the NPF involved in actin 

cloud assembly.  One protein activated by depolarization is the IMM protease Oma1, but 

we show that neither Oma1 suppression, nor suppression of the Oma1 substrate Opa1, 

inhibits actin cloud assembly.  Another interesting candidate to relay the depolarization 

signal might be the protein kinase PINK1, which is stabilized on the outer mitochondrial 

membrane (OMM) of depolarized mitochondria [412]. An important role of PINK1 is to 

initiate PARKIN-mediated mitophagy by phosphorylating both PARKIN and ubiquitin 

[406, 546, 547].  PINK1 is expressed in U2-OS cells [548] while PARKIN has not been 

detected [549], so it is possible that stabilized PINK1 phosphorylates other substrates that 

control Arp2/3 complex activation.  Candidates include the recently discovered PINK1 

substrate Paris [550], or possibly direct phosphorylation of an NPF. 

A third question concerns the roles for actin clouds around mitochondria.  There is 

evidence that actin filaments are involved in mitochondrial quality control [20, 432].  A 

recent paper [432] showed evidence that “cages” of actin and myosin VI assembled 

around CCCP-depolarized mitochondria and inhibited mitochondrial fusion after CCCP 

wash-out.  These cages assemble later (approximately 2 hrs) than the actin clouds shown 

here.  Since mitochondrial fusion has been shown to require membrane potential [150, 

534, 551], and mitochondria remain depolarized for at least 10 min after CCCP treatment 

in U2-OS cells (Figure S2.1A), it is unlikely that the rapidly-assembled actin clouds act 

as a mitochondrial fusion barrier. 
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Another possibility is that actin polymerization mediates changes in mitochondrial 

morphology, since CCCP treatment results in significant changes in mitochondrial 

structure on a similar time course as actin cloud assembly. However, we find that these 

rapid mitochondrial shape changes still occur under conditions that prevent actin cloud 

assembly.  In fact, the shape changes are actually increased in the absence of actin clouds.  

Possibly, actin clouds serve to confine the depolarized mitochondria in order to reduce 

mitochondrial dynamics.   

Our work provides insights into the mechanisms behind these shape changes.  A number 

of studies suggest that depolarization-induced shape changes are the result of massive 

mitochondrial fragmentation, which are generally observed after mitochondria have been 

depolarized for an hour or longer [149, 151, 533, 552]. However, others show that in the 

first 20 min of depolarization the major change in mitochondria is circularization, which 

is due to changes in the IMM but not the OMM [154-156].  

Our live-cell imaging agrees with these observations, showing that the IMM circularizes 

while the OMM remains intact.  IMM circularization depends upon Oma1 and is 

independent of Drp1. The exact nature of the IMM dynamic rearrangements leading to 

circularization remain to be determined, but it is our impression that the matrix 

compartment seems to “split” in most cases to form the circle.  We also show that 

inhibition of Arp2/3 complex increases the rate of Oma1 mediated Opa1 processing after 

mitochondrial depolarization.  It is therefore possible that signaling occurs in both 

directions in this system, with mitochondrial depolarization triggering cytosolic Arp2/3 

complex activation, and the resulting actin clouds inhibiting Oma1 activity.  Subsequent 

actin cloud disassembly might then allow Oma1 to mediate IMM rearrangement.  While 

Opa1 is likely to be the relevant Oma1 substrate in these rearrangements, other Oma1 

substrates have been identified as well, including PINK1 [553]; C11orf83 [554] and even 

Oma1 itself [555].  Reciprocal communication from and to the mitochondrial matrix, 

through actin polymerization, could serve as another form of interaction between the 

mitochondrion and its cellular environment. 
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2.5 Materials and Methods 

Cell culture 

Wild Type (WT) and INF2-KO Human osteosarcoma U2-OS cells were grown in DMEM 

(Corning, 10-013-CV) supplemented with 10% newborn calf serum (Hyclone, SH30118.03) at 

37°C with 5% CO2.  Cell lines were routinely tested negative for mycoplasma contamination using 

Universal Mycoplasma detection kit (ATCC, 30-1012K) or LookOut Mycoplasma Detection Kit 

(Sigma-Aldrich, MP0035). The INF2-KO U2-OS cell line made by CRISPR-Cas9 is described 

elsewhere [12]. 

DNA transfections 

For plasmid transfections, cells were seeded at 4x105 cells per well in a 35 mm dish ~ 16 hours 

before transfection. Transfections were performed in OPTI-MEM media (Gibco, 31985062) with 

2μl Lipofectamine 2000 (Invitrogen, 11668) per well for 6 hours, followed by trypsinization and 

re-plating onto glass-bottomed dishes (MatTek Corporation, P35G-1.5-14-C) at ~3.5x105 cells per 

well. Cells were imaged ~16-24 hours after transfection. 

The following expression constructs were used: Mito-DsRed and mito-BFP, previously described 

[423], consisting of amino acids 1-22 of S.cerevisiae COX4 N-terminal to the respective fusion 

protein. GFP-F-tractin was a gift from Clare Waterman and Ana Pasapera (NIH, Bethseda, MD) 

and described in [556]. GFP-Mito was purchased from Clontech (pAcGFP1-Mito, #632432) and 

consists of the mitochondrial targeting sequence derived from the precursor of subunit VIII of 

human cytochrome c oxidase. Tom20-GFP was made by restriction digest of Tom20 from Tom20-

mCherry (a gift from Andrew G York, NIH, Bethseda, MD) with NheI and BamHI; and cloned 

into eGFP-N1 (Clontech) and is previously described in [12]. Mito-R-GECO1 (Addgene, #46021) 

is previously described in [557]. H2B-mCherry (Addgene # 20972) is previously described in 

[558]. 

The following amounts of DNA were transfected per well (individually or combined for 

cotransfection): 500ng for Mito-BFP, Mito-DsRed, GFP-Mito, Mito-R-GECO1, H2B-mCherry 

and GFP-F-tractin and 600ng for Tom20-GFP construct. 

For siRNA transfections, 105 cells were plated on a 35 mm dish and 2μl RNAimax (Invitrogen, 

13778) with 63pmol siRNA were used per well. Cells were analyzed 96 hours post siRNA 

transfection.  For live-cell imaging, plasmids containing fluorescent markers were transfected into 

siRNA-treated cells 18-24 hrs prior to imaging, as described above. All siRNAs were purchased 

from IDT Inc, including: human INF2 (custom synthesized, HSS.RNAI.N001031714.12.7., 5’-

GGAUCAACCUGGAGAUCAUCCGC-3’); human Oma1 (hs.Ri.OMA1.13.1, 5’-
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GGAUAUUCAGGGUCAAAUGUACAUGAUUUGACCCUG-3’); human Yme1l1 

(hs.Ri.YME1L1.13.1, 5’-GGUGGAGGAAGCUAAACAAGAAUUA-3’); human Opa1 

(hs.Ri.OPA1.13.1, 5’-CCACAGUGGAUAUCAAGCUUAAACA-3’ ); human Drp1 (custom 

synthesized, HSC.RNAI.N005690.12.1, 5′-GCCAGCUAGAUAUUAACAACAAGAA-3′); and 

negative control (#51-01-14-04, 5’-CGUUAAUCGCGUAUAAUACGCGUAU-3’). 

Antibodies  

Anti-INF2 (rabbit polyclonal against amino acids 941-1249 of human INF2) was described in [559] 

and used at 3.75 μg/mL. Anti-Opa1 (BD Biosciences, 612606, mouse monoclonal, clone 18/OPA1) 

was used at 1:2000.  Anti-Oma1 (Santa Cruz Biotechnology, sc-515788, mouse monoclonal, clone 

H-11/OMA1) was used at 1:500. Anti-tubulin (Sigma-Aldrich, T9026, mouse, clone DM1- α) was 

used at 1:10,000 dilution. Anti-GAPDH (Santa Cruz Biotechnology, sc-365062, G-9, mouse) was 

used at 1:1500. Anti-Tom20 (Abcam, ab78547) was used at 1:500 for immunofluorescence. Anti-

ATP synthase beta monoclonal antibody (Invitrogen, A-21351, mouse, 3D5AB1) was used at 1:500 

for immunofluorescence. Secondary antibodies used for westerns were: goat anti-mouse IgG 

horseradish peroxidase (HRP) conjugate (Bio-rad, 1705047) at 1:2000 and goat anti-rabbit IgG 

HRP conjugate (Bio-rad, 1706515) at 1:5000. For immunofluorescence, we used goat anti-rabbit 

IgG Texas red secondary (Vector Laboratories, TI-1000) was used at 1:500, and horse anti-mouse 

IgG Fluorescein secondary (Vector Laboratories, FI-2000) was used at 1:500.  

Western blot analysis  

Cells from a 35 mm dish were trypsinized, pelleted by centrifugation at 300xg for 5 min, and 

resuspended in 400μl 1 X DB (50mM Tris-HCl, pH 6.8, 2mM EDTA, 20% glycerol, 0.8% SDS, 

0.02% Bromophenol Blue, 1000mM NaCl and 4M Urea). Proteins were separated by SDS-PAGE 

in a BioRad mini gel system (7 X 8.4 cm) and transferred onto polyvinylidene fluoride membrane 

(EMD Millipore, IPFL00010). The membrane was blocked with TBS-T (20mM Tris-HCl, pH 7.6, 

136mM NaCl and 0.1% Tween-20) containing 3% BSA (VWR Life Science, VWRV0332) for 1 

hour, then incubated with primary antibody solution at 4°C overnight. After washing with TBS-T, 

the membrane was incubated with HRP-conjugated secondary antibody for 1 hour at 23˚C. Signals 

were detected by chemiluminescence.  For western blots of Opa1, samples were prepared and 

separated by SDS-PAGE on a Hoefer SE600 (14 cm X 14 cm) apparatus and transferred using a 

Hoefer transfer apparatus. The rest of the procedure was similar to as listed above. 

Immunofluorescence 

U2-OS-WT cells (1x105, either transfected with mito-GFP or untransfected) were plated on Mat-

Tek dishes (MatTek Corporation, P35G-1.5-14-C) 16 hours prior to fixation and staining. Cells 

were treated with DMSO or 20 uM CCCP for 20 min at 37˚C/5% CO2, washed twice in PBS (23˚C) 
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and fixed in either 1% glutaraldehyde (EMS, 16020) prepared in BRB80 buffer (80 mM PIPES pH 

6.9, 1mM MgCl2, 1mM EGTA) or 4% prewarmed paraformaldehyde (EMS, 15170) in PBS for 10 

min or 20 min respectively. The glutaraldehyde-fixed samples were additionally washed with 

NaBH4 (1mg/ml in PBS; 3 X 10 min each) prior to permeabilization. The cells were then 

permeabilized in 0.1% Triton X-100 in PBS for 10 min and blocked in PBS + 10% calf serum for 

30 min. These cells were then stained with Tom 20 antibody and/or ATP-synthase (mitochondria), 

appropriate secondary antibodies and DAPI (nucleus) in PBS + 1% calf serum and imaged by 

Dragonfly 302 spinning disk confocal (Andor Technology) CFI Plan Apochromat Lambda 

100X/1.45 NA oil in PBS on the Mat-Tek dish. Z-stacks were taken from the basal region to the 

apical top at 0.4μm step size. Maximum intensity projections were generated from z-stack images 

and background subtracted in ImageJ Fiji (rolling ball 20.0). 

Live imaging by confocal microscopy and Airyscan microscopy 

All live cell imaging was conducted in DMEM (Gibco, 21063-029) with 25mM D-glucose, 4mM 

L-glutamine and 25mM Hepes, supplemented with 10% newborn calf serum, hence referred to as 

“live cell imaging media”.  Cells (~3.5x105) were plated onto MatTek dishes 16hrs prior to imaging. 

Medium was preequilibrated at 37°C and 5% CO2 before use. 

For confocal microscopy, dishes were imaged using the Dragonfly 302 spinning disk confocal 

(Andor Technology) on a Nikon Ti-E base and equipped with an iXon Ultra 888 EMCCD camera, 

a Zyla 4.2 Mpixel sCMOS camera, and a Tokai Hit stage-top incubator set at 37°C. A  solid-state 

405 smart diode 100 mW  laser, solid state 560 OPSL smart laser 50 mW laser, and solid state 637 

OPSL smart laser 140 mW laser were used. Objectives used were the CFI Plan Apochromat 

Lambda 100X/1.45 NA oil (Nikon, MRD01905) for all drug treatment live-cell assays; and CFI 

Plan Apochromat 60X/1.4 NA oil (Nikon, MRD01605) to observe transient depolarization events 

during live-cell imaging. Images were acquired using Fusion software (Andor Technology, version 

2.0.0.15). For actin burst and TMRE quantifications, cells were imaged at a single confocal slice at 

the medial region, approximate 2μm above the basal surface, to avoid stress fibers. To observe 

mitochondrial morphological changes, cells were imaged at a single confocal slice at the basal 

surface. 

For ionomycin treatments, cells were treated with 4μM ionomycin (Sigma-Aldrich I0634, from 

1mM stock in DMSO) at the start of the 5th image frame (~1 min, time interval set at 15sec) during 

imaging and continued for another 5-10 mins. INF2 KO cells were used as a negative control.   For 

Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) (Sigma-Aldrich, C2759) treatments, cells 

were treated with 20μM CCCP (from a 100mM stock in DMSO) at the start of the 5th frame (~1 

min, with time interval set at 14sec or 15sec) during imaging and continued for another 15-20mins. 

Equal volume DMSO (Invitrogen, D12345) was used as the negative control.  For 
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Tetramethylrhodamine ethyl ester perchlorate (TMRE) (Sigma-Aldrich, 87917) staining before 

CCCP treatment, cells were loaded with 20 nM TMRE (from a 30mM stock in DMSO) for 30 

minutes in live cell imaging media. Cells were subsequently washed twice with live-cell media and 

fresh live-cell media was added prior to imaging. During imaging, cells were treated with 20μM 

CCCP at the start of the 5th frame (~1 min, with time interval set at 15sec) and continued for another 

15-20mins. As a negative control, equal volume DMSO was added during imaging (in place of 

CCCP) for cells loaded with 20nM TMRE.  

To observe transient depolarization in U2-OS cells in the absence of CCCP, cells were loaded with 

20nM TMRE (with or without CK666) for 30 minutes in live cell imaging media at 37°C and 5% 

CO2. CK666 and TMRE treated cells were rinsed twice with fresh live cell medium and 50μM 

CK666 containing live cell medium was added prior to imaging. Single field confocal imaging in 

the medial region was conducted at 1.2sec time interval and continued for 1000 frames (20mins). 

To visualize more cells in the field, the 60X/1.4NA objective was used. Equal volume DMSO was 

used as a negative control in place of CK666 while retaining TMRE. To observe mitochondrial 

rearrangements after transient depolarization, multiple field confocal imaging with the 

100X/1.4NA objective was conducted in the basal region at 6sec time interval and continued for 

200 frames (20mins). 

For Latrunculin A (LatA) (Millipore Sigma, 428021) coupled with CCCP treatment, cells were 

treated with live-cell media containing 500nM LatA (from a 1mM stock in DMSO) and 20μM 

CCCP simultaneously at the start of the 5th frame (1 min, time interval set at 15sec). Imaging was 

continued for 10-20mins. Cells treated with DMSO (replacing LatA) and 20μM CCCP 

simultaneously were the positive control; while cells treated with 500nM LatA and DMSO 

(replacing CCCP) simultaneously were used as the negative control.  

For CK666 (Sigma-Aldrich, SML006) pretreatment before CCCP addition, cells were pretreated 

with 1mL of live-cell media containing 100μM CK666 (from a 20mM stock in DMSO) for 30 min 

before the start of imaging.  During imaging, cells were treated with 1mL live cell media containing 

40μM CCCP at the start of the 5th frame (1 min, time interval set at 15sec). Imaging was continued 

for 15-20mins with cells in media containing a final concentration of 20μM CCCP and 50μM 

CK666. Control cells were pretreated with equal volume DMSO (replacing CK666) and stimulated 

with 20µM CCCP during imaging; and as a negative control, cells were pretreated with 100μM 

CK666 and equal volume DMSO (replacing CCCP) was added during imaging. 

For CK666 pretreatment before ionomycin addition, cells were pretreated with 1mL of live-cell 

media containing 100μM CK666 for 30 mins. After which, cells were directly taken for imaging. 

During imaging, cells were treated with 1mL of live cell media containing 8μM ionomycin at the 

start of the 5th frame (1 min, time interval set at 15sec). Imaging continued for 5-10mins with cells 
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in media containing a final concentration of 4μM ionomycin and 50μM CK666. Control cells were 

pretreated with equal volume DMSO (replacing CK666) and stimulated with 4µM ionomycin 

during imaging; and as a negative control, cells were pretreated with DMSO (replacing CK666) 

and additional DMSO (replacing ionomycin) was added during imaging.  

For Airyscan imaging, dishes were imaged on the LSM 880 equipped with a 100X/1.4 NA 

Apochromat oil objective using the Airyscan detectors (Carl Zeiss Microscopy). The Airyscan uses 

a 32-channel array of GaAsP detector configured as 0.2 airy units per channel. Cells were imaged 

with the 488nm laser and Band Pass (BP) 420-480/BP 495-620 filter for GFP, 561nm laser and BP 

495-550/Long Pass 570 filter for RFP. For live-cell microscopy, WT U2-OS cells were co-

transfected with 500ng of Mito-DsRed and 600ng Tom20-GFP while INF2 KO cells were co-

transfected with 500ng Mito-R-GECO1 and 600ng Tom20-GFP. All imaging conducted at 37°C 

and 5% CO2, with a single basal slice acquired at a frame interval of 4.1sec. Images were 

subsequently processed using Zen2 software. Raw data were processed using Airyscan processing 

with Zen Black software (Carl Zeiss, version 2.3).  

For mixing experiment, control cells were transfected with 500ng Mito-Ds-Red and Oma1 KD cells 

were transfected with 500ng Mito-BFP 72 hours post knock down. After four hours transfection, 

control cells were mixed with Oma1 KD cells in a 1:2 (control : Oma1 KD) volume ratio. Mixed 

cells were re-plated onto MatTek dishes at ~3.5x105 cells per dish and allowed to adhere for ~18 

hours. During live-cell imaging with CCCP, fields were selected with both Oma1 KD and control 

cells visible.   

Quantification from live-cell imaging experiments 

Unless otherwise stated, all image analysis was performed on ImageJ Fiji (version 1.51n, National 

Institutes of Health). Cells that shrunk during imaging or exhibited signs of phototoxicity like 

blebbing or vacuolization were excluded from analysis. 

Actin burst measurements. Mean actin fluorescence was calculated by selecting two region of 

interests (ROIs) (for ionomycin treatments) per cell or one ROI per cell (for CCCP treatments). 

The ROI selected for CCCP encompass the entire area at the height of actin assembly after CCCP 

treatment. Fluorescence values for each time point (F) were normalized with the mean initial 

fluorescence before drug treatment (first four frames – F0) and plotted against time as F/F0. For 

DMSO control or cells that did not exhibit actin burst, ROI was selected as the bulk region of the 

cytoplasm containing mitochondria using the Mito-BFP channel. 

Centroid measurements. Every eight frame was analyzed (2 min intervals).  Imaging fields were 

coded and scrambled by one investigator (TSF) and given to the other investigator (RC) for blind 

analysis. Centroid were counted manually for every time point. To normalize the data, the number 
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of centroids was divided by the total mitochondrial area in the field (μm2). The results were then 

decoded by the first investigator. 

Mitochondrial division rate measurements. Mitochondrial division rate was described in detail 

previously [426]. Suitable ROIs were selected based on whether individual mitochondria were 

resolvable and did not leave the focal plane. One ROI was selected per cell. Files of the ROIs were 

coded and scrambled by one investigator (RC) and analyzed for division by a second investigator 

(WKJ) in a blinded manner. The second investigator scanned the ROIs frame by frame manually 

for division events and determined total mitochondrial length in the ROI using the ImageJ macro, 

Mitochondrial Morphology. The results were then returned to the first investigator for decoding.  

Depolarization measurements. Mean TMRE fluorescence was calculated from the entire 

mitochondrial area determined in the Mito-BFP channel, for which the fluorescent intensity did not 

change appreciably during imaging. TMRE fluorescence values for each time point (F) were 

normalized with the mean initial fluorescence before drug treatment (first four frames – F0) and 

plotted against time as F/F0.  

Transient depolarization events in untreated cells are defined as an abrupt loss in mitochondrial 

TMRE fluorescence signal that persist for ≥ 30 seconds without an appreciable decrease in 

fluorescence signal of the Mito-BFP marker. Individual transient depolarization events were 

manually identified by scrolling through images frame by frame. Clear increase in actin 

fluorescence signal after transient depolarization were considered as “Δψm followed by actin 

assembly”; while depolarization events that demonstrated no appreciable actin fluorescence 

increase were considered as “Δψm followed by no actin assembly”. To determine the frequency of 

depolarization, the total number of depolarization events was normalized to the total cell count and 

the total duration of the imaging (min).  For depolarization duration, suitable ROIs were selected 

for mitochondria which underwent depolarization. TMRE fluorescence values for each time point 

were normalized to the mean initial fluorescence (ten frames before transient depolarization) and 

plotted against time. Depolarization events that occurred 16 minutes into imaging and did not 

recover at the end of 20 minutes imaging were separately noted. 

T1/2 analysis of actin assembly and disassembly. Mean actin fluorescence was calculated by 

selecting one region of interest (ROI) (for ionomycin and CCCP treatments). The ROI selected for 

CCCP encompass the entire cell area at a medial cell section, whereas for ionomycin treatment one 

ROI at peri-nuclear region (free from stress fibers for all time frame) per cell was selected. 

Fluorescence values for each time point (F) were normalized with the mean initial fluorescence 

before drug treatment (first thirty frames – F0) and plotted against time as F/F0. Half-max value was 

calculated after establishing the peak value and the time determined from the ascending slope (actin 

assembly) for each cell.  For actin disassembly, the time (s) was determined for the half max value 
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from the descending slope and deducted from the peak time. For ionomycin analysis all the cells 

were used for assembly, peak and disassembly calculations. For CCCP. 5 cells were removed for 

disassembly calculations because of stress fiber interference.  Number of individual cells: 18 

(ionomycin) and 25 (CCCP/ actin assembly & actin peak); 20 (CCCP actin disassembly). Data 

compiled from three independent experiments. 

Statistical analysis and graph plotting softwares 

All statistical analyses and p-value determination were conducted using GraphPad Prism 

QuickCalcs or GraphPad Prism 8 (version 8.2.0, GraphPad Software). To determine p-values, an 

unpaired Student’s t test was performed between two groups of data, comparing full datasets stated 

in the figure legends. For p-values in multiple comparisons (unpaired), Sidak’s multiple 

comparisons test and Dunnett’s multiple comparison test were performed in GraphPad Prism 8. 

Average p-values were calculated with multiple t-tests (without correction) in GraphPad Prism 8.  

All graphs, along with their standard error of mean (SEM) were plotted using Microsoft Excel for 

Office 365 (version 16.0.11231.20164, Microsoft Corporation), with the exception of scatter plots. 

Figures 2.2E, S2.2A, S2.2E, S2.2F were plotted with GraphPad Prism 8 and Figure S2.4A was 

plotted with KaleidaGraph (version 4.01, Synergy Software). 
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Figure 2.1. Distinct actin structures assemble in response to two stimuli:  increased 

cytoplasmic calcium and mitochondrial depolarization.  A) Time-lapse image montage of 

ionomycin-induced (top) and CCCP-induced (bottom) actin polymerization for U2-OS cells 

transfected with GFP-F-tractin (green) and mito-BFP (red).  Imaging conducted at the basal cell 

surface.  Ionomycin or CCCP added at time point 0.  Scale bar: 10μm. Inset scale bar: 5μm.  Orange 

arrow shows actin assembly in both cases. B) Comparison of ionomycin-induced and CCCP-

induced actin polymerization time course for U2-OS cells. Data from three experiments. N = 30 

cells/60 ROIs for ionomycin (4 μM) treatment, 27 cells/27 ROIs for CCCP (20 μM) treatment.  15 

sec intervals.  Blue arrow denotes drug addition. Error bar, ±SEM.  C) CCCP-induced actin 

polymerization in U2-OS-WT and U2-OS-INF2-KO cells.  Data from three experiments. N=35 

cells for WT, 39 cells for INF2 KO and 35 cells for WT cells stimulated with DMSO.  14 sec 

intervals. Blue arrow denotes CCCP addition.  Error bar, ±SEM.  D) Effect of Arp2/3 complex 

inhibition on CCCP-induced actin polymerization. U2-OS cells were treated with either DMSO or 

100μM CK-666 for 30 min, then stimulated with 20μM CCCP (blue arrow). Data from three 

experiments. N=35 cells/35 ROIs for DMSO/CCCP, 41/41 for CK-666/CCCP. 15 sec intervals.  

Error bar, ±SEM.  E) Effect of Arp2/3 complex inhibition on ionomycin-induced actin 

polymerization. U2-OS cells were treated with either DMSO or 100μM CK-666 for 30 minutes, 

then stimulated with DMSO or 4μM ionomycin (blue arrow).  Data from three experiments. N=23 

cells/46 ROI for DMSO/Iono, 25/50 for CK-666/Iono and 20/40 for DMSO/DMSO. 15 sec 

intervals.  Error bar, ±SEM. 
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Figure 2.2: Actin polymerization accompanying transient depolarization of a sub-set of 

mitochondria in the absence of CCCP.  A) Time-lapse image montages of changes in 

mitochondrial polarization (TMRE, blue) and actin polymerization (GFP-F-tractin, green) in U2-

OS cells in the absence of uncoupler treatment.  A mitochondrial matrix marker (Mito-BFP, red) 

is also included.  Top panels show a control cell (DMSO) and bottom panels show a CK-666-

treated cell (100 μM CK-666 for 30 min before imaging, and 50μM during imaging).  Time 0 

denotes start of a depolarization event.  Panels to right of each time point denote zooms of boxed 

regions.  Scale bars:10μm (5 μm for inset).  B) Graph of spontaneous depolarization events 

associated with actin polymerization, in either control (DMSO) or CK-666-treated cells. Total 

numbers from 3 experiments (20 min imaging per cell, 1.2 sec intervals):  DMSO, 213 cells, 47 

depolarization events (41 events accompanied by actin assembly); CK-666, 217 cells, 81 

depolarization events (8 events accompanied by actin assembly).  C) Graph of % depolarization 

events accompanied by actin polymerization for DMSO versus CK-666 treatment, from same 

data as panel B. Student’s unpaired t-test: p = 0.0003. Error bar: ±SEM.  D) Graph of 

depolarization frequency for DMSO versus CK-666 treatment, from data set described in panel B. 

Student’s unpaired t-test: p = 0.0484. Error bar: ±SEM.  E) Scatter plot of depolarization 

duration, from data set described in (B). Mean depolarization durations:  DMSO group (black 

line), 143.7 sec ± 106.5 sec; CK-666 group (red line), 118.5 sec ± 104.4 sec (standard deviation). 

Gray and pink points represent depolarization events that occurred after 16 minutes of imaging 

time and failed to repolarize at the end of the 20minutes imaging period. Student’s unpaired t-test: 

p = 0.1949. 
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Figure 2.3: Depolarization-induced mitochondrial shape changes in U2-OS cells.  A) 

Examples of mitochondrial matrix dynamics after depolarization, leading to circularization.  

Three examples of matrix rearrangement and one example in which the mitochondrion curls back 

on itself to form the circle. U2-OS cells were transfected with the mitochondrial matrix marker 

mito-DsRed and treated with 20μM CCCP at time point 0. Confocal imaging was conducted at 

the basal region of the cell at 4 sec intervals, starting 10 frames before CCCP treatment. Scale 

bar: 2μm.  B) Dynamics of the OMM and mitochondrial matrix upon depolarization.  U2-OS cell 

transfected with Mito-DsRed (red) and Tom20-GFP (green) was treated with 20μM CCCP at 

time point 0. Airyscan images (basal region) were acquired at 4 sec intervals starting 10 frames 

before CCCP treatment.  Scale bar: 2.5μm. C) Maximum intensity projections of glutaraldehyde-

fixed U2-OS cells (transfected with GFP-Mito, green) after treatment with either DMSO (top) or 

20μM CCCP (bottom) for 20 min. Cells were stained with anti-Tom20 (OMM, red) and DAPI 

(nucleus, blue). Z stacks were taken at step size of 0.4μm.  Zooms show representative examples 

of mitochondrial circularization after CCCP treatment. Scale bars: 10μm and 2μm (inset). 
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Figure 2.4: Effect of latrunculin A and Arp2/3 complex inhibition on depolarization-

induced mitochondrial shape changes.  A) Effect of LatA on CCCP-induced actin 

polymerization.  U2-OS cells were treated with combinations of LatA (500 nM) and CCCP 

(20μM) at time 0 (blue arrow). Confocal images (medial section) were acquired at 15 sec 

intervals starting four frames before treatment. Data from three experiments. N=23 cells/23 ROIs 

for LatA/DMSO, 38/38 for LatA/CCCP and 31/31 for DMSO/CCCP. Error bar, ±SEM.  B) Effect 

of LatA on CCCP-induced mitochondrial matrix circularization (‘centroids’).  U2-OS cells 

transfected with mito-BFP and GFP-F-tractin.  CCCP (20μM) added at time point 0, 

simultaneous to LatA addition (500 nM).  Data from three experiments. N= 17 cells/3702 μm2 

total mitochondrial area for DMSO/CCCP control cells; 18 cells /3823 μm2 for LatA/CCCP. 

Error bars, ±SEM.  Average p values for time points four mins after treatment is 0.0204 ± 0.0179 

for DMSO versus LatA.  C) Time-course montage of LatA-treated cells under control conditions 

(DMSO treatment, top) or CCCP treatment (20 μM, bottom). U2-OS cells, transfected with F-

tractin (not shown) and mito-BFP (green), treated with 500nM LatA and CCCP or DMSO 

simultaneously at 0 min. Confocal images (basal section) acquired at 15 sec intervals starting four 

frames before treatment. Yellow arrows denote centroids (circular mitochondrial matrix). Time in 

min. Scale bar: 10μm. D) Time-course montage of CCCP-induced mitochondrial matrix 

circularization in the absence (top) or presence (bottom) of CK-666 pre-treatment. U2-OS cells 

transfected with GFP-F-tractin (not shown) and mito-BFP (green) were treated with DMSO or 

CK-666 (100μM) for 30 minutes before stimulation with 20μM CCCP at time point 0 (blue 

arrow). Confocal images (basal section) were acquired at 15 sec intervals starting four frames 

before CCCP treatment. Yellow arrows denote centroids (circular mitochondrial matrix).  Time in 

min.  Scale bar: 10μm. Inset scale bar: 2.5μm.  E) Graph of change in mitochondrial matrix 

circularization (defined as centroids per total mitochondrial area in the region of interest) from 

time-courses taken as described in (A).  Data from three experiments.  Conditions tested:  CK-

666 pre-treatment followed by CCCP stimulation (N= 46 cells/8539 μm2 total mitochondrial 

area); DMSO pretreatment, CCCP stimulation (58 cells/11473 total mitochondrial area); and CK-

666 pre-treatment/DMSO stimulation (36 cells/6655 total mitochondrial area). Error bars, ±SEM. 
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Figure 2.5: Role of Oma1 in depolarization-induced mitochondrial shape change.  A) 

Western blot of Opa1 and Oma1 in control, Oma1 KD and Yme1 KD U2-OS cells before and 

after treatment with 20μM CCCP for 30 mins. The positions of the five Opa1 forms (L1, L2, S1-

3) are indicated.  GAPDH, INF2 loading control.  B) Western blot of Opa1 in control and Oma1 

KD U2-OS cells during time course of CCCP treatment (20μM). Tubulin, loading control.  C) 

Western blot of Opa1 in control and CK666 treated U2-OS-WT cells during time course of CCCP 

treatment (20μM). GAPDH, loading control.  D) CCCP-induced actin polymerization for control 

and Oma1 KD U2-OS cells, transfected with GFP-F-tractin and mito-BFP, and stimulated with 

20μM CCCP (blue arrow).  Data from three experiments. N=40 cells/40 ROIs for scrambled 

control, 28/28 for Oma1 KD. Error bar, ±SEM.  E) Change in mitochondrial matrix 

circularization (‘centroids’) over time for control and Oma1-KD U2-OS cells transfected with 

mito-BFP and GFP-F-tractin.  CCCP (20μM) added at time point 0.  Data from three 

experiments. N= 36 cells/4733 μm2 total mitochondrial area for control cells; 53 cells /9519 μm2 

for OMA1 KD cells. Error bars, ±SEM.  F) Time-course montage of CCCP-induced 

mitochondrial shape change (yellow arrows) in control (green) and Oma1-KD U2-OS cells (red), 

imaged in the same field. Control cells (scrambled siRNA) were transfected with Mito-GFP while 

Oma1-KD cells were transfected with Mito Ds-Red. The two cell populations were trypsinized, 

mixed, and plated 24 hr before imaging. Confocal images (basal cell section) were acquired at 15 

sec intervals starting four frames before CCCP treatment. 20μM CCCP added at time point 0. 

Time in min. Scale bar: 10μm. Inset scale bar: 2.5μm.   
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Figure S2.1: Actin and mitochondrial dynamics upon ionomycin and CCCP treatments.  A) 

CCCP-induced actin polymerization and mitochondrial depolarization in U2-OS cells. Cells 

transfected with GFP-F-tractin and mito-BFP, stained with 20 nM TMRE for 30 min, and 

stimulated with 20μM CCCP or DMSO at 0 sec (blue arrow). Confocal images (medial section) 

acquired at 15 sec intervals starting four frames before CCCP treatment. F-tractin and TMRE 

intensity quantified. Data from three experiments. N=40 cells/40 ROIs for CCCP, 33/33 for 

DMSO. Error bar, ±SEM.  B) Time-lapse image montage of ionomycin-induced (top) and CCCP-

induced (bottom) actin polymerization for U2-OS cells transfected with GFP-F-tractin (green) 

and mito-BFP (red).  Imaging conducted at a medial cell section.  Ionomycin or CCCP added at 

time point 0.  Scale bar: 10μm. Inset scale bar: 5μm.  
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Figure S2.2: Actin dynamics upon CCCP treatment in control and INF2 KD cells. A) Scatter 

plots of actin stimulation and recovery half-times for ionomycin and CCCP treatments in U2-OS-

WT cells imaged at 1.4 sec/frame. Number of individual cells: 18 (ionomycin) and 25 (CCCP/ 

actin assembly); 20 (CCCP actin disassembly). Data compiled from three independent 

experiments. P value (unpaired) using Sidak’s multiple comparisons test. Error, Standard 

deviation. B) Western blot for INF2 of control (scrambled siRNA) and INF2-KD cells. Tubulin, 

loading control. C) Graph of CCCP-induced actin polymerization for control (scrambled siRNA) 

and INF2-KD U2-OS cells. Cells were transfected with GFP-F-tractin and mito-BFP, then 

stimulated with DMSO or 20μM CCCP (blue arrow). Confocal images (medial section) acquired 

at 15 sec intervals starting four frames before CCCP treatment. Data from three experiments. N= 

67 cells/67 ROIs for control/CCCP, 53/53 for INF2 KD/CCCP, and 26/26 for control/DMSO. 

