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Abstract

In this work we study various aspects of the quantum dynamics for a system coupled

to a Bosonic environment, which is described by a collection of quantum harmonic

oscillators or a quantum field. We first consider two quantum mechanical oscillator

system-bath models obtained by dimensionally truncating linearized gravity coupled

to a massive scalar field and scalar QED, and we show that they separately map onto

the phase damped oscillator model and the oscillator system subject to two-photon

damping. The phase damped oscillator model also corresponds to the optomechanical

system with an acoustic field environment, and we study the acoustic environment

induced cavity modes dephasing dynamics as well as the possible infrared and ul-

traviolet divergence dependence on the spatial dimension of the environment with

potential experimental realizations. Next, we show that the acoustic phonon field

can not only induce the depahsing effects for the system, but also serves as an en-

tanglement channel for two initially separable systems, which bears similarities with

the weak, quantum gravitational fields as mediators of quantum entanglement. We

then shift our focus to another system-bath model: Unruh-Dewitt (UDW) detectors

coupled to a scalar field. We consider two scenarios here; one includes two UWD

detectors coupled to a massless scalar field in a gravitational wave spacetime and we

show that the entanglement harvested by two detectors depends sensitively on the

frequency of the gravitational wave. The resonance effects can be observed when the

energy gap of the detectors matches the frequency of the gravitational wave. The
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other one consists of a UWD detector initially in the ground state coupled to a non-

relativistic particle state of a massive scalar field, and it is found that the transition

probability of the detector (which can be interpreted as the probability of detect-

ing the particle at the location of the UWD detector) is qualitatively similar to the

non-relativistic probability density of the particle.
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Chapter 1

Introduction
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1.1 Cavity mode dephasing and entanglement generation

All realistic quantum systems are ultimately open quantum systems, which in-

evitably interact with external quantum systems that are usually referred as environ-

ments. With the advancing quantum technologies, the influence of the environment

on the quantum dynamics of the systems can be controlled in a desired way or greatly

reduced depending on the properties of the system that the study is interested in. Ex-

amples include cavity quantum electrodynamics [1], circuit quantum electrodynamics

[2] and cavity optomechanics [3]. Furthermore, one can also view the open quantum

system from a different perspective by asking the question: what can we learn about

the environment from the system that we have direct access to? In the context of

quantum field theories, this question motivated the operational approach to study

quantum fields via the coupling of the Unruh-Dewitt (UWD) detectors [4, 5] to the

fields, where the UWD detectors are essentially two level quantum systems with some

given spacetime worldlines. This thesis shall cover several studies from both perspec-

tives; as these two perspectives are somewhat independent from each other, we will

motivate and introduce them separately.

Section 1.1

Cavity mode dephasing and entanglement

generation

Despite the increasing control capability towards the environment, there remains one

interaction that one can not shield from - gravitational interaction, as indicated by

the Einstein equation. It is this unique feature of gravity that motivated a series

of the studies in this thesis because gravitational environment might put an upper

bound on coherence times of macroscopic superposition states, and therefore results

in a macroscopic classical world. A common approach to this problem is to extract

the decoherence rate through the off-diagonal matrix elements of the system density
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1.1 Cavity mode dephasing and entanglement generation

operator. However, when coupled to gravity, the density operator of the system is

not a gauge invariant quantity, which is related to the fact that, in general relativity,

local diffeomorphisms are gauge symmetries meaning the local correlation functions

like ⟨O1(x1)...On(xn)⟩ do not correspond to physical observables. A remedy to this

difficulty might be obtained by noticing that the deffeomorphisms reaching the infinity

are true physical symmetries – asymptotic symmetries; one can therefore consider

the worldline of an observer starting from infinity and then construct diffeomorphism

invariant operators along this worldline [6]. However, the constructed operators are

non-local, which are hard to be made use of. Another difficulty arises from the

fact that to solve for the time evolution of the system, one usually needs to assume

an unnatural initial tensor product state between the system and the gravitational

environment, which would result in an upper cutoff dependent decoherence where the

upper cutoff depends on the scale of new physics in quantum gravity. Without the

UV details of quantum gravity, the scale of new physics can not be known a priori.

As an example, string theory gives the scale to be the inverse of the string length: 1
ls

.

Given the above mentioned issues, a probably more sensible approach is to study

the gravitationally induced decoherence through an operational/experimental ap-

proach. One example is to consider a massive particle confined in a potential well [7].

Assuming an initial superposition state of two coherent state at different locations,

the expectation value of the number density operator exhibits an interference pattern

when the two coherent states meet together. The reduction of this interference pat-

tern due to the gravitationally induced decoherence can then be used to quantify the

decoherence rate.

In Chapter 2 [based on Xu, Q., & Blencowe, M. P. (2020). arXiv:2005.02554], as a

first step, we shall study a quantum mechanical oscillator system-bath model obtained

by dimensionally truncating linearized gravity coupled to a massive scalar field as

3



1.1 Cavity mode dephasing and entanglement generation

well as another system-bath model obtained by dimensionally truncating scalar QED.

These two models can be regarded as zero dimensional quantum field theory and they

are chosen to validate the above mentioned operational approach to the decoherence

effects without the need of worrying about the potential gauge problems, and also to

validate certain standard approximation methods, thus providing helpful insights and

clues to eventually study actual gravitationally induced decoherence. The 0D gravity

model allows for an exact time evolution solution for the system density matrix while

approximations and numerical methods shall be made to solve for the 0d scalar QED

model. The solutions are then used to demonstrate the operational approach to the

decoherence effects and we show that these two models effective map onto phase

damped oscillator and two-photon damping models.

Chapter 3 [based on Xu, Q., & Blencowe, M. P. (2021). Phys. Rev. A, 104(6),

063509] extends the studies of 0D gravity model in Chapter 2. Despite that the model

was proposed with gravitationally induced decoherence considerations, the interac-

tion between the system and the environmental modes is identical to the standard

interaction Hamiltonian of an optomechanical system under the conditions of weak

couplings, except for that the usual considered optomechanical system only contains

a single environment mode while the 0D gravity model comprises many bath modes

[3]. From this perspective, the model can be interpreted as an optomechanical sys-

tem comprising a single cavity mode and a dense spectrum of acoustic modes, and

we shall find that this model deserves importance in its own rights. In particular,

we will show that the possible UV and IR divergences of the system dephasing dy-

namics are closely related to the spatial dimension and the size of the phonon field

environment. Possible experimental realizations for 1D and 2D acoustic environment

are also considered with the interaction Hamiltonian derived from the first principle.

In Chapter 4 [based on Xu, Q., & Blencowe, M. P. (2021). arXiv:2110.13278], we

4



1.2 Applications of UDW detectors

further extend the study in Chapter 3 by shifting our focus from the single cavity

dephasing dynamics to two spatially separated, local cavity modes that are coupled

optomechanically to a long elastic strip that functions as a quantum thermal acoustic

field bath. Utilizing the exact solutions we obtained in the previous Chapter, we

study the entanglement dynamics for two cavity modes and we shall find that signifi-

cant entanglement can be generated periodically regardless of the bath temperature.

Thanks to the exact solutions, we can also explicitly demonstrate that the entangle-

ment is only possible when the two cavity modes are causally connected. Our result

may then shed light on the nature of weak, quantum gravitational fields as mediators

of quantum entanglement.

Section 1.2

Applications of UDW detectors

As we mentioned in the beginning of the Introduction, when we have a system coupled

to a bath, the system can be employed to study the properties of the bath. Being

simple two-level quantum systems with some given worldlines, UDW detectors are

convenient tools engineered for studying the quantum field properties. One of the

most famous examples of the UDW detector’s application is in the proof of the Unruh

effect [4], which states that the definition of vacuum is an observer dependent notion

and the Minkowski spacetime vacuum state is actually a thermal state from the

perspective of an uniformly accelerated observer. In this thesis, we will cover two

studies involving one and two UWD detectors, separately.

In Chapter 5 [based on Xu, Q., Ahmad, S. A., & Smith, A. R. (2020) Phys. Rev.

102(6), 065019], we investigate the entanglement harvesting in a gravitational wave

spacetime. Entanglement harvesting refers to the fact that two initially unentan-

gled, spatially separated UDW detectors can become entangled when they are both

5



1.2 Applications of UDW detectors

locally coupled to a quantum field even if the detectors remain spacelike separated.

The entanglement between the detectors is, therefore, ‘harvested’ from the vacuum,

which is already known to be a highly entangled state [8]. By considering a massless

scalar quantum field in a gravitational wave spacetime, the entanglement harvested

by two detectors shall be shown to be sensitive to the frequency of the gravitational

wave, exhibiting resonance effects when the energy gap of the detectors matches the

frequency of the gravitational wave. Comparing it to the entanglement harvesting

effects in the flat spacetime, this protocol allows a probe to see how the entanglement

structure of the field is changed by the spacetime structure.

Besides focusing on the entanglement properties of quantum fields, it is also of

interest to study the UDW detectors’ response to the field state that represents the

matter/particle distribution since the UWD detector is after all an ideal type of

particle detectors. In Chapter 6 [based on Xu, Q. (2021). Phys. Rev. D, 104(8),

085006], we study the response of an UDW detector initially in the ground state

to a non-relativistic particle state of a massive scalar field. The choice of a non-

relativistic particle state allows a convenient comparison between the UWD detector

transition probability and the probability density of the corresponding free Gaussian

wave packet in the non-relativistic quantum mechanical description. As we will show,

the transition probability of the UDW detector splits into the vacuum contribution

and the matter contribution, with the latter behaving qualitatively similar to the

non-relativistic probability density description.

6



Chapter 2

Zero-dimensional models for

gravitational and scalar QED

decoherence
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2.1 Introduction

Section 2.1

Introduction

The non-existence of macroscopic mass system quantum superposition states under

everyday conditions is commonly understood to be due to interactions with the system

environment; air molecules, photons, and internal system defects cause the rapid

decoherence of position and energy superposition states into apparent mixtures of

either/or alternatives that are indistinguishable from a classical statistical distribution

[9, 10, 11]. By placing the system in ultrahigh vacuum, shielding it from external

electromagnetic radiation, and cooling the system down to its ground state, quantum

mechanics would in principle allow for macroscopic system superposition states to be

prepared and measured. However, there is one environment that cannot be screened

out–gravity, as expressed dynamically at the classical level through Einstein’s field

equations [12, 13, 14, 15, 16, 17, 18].

From a fundamental perspective, it is interesting to try to quantify the effect of

the gravitational environment on macroscopic mass/energy superposition states; even

if the predicted gravitationally induced decoherence times are much longer than for

everyday, electromagnetic environments, having a good quantitative understanding

of the former would allow us to place in principle, unavoidable bounds on the co-

herence times of macroscopic superposition states, and furthermore help point the

way towards possible future experiments to probe the role of gravity in enforcing

macroscopic classicality.

Under terrestrial or space-based laboratory conditions corresponding to weak

spacetime curvature [19], it should be sufficient to work with linearized gravity [20],

where the matter system-gravitational environment action is quadratic in metric de-

viations hµν from Minkowski spacetime ηµν[= diag(− + ++)]: gµν = ηµν + κhµν , where

8



2.1 Introduction

κ =
√

32πG (with natural units h̵ = c = 1). Furthermore, modeling the matter system

through quantum excitations of a massive scalar field ϕ, a “first-principles” starting

point for investigating gravitational decoherence is the following action:

S[ϕ,hµν] = SM[ϕ] + SE[hµν] + SI[ϕ,hµν], (2.1)

where the system, environment, and interaction actions are respectively:

SM[ϕ] = −
1

2 ∫
d4x (ηµν∂µϕ∂νϕ +m2ϕ2) , (2.2)

SE[hµν] =∫ d4x(−1

2
∂ρhµν∂ρhµν + ∂νhµν∂ρhµρ − ∂µh∂νhµν +

1

2
∂µh∂µh) , (2.3)

and

SI = ∫ d4x(κ
2
T µν(ϕ)hµν +

κ2

4
Uµνρσ(ϕ)hµνhρσ) , (2.4)

with T µν(ϕ) the scalar field energy-momentum tensor, Uµνρσ(ϕ) a quadratic in ϕ

tensor [21], and h = hµµ.

Quantization might then proceed through the derivation of a master equation

for the density matrix of the scalar matter system, with the (assumed for simplic-

ity) thermal gravitational environmental degrees of freedom traced out [12, 13, 14].

Alternatively, a quantum Langevin equation might be derived for the scalar matter

field operator, again with the gravitational environment integrated out. One route to

obtaining such effective equations is the closed time path integral approach, which is

particularly suited to field systems [22].

However, as a coupled system-environment field theory with a non-quadratic in-

teraction and a gauge symmetry (i.e., general coordinate invariance), the derivation

of the quantum gravitational decoherence dynamics presents additional challenges

9



2.1 Introduction

beyond the usual system-environment models considered in non-relativistic quantum

mechanics [23, 24, 25]. One challenge involves the necessity for making various ap-

proximations in order to solve for the reduced system dynamics. For example, in the

usual open quantum systems analyses, it is assumed that the system+environment

is initially in a product state, e.g., the system is in a superposition of two distinct

wavepacket or energy states and the environment is in a thermal state. Such a product

state can result in an initial “burst” of decoherence that depends on the upper cut-off

physics of the environment, which in the case of gravity is unknown. Furthermore, a

Born and possibly Markovian approximation is made [23, 24, 25], where the influence

of the environment on the system is treated perturbatively to lowest non-trivial order,

while the environment is assumed to respond rapidly relative to the system dynamics

timescale.

Another challenge concerns requiring gauge invariance of the calculated decoher-

ence rates for them to be meaningful, in particular when assuming a finite temperature

environment that comprises gauge degrees of freedom (e.g., photons or gravitons) [24].

A common, direct approach [23, 24, 25] to obtaining decoherence rates for open quan-

tum systems, either with or without gauge degrees of freedom, is to examine the time

evolution of the off-diagonal matrix elements of the system density operator in the

state basis of interest (e.g., energy eigenstates, position eigenstates etc.). However,

the density operator is not a gauge invariant quantity.

A more consistent approach is to extract the decoherence rates through an oper-

ational procedure, i.e., involving an in principle measurement that can be ascribed

to a particular expectation value of an observable. One such example is the parti-

cle detection number density in an atom interference set-up. A minimal way to get

scalar matter field quanta initially in superposition states to interfere is by spatially

trapping the field quanta in a three-dimensional harmonic confining potential [26];

10



2.1 Introduction

Figure 2.1: Scheme for operationally defining gravitational decoherence. An initial
spatial superposition of N nucleon-oscillator coherent states gives rises to a spatial
interference pattern in the particle detection probability whenever the particle
wavefunctions pass through each other at x = 0. The particle detector is indicated
centered at some given x-location. A suppression of the x-dependent interference
pattern in the particle detection probability is interpreted as gravitational
decoherence.

the system action (2.2) is then supplemented by the term

− 1

2 ∫
d4xm2Ω2r2ϕ2, (2.5)

where Ω is the characteristic oscillation frequency and the potential center coincides

with the spatial origin r = 0. Referring to Fig. 2.1, we might then consider a thought

experiment where an initial (t = 0) N -nucleon state corresponding to being in a su-

perposition of two collective coherent states with coordinate parameters r = (x,0,0),

x = x01 > 0, x02 < 0 (and hence superposition separation x01 − x02) undergoes gravita-

tional decoherence. Once during every oscillation period, the coherent states in the

superposition pass through each other in the region centered at x = 0, resulting in an

interference pattern for the x-dependence of the local particle detection probability as

indicated in the figure. A measure of the degree of coherence is the so-called “inter-

11



2.1 Introduction

ferometric visibility”, defined below in Eq. (2.30); a reduction in visibility over time

is interpreted as a signature of gravitationally induced decoherence or dephasing.

In particular, suppose that we have a particle detector with center of mass world-

line (t, r) in the vicinity of r = 0 and the particle detection is described by the local

field observable (V −1 ∫V drϕ(r,0))
2
, where ϕ(r,0) is the scalar field operator (in the

Schrödinger picture), and V is a coordinate averaging volume (assumed very small)

that reflects the fact that a real detector is not pointlike, but rather occupies some

nonzero volume in space. The visibility can then be obtained in terms of the following

expectation value:

Tr [ρ(t) (V −1∫
V
drϕ(r,0))

2

] = V −2∫
V
drdr′Tr [ρ(t)ϕ(r,0)ϕ(r′,0)] , (2.6)

where the density matrix ρ(t) describes the N nucleons initially in a coherent super-

position state and interacting with a thermal graviton bath environment. The expec-

tation value (2.6) gives a measure of the spatial particle number density (smeared over

the small volume V ) and is to be viewed as the field-theoretic counterpart to the con-

figuration space probability density V −1 ∫V dr⟨r∣ρho(t)∣r⟩ for a single, non-relativistic

quantum harmonic oscillator described by the evolving density matrix ρho(t).

The just described set-up shares features of atom and molecular wave interferom-

etry experiments [27, 28, 29], but utilizing optical traps [30, 31, 32, 33]. The latter

enables the two wavefunction components making up the superposition to interfere

multiple times as they oscillate through each other, rather than just once as in most

matter wave interferometry set-ups. Furthermore, no complicated boundary condi-

tions or additional coupled degrees of freedom such as spins manipulated by external

magnetic fields in a Stern-Gerlach-type apparatus [32] are required in the system-

environment action order to implement the interferometer; just a harmonic confining

potential is required. We must emphasize however that our set-up should not be
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2.1 Introduction

viewed necessarily as a possible way to feasibly measure gravitational decoherence,

but rather as an in-principle operational procedure to quantify the decoherence via

the above-defined visibility measure.