Error bar, ±SEM.  D) Graph of ionomycin-induced actin polymerization for U2-OS-WT and 

INF2-KO cells. Cells transfected with GFP-F-tractin and mito-BFP, then stimulated with 4μM 

ionomycin (blue arrow). Confocal images (medial section) acquired at 15 sec intervals starting 

four frames before ionomycin treatment. Data from three experiments. N = 30 cells/60 ROIs for 

WT cells, 27/54 for INF2 KO cells. Error bar, ±SEM.  E) Lag between mitochondrial 

depolarization and actin assembly during spontaneous depolarization events.  From the same data 

set described in Figure 2.2.  Student’s unpaired t-test.  F) Scatter plots of actin stimulation during 

spontaneous depolarization events. U2-OS cells transfected with GFP-F-tractin and mito-BFP, 

stained with 20 nM TMRE for 30 min, then imaged by confocal microscopy for 20 min.  From 

the same data set described in Figure 2.2.  Student’s unpaired t-test. 
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Figure S2.3:  Depolarized mitochondria with circular matrix and intact OMM.  A) Four 

examples of CCCP-induced mitochondrial shape changes. U2-OS cells transfected with Mito-

DsRed (matrix, red) and Tom20-GFP (OMM, green) and stimulated with 20μM CCCP at time 

point 0.  Airyscan microscopy images (basal cell section) acquired at 4.2 sec intervals starting ten 

frames before CCCP treatment. Single time points at time of matrix circularization shown (time 

(sec) after CCCP addition shown in upper left).  Scale bar: 2μm.  On right, line scans for matrix 

and OMM taken along the magenta line, showing reduced signal for the matrix marker but not for 

OMM marker. B) Maximum intensity projections of paraformaldehyde-fixed U2-OS cells 

(expressing the matrix marker mito-GFP, green) after treatment with either DMSO (top) or 20μM 

CCCP (bottom) for 20 min. Cells were stained for OMM using anti-Tom20 (red) and nucleus 

using DAPI (blue). Z stacks were taken at step size of 0.4μm.  Representative examples of 

mitochondrial circularization after CCCP treatment are zoomed in. Scale bars: 10μm and 2μm 

(insets). C) Maximum intensity projections of paraformaldehyde fixed U2-OS cells after 

treatment with either DMSO (top) or 20μM CCCP (bottom) for 20 min. Cells were stained for the 

IMM with ATP synthase (green), OMM with anti-Tom20 (red) and DAPI (blue) for nucleus. Z 

stacks were taken at step size of 0.4μm.  Representative examples of mitochondrial circularization 

after CCCP treatment are zoomed in. Scale bar: 10μm and inset 2μm. D) Dynamics of the OMM 

and mitochondrial matrix upon CCCP treatment in INF2-KO cells.  INF2-KO U2-OS cell 

transfected with Mito-R-GECO1 (red) and Tom20-GFP (green) was treated with 20μM CCCP at 

time point 0. Airyscan images (basal region) acquired at 4 sec intervals starting 10 frames before 

CCCP treatment.  Scale bar: 5μm.   
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Figure S2.4: Effect of Drp1 KD on CCCP induced actin clouds and mitochondrial shape 

change. A) Quantification of mitochondrial fission rate in U2-OS cells, using ROIs from live-cell 

movies of mitochondrial matrix marker (mito-BFP) treated with DMSO, 4 µM ionomycin (10 

mins) or 20µM CCCP (30 min).  N = 22 cells, 2590.5 µm mitochondrial perimeter (DMSO), 16 

cells, 3093.7 µm mitochondrial perimeter (ionomycin), 30 cells, 3999.5 µm mitochondrial 

perimeter (CCCP). Each point represents one ROI per cell. Compiled from two independent 

experiments. Dunnett's multiple comparisons test (unpaired): DMSO vs CCCP, p=0.7429 and 

DMSO vs Ionomycin, p <0.0001 B) Effect of Drp1 depletion on CCCP-induced actin 

polymerization. CCCP-induced actin polymerization for control and Drp1-KD U2-OS cells, 

transfected with GFP-F-tracin and mito-BFP, stimulated with 20μM CCCP (blue arrow) and 

imaged at 15 sec intervals.  Data from three experiments. N=40 cells/40 ROIs for scrambled 

control, 41/41 for Drp1 KD. Error bar, ±SEM. C) Western blot analysis of Drp1 and Opa1 in 

control (scrambled siRNA) and Drp1 KD U2-OS cells. GAPDH, loading control.  D) Change in 

mitochondrial matrix circularization (‘centroids’) over time for control and Drp1-KD U2-OS cells 

transfected with mito-BFP and GFP-F-tractin.  CCCP (20μM) added at time point 0.  Data from 

three experiments. N= 71 cells/8217.2 μm2 total mitochondrial area for control cells; 45 cells 

/6557.3 μm2 for OMA1 KD cells. Error bars, ±SEM. E) CCCP induced mitochondrial shape 

changes in Drp1 KD cells. Time-lapse image montage of CCCP-induced mitochondrial shape 

change in control (top, red) and Drp1 KD cells (middle, bottom, green) transfected with mito-

BFP.  Imaging conducted at a basal cell section.  CCCP added at time point 0.  Scale bar: 10μm.  
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Figure S2.5:  Effect of Opa1 KD on CCCP-induced actin burst and mitochondrial 

morphology.  A) CCCP-induced actin polymerization for control and Opa1-KD U2-OS cells, 

transfected with GFP-F-tracin and mito-BFP, stimulated with 20μM CCCP (blue arrow) and 

imaged at 15 sec intervals.  Data from three experiments. N=23 cells/23 ROIs for scrambled 

control, 27/27 for Opa1 KD. Error bar, ±SEM.  B) Western blot analysis of Opa1 in control 

(scrambled siRNA) and Opa1 KD U2-OS cells. GAPDH, loading control.  C) Maximum intensity 

projection of control U2-OS cells (scrambled siRNA) and Opa1 KD U2-OS cells transfected 

GFP-Ftractin, mitoBFP and H2B-mCherry. Z sections were selected based on actin and imaged at 

0.4 µm step size. Scale bar: 10μm and inset scale bar: 5μm. D) Time-course of CCCP induced 

actin polymerization for control and Opa1 KD U2-OS cells transfected with GFP-F-tractin 

(green) and mito-BFP (red).  Confocal images from from a medial cell section. CCCP added at 

time point 0. Time in minutes. Scale bar: 10μm. Yellow arrows denote actin assembly around 

mitochondria. 
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3.1 Abstract 

Mitochondrial damage (MtD) represents a dramatic change in cellular homeostasis, 

necessitating metabolic changes and stimulating mitophagy. One rapid response to MtD 

is rapid peri-mitochondrial actin polymerization, termed ADA (acute damage-induced 

actin). The activation mechanism for ADA is unknown. Here, we use mitochondrial 

depolarization or the complex I inhibitor metformin to induce ADA.  We show that two 

parallel signaling pathways are required for ADA.  In one pathway, increased cytosolic 

calcium activates in turn PKC-β, Rac, WAVE regulatory complex, and Arp2/3 complex.  

In the other pathway, a drop in cellular ATP activates in turn AMPK (through LKB1), 

Cdc42, and FMNL formins. We also identify putative guanine nucleotide exchange 

factors for Rac and Cdc42, Trio and Fgd1 respectively, whose phosphorylation states 

increase upon mitochondrial depolarization and whose suppression inhibits ADA.  The 

depolarization-induced calcium increase is dependent on the mitochondrial sodium-

calcium exchanger NCLX, suggesting initial mitochondrial calcium efflux.  We also 

show that ADA inhibition results in enhanced mitochondrial shape changes upon 

mitochondrial depolarization, suggesting that ADA inhibits these shape changes.  These 

depolarization-induced shape changes are not fragmentation but a circularization of the 

inner mitochondrial membrane, dependent on the inner mitochondrial membrane protease 

Oma1.  ADA inhibition increases proteolytic processing of an Oma1 substrate, the 

dynamin GTPase Opa1.  These results show that ADA requires the combined action of 

Arp2/3 complex and formin proteins to polymerize a network of actin filaments around 

mitochondria, and that the ADA network inhibits the rapid mitochondrial shape changes 

that occur upon mitochondrial depolarization.   
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3.2 Introduction 

Dynamic actin polymerization is a vital component of many cellular processes, including 

cell motility, cytokinesis, endocytosis, vesicle transport and others[5, 30]. Often, the actin 

filaments created are transient, polymerizing and depolymerizing on a timescale of 

minutes. These filaments can be used as substrates for myosin-mediated force production, 

or can generated force on their own through polymerization.   

One recently identified population of actin filaments polymerizes around damaged 

mitochondria (Chapter II) [16, 560], which we refer to as acute damage-induced actin 

(ADA). ADA is transient, being triggered within 2 min of stimulation and being fully 

depolymerized in 10 min (Chapter II) [560]. One function of ADA is to inhibit 

mitochondrial rearrangements after damage, potentially allowing a chance for recovery 

(Chapter II) [560]. 

How is ADA activated? Cellular actin structures require an actin polymerization factor to 

initiate new actin filaments. Two major actin polymerization factors are the Arp2/3 

complex and the formin family. Arp2/3 complex is required for ADA (Chapter II) [560]. 

Arp2/3 complex consists of seven proteins, including two actin-related proteins, and 

typically nucleates new actin filaments as branches from the sides of existing “mother” 

filaments, itself remaining at the slow-growing “pointed” end of the new actin filament 

and crosslinking this end to the side of the mother filament [5].  Arp2/3 complex alone is 

inactive, but is activated by binding to a nucleation promoting factor (NPF) [561].  Seven 

NPF families exist in mammals, including WASP/N-WASP, WAVE/Scar, WASH, 

WISH/DIP, WHAMM, JMY [541, 562, 563]. The Arp2/3 complex-binding protein 

cortactin has weak NPF activity biochemically, but its cellular interaction with Arp2/3 

complex may serve more to prolong branched filament lifetime [564]. Up-stream 

activators of NPFs include Rho family GTPases, polyphosphoinositides, adaptor proteins, 

and protein kinases. Importantly for the current work, WAVE is a sub-unit of a multi-

protein complex called the WAVE Regulatory complex (WRC), and activation of the 

complex is mediated by the Rac sub-family of Rho GTPases [565]. 

While Arp2/3 complex is clearly required for ADA, it is possible that formin proteins 

contribute as well, given the cooperation between Arp2/3 complex and formins in other 

actin-based processes [60, 63].  Formin proteins nucleate actin by a fundamentally 

different mechanism than Arp2/3 complex, remaining at the rapidly-growing barbed end 
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of the filament and mediating filament elongation [18]. Two mechanisms by which 

formins and Arp2/3 complex can work together are:  1) formin nucleation of the mother 

filaments used for subsequent Arp2/3 complex-mediated branched filament 

polymerization; and 2) formin binding to new barbed ends created by Arp2/3 complex-

mediated nucleation, allowing these ends to elongate by protecting them from capping 

protein. 

There are 15 formin proteins in mammals, segregating into seven sub-groups 

phylogenetically [17]. Presently, no formin protein has been identified as being involved 

in ADA. The formin INF2 has been shown to play roles in mitochondrial division [12], 

and is activated by increased cytoplasmic calcium in a process we call CIA (calcium-

induced actin) [12-14]. INF2, however, is not required for ADA [560]. 

The signaling pathway leading from mitochondrial damage to ADA is unknown. What 

signal(s) is/are transmitted across both the inner and outer mitochondrial membranes to 

activate ADA? What intermediate factors are required between this/these signal(s) and 

Arp2/3 complex activation? In this work, we show that ADA is mediated by two parallel 

signaling pathways. One pathway is initiated by calcium efflux from the mitochondrion, 

triggering a protein kinase C-dependent pathway that activates Arp2/3 complex. The 

second pathway is mediated by decreased ATP, which initiates an AMP-dependent 

protein kinase (AMPK) pathway leading to activation of the FMNL family of formins. 

Thus, ADA represents a highly regulated process whereby Arp2/3 complex and formins 

work together for rapid actin network assembly. 
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3.3 Results 

We have previously shown that CCCP treatment rapidly stimulates ADA in U2-OS cells 

(Chapter II) [560], and use CCCP treatment in the current work to elucidate the 

signaling pathway leading from mitochondrial depolarization to ADA.  Given that CCCP 

is a relatively harsh cellular treatment, depolarizing mitochondria in seconds (Chapter 

II) [560], we sought other means of inducing mitochondrial dysfunction that would relate 

to a more physiologically-relevant situation.  The antidiabetic drug metformin inhibits 

complex 1 of the electron transport chain [257, 566, 567].  If ADA is stimulated by a 

disruption in the mitochondrial electrochemical gradient, metformin should have a 

similar effect to CCCP.  Indeed, we find that metformin treatment stimulates ADA in 

mouse embryonic fibroblasts (MEFs), with peak stimulation at 20 min (Figure S3.1).  

These results suggest that ADA is induced by mitochondrial dysfunction. 

3.3.1 Rac-activated WAVE regulatory complex activates Arp2/3 complex during 

ADA 

An important question is how depolarization is signaled so quickly across two 

membranes to activate ADA. We started our investigation of the ADA pathway by asking 

which NPF is responsible for Arp2/3 complex activation, screening NPF knock-out (KO) 

cell lines for the ADA response using a fixed-cell assay in which ADA is stimulated by 

the mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazine (CCCP) for 1 

min. KO lines used were derived from either NIH 3T3 (WRC, WASH, WHAMM and 

JMY, Figure S3.2A) or MEF cells (N-WASP, cortactin) [456, 568].  The paralogous 

WRC subunits Nap1 and Hem1 were gene-edited by CRISPR, resulting in markedly 

diminished expression of all other WRC subunits (Figure S3.2A), causing a functional 

loss of the entire complex.  

While WT cells are 98.6 ± 1.3% positive for mitochondrially-associated actin after 1-min 

CCCP treatment, WRC KO cells display only 18.4 ± 10.6% (Figure 3.1A, B). In 

contrast, JMY, WHAMM, WASH, cortactin and N-WASP KO cells display ADA 

comparable to WT cells (Figure 3.1B, C; Figure S3.2B). Two other independent WRC 

KO lines display similar ADA reduction, while additional cell lines of WASH, WHAMM 

and JMY KO do not affect ADA (Figure S3.2C). WRC KO reduces ADA at multiple 

time points (Figure S3.2D), showing that its effect is not simply to delay ADA. 
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To further assess the importance of WRC for ADA, we used live-cell microscopy in U2-

OS or HeLa cells knocked-down (KD) for the WRC subunit Nap1, which has been 

reported to cause reduction of all other WRC subunits [55, 569, 570] (Figure S3.2E, F). 

In both cell types, WRC KD significantly reduces ADA (Figure 3.1D, E; Figure S3.2G). 

We also examined WRC and Arp2/3 complex localization during ADA. Both the Abi1 

subunit of WRC and the Arpc5 subunit of Arp2/3 complex accumulate around 

mitochondria after CCCP stimulation in MEF cells (Figure 3.1F). 

We conducted further tests of cortactin’s potential importance to ADA, since a previous 

publication showed a modest decrease in the percentage of cortactin KD cells displaying 

ADA [16]. Cortactin suppression has no clear effect on the ADA time course in U2-OS 

cells (Figure S3.2H-J). However, cortactin accumulates with actin around mitochondria 

during ADA, similar to Arp2/3 complex and WRC (Figure 3.1F).  We conclude that 

cortactin may act with Arp2/3 complex during ADA, but that WRC is the key NPF. 

WRC is activated by the Rac family of Rho GTPases [565], so we tested the effect of 

CCCP on Rac activity in U2-OS cells. CCCP treatment for 2 min causes a 2.4-fold 

increase in the level of active Rac (Figure 3.2A, B), while levels of active RhoA are 

unchanged (Figure S3.3A, B).  We then examined ADA in MEFs lacking all three Rac 

proteins (Rac1 genetically removed, Rac2 and -3 not expressed) [571], using the fixed-

cell ADA assay. Control cells give a robust response to CCCP, going from 0.6 ± 1.1% to 

100% ADA-positive cells without and with CCCP, respectively, while only 6.8 ± 1.2% of 

CCCP-treated Rac1 KO MEFs display ADA (Figure 3.2C, D). As a further test, we 

transfected the T17N dominant-negative (DN) constructs of Rac1, 2 and 3 into U2-OS 

cells and examined ADA in the live-cell assay. While Rac1-DN partially inhibits ADA, 

co-expression of Rac1-3 DN constructs causes near-complete ADA inhibition (Figure 

3.2E; Figure S3.3C). In contrast, a RhoA-DN construct has no effect on ADA (Figure 

3.2E; Figure S3.3C). These results support a model in which Rac activates WRC which 

activates Arp2/3 complex during ADA. 

3.3.2 Calcium-stimulated PKC activates Rac during ADA 

What might be the stimulus leading to Rac activation during ADA? To address this issue, 

we asked whether rapid changes in known second messengers such as calcium might 

occur upon ADA induction. CCCP treatment causes a rise in cytoplasmic calcium prior to 
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ADA (Figure 3.3A; Figure S3.4A). This calcium rise is comparatively small compared 

to that of other known cytoplasmic stimuli such as histamine (Figure S3.4A-C). 

To test whether calcium plays a role in ADA, we pre-treated U2-OS cells with BAPTA-

AM, a cytosolic calcium chelator. BAPTA-AM causes a reduction in ADA (Figure 3.3B, 

C). Another cytosolic calcium sequestration strategy, over-expression of the cytosolic 

calcium probe Cyto-R-GECO, has a similar effect (Figure S3.4D). These results suggest 

that an increase in cytosolic calcium is required for ADA. 

We next examined the source of this cytosolic calcium increase, with two prime 

candidates being the endoplasmic reticulum (ER) and the extracellular space [572]. 

Neither chelation of extracellular calcium with EGTA (Figure S3.4E) nor depletion of 

ER calcium stores with thapsigargin (Figure S3.4F, G) has a clear effect on ADA.  

We also examined mitochondria as a possible calcium source, since there is evidence for 

a considerable amount of ‘solid-phase’ calcium that can be solubilized by depolarization 

[573], and another mitochondrial inhibitory treatment, hypoxia, causes mitochondrial 

calcium release through the sodium-calcium exchanger NCLX[267] .  Treatment with the 

small molecule NCLX inhibitor CGP37157 (hereafter called CGP) causes significant 

ADA reduction (Figure 3.3D, E), while having no effect on ionomycin-stimulated actin 

polymerization (Figure S3.4H). CGP also blocks the CCCP-induced increase in cytosolic 

calcium (Figure S3.4I). Suppression of NCLX by siRNA has a similar inhibitory effect 

on ADA as CGP treatment (Figure S3.4J), while suppression of the mitochondrial 

calcium channel MCU has no effect (Figure S3.4K, L). These results suggest that 

NCLX-mediated calcium release from mitochondria initiates ADA.  

We next asked what calcium effectors act in ADA, with one possibility being the 

conventional protein kinase C (cPKC) family [574].  Treatment of U2-OS cells with the 

cPKC inhibitor Go6976 significantly reduces ADA (Figure 3.4A). Combined RNAi-

mediated suppression of cPKC-βI and -βII also causes significant ADA reduction, 

whereas suppression of cPKC-α has no apparent effect (Figure 3.4B). We conclude that 

PKC-β is the relevant calcium effector in ADA. 

In addition to inhibiting ADA, PKC inhibition also reduces CCCP-induced Rac activation 

(Figure 3.2A, B), suggesting that PKC activates Rac.  Rho-family GTPase activation is 

often mediated by guanine nucleotide exchange factors (GEFs), and at least 14 Rac GEFs 
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have been identified[575]. To identify the Rac-GEF downstream of cPKC-β in ADA, we 

conducted comparative phospho-proteomics of MEFs under three conditions:  DMSO-

treated for 2 min, CCCP-treated for 2 min, and CCCP- treated for 2 min after pre-

treatment with Go6976. The Rac-GEF Trio is significantly increased in phosphorylation 

on S2634 by CCCP treatment, while phosphorylation of none of the other 13 Rac GEFs 

changes in a similar manner (Figure S3.5A). This change in Trio phosphorylation is 

abrogated by Go6976 (Figure S3.5B). Trio KD suppresses ADA (Figure 3.4C-E). In 

sum, our data suggest that ADA is activated by the following pathway:  increased 

cytosolic calcium>>PKC-beta >>Trio>>Rac>>WRC>>Arp2/3 complex.  

One puzzling result is that, although thapsigargin pre-treatment does not affect ADA 

(Figure S3.4F, G), ER-derived calcium accounts for a major portion of the CCCP-

induced increase in cytoplasmic calcium. Two results support this claim. First, ER 

calcium decreases rapidly upon CCCP treatment in a manner abolished by CGP pre-

treatment (Figure S3.5C), suggesting that mitochondrial calcium release triggers 

additional ER calcium release. Second, thapsigargin pre-treatment strongly reduces the 

CCCP-induced cytoplasmic calcium increase (Figure S3.5D).  These results could 

suggest that the ER-derived calcium release is an independent effect of CCCP, and not 

required for ADA. A second possibility is that the rise in cytoplasmic calcium caused by 

thapsigargin pre-treatment is sufficient to activate Rac prior to CCCP treatment. Indeed, 

published results show that thapsigargin-mediated increase in cytosolic calcium activates 

Rac[576]. We confirmed this possibility by measuring active Rac levels during 

thapsigargin treatment and subsequent CCCP treatment (Figure S3.5E). 

Our conclusion from these experiments is that initial calcium efflux from CCCP-treated 

mitochondria causes a quantitatively greater calcium efflux from ER, which causes Rac 

activation.  This Rac activation is prolonged, which enables CCCP to stimulate ADA 

even after prior thapsigargin treatment.  However, while Rac activation through this 

mechanism is necessary for ADA, it is not sufficient.  A parallel required pathway is 

discussed in the next section. 

3.3.3 A parallel pathway involving AMPK and FMNL formins is necessary for ADA 

We wondered is why ADA is not activated by other stimuli that raise cytosolic calcium, 

such as ionomycin or histamine. Previous studies have shown that these stimuli activate 
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actin polymerization through the formin INF2 [12-14], but that these responses are not 

Arp2/3 complex-dependent (Chapter II) [560].   

One possibility is that ADA requires a second activation signal to work in tandem with 

the calcium increase. An attractive candidate for such a signal is a drop in ATP, since 

treatments that compromise mitochondria are likely to cause this effect. Indeed, treatment 

of U2-OS cells or MEFs with CCCP for 2 min results in ~ 13 and 40% drops in total 

cellular ATP, respectively (Figure 3.5A). Reduction in cellular ATP can in turn lead to 

increased AMP, and activation of the AMP-activated protein kinase (AMPK) through 

phosphorylation of T172 on the α-subunit [311]. AMPK has also been shown to enrich on 

mitochondria in some circumstances [577]. In both U2-OS cells and MEFs, phospho-

T172-AMPK levels increase within 1 min of CCCP treatment (Figure 3.5B; Figure 

S3.6A), similar to recently published results [315].  Suppression of the AMPK-α subunit 

significantly reduces ADA (Figure 3.5C, D; Figure S3.6B).  

Two kinases can phosphorylate AMPK T172:  liver kinase B1 (LKB1) and calcium 

calmodulin-dependent protein kinase kinase β (CaMKK2) [311]. Suppression of LKB1 

inhibits ADA and reduces CCCP-induced AMPK phosphorylation (Figure 3.5E; Figure 

S3.6B). In contrast, the small molecule CaMKK2 inhibitor STO-609 has little effect on 

either ADA or AMPK phosphorylation (Figure S3.6C, D). Likewise, neither BAPTA-

AM chelation of cytosolic calcium nor Go6976 inhibition of PKC inhibits AMPK 

phosphorylation (Figure S3.6D, E), suggesting that AMPK activation is independent of 

PKC-β. We conclude that AMPK activation through LKB1 constitutes an independent 

pathway required for ADA. 

AMPK might work with PKC-β to stimulate ADA by 1) contributing to Arp2/3 complex 

activation through Rac/WRC, or 2) contributing to a parallel signaling pathway. 

Interestingly, AMPK suppression does not reduce CCCP-mediated Rac activation 

(Figure 3.2A, B). However, AMPK has been shown to activate Cdc42 [578], so we 

tested Cdc42 for a role in ADA. CCCP treatment causes an increase in active Cdc42 

levels, that is inhibited by AMPK suppression but not by PKC inhibition (Figure 3.2A, 

B). Both the T17N dominant-negative Cdc42 construct (Figure 3.2E; Figure S3.3C) and 

the small molecule Cdc42 inhibitor ML141 (Figure 3.6A) inhibit ADA. We conclude 

that there are two parallel pathways for ADA:  PKC activation of Rac and AMPK 

activation of Cdc42. 



112 
 

To identify the Cdc42 GEF which might lay between AMPK and Cdc42, we took a 

similar phosphoproteomic approach as used for Rac GEF identification. Disappointingly, 

our phosphoproteomic dataset did not reveal significant phosphorylation changes in any 

of the 19 known Cdc42 GEFs. However, we had learned from our assays of Cdc42 

activity that there is a high background of active Cdc42 in MEFs cultured in the presence 

of serum, which is reduced significantly by serum starvation overnight (Figure S3.6F). 

For this reason, we repeated the phosphoproteomics experiment in serum-starved cells. 

Under these conditions, one Cdc42 GEF, Fgd1, displays a highly significant 

phosphorylation increase on S207 upon 2 min CCCP stimulation (Figure 3.6B; Figure 

S3.6G). Suppression of Fgd1 inhibits ADA (Figure 3.6C; Figure S3.6H), suggesting 

that Fgd1 is the relevant Cdc42 GEF regulating ADA. 

We next addressed the downstream targets of Cdc42. Cdc42 activates actin 

polymerization through several pathways, including the Arp2/3 complex NPF N-WASP 

and the FMNL family of formins [447, 579]. Our NPF KO screen suggests that N-WASP 

is not required for ADA (Figure 3.1C). We therefore tested the three FMNL formins for 

potential roles in ADA. 

Western blot analysis reveals that U2-OS cells express detectable levels of FMNL1 and 

FMNL3, while FMNL2 is undetectable (Figure S3.7A). Nonetheless, any low level of 

FMNL2 should be suppressed with the siRNA used here, as shown for U2-OS cells over-

expressing GFP-tagged FMNL2 (Figure S3.7B). KD of either FMNL1 or FMNL3 results 

in partial reduction of ADA, while combined FMNL1/FMNL3 KD reduces ADA to near-

baseline levels (Figure 3.6D, E). KD of FMNL2 alone, or in combination with FMNL1 

or FMNL3, results in smaller decreases in ADA (Figure S3.7C). These results suggest 

that, in addition to Arp2/3 complex, activity of both FMNL1 and FMNL3 is required for 

a full ADA response in U2-OS cells.  

We also tested FMNL KD in HeLa cells, which also display ADA but express 

predominately FMNL1 and FMNL2, with lower levels of FMNL3 (Figure S3.7D). 

FMNL1 KD in HeLa cells results in partial reduction of ADA, but FMNL2 KD does not 

(Figure 3.6F). Combined depletion of FMNL1 and FMNL2 reduces ADA to near-

baseline levels (Figure 3.6F, G). Thus, at least two FMNL proteins appear to be required 

for the full ADA response in HeLa cells as well.  
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The effect of FMNL formin KD could suggest a wide-spread defect in actin 

polymerization, and not a specific role in ADA. To test this possibility, we examined the 

effect of FMNL KD on calcium-induced actin polymerization, which is similar to ADA 

in its rapid and transient activation but which we and others have shown to be dependent 

on the formin INF2 but independent of Arp2/3 complex (Chapter II) [12, 560].  FMNL 

KD has no significant effect on calcium-induced actin polymerization (Figure S3.7E), 

suggesting that FMNL KD is not causing a wide-spread defect in actin polymerization. 

3.3.4 ADA inhibition accelerates mitochondrial shape changes upon CCCP 

treatment 

CCCP treatment induces significant shape changes to mitochondria.  While these changes 

have often been referred to as fragmentation, the acute shape changes (within 30 min) 

occurring upon mitochondrial depolarization have been shown to be independent of 

mitochondrial division, and instead involve rearrangements of the mitochondrial inner 

membrane [154, 156, 560].  We refer to these shape changes as ‘circularization’, because 

the mitochondrion converts from an elongated to a circular state (Chapter II) [560].   

Our previous work in U2-OS cells showed that Arp2/3 complex inhibition by CK666 

treatment causes increased CCCP-induced circularization, suggesting that ADA 

suppresses circularization (Chapter II)  [560].  Here, we tested the acute mitochondrial 

response to CCCP in MEFs.  In the absence of CK666, CCCP causes an increase in 

circularization over a 20 min time period, to a lower circle density than previously 

observed in U2-OS cells (0.03 circles/mm2 versus 0.05 circles/mm2 for U2-OS cells 

(Chapter II [560], Figure 3.7A, B; Figure S3.7F).  Live-cell imaging shows that these 

events are due to mitochondrial rearrangement, rather than mitochondrial division.  

Longer CCCP treatments result in punctate mitochondria (Figure S3.7G), similar to 

previous studies [125, 130, 143, 580-582].  CK666 treatment increases mitochondrial 

circularization approximately 5-fold in the first 20 min (Figure 3.7A, B), a much greater 

change than observed for U2-OS cells.  We had previously shown that CCCP-induced 

circularization was inhibited by knock-down of the inner mitochondrial membrane 

protease Oma1 in U2-OS cells (Chapter II) [560].  We extend this result by showing that 

that Oma1 knock-down inhibits circularization in MEFs treated with CCCP and CK666 

(Figure 3.7C, D; Figure S3.7H). 
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We previously reported that ADA also inhibits CCCP-induced proteolytic processing of 

the dynamin-family GTPase Opa1 in U2-OS cells (Chapter II) [560].  Opa1 is a 

transmembrane protein on the inner mitochondrial membrane, and acts in mitochondrial 

dynamics and maintenance of cristae integrity.  Proteolytic processing by Oma1 or other 

proteases releases Opa1 into the inter-membrane space, acting as a regulatory mechanism 

for Opa1-mediated functions [438].  We examined Opa1 proteolytic processing in MEFs 

upon CCCP treatment in the absence or presence of CK666.  CCCP alone causes a 

gradual shift in Opa1 bands, eliminating the two non-proteolyzed ‘long’ forms (L1 and 

L2) and increasing the three proteolytic product ‘short’ forms (S1, S2 and S3) over a 60-

min time period, as been previously shown [583].  ADA inhibition by CK666 accelerates 

these changes (Figure 3.7E, F).  These data suggest that ADA exerts an inhibitory effect 

on Opa1 processing.   

To test whether both branches of the ADA signaling pathway are required for 

circularization inhibition, we tested the effect of siRNA-mediated suppression of FMNL 

formins in U2-OS cells.  Similar to CK666 treatment, FMNL1/3 KD results in increased 

CCCP-induced circularization, an effect not enhanced by CK666 addition (Figure 3.7G, 

H).  These results suggest that ADA inhibits the acute mitochondrial rearrangements 

induced by CCCP.  
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3.4 Discussion 

The combination of these results suggests that two parallel pathways are required for 

ADA activation:  one pathway through increased cytosolic calcium, resulting in Arp2/3 

complex activation; and the other through altered ATP levels, resulting in FMNL formin 

activation (Figure 3.7I). Both pathways utilize protein kinases (PKC and AMPK) 

downstream of the initial signal, and use Rho family GTPases (Rac and Cdc42) as 

activators of the actin polymerization factors.  We also identify the putative GEF proteins 

responsible for GTPase activation (Trio and Fgd1).  Finally, we show that inhibition of 

ADA increases the mitochondrial shape changes that occur in the first 20 min after 

mitochondrial depolarization. 

One interesting question pertains to the nature of the cooperation between FMNL formins 

and Arp2/3 complex in actin polymerization during ADA. These two polymerization 

factors are known to act together in other actin-based structures, such as filopodia and 

lamellipodia [60, 63]. The nature of their combined action in ADA is unclear at present, 

but possibilities include:  1) FMNL-mediated nucleation of ‘mother filaments’ required 

for Arp2/3 complex activation; and 2) FMNL-mediated barbed end binding of Arp2/3 

complex-nucleated filaments, allowing prolonged filament elongation. Biochemical 

studies suggest that FMNL formins are comparably weak actin nucleators, but effectively 

mediate actin filament elongation [58, 584, 585]. In addition, FMNL formins can bundle 

actin filaments [584, 585]. Given the fact that the ADA actin filaments appear to be 

densely packed around mitochondria, their bundling activity may be relevant here. 

Another question pertains to the apparent requirement for two FMNL formins in ADA.  

Previous studies have shown FMNL formins to have diverse roles. FMNL2 and 3 play 

roles in lamellipodia and filopodia assembly [63, 64, 586], while FMNL1 has been shown 

to act in maintenance of centrosome polarity[587].  In addition, all three FMNLs appear 

to act at the Golgi [586, 588]. One possibility is that there are two different functions for 

FMNL formins during ADA, dependent on FMNL1 and FMNL2/3, respectively. 

The source of the calcium for PKC activation is another interesting question.  Two 

inhibitors of the mitochondrial Na+/Ca2+ exchanger NCLX inhibit ADA, the small 

molecule CGP37157, and siRNA-mediated NCLX suppression.  CGP also inhibits the 

CCCP-induced cytoplasmic calcium increase.  These results suggest that calcium release 

from the mitochondrion is involved in ADA activation.  However, CCCP also causes a 
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drop in ER calcium level, and prior treatment with thapsigargin eliminates the CCCP-

induced increase in cytoplasmic calcium.  These results suggest that CCCP triggers ER 

calcium release, and that this release is the biggest contributor to increased cytoplasmic 

calcium.  We postulate that release of a small amount of mitochondrial calcium induces a 

larger release of ER calcium, analogous to the process known as calcium-induced 

calcium release during muscle contraction and neuronal conduction, whereby calcium in-

flux from the extracellular space triggers additional calcium release from the endoplasmic 

reticulum/sarcomeric reticulum [589].  Calcium-induced calcium release also is likely to 

occur in a variety of other cell types [590, 591], but we are not aware of prior reports that 

mitochondrial calcium release can trigger a similar phenomenon. 

We identify Trio and Fgd1 as being the putative GEFs for Rac and Cdc42 activation, 

respectively, during ADA. Trio has been shown to play important roles in cell migration, 

particularly during neuronal development, osteoclast differentiation, and endothelial 

growth[592-594]. Fgd1 acts in Cdc42-dependent cargo assembly at the Golgi [595, 596], 

and mutations in Fgd1 lead to X-linked faciogenital dysplasia [597]. The potential roles 

for these GEFs in ADA constitute novel functions for these proteins.  As yet, it is not 

clear whether these GEFs are recruited to damaged mitochondria.  Another interesting 

question is whether these are the sole GEFs responsible for ADA in all cell types, given 

the wide range of GEF expression and the possibility of compensation between GEFs. 

We also show that the phosphorylation states of these GEFs are significantly altered by 

the 2-min CCCP treatment used to induce ADA, with phosphorylation of S2634 of Trio 

and S207 of Fgd1 being increased by the treatment. Both residues lie in regions predicted 

to be disordered in the protein, and not in the catalytic Dbl homology domain of the GEF. 

It is possible that phosphorylation of these residues promotes an interaction that brings 

the GEF to the mitochondrion. Indeed, although S207 has not been identified as a 

phosphorylation site in Fgd1, a neighboring residue, S205, has been identified in a patient 

with Aarskog-Scott syndrome[598], an X-linked developmental disorder resulting in 

craniofacial dysmorphism. The disease-linked mutation, S205I, results in reduced EGF-

stimulated migration, Fgd1 translocation to the plasma membrane, and phosphorylation 

[599]. For Trio, S2634 has been identified eight times thus far in high-throughput screens 

[600], but no information on its functional significance is available.  An alternate 

possibility is that these phosphorylation changes are not related to the activation or 
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recruitment of Trio or Fgd1 during ADA.  Specific phosphorylation effects for both GEFs 

will need to be tested in the future.   

We show in this work and in a previous paper (Chapter II) [560] that ADA inhibits the 

rapid mitochondrial shape changes (circularization) that occur in response to CCCP.  This 

inhibition is temporary, and after the ADA filaments depolymerize mitochondria change 

shape substantially.  Circularization within the first 20 min of CCCP treatment is largely 

due to inner mitochondrial membrane reorganization (Chapter II) [154, 156, 560], and 

we have previously shown in U2-OS cells that they depend on the inner mitochondrial 

membrane protease Oma1 (Chapter II) [560], a result we extend to MEFs.  We also 

show here that ADA inhibition results in a dramatic increase in CCCP-induced 

circularization in MEFs, much greater than we previously observed in U2-OS cells[560].  

It is unclear why ADA would have a differential ability to inhibit circularization in the 

two cell types.  Inhibition of either Arp2/3 complex or FMNL formins accelerates CCCP-

induced mitochondrial shape changes, suggesting that both signaling pathways are 

involved.  In addition to inhibiting mitochondrial circularization, ADA also inhibits Opa1 

processing upon mitochondrial depolarization.  Opa1 processing might be linked to IMM 

changes leading to circularization, but other Oma1 substrates such as PGAM5 might also 

be involved [601]. 

Importantly, the mitochondrial shape changes we observe in the first 20 min of CCCP 

treatment are not due to mitochondrial division (Chapter II) [560].  While several other 

groups have found the same division-independent shape changes in early time points after 

mitochondrial depolarization [154, 156], it is commonly believed that mitochondrial 

depolarization results in rapid mitochondrial fragmentation or fission.  Many of the 

studies reporting fragmentation are either observing cells after prolonged depolymerizer 

treatment (>1 hr) [149, 582, 602]. Our main point here is that, while mitochondria may 

fragment at longer time points after mitochondrial depolarization, the circularization that 

occurs within the first 20 min of depolarization are not due to extensive mitochondrial 

division. 

ADA is the first of several stages at which actin polymerization is needed after loss of 

mitochondrial membrane potential, with at least two other temporally-distinct actin 

filament populations assembling around depolarized mitochondria at different times and 

for different purposes. All are Arp2/3-dependent. A second round of actin polymerization 
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occurs 1-2 hours after the initial depolarization, and is dependent on Parkin recruitment to 

mitochondria as well as on N-WASP and myosin 6 [433, 603]. This second round of 

actin polymerization appears to facilitate mitophagy in two ways: by preventing re-fusion 

of damaged mitochondria with healthy ones [603] and by dispersing clumps of damaged 

mitochondria [433]. In addition, Arp2/3 complex-mediated actin filaments clearly play 

other roles in autophagosome assembly several hours after mitochondrial depolarization. 

It is unclear how many roles these filaments play at this point, but three NPFs have been 

shown to mediate these functions: WHAMM, JMY, and WASH [480, 604, 605]. The 

speed of the ADA pathway (activated within 2 min) and its reliance on both WAVE-

activated Arp2/3 complex and FMNL formins, makes it distinct from these subsequent 

pathways. 

ADA is also distinct from another actin polymerization pathway that impacts 

mitochondria, CIA. It is interesting that increased cytosolic calcium is an activating factor 

in both ADA and CIA, with it being the apparent sole activator in CIA [12-14]. The 

cytosolic calcium increase that stimulates ADA is significantly lower than that which 

stimulates CIA, possibly explaining why CIA is not activated by ADA stimuli.  

Recently, other mitochondrially-associated actin polymerization processes have been 

identified that require Arp2/3 complex. In interphase cells, transient “waves” of actin 

polymerization can occur, cycling through the cytoplasm over time [429]. In mitotic 

cells, two distinct types of actin polymerize in association with mitochondria, with one of 

these being Arp2/3 complex-dependent [430].  It is unclear whether either of these 

Arp2/3 complex-dependent actin polymerization processes is similar to ADA.  The 

interphase actin waves are not associated with mitochondrial dysfunction. The mitotic 

actin polymerization appears to function in mitochondrial motility, while ADA actually 

inhibits mitochondrial dynamics (Chapter II) [560].  The signaling pathways and Arp2/3 

complex NPFs required for these two actin-based processes are unknown, and it will be 

interesting to see how they might relate to ADA. 
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3.5 Material and Methods 
Cell culture 

Wild-type human osteosarcoma U2-OS (U2-OS-WT) and human cervical cancer HeLa cells were 

procured from American Type Culture Collection (ATCC) and grown in DMEM (Corning, 10-

013-CV) supplemented with 10% newborn calf serum (Hyclone, SH30118.03) for U2-OS or 10% 

fetal bovine serum (Sigma-Aldrich F4135) for HeLa, at 37°C with 5% CO2. NIH 3T3 fibroblasts 

(ATCC CRL-1658) and Mouse Embryonic Fibroblasts (MEFs) for CRISPR NPF KOs were 

grown in DMEM (4.5 g/L glucose, Invitrogen), 10% FCS (Sigma), 2 mM L-glutamine (Thermo 

Fisher Scientific), 1% non-essential amino acids (Gibco) and 1 mM sodium pyruvate (Gibco). For 

all other purposes, MEFs were grown in DMEM with 10% fetal bovine serum. Cell lines were 

tested every 3 months for mycoplasma contamination using Universal Mycoplasma detection kit 

(ATCC, 30-1012K) or MycoAlert Plus Mycoplasma Detection Kit (Lonza, LT07-701). Cell lines 

were used no more than 30 passages. 

Generation of NPF KO lines 

NIH 3T3 cells were genome-edited using the CRISPR/Cas9 technology. Selected guide RNAs 

were cloned into pSpCas9(BB)-2A-Puro (Addgene plasmid ID: 48139) and transfected overnight 

with JetPrime transfection reagent (PolyPlus) according to the manufacturer’s instructions. The 

following day, cells were replated into medium supplemented with 3 µg/ml puromycin. After 3 

days of puromycin selection, cells were counted and diluted into 96-well plates at a density of 

app. 0.5 cells per well in order to generate clonal lines. Nap1 (NCKAP1) was eliminated using 

the CRISPR-guideRNA 5’-GACGCCCCGGTCGTTGAGGA-3’. As the hematopoietic version of 

Nap1, Hem1 (NCKAP1L), showed low levels of compensatory expression upon Nap1 loss (not 

shown), targeting of the Hem1 gene was additionally performed in Nap1 KO cells using CRISPR-

guide RNA 5’-CTCACGATCCTGAATGACCG-3’. Respective guide RNAs for other NPF 

knockout lines were: WHAMM (5’-TGGCTGGGTTCCGCTGCGTG-3’), JMY (5’-

GGAGACACTCGAGTCCGACT-3’), and WASH (5’-GCGACGAGAGGAGGCAATCC-3’). 

These guides were expressed by transfection of pSpCas9(BB)-2A-GFP (Addgene plasmid ID: 

48138) using X-tremeGENE following the manufacturer’s recommended protocol. Isolation of 

clonal cell lines was achieved by flow cytometry of single GFP-positive cells into 96-well plates. 

All CRISPR clones were initially screened for the absence of respective protein expression by 

western blotting and positive clones were further validated for loss-of-function mutations by 

sequencing of respective genomic loci. Most CRISPR/Cas-9-modified cell lines will be 

additionally characterized elsewhere[606] (Kollasser et al., in preparation).  
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N-WASP KO cells (kindly provided by Frank Pui-Ling Lai, University of Hong Kong) were 

obtained following immortalization and Cre-recombinase-mediated deletion of respective, loxP 

site-flanked allele [456] in MEFs derived from mice backcrossed to C57BL/6J. Cortactin KO 

[568] and Rac1 KO [571] cells were published previously. 

DNA transfections, plasmids, and siRNA 

For plasmid transfections, cells were seeded at 4×105 cells per well in a 35 mm dish at ∼16h 

before transfection. Transfections were performed in OPTI-MEM medium (Gibco, 31985062) 

using lipofectamine 2000 (Invitrogen, 11668) as per manufacturer’s protocol, followed by 

trypsinization and re-plating onto glass-bottom dishes (MatTek Corporation, P35G-1.5-14-C) at 

∼1×105 cells per well. Cells were imaged ∼16–24 h after transfection.  

GFP-F-tractin plasmid were gifts from C. Waterman and A. Pasapera (National Institutes of 

Health, Bethesda, MD) and were on a GFP-N1 backbone (Clonetech), as described previously 

[556]. Mito-DsRed and mito-BFP (GFP-N1 backbone) constructs were previously described 

[560] and consist of amino acids 1–22 of S. cerevisiae COX4 N terminal to the respective fusion 

protein. Tom20–GFP was made by restriction digest of Tom20 from Tom20–mCherry (a gift 

from Andrew G. York, NIH, Bethseda, MD) with NheI and BamHI, and then cloned into eGFP–

N1 (Clontech). GFP–mito was purchased from Clontech (pAcGFP1-Mito, #632432) and consists 

of the mitochondrial targeting sequence derived from the precursor of subunit VIII of human 

cytochrome c oxidase. TagBFP2-C1 (termed ‘Cyto-BFP’) as a general marker to label the cytosol 

was a gift from J. Lippincott-Schwartz (Janelia Research Campus, VA). Cyto-R-GECO1 (Kd = 

0.48 µM for calcium) constructs were gifts from Y.M. Usachev (University of Iowa Carver 

College of Medicine, Iowa City, IA) and have been described previously[607]. ER-GCaMP6-150 

(Kd = 150 μM for calcium) was described previously[356] and is available from Addgene 

(86918). GFP-ArpC5, GFP-Abi1 and GFP-Cortactin have been previously described[55, 568, 

608]. HA-RhoA T17N, HA-RhoB T17N, HA-Rac1 T17N, HA-Rac2 T17N, HA-Rac3 T17N and 

HA-Cdc42 T17N were procured from UMR cDNA Resource Center. The following amounts of 

DNA were transfected per well (individually or combined for co-transfection): 500 ng for mito–

BFP, mito–DsRed, GFP-mito, GFP–F-tractin, Cyto-BFP, and cyto-R-GECO, GFP-ArpC5, GFP-

Abi1, GFP-Cortactin, HA-RhoA T17N, HA-RhoB T17N, HA-Rac1 T17N, HA-Rac2 T17N, HA-

Rac3 T17N and HA-Cdc42 T17N; 800 ng for ER-GCAMP. 

For all siRNA transfections, 1×105 cells were plated onto a 35mm dish and 2μl RNAimax 

(Invitrogen, 13778) with 63pmol siRNA were used per well. Cells were analyzed 72-96 hrs post 

siRNA transfection. For live-cell imaging, plasmids containing fluorescent markers were 

transfected into siRNA-treated cells 18–24 hrs prior to imaging, as described above. All siRNAs 

used are listed in Table 3.2. 
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Western blotting  

For preparation of whole cell extracts of MEFs and NIH 3T3 cells for KO characterization, cells 

were washed 3x with ice-cold PBS, lysed using SDS-lysis-buffer (2% SDS, 10% glycerol, 63 

mM Tris-HCl pH 6.8, 0.01% bromophenol blue, 5% β-mercaptoethanol), boiled for 5 min at 

95°C and sonicated to shear genomic DNA. Western blotting was carried out according to 

standard techniques and chemiluminescence signals were obtained upon incubation with ECL 

Prime Western Blotting Detection Reagent (GE Healthcare) and were recorded with ECL 

Chemocam imager (Intas).  

For probing protein levels and AMPK phosphorylation in U2-OS, HeLa or MEF extracts, cells 

from a 35mm dish were trypsinized, pelleted by centrifugation at 300 g for 5 min and 

resuspended in 400μl of 1× DB (50mM Tris-HCl, pH 6.8, 2mM EDTA, 20% glycerol, 0.8% SDS, 

0.02% Bromophenol Blue, 1M NaCl, 4M urea). Proteins were separated by SDS-PAGE in a Bio-

Rad mini-gel system (7×8.4cm) and transferred onto polyvinylidene fluoride membrane (EMD 

Millipore, IPFL00010). The membrane was blocked with TBS-T (20 mM Tris-HCl, pH 7.6, 136 

mM NaCl, 0.1% Tween-20) containing 3% BSA (VWR Life Science, VWRV0332) for 1h, then 

incubated with primary antibody solution at 4°C overnight. After washing with TBS-T, the 

membrane was either incubated with HRP-conjugated secondary antibody or fluorescently tagged 

Li-COR antibody for 1h at 23°C. Signals were detected by chemiluminescence or using Li-COR 

fluorescent imager. Western procedure for pull-down assays of active Rho family GTPases is 

described separately in that section. 

Antibodies and reagents 

GAPDH (Calbiochem; clone 6C5; #CB1001; 1:10,000; mouse monoclonal) and (Santa Cruz: 

clone C9; sc-365062; 1:1500; mouse monoclonal), a-Tubulin (Synaptic Systems; clone 3A2; 

#302117; 1:50,000; mouse monoclonal) and (Sigma-Aldrich; clone DM1-α; T9026; 1:10,000; 

mouse monoclonal), Sra-1 (clone 4955B; 1:10,000; rabbit polyclonal)[571], Nap1 (clone 4953B; 

1:5000; rabbit polyclonal)[571] and (Proteintech; 12140-1-AP; 1: 1000; rabbit polyclonal), Abi1 

(clone E3B1; 1:2000; rabbit polyclonal) (46), pan-WAVE (clone 5502; 1:1000; rabbit polyclonal) 

(46), WHAMM (Abcam; ab122572; 1:500; rabbit polyclonal), WASH (kindly provided by Alexis 

Gautreau, École Polytechnique, France; 1:1000; rabbit polyclonal), and JMY (kindly provided by 

Jan Faix, Hannover Medical School, Germany; 1:500; rabbit polyclonal). Actin (Millipore; clone 

C4; MAB1501; 1: 1000; mouse monoclonal) and Myosin IIA (CST; #3403; 1:1000; rabbit 

polyclonal). FMNL1 (1:1000; rabbit polyclonal) (47). FMNL2 (Sigma-Aldrich HPA005464; 

1:1500; mouse monoclonal). FMNL3 (1:1000; guinea pig polyclonal)[58] and mDia1 (1:1000; 

chicken polyclonal)[63]. Cortactin (Upstate 05-180; 1:1000; mouse monoclonal). LKB1 (CST; 

#3047; 1:1000; rabbit polyclonal). Phospho-AMPKα (Thr172) (CST;#2535; 1:1000; clone 40H9; 
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rabbit monoclonal). AMPKα (CST; #2532; 1:1000; rabbit polyclonal). RhoA (CST; #2117; 

1:1000; rabbit monoclonal). Rac1 (BD Transduction Laboratories; Cat No. 610651; 1:500; mouse 

monoclonal). Cdc42 (CST; #2466; 1:500; rabbit monoclonal). Trio (Abcam; ab194364; 1:1000; 

mouse polyclonal). Opa1 (BD biosciences; #612606; 1:2000; mouse monoclonal; clone 

18/OPA1). OMA1 (Santa Cruz: clone H-11/OMA1; sc-515788; 1: 500; mouse monoclonal). For 

ECL: HRP-conjugated secondary antibodies used were anti-mouse IgG (Dianova; #115-035-062; 

1:10,000; goat) and (Bio-Rad; 1705047; 1:2000; goat), anti-rabbit IgG (Dianova; #111-035-045; 

1:10,000; goat) and (Bio-Rad; 1706515; 1:5000; goat), anti-guinea pig IgG (Jackson Immuno 

Research Laboratories; #106-035-003; 1:5000; goat) and anti-Chicken/Turkey IgG (Invitrogen; 

#613120; 1:5000; Rabbit). Li-COR antibodies used were: anti-rabbit IRDye 800CW (#926-

32211; 1:15000; goat) and anti-mouse IRDye 680RD (#926-68070; 1:15000; goat). For 

pharmacological treatments, concentration and time are listed in Table 3.1. 

Immunofluorescence 

NPF KO cells were seeded subconfluently in 1 mL medium onto glass coverslips (15 mm) coated 

with 25 µg/ml fibronectin (Sigma, 10838039001), and allowed to adhere overnight. The 

following day, cells in 12 well dishes (Sarstedt) containing 1 ml medium each were treated by the 

addition of 1 ml of prewarmed and pH-equilibrated medium containing 40 µM CCCP (Sigma, 

C2759) (freshly added before the treatment, final concentration 20 µM CCCP) for the indicated 

time. Volume equivalent DMSO was used as a control. Cells were then fixed with a mixture of 

prewarmed 4% PFA (Electron Microscopy Sciences, 15710)/PBS supplemented with 0.25% 

glutaraldehyde (Electron Microscopy Sciences, 16020) for 20 min at room temperature, enabling 

optimal preservation of the actin cytoskeleton. Cells were washed with PBS and then 

permeabilized with 0.1% Triton-X100/PBS for 1 min, and again washed with PBS three times. 

Prior to antibody staining, cells were blocked with 5% horse serum in 1% BSA/PBS for ~30 min. 

Primary Tom20 antibody (Abcam, ab78547) was diluted 1:250 in 1% BSA/PBS. Coverslips were 

incubated on a drop of antibody solution on parafilm in a wet chamber for 1 h. Secondary 

antibody against Tom20 (Alexa Fluor 594-coupled anti-rabbit; Invitrogen #A11037; 1:200) was 

mixed with Alexa Fluor 488-conjugated phalloidin (1:400) and incubated for 45 min. Coverslips 

were mounted on glass slides using ProLong Gold antifade mounting media (Invitrogen 

#P36930).  

Microscopy 

Microscopy of fixed samples was performed on an inverted Axiovert S100TV (Carl Zeiss) 

epifluorescence microscope equipped with electronic shutters (Uniblitz Electronic 35 mm 

including driver Model VMMD-1, BFI Optilas), a filter wheel (LUDL Electronic products LTD), 

filter cubes (Chroma Technology Corp. Rockingham), and epifluorescence illumination (light 
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source HXP 120, Zeiss). Imaging was performed using a 100x/1.4-NA plan apochromatic oil 

objective. Images were acquired with a back-illuminated, cooled, charge-coupled-device (CCD) 

camera (CoolSnap HQ2, Photometrics) driven by VisiView software (Visitron Systems). 

Live cell imaging was conducted in DMEM (Gibco, 21063-029) with 25 mM D-glucose, 4 mM 

L-glutamine and 25 mM Hepes, supplemented with 10% newborn calf serum. Cells (~3.5x105) 

were plated onto MatTek dishes 16 hrs prior to imaging. Medium was pre-equilibrated at 37°C 

and 5% CO2 before use. Dishes were imaged using the Dragonfly 302 spinning disk confocal 

(Andor Technology) on a Nikon Ti-E base and equipped with an iXon Ultra 888 EMCCD 

camera, a Zyla 4.2 Mpixel sCMOS camera, and a Tokai Hit stage-top incubator set at 37°C. A 

solid-state 405 smart diode 100 mW laser, solid state 560 OPSL smart laser 50 mW laser, and 

solid state 637 OPSL smart laser 140 mW laser were used. Objectives used were the CFI Plan 

Apochromat Lambda 100X/1.45 NA oil (Nikon, MRD01905) for all drug treatment live-cell 

assays. Images were acquired using Fusion software (Andor Technology, version 2.0.0.15). For 

actin burst imaging, cells were imaged at a single confocal slice at the medial region, approximate 

2 μm above the basal surface, to avoid stress fibers. For centroid observation, cells were imaged 

at a single confocal slice at the basal region. For CCCP treatments, cells were treated with 20μM 

CCCP at the start of the fifth frame (∼1 min, with time interval set at 15s) during imaging and 

continued for another 9 min. Equal volume DMSO (Invitrogen, D12345) was used as negative 

control.  

Pull down assays for active Rho family GTPases 

For active Rac1, Cdc42, and RhoA pull down, GST fusions of PAK-PBD (residues 70-117; 

Addgene 12217), WASP-CRIB (residues 228-298, Addgene 30113), or Rhotekin-RBD (residues 

7-89, Addgene 15247) were produced in Rosetta2 cells and purified/immobilized on glutathione 

Sepharose (GE Biosciences) in Buffer A (10 mM Tris-Cl pH 8, 50 mM NaCl, 1 mM DTT, 1 mM 

EDTA, 0.05% thesit and protease inhibitors [Leupeptin (2 μg/ml) /aprotinin (10 μg/ml), Calpeptin 

1 μg/ml, Pepstatin A 1 μg/ml, Benzamidine 1 mM]). 

Cell lysates from U2-OS cells were prepared as follows. Control, Go6976 (20 μM/ 1 hr) -treated, 

or AMPK KD cells (1 X 107 cells on 10 cm plate) were treated with either DMSO or CCCP (20 

μM) for 2 min and immediately lysed with 1 ml of ice-cold lysis buffer (25 mM Tris-Cl pH 7.5, 

10 mM MgCl2, 150 mM NaCl, 5% (W/V) Sucrose, 1% NP-40 alternative (Calbiochem, 492016), 

10mM NaF and protease inhibitors as above). The lysate was centrifuged immediately at 300xg / 

4˚C for 5 min and supernatants collected. Glutathione Sepharose beads coupled to 30 mg of the 

indicated GST fusion were added to this ~1 mL volume (from a 10 mg/mL stock of protein/bead 

suspension), and the mixture rotated at 4˚C for 1 hr. The beads were then centrifuged, washed 

once in lysis buffer and resuspended in 30 ml of 1X Laemmli sample buffer (BioRad, 161-0747), 
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boiled immediately for 5 min and run on 12.5% SDS-PAGE gels. The proteins were then 

transferred onto PVDF membrane using western blot buffer (25 mM Tris-Cl pH8.3, 192 mM 

Glycine and 15% methanol) at 350 mA for 1 hr, followed by the relevant primary and secondary 

antibodies and visualization on the Li-COR Odyssey. For active Cdc42 pull-down experiments, 

the respective cells were serum starved for 18 hours prior to processing as outlined above, due to 

the high level of active Cdc42 in cells cultured in our standard medium containing 10% NCS. 

Under these serum-free conditions, only 1μM CCCP is used for stimulation, with Go6976 

concentration remaining at 20μM. For thapsigargin-treated U2-OS cells, cell lysates were 

collected at indicated time and a positive control with CCCP (20 μM/ 2min) after 10 min 

Thapsigargin pre-treated was performed. 

ATP assays from cell extracts 

A luciferase-based assay was used (BMR service, University of Buffalo, SUNY, A-125). MEFs 

or U2-OS cells were plated at 1 × 106 cells per well in 60mm cell culture dishes and incubated for 

two days, resulting in 5.75 x 106 and 1.80 x 106 cells/dish for MEFs and U2-OS, respectively. On 

the day of extraction, cells were given fresh live-cell media (DMEM (Gibco, 21063-029) with 25 

mM D-glucose, 4 mM L-glutamine and 25 mM Hepes, supplemented with 10% newborn calf 

serum) and treated with 20μM CCCP for 2 min. Cells were lysed immediately with 10% TCA 

and washed 3 times with 1:1 ether pre-saturated in TE (10mM Tris-HCl and 1mM EDTA, pH 8) 

for sample deproteinization. Samples were diluted 8-fold in water and ATP assay then followed 

manufacturer’s instructions. The luminescence intensity was measured in a microplate reader 

(BioTek Synergy Neo2 multi-mode plate reader). A standard curve with ATP standards ranging 

from 0 -10μM was plotted for every experiment. The mM value of ATP determined in each assay 

was converted to a mM cellular value using the cell number stated above and an estimated 

cellular volume of 6 pL, obtained for Cos7 cells[609]. Scatter plots were plotted (with s.d.) in 

GraphPad Prism 9 (version 9.2.0, GraphPad Software). Each point indicates individual well 

measurements with 3 and 5 independent experiments performed for U2-OS and MEF 

respectively. 

Phosphoproteomics 

MEFs (1 x 107 cells) were plated on 10 cm plates 24 hrs before stimulation. Two different 

methods for stimulation were used. In Method 1, cells were kept in normal medium 

(DMEM+10% NCS) and stimulated with either 20μM CCCP or DMSO control for 2 min. In 

Method 2, cells were washed in serum-free DMEM 6 hrs post-plating, incubated in serum-free 

medium overnight, and stimulated with either 1μM CCCP or DMSO control for 2 min. 

Subsequent procedures were the same. Following respective treatments, cells were quickly 

washed with 15 ml of PBS and rapidly extracted with 1mL of extraction buffer (10 mM Tris-HCl 
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pH 7.5, 150 mM NaCl, 4% SDS, 10 mM DTT). Lysates were quickly boiled for 5 min and then 

frozen prior to the phospho-proteomic work-up and analysis, which was conducted at the IDeA 

National Resource for Quantitative Proteomics (University of Arkansas, Little Rock AR). 

Proteins were reduced, alkylated, and purified by chloroform/methanol extraction prior to 

digestion with sequencing grade trypsin and LysC (Promega). The resulting peptides were labeled 

using a tandem mass tag 10-plex isobaric label reagent set (Thermo), then enriched using High-

Select TiO2 and Fe-NTA phosphopeptide enrichment kits (Thermo) following the manufacturer’s 

instructions. Both enriched and un-enriched labeled peptides were separated into 46 fractions on a 

100 x 1.0 mm Acquity BEH C18 column (Waters) using an UltiMate 3000 UHPLC system 

(Thermo) with a 50 min gradient from 99:1 to 60:40 buffer A:B ratio under basic pH conditions, 

then consolidated into 18 super-fractions (Buffer A = 0.1% formic acid, 0.5% acetonitrile. Buffer 

B = 0.1% formic acid, 99.9% acetonitrile.  Both buffers adjusted to pH 10 with ammonium 

hydroxide). Each super-fraction was then further separated by reverse phase XSelect CSH C18 

2.5 μm resin (Waters) on an in-line 150 x 0.075 mm column using an UltiMate 3000 RSLCnano 

system (Thermo). Peptides were eluted using a 75 min gradient from 98:2 to 60:40 buffer A:B 

ratio. Eluted peptides were ionized by electrospray (2.2 kV) followed by mass spectrometric 

analysis on an Orbitrap Eclipse Tribrid mass spectrometer (Thermo) using multi-notch MS3 

parameters. MS data were acquired using the FTMS analyzer in top-speed profile mode at a 

resolution of 120,000 over a range of 375 to 1500 m/z. Following CID activation with normalized 

collision energy of 31.0, MS/MS data were acquired using the ion trap analyzer in centroid mode 

and normal mass range. Using synchronous precursor selection, up to 10 MS/MS precursors were 

selected for HCD activation with normalized collision energy of 55.0, followed by acquisition of 

MS3 reporter ion data using the FTMS analyzer in profile mode at a resolution of 50,000 over a 

range of 100-500 m/z. 

Proteins were identified and reporter ions quantified by searching the UniprotKB database using 

MaxQuant (Max Planck Institute) with a parent ion tolerance of 3 ppm, a fragment ion tolerance 

of 0.5 Da, a reporter ion tolerance of 0.001 Da, trypsin/P enzyme with 2 missed cleavages, 

variable modifications including oxidation on M, Acetyl on Protein N-term, and phosphorylation 

on STY, and fixed modification of Carbamidomethyl on C. Protein identifications are accepted if 

they could be established with less than 1.0% false discovery. Proteins identified only by 

modified peptides were removed. Protein probabilities were assigned by the Protein Prophet 

algorithm[610]. TMT MS3 reporter ion intensity values are analyzed for changes in total protein 

using the unenriched lysate sample. Phospho(STY) modifications are identified using the samples 

enriched for phosphorylated peptides. The enriched and un-enriched samples are multiplexed 

using two TMT10-plex batches, one for the enriched and one for the un-enriched samples. 
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Following data acquisition and database search, the search results were normalized using an in-

house ProteiNorm app, a user-friendly tool for a systematic evaluation of normalization methods, 

imputation of missing values and comparisons of different differential abundance methods[611]. 

ProteiNorm evaluates popular normalization methods including log2 normalization (Log2), 

median normalization (Median), mean normalization (Mean), variance stabilizing normalization 

(VSN)[612], quantile normalization (Quantile, 

https://www.bioconductor.org/packages/release/bioc/html/preprocessCore.html), cyclic loess 

normalization (Cyclic Loess)[613], global robust linear regression normalization (RLR)[614], and 

global intensity normalization (Global Intensity)[614]. The individual performance of each 

method can be evaluated by comparing of the following metrices: total intensity, Pooled 

intragroup Coefficient of Variation (PCV), Pooled intragroup Median Absolute Deviation 

(PMAD), Pooled intragroup estimate of variance (PEV), intragroup correlation, sample 

correlation heatmap (Pearson), and log2-ratio distributions.  

The normalized data is imported into ProteoViz to perform statistical analysis using Linear 

Models for Microarray Data (limma) with empirical Bayes (eBayes) smoothing to the standard 

errors[613, 615]. A similar approach is used for differential analysis of the phosphopeptides, with 

the addition of a few steps. The phosphosites are filtered to retain only peptides with a 

localization probability > 75%, filter peptides with zero values, and log2 transformed. Limma is 

also used for differential analysis. Proteins and phosphopeptides with an FDR-adjusted p-value < 

0.05 and an absolute fold change > 2 are considered significant.  

For full phosphoproteomics dataset results, kindly consult the ProteomeXchange 

Consortium[616] via the PRIDE[617] partner repository with the dataset identifier PXD031699 

and 10.6019/PXD031699. 

Immunofluorescence NPF screens 

Imaging fields for control (WT) or NPF KOs were coded and scrambled by one investigator (FK) 

on ImageJ Fiji (version 1.51n, National Institutes of Health) and given to the other investigator 

(TSF) for blind analysis. Cells with actin clouds were scored by visual analysis for the presence 

or absence of actin assembly. The results were then decoded by the first investigator and the 

analysis was expressed as a percentage of the total cell count from all images. Bar graphs with 

their standard deviations (s.d.) were generated using Prism Graphpad version 9.2.0. 

Quantification from live-cell imaging 

Unless otherwise stated, all image analysis was performed on ImageJ Fiji (version 1.51n, 

National Institutes of Health). Cells that shrunk during imaging or exhibited signs of 

https://www.bioconductor.org/packages/release/bioc/html/preprocessCore.html
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phototoxicity such as blebbing or vacuolization were excluded from analysis (maximal amount 

10% for any treatment).  

ADA. Quantification methods for actin assembly after CCCP treatment were previously 

described[560]. For each cell, one ROI was chosen which encompasses the entire area of ADA 

around mitochondria after drug addition. Fluorescence values for each time point (F) were 

normalized with the mean initial fluorescence before drug treatment (first four frames−F0) and 

plotted against time as F/F0. For DMSO control or cells that did not exhibit actin burst, the ROI 

was selected as the bulk region of the cytoplasm containing mitochondria using the mito–BFP 

channel. For WRC KD in U2-OS and HeLa cells (Figure 3.1E; Figure S3.2G), imaging fields 

for control (ctrl/CCCP and ctrl/DMSO) or WRC KDs were coded and scrambled by one 

investigator (F.K.) and given to the other investigator (T.S.F.) for blind analysis. The results were 

then decoded by the first investigator. For FMNL double KD in U2-OS and HeLa cells (Figure 3. 

6E, F; Figure S3.7C), imaging fields for control or FMNL double KDs were coded and 

scrambled by one investigator (T.S.F.) and given to the other investigator (R.C.) for blind 

analysis. The results were then decoded by the first investigator.  

Ionomycin. Quantification methods for actin assembly after ionomycin treatment were previously 

described [12]. For each cell, one or two ROIs are picked. Fluorescence values for each time 

point (F) were normalized with the mean initial fluorescence before drug treatment (first four 

frames−F0) and plotted against time as F/F0. 

Cytoplasmic and ER calcium. Quantification methods for calcium changes after CCCP or 

histamine treatment were previously described [12]. For each cell, one ROI was chosen to 

encompass the perinuclear cytosol or the entirety of the endoplasmic reticulum. Fluorescence 

values for each time point (F) were normalized with the mean initial fluorescence before drug 

treatment (first four frames−F0) and plotted against time as F/F0.  

Mitochondrial centroids. Centroids were counted manually for every time-point (2min interval 

for 20mins in live-cell imaging for U2-OS; indicated time-points for fixed MEFs). To normalize 

the data, the number of centroids was divided by the total mitochondrial area in the imaging field 

(μm2). Number of cells in each field was also recorded. For live-cell U2-OS imaging dataset, 

images were coded and scrambled by one investigator (T.S.F.) and given to the other investigator 

(R.C.) for blind analysis. The results were then decoded by the first investigator.  

Statistical analysis and graph plotting software 

All statistical analyses and P-value determinations were performed using GraphPad Prism 

QuickCalcs or GraphPad Prism 9 (version 9.2.0, GraphPad Software). To determine P-values, an 

unpaired Student's t-test was performed between two groups of data, comparing full datasets. For 
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P-values in multiple comparisons (unpaired; one or two-way ANOVA), Tukey's multiple 

comparisons test was performed in GraphPad Prism 9. All scatter plots were created with 

GraphPad Prism 9. Curve fitting (Figure 3.7F) was done with a smoothing spline curve set to 

four knots with GraphPad Prism 9. Live-cell actin burst, along with the standard errors of the 

mean (s.e.m.) were plotted using Microsoft Excel for Office 365 (version 16.0.11231.20164, 

Microsoft Corporation). 
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Figure 3.1: WAVE activates Arp2/3 complex during ADA. A) Images of actin 

(green)/mitochondria (red) in fixed NIH 3T3 cells (wild-type or WAVE regulatory complex 

(WRC) KO) treated with DMSO or CCCP for 1 min. Arrows:  mitochondria-associated actin. 