With the above-describe challenges in mind, in this chapter we shall consider

as a first step two toy system-environment models that are in turn closely related

through dimensional reduction to the above scalar field-gravity system and to scalar

field quantum electrodynamics (QED) [34]. The Lagrangian for scalar QED is

L = −(Dµϕ)∗(Dµϕ) −m2 (1 +Ω2r2)ϕ∗ϕ − 1

4
FµνF

µν , (2.7)

where ϕ is a complex-valued scalar field, Dµ = ∂µ − ieAµ is the covariant derivative,

and Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor. We have also

included a three-dimensional harmonic confining potential [c.f. Eq. (2.5)] in order to

facilitate operational probes of (de)coherence for initial scalar field spatial quantum

superposition states as discussed above.

The models presented in Sec. 2.2 below are “toys” in the sense that there is no spa-

tial coordinate–just a time coordinate–and hence are formally zero-dimensional (0d)

field models. Our motivation here is to utilize the toy models in order to validate

the above-described operational interferometric approach to decoherence as well as

certain standard approximation methods, thus giving confidence in eventually apply-

ing a similar approach to quantifying actual gravitationally induced decoherence; the

0d model was in fact utilized in Ref. [12] to lend support for an initial gravitational

decoherence derivation.

As zero-dimensional field systems, the toy models lack any gauge symmetry, how-

ever. It is for this reason that full scalar field QED is also useful for investigating

decoherence and verifying that the considered decoherence measures are gauge in-

variant. In particular, what constitutes a gauge invariant observable is conceptually

13



2.2 0d toy models

clearer in scalar QED than in gravity and thus the former also serves as a useful

pedagogical stepping stone towards addressing gravitational decoherence.

In Sec. 2.2, we introduce the 0d toy model Lagrangians. Section 2.3 analyzes

the quantum dynamics of the scalar-weak gravity toy model, by utilizing an ex-

act solution to the full system-environment Schrödinger equation assuming an initial

system-environment product state, with the oscillator system state expressed in a

number state basis and environment in a thermal state. These solutions are then

utilized to determine the decoherence dynamics of initial superpositions of system

oscillator coherent states through an operational interference fringe visibility analysis

that is the single particle counterpart to that described above. Section 2.4 analyzes

both the classical and quantum dynamics of the scalar QED toy model. In particular,

both classical and quantum Langevin equations as well as a quantum master equation

are derived for the system oscillator interacting with its oscillator bath. By making

various approximations, the 0d model is shown to map onto that of a simpler oscil-

lator system with ‘two-photon’ damping. The master equation is numerically solved

to determine the decoherence dynamics of initial superpositions of system oscillator

coherent states, again utilizing the operational interference fringe visibility approach.

Section 2.5 gives some concluding remarks.

Section 2.2

0d toy models

We consider in turn two distinct oscillator system-environment models described by

the following Lagrangians:

Lgrav =
1

2
Mẋ2 − 1

2
MΩ2x2 +∑

i

(1

2
mq̇2i −

1

2
mω2

i q
2
i ) − λ(

1

2
Mẋ2 + 1

2
MΩ2x2)∑

i

qi (2.8)
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2.2 0d toy models

and

Lqed =
1

2
M ( d

dt
+ λ∑

i

qi)x(
d

dt
+ λ∑

i

qi)x −
1

2
MΩ2x2

+∑
i

(1

2
mq̇2i −

1

2
mω2

i q
2
i ) . (2.9)

Both model Lagrangians describe an oscillator system with mass M and bare fre-

quency Ω that is coupled to a bath of independent oscillators with assumed identical

masses m and frequencies ωi. The two models differ in their system-bath couplings;

in particular, the system oscillator couples via its energy to the bath oscillator coor-

dinates in Lagrangian Lgrav, a 0d analogue of the T µνhµν coupling term in Eq. (2.4).

On the other hand, the interaction term in Lagrangian Lqed is obtained via a 0d

analogue of the gauge principle of minimal coupling: ∂µ → ∂µ − ieAµ. Expanding out

the kinetic energy part of Lagrangian (2.9) gives both cubic and quartic interaction

terms, which are respectively linear and quadratic in the bath coordinates [c.f. Eq.

(2.31)]; the full, scalar QED Lagrangian (2.7) possesses analogous nonlinear terms.

Note that the coupling strength parameters λ in Eqs. (2.8) and (2.9) have different

dimensions.

Lagrangian (2.8) yields the standard Hamiltonian of an optomechanical system

under the conditions of weak system-bath coupling, where a single optical mode

furnishes the system oscillator degree of freedom, while the bath comprises a very large

number of mechanical degrees of freedom. This is in contrast to usually-considered

optomechanical systems [35], where only one or a few mechanical degrees of freedom

are considered. In the present case, Lagrangian (2.8) might describe the dynamics

of a light mode of a cavity embedded within a large elastic crystal, or alternatively

a light mode trapped between oppositely facing cavity mirrors and coupled via light

pressure to a thin, elastic dielectric membrane with large transverse extent [36, 37]
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2.2 0d toy models

Mechanical membrane 
(bath)

Optical cavity mode 
(system)

Figure 2.2: Optomechanical scheme where a cavity-trapped light mode (system)
between oppositely facing mirrors interacts via light pressure with a thin,
transversely vibrating dielectric membrane with large transverse extent (bath).
Such a scheme realizes model (2.8) and is explored in more detail in Ref. [37].

(Fig. 2.2). As we shall see later in Sec. 2.3, when placed in an initial superposition

of coherent states, such a system mode undergoes dephasing without damping–the

latter behavior a consequence of the fact that the interaction Hamiltonian commutes

with the system Hamiltonian. The resulting, effective system dynamics coincides with

that of the so-called ‘phase damped’ oscillator [25].

In Sec. 2.4, we show that Lagrangian (2.9) describes approximately an oscillator

system subject to two-photon damping [38]. This is in contrast to the usual quantum

Brownian oscillator model with single photon damping and results in qualitatively

different decoherence dynamics from the latter for initial superpositions of coherent

states.
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2.3 Scalar gravity model

Section 2.3

Scalar gravity model

2.3.1. Solving the model

Starting with the Lagrangian Lgrav (2.8), the system and bath momentum coordinates

are

p = ∂L
∂ẋ
=Mẋ(1 − λ∑

i

qi) , (2.10)

pi =
∂L

∂q̇i
=mq̇i, (2.11)

where we omit the ‘grav’ subscript from now on. The model Hamiltonian is

H = p2

2M
(1 − λ∑

i

qi)
−1

+ 1

2
MΩ2x2 (1 + λ∑

i

qi) +∑
i

(
p2i
2m
+ 1

2
mω2

i q
2
i ) . (2.12)

For weak system-environment (bath) coupling, we can Taylor expand the kinetic

energy coupled bath term to obtain approximately

H =( p
2

2M
+ 1

2
MΩ2x2)(1 + λ∑

i

qi) +∑
i

(
p2i
2m
+ 1

2
mω2

i q
2
i ) . (2.13)

Quantizing and expressing the Hamiltonian (2.13) in terms of the oscillator system

and bath creation and annihilation operators, which are defined through the respective

relations x =
√

h̵
2MΩ(a+a†), p = i

√
MΩh̵
2 (a† −a), qi =

√
h̵

2mωi
(ai +a†

i), pi = i
√

mωih̵
2 (a

†
i −

ai), the scalar gravity model Hamiltonian is

H = h̵Ω(a†a + 1

2
)(1 +∑

i

λi (ai + a†
i)) +∑

i

h̵ωi (a†
iai +

1

2
) , (2.14)
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2.3 Scalar gravity model

where the system-bath coupling is redefined as λi =
√

h̵
2mωi

λ. We recognize in Eq.

(2.14) the familiar form of the standard optomechanical Hamiltonian, but with a

bath of mechanical oscillator modes (labelled by index i) in contrast to the usually

considered situation of just one mechanical mode [35].

Solving for the quantum evolution, we will make the common assumption that

the system and bath are in an initial product state ρs ⊗ ρbath. While the latter

assumption facilitates solving for the quantum dynamics, it is not always justified

experimentally, since it necessarily requires that the system quantum state can be

sufficiently isolated and prepared quickly enough compared to the interaction time

scale with the bath degrees of freedom. While such an approximation may be justified

for an electromagnetic environment under certain conditions, a mass-energy system

can never be isolated from its gravitational environment. Nevertheless, as we shall

see, the ability to solve exactly for the scalar gravity model quantum dynamics will

give insights into the consequences of assuming a product state.

It is convenient to work in a basis of system number states and bath coherent

states ∣n,{αi}⟩; the time evolution for such a state can be written as:

e−
iHt
h̵ ∣n,{αi}⟩ = exp

⎛
⎝
− it
h̵
[h̵Ω(n + 1

2
)(1 +∑

i

λi(ai

+ a†
i)) +∑

i

h̵ωi (a†
iai +

1

2
) ]
⎞
⎠
∣n,{αi}⟩ . (2.15)
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2.3 Scalar gravity model

Following the analysis of Ref. [39], Eq. (2.15) can be evaluated as:

e−
iHt
h̵ ∣n,{αi}⟩ = exp

⎛
⎝
− it
⎡⎢⎢⎢⎢⎣
Ω(n + 1

2
) +∑

i

⎛
⎝
ωi

2
−

Ω2λ2i (n + 1
2
)2

ωi

⎞
⎠

⎤⎥⎥⎥⎥⎦

−∑
i

i (n + 1
2
)2 λ2i Ω2

ω2
i

sinωit +
1

2
∑
i

λi
ωi

(n + 1

2
)Ω

× [α∗i (1 − eiωit) − αi (1 − e−iωit)]
⎞
⎠

×
RRRRRRRRRRR
n,

⎧⎪⎪⎨⎪⎪⎩
αie

−iωit −
Ω (n + 1

2
)

ωi

λi (1 − e−iωit)
⎫⎪⎪⎬⎪⎪⎭
⟩ . (2.16)

Supposing the bath to initially be in a thermal state, we can express its initial density

matrix in the coherent basis as follows [40]:

ρbath =∏
i

1

π (eβh̵ωi − 1) ∫
dα2

i exp ( − ∣αi∣2 (eβh̵ωi − 1) )∣αi⟩⟨αi∣, (2.17)

where β−1 = kBT , with kB Boltzmann’s constant and T the bath temperature. De-

composing the initial system-environment state in the number state basis:

ρinitial = ∑
n,n′

Cnn′ ∣n⟩⟨n′∣ ⊗ ρbath, (2.18)

we have for the time evolution of the number state outer products after tracing out

the bath degrees of freedom:

∣n(t)⟩⟨n′(t)∣ = ∣n⟩⟨n′∣ exp
⎛
⎝
− it[Ω(n − n′) +∑

i

Ω2λ2i
ωi

(n′ + n + 1)(n′ − n)]

+ i∑
i

λ2i Ω
2

ω2
i

sin(ωit)(n′ + n + 1)(n′ − n)

− 2∑
i

(Ωλi(n − n′)
ωi

)
2

coth(βh̵ωi

2
) sin2 (ωit

2
)
⎞
⎠
. (2.19)

As we shall show later below in Sec. 2.3.2, the time evolution of an arbitrary ini-
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2.3 Scalar gravity model

tial reduced oscillator system state can be obtained by decomposing in terms of the

number state outer product solutions (2.19).

In order to carry out the sum over bath degrees of freedom in Eq. (2.19), we will

assume a bath spectral density with exponential cut-off frequency ωc:

π∑
i

λ2i δ (ω − ωi) = Cωe−ω/ωc . (2.20)

The linear in ω “Ohmic” dependence well below the cut-off is utilized since a thermal

graviton bath is Ohmic [12]; a cut-off is necessary in order to avoid infinities in the

intermediate stages of the analysis and the exponential form is primarily motivated

by calculational convenience, enabling exact solutions to be obtained for the oscillator

system reduced dynamics in the number state basis. While the short distance, cut-off

physics is in principle known for a concrete material system realisation such as for the

vibrating membrane environment in Fig. 2.2 [37], the corresponding short distance,

‘Planckian’ physics is by contrast not known for gravity. As we shall see below,

the cut-off dependence can be absorbed in part through a frequency and non-linear

Kerr-type self-interaction renormalization; the cut-off does however affect the initial

decoherence dynamics.

Using Eq. (2.20) to replace the sum in Eq. (2.19) with an integral over the

continuous variable ω, we obtain

∣n(t)⟩⟨n′(t)∣ = ∣n⟩⟨n′∣ exp
⎛
⎝
− iΩ(n − n′)t + iCΩ2

π
(n − n′)(n + n′ + 1)[ωct

− tan−1(ωct)] −
2CΩ2

π
(n − n′)2∫

∞

0
dωω coth(βh̵ω

2
)

sin2(ωt2 )
ω2

e−ω/ωc
⎞
⎠
.

(2.21)

Note that for a material system realization, the environment would have a finite
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2.3 Scalar gravity model

extent resulting in a non-zero, lower frequency cut-off ω1: 0 < ω1 ≪ ωc [37]; here we

set the lower frequency cut-off ω1 = 0, reflecting the actual gravitational environment

with effectively infinite spatial extent. The integral in the above expression can then

be evaluated analytically to give

∫
∞

0
dωω coth(βh̵ω

2
)

sin2(ωt2 )
ω2

e−ω/ωc

=1

4
ln (1 + t2ω2

c) +
1

2
ln

⎡⎢⎢⎢⎢⎢⎣

Γ2 ( 1
βh̵ωc
+ 1)

Γ (1−itωc

βh̵ωc
+ 1)Γ (1+itωc

βh̵ωc
+ 1)

⎤⎥⎥⎥⎥⎥⎦
. (2.22)

Taking the limit βh̵ωc → ∞ (i.e, upper cut-off frequency large compared to the bath

temperature), we have

Γ2 ( 1
βh̵ωc
+ 1)

Γ (1−itωc

βh̵ωc
+ 1)Γ (1+itωc

βh̵ωc
+ 1)

→ βh̵

πt
sinh( πt

βh̵
) . (2.23)

With approximation (2.23), Eq. (2.21) becomes

∣n(t)⟩⟨n′(t)∣ = ∣n⟩⟨n′∣ exp [ − iΩ(n − n′)t

+ iCΩ2

π
(n − n′)(n + n′ + 1) [ωct − tan−1(ωct)]

− CΩ2

π
(n − n′)2 (1

2
ln (1 + t2ω2

c) + ln [βh̵
πt

sinh( πt
βh̵
)]) ]. (2.24)

We now discuss the various terms appearing in Eq. (2.24). First, note that the

outer product is time-independent for n = n′, a consequence of the fact that the system

oscillator Hamiltonian commutes with the system-bath interaction Hamiltonian. The

first, pure imaginary term −iΩ(n−n′)t in the argument of the exponential is just the
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free oscillator system evolution. The second pure imaginary term

i
CΩ2

π
(n − n′)(n + n′ + 1) [ωct − tan−1(ωct)] (2.25)

is upper cut-off dependent and comprises both a linear term in system number, which

renormalizes the system oscillator frequency Ω, and a quadratic term in system num-

ber that is in fact of the same form as the free evolution of a Kerr nonlinear oscillator

expressed in the number state basis:

H = h̵Ωa†a + h̵Λkerr(a†a)2. (2.26)

Thus, we should properly include a Kerr-type nonlinearity in our starting Hamilto-

nian (2.14), with the environmentally induced term iCΩ2

π (n − n′)(n + n′)ωct renor-

malizing the nonlinear interaction strength Λkerr. The latter term may be thought of

as somewhat analogous to the Newtonian gravitational self-interaction arising from

the interaction of a matter system with its gravitating environment. Since we are

primarily concerned with decoherence in this chapter, we will neglect the quadratic

in number term, supposing that it renormalizes an existing Kerr nonlinearity with

resulting negligible renormalized coupling strength Λkerr. For t≫ ω−1c , the tan−1(ωct)

term in (2.25) tends to π/2; this term can be absorbed through a shift in the time

coordinate: t→ t̃ = t − π/(2ωc).

Taking into account the system frequency and Kerr nonlinearity renormalizations

as just described, Eq. (2.24) simplifies to

∣n(t)⟩⟨n′(t)∣ = ∣n⟩⟨n′∣ exp( − iΩ(n − n′)t

− C
π
(n − n′)2 (1

2
ln (1 + t2ω2

c) + ln [βh̵
πt

sinh( πt
βh̵
)])), (2.27)
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where we have redefined the coupling constant as C → C̃ = CΩ2 and dropped the

tilde. The real term on the second line of the argument of the exponential results

in decoherence, i.e., exponential decay of the outer product for n ≠ n′. In the high

temperature (equivalently long time) limit corresponding to t≫ βh̵≫ ω−1c , Eq. (2.27)

can be approximated asymptotically as

∣n(t)⟩⟨n′(t)∣ = ∣n⟩⟨n′∣ exp( − iΩ(n − n′)t − (n − n′)2C [ 1

π
ln(βh̵ωc

2π
) + (βh̵)−1t]).

(2.28)

From Eq. (2.28), it is clear that the outer product terms for n ≠ n′ decay exponentially

with rate given by (n − n′)2CkBT /h̵. Note however, that for early, ‘Planckian’ (by

analogy with gravity) times t ≲ ω−1c , the rate of decoherence is governed by the

upper cut-off ωc, resulting in the logarithm term appearing in Eq. (2.28); depending

on the magnitude of the ratio h̵ωc/kBT ≫ 1, there may already be a significant

‘burst’ of decoherence during the ‘Planckian’ regime before the later, high temperature

exponential decoherence regime. The fact that the decoherence rate depends on the

upper cut-off frequency ωc is a consequence of assuming an initial system-environment

product state [41]. The latter assumption is tantamount to supposing that the system

initial state can be prepared on time scales shorter than ω−1c (or equivalently, the

system-environment interaction is switched on over a time scale shorter than ω−1c ).