Bars:  10 μm (full cell) and 5 μm (insets). B) Graph of % NIH 3T3 cells displaying 

mitochondrially-associated actin. Additional KO clones are presented in Figure S3.2C. C) Graph 

of % MEFs displaying mitochondrially-associated actin assembly in either DMSO or CCCP 

treatment for 1 min. D) Images from live U2-OS cells (Ctrl or WRC KD) transfected with 

markers for actin filaments (GFP-F-tractin, green) and mitochondria (mito-BFP, red), then 

stimulated with CCCP at time 0 (0 sec). 105” represents optimal stimulation time point for Ctrl 

(in sec). Arrows:  mitochondria-associated actin. Images at bottom are zooms of boxed regions. 

Bars:  10 μm (full cell) and 5 μm (insets). E) Graph quantifying actin polymerization in control or 

WRC KD U2-OS cells upon CCCP treatment. F) Enrichment of GFP-Arpc5, GFP-Abi1, and 

GFP-cortactin (green) and actin filaments (red) around mitochondria (magenta) upon 1 min 

CCCP stimulation. Bars: 10 μm (full cell) and 3 μm (inset). Error bars in s.d. (B, C) or s.e.m. (E). 

See also Figure S3.1 (metformin experiment), Figure S3.2, Table 3.1 for pharmacological 

treatment conditions, Table 3.2 for oligonucleotides used for CRISPR KO and siRNA knock 

downs. 
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Figure 3.2: Rac and Cdc42 activation during ADA. A) Pull-downs of active Rac (left) or 

Cdc42 (right) from U2-OS cells stimulated 2 min with CCCP after pre-treatment with DMSO, 

Go6976, or AMPK KD.  Rac1-A and Cdc42-A, active proteins; Rac1-T and Cdc42-T, total 

proteins in extract. T172P-AMPK (phosphorylated AMPK) in extract also shown, along with 

tubulin (loading control). B) Graphs quantifying active Rac (left) or Cdc42 (right) for indicated 

conditions. C) Images of actin/mitochondria in fixed MEFs stimulated with CCCP for 1 min. 

Top, WT; bottom, Rac1 KO. Arrows:  mitochondria-associated actin. Bars:  10 μm (full cell) and 

5 μm (insets). D) Graph of % MEFs showing mitochondrially-associated actin. E) Actin 

polymerization upon CCCP treatment in U2-OS cells expressing dominant-negative constructs of 

indicated GTPases. Images in Figure S3.3C. ***: p < 0.05; ****: P < 0.002; n.s. > 0.05 by one-

way ANOVA using Tukey's multiple comparisons test. Error bars in s.d. (B) and s.e.m. (E). See 

also Figure S3.3, Table 3.1 and Table 3.2. 
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Figure 3.3: Cytoplasmic calcium increase stimulated by mitochondrial depolarization. A) 

Change in cytoplasmic calcium (red-CCCP/Black-DMSO) and actin filaments (blue) in live U2-

OS cells upon CCCP treatment. Cytoplasmic calcium images in Figure S3.4A. B) Images of live 

U2-OS cells transfected with markers for actin filaments (green) and mitochondria (red), 

stimulated with CCCP at time 0 (0”) after DMSO (control) or BAPTA-AM pre-treatment. Images 

at right:  zooms of boxed regions.  120” represents optimal stimulation time point for control (in 

sec). Arrows indicate mitochondrially-associated actin. C) Graph of actin polymerization in 

control or BAPTA-AM pre-treated U2-OS cells upon CCCP. D) Images from live U2-OS cells 

transfected with markers for actin filaments (green) and mitochondria (red) and stimulated with 

CCCP at time 0 (0”) after DMSO (control) or CGP37157 pre-treatment. Images at right are 

zooms of boxed regions. 120” represents optimal stimulation time point for control (in sec). 

Arrows indicate mitochondrially-associated actin. E) Graph of actin polymerization in control or 

CGP37157 pre-treated U2-OS cells upon CCCP. All error bars in s.e.m. See also Figure S3.4, 

Table 3.1 and Table 3.2. 
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Figure 3.4: Protein kinase C activation of the Rac GEF Trio during ADA. A) Effect of pre-

treatment with the PKC inhibitor Go6976 on CCCP-induced actin polymerization in live U2-OS 

cells. B) Graph of actin polymerization in U2-OS cells upon CCCP treatment after knock-down 

of cPKCβ (both βI and βII) or cPKCα. C) Western blot of Trio KD. Calnexin is used as loading 

control. D) Images from live U2-OS (Ctrl siRNA or Trio KD) transfected with markers for actin 

filaments (GFP-F-tractin, green) and mitochondria (mito-BFP, red) and stimulated with CCCP at 

time 0 (0”). 150” represents optimal stimulation time point for control (in sec). Images at right:  

zooms of boxed regions.  Bars:  10 μm (full cell) and 10 μm (insets). E) Graph of actin 

polymerization in control or Trio KD U2-OS cells upon CCCP. All error bars in s.e.m. See also 

Figure S3.5, Table 3.1 and Table 3.2. 
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Figure 3.5: AMPK activation by LKB during ADA. A) ATP levels in U2-OS and MEF cells 

either without or with CCCP treatment (2 min). Data represent 15 and 9 independent points from 

five and three experiments, for MEFs and U2-OS, respectively. B) Western of T172P-AMPK 

changes (p-AMPK) upon CCCP treatment in U2-OS cells. C) Images from live U2-OS (Ctrl 

siRNA or AMPK KD) transfected with markers for actin filaments (GFP-F-tractin, green) and 

mitochondria (mito-BFP, red) and stimulated with CCCP at time 0 (0”). 120” represents optimal 

stimulation time point for control (in sec). Arrows:  mitochondria-associated actin. Images at 

right:  zooms of boxed regions.  Bars:  10 μm (full cell) and 5 μm (insets). D) Graph of actin 

polymerization in control or AMPK KD U2-OS cells upon CCCP. E) Graph of actin 

polymerization in control or LKB1 KD U2-OS cells upon CCCP. **: P = 0.0016 ;****: P < 

0.0001 using unpaired two-tailed Student’s t-test. Error bars in s.d. (A) and s.e.m. (D, E). See also 

Figure S3.6, Table 3.1 and Table 3.2. 
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Figure 3.6: FMNL formins are required for ADA. A) Graph of actin polymerization in ctrl or 

ML141 pre-treated U2-OS cells upon CCCP treatment. B) Phospho-proteomic analysis of Cdc42 

GEFs. MEFs were treated with DMSO or with CCCP under protocol 2 (see Methods) and then 

analyzed for phosphorylation differences on Cdc42 GEFs. Plot represents the log2 change in 

phosphorylation with CCCP treatment versus the P value of the difference (expressed as -log10).  

The seven Cdc42 GEFs with detectable phosphorylation are shown, no phosphorylation detected 

for ARHGEF4, ARHGEF9, ARHGEF15, ARHGEF26, FGD2, FGD4, MCF2, MCF2L, 

PLEKHG48, RASGRF2. Full phosphoproteomics data can be found online (PRIDE-

PXD031699). C) Graph of actin polymerization in ctrl or Fgd1 KD (treated with different 

siRNAs) U2-OS cells upon CCCP treatment. Images in Figure S3.6H. D) Images from live U2-

OS (Ctrl siRNA or FMNL 1/3 KD) transfected with markers for actin filaments (GFP-F-tractin, 

green) and mitochondria (mito-BFP, red) and stimulated with CCCP at time 0 (0”). 120” 

represents optimal stimulation time point for control (in sec). Arrows:  mitochondria-associated 

actin. Images at right:  zooms of boxed regions.  Bars:  10 μm (full cell) and 5 μm (insets). E) 

Graph of actin polymerization in control or various FMNL KD U2-OS cells upon CCCP. F) 

Graph of actin polymerization in ctrl HeLa cells or various FMNL KD upon CCCP treatment. G) 

Images from live HeLa cells (Ctrl siRNA or FMNL 1/2 KD) transfected with markers for actin 

filaments (GFP-F-tractin, green) and mitochondria (mito-BFP, red) and stimulated with CCCP at 

time 0 (0”). 150” represents optimal stimulation time point (in sec). Arrows:  mitochondria-

associated actin. Bars:  5 μm. All error bars in s.e.m. See also Figure S3.6, Figure S3.7, Table 

3.1 and Table 3.2. 
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Figure 3.7: ADA accelerates mitochondrial circularization. A) Micrographs of mitochondrial 

matrix (Mito-GFP, green) and outer mitochondrial membrane (Tom20 immunofluorescence, red) 

in fixed MEFs treated with CCCP after 30 minutes of CK666 pre-treatment for indicated times, 

compared to control (CCCP alone without CK666 pre-treatment). Arrows: circularized 

mitochondria. Bars: 10 μm (full cell) and 5 μm (insets). B) Plot of change in mitochondrial matrix 

circularization (defined as centroids per total mitochondrial area) between pre-treatment with 

CK666 followed by CCCP (CK666/CCCP) or CCCP alone from fixed MEFs as in panel A.  

Double-Y plot of same data in Figure S3.7F. C) Micrographs of mitochondrial matrix (Mito-

DsRed, green) and outer mitochondrial membrane (Tom20 immunofluorescence, red) in fixed 

MEFs with 30min CK666 pre-treatment followed by CCCP for 15 minutes (CK666/CCCP), 

compared to DMSO addition for 15 minutes without CK666 pre-treatment.  Scrambled siRNA 

(control) or OMA1 siRNA #1 and #2 cells. Arrows: circularized mitochondria. Scale bar: 10 μm. 

D) Change in mitochondrial matrix circularization between CK666/CCCP treatment or DMSO in 

control or Oma1 siRNA #1 and #2. E) Western blot showing representative time course of Opa1 

processing after CCCP treatment with or without 30 min CK666 pre-treatment in MEFs. Actin, 

loading control. F) Quantification of the long forms or the short forms of Opa1 from two or more 

biological replicates, similar to panel E.  Values normalized to time 0. G) Micrographs of time 

course of mitochondrial matrix (Mito-BFP, green) changes in control or FMNL 1/3 KD U2-OS 

cells with CCCP alone or 30 minutes CK666 pre-treatment followed by CCCP (CK666/CCCP) 

for indicated times (mins). Arrows: circularized mitochondria. Bars: 10 μm. H) Plot of change in 

mitochondrial matrix circularization between CK666 pre-treatment before CCCP or CCCP alone 

from live-cell WT or FMNL 1/3 KD U2-OS samples in G. I) Model of the ADA pathway.  

Dissipation of the mitochondrial proton-motive force by CCCP triggers two parallel pathways. 

PATHWAY 1:  calcium efflux through the sodium-calcium exchanger NCLX triggers additional 

calcium release from ER. Increased cytoplasmic calcium activates protein kinase C-β (PKCβ), 

which phosphorylates the Rac-GEF Trio, activating Rac which in turn activates the WAVE 

regulatory complex (WRC), which activates Arp2/3 complex.  PATHWAY 2:  decreased 

cytoplasmic ATP leads to LKB1 phosphorylation of AMP-dependent protein kinase (AMPK), 

which in turn phosphorylates the Cdc42-GEF Fgd1, activating Cdc42 which activates formins of 

the FMNL family. Actin assembly delays Opa1 processing and mitochondrial 

circularization.****: P < 0.0001 by one-way ANOVA using Tukey's multiple comparisons test. 

Error bars in s.e.m (B, H) and s.d. (D). See also Figure S3.7, Table 3.1 and Table 3.2. 
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Figure S3.1:  ADA induction by metformin treatment. A) Images of actin (GFP-F-tractin, 

green) and mitochondria (Tom20, red) in fixed MEFs treated with 20mM metformin for indicated 

times, compared to control (without treatment). Arrows: mitochondria-associated actin. Bars: 10 

μm (full cell) and 5 μm (insets). B) Graph of % MEF cells displaying mitochondrially-associated 

actin. Each point represents an individual field of view (FOV). Error bars in s.d.  
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Figure S3.2: NPF Knock-outs. A) Western blots of CRISPR KO lines for WRC, WASH, 

WHAMM and JMY in NIH 3T3 cells. B) Images showing CCCP-induced mitochondrially-

associated actin for the indicated fixed NIH 3T3 (left) or MEF (right) KO lines (1 min CCCP 

treatment). Images at bottom are zooms of boxed regions.  Scale bars: 10μm (whole cell), 5μm 

(inset). C) Graph showing the % cells displaying mitochondrially-associated actin for the 

indicated NIH 3T3 lines that are either mock-treated (DMSO, first WT bar) or CCCP-treated for 

1 min (all other bars). D) Kinetics of ADA in response to CCCP in either WT (black) or WRC 

KO3 (red) NIH 3T3 cells. Percentage of cells with actin assembly shown. E) Western blots of 

U2-OS transfected with siRNA against the WRC subunit Nap1.  Pan-WAVE antibody 

(recognizes all three WAVE proteins) is shown to demonstrate its loss upon Nap1 KD. Actin is 

used as loading control. F) Westerns of Nap1 KD in HeLa.   Myosin IIA is used as loading 

control. G) Graph of actin polymerization in control or WRC KD HeLa cells upon CCCP. H) 

Western blot showing cortactin KD in U2-OS cells. GAPDH is used as loading control. I) Images 

from live U2-OS cells either with control (left) or cortactin KD (right), transfected with markers 

for actin filaments (GFP-F-tractin, green) and mitochondria (mito-BFP, red) and stimulated with 

CCCP at time 0 (0”).  Arrows:  mitochondria-associated actin. Scale bar: 5 μm. J) Graph of actin 

polymerization in control or cortactin KD U2-OS cells upon CCCP. Errors bars in s.e.m. See also 

Table 3.1, Table 3.2. 
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Figure S3.3: Rho GTPase activation in ADA. A) Pull-downs of active RhoA from U2-OS cells 

on GST-RBD beads after either 2 min CCCP treatment or 15 min NaF/AlCl3 treatment (positive 

control). RhoA-A, active RhoA; RhoA-T, total RhoA in lysates. B) Graph quantifying active 

RhoA band intensity as a function of total Rho for the indicated conditions. C) Representative 

images of effects of dominant-negative Rho family GTPases on CCCP-induced actin 

polymerization in live U2-OS cells transfected with markers for actin filaments (GFP-F-tractin, 

green) and mitochondria (mito-BFP, red). Arrows:  mitochondria-associated actin. Scale: 10 μm. 

Error bars in s.d. n.s. : P > 0.05; ****: P < 0.0001 using unpaired two-tailed Student’s t-test. 
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Figure S3.4: Cytoplasmic calcium increase stimulated by CCCP and histamine. A) Images 

from live U2-OS cells transfected with a cytosolic calcium probe (cyto-R-GECO) and stimulated 

with either histamine or CCCP at 0 sec. B) Graph of change in cytoplasmic calcium signal upon 

histamine or CCCP treatment.  Scales different for histamine stimulation (red, left axis) and 

CCCP stimulation (black, right axis). C) Same data as panel B, but plotted on a single-Y graph to 

better display the difference between histamine-induced and CCCP-induced changes in cytosolic 

calcium.  D) Graph of CCCP-induced actin polymerization in U2-OS cells transfected with a 

cytosolic calcium probe (cyto-R-GECO) or with Cyto-BFP (Ctrl). E) Effect of EGTA pre-

addition to the medium on CCCP-induced actin polymerization in U2-OS cells. F) Images from 

live U2-OS cells transfected with markers for actin filaments (GFP-F-tractin, green) and 

mitochondria (mito-BFP, red) and stimulated with CCCP at time 0 (0”) after 10 min DMSO or 

thapsigargin (Tg) treatment.  Right-most panels show cells treated with CGP37157 (CGP) 30 min 

prior to Tg treatment.  Images below are zooms of boxed regions. Arrows:  mitochondria-

associated actin. 90” represents near-optimal stimulation time point for DMSO/CCCP (in sec). G) 

Graph of CCCP-induced actin polymerization in conditions described in (F). H) Effect of 

CGP37157 pre-treatment on ionomycin-stimulated actin assembly in U2-OS cells. I) Effect of 

CGP37157 pre-treatment on CCCP-stimulated cytosolic calcium increase (measured in live U2-

OS cells with cyto-R-GECO). J) Graph of actin polymerization in control or NCLX KD U2-OS 

cells upon CCCP. K) Western blots of MCU KD in U2-OS. Tubulin is used as loading control. 

L) Graph of actin polymerization in control or MCU KD U2-OS cells upon CCCP. All error bars 

in s.e.m. See also Table 3.1 and Table 3.2. 
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Figure S3.5: Protein Kinase C activation of Rac through the Rac GEF Trio. A) Phospho-

proteomic analysis of Rac GEFs.  MEFs were treated with DMSO or with CCCP under protocol 1 

(see Methods) and then analyzed for phosphorylation differences on Rac GEFs.  Plot represents 

the log2 change in phosphorylation with CCCP treatment versus the P value of the difference 

(expressed as -log10). The four Rac GEFs with detectable phosphorylation are shown. No 

phosphorylation detected for DOCK3, DOCK10, FGD5, MCF2, PLEKHG6, PREX1, PREX2, 

RASGRF2, VAV1, VAV2. Full phosphoproteomics data can be found online (PRIDE-

PXD031699). B) Table of phospho-proteomics results for Rac-GEFs in MEFs treated with 

DMSO (negative control), CCCP, or CCCP + Go6976. C) ER calcium (gCAMP-150 calcium 

sensor) changes upon CCCP treatment in U2-OS cells pre-treated with CGP37157 or DMSO for 

30 min. D) Cytoplasmic calcium (cyto-R-GECO) changes upon thapsigargin or DMSO pre-

treatment, followed by CCCP treatment. E) Western blots of Rac activation in thapsigargin 

treatment after indicated treatment (in min). A positive control with 20μM CCCP was performed. 

T172P-AMPK (phosphorylated AMPK) in extract also shown, along with actin (loading control). 

All error bars in s.e.m. See also Table 3.1 and Table 3.2. 
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Figure S3.6. AMPK activation, Fgd1 phosphorylation and Cdc42 activation during ADA. A) 

Western of T172P-AMPK changes (p-AMPK) upon CCCP treatment in MEFs. B) Western of 

AMPK KD (AMPKαI and αII) and LKB1 KD in U2-OS, also showing effects on T172P-AMPK 

levels. C) Graph of change in actin polymerization in U2-OS cells upon CCCP treatment in 

control or STO-609 pre-treated cells. D) Western showing effect of pre-treatment with the 

CaMKK2 inhibitor STO-609 or with BAPTA-AM on T172P-AMPK levels before and after 

CCCP treatment. E) Western showing effect of pre-treatment with the cPKC inhibitor Go6976 on 

T172P-AMPK levels after CCCP treatment in MEFs.  Numbers (1, 2, 3, 4) indicate biological 

replicates. F) Western blots of Cdc42 activation (using either PAK or WASP pull-down) in 

conditions after serum starvation for 18 hr or NaF/AlCl3 treatment for 15 min. Tubulin is used as 

loading control. G) Table of phospho-proteomics results for Cdc42-GEFs in MEFs treated with 

DMSO (negative control) or CCCP. Full phosphoproteomics data can be found online (PRIDE-

PXD031699). H) Images from live U2-OS (Ctrl siRNA or Fgd1 siRNA1-3) transfected with 

markers for actin filaments (GFP-F-tractin, green) and mitochondria (mito-BFP, red) and 

stimulated with CCCP at time 0 (0”). 120” represents optimal stimulation time point for control 

(in sec). Images at right:  zooms of boxed regions.  Bars:  10 μm (full cell) and 10 μm (insets). All 

error bars in s.e.m. See also Table 3.1 and Table 3.2. 
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Figure S3.7. FMNL formins and ADA. A) Western blots of FMNL formins in U2-OS cells. 

GAPDH is used as loading control. B) Western blot for FMNL1 and FMNL2 (GFP) in U2-OS 

cells transfected with either eGFP-alone, untagged FMNL1, or FMNL2-GFP and treated with 

siRNA for FMNL1 and FMNL2 for 96 hours. Tubulin and GAPDH are used as loading controls. 

C) Graph of change in actin polymerization in ctrl U2-OS cells versus FMNL2 KD alone or in 

combo with FMNL1 and FMNL3 KD upon CCCP treatment. D) Westerns of FMNL formins in 

HeLa cells and effects of KD on their levels. GADPH is used as loading control. E) Effect of 

CK666, Go6976 treatments or AMPK KD, FMNL 1/3 KD and INF2 KD on ionomycin-

stimulated actin assembly in U2-OS cells. F) Double-Y axis plot of the same data as in Figure 

3.7B, to convey the change in circularization that occurs upon CCCP treatment alone.  G) 

Micrographs of mitochondrial matrix (GFP-mito, green) and outer mitochondrial membrane 

(Tom20 immunofluorescence, red) in fixed MEFs treated with CCCP for 60 or 120 min. Arrows: 

circularized/fragmented mitochondria. Bars: 10 μm (full cell) and 5 μm (insets). H) Western blot 

for OMA1 KD in MEFs. Tubulin is used as loading control. All error bars in s.e.m. See also 

Table 3.1 and Table 3.2. 
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                       Table 3.1: List of pharmacological treatments and their effects.  

Reagent Conc./ Pre-treatment Time Target/Purpose 

Metformin 20mM – added for various 
time-points before fixation 

ADA stimulation 

BAPTA-AM 10μM/ 15 min Calcium chelation 

CGP37157 80μM/ 1 hour  NCLX inhibitor 

Go6976 20μM/ 1 hour PKC kinases 
inhibitor 

EGTA 5mM/ 10 min  Calcium chelation 

Thapsigargin 2μM/ 10 min ER calcium release 

CK666 100μM/ added simultaneously 
with CCCP 

 

100μM/ 30 min pre-treatment 
before CCCP addition for 
mitochondrial circularization 
experiments only (Fig 7; and 
Fig S7F)  

Arp2/3 complex 
inhibitor 

STO-609 10μM/ 1 hour CaMKK2 inhibitor 

ML141 25μM/1 hour  Cdc42 inhibitor 

Ionomycin 4μM – added during live-cell 
imaging 

Calcium ionophore 

Histamine 100μM – added during live-cell 
imaging 

ER calcium release 

CCCP 20μM – added during live-cell 
or for various time-points 
before fixation 

ADA stimulation 
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Table 3.2. Oligonucleotides used for CRISPR KO and siRNA silencing in human 
and murine cell lines. 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Nap1 CRISPR-guideRNA 
5’-GACGCCCCGGTCGTTGAGGA-3’ 

This paper N/A 

Hem1 CRISPR-guideRNA 
5’-CTCACGATCCTGAATGACCG-3’ 

This paper N/A 

WHAMM CRISPR-guideRNA 
5’-TGGCTGGGTTCCGCTGCGTG-3’ 

This paper N/A 

JMY CRISPR-guideRNA 
5’-GGAGACACTCGAGTCCGACT-3’ 

This paper N/A 

WASH CRISPR-guideRNA 
5’-GCGACGAGAGGAGGCAATCC-3’ 

This paper N/A 

siRNA negative control 
5′-CGUUAAUCGCGUAUAAUACGCGUAU-3′ 

IDT Cat#51-01-14-04 

siRNA against human FMNL1 
5’-

GTGGTACATTCGGTGGATCATGTTCTCCACCGAA
T-3’ 

IDT hs.Ri.FMNL1.13.5 

siRNA against human FMNL2 
5’-CATGATGCAGTTTAGTAA-3’ 

IDT hs.Ri.FMNL2.13.1 

siRNA against human FMNL3 
5’- GCATCAAGGAGACATATGA-3’ 

Ambion Cat#s40551 

siRNA against human Cortactin 
5’- ACAAGACCGAATGGATAAGTCAGCT-3’ 

IDT Custom-made 
 

siRNA against human INF2 
5’- GAGCGGAUGAUCUCCAGGUUGAUCCCU-3’ 

IDT Custom-made 

siRNA against human Nap1 (termed ‘WRC KD’) 
5’- AAUACGCUUUACCAAGUCAAUUGUU-3’ 

IDT hs.Ri.NCKAP1.13.
1 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

siRNA against human PKCα 
5’- GUCAACAGUAUGAAGGAUUCUGACC-3’ 

IDT hs.Ri.PRKCA13.1 

siRNA against human PKCα 
5’-GAUGAAGACGAGCUAUUUCAGUCTA-3’ 

IDT hs.Ri.PRKCA13.2 

siRNA against human PKCβ 
5’-AUCAUUUACCGUGACCUAAAACUTG-3’ 

IDT hs.Ri.PRKCB13.1 

siRNA against human PKCβ 
5’-AUAUCUUCUUUGAAUGCUAAGCATG-3’ 

IDT hs.Ri.PRKCB13.2 

siRNA against human PKCβ 
5’-GAUAUCAAAGAGCAUGCAUUUUUCC-3’ 

IDT hs.Ri.PRKCB13.3 

siRNA against human MCU 
5’- TAATTGACACTTTAGATTATCTCTT-3’ 

IDT hs.Ri.MCU.13.1 

siRNA against human AMPKαI/II Santa Cruz Cat#sc-45312 

siRNA against human LKB1 
5’- GGGUACUUCUGUCAGCUGAUUGACG-3’ 

IDT hs.Ri.STK11.13.1 

siRNA against human NCLX 
5’-GAAUUUGGAGUGAUUCACCUGAAAA-3’ 

IDT hs.Ri.SLC8B1.13.3 

siRNA against human Trio 
5’-AACACCAACUUCAGAUAAUAAAATT-3’ 

IDT hs.Ri.TRIO.31.1 

siRNA against human Fgd1 
5’-GCCCUUCAAUUCUAUCAAUCACCAAACGC-3’ 

IDT hs.Ri.FGD1.13.1 

siRNA against human Fgd1 
5’-AGACCGAUACCUCAUACUAUUCAAC-3’ 

IDT hs.Ri.FGD1.13.2 

siRNA against human Fgd1 
5’-AGUCAAUACUUGAACUCCCAUCACG-3’ 

IDT hs.Ri.FGD1.13.3 

siRNA against mouse OMA1 
5'-GACCUUUUCCUUAUUACGCAACUTT-3' 

IDT mm.Ri.Oma1.13.3 

siRNA against mouse OMA1 
5'-GUGGACCUUUUCCUUAUUACGCAAC-3' 

IDT mm.Ri.Oma1.13.7 
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4.1 Abstract 

Mitochondrial damage represents a dramatic change in cellular homeostasis, necessitating 

rapid responses.  One rapid response is peri-mitochondrial actin polymerization, termed 

ADA (acute damage-induced actin).  The consequences of ADA are not fully understood.  

Here we show that ADA is necessary for rapid glycolytic activation upon inhibition of 

mitochondrial ATP production in multiple cells, including mouse embryonic fibroblasts 

and effector CD8+ T lymphocytes, for which glycolysis is an important source of ATP 

and biosynthetic molecules.  Treatments that induce ADA include CCCP, antimycin A, 

rotenone, oligomycin, and hypoxia. The Arp2/3 complex inhibitor CK666 or the 

mitochondrial sodium-calcium exchanger (NCLX) inhibitor CGP37157, applied 

simultaneously with the ADA stimulus, inhibit both ADA and the glycolytic increase 

within 5-min, suggesting that ADA is necessary for glycolytic stimulation.  Two 

situations causing chronic reductions in mitochondrial ATP production, ethidium 

bromide treatment (to deplete mitochondrial DNA) and mutation to the NDUFS4 subunit 

of complex 1 of the electron transport chain, cause persistent peri-mitochondrial actin 

filaments of similar morphology to ADA.  Both peri-mitochondrial actin loss and a 20% 

ATP decrease occur within 10 min of CK666 treatment in NDUFS4 knock-out cells.  We 

propose that ADA is necessary for rapid glycolytic activation upon mitochondrial 

impairment, to re-establish ATP production. 
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4.2 Introduction 

Mitochondrial damage represents an acute cellular stress, compromising ATP production 

and the balance of several key metabolites, as well as a rise in reactive oxygen species in 

some situations[618, 619].  Cells respond in many ways to mitochondrial damage, 

including up-regulating glycolysis and mitochondrial destruction by mitophagy [406, 

620].  These responses require extensive communication between mitochondria and the 

rest of the cell, and defects in these responses are linked to multiple pathologies such as 

Parkinson’s.   

One response is ADA (acute damage-induced actin), resulting in a dense actin filament 

network surrounding the mitochondrion[560] [16].  This actin network is dependent on 

Arp2/3 complex, and has morphological similarities to other Arp2/3 complex-dependent 

mitochondrial polymerization events that occur in interphase [429] and mitotic cells 

[430].  ADA is distinct, however, from another population of actin filaments that 

influences mitochondria, which we call CIA (calcium-induced actin).  CIA is not 

dependent on Arp2/3 complex, but instead on the formin INF2, which is activated by 

increased cytoplasmic calcium [12-14, 426].  A consequence of CIA is increased 

mitochondrial division, through two mechanisms:  1) increased ER-to-mitochondrial 

calcium transfer, leading to increased inner mitochondrial membrane (IMM) dynamics; 

and 2) increased recruitment of the mitochondrial division factor Drp1 to the outer 

mitochondrial membrane (OMM), leading to increased OMM dynamics [12]. 

The function of ADA is at present unclear.  One study suggests that ADA increases 

mitochondrial division [16].  Our previous data, however, suggest that ADA actually 

decreases the extensive mitochondrial dynamics that occur in the acute stages of 

mitochondrial depolarization [560, 621].  We also show that these mitochondrial 

dynamics are more consistent with changes to IMM morphology, driven by the IMM 

protease Oma1, than they are with mitochondrial division.  These findings are in line with 

several previous studies [153, 154, 156].  The acute mitochondrial changes induced by 

depolarization are independent of Drp1 [156, 560]. 

Here, we provide evidence for a second function for ADA:  stimulation of the rapid 

increase in glycolysis that occurs after mitochondrial ATP production is compromised.  

This effect on glycolysis occurs upon a variety of treatments, including hypoxia.  Based 



160 
 

on these results, we postulate that ADA represents an acute response to maintain cellular 

ATP levels in the face of mitochondrial dysfunction.   
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4.3 Results 

To begin our investigation into the function of ADA, we first asked whether ADA is a 

common cellular response, both in terms of cell type and in terms of the nature of the 

mitochondrial assault.  ADA is rapidly and transiently induced by CCCP, a mitochondrial 

depolarizer, in multiple cell lines including mouse embryonic fibroblasts (MEFs), U2-

OS, HeLa and Cos-7 cells (Figure 4.1).  In all cases, maximum actin polymerization 

occurs within 4 min, and actin is largely depolymerized in 10 min.  Closer examination 

shows that actin accumulates around most but not all mitochondria, in both live-cell 

imaging of multiple cell types (Figure. 4.1A) and fixed-cell imaging of MEFs (Figure 

S4.1).  The actin-free mitochondria are frequently smaller, which may be due to CCCP-

induced circularization that has been previously identified [153, 154, 156] and that we 

have shown to be inhibited by ADA (Chapter II & III) [560, 621].   

Treatment with CK666, an Arp2/3 complex inhibitor [622], inhibits ADA in all cell types 

tested (Figure 4.1B), similar to our previous results in U2-OS cells (Chapter II & III) 

[560, 621] and to the actin “waves” recently shown in interphase and mitotic cells [429, 

430].  ADA does not appear to drive directional mitochondrial motility, and the actin 

polymerization rarely extends appreciably beyond the mitochondrion, in contrast to the 

motility-inducing actin ‘tails’ previously shown to assemble from actin clouds in mitotic 

cells [430]. 

Since CCCP is a relatively harsh treatment, resulting in complete mitochondrial 

depolarization in seconds, we tested two electron transport chain (ETC) inhibitors:  

antimycin A (Complex III) and rotenone (Complex I), which cause partial depolarization, 

as measured by tetramethylrhodamine ethyl ester (TMRE) (Figure 4.2A).   ADA is 

induced within 3 min for both antimycin A and rotenone, in a CK666-inhibitable manner 

(Figure 4.2B, C).  Importantly, CK666 effectively inhibits ADA when added 

simultaneously to the ADA stimulus, suggesting that the effect of Arp2/3 complex 

inhibition is on the acute ADA response.  We also examined the effect of the ATP 

synthase inhibitor oligomycin on ADA, which causes a slight increase in mitochondrial 

polarization over 5 min (Figure S4.2A).  Oligomycin stimulates ADA in a CK666-

inhibitable manner (Figure S4.2B, C).  This result suggests that ADA is not triggered by 

decreased mitochondrial polarization. 
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Another deleterious treatment is hypoxia, which depletes a necessary substrate for 

Complex IV of the ETC.  Upon exposure to hypoxia (1% oxygen), morphologically 

similar actin filaments to those generated by the ADA treatments arise within 30 min 

(Figure 4.2D, E).  Hypoxia-induced actin polymerization is inhibited by CK666 (Figure 

4.2D, E).  These results show that ADA is a rapid response to multiple acute treatments 

that inhibit oxidative phosphorylation (oxphos), including chemical treatments (CCCP, 

antimycin A, rotenone, oligomycin) and oxygen deprivation (hypoxia).   

4.3.1 ADA is required for rapid up-regulation of glycolysis upon oxphos inhibition 

What might be the function of ADA?  Since ADA is stimulated by treatments that inhibit 

oxphos, we asked whether inhibiting ADA would have an impact on cytoplasmic ATP 

levels.  For these experiments, we used the GO-ATeam1 ATP biosensor [623] in live 

MEFs.  To inhibit ADA, we used CK666 added simultaneously to the stimulus, 

decreasing the possibility of longer-term CK666 effects.  We conducted the experiment at 

two glucose concentrations:  25 mM, which is the concentration in DMEM but is ~5-fold 

higher than serum glucose; and 2 mM, which is hypoglycemic compared to serum but is 

similar to the extracellular glucose concentration a number of environments, including 

solid tumors [20] and in the brain [624]. ADA occurs in MEFs in hypoglycemic 

conditions (Figure S4.2D), similar to our earlier results in 25 mM glucose (Figure 4.1A, 

B).  

At 2 mM glucose, there is a 20% drop in ATP within 2 min of mitochondrial 

depolarization by CCCP.  Simultaneous addition of CK666 increases the ATP drop to 

>30% (Figure 4.3A; Figure S4.3A).  Biochemical assays of whole-cell ATP levels show 

similar results (Figure S4.3B).  The effects of antimycin A or rotenone on ATP levels are 

slower than for CCCP, with the rotenone effect being negligible (Figure 4.3 B; Figure 

S4.3C).  However, CK666 addition causes significant additional drops in cytosolic ATP 

for both antimycin A and rotenone treatment at 2 mM glucose (Figure 4.3B; Figure 

S4.3C).  At 25 mM glucose, CK666 has a non-significant effect on ATP levels when 

added with CCCP, antimycin A or rotenone (Figure S4.3D, E).  Treatment with CK666 

alone does not have a significant effect on ATP levels at either glucose concentration 

(Figure 4.3A, B; Figure S4.3D, E). These experiments suggest that ADA is necessary to 

maintain cellular ATP levels upon oxphos inhibition when glucose is limited.   
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Inhibition of oxphos causes an increase in glycolysis to make up for decreased ATP 

production [625, 626]. Changes in glycolysis can be assayed by changes in extracellular 

acidification rate (ECAR), an indirect measure of lactate production [627].   Treatment of 

MEFs with CCCP causes a rapid ECAR spike followed by prolonged ECAR elevation in 

both 2 mM and 25 mM glucose medium (Figure 4.3C; and Figure S4.4A).  The initial 

ECAR spike occurs at the first measurable timepoint after CCCP addition (3-min).  