While this may be possible for low energy, solid state system environments (i.e.,

phonons), for an actual gravitational environment with corresponding characteristic

Planck time scale, the system state cannot be similarly isolated from the gravitational

environment; an analysis which accounts for the system remaining correlated with the

environment while its state is being prepared on timescales that are long compared

with ω−1c , is expected to result in a subsequent decoherence rate that does not depend

on the upper cut-off frequency of the environment.
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2.3.2. Decoherence

In the following, we will use Eq. (2.27) to determine the decoherence dynamics of the

oscillator system for initial coherent state superpositions of the form

ρinit = N (∣α1⟩ + ∣α2⟩) (⟨α1∣ + ⟨α2∣) ⊗ ρbath, (2.29)

where ∣α1⟩ and ∣α2⟩ denote coherent states and N is the normalization constant. We

consider coherent states since they describe most closely a cooled down, macroscopic

oscillator center of mass system. We emphasise that we do not rely on any of the

approximations that are often invoked in the study of open quantum system dynamics

(beyond assuming an initial product state). In particular, the following analysis is

valid for both short/long time scales and high/low temperatures.

Note from the form of (the exact) Eq. (2.27), that the system will evolve into

a classical mixture of number states with probability coefficients that are identical

to the coefficients of the initial system state. In contrast to other types of system-

bath interaction where the final steady state of the system is usually temperature

dependent, for the present model the temperature only determines how fast the system

decoheres–not its long time limit steady state. From Eq. (2.27), we also see that

the decoherence rate is proportional to (n − n′)2 for a superposition of two number

states ∣n⟩ and ∣n′⟩. Thus, for a superposition of coherent states, we expect that the

larger the average energy difference, the more rapid the decoherence. This trend

is apparent in the oscillator system Wigner function [42] snapshots shown in Fig.

2.3. For the initial, example superposition state with α1 = 3, α2 = −7, the negative

Wigner function regions disappear in the long time limit (signifying loss of quantum

coherence). On the other hand, for the initial example superposition states with

nearby coherent state parameter magnitudes: α1 = −α2 = 3, α1 = 3 and α2 = −5,
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(a) τ = π/2 (b) τ = 9π/2 (c) τ →∞

(d) τ = π/2 (e) τ = 9π/2 (f) τ →∞

(g) τ = π/2 (h) τ →∞

Figure 2.3: Wigner function snapshots at different times τ = Ωt for the oscillator
system. The horizontal coordinate is the dimensionless position x

√
MΩ/h̵ and the

vertical coordinate is the dimensionless momentum p/
√
MΩh̵. Example coherent

state parameters are (a)-(c) α1 = 3, α2 = −3; (d)-(f) α1 = 3, α2 = −5; (g), (h) α1 = 3,
α2 = −7. Other fixed system-bath parameters are: βh̵Ω = 1, ωc/Ω = 103, C/π = 0.001.

negative Wigner function regions remain in the long time limit (signifying remaining

quantum coherence), as is seen more clearly for the zoomed-in Fig. 2.4. Such trends

are consistent with decoherence only resulting for initial spatial superpositions where

the states making up the superposition have sufficiently distinct average energies;

initial spatial superpositions with the same (or nearby) average energies for the states

making up the superposition do not completely decohere. Note also from the Wigner

function snapshots in Fig. 2.3 and Fig. 2.4 that the initial coherent superpositions

phase-diffuse first into crescent-like regions and then eventually into rings. This is

consistent with the fact that, as mentioned above, the final state is always a mixture
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(a) τ →∞ (b) τ →∞

Figure 2.4: Zoomed-in snapshots of the Wigner function: (a) α1 = −α2 = 3; (b)
α1 = 3, α2 = −5.

of number states.

The above findings are in accord with first investigations on the gravitational

decoherence of massive scalar quantum field initial superposition states [12, 13], where

it is found that superpositions comprising distinct energy states decohere.

Following from the discussion in Sec. 2.1, an operational way (i.e., in principle

measurement procedure) to quantify the coherence is through the system oscillator

position detection probability density P (x, t) = ⟨x∣ρ(t)∣x⟩ [c.f. the full field-theoretic

counterpart Eq. (2.6)] when the two (initially coherent) wavefunctions making up

the superposition pass through each other at x = 0; these time instants are τn =

Ωtn = π(n + 1/2), n = 0,1,2, . . . for the initial coherent state superposition examples

considered above, as can be seen for the early time snapshots in Fig 2.3. The presence

of coherence is manifested in P (x, t) having an oscillatory dependence about x = 0.

The latter operational approach corresponds to a two-slit inteference measurement,

where the harmonic potential plays the role of the slits by (periodically) bringing the

wavefunction components in the initial superposition together. Figure 2.5 shows the

position probability distribution function in the long time limit, steady state for the

various example initial coherent state superpositions; we can see that the probability

density indicates interference fringes in the vicinity of x = 0 consistent with the
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presence of negative-valued Wigner function regions shown in Fig. 2.3; the snapshots

can be interpreted as the marginal probability distributions obtained by integrating

over the momentum coordinate Wigner function distributions. In particular, the

interference remains for α1 ≃ −α2, where the average energies of each coherent state

making up the initial superposition are not too dissimilar. Note that the other, larger

scale scale probability variations in Fig. 2.5 are due to the final, steady state being a

mixture of different number states, as mentioned earlier above.

(a) (b)

(c) (d)

Figure 2.5: Snapshots of the (unnormalized) position probability density P versus

the dimensionless position coordinate x
√
MΩ/h̵ in the long time limit, steady state;

the probability density is specified up to an overall normalization constant. (a)
α1 = −α2 = 3; (b) α1 = −α2 = −5; (c) α1 = 3 and α2 = −5; (d) α1 = 3 and α2 = −7. The
system-bath parameters are: βh̵Ω = 1, ωc/Ω = 103, C/π = 0.001.
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We adopt the commonly used ‘visibility’ as a measure of the size of the interference

fringes, defined as

ν = Pmax − Pmin

Pmax + Pmin

, (2.30)

where Pmax is the central maximum of the probability density P (x) at x = 0 , and

Pmin is the first local minimum of the probability to the right (or left) of the central

maximum. The decrease in visibility over time starting from the initial superposition

state (2.29), provides an operational, quantitative measure of decoherence; Fig. 2.6

gives the visibility as a function of time for various example, initial coherent state,

bath temperature, and system-bath coupling parameters. As to be expected, the

visibility decreases more rapidly the higher the temperature and the stronger the

coupling. Also, the more dissimilar in magnitude α2 < 0 is from α1 > 0 (and hence

the larger the average energy difference) in the initial coherent state superposition,

the more rapid is the decrease in visibility.

(a) (b) (c)

Figure 2.6: Visibility as a function of dimensionless time τ = Ωt. The example
parameters are (a) α1 = 3, α2 = −5, C/π = 0.0001, with dimensionless temperature
kBT /(h̵Ω); (b) α1 = 3, α2 = −5, kBT /(h̵Ω) = 1; (c) α1 = 3, C/π = 0.0001,
kBT /(h̵Ω) = 1.
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2.4 Scalar QED model

Section 2.4

Scalar QED model

In contrast to the scalar-gravity 0d toy model, the scalar QED toy model does not

admit an exact, analytical solution for its quantum dynamics. We will therefore

utilize various approximation methods towards solving for its quantum dynamics.

In particular, we consider both quantum Langevin and master equation approaches,

and approximations within these approaches that take advantage of the assumed weak

system-bath interaction to show that the model maps onto the oscillator system with

two-photon damping.

2.4.1. Classical Langevin equation

We start with the Lagrangian Lqed (2.9) and will first derive the Langevin equation

that describes the classical oscillator system dynamics interacting with the oscillator

bath following the approach of Ref. [43]. Expanding out the kinetic energy term of

Eq. (2.9), we have

L = 1

2
Mẋ2 − 1

2
MΩ2x2 +∑

i

(1

2
mq̇2i −

1

2
mω2

i q
2
i ) +Mλxẋ∑

i

qi +
1

2
Mλ2x2∑

i,j

qiqj, (2.31)

where we omit the ‘qed’ subscript from now on. The system and bath momentum

coordinates are

p = ∂L
∂ẋ
=Mẋ +Mλx∑

i

qi, (2.32)

pi =
∂L

∂q̇i
=mq̇i, (2.33)
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2.4 Scalar QED model

and the model Hamiltonian is

H = p
2

2M
+ 1

2
MΩ2x2 +∑

i

(
p2i
2m
+ 1

2
mω2

i q
2
i ) − λxp∑

i

qi. (2.34)

Hamiltonian (2.34) is to be compared with the gravity toy model Hamiltonian (2.13),

which differs solely in the form of the system coordinate part of the interaction term;

both models have in common a quadratic system coordinate coupling, to be contrasted

with the usually studied oscillator system-oscillator bath model with interaction term

that is linear in the coupled system and bath coordinates.

Hamilton’s equations for the system and bath coordinates are

ṗi = −mω2
i qi + λxp, (2.35)

q̇i =
pi
m
, (2.36)

ṗ = −MΩ2x + λp∑
i

qi, (2.37)

ẋ = p

M
− λx∑

i

qi. (2.38)

Formally integrating the equations of motion (2.35), (2.36) for the bath coordinates

and expressing in terms of the system coordinates:

qi(t) −
λx(t)p(t)
mω2

i

=[qi(0) −
λ

mω2
i

x(0)p(0)] cosωit +
pi(0)
mωi

sinωit

− λ

mω2
i
∫

t

0
dτ cosωi(t − τ)

d

dτ
(x(τ)p(τ)) , (2.39)

where we have performed an integration by parts that allows to identify system renor-

malization and damping terms as we shall see below. Substituting the solution (2.39)

for qi(t) into the equations of motion (2.37), (2.38) for the system coordinates leads
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2.4 Scalar QED model

to the following non-linear Langevin equations:

ẋ = ∂H
m

∂p
+ λ2x∫

τ

0
dτK(t − τ) d

dτ
(x(τ)p(τ)) − λxF (t), (2.40)

ṗ = −∂H
m

∂x
− λ2p∫

t

0
dτK(t − τ) d

dτ
(x(τ)p(τ)) + λpF (t), (2.41)

where the renormalized system Hamiltonian is

Hm = p2

2M
+ 1

2
MΩ2x2 − λ2∑

i

1

2mω2
i

x2p2, (2.42)

the bath memory kernel is

K(t − τ) = ∑
i

1

mω2
i

cosωi(t − τ), (2.43)

and the bath random force function is

F (t) = ∑
i

([qi(0) −
λ

mω2
i

x(0)p(0)] cosωit +
pi(0)
mωi

sinωit) . (2.44)

In particular, the first term on the right hand side of the equals sign in the Langevin

equations (2.40),(2.41) describes the Hamiltonian evolution, the second term describes

nonlinear damping, and the third term the random force. Note that the bath induces

a quartic anharmonic potential in the system Hamiltonian (2.42). Such a term is

analogous to a Coulomb self-interaction potential in the scalar QED field system.

After making the rotating wave approximation (RWA), the interaction term reduces

to a Kerr-type nonlinearity [c.f. Eq. (2.26)]. Together with ‘two-photon’ damping

[see Eq. (2.71) below], the resulting open system quantum dynamics can generate

quantum states with negative-valued Wigner function regions in the long-time limit,

starting from initial Gaussian states [44]. In the following, with decoherence dynamics
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2.4 Scalar QED model

our main subject of interest, we will neglect this induced potential energy term, sup-

posing that it renormalizes an existing anharmonic potential with resulting negligible

renormalized coupling strength.

Assuming a thermal equilibrium canonical ensemble distribution for the initial

bath coordinates qi(0), pi(0) in Eq. (2.44), it can be shown that the fluctuation

dissipation relation (FDR) between the memory kernel and the random force follows:

⟨F (t)F (τ)⟩ = kBTK(t − τ), (2.45)

where kB is Boltzmann’s constant and T is the bath temperature. We shall assume

that the bath responds rapidly on the time-scale of the system oscillator dynamics, so

that memory kernel is approximated as K(t − τ) = k0δ(t − τ), where k0 is a constant.

The Langevin equations (2.40), (2.41) then become

ẋ = p

M
+ 1

2
λ2k0x

d

dt
(xp) − λxF, (2.46)

ṗ = −MΩ2x − 1

2
λ2k0p

d

dt
(xp) + λpF, (2.47)

with the FDR (2.45) taking the form

⟨F (t)F (τ)⟩ = kBTk0δ(t − τ). (2.48)

The above delta function-approximated memory kernel can be obtained from a

bath spectral density n(ω) with upper cut-off frequency ωc in the limit ωc → ∞. In

particular, for a dense bath spectrum, we can approximate the sum over bath degrees

of freedom with a bath spectral frequency integral:

∑
i

(⋯) → ∫
∞

0
dωn(ω) (⋯) . (2.49)
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Assuming a Lorentzian spectral density

n(ω) = mk0
π

ω2ω2
c

ω2 + ω2
c

, (2.50)

the memory kernel (2.43) then becomes

K(t − τ) = k0ωc

2
e−ωc∣t−τ ∣. (2.51)

Taking the infinite limit ωc → +∞, we obtain the above delta function-approximated

memory kernel:

lim
ωc→+∞

K(t − τ) = k0δ(t − τ). (2.52)

Note that we could equally well have assumed a spectral density with exponential

cut-off function instead, as for the gravity toy model [c.f. Eq. (2.20)]; while the calcu-

lations are somewhat more straightforward for the Lorentzian spectral density, we do

not expect any qualitative differences in the resulting system quantum dynamics. The

motivation to use the Lorentzian spectral density here is purely calculational conve-

nience. The classical, non-linear Langevin equations (2.46), (2.47) can be numerically

solved as stochastic differential equations as we show in the following sections when

comparing with the corresponding quantum dynamics.

2.4.2. Quantum Langevin equation

The quantum description is obtained through the correspondence principle where x,

p and pi, qi become operators satisfying the canonical commutation relations:

[x, p] = ih̵, [xi, pj] = ih̵δij, (2.53)
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with all other commutators vanishing. From Eq. (2.34), the quantum Hamiltonian

operator is

H = p
2

2M
+ 1

2
MΩ2x2 +∑

i

(
p2i
2m
+ 1

2
mω2

i q
2
i ) −

λ

2
∑
i

qi(xp + px), (2.54)

where the interaction term on the second line is symmetrized in x and p in order

that H is Hermitian. Formally integrating Heisenberg’s equations of motion for the

bath operators, we obtain the following quantum Langevin equations for the system

position and momentum operators:

ẋ = p
M
− λ2∑

i

1

2mω2
i

x (xp + px)

+ λ2x∑
i
∫

τ

0
dτ

cosωi(t − τ)
2mω2

i

d

dτ
(xp + px) − λF (t)x, (2.55)

ṗ = −MΩ2x + λ2∑
i

1

2mω2
i

p (xp + px)

− λ2p∑
i
∫

τ

0
dτ

cosωi(t − τ)
2mω2

i

d

dτ
(xp + px) + λF (t)p, (2.56)

where the force noise operator is given by Eq. (2.44) with the system/bath coordi-

nates and momenta replaced by their corresponding operators. It is convenient to

express the quantum Langevin equations in terms of the system creation and anni-

hilation operators which are defined through the usual relations x =
√

h̵
2MΩ(a + a†),

p = i
√

MΩh̵
2 (a† − a):

ȧ = − iΩa − ih̵λ
2

2
∑
i

1

mω2
i

a† (a†2 − a2) − λF (t)a†

+ ih̵λ
2

2
a†∑

i
∫

t

0
dτ

cosωi(t − τ)
mω2

i

d

dτ
(a†2 − a2) . (2.57)
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Under conditions of weak system-environment coupling, Eq. (2.57) can be simpli-

fied by applying the RWA as we now show. Making the substitution a(t) = A(t)e−iΩt

in Eq. (2.57), we obtain

Ȧ = − ih̵λ
2

2
∑
i

1

mω2
i

A† (e4iΩtA†2 −A2)

+ ih̵λ
2

2
A†e2iΩt∑

i
∫

t

0
dτ

cosωi(t − τ)
mω2

i

d

dτ
(A†2e2iΩτ −A2e−2iΩτ) − λe2iΩtF (t)A†.

(2.58)

Dropping fast rotating terms, neglecting time derivatives of A(τ) (since A evolves

at much slower rates than Ω), and setting A(τ) = A(t) (Markov approximation),

Eq. (2.58) becomes approximately

Ȧ = ih̵λ
2

2
∑
i

1

mω2
i

A†A2 − λe2iΩtF (t)A†

− h̵Ωλ2∑
i
∫

t

0
dτ

cosωi(t − τ)
mω2

i

e2iΩ(t−τ)A†(t)A(t)2. (2.59)

Utilizing the Lorentzian spectral density (2.50), Eq. (2.59) becomes

Ȧ = iγωc

2Ω
A†A2 − γωc

ωc − 2iΩ
A†A2 − λe2iΩtF (t)A†, (2.60)

where we have dropped fast oscillating terms and where γ = h̵Ωλ2k0/2. For ωc ≫ Ω

and neglecting the anharmonic interaction term, Eq. (2.60) simplifies to

Ȧ = −γA†A2 − λe2iΩtF (t)A†. (2.61)

Defining the noise operator as

b(t) = −λe
2iΩtF (t)
2
√
γ

(2.62)
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and utilizing Eqs. (2.44), (2.50) and the RWA, the usual noise operator (anti)commutation

rules follow:

[b(t), b†(t′)] = δ(t − t′),

{b(t), b†(t′)} = δ(t − t′)[2n(2Ω) + 1],
(2.63)

where the Bose-Einstein thermal average occupation number is evaluated at twice

the system oscillator frequency: n(2Ω) = (e2h̵Ω/kBT − 1)−1. Finally, transforming back

to the non-rotating frame, A(t) = a(t)eiΩt, we obtain our desired, RWA quantum

Langevin equation:

ȧ = −iΩa − γa†a2 + 2
√
γe−2iΩtba†. (2.64)

From Eq. (2.64), we see that the parameter γ has the dimensions of inverse time and

characterizes the strength of a nonlinear damping term, while the third term is the

nonlinear force noise operator. Equation (2.64) can be solved numerically as a quan-

tum stochastic differential equation or approximately by first deriving the equations

for the various moments in a, b, and their Hermitian conjugates and truncating at

some order.

2.4.3. Quantum master equation

An alternative way to express the quantum dynamics is via the quantum master

equation, where the time evolution is given by the oscillator system reduced density

matrix. To second order in the interaction potential and assuming that the bath

responds much more rapidly than the system oscillation timescale (Born-Markov ap-

proximation), the master equation for system density matrix ρ in the interaction

picture is approximately [23, 24, 25],

dρ

dt
= − 1

h̵2 ∫
t

0
dt′TrB [V (t), [V (t′), ρ(t) ⊗ ρB]] , (2.65)
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where ρB is the initial thermal state of the bath, TrB denotes the trace over the bath

state and V (t) is the system-bath interaction Hamiltonian expressed in the interaction

picture:

V (t) = ih̵λ
2
∑
i

√
h̵

2mωi

eiH0t (b†i + bi) (a†2 − a2) e−iH0t

= ih̵λ
2
∑
i

√
h̵

2miωi

(b†ieiωit + bie−iωit) (a†2e2iΩt − a2e−2iΩt) . (2.66)

In order to simplify the next steps, we introduce the following shorthand notation:

A(t) = a†2e2iΩt − a2e−2iΩt (2.67)

B(t) = ∑
i

√
h̵

2mωi

(b†ieiωit + bie−iωit) . (2.68)

Expanding out Eq. (2.65) and substituting in Eqs. (2.67) and (2.68), we obtain:

dρ

dt
= λ

2

4 ∫
t

0
dt′ {[A(t)A(t′)ρ −A(t′)ρA(t)] ⟨B(t)B(t′)⟩

+ [ρA(t′)A(t) − A(t)ρA(t′)] ⟨B(t′)B(t)⟩} , (2.69)

where

⟨B(t)B(t′)⟩ =∑
i

h̵

2mωi

[(n(ωi) + 1)e−ωi(t−t′) + n(ωi)eiωi(t−t′)] . (2.70)

Using the bath spectral density (2.50) and applying the RWA, we obtain the following

quantum master equation:

dρ

dt
= iΩ[ρ, a†a] + γ

2
(n + 1) ([a2ρ, a†2] + [a2, ρa†2]) + γ

2
n ([a†2ρ, a2] + [a†2, ρa2]) ,

(2.71)

37



2.4 Scalar QED model

where n = n(2Ω) = (e2h̵Ω/kBT − 1)−1. In Eq. (2.71), we recognize an oscillator subject

to ‘two-photon’ damping.

As a consistency check, we can obtain an equation for the expectation value of a

starting either from the quantum Langevin equation (2.64) with ⟨a⟩ = Tr (a(t)ρ(0))

or from the master equation (2.71) with ⟨a⟩ = Tr (a(0)ρ(t)); both approaches coincide

to give

⟨ȧ⟩ = −iΩ⟨a⟩ − γ⟨a†a2⟩ + 2γn(2Ω)⟨a⟩. (2.72)

2.4.4. Validity of the RWA and quantum vs classical dynamics

Starting with the 0d analogue scalar QED model Lagrangian (2.9), in the previous

sections we derived a Markov approximated classical Langevin equation (2.46), (2.47),

a Markov-RWA quantum Langevin equation (2.64), and a corresponding Markov-

RWA quantum master equation (2.71). In the following, we will test the validity of

the RWA at the classical level, as well as compare the classical versus RWA quantum

dynamics for the averaged quantities ⟨a⟩ and ⟨a†a⟩.

It is convenient to express the classical Langevin equations (2.46), (2.47) in terms

of the complex coordinates (a, a∗) corresponding to the quantum annihilation/creation

operators:

ȧ = −iΩa + iγ
2Ω

d

dt
(a∗a∗ − aa)a∗ −

√
2γ

h̵Ω
F̃ a∗, (2.73)

where F̃ = F /
√
k0, so that ⟨F̃ (t)F̃ (τ)⟩ = kBTδ(t − τ). The corresponding classical

RWA Langevin equation is [c.f. Eq. (2.64)]:

ȧ = −iΩa − γa2a∗ −
√

2γ

h̵Ω
F̃ a∗. (2.74)

In order to solve the non-RWA (2.73) and RWA (2.74) Langevin equations, we treat
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them as classical stochastic differential equations:

da = −iΩadt + iγ
2Ω

d

dt
(a∗a∗ − aa)a∗dt −

√
2γkBT

h̵Ω
a∗dW, (2.75)

da = −iΩadt − γa2a∗dt −
√

2γkBT

h̵Ω
a∗dW, (2.76)

where W is the standard Wiener process, i.e., a continuous-time random walk [45].

Figures 2.7 and 2.8 give numerical solutions to these classical stochastic equations as

well as to the quantum master equation (2.71) (the latter solved using QuTiP [46])

for a range of damping parameters γ and bath temperatures T . These parameters

are respectively expressed in terms of the dimensionless Q = Ω/γ factor and thermal

average bath occupation number n. The quantum system is initially in a coherent

state ∣α⟩ for which a∣α⟩ = α∣α⟩, while the corresponding classical system is given an

initial amplitude a(0) = α, in order to allow a direct comparison between the quantum

and classical dynamics. From Fig. 2.7, it can be seen that increasing n and Q−1 both

lead to faster decay of the amplitude, signalling the non-linear nature of the damping

and noise terms in the system Langevin and quantum master equations. It can also

be seen that the difference between non-RWA, RWA and classical vs quantum is

barely visible with the chosen parameters. However, such differences clearly show

up in Fig. 2.8 where we consider the time evolution of the average system number

⟨a†a⟩. In particular, throwing away fast rotating terms due to the RWA results

in smoothing of the oscillating behaviour of the non-RWA time evolution of ⟨a†a⟩.

Furthermore, the quantum simulation of ⟨a†a⟩ decays faster than the corresponding

classical approximation.
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(a) (b)

(c) (d)

Figure 2.7: Plots of the dimensionless average position ⟨x⟩
√
MΩ/(2h̵) = Re [⟨a⟩] as

a function of dimensionless time τ = Ωt. The initial value α = a(0) = 4 in each plot.
The time evolution of the classical amplitude a(t) is the result of averaging over
3000 stochastic trajectories. The example parameters are (a) Q−1 = 0.003, n = 3; (b)
Q−1 = 0.005, n = 3; (c) Q−1 = 0.003, n = 5; (d) Q−1 = 0.005, n = 5.

2.4.5. Decoherence

In the following, we consider the evolution of system oscillator initial coherent state

superpositions of the form

∣ψ(0)⟩ = N (∣α⟩ + ∣ − α⟩) , (2.77)

where N is a normalization constant. Figure 2.9 displays the evolving state through

its Wigner function representation [42] for a selection of α, n, and Q parameter

values–obtained by numerically solving the master equation (2.71). Quantum co-
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(a) (b)

(c) (d)

Figure 2.8: Plots of the average system number ⟨a†a⟩ as a function of dimensionless
time τ = Ωt. The initial value α = a(0) = 4 in each plot. The time evolution of the
classical absolute amplitude squared a(t)a∗(t) is the result of averaging 5000
stochastic trajectories. The example parameters are (a) Q−1 = 0.003, n = 3; (b)
Q−1 = 0.005, n = 3; (c) Q−1 = 0.003, n = 5; (d) Q−1 = 0.005, n = 5.

herence manifested in the presence of negative-valued Wigner function regions can

survive longer than the amplitude damping time. This is to be contrasted with the

commonly-investigated quantum Brownian oscillator model with single photon damp-

ing, described by the following master equation:

dρ

dt
=iΩ[ρ, a†a] + γ

2
(n + 1) (2aρa† − a†aρρa†a) + γ

2
n (2a†ρa − aa†ρ − ρaa†) . (2.78)

For the latter master equation, decoherence proceeds more rapidly than amplitude

damping. Note that the initial, even superposition state (2.77) is an eigenstate of the
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(a) τ = 0 (b) τ = 3π
2 (c) τ = 9π

2

(d) τ = 0 (e) τ = 3π
2 (f) τ = 9π

2

Figure 2.9: Wigner function snapshots at different times. Horizontal coordinate is
for dimensionless position x

√
MΩ/h̵ and vertical coordinate is for dimensionless

momentum p/
√
MΩh̵. The example parameters are (a), (b) and (c): α = 3, n = 3

and Q−1 = 0.001; (d), (e) and (f): α = 3, n = 5 and Q−1 = 0.001.

operator a2 since a2∣ ± α⟩ = α2∣ ± α⟩, so that the two-photon loss term in the master

equation (2.71) preserves coherence [38]. In contrast, the even superposition state

(2.77) flips to the odd superposition state N (∣α⟩ − ∣ − α⟩) under the action of a single

annihilation operator a, hence the single photon loss term in the master equation

(2.78) does not preserve coherence.

Figure 2.10 gives snapshots of the system oscillator position probability density

P (x, t) = ⟨x∣ρ(t)∣x⟩ when the two initial coherent state wavefunctions making up

the superposition pass through each other at x = 0 (at time instants τk = Ωtk =

π(k+1/2), k = 0,1,2, . . . ). These snapshots can be interpreted as the marginal proba-

bility distributions obtained by integrating over the momentum coordinate of Wigner

function distributions that are similar to those shown in Fig. 2.9 (but for different

parameter values). The presence of quantum coherence is manifested in P (x, t) hav-

ing an oscillatory dependence about x = 0. In contrast to the gravity toy model (c.f.,
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(a)
(b)

(c) (d)

Figure 2.10: Snapshots of the (unnormalized) position probability density P vs

dimensionless position coordinate x
√
MΩ/h̵ when the two initial coherent states in

the superposition pass through each other at x = 0 at times (a) τ = π/2, (b)
τ = (6 + 1/2)π/2, (c) τ = (42 + 1/2)π/2 and (d) τ = (190 + 1/2)π/2 . The example
parameters are Q−1 = 0.0005, α = 5, and n = 3. The probability density should be
understood with an overall normalization constant.

Fig. 2.5), the interference fringes survive longer than the initial coherent state peaks;

even after 190 cycles a small amount of interference is still present, while the initial

coherent states have decayed away.

Proceeding as in Sec. 2.3.2 for the scalar gravity model, We can operationally

quantify the decoherence of an initial superposition of coherent states by using the

fringe visibility measure ν (2.30) for the position detection probability density. Figure

2.11 shows the time dependence of the visibility ν for a range of parameter choices.
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(a) (b) (c)

Figure 2.11: Visibility as a function of dimensionless time τ = Ωt. The example
parameters are (a) Q−1 = 0.0003, n = 3; (b) α = 3, n = 5; (c) Q−1 = 0.0003, α = 3.

The rate at which the visibility is reduced increases with larger damping parameter

and bath temperature as for the single photon damping case with master equation

(2.78), but contrary to single photon damping the visibility reduction rate decreases

with larger initial amplitude.

Section 2.5

Concluding Remarks

In this chapter, we have explored two 0d system-bath models that share common fea-

tures with a scalar field system weakly coupled to gravity, and also with scalar QED.

The considered model systems comprise a single harmonic oscillator, with the gravi-

tational and electromagnetic fields replaced by a bath of harmonic oscillators, in each

case coupled to the oscillator system via non-quadratic interaction terms that resem-

ble the respective scalar-weak field gravity and scalar QED interactions. We utilized

these models as a test bed for an operational interference fringe visibility measure of

decoherence, as well as for various standard open quantum systems approximation

methods.

In particular, we have gained several insights working with the two models that

may be of use for analyzing gravitational decoherence: (1) A relatively straightfor-
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ward, interferometric operational approach for verifying decoherence dynamics can be

analyzed that does not involve just extracting the off-diagonal terms of the system re-

duced density matrix (which is not a gauge invariant quantity in the full theory). (2)

While the full scalar matter-gravitational system likely cannot be solved exactly as is

the case for the corresponding model system, verified standard open quantum systems

approximation methods (e.g., deriving a RWA quantum Langevin equation) may be

applicable to the full system; the more involved closed time path integral approaches

that are commonly applied to such dynamical quantum field system problems [22]

can be guided by the simpler approximation method approaches that are common to

non-relativistic open quantum systems analyses. (3) ‘Planckian’, cut-off dependent

terms can affect the initial decoherence dynamics. However, by being careful with the

choice of initial system-environment state taking into account finite state preparation

times, such cut-off dependence may be avoided.

The logical next step will be to apply the considered approximation methods to

the scalar QED system, and verify that the interferometric observable quantities for

probing decoherence are gauge invariant and accessible to analysis at low energy (i.e.,

‘table top’ experiment) scales. We can then apply the lessons learned from the 0d

models as well as the full scalar QED model to the scalar matter–weak gravity sys-

tem. While the latter quantum field system is of course more challenging to analyze,

the insights gained from this chapter might nevertheless serve as a useful guide in

developing an operational understanding of gravitational decoherence, just as the 0d

model (2.8) proved valuable for the initial field theoretic investigation in Ref. [12].
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Chapter 3

Cavity mode dephasing via the

optomechanical interaction with an

acoustic environment
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3.1 Introduction

Section 3.1

Introduction

Cavity optomechanical systems have received considerable attention over the past

decades, with applications ranging from the detection of classical gravity waves in

the macroscopic domain to the generation and detection of quantum states of me-

chanical oscillators in the nano-to-mesoscale regimes [35, 47]. Most investigations

deliberately consider one or at most a few cavity modes interacting similarly with

one or at most a few mechanical modes, with notable exceptions including optome-

chanical interactions between multiple driven bosonic modes and multiple mechanical

resonators [48], the consideration of interacting optical and acoustic waves coexist-

ing in bulk, crystalline solids [49], and environment-induced, driven cavity photon

blockade and Rabi oscillations via the optomechanical interaction [50].

In this chapter, we shall take as our starting point the following Hamiltonian:

H = h̵Ω(a†a + 1

2
)(1 +∑

i

λi (bi + b†i)) +
N

∑
i=1
h̵ωi (b†ibi +

1

2
) , (3.1)

where here a, a† are the annihilation/creation operators for a cavity mode with fre-

quency Ω, while the bi, b
†
i are the annihilation/creation operators for N mechanical

modes. The cavity and mechanical modes are coupled via the standard optomechan-

ical interaction with coupling constant parameters h̵Ωλi. Our particular focus will

be on the effective dynamics of the single cavity mode system interacting with many

(i.e., N⋙ 1) mechanical modes, with the latter viewed as an acoustic, environmental

bath for the cavity system. In contrast to the usual quantum Brownian motion model,

where the system-bath coupling is bilinear in their respective creation/annihilation

coordinates, Hamiltonian (3.1) does not result in energy damping of the cavity mode

system. This is a consequence of the fact that the system Hamiltonian commutes
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with the interaction Hamiltonian term. On the other hand, dephasing does result

for initial superpositions of energy eigenstates of the cavity system; for this reason,

Ref. [25] terms Eq. (3.1) the “phase damped oscillator”, and provides a second or-

der Born-Markov approximated solution to the cavity system reduced density matrix

dynamics via a master equation approach.

As we shall show, the effective dynamics for the cavity system reduced density

matrix can in fact be solved exactly up to a summation over bath modes, while the

latter summation can be carried out approximately for certain bath spectral densities;

the method of solution is based on that of Refs. [39, 40], which consider a single cavity

mode interacting with a single mechanical mode, and which again utilizes the fact

that the system and interaction term Hamiltonians commute.

Our interest in the Hamiltonian (3.1) and the resulting dephasing dynamics of

the cavity mode system reduced state stems from its analogue connection with grav-

itationally induced decoherence as we discussed in the previous chapter [12, 51]. In

the weak gravitational field regime, the leading order term in the interaction action

involving a scalar matter field ϕ(x) system and gravitational metric deviation hµν

from Minkowski space environment takes the form

SI =
√

8πG∫ d4xT µν(ϕ)hµν (3.2)

in natural units h̵ = c = 1, where T µν(ϕ) is the scalar field energy-momentum tensor.

This interaction term can result in the dephasing of scalar field energy superposition

states without energy damping [12, 13], just as for the cavity mode quantum dynamics

following from Hamiltonian (3.1) [51]. Comparing the optomechanical interaction

Hamiltonian in Eq. (3.1) with the matter-weak gravity interaction term action (3.2),

the linearly coupled acoustic phonon field plays the role of the weak graviton field,

while the quadratically coupled cavity mode plays the role of the scalar matter field.
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3.1 Introduction

As discussed in the previous chapter, exploring such optomechanical analogs may

shed light on gravitationally induced dephasing dynamics of macroscopic matter field

superposition states.

However, the cavity system dynamics following from the Hamiltonian (3.1) in-

terpreted as modeling cavity optomechanical bath systems is of interest in its own

right, particularly the consequences of the acoustic environment spatial dimension

and size for the cavity mode energy quantum superposition dephasing dynamics. We

shall find that for 1D and 2D elastic “string” and “membrane” acoustic environments

respectively, the cavity system dephasing dynamics depends on the geometric size

of the environment–a consequence of an infrared (IR) divergence in the limit as the

environment size tends to infinity. In contrast, for a bulk, elastic 3D acoustic en-

vironment (which shares the same Ohmic spectral density as for the gravitational

wave environment [12]), the cavity dephasing dynamics depends on the size of the

optical cavity system embedded within the 3D elastic medium – a consequence of an

ultraviolet (UV) divergence in the limit as the size of the cavity tends to zero, i.e.,

becomes pointlike.

Infrared divergences arising from long wavelength acoustic flexural modes of mem-

brane like structures in the infinite size limit are also encountered in other contexts,

for example the thermal expansion of 2D crystals [52] and atom–membrane surface

interactions [53, 54, 55, 56, 57, 58].