Antimycin A and rotenone also induce ECAR increases, but not as rapidly as CCCP 

(Figure 4.3D, E; Figure S4.4B, C).   

For all three treatments, addition of CK666 simultaneously with the treatment suppresses 

the ECAR increase in 2 mM glucose (Figure 4.3C-E) but not in 25 mM glucose (Figure 

S4.4A-C).  Titrating the glucose concentration, we find significant effects of CK666 on 

ECAR occur at 5 mM glucose and below for CCCP treatment, for both the initial effect 

(3 min, Figure 4.3F; Figure S4.4D), or at 40 min after treatment (Figure S4.4E, F). 

These results show that Arp2/3 complex-mediated actin polymerization is necessary for 

up-regulation of glycolysis upon inhibition of oxphos.   

Given that CK666 is added at the same time as CCCP, and inhibits both ADA and the 

initial ECAR increase by CCCP (both occurring within 4-min), it is likely to us that ADA 

is the relevant population of actin filaments responsible for the ECAR increase.  

However, Arp2/3 complex plays roles in many cellular processes, so a more specific link 

between ADA and the glycolytic increase is needed.  We have previously shown that the 

initial step in CCCP-triggered Arp2/3 complex activation is a rise in cytoplasmic 

calcium, dependent upon the mitochondrial sodium-calcium exchanger NCLX [621].  We 

asked whether the NCLX inhibitor CGP37157 would affect the CCCP-induced glycolytic 

response.  When applied simultaneously with CCCP, CGP37157 lowers ECAR to a 

similar extent as CK666 (Figure S4.5A).  Oligomycin also potently increases ECAR 

[628].  We tested the effects of CK666 and CGP37157 on oligomycin-stimulated ECAR 

at 2 mM glucose.  Similar to their effects with CCCP, both CK666 and CGP37157 inhibit 

the oligomycin-stimulated ECAR increase (Figure S4.5B).  These results suggest that 

ADA is the relevant Arp2/3 complex-dependent actin population that stimulates 

glycolysis, as opposed to another Arp2/3 complex-dependent process. 
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In contrast to its effects on ECAR, the effects of CK666 on oxygen consumption rate 

(OCR) are minimal for CCCP, antimycin A, and rotenone.  As expected [240], CCCP 

increases OCR, while antimycin A and rotenone decrease OCR (Figure S4.5C-E).  

Simultaneous treatment with CK666 has no clear effect on OCR under any conditions 

(Figure S4.5C-E).  These results show that CK666 affects the activation of glycolysis, 

rather than altering oxidative phosphorylation. 

As a second method to assess glycolysis over a longer time period, we assayed lactate in 

the culture medium.  At 2 mM glucose, lactate levels are significantly elevated by CCCP, 

antimycin A or rotenone treatment over a 5-hr time course, but simultaneous addition of 

CK666 suppresses this increase (Figure S4.6A).  In contrast, the effect of CK666 at 25 

mM glucose is comparatively mild (Figure S4.6B).   

We also used the lactate assay to assess the effect of CK666 on glycolysis under hypoxic 

conditions (1% oxygen).  At 2 mM glucose, CK666 inhibits lactate production 2.21-fold 

under hypoxic conditions (Figure 4.3G, 5-hr timepoint) but only 1.15-fold in normoxia 

(Figure S4.6C).  At 25 mM glucose, lactate production is similar in the presence or 

absence of CK666 in normoxic or hypoxic conditions (Figure S4.6D, E).  These results 

suggest that Arp2/3 complex-mediated actin polymerization is important for the up-

regulation of glycolysis under hypoxic conditions.   

Finally, we examined the effect of oligomycin on ATP levels and ECAR at both 25 mM 

and 2 mM glucose in MEFs.  At 25 mM glucose, oligomycin treatment for 10 min causes 

a 10.16 ± 8.3 % increase in cytoplasmic ATP, which is brought back to baseline by 

CK666 addition (1.0 ± 1.1 %) (Figure S4.7A).  At 2 mM glucose, oligomycin causes a 

3.4 ± 5.4 % decrease in cytoplasmic ATP (Figure S4.7B).  Even this small change in 

cytoplasmic ATP is sufficient to cause significant activation of AMP-dependent protein 

kinase (AMPK) (Figure S4.7C), which we have shown to be an initial step in ADA 

activation [621].  In low glucose, CK666 addition to oligomycin causes further reduction 

of ATP level, to 19.7 ± 7.5 % (Figure S4.7B).  These results suggest that glycolysis 

supplies the vast majority of ATP at either 25 or 2 mM glucose, but that Arp2/3 complex-

mediated actin is required for optimal glycolysis under low glucose conditions when 

mitochondrial ATP synthesis is inhibited.  The Seahorse assays suggest that the relevant 

Arp2/3 complex-mediated actin is ADA, based on its inhibition by both CK666 and 

CGP37157 (Figure S4.5B).   
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4.3.2 ETC protein depletion causes mitochondrially-associated actin filaments and 

actin-dependent glycolytic activation 

We tested whether longer-term reduction of mitochondrial oxphos induced an ADA-like 

response.  One method for inducing chronic oxphos reduction is depletion of 

mitochondrial DNA (mtDNA), which in mammals contains genes encoding essential 

subunits of Complex I, III, IV, and V [629]. Treatment with a low-dose of ethidium 

bromide (EtBr) causes mtDNA depletion [630].  EtBr treatment of MEFs causes 

progressive mitochondrial depolarization over several days, with complete depolarization 

(comparable to CCCP) by 10 days (Figure 4.4A; Figure S4.8A).  During this time, 

mitochondria adopt a circular conformation (Figure S4.8B).  ADA-like filaments arise 

around mitochondria by day 2, and are still present after 10 days (Figure 4.4B, C; Figure 

S4.8B).  Although this mitochondrially-associated actin is persistently present over 

multiple days (Figure S4.8B), it is inhibited within 5 min of CK666 treatment (Figure 

S4.8C).  This result suggests that the mitochondrially-associated actin filaments in these 

cells are dynamic, turning over with a half-life of less than 5 min. 

We examined the effect of these peri-mitochondrial actin filaments on glycolysis in EtBr-

treated MEFs, testing lactate production in cells treated for either 4 and 10 days (EtBr-4 

and EtBr-10 cells, respectively), and comparing to control cells treated with uridine only 

(control) for 10 days.  In medium containing 2 mM glucose, lactate production is elevated 

in both EtBr-4 and EtBr-10 cells compared to control (Figure 4.4D; Figure S4.9A-C).  

Treatment with CK666 reduces this lactate to control levels for both EtBr-4 and EtBr-10 

(Figure 4.4D; Figure S4.9A-C). 

Another method for chronically reducing oxphos is knock-out of the NDUFS4 subunit of 

Complex I, which is associated with approximately 5% of autosomal recessive cases of 

the neurometabolic disorder Leigh syndrome [631, 632]. Mice with NDUFS4 KO in 

neurons and glia display progressive encephalopathy that resembles the disease 

phenotype [633].  Examination of NDUFS4 KO MEFs reveals ADA-like peri-

mitochondrial actin accumulation in the majority of cells (Figure 4.4E, F).  Similar to 

mtDNA-depleted cells, this ADA-like actin is largely removed within 10 min of CK666 

treatment (Figure 4.4E, F).  These results suggest that longer-term inhibition of oxphos 

also leads to accumulation of actin around mitochondria. 
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We tested cytoplasmic ATP levels in NDUFS4 KO cells using the GO-ATeam1 sensor, 

suspecting that inhibition of ADA-like filaments would cause decreased ATP, similar to 

the mitochondrial poisons.  In medium containing 2 mM glucose, treatment with CK666 

causes an approximate 20% reduction in ATP levels in 10 min (Figure 4.4G), a similar 

time course to actin removal.  In comparison, WT MEFs do not experience a significant 

ATP drop over 60 min of CK666 treatment (Figure 4.4G), similar to our earlier results.   

In terms of lactate production, NDUFS4 KO cells display characteristics similar to cells 

depleted of mitochondrial DNA.  In medium containing 2 mM glucose, lactate production 

is significantly higher for these cells than WT MEFs, but is brought down to similar 

levels as WT MEFs by addition of CK666 (Figure 4.4 H; Figure S4.9D).  In 25 mM 

glucose, CK666 treatment causes no significant change in lactate production for 

NDUFS4 cells (Figure S4.9E), again showing that the Arp2/3 complex-dependent effect 

on glycolysis does not occur under hyperglycemic conditions. 

We also examined fibroblasts from Leigh syndrome patients for ADA-like actin 

accumulation around mitochondria.  Cells from two patients with defined mutations were 

examined, in addition to cells from two control subjects.  The two patient lines display a 

significant increase in the percentage of cells displaying peri-mitochondrial actin (Figure 

4.4I; Figure S4.10), suggesting a similar situation to that in NDUFS4 KO cells. 

These results suggest that, similar to the acute treatments, Arp2/3 complex-dependent 

actin polymerization is necessary for optimal glycolytic capability in cells that have 

chronic mitochondrial dysfunction.  These cells also maintain polymerized actin around 

their mitochondria. 

4.3.3 ADA-dependent glycolytic activation in effector CD8+ T cells 

T cells undergo a dramatic metabolic change upon activation from naïve T cells to 

effector T cells (Teff), up-regulating glycolysis while also still using oxidative 

phosphorylation for significant ATP production [634-637].  Glycolytic activation is 

important for Teff proliferation and the elaboration of effector functions to kill target cells 

[638, 639].  To test the importance of ADA in T cells, we isolated CD8+ T cells from the 

spleens of naïve mice, and activated them to Teff in vitro with anti-CD3 and anti-CD28 

antibodies.  Treatment with CCCP, antimycin A, rotenone or hypoxia causes 

mitochondrially-associated actin polymerization in the majority of Teff, in a manner that 

is inhibited by CK666 (Figure 4.5A, B; Figure S4.11A).     
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We then tested the effect of CK666 on glycolysis in Teff, using ECAR as a readout.  At 

both 2 mM and 25 mM glucose, ECAR is stimulated by CCCP, antimycin A, and 

rotenone (Figure 4.5C-E; Figure S4.11B-D).  Interestingly, the ECAR response to 

antimycin A or rotenone treatment is rapid in Teff, in contrast to the slow response in 

MEFs.  At 2 mM glucose, CK666 significantly inhibits the ECAR increase stimulated by 

all three treatments (Figure 4.5C-E), while the effects on OCR are unchanged (Figure 

S4.11E-G).  At 25 mM glucose, simultaneous CK666 treatment reduces this ECAR 

increase slightly in all cases (Figure S4.11B-D).   

T cells often encounter a hypoxic environment in solid tumors, and can be out-competed 

by highly glycolytic cancer cells under these conditions [20, 640].  We therefore tested 

the effect of hypoxia on glycolysis in Teff, using lactate production as a readout.  At 2, 5 

and 25 mM glucose, CK666 inhibits lactate production 2.32-, 1.75-, and 1.33-fold, 

respectively, under hypoxic conditions (Figure 4.5F; and Figure S4.12A, B, 6-hr 

timepoints).  These results show that Arp2/3 complex-mediated actin polymerization 

stimulates glycolysis in Teff upon treatments that compromise mitochondrial ATP 

production, with the effect being more pronounced at lower glucose concentration. 
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4.4 Discussion 

In this paper, we show that actin polymerization is rapidly stimulated around 

mitochondria in response to multiple treatments that compromise mitochondrial ATP 

synthesis, including mitochondrial uncoupling (CCCP), inhibition of the electron 

transport chain (antimycin A, rotenone), inhibition of ATP synthase (oligomycin), and 

hypoxia.  We refer to this actin accumulation as ADA, with the filaments being tightly 

apposed to the mitochondrion.  A similar morphology of mitochondria-associated actin 

occurs under more chronic treatments that reduce mitochondrial oxidative 

phosphorylation, including mitochondrial DNA depletion, knock-out of the NDUFS4 

subunit of complex 1 of the electron transport chain, and cells from Leigh syndrome 

patients.  In all cases, inhibition of a key actin polymerization factor needed for ADA, 

Arp2/3 complex, inhibits the compensatory increase in glycolytic rate that occurs upon 

inhibition of mitochondrial ATP production.  These results suggest that glycolysis is 

activated by peri-mitochondrial actin polymerization in response to decreased 

mitochondrial ATP synthesis. 

The mechanism by which mitochondrial dysfunction induces ADA is intriguing.  In 

response to CCCP, actin accumulates within 1-min and peaks by 4-min in multiple cell 

types.  In the more chronic forms of mitochondrial dysfunction (EtBr treatment to deplete 

mtDNA, NDUFS4 KO, Leigh Syndrome cells), the peri-mitochondrial filaments are 

eliminated within 5 minutes of Arp2/3 complex inhibition, suggesting that this is not a 

pool of stably polymerized actin but is constantly turning over.  We have previously 

shown that CCCP-induced ADA requires two parallel signaling pathways, one induced 

by increased cytoplasmic calcium, which activates Arp2/3 complex; and the other 

through AMPK activation, which activates the FMNL family of formins [621].  One 

possibility is that mitochondrial depolarization is the initiating stimulus of these events.  

However, we show here that ADA-inducing stimuli span a wide range in terms of effects 

on mitochondrial polarization, including oligomycin, which causes slight hyper-

polarization.  Our current data might suggest that a decrease in mitochondrial ATP 

production capacity is a key signal.  Even those stimuli that cause low changes in overall 

cytoplasmic ATP levels, such as oligomycin, cause significant and rapid AMPK 

activation, which might suggest an ability to detect ATP locally around mitochondria. 
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Another question concerns whether the mitochondrially-associated actin filaments 

induced during ADA are the cause of the glycolytic increase.  While Arp2/3 complex 

mediates many actin-dependent cellular processes [30, 641], three items suggest that 

ADA specifically contributes to glycolytic activation.  First, inhibition of the 

mitochondrial sodium-calcium antiporter NCLX by CGP37157 inhibits the glycolytic 

increase caused by either CCCP or oligomycin stimulation.  We have previously shown 

that NCLX mediates an important initial step in the ADA activation pathway [621].  

Second, the effects of both NCLX or Arp2/3 complex inhibition (by CGP37157 or 

CK666) on glycolysis occur within 4-min, because simultaneous addition of these 

compounds with CCCP inhibit the CCCP-induced ECAR increase at the first time point 

measured.  While effects on other processes such as lamellipodia or endocytosis on this 

time scale are certainly possible, it is more likely to us that the inhibition of ADA de 

novo is the relevant event.  Third, there is a strong inhibitory effect of CK666 on 

glycolytic activation by mitochondrial inhibitors in Teff, which have a limited number of 

existing actin-based structures.  However, a role for other Arp2/3 complex-dependent 

actin processes in the rapid glycolytic activation we observe here cannot be ruled out. 

The target linking Arp2/3 complex-mediated actin polymerization to this glycolytic 

increase is unclear, but a number of links between glycolysis and actin have previously 

been made.  One study showed that aldolase was inhibited by an interaction with actin, 

and that insulin stimulation caused actin depolymerization and aldolase activation [642].  

Intriguingly, this insulin-stimulated aldolase activation was inhibited by CK-666, 

suggesting a more complicated mechanism than simply actin depolymerization.  Whether 

this insulin-mediated glycolytic activation is related to the effects we observe is unclear, 

considering the different time courses of the responses (minutes for the effects reported 

here versus hours for the insulin effect).  Another glycolytic enzyme that might be 

regulated by ADA is phosphofructokinase (PFK), whose degradation has recently been 

shown to be regulated by the E3 ubiquitin ligase TRIM21, itself being activated upon 

release from stress fibers [435].  Again, it is not clear that the effects reported here follow 

this mechanism, both in terms of speed of response and the fact that stress fibers are 

fundamentally different from Arp2/3 complex-dependent structures [5].  In budding 

yeast, a number of glycolytic enzymes appear to bind and be activated by actin [643], but 

links with Arp2/3 complex-mediated actin have not been made.   
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The effect of ADA on glycolysis is particularly important at lower glucose 

concentrations.  While normal blood glucose ranges from 4-6 mM, lower glucose 

concentrations are common in peripheral tissues.  In particular, neuronal cells experience 

steady-state glucose levels of 2.4 mM, which rapidly drop to below 1 mM during 

ischemia [624].  The tumor micro-environment also can experience extracellular glucose 

levels below 1 mM, and competition for glucose between cancer cells and tumoricidal 

Teff compromises anti-tumor effects [20, 640].  Rapid cellular proliferation and poor 

vascular supply lead to hypoxia in tumors, compromising mitochondrial function.  

Induction of ADA in infiltrating T cells might be therefore crucial in maintaining T cell 

viability and anti-tumor immunity.   

Glycolytic activation is one of at least two functions of ADA.  We have previously shown 

that ADA inhibits the mitochondrial re-organization that occurs downstream of 

depolarization (Chapter II & III) [560, 621].  This re-organization occurs within the 

first 30 min after depolarization, and involves a circularization of the mitochondrion, 

rather than mitochondrial division [153, 154, 156].  We showed that circularization 

depends upon the inner mitochondrial membrane protease Oma1 (Chapter II & III)  

[560, 621], one of whose substrates is Opa1 [438].  Inhibition of ADA enhances Opa1 

processing as well as circularization (Chapter II & III) [560, 621], suggesting that ADA 

might be able to exert some form of regulatory control over Oma1.  The purpose of these 

shape changes are unclear, but may be a prelude to mitophagy.  In this respect, ADA 

might serve as a temporary brake on responses to mitochondrial damage, increasing 

glycolytic rate to maintain ATP levels and delaying the mitophagic response.  It is not 

clear whether the mitochondrial circularization we observe upon EtBr treatment  

represents a similar process to the rapid circularization induced by mitochondrial 

depolarization. 

The exact organization of the actin filaments induced during ADA is unclear, but the 

staining intensity suggests them to be bundles of filaments or tightly-packed networks.  

The fact that Arp2/3 complex is required for ADA would suggest that a dendritic network 

might be present [641].  Similar Arp2/3 complex-dependent actin structures, termed actin 

‘clouds’ have been observed around mitochondria in mitotic [430] and interphase cells 

[429] in the absence of treatment with mitochondrial-compromising drugs.  These actin 

clouds cycle in waves around the cell, making a full rotation within 15 minutes.  In 

contrast, we have previously shown ADA to be dependent on the WAVE family of 
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Arp2/3 complex activators [621], while WAVE1 knock down does not inhibit mitotic 

actin clouds [430].  It is possible, though, that ADA and actin clouds have overlapping 

functions, and it would be interested to determine whether actin clouds are associated 

with increased glycolysis.   

 Another type of recently-identified mitochondrial actin structure is termed actin ‘tails’, 

which develop from actin clouds during mitosis and increase mitochondrial motility, to 

favor homogenous distribution of mitochondria between daughter cells [430].  ADA 

differs from actin tails in that it does not extend to micron lengths from the 

mitochondrion.  In addition, we have not observed an increase in mitochondrial motility 

during ADA.  In fact, we have previously shown that ADA suppresses mitochondrial 

dynamics (Chapter II) [560].     

In addition to the rapid effects on actin and glycolysis upon treatment with mitochondrial 

inhibitors, cells that are chronically compromised for mitochondrial function also have 

peri-mitochondrial actin.  Arp2/3 complex inhibition eliminates this peri-mitochondrial 

actin in 5-min in ethidium bromide-treated cells.  In NDUFS4-KO cells, Arp2/3 complex 

inhibition eliminates peri-mitochondrial actin and causes a substantial ATP drop in 10-

min (the first time point we tested).  Thus, these cells appear to continuously polymerize 

actin around their compromised mitochondria, perhaps to continuously stimulate 

glycolysis. 

Finally, ADA is not the only Arp2/3 complex-dependent process in which actin 

polymerizes around damaged mitochondria.  A second phase of actin polymerization 

occurs 1-2 hrs post-damage, which appears to function in the mitophagic process [433, 

603].  In addition, we have previously mentioned in this discussion the Arp2/3 complex-

dependent mitochondrial actin polymerization identified around apparently un-damaged 

mitochondria at interphase [429] and during mitosis [16, 430], which possess a number of 

differences to ADA.  Our conclusion at present is that multiple mechanisms for Arp2/3 

complex-mediated actin polymerization around mitochondria exist, activated by distinct 

mechanisms for distinct purposes.  One purpose of ADA is to promote rapid glycolytic 

up-regulation in the face of mitochondrial dysfunction, in order to maintain cellular ATP 

levels.  
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4.5 Materials and Methods 
Cell culture 

Wild-type human osteosarcoma U2-OS and human cervical cancer HeLa cells were procured 

from American Type Culture Collection (ATCC) and grown in DMEM (Corning, 10-013-CV) 

supplemented with 10% newborn calf serum (NCS) (Hyclone, SH30118.03) for U2-OS or 10% 

fetal bovine serum (FBS) (Sigma-Aldrich F4135) for HeLa. Primate Cercopithecus aethiops Cos-

7 cells were procured from ATCC (CRL-1651) and grown in DMEM with 10% FBS. Wild-type 

mouse embryonic fibroblasts (MEFs) were a gift from David Chan (previously described [125], 

while NDUFS4 KO MEFs were a gift from Yasemin Sancak (University of Washington, Seattle). 

MEFs were grown in DMEM with 10% FBS. Cell lines are cultivated at 37°C with 5% CO2 and 

were tested every 3 months for mycoplasma contamination using Universal Mycoplasma 

detection kit (ATCC, 30-1012K) or MycoAlert Plus Mycoplasma Detection Ki (Lonza, LT07-

701).  Cell lines were used no more than 30 passages. 

Mice and CD8+ T cells 

Female wild-type C57BL/6NCrl mice were obtained from Charles River Laboratories. Mouse 

CD8+ T cells were isolated from the mouse spleens using EasySep™ Mouse CD8+ T Cell 

Isolation Kit (STEMCELL Technologies, 19853A) according to manufacturer instructions. 

Isolated CD8+ T cells were stimulated for 2 days in 24 well culture plates coated overnight with 

10μg/mL anti-CD3 antibody (clone 145-2C11, BioXCell) and 5μg/mL soluble anti-CD28 (clone 

37.51, BioXCell) antibody with 25U/mL recombinant human IL-2 (National Cancer Institute) in 

the medium. RPMI 1640 with L-Glutamine (Corning, 10-040-CV) supplemented with 10% FBS 

(HyClone, SH30541.03), 10mM HEPES (Corning Cellgro, 25-060-Cl), 1x non-essential amino 

acids (Corning Cellgro, 25-025-Cl), 1mM sodium pyruvate (Corning Cellgro, 25-000-Cl), and 

44μM 2-Mercaptoethanol (Fisher Scientific, 03446I-100) was used for T cell stimulation and 

culture until the cells were harvested for experiments. 

EtBr treatment of MEFs 

This treatment followed published protocols showing mtDNA depletion [630].  2 x104 MEFs 

were plated directly onto Mat-tek imaging dishes and incubated in DMEM + 10% FBS overnight. 

24 hours later, overnight media was replaced either with EtBr-containing media (DMEM + 10% 

FBS + 0.2 µg/ml EtBr (VWR life science, X328) + 50 µg/ml uridine) or control media (DMEM + 

10% FBS + 50 µg/ml uridine). At designated times, cells were stained with TMRE to record 

mitochondrial membrane potential, following which they were fixed and stained for actin 

(TRITC-phalloidin), mitochondria (Tom-20) and nuclear DNA (DAPI). 
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Human control and Leigh syndrome fibroblasts 

All the culture cell materials from study subjects were collected with informed consent of the 

parents or the patient, following the recommendation from the Helsinki University Hospital 

ethical review board. The control cell lines originate from subjects eventually deemed not to 

manifest a mitochondrial disease. 

The fibroblast cultures, previously immortalized by retroviral transduction of E6/E7 proteins of 

human papilloma virus, were cultivated at 37°C with 5% CO2 in DMEM (Dulbecco’s Modified 

Eagle’s Medium, Lonza Cat. #BE12-614F) with 10% fetal bovine serum albumin (Gibco, Cat. 

#11550356), 1 X GlutaMAX Supplement (Gibco, Cat. #35050061) 50 mg/l uridine (Calbiochem 

Cat. #6680) and 50 U/ml penicillin/streptomycin antibody (Gibco, Cat. #15070063) with media 

change in three day intervals. Cells were passaged after reaching 80% confluency by washing 

with PBS (Dulbecco’s Phosphate Buffered Saline, Sigma-Aldrich, Cat. #D8537-6X500ML) and 

incubating in 1 X trypsin-EDTA (Gibco, Cat. #15400-054) in 37°C for 3 min prior to replating on 

two fresh 10 cm dishes. Cell lines were used no more than 30 passages. 

DNA transfections and plasmids 

For plasmid transfections, cells were seeded at 4×105 cells per well in a 35 mm dish at ∼16 hours 

before transfection. Transfections were performed in OPTI-MEM medium (Gibco, 31985062) 

using lipofectamine 2000 (Invitrogen, 11668) as per manufacturer’s protocol, followed by 

trypsinization and re-plating onto glass-bottomed dishes (MatTek Corporation, P35G-1.5-14-C) 

at ∼1×105 cells per well. Cells were imaged ∼16–24 h after transfection.  

GFP-F-tractin plasmid were gifts from C. Waterman and A. Pasapera (National Institutes of 

Health, Bethesda, MD) and were on a GFP-N1 backbone (Clonetech), as described previously 

[556]. Mito-DsRed construct was previously described [423] and consist of amino acids 1–22 of 

S. cerevisiae COX4 N terminal to the respective fusion protein. ATP FRET sensor GoATeam1 

was a gift from Hiromi Imamura (Kyoto University) and is described elsewhere [180]. The 

following amounts of DNA were transfected per well (individually or combined for co-

transfection): 500 ng for Mito–DsRed, GFP–F-tractin and GoATeam1. 

Immunofluorescence 

For all cell types and conditions, cells were fixed with 1% glutaraldehyde (Electron Microscopy 

Sciences, 16020) for 10 mins and subsequently washed three times with sodium borohydride 

(Fisher Chemical, S678)(1mg/ml, 15 mins interval) and then permeabilized with 0.25% TritonX-

100 for 10 min. After permeabilization, they were washed thrice again with PBS and incubated in 

blocking buffer (10% NCS in PBS) for 30 min. The cells were then incubated with anti-Tom20 
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(Abcam, ab78547 1:500) antibody prepared in 0.1% blocking solution for 90 min. Following PBS 

washes, the cells were incubated with secondary antibody against Tom20 (Alexa Fluor 488-

coupled anti-rabbit; Invitrogen #A11037; 1:200) mixed with TRITC-phalloidin (Sigma, P1951 

1:400), 1X DAPI (Sigma, D9542) and incubated for 60 min. The cells were then washed with 

PBS, resuspended in 2 ml PBS and imaged on the same or following day. 

Drug treatment. For drug treatments with MEFs, cells were seeded onto Mat-tek dishes at 

200,000 cells/well and incubated at 37°C incubator overnight. Cells were fixed after 3mins 

treatment with 20μM CCCP (Sigma, C2759), 20μM CCCP + 100μM CK666 (Sigma, SML0006) 

simultaneously, 25μM antimycin A (Sigma; A8674), 25μM antimycin A + 100μM CK666 

simultaneously, 50μM rotenone (Sigma; R8875), 50μM rotenone + 100μM CK666 

simultaneously in serum-containing culture DMEM. For oligomycin treatments, cells were fixed 

after 5mins treatment with 1.5μM oligomycin (Sigma; 75351) or 1.5μM oligomycin + 100μM 

CK666 simultaneously in serum-free 2mM glucose DMEM. For EtBr and NDUFS4 KO MEFs, 

cells were treated with 100μM CK666 for 10 mins before fixation with glutaraldehyde. For 

human fibroblasts, cells were seeded onto μ-slide 8 well (ibidi, 80826) at 200,000 cells/well and 

incubated at 37°C incubator overnight. Cells were fixed without treatment to identify actin 

structures around mitochondria. 

For drug treatments with effector T cells (Teff), cells were seeded onto Mat-tek dishes at 200,000 

cells/well in serum-free (low glucose) DMEM medium (Agilent Seahorse XF DMEM; 103575-

100) supplemented with 4mM L-glutamine, 1mM sodium pyruvate with 2mM D-glucose and 

allowed to adhere for 1 hour. Cells were fixed after 3mins treatment with 1μM CCCP, 1μM 

CCCP + 100μM CK666 simultaneously; or 5mins treatment with 2.5μM antimycin A, 2.5μM 

antimycin A + 100μM CK666 simultaneously, 5μM rotenone, 5μM rotenone + 100μM CK666 

simultaneously. A control for no treatment was also performed. 

Hypoxia. For hypoxia treatments, WT-MEF cells were seeded onto Mat-tek dishes at 200,000 

cells/well and incubated at 37°C incubator overnight. Serum free DMEM medium was placed in 

the hypoxia chamber (InvivO2; BAKER; 94% N2, 5% CO2, 1% O2 at 37°C) overnight for 

equilibration. The following day, the Mat-tek dishes were washed twice with pre-warmed serum 

free DMEM. 2 ml of pre-equilibrated serum free DMEM (with DMSO, or CK666) were added to 

respective plates and quickly placed in the hypoxia chamber. 30 min later, the cells were fixed 

with glutaraldehyde and washed three times with PBS in the chamber before being taken out on 

the bench for downstream processing.  

For effector T cells in hypoxia, serum free (low glucose) DMEM (Gibco, A1443001) with 2 mM 

D-glucose, 4 mM L-glutamine, 1mM sodium pyruvate was placed in the hypoxia chamber for 

equilibration overnight. The following day, cells were seeded onto a poly-D-lysine coated 8 well 
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chamber slide (Ibidi, 80821) at 500,000 cells/well in low glucose and allowed to adhere in 

normoxia condition at 37°C for 1 hour. Next, the slide was brought into the hypoxia chamber and 

the pre-existing medium was substituted for the hypoxic medium containing either 100μM 

CK666 or DMSO. 1 hour later, the cells were fixed with glutaraldehyde and washed thrice with 

PBS before they were taken out of the chamber for sodium borohydride washes and subsequent 

steps. 

Antibodies and Western blotting 

Anti-actin (mouse; mab1501R; Millipore) used at 1:1,000. Anti-phospho-AMPKα (Thr172) 

(CST;#2535; clone 40H9; rabbit monoclonal) was used at 1:1000. Li-COR secondary antibodies 

used were: anti-rabbit IRDye 800CW (#926-32211; 1:15000; goat) and anti-mouse IRDye 680RD 

(#926-68070; 1:15000; goat). For probing protein levels and AMPK phosphorylation in cell 

extracts, cells from a 35mm dish were trypsinized, centrifuged at 300 g for 5 min and 

resuspended in 400μl of 1× DB (50mM Tris-HCl, pH 6.8, 2mM EDTA, 20% glycerol, 0.8% SDS, 

0.02% 784 Bromophenol Blue, 1M NaCl, 4M urea). Proteins were then separated by 10% SDS-

PAGE in a Bio-Rad mini-gel system (7×8.4cm) and transferred onto polyvinylidene fluoride 

membrane (EMD Millipore, IPFL00010). The membrane was blocked with TBS-T (20 mM Tris-

HCl, pH 7.6, 136 mM NaCl, 0.1% Tween-20) containing 3% BSA (VWR Life Science, 

VWRV0332) for 1h, then incubated with primary antibody solution at 4°C overnight. After 

washing with TBS-T, the membrane was incubated with fluorescently tagged Li-COR antibody 

for 1h at 23°C. Signals were detected by Li-COR fluorescent imager. 

Microscopy 

Both fixed and live sample dishes were imaged using the Dragonfly 302 spinning disk confocal 

(Andor Technology) on a Nikon Ti-E base and equipped with an iXon Ultra 888 EMCCD 

camera, a Zyla 4.2M pixels CMOS camera, and a Tokai Hit stage-top incubator set at 37°C. A 

solid-state 405 smart diode 100 mW laser, solid state 560 OPSL smart laser 50 mW laser, and 

solid state 637 OPSL smart laser 140 mW laser were used. Objectives used were the CFI Plan 

Apochromat Lambda 100X/1.45 NA oil (Nikon, MRD01905) for all drug treatment in live-cell 

assays or fixed-cell assays. Images were acquired using Fusion software (Andor Technology, 

version 2.0.0.15). For live-cell imaging, cells were imaged in their respective cell culture 

medium. DMEM with 10% NCS for U2-OS or DMEM with 10% FBS for HeLa, Cos-7 and MEF 

cells. Medium was pre-equilibrated at 37°C and 5% CO2 before use. For actin burst and TMRE 

quantifications, cells were imaged at a single confocal slice at the medial region, approximate 2 

μm above the basal surface, to avoid stress fibers. For live-cell drug treatments, cells were treated 

with 20μM CCCP, 20μM CCCP + 100μM CK666 simultaneously for media containing serum; or 

1μM CCCP, 1μM CCCP + 100μM CK666 simultaneously for media free of serum at the start of 
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the fifth frame (∼1min, with time interval set at 15s) during imaging and continued for another 9 

min. To observe TMRE changes in WT, uridine treated or EtBr MEFs, cells were loaded with 20 

nM TMRE for 30 min in culture medium at 37°C and 5% CO2. After incubation, TMRE was 

washed off with fresh culture medium before imaging. 

Image analysis and quantification 

All image analysis was performed on ImageJ Fiji (version 1.51n, National Institutes of Health). 

Immunofluorescence analysis. Cells with actin clouds were scored by visual analysis for the 

presence or absence of actin assembly in a given field and expressed as a percentage of the total 

number of cells for that field. Taking all the imaging fields into consideration for each condition, 

a bar graph showing the average percentage of cells, along with its respective errors bar in 

standard deviation (s.d.) or standard errors of the mean (s.e.m.) was plotted with Microsoft Excel. 

For human patient fibroblast dataset, imaging wells were blinded by P.W. Elonkirjo and imaged 

by R. Chakrabarti. Microscopy images from each well were subsequently combined and 

scrambled by R. Chakrabarti before given to TS. Fung for analysis. Final quantification was 

unscrambled by R. Chakrabarti and then decoded by P. W. Elonkirjo.  

Quantification from live-cell imaging The ImageJ Fiji Time Series Analyzer (UCLA) plugin was 

used for analysis for live-cell imaging. Cells that shrunk during imaging or exhibited signs of 

phototoxicity such as blebbing or vacuolization were excluded from analysis (maximal amount 

10% for any treatment).  