In Sec. 3.2, we solve for the cavity system reduced density matrix evolution

following from the time dependent Schrödinger equation with Hamiltonian (3.1) in

the Fock state (i.e., photon number) basis for both ohmic (s = 1) and subohmic

(s = 0,−1) bath spectral densities [see Eq. (3.6)], and with the oscillator environment

in an initial thermal state. This section extends the analysis of the revious chapter,

which considers only the Ohmic case and infinite-sized environment. In Sec. 3.3,
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3.2 Cavity Dephasing Dynamics

we consider a model cavity-acoustic environment optomechanical system realization

involving a LC oscillator capacitively coupled to a partially metallized, long elastic

strip and show how this system maps onto the subohmic s = −1 case; several details

of the model strip derivation are given in Appendix A. Section 3.4 considers another

model system consisting of an optical cavity interacting via light pressure with a large,

square elastic membrane [36], which maps onto the subohmic s = 0 case; both Secs

3.3 and 3.4 explore quantitatively by considering example, experimentally feasible

device parameter values, the cavity mode quantum dephasing dynamics dependence

on the acoustic environment size, i.e., the elastic strip length and side dimension of

the square membrane. Sec. 3.5 gives a concluding discussion.

Section 3.2

Cavity Dephasing Dynamics

Our starting point is the standard single cavity mode optomechanical Hamiltonian

(3.1), but with a bath of mechanical oscillator modes labelled by the index i =

0,1,2, . . . ,N ⋙ 1, instead of the usually considered single mode case [35]. Hamil-

tonian (3.1) neglects cavity-mechanical oscillator bath interaction terms of the form

a2(bi + b†i) and a†2(bi + b†i), which describe for example two photons annihilating and

creating a bath phonon (a2b†i ), or conversely a bath phonon annihilating and creating

two cavity photons (a†2bi). As we shall see later below in Secs. 3.3 and 3.4, such terms

can be neglected since the coupling constant λi is suppressed for phonon wavelengths

much smaller than the cavity size.

We now briefly review the steps for solving the time-dependent Schrödinger equa-

tion with Hamiltonian (3.1) [39, 40, 51] as the detailed derivation is already discussed

in the previous chapter. We assume that the cavity mode system can be prepared

in an initial product state with the bath, the latter of which is assumed to be in a
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3.2 Cavity Dephasing Dynamics

thermal state: ρinitial = ρc ⊗ ρbath. The cavity system initial state is decomposed in

terms of the Fock (i.e., number) state basis, ρc = ∑n,n′ cnn′ ∣n⟩⟨n′∣, and the thermal

bath state expressed in a coherent state basis:

ρbath =∏
i

1

π (eβh̵ωi − 1) ∫
dα2

i exp ( − ∣αi∣2 (eβh̵ωi − 1) )∣αi⟩⟨αi∣, (3.3)

where β−1 = kBT , with kB Boltzmann’s constant and T the bath temperature. Solv-

ing first the Schrödinger equation for an initial basis state ∣n,{αi}⟩ and then trac-

ing out the bath, we obtain for the reduced state of the cavity mode: ρc(t) =

∑n,n′ cnn′ ∣n(t)⟩⟨n′(t)∣, where the time-dependent outer product is [51]

∣n(t)⟩⟨n′(t)∣ =∣n⟩⟨n′∣ exp
⎛
⎝
− it [Ω(n − n′) − (n + n′ + 1)(n − n′)∑

i

(Ωλi)2

ωi

]

− i(n + n′ + 1)(n − n′)∑
i

(Ωλi
ωi

)
2

sin(ωit)

− 2(n − n′)2∑
i

(Ωλi
ωi

)
2

coth(βh̵ωi

2
) sin2 (ωit

2
)
⎞
⎠
. (3.4)

Note that this outer product is time-independent for n = n′, a consequence of the fact

that the system oscillator Hamiltonian commutes with the system-bath interaction

Hamiltonian.

We now discuss the various terms appearing in Eq. (3.4). The first imaginary term

−iΩ(n−n′)t in the argument of the exponential is just the free cavity oscillator system

evolution. The second imaginary term gives rise to a cavity frequency renormalization

Ω′ = Ω − ∑i(Ωλi)2/ωi [from the (n − n′) part], as well as an induced Kerr nonlinear

self-interaction [from the (n2 − n′2) part] in the oscillator Hamiltonian:

H = h̵Ωa†a + h̵Λkerr(a†a)2, (3.5)
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3.2 Cavity Dephasing Dynamics

where Λkerr = −∑i(Ωλi)2/ωi. The third imaginary term cancels the just-described

second imaginary term in the short time limit t → 0, while it decays to zero as t

increases due to the oscillating sine term; later below, we give a more quantitative

specification of the short and long time regimes. Finally, the fourth, real term in

the argument of the exponential in Eq. (3.4) can result in dephasing, causing the

off-diagonal terms of the system reduced density operator in the number state basis

to decrease with increasing time.

In order to obtain a more quantitative understanding of the time dependent be-

havior of the various terms appearing in the outer product expression (3.4), we will

approximate the discrete sum over the acoustic bath modes with a continuous fre-

quency integral as follows:

π∑
i

λ2i f(ωi) ≈ C ∫
∞

ω1

dωωsf(ω)e−ω/ωu , (3.6)

where the function f(ω) is determined by the ωi dependence of a given term in

the argument of the exponential in Eq. (3.4) and C is a frequency-independent

coupling strength constant; approximation (3.6) necessarily requires N ⋙ 1 for a

sufficiently dense bath frequency spectrum. Following common convention [59], we

term optomechanical cavity-acoustic bath systems with exponent s = 1 “ohmic” and

systems with exponent s < 1 “subohmic”. The value of the exponent s is determined

by the combined frequency dependences of the acoustic bath mode spectral density

and of the optomechanical coupling λi. For the concrete example optomechanical

model realizations in Secs. 3.3 and 3.4, we will see that the exponents s = −1 and

s = 0 correspond to 1D and 2D acoustic environments, respectively.

Depending on the value of the exponent s and the form of f(ω), an upper cut-off

function with some characteristic cut-off frequency ωu may be required in order to

regularize a possible UV divergence as ω →∞. For the model realizations considered
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3.2 Cavity Dephasing Dynamics

in the following sections, an upper cut-off arises naturally through a suppression of

the optical mode system-acoustic bath coupling when the acoustic phonon wavelength

becomes smaller than a characteristic optical cavity system dimension. Note that the

functional form of the upper cut-off dependences for these model examples is not in

fact of the same exponential cut-off form as assumed in Eq. (3.6). Nevertheless, it

is still informative to consider the commonly-used exponential cut-off since it readily

allows closed form analytical expressions for the various summation terms appearing

in Eq. (3.4) approximated as integrals.

Furthermore, a lower frequency cut-off, which we denote as ω1 (≪ ωu) in Eq.

(3.6), may be required depending on the value of the exponent s and form of the

function f(ω), in order to regularize a possible IR divergence as ω → 0. For the

model realizations considered in the following sections, a lower frequency cut-off arises

naturally as the fundamental, lowest frequency mode ω1 of the acoustic environment

medium which has a finite size.

Using the integral approximation Eq. (3.6), the two imaginary, induced phase

terms in Eq. (3.4) can be evaluated approximately analytically by expressing them

in terms of the incomplete Gamma function Γ(s, z) = ∫
∞
z dxxs−1e−x:

it(n + n′ + 1)(n − n′)∑
i

Ω2λ2i
ωi

≈ it(n + n′ + 1)(n − n′)CΩ2

π ∫
∞

ω1

dωωs−1e−ω/ωu

= it(n + n′ + 1)(n − n′)CΩ2ωs
u

π
Γ(s, ω1

ωu

) , (3.7)
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and

−i(n + n′ + 1)(n − n′)∑
i

Ω2λ2i
ω2
i

sin(ωit)

≈ − i(n + n′ + 1)(n − n′)CΩ2

π ∫
∞

ω1

dωωs−2 sin(ωt)e−ω/ωu

= − i(n + n′ + 1)(n − n′)CΩ2ωs−1
u

π
Im [(1 − iωut)1−sΓ(s − 1,

ω1

ωu

(1 − iωut))] . (3.8)

The real, induced dephasing term in Eq. (3.4), with integral approximation (3.6),

can only be expressed analytically in certain time range limits; we will consider the

high temperature limit defined as kBT ≫ h̵/t (equivalently t≫ βh̵), for which the coth

function can be expanded to leading order. The dephasing term can then similarly

be expressed approximately in terms of incomplete Gamma functions:

− 2(n − n′)2∑
i

(Ωλi
ωi

)
2

coth(βh̵ωi

2
) sin(ωit

2
)
2

≈ − 2CΩ2

π
(n − n′)2∫

∞

ω1

dωωs−2 coth(βh̵ω
2
) sin(ωt

2
)
2

e−ω/ωu

≈ − 2CΩ2

π
(n − n′)2∫

∞

ω1

dωωs−2 2

βh̵ω
sin(ωt

2
)
2

e−ω/ωu

= − 2CΩ2

π
(n − n′)2ω

s−2
u

βh̵

⎧⎪⎪⎨⎪⎪⎩
Γ(s − 2,

ω1

ωu

) −Re[(1 − iωut)2−sΓ(s − 2,
ω1

ωu

(1 − iωut)) ]
⎫⎪⎪⎬⎪⎪⎭
.

(3.9)

In the following three subsections, we shall explore the time dependences of Eqs.

(3.8) and (3.9) for the values s = 1,0,−1, respectively. With the presence of the two

frequency scales ω1 and ωu (⋙ ω1), we have three different time range scales: the

short time limit range t ≪ ω−1u , intermediate time range ω−1u ≪ t ≪ ω−11 , and the

long time limit range t ≫ ω−11 . Note that the high temperature limit corresponds to

requiring kBT ≫ h̵ω1 for the intermediate time range. We shall focus below on the

intermediate and long time ranges, deriving analytical approximations to the induced
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(a) Net induced phase (intermediate time range) Net induced phase (long time range)

s = 1 it(n + n′ + 1)(n − n′)CΩ2ωu

π it(n + n′ + 1)(n − n′)CΩ2ωu

π

s = 0 it(n + n′ + 1)(n − n′)CΩ2

π [ln(ωut) − 1] −it(n + n′ + 1)(n − n′)CΩ2

π [ln (ω1/ωu) + γ]

s = −1 it2(n + n′ + 1)(n − n′)CΩ2

4 it(n + n′ + 1)(n − n′)CΩ2

πω1

(b) Dephasing term (intermediate time range) Dephasing term (long time range)

s = 1 −(n − n′)2CΩ2
[
1
π ln (βh̵ωu/2π) + (βh̵)

−1t] −(n − n′)2 2CΩ2

πβh̵ω1

s = 0 −(n − n′)2CΩ2

πβh̵ [
3
2 − γ − ln(ω1t)] t

2
−(n − n′)2 CΩ2

πβh̵ω2
1

s = −1 −(n − n′)2 CΩ2

πω1βh̵
t2 −(n − n′)2 2CΩ2

3πβh̵ω3
1

Table 3.1: Leading order in ω1/ωu expansion approximations to the net induced
phase terms (a) and dephasing terms (b) in the intermediate time range
(ω−1u ≪ t≪ ω−11 ) and long time range (t≫ ω−11 ) for ohmic (s = 1) and subohmic
(s = 0, −1) bath spectral densities.

phase and dephasing terms by expanding in frequency ratio parameter ω1/ωu(⋘ 1).

The numerically evaluated sum of the two induced phase terms (3.7) and (3.8) is plot-

ted versus time in Fig. 3.1, while the numerically evaluated dephasing term integral

expression given in the second line of Eq. (3.9) is plotted versus time in Fig. 3.2.

Both plots are normalized by their corresponding analytical approximations derived

below in the ω1t → ∞ limit, facilitating a check of the analytical approximations in

the long time limit. The analytical approximations derived below for the net induced

phase and dephasing terms are summarized in Table 3.1.

3.2.1. Ohmic, s = 1 environment case

We begin with the ohmic case s = 1, which corresponds to a 3D acoustic environment

medium. The first induced phase term (3.7) is approximately it(n+n′+1)(n−n′)CΩ2ωu

π ,

where we have expanded the incomplete Gamma function to leading order using the

fact that ω1/ωu⋘ 1. We see that this term diverges linearly with the upper frequency

cut-off ωu.

In the intermediate time range (ω−1u ≪ t ≪ ω−11 ), the second induced phase term

(3.8) gives approximately −i(n + n′ + 1)(n − n′)CΩ2

2 , while for the long time limit

(t ≫ ω−11 ) we obtain approximately −i(n + n′ + 1)(n − n′)CΩ2

π
cos(ω1t)

ω1t
; in both ranges,
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the second phase term is small compared to the above first phase term, as remarked

previously.

The dephasing term (3.9) in the high temperature limit and intermediate time

range becomes approximately −(n − n′)2CΩ2 [ 1
π ln (βh̵ωu

2π
) + (βh̵)−1t], with a leading

linear dependence on time t. Note that in order to obtain the correct, logarithmically

diverging term in ωu appearing in the latter approximation, we instead used the

exact solution to the dephasing term for ω1 = 0 derived in Ref. [51]. In the long time

limit (t ≫ ω−11 ), the dephasing term (3.9) becomes approximately −(n − n′)2 2CΩ2

πβh̵ω1
.

Interestingly, this result is finite and independent of time, so that the final, reduced

state ρc of the cavity system mode will only be partially dephased in the Fock state

basis. This is a consequence of the finite-sized volume of the acoustic environment

medium, as signified by the non-zero fundamental frequency ω1 of the medium. We

will see in the following that partial dephasing also occurs for the s = 0 and s = −1

cases, again a consequence of the finite dimensions of the corresponding acoustic

environments.

In Fig. 3.2, the approach to the above-described, constant long time limit displays

oscillatory behavior. This arises from the sub-leading contribution to the dephasing

term, which takes the form −(n−n′)2 2CΩ2

πβh̵ω1
× sin(ω1t)

ω1t
. Oscillatory behavior also occurs

for the s = 0 and s = −1 cases as seen in Fig. 3.2, arising from similar sub-leading

terms.

3.2.2. Subohmic, s = 0 environment case

For the subohmic s = 0 case, which corresponds to a 2D acoustic environment

medium, the first induced phase term (3.7) is approximately −it(n + n′ + 1)(n −

n′)CΩ2

π
[ln (ω1

ωu
) + γ], to leading order in an ω1/ωu (⋘ 1) expansion, where γ ≈ 0.5772 . . .

is the Euler-Mascheroni constant. Note that this phase term is both logarithmically

UV (ωu →∞) and IR (ω1 → 0) divergent.
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For the intermediate time range (ω−1u ≪ t≪ ω−11 ), the second induced phase term

(3.8) gives approximately it(n + n′ + 1)(n − n′)CΩ2

π [ln(ω1t) − 1 + γ]. Combining with

the above approximate expression for the first phase term, we obtain it(n+n′+1)(n−

n′)CΩ2

π [ln(ωut) − 1], so that the net induced phase term is logarithmically divergent in

the upper frequency cut-off ωu for the intermediate time range. In the long time limit

(t≫ ω−11 ) the phase term (3.8) approximates to −i(n+n′+1)(n−n′)CΩ2

π
cosω1t
ω2
1t

. Again,

we note that in the long time limit, this phase term becomes negligible compared

with the first induced phase term.

The dephasing term (3.9) in the high temperature limit and intermediate time

range becomes approximately −(n − n′)2CΩ2

πβh̵
[3
2 − γ − ln(ω1t)] t2. In contrast to the

corresponding s = 1 dephasing term given in the previous subsection, the s = 0 de-

phasing term is not UV divergent, but instead is IR divergent in the limit ω1 → 0.

In the long time limit (t ≫ ω−11 ), the dephasing term (3.9) becomes approximately

−(n − n′)2 CΩ2

πβh̵ω2
1
.

3.2.3. Subohmic, s = −1 environment case

For the subohmic s = −1 case, which corresponds to a 1D acoustic environment

medium, the first induced phase term (3.7) is approximately it(n+n′ +1)(n−n′)CΩ2

πω1
.

In contrast to the corresponding s = 0 phase term given in the previous subsection,

this s = −1 phase term is IR divergent but not UV divergent.

For the intermediate time range (ω−1u ≪ t≪ ω−11 ), the second induced phase term

(3.8) gives approximately −it(n + n′ + 1)(n − n′)CΩ2

πω1
[1 − π

4ω1t]. Combining with the

above approximate expression for the first phase term, we obtain for the net phase

term: it2(n + n′ + 1)(n − n′)CΩ2

4 , which is neither UV nor IR divergent. In the long

time limit (t≫ ω−11 ) the phase term (8) approximates to −i(n+n′+1)(n−n′)CΩ2

π
cosω1t
ω3
1t

,

which becomes negligible compared with the first induced phase term.

The dephasing term (3.9) in the high temperature limit and intermediate time
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Figure 3.1: Sum of the two induced phase terms Eq. (3.7) and Eq. (3.8) divided by
its long time (t≫ ω−11 ) analytical expression as a function of dimensionless time ωut,
where we set ω1/ωu = 0.001. The inset gives the same normalized phase terms
plotted over much longer timescales, indicating the expected approach to 1, hence
validating the analytical approximation in the long time limit.

range becomes approximately −(n − n′)2 CΩ2

πω1βh̵
t2. Similarly to the corresponding s =

0 dephasing term given in the previous subsection, the s = −1 dephasing term is

IR divergent. In the long time limit (t ≫ ω−11 ), the dephasing term (3.9) becomes

approximately −(n − n′)2 2CΩ2

3πβh̵ω3
1
.

Section 3.3

LC circuit–elastic strip model

In this section we consider a model of a LC circuit capacitively coupled to a long

mechanical strip (Fig. 3.3), with several details of the derivation given in the Appendix

A. We show that this model system maps onto the subohmic s = −1 case considered in

Sec. 3.2.3 (although with a different cut-off function and with some modifications to

the integral approximation over the bath degrees of freedom). We will only consider

dephasing, omitting the induced phase terms, i.e., cavity frequency renormalization
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Figure 3.2: The numerically evaluated, exact integral expression for the dephasing
term given in Eq. (3.9) divided by its long time (t≫ ω−11 ) analytical expression as a
function of the dimensionless time ωut, with ω1/ωu = 0.001 and βh̵ωu = 10. The inset
gives the same normalized dephasing terms plotted over much longer timescales,
indicating the expected approach to 1, hence validating the analytical
approximation in the long time limit.
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Figure 3.3: Effectively 1D optomechanical scheme comprising a LC circuit
oscillator (system) capacitively coupled to a long oscillating strip with (bath) via a
metallized length ∆L.
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and induced Kerr nonlinearity; the latter phase terms are orders of magnitude smaller

than the bare LC circuit frequency phase term for the parameters considered later

below in this section. We shall furthermore focus primarily on dephasing during

the intermediate time range, where most of the dephasing occurs for the considered

parameter values.

Referring to Fig. 3.3, the lower conductor of the capacitor forming the LC circuit

is assumed fixed, while the upper conductor is a flexing, metallized segment (length

∆L) of a long elastic mechanical strip (length L ⋙ ∆L). The transverse width

(W ) and thickness (T ) dimensions satisfy T ≪ W ⋘ L. The lower capacitor plate

is assumed also to have length ∆L and the same width W as the strip, with a

small equilibrium vacuum gap between upper and lower plates: d ≪ W, ∆L. The

approximate mutual capacitance between the LC circuit and the undisplaced strip is

approximately C0 = ϵ0W∆L/d and we denote the circuit inductance as L.

Neglecting motion in the transverse y and longitudinal x directions, we denote

the flexing mechanical displacement field of the strip in the transverse z direction by

uz(x, t). For sufficiently large tensile forces F applied at the clamped strip ends such

that the elastic bending contribution can be neglected, the Lagrangian for the model,

LC circuit-mechanical strip system in the resulting string-like limit is as follows:

L = ρmWT

2 ∫
L

0
dx(∂uz

∂t
)
2

− F
2 ∫

L

0
dx(∂uz

∂x
)
2

+ 1

2
C [uz] (

dΦ

dt
)
2

− Φ2

2L
, (3.10)

where C [uz] is the mechanical displacement-dependent capacitance with C [uz = 0] ≡

C0 the equilibrium capacitance, Φ is the inductor flux coordinate, and ρm is the me-

chanical strip mass density. Note Eq. (3.10) neglects attractive Van der Waals/Casimir

forces or the possibility of stray, excess charges on the capacitor plates.

Imposing fixed displacement field boundary conditions at the strip ends, uz(0) =

uz(L) = 0, and solving for the free mechanical normal mode frequencies (see the
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3.3 LC circuit–elastic strip model

Appendix A.1), we have

ωi = πi
√

F

2mL
, i = 1,2, . . . , (3.11)

with m = ρmWTL/2 the effective mass of the mechanical modes. Performing a Leg-

endre transformation to obtain the Hamiltonian from Lagrangian (3.10), introducing

the mechanical mode and LC circuit creation/annihilation operators, and expanding

the LC circuit frequency Ω = 1/
√
LC and creation/annihilation operators to first order

in the displacement field uz, we obtain the optomechanical Hamiltonian (3.1) after

a rotating wave approximation, where the coupling constant λi takes the following

form (see the Appendix A.2 for derivation details):

λi = −
1

2d
( h̵

2mωi

)
1/2

sin(πi
2
) sinc( ωi

ωu

) , i = 1,2, . . . (3.12)

Here, sincx ∶= sinx/x and the upper cut-off frequency is

ωu =
2

∆L

√
FL

2m
. (3.13)

Comparing Eq. (3.13) with the mode frequency expression (3.11), we see that

the upper cut-off frequency corresponds to the characteristic wavelength π∆L; in

the limit where the mechanical mode wavelength becomes much smaller than the

capacitor length ∆L, the coupling between the cavity and mechanical strip spatially

averages to zero, as expressed by the decaying sinc function appearing in Eq. (3.12).

With equally spaced, harmonic mode frequencies as given by Eq. (3.11), we see

from Eq. (3.4) that the dephasing term oscillates, completely vanishing at times
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3.3 LC circuit–elastic strip model

t = 2πn/ω1, n = 0,1,2, . . . , where from Eq. (3.11) the lower cut-off frequency is

ω1 = π
√

F

2mL
. (3.14)

We note that such a full rephasing effect is a consequence of having a 1D, harmonic

acoustic environment of finite length L with uniformly distributed, discrete modes.

This periodic, full rephasing is to be contrasted with the non-zero, long time constant

dephasing expressions obtained in Sec. 3.2. The origin for this discrepancy is the

breakdown of the integral approximation for the mode sums due to the strongly IR

divergent nature of the latter appearing in Eq. (3.4) for the elastic strip model.

An improved integral approximation for the mode sums can be obtained by em-

ploying the Euler-Maclaurin series formula to the desired order. In particular, utiliz-

ing Eq. (3.12) for λi and the Euler-Maclaurin series approximation to first order for

example, the integral of the bath spectral density approximation (3.6) in the large

strip length L limit is replaced by

π∑
i

λ2i f(ωi) ≈ C ∫
∞

ω1

dω ω−1f(ω) sinc2 ( ω
ωu

) +Cf(ω1), (3.15)

where the coupling strength constant is

C = h̵

8d2
√
FρmWT

(3.16)

and we have approximated sinc(ω1/ωu) ≈ 1 since ω1 ≪ ωu.

Comparing the integral term in Eq. (3.15) with Eq. (3.6), we see that the LC

circuit-elastic strip (string) model corresponds to the s = −1 subohmic case, but with

upper cut-off of the form sinc2(ω/ωu) instead of the previously considered exponential

cut-off form exp(−ω/ωu). Equation (3.15) gives for the dephasing term in the inter-
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3.3 LC circuit–elastic strip model

mediate time range (ω−1u ≪ t ≪ ω−11 ): −(n − n′)2 2CΩ2

πω1βh̵
t2, approximately independent

of the form of the upper cut-off. Note that the factor of 2 difference from the corre-

sponding s = −1 dephasing expression given in Table 3.1b arises from the additional

correction term in Eq. (3.15); including higher order terms in the Euler-Maclaurin

series approximation gives a factor closer to 2.5.

From the ω−11 dependence of the analytical approximation to the s = −1 dephasing

term (see Table 3.1b), it would seem that the dephasing rate can be made arbi-

trarily large by progressively increasing the strip length L. However, given that the

optomechanical Hamiltonian approximation (3.1) results from expanding the LC cir-

cuit frequency to first order in the mechanical displacement field (i.e., weak coupling

approximation), we necessarily require that mechanical induced fluctuations in the

cavity frequency satisfy ∆Ω≪ Ω. From Eqs. (3.1) and (3.12), and assuming a ther-

mal equilibrium state for the mechanical strip modes, the latter requirement gives

(see the Appendix A.3 for the derivation details):

∞
∑
i=1

h̵

8mωid2
sin2 (πi

2
) sinc2 ( ωi

ωu

) coth(βh̵ωi

2
) ≪ 1, (3.17)

with ωi and ωu given by Eqs. (3.11) and (3.13) respectively.

In order to gain a sense of the dephasing rate magnitudes, we assume example

parameter values similar to the silicon nitride vibrating string device of Ref. [60]

(although allowing for much longer lengths L than the actual 60 µm), and also

assume typical superconducting microwave LC circuit parameters. In particular,

we adopt the values ρm = 103 kg/m3, F = 10−5 N, W = 1 µm, T = 0.1 µm, and

L ≳ 1 cm. For the capacitor dimensions, we assume ∆L = 10 µm and d = 0.1 µm.

The circuit mode frequency is assumed to be Ω/(2π) = 5 GHz, and the acoustic

bath temperature is taken to be 50 mK. With these assumed values, we have

ωi/(2π) = 1.6i10 cmL kHz and ωu/(2π) = 10 MHz, giving ω1/ωu = 2 × 10−4 10 cmL . The

63



3.4 Optical cavity–elastic membrane model

dephasing term then becomes approximately −21(n − n′)2 L
10 cm

t2

µs2 in the intermedi-

ate time range 0.02µs ≪ t ≪ 100 L
10cm µs. Thus we see that the phase interference

between initial energy superposition states of the LC circuit mode is exponentially

suppressed on timescales of microseconds for few centimeter long acoustic strip res-

onators; we note that such dephasing timescales are roughly of the same order as

relaxation and decoherence timescales for superconducting circuits reported in recent

experiments [61, 62, 63]. Rephasing occurs after a time ≈ 0.6 L
10 cm msec, neglecting

other dephasing mechanisms.

Given that the LC circuit mode frequency satisfies Ω = 500ωu, the cavity-mechanical

oscillator bath interaction terms of the form a2(bi+b†i) and a†2(bi+b†i)may be neglected

as discussed in the beginning of Sec. 3.2 (corresponding to the rotating wave approxi-

mation made in the derivation of the Hamiltonian given in Appendix A). Furthermore,

condition (3.17) on the strip length can be approximated as L≪ 16βd2F ≈ 2×106 m,

which is orders of magnitude longer than in any conceivable circuit optomechanical

device operating at cryogenic temperatures, and so the standard optomechanical inter-

action term in Eq. (3.1) is well-justified. Finally we note that for, e.g., a strip length

L = 10 cm, the LC induced phase term∑i Ω2λ2i /ωi is approximately 3×103 s−1, which is

seven orders of magnitude smaller than the bare LC frequency Ω = 2π×5×109 s−1; the

LC frequency renormalization and induced Kerr nonlinearity are therefore negligible.

Section 3.4

Optical cavity–elastic membrane model

In this section we consider a model of a 3D optical cavity coupled to a large, square

mechanical membrane (Fig. 3.4) [36]. We show that this model system maps onto

the subohmic s = 0 case considered in Sec. 3.2.3. As in the previous section, we will

only consider in detail the dephasing term in the intermediate time range, omitting
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3.4 Optical cavity–elastic membrane model

Mechanical membrane 
(bath)

Optical cavity mode 
(system) z

y

Figure 3.4: Optomechanical scheme comprising a cavity light mode (system)
trapped between oppositely facing mirrors interacting via light pressure with a thin
dielectric membrane of large transverse extent and undergoing transverse flexural
oscillations (bath).

the induced phase term (i.e., cavity frequency renormalization and induced Kerr

nonlinearity).

The cavity-membrane model system can be approximately described by the op-

tomechanical Hamiltonian (3.1) (see, e.g., Ref. [64]), with the mechanical normal

mode frequencies of the vibrating membrane given by

ωixiy = π
√
F

4m
(i2x + i2y), ix, iy = 1,2, . . . , (3.18)

where ix, iy are the mode labels marking the spatial dependencies of the modes in the

transverse x and y coordinate dimensions of the membrane surface, F is the tensile

force per unit length applied at the clamped membrane edges and m is the effective
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3.4 Optical cavity–elastic membrane model

mass of the mechanical modes:

m = ρmL2T /4, (3.19)

with the membrane having side dimension L and thickness T ; the tensile force is here

assumed to be sufficiently large that the stretching potential energy dominates over

the bending potential energy of the mechanical structure, hence defining the so-called

membrane limit.

Restricting to cavity Gaussian beam modes, the cavity normal mode frequencies

are approximately given by the following expression [65]:

Ωσ =
σπc

l
+ 2c

l
tan−1 ( l

2f
) , σ = 1,2, . . . , (3.20)

where l is the cavity length, f is a length parameter termed the “Rayleigh range”

that characterizes the mode beam profile, and c is the speed of light in vacuum.

The optomechanical coupling between the Gaussian beam cavity modes (labeled

by σ) and mechanical membrane modes (labeled by ix, iy) can be approximated as

follows [64]:

λσ,ixiy = (−1)σ
¿
ÁÁÀ h̵

2mωixiy

(n2 − 1)TΩσ

lc
sin(2Ωσz0

c
) exp(−

ω2
ixiy

ω2
u

) sin(ixπ
2
) sin(

iyπ

2
) ,

(3.21)

where z0 is the location of the membrane on the cavity’s longitudinal axis, with the

membrane positioned such that its center coincides with the center of the cavity mode

beam ‘waist’ (i.e., the cavity midpoint with narrowest optical beam width defined as

wσ =
√

2fc/Ωσ), n here denotes the membrane material optical index of refraction,
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3.4 Optical cavity–elastic membrane model

and

ωu =
√

8F
ρmTw2

σ

(3.22)

is the upper frequency cut-off. Expression (3.21) assumes that the beam waist wσ is

much smaller than the membrane side dimension L.

Comparing Eq. (3.22) with the mechanical mode frequency expression (3.18), we

see that the upper cut-off frequency corresponds to a mechanical mode wavelength

comparable to the optical beam waist wσ; in the limit where the mechanical mode

wavelength becomes much smaller than the beam waist, the coupling between the

cavity and mechanical membrane is exponentially suppressed as the square of the

mode frequency.

The integral approximation (3.6) gives

π ∑
ix,iy

λ2σ,ixiyf(ωixiy) ≈ C ∫
∞

ω1

dωf(ω) exp(−2ω2

ω2
u

) , (3.23)

where from Eq. (3.18) the lower cut-off frequency is

ω1 = π
√
F

2m
, (3.24)

and the coupling strength constant is

C = h̵
F

⎡⎢⎢⎢⎢⎣

(n2 − 1)ΩσT sin (2Ωσz0
c
)

2lc

⎤⎥⎥⎥⎥⎦

2

. (3.25)

Comparing the right hand sides of Eqs. (3.23) and (3.6), we see that the optical cavity-

elastic membrane model corresponds to the s = 0 subohmic case, but with upper cut-

off of the form exp(−2ω2/ω2
u) instead of the previously considered exponential cut-off
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3.4 Optical cavity–elastic membrane model

form exp(−ω/ωu).

Equation (3.23) gives for the dephasing term in the intermediate time range

(ω−1u ≪ t ≪ ω−11 ): −(n − n′)2 1.3CΩ2
σ

πβh̵
[3
2 − γ − ln(ω1t)] t2, approximately independent

of the form of the upper cut-off. The factor 1.3 difference with the corresponding

s = 0 dephasing expression given in Table 3.1b accounts for the error in the con-

tinuous frequency integral approximation to the discrete sum over membrane modes

given by Eq. (3.23). This factor 1.3 correction was simply determined by trial nu-

merical fitting of the integral approximation over the intermediate time range, since

there is no straightforward counterpart to the Euler-Maclaurin formula that gives the

correction to the integral approximation of a double sum [66].

In order to gain a sense of the dephasing rate magnitudes, we assume example

parameter values similar to the silicon nitride vibrating membrane device of Ref.

[67] (although allowing for much longer membrane side dimensions L than the ac-

tual 1 mm). In particular, we adopt the values n = 2, ρm = 3.4 × 103 kg/m3,

F = 43 N/m, T = 50 nm, and L ≳ 1 cm. For the optical mode, we assume a

cavity length l = 3.7 cm and infrared wavelength λσ = 1064 nm, corresponding

to frequency Ωσ/(2π) = 2.8 × 1014 Hz and beam waist wσ = 90 µm, and suppose

that the z0 location of the membrane in the cavity is chosen such that the factor

∣ sin(2Ωσz0/c)∣ = 1 in the coupling strength constant expression (3.25). With these

assumed values, we have ωixiy/(2π) = 2.5
√
i2x + i2y 10 cm

L kHz and ωu/(2π) = 2.5 MHz,

giving ω1/ωu = 1.4 × 10−3 10 cmL . The dephasing term then becomes approximately

−6×10−6(n−n′)2 [0.9 − ln (0.0210 cm
L

t
µs)]

T
K

t2

µs2 in the intermediate time range 0.06µs≪

t≪ 45 L
10cm µs, where T

K refers to the membrane temperature expressed in Kelvin units.

In the long time range ω−11 ≪ t , the dephasing term oscillates strongly but does not

completely vanish, in contrast to the strip case considered in Sec. 3.3; due to the

non-uniform distribution of the membrane vibrational modes, complete rephasing
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3.4 Optical cavity–elastic membrane model

does not occur.

From the just-derived expression for the dephasing term, we see that it scales

approximately quadratically with the membrane edge length L close to the upper

limit ω−11 of the intermediate time range. The resulting estimated dephasing term

magnitudes for few centimeter scale-sized membranes are such that the contribution to

dephasing of optical mode initial Fock state superposition states due to the membrane

environment is expected to be negligible compared to that of other sources, such as

photon loss from the cavity.

From the form of the coupling strength constant (3.25), dephasing due to the

membrane can also be increased somewhat by reducing the tensile force per unit

length F applied to the membrane edges. However, the membrane approximation

assumed in the present investigation eventually breaks down as F is reduced; the

bending potential energy contribution to the mechanical structure would need to be

taken into account, with the structure behaving instead as a so-called plate having a

qualitatively different flexural vibration mode spectrum.

Given that the cavity mode frequency satisfies Ωσ = 108 ωu, the cavity-mechanical

oscillator bath interaction terms of the form a2(bi + b†i) and a†2(bi + b†i) may be ne-

glected, as discussed in the beginning of Sec. 3.2. In contrast to the cavity-strip

system considered in Sec. 3.3, the membrane induced fluctuations in the cavity mode

frequency remain constant with increasing membrane edge length L (with the ten-

sile force per unit length F kept fixed) and are negligible compared to the cavity

mode frequency, so that there is no upper limit on the membrane edge length for

the validity of the standard optomechanical interaction term in Eq. (3.1). For, e.g.,

a membrane edge length L = 10 cm, the induced phase term ∑ix,iy Ω2
σλ

2
σ,ixiy
/ωixiy is

approximately 2 × 10−3 s−1, which is eighteen orders of magnitude smaller than the

bare LC frequency Ωσ = 2π × 2.8 × 1014 s−1; the cavity frequency renormalization and
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induced Kerr nonlinearity are therefore negligible.