ADA. Quantification methods for actin assembly after mitochondrial-damage were previously 

described3. For each cell, one ROI was chosen which encompasses the entire area of ADA around 

mitochondria after drug addition. Fluorescence values for each time point (F) were normalized 

with the mean initial fluorescence before drug treatment (first four frames−F0) and plotted against 

time as F/F0. For DMSO control or cells that did not exhibit an actin burst, the ROI was selected 

as the bulk region of the cytoplasm containing mitochondria using the mito–DsRed channel.  

TMRE. Mean TMRE fluorescence was calculated from the entire mitochondrial area for each 

individual cell. TMRE fluorescence values for each time point (F) were normalized with the 

mean initial fluorescence before drug treatment (first four frames−F0) and plotted against time as 

F/F0. 

Cytoplasmic ATP changes using GO-ATeam1 biosensor 

Go-Ateam1 plasmid (kindly provided by Hiromi Imamura, Kyoto University) was transfected 

into MEF cells using Lipofectamine 2000. The cells were then seeded onto Mat-tek dishes and 

imaged by spinning disk confocal microscopy. To acquire GFP and FRET signals, live cells were 
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excited using a 488 nm laser and signals collected using a 525-50 nm band pass filter (GFP) and 

600-50 nm band pass filter (OFP/FRET). Cells were imaged at a medial focal plane (i.e. not in the 

basal region of the cell) for 1-min at 15 s intervals to establish baseline fluorescence, then 

perfused with indicated drugs and continuously imaged for another 9-min. Mean fluorescence for 

GFP and OFP(FRET) channels, as well as OFP/GFP ratio, for a particular ROI (square of 50 

µm2) from each cell (near the nucleus) were calculated for all time points using ImageJ. Ratios of 

each time point after drug treatment (F) were normalized with the mean initial ratio (first 5 frames 

before drug treatment) (F0) and plotted against time as F/F0. For oligomycin treated samples, data 

points were normalized to DMSO control curve. 

L-Lactate assay from extracellular medium 

An assay kit based on the NADH-coupled reduction of tetrazolium salt to formazan (BMR 

service, University of Buffalo, SUNY, A-108) was used to measure the amount of L-lactate in the 

extracellular medium.  

Drug treatment. For MEFs (wild type, uridine treated, NDUFS4 KO or EtBr) given drug 

treatments, cells were seeded at 75,000 cells per well in a 96 well plate and allowed to adhere 

overnight in culture medium. The following day, overnight medium was removed and cells were 

washed and equilibrated for 1 hour with either 1) high glucose medium - DMEM (Gibco, 

A1443001) with 25 mM D-glucose, 4 mM L-glutamine, supplemented with no serum or 2) low 

glucose medium - DMEM (Gibco, A1443001) with 2 mM D-glucose, 4 mM L-glutamine, 

supplemented with no serum. Next, cells were treated with 1μM CCCP; 1μM CCCP + 100μM 

CK666; 2.5μM AA; 2.5μM AA + 100μM CK666; 5μM Rotenone; 5μM Rotenone + 100μM 

CK666 for wild type cells. 100μM CK666 versus volume equivalent DMSO was used for wild 

type, NDUFS4 KO, uridine treated and EtBr cells. Cell culture medium was withdrawn at various 

timepoints (1-6 hours) and deproteinized in PEG solution. Samples were assayed with the L-

lactate kit according to manufacturer’s instruction and OD 492nm was measured using a 

microplate reader (TECAN infinite M1000). A standard curve ranging from 0 to 1mM L-lactate 

was plotted for each experiment.  

Hypoxia. For hypoxia experiments, MEFs were plated at 100,000 cells per well in a 96 well plate 

and allowed to adhere overnight at 37°C and 5% CO2 normoxia conditions while an aliquot of 

high/low glucose medium was placed inside the 1% O2 hypoxia chamber for oxygen depletion 

overnight. The following day, cells were brought into the hypoxia chamber, their pre-existing 

medium removed and treated with 100μM CK666 or DMSO containing hypoxic high/low 

glucose medium. Samples were taken at various timepoints (1-6 hours), deproteinized and 

assayed for L-lactate concentration.  
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For Teff in hypoxic conditions, 400,000 cells were seeded per well in a poly-D-lysine treated 96 

well plate and allowed to adhere and equilibrate for 1 hour at 37°C and 5% CO2 normoxia in 

high/low glucose medium (with additional 1mM sodium pyruvate) before being brought inside 

the hypoxia chamber. Cells were then treated with either CK666 or DMSO containing hypoxic 

high/low glucose medium. An additional condition with 5mM D-glucose also performed for Teff.  

ATP assays from cell extracts 

A luciferase-based assay was used (BMR service, University of Buffalo, SUNY, A-125).  MEFs 

were plated at 1 × 106 cells per well in 60mm cell culture dishes and incubated for two days in 

standard medium (Corning DMEM containing 25 mM glucose, 10% FBS), resulting in 5.75 x 106 

cells/dish for MEFs. On the day of extraction, cells were washed and incubated for 1 hour in 

Agilent Seahorse XF DMEM (103575-100, with 4mM L-glutamine, no sodium pyruvate or 

serum) supplemented with 25mM glucose (high glucose condition) or 1mM glucose (low glucose 

condition) before treatment with:  DMSO, 1μM CCCP; 100μM CK666 + 1μM CCCP; or 100μM 

CK666 for 2 mins. Cells were lysed immediately with 10% TCA and washed 3 times with 1:1 

ether pre-saturated in TE (10mM Tris-HCl and 1mM EDTA, pH 8) for sample deproteinization. 

Samples were diluted 8-fold in water and ATP assay then assays conducted followed 

manufacturer’s instructions. The luminescence intensity was measured in a microplate reader 

(BioTek Synergy Neo2). A standard curve with ATP standards ranging from 0 -10μM was 

plotted for every experiment. The μM value of ATP determined in each assay was converted to a 

mM cellular value using the cell number stated above and an estimated cellular volume of 6 pL, 

obtained for Cos7 cells [609]. 

Seahorse assay 

A Seahorse XFe96 Bioanalyser (Agilent) was used to determine oxygen consumption rate (OCR) 

and extracellular acidification rate (ECAR) for MEFs and activated CD8+ cells. MEFs, taken 

from a T75 flask at 70-80% confluency and in culture for three days, were plated at 40,000 per 

well onto an Agilent XF microplate (101085-004) in DMEM (Corning; 10-013-CV) + 10% FBS 

medium, 24 hr before the experiment. Medium was changed 1-hour before the start of readout 

into 180 μL serum-free assay medium (Agilent Seahorse XF DMEM; 103575-100) supplemented 

with 4mM L-glutamine (Corning; 25-005-CI) and a variable amount of glucose (Agilent; 103577-

100).  The reading and injection regime was as follows:  1) Baseline OCR and ECAR were 

measured for 15min (6 measurements); 2) injection of CCCP (1μM final), CK666 (100μM final), 

or CK666 + CCCP; 3) measuring for 38 min (15 measurements); 4) injection of 50mM final 2-

DG (Sigma Aldrich; D3179); 5) measuring for 18 minutes (7 measurements). Measurement 

parameters:  30 sec mix, 0 wait and 2 mins measure. For each experiment, three wells were done 

for CCCP or CK666 alone and four wells for CCCP + CK666.  Stock concentrations:  10 mM 
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CCCP (in DMSO), 20 mM CK666 (in DMSO), 500 mM 2-DG (in glucose free medium).  CCCP 

and CK666 were diluted to 10x stocks in the appropriate medium and 20 mL injected (final 

DMSO concentration 0.5%).  22 mL 2-DG injected.  “ΔECAR initial” represents the difference 

between the first measurement after the first injection and the last measurement before the 

injection, which represents a time span of approximately 2.5 min post-injection.  “ΔECAR 40 

min” represent the difference between the last measurement after the first injection and the last 

measurement before the first injection, which represents a time span of approximately 38 min 

post-injection.  

For MEF treated with rotenone (Sigma; R8875) and antimycin A (Sigma; A8674), the reading 

and injection regime was as follows: 1) Baseline OCR and ECAR were measured for 30min (12 

measurements); 2) injection of antimycin A (2.5μM final), CK666 (100μM final), or CK666 + 

antimycin A, rotenone (5μM final), or CK666 + rotenone or DMSO (volume equivalent to 

CK666); 3) measuring for 3 hours 22 mins (45 measurements); 4) injection of 50mM final 2-DG; 

5) measuring for 30 minutes (12 measurements). Measurement parameters:  30 sec mix, 0 wait 

and 2 mins measure for baseline and 2-DG treatments, 30 sec mix, 0 wait and 4 mins measure for 

drug treatment. For each experiment, at least three wells were done for each condition.  Stock 

concentrations for antimycin A and rotenone: 10 mM (in ethanol) and 10mM (in DMSO) 

respectively.  

For MEF treated with oligomycin (Sigma; 75351) and CGP-37157 (CGP, Sigma; C8874), the 

reading and injection regime was as follows: 1) Baseline OCR and ECAR were measured for 

24min (6 measurements); 2) injection of oligomycin (1.5μM final), CK666 (100μM final), or 

CK666 + oligomycin, CGP (80μM final), CGP + oligomycin, CCCP (1μM final), CK666 + 

CCCP,  CGP + CCCP or DMSO (volume equivalent to oligomycin); 3) measuring for 1 hours 15 

mins (15 measurements); 4) injection of 50mM final 2-DG; 5) measuring for 24 minutes (6 

measurements). Measurement parameters:  2 min mix, 0 wait and 2 mins measure for baseline, 

drug and 2-DG treatments. For each experiment, at least three wells were done for each condition.  

Stock concentrations for oligomycin and CGP: 10mM (in DMSO) respectively.    

For Teff, 150,000 cells (activated with anti-CD3 and anti-CD28 antibodies 48 hours prior) were 

plated into individual wells of a poly-D-lysine coated seahorse cell culture microplate (Agilent; 

101085-004). T cell culture medium was changed 1 hour before the start of readout into 180μL 

serum-free assay medium (Agilent Seahorse XF DMEM; 103575-100) supplemented with 4mM 

L-glutamine, 1mM sodium pyruvate and either 2mM or 25mM glucose.  The reading and 

injection regime was as follows:  1) Baseline OCR and ECAR were measured for 42min (12 

measurements); 2) injection of various treatments, with the concentration same as MEFs: CCCP, 

CK666, CK666 + CCCP, antimycin A, CK666 + antimycin A, rotenone, CK666 + rotenone or 
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DMSO (volume equivalent to CK666); 3) measuring for 2 hours 38 min (45 measurements); 4) 

injection of 50mM final 2-DG; 5) measuring for 42 minutes (12 measurements). Measurement 

parameters:  30 sec mix, 0 wait and 3 mins measure. For each experiment, at least three wells 

were done for each condition. 

Statistical analysis and graph plotting software 

All statistical analyses and P value determinations were conducted using GraphPad Prism 

QuickCalcs or GraphPad Prism 9 (version 9.2.0, GraphPad Software). For P values in multiple 

comparisons (two way unpaired t-test; one or two-way ANOVA), Tukey's multiple comparisons 

test was performed in GraphPad Prism 9. Scatter plots for TMRE, L-lactate assays were plotted 

with GraphPad Prism 9. ECAR and OCR curves, along with the standard deviation (s.d.); live-

cell actin burst, along with the standard errors of the mean (s.e.m.) were all plotted using 

Microsoft Excel for Office 365 (version 16.0.11231.20164, Microsoft Corporation). Exact P 

values, sample size N and the number of independent experiments for each analysis are provided 

in Supplementary Table 1 on the preprint server (https://doi.org/10.1101/2022.06.03.494723 ). 
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Figure 4.1: ADA in multiple cell types. A) Micrographs of live-cell imaging for U2-OS, HeLa, 

Cos-7 and MEF cell before (0 sec) and at their peak ADA timepoints after 20µM CCCP addition 

(150sec – U2-OS; 135sec -HeLa; 210sec – Cos-7; 225sec – MEF). All cells were transfected with 

markers for actin filaments (GFP-Ftractin, green) and mitochondria (mito-DsRed, red). Scale bars 

are 10 μm (full cell), 5 μm (inset). Yellow arrow indicates punctate mitochondrion without actin 

assembly. B) Graph of actin intensity (± s.e.m.) around mitochondria in U2-OS, HeLa, Cos7 and 

MEF cells as a function of time of 20µM CCCP or 100µM CK666 + 20µM CCCP simultaneous 

treatment. Cells per condition:  U2-OS, n = 31; HeLa, n = 32; Cos-7, n ≥ 17; MEF, n ≥ 22. 

Arrows indicate time of treatment. **** P < 0.0001. Experiments done in 25mM glucose with 

serum.  
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Figure 4.2: ADA stimulation by mitochondrial depolarization or ETC inhibition. A) 

Mitochondrial depolarization (assessed by TMRE fluorescence) in MEFs with DMSO, CCCP, 

antimycin A or rotenone (± s.e.m.) treatments. n ≥ 98 cells per group. Experiments done in 25mM 

glucose with serum. B) MEFs stained for actin filaments (TRITC-phalloidin, green), 

mitochondria (Tom20, red) and DNA (DAPI, blue) after 3 min treatment with DMSO, 20µM 

CCCP, 25µM antimycin A or 50µM rotenone in the absence (top) or presence (bottom) of 

100µM CK666.  Right images are zooms of boxed regions. Scale bar: 5 μm. C) % cells (± s.d.) 

displaying ADA for the conditions shown in (B). n ≥ 62/18 cells/fields of view (FOV) per group. 

Experiments done in 25mM glucose with serum. D) MEFs stained similarly to B, in normoxia or 

hypoxia for 30 min, in presence of absence of 100µM CK-666. Scale bar: 5 μm. E) % cells 

displaying ADA after 30 min normoxia or hypoxia, in the absence or presence of 100µM CK-

666.  n ≥ 174/20 cells/FOV per group. Experiments done in 25mM glucose without serum.  
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Figure 4.3: ADA is required for glycolytic activation upon mitochondrial perturbation in 

MEFs. A) Cytoplasmic ATP levels (± s.e.m.) after 20µM CCCP in the absence or presence of 

100µM CK666, using GO-ATeam1. n ≥ 35 cells per group. P values graphed in Figure S4.3A. 

Arrow indicates time of treatment. Experiments done in 2mM glucose with serum. B) 

Cytoplasmic ATP levels (± s.e.m.) after 25µM antimycin A or 50µM rotenone in the absence or 

presence of 100µM CK666, using GO-ATeam1. n ≥ 24 cells per group. P values graphed in 

Figure S4.3C. Arrow indicates time of treatment. Experiments done in 2mM glucose with serum. 

C) ECAR (± s.d.) upon 100µM CK666, 1µM CCCP or 1µM CCCP + 100µM CK666 addition 

(15 min), followed by 50mM 2-deoxyglucose (2-DG) (59 min) in 2mM glucose medium without 

serum. Pink arrow indicates drug treatment and blue arrow indicate 2-DG treatment. D) ECAR (± 

s.d.) upon DMSO, 100µM CK666, 2.5µM antimycin A or 2.5µM antimycin A + 100µM CK666 

addition (33 min), then 50mM 2-DG (258 min) in 2mM glucose medium without serum. Pink 

arrow indicates drug treatment and blue arrow indicate 2-DG treatment. E) ECAR (± s.d.) upon 

DMSO, 100µM CK666, 5µM rotenone or 5µM rotenone + 100µM CK666 addition (33 min), 

then 50mM 2-DG (258 min) in 2mM glucose medium without serum. Pink arrow indicates drug 

treatment and blue arrow indicate 2-DG treatment. F) Effect of glucose concentration on ECAR 

spike (± s.d.) induced by 3 min 1µM CCCP, with and without 100µM CK666. P values graphed 

in Figure S4.4D. G) Effect of 100µM CK666 on lactate production in hypoxia (1% O2) in MEFs 

at 2mM glucose without serum. Points indicate individual well measurements starting with 

100,000 cells/well. ** P = 0.0018. **** P < 0.0001.  
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Figure 4.4: Actin assembly in ETC protein depleted cells. A) Mitochondrial polarization in 

MEFs (± s.d.) after 0.2 µg/ml ethidium bromide (EtBr)/50 µg/ml uridine treatment.  Ctrl, 

untreated.  Uridine, uridine treatment alone (10 days).  CCCP - 10 min 20µM CCCP treated Ctrl 

cells. Circles indicate individual cell measurements (n ≥ 86 cells per group). Experiments done in 

25mM glucose with serum. B) MEFs under uridine alone or ethidium bromide/uridine treatment 

(EtBr) for 10 days, stained for actin filaments (green) and mitochondria (red). Scale bar: 5 μm. C) 

% cells (± s.d.) displaying actin assembly after time in ethidium bromide/uridine, with and 

without 100µM CK666. n ≥ 98/15 cells/fields of view (FOV) per group. Experiments done in 

25mM glucose with serum. D) Lactate production (± s.d.) in ethidium bromide cells (4 days, 

EtBr-4; 10 days, EtBr-10) and uridine-treated control (10 days), with and without 100µM CK666 

after 6 hours. Points indicate individual well measurements starting with 75,000 cells/well. n.s. P 

> 0.05. **** P < 0.0001. Experiments done in 2mM glucose without serum. E) WT and NDUFS4 

KO MEFs stained for actin filaments (green) and mitochondria (red).  Scale bar: 5 μm. F) % cells 

(± s.d.) displaying actin assembly in WT and NDUFS4 KO MEFs, with and without 10 minutes 

of 100µM CK666 treatment. n ≥ 70/12 cells/FOVs per group. * P=0.018. Experiments done in 

25mM glucose with serum. G) Cytosolic ATP levels in WT or NDUFS4 KO MEFs upon 100µM 

CK666 treatment. n ≥ 30 cells per group. Arrow indicates drug treatment. Experiments done in 

25mM glucose with serum. H) Lactate production (± s.d.) in WT and NDUFS4 KO cells, with 

and without 100µM CK666 after 6 hours. n.s. P > 0.05. **** P < 0.0001. Points indicate 

individual well measurements starting with 75,000 cells/well. Experiments done in 2mM glucose 

without serum. I) % cells (± s.e.m.) displaying actin assembly in control or Leigh syndrome 

patient fibroblasts. n ≥ 76/13 cells/FOVs per group. Experiments done in 25mM glucose with 

serum. Statistical tests are tabled in Figure S4.10B.  
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Figure 4.5: Effector T lymphocytes (Teff) require ADA for glycolytic activation. A) Teff 

stained for actin filaments (TRITC-phalloidin, green), mitochondria (Tom20, red) and DNA 

(DAPI, blue) under un-stimulated conditions, or after treatment with 3 min 1µM CCCP, 5min 

2.5µM antimycin A, 5 5µM min rotenone, or 60 min hypoxia in 2mM glucose medium. Right 

images are zooms of boxed regions. Scale bars: 5μm (full cell) and 2μm (inset). B) % cells 

(±s.e.m.) displaying ADA in treatments described in A, n ≥ 61/5 cells/FOV per group. **** 

P<0.0001. Experiments done in 2mM glucose without serum. C) ECAR (±s.d.) in Teff upon 

addition of 100µM CK666, 1µM CCCP or 1µM CCCP + 100µM CK666 (45 min), followed by 

50mM 2-deoxyglucose (2-DG)(223 min) in 2mM glucose medium without serum. Pink arrow 

indicates drug treatment and blue arrow indicate 2-DG treatment. D) ECAR (±s.d.) in Teff upon 

addition of DMSO, 2.5µM antimycin A or 2.5µM antimycin A + 100µM CK666 (45 min), 

followed by 50mM 2-DG (223 min) in 2mM glucose medium without serum. Pink arrow 

indicates drug treatment and blue arrow indicate 2-DG treatment. E) ECAR (±s.d.) in Teff upon 

addition of DMSO, 5µM rotenone or 5µM rotenone + 100µM CK666 (45 min), followed by 

50mM 2-DG (223 min) in 2mM glucose medium without serum. Pink arrow indicates drug 

treatment and blue arrow indicate 2-DG treatment. F) Lactate production (2mM glucose without 

serum) induced by hypoxia (1% oxygen) in Teff in the presence or absence of 100µM CK666 

addition. Circles indicate individual well measurements starting with 400,000 cells/well. ** 

P=0.0013. **** P<0.0001.  
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Figure S4.1: Line scans of ADA MEFs. A) Micrographs of actin assembly around mitochondria 

in fixed MEFs, stained for actin (green) and mitochondria (red). Scale bar: 5µm. Blue lines 

represent the region for line scans in (B). Yellow arrows indicate punctate mitochondria without 

actin assembly. B) Line scans showing the fluorescent intensity for actin and mitochondria signal 

across each mitochondrion as shown in (A). 
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Figure S4.2: Oligomycin-induced ADA in MEFs. A) Mitochondrial polarization (assessed by 

TMRE fluorescence) in MEFs with DMSO, 1µM CCCP or 1.5µM oligomycin (± s.e.m.) 

treatment. n ≥ 118 cells per group. Experiments done in 2mM glucose without serum. B) MEFs 

stained for actin filaments (TRITC-phalloidin, green), mitochondria (Tom20, red) and DNA 

(DAPI, blue) after 5 min treatment with DMSO, 1.5µM oligomycin or 1.5µM oligomycin with 

100µM CK666.  Bottom images are zooms of boxed regions. Experiments done in 2mM glucose 

without serum.  Scale bars: 10 μm and 5 μm. Arrow indicate actin assembly. C) % cells (± s.e.m.) 

displaying ADA for the conditions shown in (B). n ≥ 65/14 cells/fields of view (FOV) per group. 

**** P<0.0001. Experiments done in 2mM glucose without serum. D) Graph of actin intensity (± 

s.e.m.) around mitochondria in MEF cells as a function of time for 1µM CCCP or 100µM CK666 

+ 1µM CCCP simultaneous treatment. Cells were cultured in Agilent seahorse DMEM 

supplemented with 1mM glucose and 4mM glutamine but without serum for 1 hour before 

imaging. n ≥ 35 cells per condition. Arrow indicates time of treatment. **** P<0.0001.  
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Figure S4.3: ATP levels changes by complex I or III inhibition. A) Graph of P values for 

comparisons of GO-ATeam1 timecourses in Fig 3 A (CCCP or CCCP/CK666 treatment of MEFs 

in 2mM glucose). B) ATP levels (± s.d.) in MEFs upon DMSO, 1µM CCCP or 1µM CCCP + 

100µM CK666 treatments in medium containing either 1mM or 25mM glucose without serum, 

assayed from cell extracts. Points indicate individual measurements starting with 106 cells/dish. n 

≥ 12 measurements for each group. n.s. P > 0.05. **** P < 0.0001. C) Graph of P values for 

comparisons of GO-ATeam1 timecourses in Figure 4.3B (antimycin A and rotenone treatments 

of MEFs in 2mM glucose). D) Graph of change in ATP levels (± s.e.m.) in live MEFs stimulated 

with 20µM CCCP in the absence or presence of 100µM CK666, using GO-ATeam1 biosensor.  

Cells cultured in medium containing 25mM glucose with serum.  n ≥ 20 cells for each group. 

Arrow indicates time of treatment. E) Graph of change in ATP levels (± s.e.m.) in live MEFs 

stimulated with 25µM antimycin A or 50µM rotenone in the absence or presence of 100µM 

CK666, using GO-ATeam1 biosensor.  Cells cultured in medium containing 25mM glucose with 

serum.  n ≥ 33 cells for each group. Arrow indicates time of treatment.  

 

 

 

 

 

 

 

 



194 
 

 

Figure S4.4: Changes in ECAR in MEFs after mitochondrial inhibitor treatments. A) ECAR 

(± s.d.) upon 100µM CK666, 1µM CCCP or 1µM CCCP + 100µM CK666 addition (15 min), 

followed by 50mM 2-DG (59 min) in 25mM glucose medium without serum. Pink arrow 

indicates drug treatment and blue arrow indicate 2-DG treatment. B) ECAR (± s.d.) upon DMSO, 

100µM CK666, 2.5µM antimycin A or 2.5µM antimycin A + 100µM CK666 addition (33 min), 

then 50mM 2-DG (258 min) in 25mM glucose medium without serum. Pink arrow indicates drug 

treatment and blue arrow indicate 2-DG treatment. C) ECAR (± s.d.) upon DMSO, 100µM 

CK666, 5µM rotenone or 5µM rotenone + 100µM CK666 addition (33 min), then 50mM 2-DG 

(258 min) in 25mM glucose medium without serum. Pink arrow indicates drug treatment and blue 

arrow indicate 2-DG treatment. D) P values for comparisons between individual curves in Figure 

4.3F. E) Effect of glucose concentration (± s.d.) on prolonged ECAR increase (after 40 min) 

induced by 1µM CCCP or 1µM CCCP + 100µM CK666 in MEFs. P values graphed in (F). F) P 

values for comparisons between individual curves in (E). 
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Figure S4.5 Effect of NCLX inhibition on CCCP- and oligomycin-activated glycolysis. A) 

ECAR (± s.d.) upon DMSO, 100µM CK666,  80 µM CGP37157, 1µM CCCP, 1µM CCCP + 

100µM CK666 addition or 1µM CCCP + 80µM CGP37157 addition (at 23 min, pink arrow), 

followed by 50mM 2-DG (at 89 min, blue arrow) in 2mM glucose medium without serum.  B) 

ECAR (± s.d.) upon DMSO, 100µM CK666, 80 µM CGP37157, 1.5µM oligomycin, 1µM 

oligomycin + 100µM CK666 addition or 1µM oligomycin + 80µM CGP37157 addition (at 23 

min, pink arrow), followed by 50mM 2-DG (at 89 min, blue arrow) in 2mM glucose medium 

without serum. C) OCR (± s.d.) in MEFs (in 2mM glucose without serum) upon 100µM CK666, 

1µM CCCP or 1µM CCCP + CK666 addition at 15 min, then 50mM 2-DG at 59 min. Pink arrow 

indicates drug treatment and blue arrow indicates 2-DG treatment. D) OCR (± s.d.) in MEFs (in 

2mM glucose without serum) upon DMSO, 100µM CK666, 2.5µM antimycin A or 2.5µM 

antimycin A + 100µM CK666 addition at 33 min, then 50mM 2-DG at 258 min. Pink arrow 

indicates drug treatment and blue arrow indicates 2-DG treatment. E) OCR (± s.d.) in MEFs (in 

2mM glucose without serum) upon DMSO, 100µM CK666, 2.5µM rotenone or 2.5µM rotenone 

+ 100µM CK666 addition at 33 min, then 50mM 2-DG at 258 min. Pink arrow indicates drug 

treatment and blue arrow indicates 2-DG treatment. 
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Figure S4.6. Changes in lactate production induced by mitochondrial inhibitors and 

hypoxia in MEFs. A) Effect of 100µM CK666 on lactate production upon 1µM CCCP, 2.5µM 

antimycin A, or 5µM rotenone treatment of MEFs in 2mM glucose without serum. Points indicate 

individual well measurements starting with 75,000 cells/well. B) Effect of 100µM CK666 on 

lactate production upon 1µM CCCP, 2.5µM antimycin A, or 5µM rotenone treatment of MEFs in 

25mM glucose without serum. Points indicate individual well measurements starting with 75,000 

cells/well. C) Effect of 100µM CK666 on lactate production in normoxia (21% O2) in MEFs at 

2mM glucose without serum. Points indicate individual well measurements starting with 100,000 

cells/well. n.s. P > 0.05. ** P = 0.002. *** P = 0.0002. D) Effect of 100µM CK666 on lactate 

production in normoxia in MEFs at 25mM glucose without serum. Points indicate individual well 

measurements starting with 100,000 cells/well. n.s. P > 0.05. E) Effect of 100µM CK666 on 

lactate production in hypoxia in MEFs at 25mM glucose without serum. Points indicate 

individual well measurements starting with 100,000 cells/well. n.s. P > 0.05. *** P = 0.0003.  
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Figure S4.7. Cytoplasmic ATP changes induced by ATP synthase inhibition. A) Cytoplasmic 

ATP levels (± s.e.m.) after 1.5µM oligomycin in the absence or presence of 100µM CK666, or 

1µM CCCP using GO-ATeam1. Data were normalized to DMSO control. n ≥ 24 cells per group. 

Arrow indicates time of treatment. Experiments done in 25mM glucose without serum. B) 

Cytoplasmic ATP levels (± s.e.m.) after 1.5µM oligomycin in the absence or presence of 100µM 

CK666, or 1µM CCCP using GO-ATeam1. Data were normalized to DMSO control. n ≥ 24 cells 

per group. Arrow indicates time of treatment. Experiments done in 2mM glucose without serum. 

C) AMPK activation after 5 min treatment of MEFs with ETC or ATP synthase inhibition. Actin 

is used as a loading control. Experiments done in 2mM glucose without serum.  
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Figure S4.8: ADA and mitochondrial depolarization in EtBr-treated cells. A) Micrographs of 

TMRE staining of EtBr-treated cells at varying days post-treatment or control cells treated with 

uridine for 10 days.  For days 8 and 10 post-EtBr treatment, the images below represent increased 

processing to reveal the presence of cells. Scale bar: 5 μm. B) Micrographs of actin staining 

(TRITC-phalloidin, green) around mitochondria (Tom20, red) at different days of EtBr treatment. 

DNA is stained with DAPI (blue). Images at the bottom are zooms of the boxed region. Scale 

bars: 5 μm. C) Micrographs of actin staining (TRITC-phalloidin, green) around mitochondria 

(Tom20, red) at day 10 of EtBr treatment with or without 100µM CK666 for 5min before 

fixation. Images at the right are zooms of the boxed region. Scale bars: 5 μm. 
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Figure S4.9: Changes in lactate production in EtBr or NDUFS4 KO MEFs. A) Time course 

of lactate production from control cells (uridine-treated and in 2mM glucose without serum) in 

the presence or absence of 100µM CK666. Points indicate individual well measurements starting 

with 75,000 cells/well. n.s. P > 0.05. B) Time course of lactate production from EtBr-4 cells (in 

2mM glucose without serum) in the presence or absence of 100µM CK666. Points indicate 

individual well measurements starting with 75,000 cells/well. **** P < 0.0001. C) Time course 

of lactate production from EtBr-10 cells (in 2mM glucose without serum) in the presence or 

absence of 100µM CK666. Points indicate individual well measurements starting with 75,000 

cells/well. ** P = 0.0024. **** P < 0.0001. D) Time course of lactate production from WT and 

NDUFS4 KO cells (in 2mM glucose without serum) in the presence or absence of 100µM 

CK666. Points indicate individual well measurements starting with 75,000 cells/well. E) Time 

course of lactate production from WT and NDUFS4 KO cells (in 25mM glucose without serum) 

in the presence or absence of 100µM CK666. Points indicate individual well measurements 

starting with 75,000 cells/well.  
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Figure S4.10: Actin assembly in Leigh syndrome fibroblasts. A) Micrographs of actin staining 

(TRITC-phalloidin, green) around mitochondria (Tom20, red) for control and Leigh syndrome 

fibroblasts.  Scale bars are 10µm (full cell) and 5µm (inset). B) Table giving P values for 

comparisons of graph in Figure 4.4I using unpaired student’s t test. Ctrl #1-2 were combined for 

analysis.  
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Figure S4.11: Effect of CK666 on ADA and glycolytic activation in Teff. A) Teff stained for 

actin filaments (TRITC-phalloidin, green), mitochondria (Tom20, red) and DNA (DAPI, blue) 

after CCCP, antimycin A, rotenone, or hypoxia in the presence of CK666 for 2mM glucose 

medium without serum (1µM CCCP + 100µM CK666, 3 min; 2.5µM antimycin A + 100µM 

CK666 and 5µM rotenone + 100µM CK666, 5 min; hypoxia with 100µM CK666, 60 min).  

Images at right are zooms of boxed regions. Scale bars: 5μm (full cell) and 2μm (inset). B) ECAR 

(± s.d.) in 25mM glucose without serum upon 100µM CK666, 1µM CCCP or 1µM CCCP + 

100µM CK666 addition at 45 min, then 50mM 2-deoxyglucose (2-DG) at 223 min. Pink arrow 

indicates drug treatment and blue arrow indicates 2-DG treatment. C) ECAR (± s.d.) in 25mM 

glucose without serum upon DMSO, 2.5µM antimycin A or 2.5µM antimycin A + 100µM 

CK666 addition at 45 min, then 50mM 2-DG at 223 min. Pink arrow indicates drug treatment and 

blue arrow indicates 2-DG treatment. D) ECAR (± s.d.) in 25 mM glucose without serum upon 

DMSO, 5µM rotenone or 5µM rotenone + 100µM CK666 addition at 45 min, then 50mM 2-DG 

at 223 min. Pink arrow indicates drug treatment and blue arrow indicates 2-DG treatment. E) 

OCR (± s.d.) in 2mM glucose without serum upon 100µM CK666, 1µM CCCP or 1µM CCCP + 

100µM CK666 addition at 45 min, then 50mM 2-DG at 223 min. Pink arrow indicates drug 

treatment and blue arrow indicates 2-DG treatment. F) OCR (± s.d.) in 2mM glucose without 

serum upon DMSO, 2.5µM antimycin A or 2.5µM antimycin A + 100µM CK666 addition at 45 

min, then 50mM 2-DG at 223 min. Pink arrow indicates drug treatment and blue arrow indicates 

2-DG treatment. G) OCR (± s.d.) in 2 mM glucose without serum upon DMSO, 5µM rotenone or 

5µM rotenone + 100µM CK666 addition at 45 min, then 50mM 2-DG at 223 min. Pink arrow 

indicates drug treatment and blue arrow indicates 2-DG treatment.  
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Figure S4.12: Effect of CK666 on hypoxia-induced lactate production in Teff. A) Lactate 

production induced by hypoxia (1% oxygen) in Teff in the presence or absence of 100µM CK666 

addition (5 mM glucose without serum). Circles indicate individual well measurements starting 

with 400,000 cells/well. *** P = 0.0003. **** P < 0.0001. B) Lactate production induced by 

hypoxia (1% oxygen) in Teff in the presence or absence of 100µM CK666 addition (25mM 

glucose without serum). Circles indicate individual well measurements starting with 400,000 

cells/well. n.s. P > 0.05. * P = 0.0136. **** P <0.0001.  
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5.1 Abstract 

Mitochondrial depolarization results in damage to the organelle, which induces a variety 

of cellular responses. Rapid responses to mitochondrial depolarization (<30mins) include 

actin polymerization around the depolarized mitochondrion (ADA, acute damaged-

induced actin), upregulation of glycolysis, and rearrangement of the inner mitochondrial 

membrane by a process known as circularization. At longer timepoints (1-2 hours), 

depolarized mitochondria are eliminated through PINK1/Parkin mitophagy. The 

relationship between ADA and mitophagy is poorly understood. We show here that ADA 

inhibits PINK1/Parkin-mediated mitophagy by delaying Parkin recruitment to 

mitochondria. Conditions that prolong ADA, such as culturing cells in galactose-

containing medium to necessitate oxidative phosphorylation, also prolong the delay in 

Parkin recruitment in a manner overcome by ADA inhibition. The mechanism of this 

effect may be ADA-mediated disruption of mitochondrial-endoplasmic reticulum contact 

sites (MERCs), suggested by: 1) ADA causes an acute drop in MERCs, and 2) over-

expression of MERC-inducing protein VAP-B overcomes the delay in Parkin 

recruitment. Lastly, we show that ADA is distinct from a second wave of actin 

polymerization that occurs after 1-2 hours after mitochondrial depolarization, which we 

call prolonged damage-induced actin (PDA), in that ADA is independent of two PDA 

activators: myosin VI and N-WASP. These results suggest that ADA is a first responder 

after mitochondrial damage, transiently delaying mitophagy by disrupting MERCs, 

possibly allowing time for mitochondrial recovery. 
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5.2 Introduction 

A major function of mitochondria is to oxidize organic molecules for ATP production, 

using the mitochondrial membrane potential (Δψm) generated by the electron transport 

chain (ETC) across the inner mitochondrial membrane (IMM) to drive ATP synthase 

[234, 235, 237]. Mitochondria are also important signaling hubs [77, 222, 644], 

participating in apoptosis, gene expression, host-pathogen response and calcium 

signaling. Δψm is a critical marker of mitochondrial health, and disruption of Δψm results 

in multiple cellular responses that, when severe, lead to pathological consequences [645-

647]. Therefore, monitoring and maintaining the Δψm is important for cellular health. 