Section 3.5

Conclusion

In this chapter, we have investigated the quantum dynamics of optomechanical sys-

tems in the unusual situation where the mechanical subsystem comprises a dense

spectrum of acoustic modes, functioning effectively as an environment for a single op-

tical mode; in particular, the standard optomechanical interaction results in dephasing

without dissipation of initial photon number superposition states of the optical mode.

We found that the optical mode effective dynamics is qualitatively affected by the

spatial dimension of the mechanical subsystem, with the dynamics for one dimen-

sional mechanical environments (which can be realized for example as long elastic

strings) exhibiting strong power law infrared divergences, two dimensional mechani-

cal environments (such as large area elastic membranes) exhibiting weakly logarithmic

infrared and ultraviolet divergences, and three dimensional mechanical environments

(such as large volume elastic solids) exhibiting strong power law ultraviolet diver-

gences. The infrared divergences are regularized by accounting for the actual, finite

size of the mechanical structures, characterized by the lowest mechanical mode fre-

quency ω1. On the other hand, the ultraviolet divergences are regularized by the

suppression of the optomechanical interaction on length scales smaller than the di-

mensions of the optomechanical interaction region, characterized by a given upper

cut-off frequency ωu(≫ ω1).

We furthermore found that the cavity mode effective dynamics depends quali-

tatively on the time scales considered, with three different ranges delineated by the

inverse frequencies ω−11 and ω−1u . Dephasing predominantly occurs during the so-called

‘intermediate’ range ω−1u ≪ t≪ ω−11 , with a certain degree of rephasing occurring dur-
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ing the so-called long time range ω−11 ≪ t.

Two possible realizations were considered in some detail, the first being a long

elastic strip capacitively coupled to a LC circuit over a short segment of the strip,

and an optical cavity mode coupled via light pressure to a large area elastic membrane.

While the estimated dephasing rates resulting from these realizations are relatively

small compared with photon loss rates from the cavities, they nevertheless afford

useful model systems for clarifying our understanding of system-environment quantum

dynamics for the unusual optomechanical type of interaction, where dephasing occurs

without dissipation.

The optomechanical models considered in this chapter may be interpreted as

analogs for investigating various relativistic quantum information processes, including

gravitationally induced dephasing (as briefly discussed in the present work) [12, 13, 51]

and gravitationally induced entanglement generation [32]. By being able to carry out

exact analytical calculations in the case of the optomechanical coupling, useful in-

sights may be gained concerning the combined dephasing and entanglement dynamics

of gravitationally coupled quantum matter systems.
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Section 4.1

Introduction

Thermal environments have often been invoked to explain the decoherence of a quan-

tum system, thus resulting in the observed classical, macroscopic world [68, 69, 70].

However, it is also quite well known that thermal environments can generate quan-

tum entanglement when coupled to otherwise independent quantum subsystems under

suitable conditions [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81]; several experimental

realizations have been proposed [71, 82, 83, 84, 85], with further examples considered

in the Ref. [86] review (and references therein).

In this Chapter, we investigate the entanglement dynamics of an experimentally

feasible model comprising two spatially separated inductor-capacitor (LC) oscillators

that are coupled to a long, partially metallized elastic strip via the optomechanical

interaction; here, the elastic strip functions as a thermal phonon environment. A field

theoretic description of the environment naturally leads to local, spatially-dependent

couplings between the oscillators and the field modes. This then allows for an explicit

analysis of the causal nature of the entanglement dynamics between the two oscillators

arising from the finite elastic wave propagation speed in the elastic strip, analogous

to the speed of light in vacuum. Tracing out the elastic strip (phonon) degrees of

freedom, we solve exactly for the quantum time evolution of the LC oscillators, with

particular attention paid to the competing entanglement and dephasing/rephasing

dynamics of the LC oscillators.

With the capacitor sizes much smaller than the elastic strip length, the two LC

oscillators can also be thought of as variants of the so-called Unruh-DeWitt (UDW)

detector [4, 87], with the bare two-level UDW detector replaced by a quantum har-

monic oscillator [88] and the usual bilinear coupling between the detector and field
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replaced by the quadratic-linear optomechanical-type interaction [3]. A consequence

of the optomechanical interaction is that the photon number in each LC oscillator

is conserved, so that the oscillators do not undergo transitions between their energy

levels, and yet we shall see that entanglement can still develop between the detec-

tors due to their interaction with the common environment. However, we find that

the entanglement can only form when the two LC oscillators are ‘timelike’ separated

(i.e., causally connected) as opposed to ‘spacelike’ separated with respect to the elas-

tic wave propagation (i.e., phonon) speed. This is to be contrasted with the usually

considered bilinear, two-level UDW detector-field interaction case where perturba-

tive leading order calculations show that entanglement can be ‘harvested’ from the

quantum field vacuum even for spacelike separated inertial detectors, with the lat-

ter undergoing transitions between their ground and excited levels [89, 90, 91, 92].

Furthermore, exact calculations for accelerating oscillator detectors also with bilinear

detector-field interactions show spacelike entanglement generation [93]. Such a differ-

ence lies in the fact that, with the optomechanical interaction, the oscillator system

couples to the environment via its number operator which is time independent in the

interaction picture, and therefore obeys the general no-go theorem of Ref. [94] for

entanglement generation when the two detectors are ‘spacelike’ separated.

The optomechanical interaction bears some similarities with the weak field, scalar

matter-graviton interaction action [95, 96] given by SI =
√

8πG ∫ d4xT µν(ϕ)hµν , with

T µν(ϕ) the scalar field energy-momentum tensor and hµν the gravitational metric

perturbation from flat spacetime; for the LC oscillator-elastic strip model, the LC

oscillator is analogous to the scalar matter field while the acoustic phonon excitations

of the elastic strip are analogous to graviton excitations of spacetime [97]. Our model

can therefore serve as a gravitational entanglement generation analog for informing

about recent proposals to observe quantum gravity effects at low energies [98, 99]. In
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these proposals, only the effective Newtonian gravitational interaction potential was

considered for inducing entanglement between an initial product of matter superpo-

sition states, serving as an indirect witness for the existence of the quantum graviton

[100]. If gravity is indeed a quantum field entity, then the Newtonian potential cor-

responds to the nonrelativistic, action at a distance limit of the effective field theory

description of the graviton. In this regard, our model analog demonstrates explicitly

how the quantum phonon field is responsible for the entanglement generation in the

system, with retardation effects exactly taken into account.

x

z

D

LC oscillators (system)

Mechanical strip (bath)

Figure 4.1: Scheme of the model system. Two spatially separated LC circuit
oscillators (system) are capacitively coupled to a long oscillating, elastic strip (bath)
via two metallized segments.

Section 4.2

The model

Our model scheme (Fig. 4.1) builds on the one considered in Ref. [97], which inves-

tigated dephasing only of a single LC oscillator coupled capacitively to a long elastic

strip. In particular, we consider two identical LC circuits separated by a distance

D, each coupled capacitively via metallized segments (with lengths ∆L) of a long,

75



4.2 The model

elastic mechanical strip with overall length L > D ≫ ∆L that is clamped at both

ends. The LC circuits are sited such that the center point between the two capacitors

coincides with the strip center. The transverse width (W ) and thickness (T ) of the

strip satisfy T ≪ W ⋘ L. The indicated lower capacitor plates are assumed fixed,

also with length ∆L, the same width W as the strip, and separated from the upper

flexing, metallized ∆L strip segments of the strip by a small equilibrium vacuum gap

d ≪ W . The bare, zero flexing capacitance of each LC circuit is then given by the

standard parallel plate expression Cb = ϵ0W∆L/d with ϵ0 the vacuum permittivity.

In the following we shall denote the left circuit capacitance by Cl and right circuit

capacitance by Cr, and we denote both circuit inductances by L.

Neglecting displacements in the transverse y and longitudinal x directions, the

flexing mechanical displacement of the strip along the transverse z direction can be

described by the Hamiltonian

Hbath =
ρmWT

2 ∫
L

0
dx(∂uz

∂t
)
2

+ F
2 ∫

L

0
dx(∂uz

∂x
)
2

, (4.1)

where uz(t, x) is the displacement field, ρm is the mass density of the strip, and we

assume a sufficiently large tensile force F is applied at both ends of the strip so that it

behaves effectively as a string with end boundary conditions uz(x = 0) = uz(x = L) = 0.

The Hamiltonian for the two LC circuit system is

Hsys =
Q2

l

2Cl

+
Φ2

l

2L
+ Q

2
r

2Cr

+ Φ2
r

2L
, (4.2)

where Ql (Qr) is the left (right) capacitor charge coordinate and Φl (Φr) is the left

(right) inductor flux coordinate. We note that Cl and Cr are implicit functions of the

displacement field uz(t, x), with Cl(uz = 0) = Cr(uz = 0) ≡ Cb.

Introducing creation/annihilation operators for both the LC circuits and the
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elastic strip modes, and expanding the LC circuit resonant frequencies and cre-

ation/annihilation operators to first order in the strip transverse displacement field,

the total Hamiltonian of the LC system and acoustic phonon bath approximately

reduces to the standard optomechanical Hamiltonian

H =
2

∑
k=1
[h̵Ωb (a†

kak +
1

2
) +

∞
∑
j=1
h̵gk,j (a†

kak +
1

2
)(bj + b†j) ] +

∞
∑
j=1
h̵ωj (b†jbj +

1

2
) , (4.3)

where ak (a†
k) are the annihilation (creation) operators for the LC oscillators with

bare frequency Ωb = 1/
√
CbL, with the subscript k = 1,2 denoting the left, right LC

oscillator, and bj (b†j) are the annihilation (creation) operators for the elastic strip

modes of frequency ωj = πj
√

F
2mL with m = ρmWTL/2 the effective mass of the

modes. We note that the usual rotating wave approximation (RWA) is made in order

to obtain the standard optomechanical Hamiltonian (4.3), where interaction terms of

the form a2k (bj + b
†
j) and a†2

k (bj + b
†
j) are neglected. The coupling strength between

each LC oscillator and the elastic strip modes is given approximately by [97]

g1(2),j = −
Ωb

2d
( h̵

2mωj

)
1/2

sinc(
ωj

ωu

) sin(πj
L
× L ∓D ∓∆L

2
) , (4.4)

where sincx ∶= sin(x)/x and the cut-off frequency is ωu = 2
∆L

√
FL
2m , corresponding

to the characteristic wavelength π∆L, which is of the same order as the capacitor

size; the decaying sinc function results in the coupling to higher frequency modes

approaching zero asymptotically for ωj ≫ ωc. The term L∓D∓∆L
2 inside the sine func-

tion denotes the x coordinate for the center of the left (−) and right (+) capacitors,

respectively.

For the mode frequency ωj dependence of the above given coupling strength gj,k,

there is in fact no ultraviolet (UV) divergence when taking the limit ωu → +∞ in the

determination of the quantum dynamics of the LC oscillator systems given below; this
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is a consequence of the effective one dimensional nature of the elastic strip [97]. Since

the capacitor length ∆L is assumed to be much smaller than the length L of the strip,

we shall therefore take the ‘point-like’ UV limit for the capacitors by dropping the

upper cut-off regulating sinc function and setting ∆L = 0 for the coupling strength

in the following. This then allows closed form analytical solutions for the quantum

dynamics.

Supposing that the LC oscillators and the elastic strip state are prepared initially

at t = 0 in a product state with the latter in a thermal state, the time evolution of

the reduced oscillator system density matrix expanded in the Fock state basis can be

expressed as follows [97]:

ρn1n2,n′1n
′
2
(t) = exp ( − itΩb(n1 + n2 − n′1 − n′2)

+ ip1(t)[(n1 + n′1 + 1)(n1 − n′1) + (n2 + n′2 + 1)(n2 − n′2)]

+ ip2(t)[(n1 + n′1 + 1)(n2 − n′2) + (n2 + n′2 + 1)(n1 − n′1)]

− d1(t)[(n1 − n′1)2 + (n2 − n′2)2] − d2(t)(n1 − n′1)(n2 − n′2))ρn1n2,n′1n
′
2
(0),

(4.5)

where the respective time-dependent terms are given by

p1(t) =λ(
π2τ

6
− τRe[Li2(−eiσ)] + Im[1

2
Li3 (−ei(τ+σ)) +

1

2
Li3 (−ei(τ−σ)) − Li3(eiτ)]),

(4.6a)

p2(t) =λ(
π2τ

12
+ τRe[Li2(eiσ)] − Im[Li3(−e−iτ) +

1

2
Li3 (ei(τ−σ)) +

1

2
Li3 (ei(τ+σ)) ]),

(4.6b)

d1(t) =
∞
∑
j=1

1 − cos(ωjt)
ω2
j

g21,j coth(βh̵
2
ωj) , (4.6c)

d2(t) =2
∞
∑
j=1

1 − cos(ωjt)
ω2
j

g1,jg2,j coth(βh̵
2
ωj) , (4.6d)
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with β−1 = kBT , where kB is Boltzmann’s constant and T is the bath temperature.

The dimensionless numerical constant λ = Ω2
b h̵

16d2mω3
1
, and Lis(⋅) is the polylogarithm

function of order s. Note that we have also introduced the notations for the di-

mensionless time: τ = ω1t, and the scaled distance ratio: σ = πD/L in the above

expressions. Equation (4.5) neglects any influence due to environments that couple

directly to the LC oscillators and the elastic strip systems, since we seek here to un-

derstand purely the effects of the optomechanically coupled, long stripline alone on

the LC oscillators’ reduced quantum dynamics.

We now make several observations based on the form of Eq. (4.5) about the

LC oscillators’ reduced system dynamics. The first term in the argument of the ex-

ponential in Eq. (4.5) is just the free evolution of the system. The p1(t) and d1(t)

terms correspond to environment induced renormalization and dephasing respectively

of the individual LC oscillators, while the p2(t) and d2(t) terms encode the effective

environment induced mutual dynamics between the two LC oscillators. In particular,

we have competing processes here where a non-zero mutual phase term p2(t) can

render the LC oscillators’ reduced density matrix non-separable, i.e., we have entan-

glement generation between the two LC oscillator subsystems; on the other hand,

the real dephasing terms d1(t) and d2(t) serve to counteract the entanglement gen-

eration. However, since both the d1(t) and d2(t) terms contain the oscillating factor

1− cos(ωj)t, in which the harmonic mechanical mode frequencies are equally-spaced,

these two terms completely vanish at times t = 2πj/ω1, j = 0,1,2, . . . . This periodic,

full rephasing phenomenon is crucial for the formation of entanglement as we will

see below; in particular, it allows for periodic time windows in which to probe the

generated entanglement, of course neglecting decoherence effects due to intrinsic en-

vironments of the LC oscillators and elastic strip. We note that this full rephasing

phenomenon is a consequence of the one dimensional nature of the long elastic strip
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with uniformly spaced vibrational modes; only partial rephasing will occur for two

dimensional, elastic membranes that have non-uniformly spaced vibrational modes

[97].

Section 4.3

Causality

Before we discuss our main results on the entanglement generation dynamics, it is of

interest to first analyze the causal aspects of the model dynamics. Although the action

following from Hamiltonian (4.1) is not invariant under Lorentz transformations, the

Hamiltonian can be expressed in the same form as that for a relativistic massless

quantum field in the lab frame, with the speed of light replaced by the acoustic

sound (phonon) speed vph =
√

FL
2m . While the photon number of each LC oscillator

is conserved as indicated by Eq. (4.5), the oscillators nevertheless source a local

disturbance at t = 0 in the phonon field, which propagates along the strip in both

directions at the acoustic sound speed. Causality then requires that the physical

state of one LC circuit will not be changed by the presence of the other within

the time that it takes for phonons to travel the separation distance between the two

capacitors: ∆t = D
vph
=
√

2m
FLD. Performing a partial trace over one of the LC oscillator

subsystem’s density matrix, one can easily see from Eq. (4.5) that the influence of one

LC oscillator on the other is only through the p2(t) term. Considering the following

inequalities for τ and σ: τ < σ (corresponding to t <∆t) and σ < π (corresponding to

D < L), p2(t) in Eq. (4.6b) can be rewritten as a combination of Bernoulli polynomials

that are verified to vanish exactly, thus fulfilling the causality requirement. We stress

that such a causally consistent result can only be obtained by an exact, field theoretic

treatment of the environment [101, 102] (i.e., taking account of the position-dependent

coupling between system and bath and summing over all environmental bath degrees
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of freedom); if one approximately truncates to a finite number of field modes in the

sum, causality is violated. For example, as we show in Fig. 4.2, a strongly acausal

result is obtained with only the contribution from the lowest, fundamental frequency

mode of the elastic strip taken into account. By including more modes in the sum, the

induced phase term p2(t) approaches its exact analytical expression, but nevertheless

remains acausal.
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Figure 4.2: The environment induced mutual phase term p2(t) plotted as a function
of dimensionless time τ = ω1t. The constant λ = 1 and σ = π/2 (corresponding to the
LC circuits’ separation D = L/2). Both the exact analytical expression (4.6b) (solid
line) and finite mode sum approximations are shown for comparison: the
contribution from the lowest, fundamental mode ω1 only (dashed line) and the
contribution obtained by summing over the lowest five elastic frequency modes only
(dotted line). The inset gives the zoomed in plot for p2 close to t = σ.