Loss of Δψm (‘mitochondrial depolarization’) can occur in several forms. Local 

depolarization leads to transient mitochondrial contractions [532], which may prevent 

excessive mitochondrial fusion [648]. Brief episodes of Δψm loss also coincide with 

opening of mitochondrial permeability transition pores (mPTP), which allows cation 

release from mitochondria but does not lead to significant change in mitochondrial 

function [649]. However, not all depolarization events are synced with PTP opening 

[650, 651]. Sustained loss of Δψm, on the other hand, is considered a cellular crisis and 

triggers mitochondrial turnover by mitophagy - involving a cascade of reactions 

including the protein kinase PINK1 and the E3 ubiquitin ligase Parkin [406, 408]. 

A growing number of studies have documented several important roles for actin filaments 

in regulation of mitochondrial homeostasis and dynamics (Chapter II-IV) [12, 16, 154, 

429, 430, 530, 531]. Acute dissipation of Δψm using uncouplers like FCCP and CCCP 

generates a cloud of actin filaments around the depolarized mitochondria within 5 min of 

depolarization, which we term ADA (acute damage-induced actin) (Chapter II-IV) [16]. 

In addition, prolonged dissipation of the Δψm, or mitochondrial damage, causes a second 

round of mitochondrial actin polymerization 1-2 hours after, which we term (prolonged 

damage-induced actin, PDA) [432, 433]. 

Both ADA and PDA have been shown to have multiple effects. ADA transiently 

suppresses mitochondrial dynamics (Chapter II). These dynamics involve rearrangement 

of the inner mitochondrial membrane (IMM) dependent on the IMM protease Oma1, 

resulting in circularization of the IMM within an intact outer mitochondrial membrane 

(OMM). ADA inhibits both mitochondrial circularization and proteolytic processing of 

the Oma1 substrate Opa1. A second ADA function is to rapidly stimulate glycolysis 
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(Chapter IV). PDA on the other hand, inhibits fusion of damaged mitochondria after 

Δψm loss [432], which seals the fate of the damaged mitochondrion through mitophagy. 

In addition, PDA causes dispersion of mitochondrial clusters, aiding mitophagic 

engulfment [433].  

Both ADA (Chapter II) [16] and PDA [432, 433] depend on the actin nucleation factor 

Arp2/3 complex, but the signaling pathways activating Arp2/3 complex may differ. For 

ADA, increased cytoplasmic calcium causes protein kinase C-dependent activation of 

Rac1, in turn activating the Arp2/3 complex activator WAVE (Chapter III). In addition 

to Arp2/3 complex, ADA also requires formin proteins of the FMNL family. 

Interestingly, PDA depends on myosin VI, a unique actin-based motor protein that moves 

toward the minus end of actin filaments [652]. Silencing myosin VI resulted in cells with 

dysfunctional mitochondrial and hampered mitophagy. These cells are unable to 

proliferate on carbon sources (galactose) that necessitate oxidative phosphorylation 

(oxphos) [432, 653, 654]. Whether ADA depends on myosin VI as well is currently 

unknown. 

While the cellular roles of PDA appear to enhance mitophagy, the effects of ADA on 

mitophagy are unknown. In this study, we show that ADA’s effect on mitophagy is 

distinct from PDA. ADA transiently disrupts endoplasmic reticulum (ER)-mitochondrial 

contacts (MERCs) and this disruption delays Parkin recruitment. Cells grown in galactose 

also have a more robust ADA response, and delayed Parkin response. These results 

suggest that ADA serves a contrasting function to PDA, in that it delays mitophagy. 
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5.3 Results 

5.3.1 ADA disrupts ER-mitochondrial contact 

We have previously shown that ADA occurs around mitochondria within 2 mins of 

treatment with depolarizing agents like CCCP. Since ADA involves a meshwork of 

filaments closely associated with mitochondria, we wondered whether ADA might 

displace other structures in close proximity to mitochondria. Using live-cell microscopy 

in U2-OS cells expressing fluorescent markers for ER, mitochondria and actin, we find 

that the actin filaments formed during ADA often occur between mitochondria and ER 

(Figure 5.1A; Figure S5.1A). Moreover, there is a reduction in the overlap between ER 

and mitochondria during ADA (Figure 5.1A, B) suggesting that ADA disrupts ER-

mitochondrial interaction. This decrease in ER-mitochondrial overlap correlates 

temporally with the ADA timecourse, with a transient nadir at ~2min after CCCP 

addition and returning to near-baseline by 5-min (Figure 5.1B). In addition, the effect of 

CCCP on ER-mitochondrial overlap is disrupted by treatment with the Arp2/3 complex 

inhibitor CK666 (Figure 5.1A, B), suggesting that ADA is responsible for the disruption. 

We also tested whether mitochondrial depolarization affected mitochondrial association 

with another organelle, lysosomes. ADA does not appear to disrupt mitochondrial-

lysosomal contacts (Figure S5.1B, C), suggesting that ADA’s disruption of MERCs is 

not generalizable for all mitochondrial interactions with other organelle. 

We next asked if ADA serves as a diffusive barrier to impede access of cytoplasmic 

proteins to mitochondria. To test this possibility, we utilized an rapamycin-inducible 

mitochondrial recruitment system by expressing cytosolic CFP-(FRB)5 (a 82kDa protein) 

and mitochondrially targeted AKAP1-FKBP-YFP. Upon rapamycin addition, CFP-

(FRB)5 is recruited to the OMM in 15-30 sec (Figure S5.1D, E). We tested the effect of 

ADA on recruitment of CFP-(FRB)5 by adding rapamycin at ~100 sec after CCCP 

addition (corresponds to peak ADA). The rate of CFP-(FRB)5 recruitment is not 

measurably influenced by ADA (Figure S5.1F, G) These results suggest that the actin 

filaments polymerized during ADA do not physically block access to mitochondria.  

We also asked whether inhibiting the two actin polymerization factors required for ADA, 

Arp2/3 complex and FMNL formins, causes an increased number of MERCs in cells not 

stimulated with CCCP. For this purpose, we used the SPLICS construct [655], which 
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fluorescently labels MERCs of 8-10nm or less. Interestingly, knock-down (KD) of either 

Arp2/3 complex or FMNL formins in U2-OS cells enhanced mitochondrial-ER 

interactions (Figure 5.1C, D). This effect is similar to that produced by over-expressing 

(OE) the ER-mitochondrial tethering protein VAP-B [656], which we used as a positive 

control. VAP-B overexpression does not alter CCCP-induced ADA (Figure S5.2A, B).  

The increase in MERCs caused by KD of ADA activators would be predicted to enhance 

downstream effects of MERCs. To test MERCs functionally, we performed 

mitochondrial calcium uptake experiments. Histamine stimulation triggers calcium 

release from the ER [12, 657] and a subsequent increase in mitochondrial calcium if 

mitochondria are in close contact [376, 658](Figure 5.1E; Figure S5.2C). In both U2-OS 

and HeLa cells, mitochondrial calcium uptake is increased after Arp2 KD, suggesting 

Arp2/3 complex-mediated actin inhibits MERCs. 

5.3.2 ADA delays Parkin recruitment to depolarized mitochondria 

CCCP treatment induces large-scale mitophagy of depolarized mitochondria [407, 412]. 

Though the final steps of mitophagy occur much later than the initial depolarization (>8 

hrs) [659], the early events prepare mitochondria for downstream clearance. One early 

step is Parkin recruitment, which leads to outer mitochondrial membrane (OMM) protein 

ubiquitination and recruitment of autophagy receptors [406, 408]. Importantly, previous 

reports have suggested that a sub-set of Parkin recruitment occurs at MERCs [660, 661]. 

Since ADA disrupts MERCs, we asked if ADA influences Parkin recruitment.  

We examined mitochondrial recruitment kinetics of GFP-Parkin in control, Arp2/3 

complex-inhibited and FMNL KD cells by live-cell microscopy, quantifying in two ways: 

1) by visual assessment of mitochondrial Parkin intensity deviation from baseline in 

individual cells, and 2) by trendline analysis of averaged curves. Both methods give 

similar results (Table 5.1), and times listed here are from the first method.  

Parkin recruitment to mitochondria in control U2-OS cells starts at 45.5 min ± 10.7 min 

(mean ± s.d. - first time point which mitochondrial Parkin noticeably deviates from 

baseline) after 20µM CCCP treatment. All methods of ADA inhibition cause an 

acceleration of Parkin recruitment, including CK666 (29.4 min ± 9.0 min) (Figure 5.2A-

C), FMNL DKD (consisting of knocking down FMNL1 and FMNL3 [621]) (32.6 min ± 
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8.7 min) (Figure 5.2D-F), Arp2 KD (31.6 min ± 8.3 min) and WRC KD (33.4 min ± 10.3 

min) respectively (Figure 5.3A-C). We also evaluated these effects in HeLa cells where 

CK666 treatment, Arp2 KD or FMNL DKD (consisting of FMNL1 and FMNL2 

silencing [621]) causes significantly faster CCCP-induced Parkin recruitment (25.2 min ± 

10.9 min, 28.7min ± 6.0 min, and 29.0 min ± 6.1 min, respectively) than control cells 

(46.3 min ± 12.2 min) (Figure S5.3). These results suggest that ADA plays an important 

role in delaying the initial events in Parkin-mediated mitophagy. 

If the mechanism of ADA-mediated Parkin delay involves ADA’s role on MERCs, VAP-

B OE would be expected to counter-act this effect. Indeed, VAP-B OE accelerates 

mitochondrial recruitment of Parkin upon CCCP treatment (Figure 5.3D-F), to a similar 

rate to that caused by ADA inhibition. Taken together, these results suggest that MERCs 

facilitate mitochondrial Parkin recruitment, and that ADA delays Parkin recruitment by 

transiently disrupting these contacts. 

We also tested the effect of ADA on Parkin recruitment in cells that have mitochondria 

chronically defective in oxphos. We have previously shown that cells treated with 

Ethidium Bromide (EtBr) for a set duration (4-10 days) exhibit persistent actin 

polymerization around their mitochondria, similar to ADA (Chapter IV). While this 

mitochondrially-associated actin is present for days, it is removed by a 5 min treatment 

with CK666, suggesting that the actin must be maintained constantly by active Arp2/3 

complex. EtBr leads to drastic depolarization of the mitochondria network (Chapter IV). 

Therefore, we asked whether the ADA-like filaments might prevent Parkin recruitment 

around the mitochondria, preventing their disposal through mitophagy. Our GFP-Parkin 

marker is cytosolic in mouse embryonic fibroblasts (MEFs) treated with EtBr (10 days) 

(Figure 5.4), suggesting a block in recruitment despite mitochondria being largely 

depolarized. However, CK666 treatment results in Parkin accumulation around the 

mitochondria (Figure 5.4). These results suggest that the persistent actin filaments 

around chronically compromised mitochondria, like ADA, inhibit Parkin recruitment. 

5.3.3 Galactose-primed cells have sustained ADA and delayed Parkin recruitment  

Cells rely on both oxphos and glycolysis to provide ATP for cellular processes. Although 

oxphos is the most efficient pathway for energy production, many cultured cell lines, 

especially those procured from human tumors (U2-OS and HeLa), exhibit high aerobic 
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glycolysis [662]. Therefore, studies conducted using standard culture media (with 

supraphysiological glucose) carry the risk of tracking mitochondrial function and 

mitophagy against a background of upregulated aerobic glycolysis and suppressed 

oxphos [538]. We wondered what happens to ADA if cells are forced to rely heavily on 

oxphos for its ATP production. Shifting cellular energy dependency can be achieved by 

growing cells in galactose media [148, 663], instead of standard glucose-based media. In 

galactose media, the production of pyruvate via glycolytic metabolism yields no net ATP 

and the cells are forced to use oxphos of pyruvate or of glutamine for ATP production 

[653, 654, 664].  

We cultured U2-OS and HeLa in glucose-free media containing 10mM galactose, 4mM 

glutamine, 1mM sodium pyruvate and 10% serum for at least 10 days before 

experimentation.  After 10 days, cells proliferate slower and eventually stops growing 

after 4-5 passages (data not shown). To assess mitochondrial function in galactose-

primed cells, we performed bioenergetic profiling via seahorse assays. Both HeLa and 

U2-OS cells grown on glucose mainly utilized aerobic glycolysis, as they exhibited a 

relatively lower basal oxygen consumption rate (OCR) and a relatively higher basal 

extracellular acidification rate (ECAR) (Figure S5.4A, B). In contrast, cells grown on 

galactose have a significantly higher basal OCR and lower ECAR, which suggest a 

greater dependence on oxphos (Figure S5.4A, B). The maximal OCR for cells in 

galactose media is also higher than those grown in glucose media, suggesting that the 

mitochondria have adapted to the absence of extracellular glucose (Figure S5.4A, B). We 

also performed the glycolytic stress test for these two culture conditions. HeLa cells show 

slight variation in glucose uptake between those in galactose versus those in glucose; but 

the glycolytic changes for U2-OS are almost the same for both conditions (Figure S5.4C, 

D). We also assessed mitochondrial polarization in both glucose- and galactose-grown 

HeLa cells, and found that TMRE fluorescence is essentially unchanged (Figure 5.5A), 

suggesting that mitochondria maintain appreciable Δψm in both cases. 

We followed up with ADA assessment for cells grown in galactose-based media. 

Curiously, we found that ADA is more robust and sustains for a longer duration in both 

HeLa and U2-OS cells (Figure 5.5B-D; Figure S5.5). For both cell types, actin assembly 

peaks at a higher level in galactose and persists at an elevated level even after eight 

minutes (Figure 5.5B-D; Figure S5.5).  
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We next evaluated Parkin recruitment in galactose-primed cells. Similar to findings from 

earlier studies [548, 665], we found that cells grown in galactose displays a slower Parkin 

response (Figure 5.6A, B) after 25µM CCCP treatment. To address whether lethargic 

Parkin recruitment is due to sustained ADA, we depolarized the mitochondria in 

galactose-primed Arp2 KD HeLa cells. In this scenario, we found that Parkin recruitment 

is sped up once again, having mitochondrial Parkin accumulation on par with their 

glucose-based counterparts (Figure 5.6C-E). These results suggest that ADA assumes 

greater importance in delaying Parkin recruitment in cells that rely on oxphos for ATP 

production.  

5.3.4 Myosin VI, N-WASP, Spire1C and mDia formins are not required for ADA 

In addition to ADA, another round of polymerization (prolonged damaged-induced actin, 

PDA) occurs after sustained mitochondrial depolarization, within 1-2 hrs. The reported 

effects of PDA have been to assist mitophagy [432, 433].  

In HEK-293 cells transfected with mCherry-Parkin in an OE system, we found PDA 

assembly around mitochondria after one hour of CCCP treatment (Figure 5.7A, B). 

These actin assembly coincide with Parkin recruitment on the same mitochondrial 

population. The morphology of mitochondria also became smaller discrete units after 

long hours of treatment, similar to what others have seen [149]. PDA also assembles 

readily in HeLa cells, and a higher abundance of Parkin (Parkin OE) promotes PDA 

formation (Figure 5.7C, D). 

While PDA requires Arp2/3 complex, the reported activators for PDA are different 

compared to ADA. We tested whether two activators for PDA, myosin VI and the Arp2/3 

complex activator N-WASP, are also relevant for ADA. Myosin VI KD (Figure 5.8A) 

does not alter the kinetics or amplitude of ADA (Figure 5.8B, C). In addition, we found 

that wiskostatin, a chemical inhibitor targeting the NPF N-WASP [666], did not affect 

ADA in U2-OS cells either (Figure 5.8D, E). In contrast, KD of WAVE regulatory 

complex (WRC) abolished ADA (Figure 5.8D, E), similar to our previous findings 

(Chapter III). These results suggest that ADA and PDA use distinct activation pathways. 

We also tested another actin polymerization factor linked to mitochondrial function, 

Spire1C, for its involvement in ADA. Spire1C is a splice variant of the Spire1 protein, a 
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tandem WH2 motif-containing nucleation factor, that is mitochondrially associated and 

has been shown to mediate actin assembly around the mitochondria [20]. Spire1 KD 

cells, using three distinct siRNAs, have elongated mitochondria (Figure S5.6A, B), 

suggesting effective KD (an anti-Spire1 antibody was unavailable for confirmation of 

KD). However, CCCP-induced actin assembly is unaffected by Spire1 KD (Figure 

S5.6C, D).   

Similarly, formins have been shown to be involved in PDA, as suggested by the 

application of the pan-formin inhibitor SMIFH2 [432]. However, the specific formin 

involved in this context is an open question and further confounded by the finding that 

SMIFH2 is also a myosin inhibitor [667]. We were interested to see if formins in addition 

to the FMNL family were required for ADA. We tested the mDia family formins, since 

they represent a major class of formins involved in multiple cellular processes [4]. We 

found that silencing mDia1 or mDia2 in U2-OS cells did not disrupt ADA (Figure S5.7). 

We have previously shown that other formins like INF2 are not involved in ADA 

(Chapter II). Our current conclusion is that only the FMNL formins, in addition to 

Arp2/3 complex, are needed for ADA. 
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5.4 Discussion 

In this chapter, we show that ADA delays the recruitment of Parkin onto depolarized 

mitochondria. Actin filaments do not merely form a barrier to prevent Parkin access 

(which at ~50kDa is smaller than the 82kDa CFP-(FRB)5 component used in our 

experiments). Instead, we found an acute reduction in ER-mitochondrial interaction upon 

actin assembly. Conversely, overexpression of VAP-B, an ER-mitochondrial tether, 

accelerates depolarization-induced Parkin assembly, suggesting that MERC facilitates 

Parkin recruitment to depolarized mitochondria. From a broader perspective, MERCs are 

vital for a host of other cellular functions like lipid transfer [668] and the unfolded 

protein response (UPR) [669]. The disruptive effects of ADA on these processes are still 

unclear at this moment. Likewise, PINK1/Parkin mitophagy represents just one major 

route for mitophagy, it is unexplored whether ADA has an effect on other forms of 

mitophagy that are mediated by FUNDC1 [670] or BNIP3/NIX [671]. 

When we shift cells to be oxphos-reliant (galactose medium), ADA is prolonged and 

causes a delay in Parkin recruitment upon depolarization, suggesting that cells adapt to 

protect mitochondria once they become the sole ATP provider. This effect could be cell 

type specific. Previous reports showed that CCCP-induced Parkin accumulation is 

delayed in galactose-grown HeLa [665] or U2-OS [548]; but another study found similar 

recruitment rates for RPE1 cells in a variety of culture conditions [538].  

The role of glycolysis in regulating ADA under glucose media is also unclear. Tackling 

how aerobic glycolysis influences ADA might be vital, especially in the context of 

cancer, where malignant cells regulate their bioenergetic pathways and mitochondrial 

morphology based on the availability of nutrients [672].  

As for long-term mitochondrial depolarization, it is fascinating that EtBr-treated cells 

retain their mitochondrial population despite the loss of Δψm, which might suggest that 

mitochondria are now rewired to sustain biomolecular synthesis or support calcium 

signaling, rather than ATP production. Peri-mitochondrial actin assembly might be one 

method by which cells insulate this organelle from Parkin to preserve them. More 

experiments are certainly required to establish the nature and role of actin assembly for 

this context. Furthermore, it would be exciting to test if the inhibition of Parkin 

recruitment through actin dynamics holds true in pathophysiological models (e.g. Leigh 



219 
 

syndrome [673], ischemia [195] or cytotoxic T cell exhaustion [674, 675]); or in brown 

adipocytes, which can naturally depolarize mitochondria for heat generation (~70-80% 

depolarization after adrenergic stimulation) [244, 676]. 

Finally, it is fascinating that at least two distinct actin filament populations assemble 

around depolarized mitochondria at different times and for different purposes. Both ADA 

and PDA are Arp2/3-dependent but use distinct NPFs. ADA occurs acutely (within 5 

min) and is dependent on the activity of the WRC and FMNL formins, delaying 

mitophagy. PDA occurs 1-2 hours after the initial damage, is dependent on N-WASP and 

myosin VI, and helps promote mitophagy. At even further timepoints, actin filaments are 

required again, this time to assist actual autophagosome assembly through a variety of 

Arp2/3 complex activators, WHAMM, JMY, and WASH [470, 471, 474, 479, 480, 677]. 

Hence, this diversity of function in mitophagy makes it difficult to label the actin 

cytoskeleton strictly as a facilitator or an impediment to mitophagy, but rather a 

multifaceted modulator of the entire process. 
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5.5 Material and Methods 
         Cell culture 

Wild-type human osteosarcoma U2-OS (U2-OS-WT), human cervical cancer HeLa cells and 

human kidney HEK-293 cells were procured from American Type Culture Collection (ATCC) 

and grown in DMEM (Corning, 10-013-CV) supplemented with 10% newborn calf serum (NCS, 

Hyclone, SH30118.03) for U2-OS or 10% fetal bovine serum (FBS, Sigma-Aldrich F4135) at 

37°C with 5% CO2 for HeLa and HEK-293. Mouse Embryonic Fibroblasts were gift from David 

C. Chan (California Institute of Technology) and grown in DMEM supplemented with or 10% 

FBS at 37°C with 5% CO2. 

For galactose medium, cells were grown in 10mM galactose in DMEM (Gibco, A1443001) 

media supplemented with 4mM L-glutamine and 1 mM sodium pyruvate with 10% FBS for at 

least ten days before experiments. 

DNA transfections, plasmids, and siRNA 

For plasmid transfections, cells were seeded at 4×105 cells per well in a 35 mm dish at ∼16h 

before transfection. Transfections were performed in OPTI-MEM medium (Gibco, 31985062) 

using lipofectamine 2000 (Invitrogen, 11668) as per manufacturer’s protocol, followed by 

trypsinization and re-plating onto glass-bottomed dishes (MatTek Corporation, P35G-1.5-14-C) 

at ∼1×105 cells per well. Cells were imaged ∼16–24 h after transfection except for VAP-B 

overexpressing cells which were imaged within 8-12 hours after transfections.  

mApple-F-tractin and GFP-F-tractin plasmid were gifts from C. Waterman and A. Pasapera 

(National Institutes of Health, Bethesda, MD) and were on a GFP-N1 backbone (Clonetech), as 

described previously [556]. Mito-DsRed and mito-BFP (GFP-N1 backbone) constructs were 

previously described [423] and consist of amino acids 1–22 of S. cerevisiae COX4 N terminal to 

the respective fusion protein. ERtagRFP (modified GFP-N1 backbone) was a gift from E. Snapp 

(Albert Einstein College of Medicine, New York, NY), with prolactin signal sequence at 5′ of the 

fluorescent protein and KDEL sequence at3′. Myc-VAP-B was a gift from C.C.J. Miller (King’s 

College, London, UK) and described elsewhere [656]. pLAMP1-mCherry on pcDNA3.1 was 

from Addgene (#45147). Cyto-CFP-FRBX5 was from Addgene (#103776). AKAP1-YFP-FKBP 

was a kind gift from Gyorgy Haznoczky (Thomas Jefferson University, Philadelphia, USA). 

pEGFP-parkin WT was from Addgene (#45875).  mCherry-Parkin WT was from Addgene 

(#23956). OMM-GFP1-10 and ER-Short β11 coexpression (SPLICSS) constructs to reconstitute 

GFP fluorescene were gifts from Tito Cali (University of Padova). Mito-R-GECO1 (Kd = 0.48 

µM for calcium) is a gift from Y.M. Usachev (University of Iowa Carver College of Medicine, 
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Iowa City, IA). The following amounts of DNA were transfected per well (individually or 

combined for co-transfection): 500 ng for mito–BFP, Mito–DsRed, mApple-F-tractin, GFP–F-

tractin, pLAMP1-mCherry, Mito-R-GECO1; 100 ng for the mCherry-Parkin WT, pEGFP-parkin 

WT, AKAP1-YFP-FKBP, OMM-GFP1-10 and ER-Short β11; 800 ng for ER-RFP; 750ng for Cyto-

CFP-FRBX5; 400 ng for myc-VAP-B. 

For all siRNA transfections except Nap1 and Arp2, 1×105 cells were plated onto a 35mm dish 

and 2μl RNAimax (Invitrogen, 13778) with 63pmol siRNA were used per well. Cells were 

analyzed 72-96h post siRNA transfection. For Nap1 and Arp2 siRNA transfections, 1×105 cells 

were plated directly onto glass-bottomed dishes (MatTek Corporation, P35G-1.5-14-C) and 2μl 

RNAimax (Invitrogen, 13778) with 63pg siRNA were used per dish. Cells were analyzed 96h 

post siRNA transfection for Nap1 and 48h for Arp2. For live-cell imaging, plasmids containing 

fluorescent markers were transfected into siRNA-treated cells 18–24 h prior to imaging, as 

described above. siRNAs: human FMNL1 (IDT, hs.Ri.FMNL1.13.5, 5’-

GTGGTACATTCGGTGGATCATGTTCTCCACCGAAT-3’); FMNL2 (IDT, 

hs.Ri.FMNL2.13.1, 5’-CATGATGCAGTTTAGTAA-3’); FMNL3 (Ambion, s40551, 5’- 

GCATCAAGGAGACATATGA-3’); INF2 (IDT, 5’-GGATCAACCTGGAGATCATCCGC-3’) 

Spire1 (IDT, #1: hs.Ri.SPIRE1.13.1, 5’- 

GGTATGCTTACAAATGACTTGGTTAGTCATTTGTAA-3’; #2: hs.Ri.SPIRE1.13.2, 5’- 

GGGGTAAAACTTAAGAACTTGGACCTTCTTAAGTT-3’; #3: hs.Ri.SPIRE1.13.3, 5’- 

AATCTAGCACAGACTTGGAGCTCTTCCAAGTCTGTG-3’); mDia1 (Ambion, s4092, 5’- 

GGAGTTACGATAGCCGGAA-3’); mDia2 (IDT, 5’- 

GGCAAAGATTAATGAGCTTCAAGCA-3’); Myosin6 (IDT, hs.Ri.MYO6.13.1, 5’- 

AUCUUGUCCAAGUUGUUUCAUUGAT-3’); Nap1 (IDT, hs.Ri.NCKAP1.13.1, 5’- 

AAUACGCUUUACCAAGUCAAUUGUU-3’); Arp2 (IDT, custom synthesized, 

HSC.RNAI.N001005386.12.6, 5’- GGAUAUAAUAUUGAGCAAGAGCAGA-3’); and negative 

control (IDT, #51-01-14-04, 5′-CGUUAAUCGCGUAUAAUACGCGUAU-3′). 

For U2-OS cells, FMNL DKD involves silencing FMNL1 and FMNL3 while for HeLa cells, 

FMNL DKD involves silencing FMNL1 and FMNL2 [621]. 

Western blotting  

For preparation of whole cell extracts in MEFs and NIH 3T3 cells, cells were washed 3x with ice-

cold PBS, lysed using SDS-lysis-buffer (2% SDS, 10% glycerol, 63 mM Tris-HCl pH 6.8, 0.01% 

bromophenol blue, 5% β-mercaptoethanol), boiled for 5 min at 95°C and sonicated to shear 

genomic DNA. Western blotting was carried out according to standard techniques and 
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chemiluminescence signals were obtained upon incubation with ECL Prime Western Blotting 

Detection Reagent (GE Healthcare) and were recorded with ECL Chemocam imager (Intas).  

For U2-OS and HeLa samples, cells from a 35mm dish were trypsinized, pelleted by 

centrifugation at 300 g for 5min and resuspended in 400μl of 1× DB (50mM Tris-HCl, pH 6.8, 

2mM EDTA, 20% glycerol, 0.8% SDS, 0.02% Bromophenol Blue, 1000mM NaCl, 4M urea). 

Proteins were separated by SDS-PAGE in a Bio-Rad mini-gel system (7×8.4cm) and transferred 

onto polyvinylidene fluoride membrane (EMD Millipore, IPFL00010). The membrane was 

blocked with TBS-T (20 mM Tris-HCl, pH 7.6, 136 mM NaCl, 0.1% Tween-20) containing 3% 

BSA (VWR Life Science, VWRV0332) for 1h, then incubated with primary antibody solution at 

4°C overnight. After washing with TBS-T, the membrane was either incubated with HRP-

conjugated secondary antibody or fluorescently tagged LiCor antibody for 1h at 23°C. Signals 

were detected by chemiluminescence or using LiCOR fluorescent imager. 

Antibodies used 

GAPDH (Calbiochem; clone 6C5; #CB1001; 1:10,000; mouse monoclonal) and (Santa Cruz: 

clone C9; sc-365062; 1:1500; mouse monoclonal). mDia1 (1:1000; chicken polyclonal) [63]. 

mDia2 antibody is a rabbit polyclonal raised by Covance against amino acids 1-520 of mouse 

mDia2 (bacterially-expressed and purified). Serum from the 13-week bleed was used at 1:2000. 

Myosin VI (kindly provided by Antonina J. Kruppa & Folma Buss, University of Cambridge, 

UK; 1:1000; rabbit polyclonal) (Buss et al., 1998). For ECL: HRP-conjugated secondary 

antibodies used were anti-mouse IgG (Dianova; #115-035-062; 1:10,000; goat) and (Bio-Rad; 

1705047; 1:2000; goat), anti-rabbit IgG (Dianova; #111-035-045; 1:10,000; goat) and (Bio-Rad; 

1706515; 1:5000; goat), anti-guinea pig IgG (Jackson Immuno Research Laboratories; #106-035-

003; 1:5000; goat) and anti-Chicken/Turkey IgG (Invitrogen; #613120; 1:5000; Rabbit). Li-COR 

antibodies used were: anti-rabbit IRDye 800CW (#926-32211; 1:15000; goat) and anti-mouse 

IRDye 680RD (#926-68070; 1:15000; goat). 

EtBr treatment of MEFs 

This treatment followed published protocols showing mtDNA depletion [630].  2 x104 MEFs 

were plated directly onto Mat-tek imaging dishes and incubated in DMEM + 10% FBS overnight. 

24 hours later, overnight media was replaced either with EtBr-containing media (DMEM + 10% 

FBS + 0.2 µg/ml EtBr (VWR life science, X328) + 50 µg/ml uridine) or control media (DMEM + 

10% FBS + 50 µg/ml uridine). 

Immunofluorescence 
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For all cell types and conditions, cells were fixed with 1% glutaraldehyde (Electron Microscopy 

Sciences, 16020) for 10 mins and subsequently washed three times with sodium borohydride 

(Fisher Chemical, S678)(1mg/ml, 15 mins interval) and then permeabilized with 0.25% TritonX-

100 for 10 min. After permeabilization, they were washed thrice again with PBS and incubated in 

blocking buffer (10% NCS in PBS) for 30 min. The cells were then incubated with anti-Tom20 

(Abcam, ab78547 1:500) antibody prepared in 0.1% blocking solution for 90 min. Following PBS 

washes, the cells were incubated with secondary antibody against Tom20 (Alexa Fluor 488-

coupled anti-rabbit; Invitrogen #A11037; 1:200) mixed with TRITC-phalloidin (Sigma, P1951 

1:400), 1X DAPI (Sigma, D9542) and incubated for 60 min. The cells were then washed with 

PBS, resuspended in 2 ml PBS and imaged on the same or following day. 

Drug treatment. For drug treatments, cells were seeded onto Mat-tek dishes at 200,000 cells/well 

and incubated at 37°C incubator overnight. Cells were fixed at various timepoints after 20μM 

CCCP (Sigma, C2759) treatment. 

Microscopy 

Microscopy of fixed samples was performed on an inverted Axiovert S100TV (Carl Zeiss) 

epifluorescence microscope equipped with electronic shutters (Uniblitz Electronic 35 mm 

including driver Model VMMD-1, BFI Optilas), a filter wheel (LUDL Electronic products LTD), 

filter cubes (Chroma Technology Corp. Rockingham), and epifluorescence illumination (light 

source HXP 120, Zeiss). Imaging was performed using a 100x/1.4-NA plan apochromatic oil 

objective. Images were acquired with a back-illuminated, cooled, charge-coupled-device (CCD) 

camera (CoolSnap HQ2, Photometrics) driven by VisiView software (Visitron Systems). 

Live cell imaging was conducted in DMEM (Gibco, 21063-029) with 25 mM D-glucose, 4 mM 

L-glutamine and 25 mM Hepes, supplemented with 10% newborn calf serum and no sodium 

pyruvate, hence referred to as “live cell imaging media”. For galactose and glucose comparisons, 

the live cell imaging was done in their culture media respectively and not the live cell imaging 

media. 

Cells (~3.5x105) were plated onto MatTek dishes 16 hrs prior to imaging. Medium was pre-

equilibrated at 37°C and 5% CO2 before use. Dishes were imaged using the Dragonfly 302 

spinning disk confocal (Andor Technology) on a Nikon Ti-E base and equipped with an iXon 

Ultra 888 EMCCD camera, a Zyla 4.2 Mpixel sCMOS camera, and a Tokai Hit stage-top 

incubator set at 37°C. A solid-state 405 smart diode 100 mW laser, solid state 560 OPSL smart 

laser 50 mW laser, and solid state 637 OPSL smart laser 140 mW laser were used. Objectives 

used were the CFI Plan Apochromat Lambda 100X/1.45 NA oil (Nikon, MRD01905) for all drug 
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treatment live-cell assays; and CFI Plan Apochromat 60X/1.4 NA oil (Nikon, MRD01605) to 

observe transient depolarization events or Parkin recruitment during live-cell imaging. Images 

were acquired using Fusion software (Andor Technology, version 2.0.0.15). For actin burst and 

TMRE quantifications, cells were imaged at a single confocal slice at the medial region, 

approximate 2 μm above the basal surface, to avoid stress fibers. Parkin recruitment was also 

imaged at the same medial region.  

For CCCP (Sigma-Aldrich, C2759) treatments, cells were treated with 20μM CCCP (from a 

100mM stock in DMSO) at the start of the fifth frame (∼1min, with time interval set at 15s) 

during imaging and continued for another 5-8min. Equal volume DMSO (Invitrogen, D12345) 

was used as negative control. For histamine (Sigma-Aldrich, H7125) treatments, cells were 

treated with 100 μM histamine (from a 100mM stock in DMSO) at the start of the fifth frame 

(∼1min, with time interval set at 15s) during imaging and continued for another 3-5min. 

For TMRE (Sigma-Aldrich, 87917) staining before CCCP treatment, cells were loaded with 

20nM TMRE (from 30mM stock in DMSO) for 30min in live-cell imaging medium. Cells were 

subsequently washed twice with live-cell medium and fresh live-cell medium added prior to 

imaging. 

For Parkin recruitment assay with drug treatments, cells were pre-treated with 1ml of live-cell 

medium containing 100μM CK666 (Sigma-Aldrich, SML006) (from a 20mM stock in DMSO) 

for 30min before imaging. During imaging, cells were treated with 1ml live-cell medium 

containing 40μM CCCP at the start of the third frame (4min, time interval set at 2min). Imaging 

was continued at least 1.5 hours with cells in medium containing a final concentration of 20μM 

CCCP and 50μM CK666. Control cells were pretreated with an equal volume of DMSO 

(replacing CK666) and stimulated with 20µM CCCP during imaging. To visualize more cells in 

the field, the 60×1.4 NA objective was used. For glucose versus galactose-grown cells, imaging 

plates were stimulated with 25µM CCCP instead.  

Parkin recruitment assay in KD cells was similar, except without the pre-treatment step, 

acquisition time interval was either 1.5 or 2min. Parkin recruitment assay in glucose and 

galactose-grown cells was also similar, except without the pre-treatment step and the acquisition 

time interval was just 1.5min interval for an hour duration. 

For cyto-CFP-FRBX5 recruitment studies, cells were transfected with respective plasmids, pre-

treated with 1 ml of live cell media and imaged for 5 frames at 12 sec/frame, following which 

either DMSO (Invitrogen, D12345) or CCCP (final 40 µM) was added and imaged for another 
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100 sec following which 1 ml of rapamycin (Sigma 553210) (final 10 µM)-containing live cell 

media was added and imaged for another 150 sec.  

Image analysis and quantification 

Unless otherwise stated, all image analysis was performed on ImageJ Fiji (version 1.51n, 

National Institutes of Health). Cells that shrunk during imaging or exhibited signs of 

phototoxicity such as blebbing or vacuolization were excluded from analysis (maximal amount 

10% for any treatment).  

ADA. Quantification methods for actin assembly after CCCP treatment in live-cell imaging were 

previously described [560]. For each cell, one ROI was chosen which encompasses the entire area 

of ADA around mitochondria after drug addition. Fluorescence values for each time point (F) 

were normalized with the mean initial fluorescence before drug treatment (first four frames−F0) 

and plotted against time as F/F0. For DMSO control or cells that did not exhibit actin burst, the 

ROI was selected as the bulk region of the cytoplasm containing mitochondria using the mito–

BFP channel.  

For fixed cell assays, cells positive with actin clouds were scored by visual analysis for the 

presence or absence of actin assembly in a given field and expressed as a percentage of the total 

number of cells for that field. Taking all the imaging fields into consideration for each condition, 

a bar graph showing the average percentage of cells, along with its respective errors bar in 

standard deviation (s.d.) or standard errors of the mean (s.e.m.) was plotted with Microsoft Excel. 

Mitochondria calcium uptake. Quantification methods for mitochondrial calcium increase after 

100µ histamine treatment in live-cell imaging were previously described [12]. For each cell, one 

ROI was chosen which encompasses the entire mitochondria network after drug addition. 

Fluorescence values for each time point (F) were normalized with the mean initial fluorescence 

before drug treatment (first four frames−F0) and plotted against time as F/F0. 

Depolarization. Mean TMRE fluorescence was calculated from the entire mitochondrial area for 

each individual cell. TMRE fluorescence values for each time point (F) were normalized with the 

mean initial fluorescence before drug treatment (first four frames−F0) and plotted against time as 

F/F0. 

Parkin recruitment. Parkin association with mitochondria was analyzed in Fiji using the 

Colocalization and Time series analyzer V3 ImageJ plugin. Firstly, GFP-Parkin (rolling ball 30.0) 

and mito-BFP images (rolling ball 20.0) were background-subtracted and converted into 8-bit 

files. Parkin-associated mitochondria were thresholded using the Colocalization ImageJ plugin 
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with the following parameters: ratio, 25% (0–100%); threshold channel 1, 25 (0–255); threshold 

channel 2, 25 (0–255); and display value, 255 (0–255) for U2-OS; and ratio, 50% (0–100%); 

threshold channel 1, 50 (0–255); threshold channel 2, 50 (0–255); and display value, 255 (0–255) 

for HeLa. ROIs were drawn for individual cells in the overlapped pixel stack and analyzed using 

Time series analyzer V3. The ROI was selected as the bulk region of the cell containing 

mitochondria using the mito-BFP signal. Mean colocalized signal of Parkin on mitochondria was 

plotted with respect to imaging duration (1.5 hr) at 2min or 1.5min intervals.  

To calculate the time of initial Parkin onset, the time of clear deviation from the pre-treatment 

intensity was manually read from the individual curve of each cell. For trendline analysis, data 

points from the linear portion of the averaged kinetic curve were extracted and a trendline was 

calculated using Excel. The time for the trendline to cross the point where y = 0 was determined 

as the average time for Parkin onset.  

Parkin recruitment (fixed cells). Fixed cells were visually assessed for clear Parkin recruitment on 

mitochondrial population and manually counted. The percentage of cells positive for Parkin on 

mitochondria was calculated for each imaging field of view. 

PDA (fixed cells). Fixed cells were visually assessed for clear actin assembly on mitochondrial 

population after one hour of 20µM CCCP treatment and manually counted. The percentage of 

cells positive for PDA was calculated for the total number of cells overall. 

ER-Mitochondria, lysosome-mitochondria and FRB-mitochondria overlap. U2-OS cells 

transiently transfected with the respective markers were imaged live by spinning disc confocal 

fluorescence microscopy at 15-s intervals in a single focal plane at the medial section 2-4 µm 

from the base. ROIs in the peri-nuclear region (ER-mitochondria, lysosome-mitochondria) or for 

the whole mitochondrial network (FRB-mitochondria) were background-subtracted using “rolling 

ball radius” plugin of Image J with a value of 20.0. The respective channels were further 

processed for bleach correction in Image J using “simple ratio” and converted to 8-bit images. 

The channels were then analyzed using the colocalization plugin in ImageJ with the following 

parameters: ratio 50% (0–100%); threshold channel 1: 30 (0–255); threshold channel 2: 1: 30 (0–

255); display value: 255 (0–255) to obtain the overlapping pixels. The overlap intensity was then 

normalized to the pre-treatment frames (1-5) and plotted over time. 

SPLICS overlap with mito. Images were converted to 8 bits and binarized. Overlapping pixels 

between Splics and mitochondria were measured using co-localization plugin in ImageJ. 

Overlapped pixel area was normalized with the respective mitochondrial area from each cell and 

graphed out as a scatter plot for each condition 



227 
 

Seahorse assay 

A Seahorse XFe96 Bioanalyser (Agilent) was used to determine oxygen consumption rate (OCR) 

and extracellular acidification rate (ECAR) for HeLa and U2-OS cells. Hela or U2-OS taken from 

a T75 flask at 70-80% confluency and in culture for three days, were plated at 20,000 per well 

onto an Agilent XF microplate (101085-004) in galactose-rich or glucose-rich media + 10% FBS 

medium, 24 hr before the experiment. Medium was changed 1-hour before the start of readout 

into 180 μL serum-free assay medium (Agilent Seahorse XF DMEM; 103575-100) supplemented 

with 4mM L-glutamine (Corning; 25-005-CI) and galactose or glucose.  The reading and 

injection regime was as follows for mito-stress test:  1) Baseline OCR and ECAR were measured 

first (6 measurements – 3 min mix and 3 min measure); 2) injection of Oligomycin (1.5μM final) 

(3 measurements – 3min mix and 3 min measure); 3) injection of CCCP (5 μM final)(3 

measurements – 3min mix and 3 min measure) ; 4) injection of Rotenone and Antimycin A (5 μM 

final each) (3 measurements – 3min mix and 3 min measure). Measurement parameters:  30 sec 

mix, 0 wait and 2 mins measure. For each experiment, At least three technical repeats were done 

for each condition.   

For glycolytic flux test, medium was changed 1-hour before the start of readout into 180 μL 

serum-free assay medium (Agilent Seahorse XF DMEM; 103575-100) supplemented with 4mM 

L-glutamine (Corning; 25-005-CI) without any glucose or galactose. The reading and injection 

regime was as follows:  1) Baseline OCR and ECAR were measured first (6 measurements – 3 

min mix and 3 min measure); 2) injection of glucose (10mM final) (3 measurements – 3min mix 

and 3 min measure); 3) injection of Oligomycin (1.5 μM final)(3 measurements – 3min mix and 3 

min measure) ; 4) injection of 2-DG (50mM final) (3 measurements – 3min mix and 3 min 

measure). Measurement parameters:  30 sec mix, 0 wait and 2 mins measure. For each 

experiment, At least three technical repeats were done for each condition.   

Statistical analysis and graph plotting software 

All statistical analyses and P-value determinations were conducted using GraphPad Prism 

QuickCalcs or GraphPad Prism 8 (version 8.3.0, GraphPad Software). To determine P-values, an 

unpaired Student's t-test was performed between two groups of data, comparing full datasets as 

stated in the figure legends. For P-values in multiple comparisons (unpaired), Tukey's multiple 

comparisons test was performed in GraphPad Prism 8. Live-cell actin burst and parkin curves, 

along with the standard errors of the mean (s.e.m.) were plotted using Microsoft Excel for Office 

365 (version 16.0.11231.20164, Microsoft Corporation). 
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Figure 5.1: ADA transiently disrupts MERCs. A) Time lapse montages of CCCP-induced 

actin polymerization and ER-mitochondrial overlap in U2-OS cells transfected with ER-RFP 

(ER; red), mito-BFP (mitochondria; blue) and GFP-F tractin (actin filaments; green) and pre-

treated with either DMSO or CK666 (100 µM; 30 min). Yellow arrows indicate the disruption of 

ER-mitochondrial contact. B) Quantification of CCCP-induced actin polymerization and ER-

mitochondrial overlap in U2-OS cells transfected with ER-RFP (ER; red), mito-BFP 

(mitochondria; blue) and GFP-F tractin (actin filaments; green) and pre-treated with either DMSO 

or CK666 (100 µM; 30 min). N= 45 cells (CCCP), 34 cells (CK666/CCCP) and 19 cells 

(DMSO). C) Representative micrographs of U2-OS cells expressing the split-GFP-based contact 

site sensor (SPLICSS -with ER short spacer [655]) along with mito-BFP for WT control, VAP-B 

overexpression, FMNL family KD and Arp2 KD conditions. D) Quantification of mitochondrial 

population that is in close proximity to the ER for C. N >20 cells per condition. 2 independent 

experiments. (E) Mitochondrial calcium uptake after 100µM histamine stimulation for Arp2 KD 

or WT U2-OS cells. N > 20 cells per condition. 2 independent experiments. 
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Figure 5.2: ADA delays mitochondrial Parkin recruitment in CK666 treated and FMNL 

family KD U2-OS cells. A) Time lapse montages of WT U2-OS cells transfected with GFP-

Parkin (green) and Mito-BFP (red) pre-treated with 30 mins 100µM CK666 or DMSO before 

treatment with 20µM CCCP treatment during live-cell imaging at time 0. Imaging conduced at 

the medial cell section. Scale: 10µm. Time in mins. B) Quantification of colocalized Parkin signal 

with mitochondrial signal in live-cell imaging after 20µM treatment of CCCP at time 0 for 30 

mins DMSO (black) or 100µM CK666 (red) pre-treated U2-OS cells. N = 35 cells for 

DMSO/CCCP and 38 for CK666/CCCP. 4 independent experiments. Error ± S.E.M. Trendline 

for DMSO (green) and CK666 (gold) were drawn using datapoints in the linear range: 60-80 mins 

(11 datapoints) for DMSO and 40-60 mins (11 datapoints) for CK666. Time taken for the 

trendline to cross the y = 0 (magenta) are: 47.4 mins for DMSO and 29.4 mins for CK666 

respectively. C) Scatter plot of Parkin signal onset on mitochondria for DMSO or 100µM CK666 

treated U2-OS cells. Parkin onset time = 45.54 min ± 10.74 (mean ± s.d.) for DMSO/CCCP and 

29.42 ± 10.74 for CK666/CCCP. ****. P< 0.0001. Student’s unpaired t-test. D) Time lapse 

montages of ctrl, Arp2 KD and FMNL1/3 DKD U2-OS cells transfected with GFP-Parkin (green) 

and Mito-BFP (red) treated with 20µM CCCP treatment at time 0 during live-cell imaging. 

Imaging conduced at the medial cell section. Scale: 10µm. Time in mins. E) Quantification of 

colocalized Parkin signal with mitochondrial signal in live-cell imaging after 20µM treatment of 

CCCP at time 0 for ctrl (black), FMNL1/3 DKD (red) or Arp2 KD (gold) U2-OS cells. N = 31 

cells for ctrl; 42 for FMNL1/3 DKD and 44 for Arp2 KD. 2 independent experiments. Error ± 

S.E.M. F) Scatter plot of Parkin signal onset on mitochondria for ctrl, FMNL1/3 DKD or Arp2 

KD in U2-OS cells. Parkin onset time = 46.97 min ± 8.86 (mean ± s.d.) for ctrl; 32.61 ± 8.75 for 

FMNL 1/3 DKD and 32.06 ± 9.03 for Arp2 KD cells. **** P< 0.0001 for ctrl vs FMNL1/3 DKD 

and ctrl vs Arp2 KD; n.s. P = 0.9795 for FMNL1/3 DKD vs Arp2 KD. Tukey's multiple 

comparisons test used. 
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Figure 5.3: ADA delays mitochondrial Parkin recruitment in WRC KD and VAP-B OE U2-

OS cells. A) Time lapse montages of ctrl, Arp2 KD and WRC complex KD U2-OS cells 

transfected with GFP-Parkin (green) and Mito-BFP (red) treated with 20µM CCCP treatment or 

DMSO during live-cell imaging at time 0. Imaging conducted at the medial cell section. Scale: 

10µm. Time in mins. B) Quantification of colocalized Parkin signal with mitochondrial signal in 

live-cell imaging after DMSO or 20µM treatment of CCCP at time 0 for ctrl (black) WRC KD 

(red) or Arp2 KD (gold) U2-OS cells. N = 48 cells for ctrl/CCCP; 35 for WRC KD/CCCP; 18 for 

Arp2 KD/CCCP and 30 for ctrl/DMSO. 2 independent experiments. Error ± S.E.M. C) Scatter 

plot of Parkin signal onset on mitochondria for ctrl, WRC KD or Arp2 KD in U2-OS cells. Parkin 

onset time = 52.08 min ± 8.934 (mean ± s.d.) for ctrl; 33.37 ± 10.30 for WRC KD and 31.56 ± 

8.31 for Arp2 KD cells. **** P< 0.0001for ctrl vs WRC KD and ctrl vs Arp2 KD; n.s. P = 0.7808 

for WRC KD vs Arp2 KD. Tukey's multiple comparisons test used. D) Time lapse montages of 

control and myc-VAP-B-overexpressing U2-OS cells transfected with GFP-Parkin (green) and 

Mito-BFP (red), and treated with 20µM CCCP treatment at time 0 during live-cell imaging. 

Imaging conduced at the medial cell section. Scale: 10µm. Time in mins. E) Quantification of 

colocalized Parkin signal with mitochondrial signal in live-cell imaging after 20µM treatment of 

CCCP at time 0 for control (black) and myc-VAP-B-overexpressing (red) U2-OS cells. N = 29 

cells for ctrl and 28 for VAPB overexpression. 2 independent experiments. Error ± S.E.M. F) 

Scatter plot of Parkin signal onset on mitochondria for control and myc-VAP-B-overexpressing 

U2-OS cells. Parkin onset time = 43.34 min ± 6.02 (mean ± s.d.) for control and 23.95 ± 8.578 for 

myc-VAP-B overexpression. **** P< 0.0001. Student’s unpaired t-test. 
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Figure 5.4: Parkin recruitment is inhibited by dynamic actin in EtBr-treated MEF. 

Micrographs of mouse embryonic fibroblasts transfected with GFP-Parkin (green) and Mito-BFP 

(red) and treated with EtBr for 10 days. Top cell shows cytosolic Parkin with no treatment while 

bottom cell is treated with 100µM CK666 for 30minutes. Scale: 10 µm. 
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Figure 5.5: ADA is sustained in galactose-grown HeLa cells. A) Scatter plot of TMRE 

intensity for glucose versus galactose-primed HeLa cells. N > 50 cells per condition. 2 

independent experiments. Error ± s.d. P-values were obtained from an unpaired Student’s t test.  

n.s. P>0.05. B) Representative montages of actin assembly between glucose and Day 11 

galactose-primed HeLas. Cells were fixed at different timepoints and stained for actin 

(Phalloidin) and mitochondria (Tom20). Scale: 10 µm. C) Quantification of CCCP-induced actin 

polymerization in glucose control and galactose-primed HeLa cells in live-cell imaging. N > 50 

cells per condition. 2 independent experiments. Error ± S.E.M. D) Quantification of percentage of 

cells with actin assembly for conditions in B. N > 50 cells per condition. Error ± s.d. P-values 

were obtained from an unpaired Student’s t test.  n.s. P>0.05. *** P=0.0001. 2 independent 

experiments  
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Figure 5.6: Parkin recruitment is delayed in galactose-grown cells. A) Quantification of 

colocalized Parkin signal with mitochondrial signal in live-cell imaging after 25µM treatment of 

CCCP at time 0 for glucose control versus galactose-primed HeLa cells. N > 20 cells for each 

condition. 2 independent experiments. Error ± S.E.M. B) Quantification of colocalized Parkin 

signal with mitochondrial signal in live-cell imaging after 20µM treatment of CCCP at time 0 for 

glucose control versus galactose-primed U2-OS cells. N > 20 cells for each condition. 2 

independent experiments. Error ± S.E.M. C) Representative montages of glucose versus galactose 

grown HeLa transfected with GFP-Parkin (green) and Mito-BFP (red) for scrambled siRNA 

control fixed and imaged at different time points. Scale: 10 µm. D) Representative montages of 

glucose versus galactose grown Arp2 KD HeLa transfected with GFP-Parkin (green) and Mito-

BFP (red) fixed and imaged at different time points. Scale: 10 µm. E) Quantification of fixed 

cells with Parkin signal accumulation on mitochondria after 25µM treatment of CCCP for glucose 

control versus galactose-primed HeLa cells. N > 20 cells/ >10 fields of view (FOVs) for each 

condition. 2 independent experiments. Error ± S.E.M. P-values were obtained from an unpaired 

Student’s t test. n.s. P>0,05. *** P=0.0023. ****P<0.0001. 
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Figure 5.7: PDA in HEK-293 and HeLa cells. A) Representative montages of fixed HEK-293 

cells showing actin filaments (GFP-F-tractin; magenta), mitochondria (mito BFP; red) and Parkin 

(mCherry-Parkin, green) treated with 20µM CCCP for respective timepoints. Control was 

DMSO-treated for 60 min. Imaging conducted at the medial cell section. White arrow denotes 

ADA and yellow arrows denote PDA. Scale bar: 10 µm and 2 µm (inset). B) Quantification of 

cells with PDA (grey) and ADA (blue) after 20µM CCCP in A. N > 40 cells for each condition. 

C) Quantification of HeLa cells with PDA (grey) and ADA (blue) after 20µM CCCP for 

respective timepoints. Cells were only transfected with GFP-F-tractin and mito BFP. DMSO 

control were treated for 60 min. N > 50 cells for each condition. D) Quantification of HeLa cells 

with PDA (grey) and ADA (blue) after 20µM CCCP for respective timepoints. For OE, cells were 

transfected with GFP-F-tractin, mito BFP and mCherry-Parkin. DMSO control were treated for 

60 min. N > 50 cells for each condition. 
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Figure 5.8: Myosin VI silencing does not affect ADA in U2-OS cells. A) Western blot for 

myosin 6 upon siRNA mediated suppression of myosin 6 in U2-OS cells to confirm respective 

KD. GAPDH used as loading control. B) Time-lapse montages of control and myosin 6 KD U2-

OS cells showing actin filaments (GFP-F-tractin; green) and mitochondria (mito BFP; red) treated 

with 20µM CCCP at time 0 (sec). Imaging conducted at the medial cell section. Arrows denote 

ADA. Scale bar: 5 µm. C) Quantification of CCCP-induced actin polymerization in control and 

myosin 6 KD. N = 22 cells (control); 25 cells (myosin VI KD); 2 independent experiments. Error 

± S.E.M. D) Time-lapse image montage of DMSO or 1-hour 5µM Wiskostatin pre-treated ctrl 

U2-OS or WRC KD U2-OS cells followed by 20µM CCCP-induced actin polymerization. Cells 

were transfected with GFP–F-tractin (green) and mito–BFP (red). Imaging conducted at the 

medial cell section. CCCP was added at time point 0. Scale bars: 10 μm. Arrow denotes actin 

assembly. E) Quantification of CCCP-induced actin polymerization in either 1 hour 5µM 

Wiskostatin pre-treated or DMSO pre-treated U2-OS-ctrl and U2-OS-WRC KD cells (15 s 

intervals); N = 40 cells for DMSO/ctrl, 40 cells for Wiskostatin/ctrl, 40 cells for DMSO/WRC 

KD and 40 cells for Wiskostatin/WRC KD; 3 independent experiments. Error ± S.E.M. 
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Figure S5.1: ADA does not inhibit protein arrival or mitochondrial-lysosomal interactions. 

A) Micrographs from U2-OS cells transfected with ER-RFP (ER; red), mito-BFP (mitochondria; 

green) and GFP-F tractin (actin filaments; magenta) after 100 seconds of CCCP treatment. B) 

Time-lapse montages of CCCP-induced actin polymerization and lysosomal-mitochondrial 

overlap in U2-OS cells transfected with mCherry-Lamp1 (lysosomes; red), mito-BFP 

(mitochondria; green) and GFP-F tractin (actin filaments; magenta). C) Quantification of CCCP-

induced actin polymerization and Lysosome-mitochondrial overlap in U2-OS cells transfected 

with mCherry-Lamp1 (lysosome; red), mito-BFP (mitochondria; green) and GFP-F tractin (actin 

filaments; magenta) N= 20 cells from 2 independent experiments. D) Model for cytosolic CFP-

(FRB)5 and OMM bound FKBP-YFP-mito tethering after the Rapamycin introduction (black). E) 

Time lapse montage of U2-OS cells transfected with cyto-(FRB)5 and AKAP1-YFP-FKBP and 

treated with 10 µM Rapamycin at time 0 as indicated. Scale bar: 5 µm. F) Time lapse montage of 

U2-OS cells transfected with cyto-(FRB)5, AKAP1-YFP-FKBP CCCP and GFP-Ftractin and 

treated with either DMSO or CCCP for 100 seconds followed by rapamycin (final 10 µM). G) 

Quantification of actin filaments (upper) and mitochondrially associated CFP-(FRB)5 (lower) 

after the following treatments: DMSO or CCCP at time 0 followed by rapamycin (final 10 µM) 

treatment after 100 seconds of initial treatment. N= 9 cells from 2 independent experiments.  
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Figure S5.2: VAP-B OE does not inhibit ADA. A) Western blot for myc tag showing VAP-B 

expression in control and myc-VAP-B overexpressed U2-OS cells. Myosin IIA is used as loading 

control. B) Quantification of CCCP-induced actin polymerization in control and myc-VAP-B-

overexpressing U2-OS cells. N= 20 cells (control) and 45 cells (overexpressing myc-VAP-B). 2 

independent experiments. Error ± S.E.M. C) Mitochondrial calcium uptake after 100µM 

histamine stimulation for Arp2 KD or WT HeLa cells. N > 20 cells per condition. 2 independent 

experiments. 
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Figure S5.3: ADA delays mitochondrial Parkin recruitment in CK666 treated and FMNL 

family KD in HeLa cells. A) Time lapse montages of WT HeLa cells transfected with GFP-

Parkin (green) and Mito-BFP (red) pre-treated with 30 mins 100µM CK666 or DMSO before 

treatment with 20µM CCCP treatment during live-cell imaging at time 0. Imaging conducted at 

the medial cell section. Scale: 10µm. Time in mins. B) Quantification of colocalized Parkin signal 

with mitochondrial signal in live-cell imaging after 20µM treatment of CCCP at time 0 for 30 

mins DMSO (black) or 100µM CK666 (red) pre-treated HeLa cells. N = 26 cells for 

DMSO/CCCP and 31 for CK666/CCCP. 4 independent experiments. Error ± S.E.M. C) Scatter 

plot of Parkin signal onset on mitochondria for DMSO or 100µM CK666 treated HeLa cells. 

Parkin onset time = 52.64 min ± 11.35 (mean ± s.d.) for DMSO/CCCP and 25.23 ± 10.89 for 

CK666/CCCP. **** P< 0.0001. Student’s unpaired t-test. D) Time lapse montages of ctrl, Arp2 

KD and FMNL1/2 DKD HeLa cells transfected with GFP-Parkin (green) and Mito-BFP (red) 

treated with 20µM CCCP treatment at time 0 during live-cell imaging. Imaging conduced at the 

medial cell section. Scale: 10µm. Time in mins. E) Quantification of colocalized Parkin signal 

with mitochondrial signal in live-cell imaging after 20µM treatment of CCCP at time 0 for ctrl 

(black), FMNL1/2 DKD (red) or Arp2 KD (gold) HeLa cells. N = 38 cells for ctrl; 19 for 

FMNL1/2 DKD and 24 for Arp2 KD. 2 independent experiments. Error ± S.E.M. F) Scatter plot 

of Parkin signal onset on mitochondria for ctrl, FMNL 1/2 DKD or Arp2 KD in HeLa cells. 

Parkin onset time = 46.32 min ± 12.16 (mean ± s.d.) for ctrl; 28.95 ± 6.12 for FMNL 1/2 DKD 

and 28.67 ± 6.01 for Arp2 KD cells. **** P< 0.0001for ctrl vs FMNL 1/2 DKD and ctrl vs Arp2 

KD; n.s. P = 0.9949 for FMNL 1/2 DKD vs Arp2 KD. Tukey's multiple comparisons test used.  
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Figure S5.4: Bioenergetic profiling of glucose versus galactose-grown cells. A) Oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR) for glucose control versus 

Day 11 galactose-primed HeLa cells. After basal readout, 1.5µM Oligomycin was added followed 

by 5µM of CCCP and finally 5µM/5µM of Rotenone/Antimycin A together. At least 3 technical 

repeats for each condition. Errors bars represent s.d. B) OCR and ECAR for glucose control 

versus Day 11 galactose-primed U2-OS cells. Same treatment regimen as A. At least 3 technical 

repeats for each condition. Errors bars represent s.d.  C) ECAR readout for glycolytic flux assay 

for both glucose and Day 11 galactose-primed HeLa cells. Cells were first cultured in glucose-

free media before glucose concentration was brought to 10mM. Next, cells were treated with 

1.5µM Oligomycin and 50mM 2-DG (final concentration) to inhibit glycolysis. At least 3 

technical repeats for each condition. Errors bars represent s.d. D) ECAR readout for glycolytic 

flux assay for both glucose and Day 11 galactose-primed U2-OS cells. Same treatment regimen 

as C. At least 3 technical repeats for each condition. Errors bars represent s.d. 
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Figure S5.5: ADA is sustained in galactose-grown U2-OS cells. A) Quantification of CCCP-

induced actin polymerization in glucose control and galactose-primed U2-OS cells. N = 47 cells 

for glucose CCCP; 93 cells for galactose CCCP; 19 cells for glucose DMSO and 8 cells for 

galactose DMSO. 3 independent experiments. Error ± S.E.M. B) Time-lapse montages of control 

and Day 14 galactose-primed U2-OS cells showing actin filaments (GFP-F-tractin; green) and 

mitochondria (mito BFP; red) treated with 20µM CCCP at time 0 (min). Imaging conducted at 

the medial cell section. Time in mins. Scale bar: 10 µm. 
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Figure S5.6: Spire1 KD does not inhibit ADA in U2-OS cells. A) U2-OS cells were transfected 

with scrambled siRNA (control) and three spire1 siRNA (#1, #2, #3) for 96 hrs. Cells were then 

fixed and mitochondria stained using anti-Tom20 (red). ROIs of fixed dimension were analyzed 

for mitochondrial length and number as described in Materials and methods. Images of control 

and spire1 KD are shown. Bars: (main) 5 μm; (insets) 2 μm. B) Mean mitochondrial length 

quantification represented as area (square micrometers) per mitochondrion (left) and mean 

mitochondrial number quantification (right) for control and spire 1 KD cells. Errors bars represent 

s.d. P-values were obtained from an unpaired Student’s t test. *** P=0.0001. C) Time-lapse 

montages of control and spire 1c KD U2-OS cells (using three different siRNA(s)) showing actin 

filaments (GFP-F-tractin; green) and mitochondria (mito BFP; red) treated with 20µM CCCP at 

time 0 (sec). Imaging conducted at the medial cell section. Arrows denote robust ADIA in CCCP-

stimulated condition. Scale bar: 5 µm. D) Quantification of CCCP-induced actin polymerization 

in control and spire 1c KD U2-OS cells using three different siRNA(s). N= 27 cells (control), 27 

cells (spire1 siRNA#1), 50 cells (spire1 siRNA#2), 30 cells (Spire1 siRNA #3); 3 independent 

experiments. Error ± S.E.M. 
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Figure S5.7: mDia family silencing does not inhibit ADA in U2-OS cells. A) Time-lapse 

montages of control and respective mDia KD U2-OS cells showing actin filaments (GFP-F-

tractin; green) and mitochondria (mito BFP; red) treated with 20µM CCCP at time 0 (sec). 

Imaging conducted at the medial cell section. Arrows denote robust ADIA in CCCP-stimulated 

condition. Scale bar: 5 µm. B) Western blot for mDia1 and mDia2 upon siRNA-mediated 

suppression of respective mDia proteins in U2-OS cells to confirm respective KD. GAPDH used 

as loading control. C) Quantification of CCCP-induced actin polymerization in control and 

respective mDia1 KD U2-OS cells. N= 67 cells (control); 55 cells (mDia1 KD); 74 cells (mDia2 

KD); 3 independent experiments. Error ± S.E.M. 
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Table 5.1: Parkin recruitment times after CCCP-depolarization 

Condition Cell 

type 

Parkin onset (min ± S.D.) Trendline analysis 

(min) 

Number 

of cells 

DMSO^ U2OS 45.4 ± 10.7 47.4 35 

CK666^ U2OS 29.4 ± 9.0 29.4 38 

Ctrl KD* U2OS 47.0 ± 8.9 51.8 31 

FMNL DKD% U2OS 32.6 ± 8.7 26.3 42 

Arp2 KD U2OS 32.1 ± 9.0 25.3 44 

Ctrl KD* U2OS 52.1 ± 8.9 56.4 48 

WRC KD U2OS 33.4 ± 10.3 27.0 35 

Arp2 KD U2OS 31.6 ± 8.3 28.7 18 

Ctrl OE* U2OS 43.3 ± 6.0 42.7 29 

VAPB OE U2OS 24.0 ± 8.6 21.8 28 

DMSO^ HeLa 52.5 ± 11.4 51.0 26 

CK666^ HeLa 25.2 ± 10.9 18.4 31 

Ctrl KD* HeLa 46.3 ± 12.2 42.6 38 

FMNL DKD$ HeLa 29.0 ± 6.1 21.7 19 

Arp2 KD HeLa 28.7 ± 6.0 24.8 24 
All imaging done in live cell imaging media: 25mM glucose in DMEM, 4mM L-glutamine, 25 mM Hepes, supplemented 

with 10% newborn calf serum and no sodium pyruvate. 

*each control (Ctrl) represents that for the treatment that follows (knock-down (KD) or over-expression (OE))s. 

^Cells were pre-treated for 30mins before imaging starts. 

%FMNL1 and FMNL3 double KD. 

$FMNL1 and FMNL2 double KD. 
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The future directions of this project point in multiple directions . Although it is difficult 

to list them all here, and careful readers would come up with interesting ideas of their 

own, but here are some of the next steps I see the project maturing in the lab. 

- Understanding the tethering between mitochondria and actin 

At this stage, it would be super informative to understand how and what molecular 

tethers bind the actin together with the mitochondrial population. A couple of approaches 

may bring this to fruition. 1) TurboID analysis or other assays to label proteins of 

interest. 2) Better imaging techniques to understand the ultrastructure of actin filaments. 

For example, could we get better resolution of what the actin filaments around the 

mitochondria really looked like with STED imaging or FIB-SEM imaging? 3) Investigate 

and screen if there are motor proteins like myosins (or other known actin binding 

proteins) involved that brings actin filaments close to the mitochondria. 

- Understanding the glycolytic step involved in ADA 

The relationship between actin and glycolysis remains one of the most interesting 

mechanisms to unravel. Here, metabolomics or carbon tracing experiments would come 

in handy to understand which steps of glycolysis might be regulated by ADA. In addition, 

an understand the NADH/NAD+ changes that happen with/out actin assembly will bring 

clues to the metabolic rewiring. Figuring this out would be a major step forward in the 

field, as the idea that glycolytic enzymes require localization to organelles to form ‘hubs’ 

is starting to emerge and the actin cytoskeleton can be one potential bringing proteins in 

place. 

- The broad picture and therapeutic potential? 

Although this is still speculative at this stage, but ADA can be a therapeutic option. 

Probes can be generated to promote ADA without depolarizing the mitochondria. For 

example, a mitochondrial-localizing Arp2/3 complex activating probe can be developed. 

We will first test if this probe promotes glycolysis in both the seahorse and the lactate 

production assays. If the initial characterizations are promising, we can use the probe in 

T-cells or other immune cells and test the relevant effects (cancer- or pathogen fighting 

properties). In the end, we would really like to establish the importance of actin 

cytoskeleton and mitochondrial communication and how this interaction is imperative for 

cellular health, homeostasis, as well as a crucial stress response. 
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