Section 4.4

Zero temperature entanglement

We now discuss the entanglement dynamics in the model. For simplicity, we shall

consider an initial (t = 0) superposition of zero and single photon states for each

81



4.4 Zero temperature entanglement

LC circuit: ∣ψ(0)⟩ = 1
2 (∣0⟩l + ∣1⟩l) ⊗ (∣0⟩r + ∣1⟩r), with the labels l (r) denoting the

left (right) LC circuit; since the photon number cannot change, each LC circuit

then functions effectively as a two-level system where only the relative phases of the

various photon number state products can change with time–not the amplitudes. We

furthermore assume as before for calculational convenience that the LC oscillators and

strip are initially in a product state. The latter is equivalent to suddenly switching on

the optomechanical interaction at t = 0. While unphysical (the capacitive couplings

are always ‘on’), such an assumption may be justified by supposing that the LC

oscillator superposition states are prepared on a timescale that is much shorter than

the phonon travel time between the two oscillators.

We shall first focus on the zero temperature limit of the phonon field (correspond-

ing to the vacuum field state of the strip). Despite the zero temperature limit being a

challenge to realize given the presence of low frequency modes of the long elastic strip,

the limit allows analytical expressions for the dephasing terms and yields important

information about the competition between dephasing and entanglement generation.

Taking the limit β → +∞ in Eqs. (4.6c) and (4.6d), we have

d1(t) =λ(Re[1
2

Li3 (−e−i(τ−σ)) +
1

2
Li3 (−ei(τ+σ)) − Li3 (eiτ) − Li3 (−eiσ) + ζ(3)]),

(4.7a)

d2(t) =2λ(Re[Li3 (−e−iτ) + Li3 (eiσ) −
1

2
Li3 (ei(τ−σ)) −

1

2
Li3 (ei(τ+σ)) +

3

4
ζ(3)]),

(4.7b)

where ζ is the Euler–Riemann zeta function. To determine whether the system is

entangled, we utilize the logarithmic negativity [103]: EN(ρ) ≡ log2(∣∣ρΓl ∣∣) as our

entanglement measure, where ρΓl is the partial transpose of ρ with respect to the

left subsystem and ∣∣ ⋅ ∣∣ denotes the trace norm. A positive value of EN implies the
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Figure 4.3: Logarithmic negativity plotted as a function of dimensionless time
τ = ω1t with different values of the numerical constant λ. The parameter σ = π/2
(corresponding to the LC circuits’ separation D = L/2)

presence of entanglement in our (two-level) bipartite system.

With the full time evolution of the system density matrix given by Eq. (4.5) and

the calculated time dependent terms p1(t), p2(t), d1(t), and d2(t), we obtain the

logarithmic negativity EN as a function of the dimensionless time τ = ω1t shown in

Fig. 4.3. It can be seen from Fig. 4.3 that the entanglement dynamics is sensitive to

the value of the numerical constant λ, with several features in the time dependence

noted as follows: (1) For the parameters considered here, the entanglement can only

build up some time later than t = ∆t (corresponding to τ = σ), the time required

for phonons to travel the separation distance D between the subsystems. Such a re-

sult means that entangled states can only be generated when the two subsystems are

‘timelike’ with respect to the phonon speed vph, which is the combined consequence

of causality and the effect of zero temperature dephasing; although the environment

induced phase term p2(t) starts to build up immediately after t = ∆t (Fig. 4.2),

some additional time may be required in order to overcome the dephasing in order for
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entanglement to develop between the two subsystems. In particular, entanglement

would otherwise immediately build up after t = ∆t in the artificial situation where

the dephasing is suppressed [i.e., d1(t) = d2(t) = 0]. (2) EN is a local maximum at

τ = 2jπ, j = 1,2,3, . . . , corresponding to when both d1(t) and d2(t) vanish exactly, as

noted previously. Furthermore, depending on the value of the numerical constant λ,

EN can reach its upper bound value 1 for the two-level bipartite system, signaling a

maximally entangled system state. (3) With the periodic vanishing of the dephasing

terms, the maximally entangled state can always be generated regardless of the sep-

aration distance between the LC circuits; a larger separation distance only results in

a longer time for the entanglement to build up.
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Figure 4.4: Logarithmic negativity plotted as a function of dimensionless time
τ = ω1t for different phonon field temperatures; the utilized parameters of the model
are discussed in the text, and correspond to the numerical constant λ ≈ 0.045.
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considerations

Section 4.5

Finite temperature entanglement and

experimental considerations

We now shift our focus to more realistic, finite temperature scenarios, where the

entanglement generation can be strongly suppressed due to the much more rapid

thermal dephasing as compared with the zero temperature limit. However, as we have

seen previously, the entanglement can nonetheless be present in the system around the

times τ = 2jπ, j = 1,2,3. . . . when there is full rephasing (neglecting the other circuit

and elastic strip decohering environments). In order to quantitatively investigate the

entanglement dynamics, we assume some example parameters for the model that are

related to actual experimental devices. In particular, for the elastic strip we adopt

the silicon nitride vibrating string parameters from Ref. [104]: ρm = 103 kg/m3,

F = 10−5 N, W = 1 µm, T = 0.1 µm; however, we assume a much longer length

L = 2 cm than that considered in Ref. [104] (≈ 60 µm). For the LC oscillators, we

adopt typical superconducting microwave LC circuit parameters with ∆L = 1 µm,

d = 0.1 µm, and the circuit mode frequency of Ω/(2π) = 15 GHz. The separation

distance between the capacitors is taken to be D = 1 cm.

Using the above given parameters, we obtain the numerical results shown in

Fig. 4.4 for the logarithmic negativity plotted around τ = 2π, with different ex-

ample temperatures achievable in a dilution refrigerator. Note that the amount of

entanglement at τ = 2π when there is full rephasing (corresponding to t ∼ 126 µs) is

not changed by the environment temperature. Instead, increasing the temperature

narrows the time window (corresponding to a width around 150 ns for t = 30 mK in

Fig. 4.4) during which the LC circuits system is entangled.

In order to experimentally probe the entanglement within the system, the initial
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and final LC systems’ state may for example be prepared and measured by coupling

the LC circuits to driven nonlinear Josephson phase qubits [105]. With respect to

the unavoidable LC circuit environments, we note that relaxation and dephasing

times from around a hundred to a few hundred microseconds have been reported for

superconducting circuits [61, 106, 62, 63], thus allowing for the possibility to measure

the first entanglement generation peak captured by the logarithmic negativity using

available circuit QED experimental methods [2].

Section 4.6

Conclusion

We have investigated the entanglement dynamics for two LC oscillators coupled to

a long elastic strip–a model system realization for two separated, localized UDW

detectors interacting with a 1 + 1 dimensional, massless scalar field. Exact solutions

for the quantum time evolution of the oscillators were obtained, and the causality of

the quantum dynamics analysed.

In contrast to other findings of entanglement generation for spacelike separated,

inertial detectors [89, 90, 91], entanglement only arises in our model for timelike sep-

arated detectors, a consequence of the optomechanical interaction where the system

number operator is time-independent in the interaction picture [94]. Including the

RWA-neglected terms in the interaction may result in small amounts of entanglement

generation when the detectors are spacelike separated (since the no-go theorem of

Ref. [94] no longer holds with such non-RWA interaction terms present), although a

similar exact analysis of the entanglement dynamics is not possible in this case.

Given the analog connection between the standard optomechanical interaction

and the localized matter system-weak gravitational field interaction, it would be in-

teresting to go beyond recent non-relativistic, action at a distance analyses [98, 99]
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and utilize a quantum field theoretic approach [107, 108, 100] to explore gravita-

tionally generated entanglement between inertial detectors that are initially spacelike

separated [109, 110, 111].

Finally, with potential applications to quantum information processing in mind,

it would also be interesting to extend our model to multiple LC circuits and investi-

gate possible multipartite entanglement generation via the optomechanical interaction

[112] with a common, thermal acoustic environment, such as a long elastic strip or

large surface area elastic membrane [97].

87



Chapter 5

Gravitational waves affect vacuum

entanglement
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Section 5.1

Introduction

It has long been realized that the vacuum state of a quantum field theory in Minkowski

space is highly entangled across spacelike regions; for example see Ref. [8] and ref-

erences therein. Using algebraic methods, Summers and Werner demonstrated that

correlations between field observables across spacelike regions are strong enough to

violate a Bell inequality [113, 114, 115]. It was later realized that this vacuum

entanglement could be ‘harvested’ by atoms / detectors that couple locally to the

field [116, 117, 118]. This result is surprising, suggesting that the vacuum is a re-

source for quantum correlations and has since been examined in a wide range of

scenarios [119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133].

This phenomenon can be used to construct an operational measure of vacuum

entanglement. Specifically, supposing that two detectors remain spacelike separated

for the duration of their interaction with the field, then any entanglement that results

between them must be attributed to entanglement ‘harvested’ from the vacuum that

existed prior to the detectors’ interaction. Thus, quantifying how entangled two

detectors become serves as a proxy for how entangled the vacuum is across the regions

in which the detectors have interacted. Such a quantification of vacuum entanglement

is similar to the distillable entanglement defined as the number of maximally entangled

states that can be ‘distilled’ from a number of copies of a given quantum state via

local operations and classical communication [134].

Entanglement harvesting has been used to probe the effects of nontrivial space-

time structure on vacuum entanglement, such as cosmological effects [135, 136, 119,

137, 138], nontrivial spacetime topology [139, 140, 141], spacetime curvature [142,

143, 144, 145], and black hole horizons [146, 147]. It is the purpose of this chapter
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to extend this analysis to examine how a gravitational wave affects the entanglement

structure of the vacuum. To do so, we derive the gravitational wave modification to

the Minkowski space Wightman function and evaluate the final state of two detectors

that are initially unentangled. The final state of the detectors is entangled, and the

amount of entanglement depends sensitively on the frequency of the gravitational

wave and detectors’ energy gap. In particular, we demonstrate that a resonance

effect occurs when the detectors’ energy gap is tuned to the frequency of the gravita-

tional wave. If the detectors’ interaction is centered around the gravitational wave’s

peak displacement, then the gravitational wave is shown to degrade the harvested

entanglement relative to detectors in Minkowski space. However, when the detectors’

interaction is not centered at this point in the gravitational wave’s cycle, then the

harvested entanglement can be either amplified or degraded and oscillates as a func-

tion of gravitational wave frequency. Away from this resonance condition, the effect

of a gravitational wave on the harvested entanglement is exponentially suppressed.

Moreover, we demonstrate that the transition probability of an inertial detector

is unaffected by the presence of a gravitational wave, and thus does not register a

different particle content than if it were in Minkowski space. This is consistent with

Gibbons’ conclusion that gravitational waves do not produce particles [148]. In con-

trast, we emphasize that the entanglement between two detectors is sensitive to the

presence of a gravitational wave. This result is analogous to the observation made by

ver Steeg and Menicucci [135] that a single detector is unable to distinguish the field

being in a thermal state in Minkowski space or the vacuum in a de Sitter spacetime,

whereas the correlations between two detectors can distinguish between these situa-

tions. Furthermore, this result agrees with the intuition from the classical theory of

gravitational waves which asserts that a gravitational wave cannot be detected by a

local detector moving along a geodesic.
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Section 5.2

Scalar field theory in a gravitational wave

background

A gravitational wave propagating along the z-direction is described by the line element

ds2 = −dt2 + dz2 + (1 +A cos [ω(t − z)])dx2 + (1 −A cos [ω(t − z)])dy2

= −dudv + (1 +A cosωu)dx2 + (1 −A cosωu)dy2, (5.1)

where in the last equality we have introduced light cone coordinates u ∶= t − z and

v ∶= t + z defined in terms of Minkowski coordinates (t, x, y, z). Such a spacetime is

a solution to the linearized field equation, valid to leading order in A ≪ 1. On this

spacetime, consider a massless scalar field ϕ(x) satisfying the Klein-Gordon equation

at a spacetime point x,

◻ϕ(x) = 0, (5.2)

where ◻ is the d’Alembertian operator associated with Eq. (5.1).1 Solving this equa-

tion in light-cone coordinates x = (u, v, x, y) yields a complete set of solutions [149]

uk⃗(x) =
γ−1(u)
√

2k−(2π)
3
2

eikax
a−ik−v− i

4k− ∫
u
0 du (gabkakb), (5.3)

where γ−1(u) ∶= [det gab(u)]
1
4 , the indices a and b run over {x, y}, and k⃗ ∶= (k−, ka) are

separability constants arising from solving Eq. (5.2) in light-cone coordinates. This

set of solutions is orthonormal with respect to the usual Klein-Gordon inner product

1We could have considered a nonminimal coupling of the field to the Ricci scalar by including a
term ξR in the equation above. However, for a gravitational wave spacetime like the one described
in Eq. (5.1) R vanishes.

91



5.2 Scalar field theory in a gravitational wave background

[149, 150].

Quantization proceeds by promoting the field to an operator and imposing the

canonical commutation relations [150, 151]. As the solutions to Eq. (5.2) are most

easily constructed in light cone coordinates, we quantize the field in this coordinate

system. For a free field theory, light cone quantization has been shown to be equivalent

to the more familiar equal time quantization procedure [152]. Thus, we can interpret

the mode functions in Eq. (5.3) as describing the perturbation to the Minkowski

vacuum induced by a gravitational wave. As we shall see, using light cone quantization

yields the same detector behaviour in the Minkiwoski space limit (A → 0) as equal-

time quantization.

As derived in Appendix B.1, the vacuum Wightman function is

W (x, x′) ∶= ⟨0∣ϕ(x)ϕ(x′)∣0⟩ = ∫ dkuk(x)u∗k(x′)

=WM(x, x′) +WGW(x, x′), (5.4)

where WM(x, x′) is the Minkowski space Wightman function which is independent of

the gravitational wave in light-cone coordinates,

WM(x, x′) =
1

4πi∆u
δ (σM(x, x

′)
∆u

) + 1

4π2σM(x, x′)
, (5.5)

where ∆xµ ∶= xµ − x′µ, and

σM(x, x′) ∶= −∆u∆v +∆x2 +∆y2, (5.6)

is the geodesic distance between x and x′ in Minkowski space, and the modification of
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the Minkowski Wightman function to first order in the gravitational wave amplitude

WGW(x, x′) =− A
4π2 sinc (ω2 ∆u) cos (ω2 [u + u

′]) ×∆x2−∆y2

∆u2 [iπδ′(σM(x,x
′)

∆u )+ ∆u2

σ2
M(x,x′)

],

(5.7)

where sincx ∶= sinx
x .

Section 5.3

Detectors in the presence of gravitational waves

To operationally probe the effects a gravitational wave has on the vacuum state of a

scalar field theory, we employ so-called Unruh-DeWitt detectors. Such detectors are a

model of a two-level atom locally coupled to a quantum field. We use these detectors

to probe interesting field observables in a gravitational wave background, and to track

their deviation from the equivalent observables in Minkowski space. After describing

these detectors in detail, we demonstrate that the transition probability of an inertial

detector is unaffected by the presence of a gravitational wave.

Then, two initially uncorrelated detectors will be used to examine the effect a

gravitational wave has on vacuum entanglement by quantifying how entangled they

become as a result of their interaction; this protocol will be referred to as entangle-

ment harvesting. We demonstrate that the entanglement harvested by the detectors

depends sensitively on the gravitational wave frequency ω and exhibits resonance

effects.

5.3.1. The Unruh-DeWitt detectors and the light-matter interaction

The Unruh-DeWitt detector [153, 87] is a simplified model of a two-level atom, with a

ground state ∣0D⟩ and excited state ∣1D⟩, separated by an energy gap 2Ω. The center

of mass of the detector is taken to move along the classical spacetime trajectory xD(t)
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parametrized by the detector’s proper time t. As an approximation to the light-matter

interaction, the detector couples locally with the scalar field ϕ(x) along its trajectory.

In the interaction picture, the Hamiltonian describing this interaction is

HD(t) = λχ(t) (eiΩtσ+ + e−iΩtσ−) ⊗ ϕ [xD(t)] , (5.8)

where λ is the strength of the interaction, χ(t) ∶= e−
(t−t0)

2

2σ2 is a switching function with

the interpretation that t0 and σ correspond to when the interaction takes place and

its duration, respectively, and σ+ ∶= ∣1D⟩⟨0D∣ and σ− ∶= ∣0D⟩⟨1D∣ are ladder operators

acting on the detector Hilbert space. Although simple, this model captures the rel-

evant features of the light-matter interaction when no angular momentum exchange

is involved [154, 155, 123, 128].

5.3.2. Single detector excitation as a proxy for vacuum fluctuations

If an Unruh-DeWitt detector begins (t→ −∞) in its ground state ∣0D⟩, due to fluctu-

ations of the vacuum and a finite interaction time, there is a finite probability P that

in the far future (t → ∞) it will transition to its excited state ∣1D⟩. The probability

of such a transition is given to leading order in the interaction strength by [156, 157]

P = λ2∫
∞

−∞
dtdt′ χ(t)χ(t′)e−iΩ(t−t′)W (xD(t), xD(t′)) . (5.9)

This probability may be interpreted as quantifying the ability of a detector (or atom)

to be spontaneously excited by vacuum fluctuations. Suppose that the detector is at

rest with respect to the Minkowski coordinates introduced in Eq. (5.1), so that its

trajectory is the geodesic

xD(t) = (t,0,0,0). (5.10)
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Note that for this detector trajectory, the gravitational wave contribution to the

Wightman function in Eq. (5.7) vanishes because ∆x2 = ∆y2 = 0. It follows that the

transition probability in Eq. (5.9) is not affected by the gravitational wave back-

ground. We thus conclude that a single detector cannot detect the presence of a

gravitational wave.

The transition probability can be calculated for the trajectory in Eq. (5.10), and

coincides with the transition probability for a detector in Minkowski space using an

equal-time quantization scheme

P = λ
2

4π
[e−σ2Ω2 −

√
πσΩ (1 − erf[σΩ])] , (5.11)

see Appendix B.2 for details. The fact that a detector clicks with the same probability

as in the Minkowski vacuum is consistent with Gibbons’ observation that a gravita-

tional wave will not create particles from the vacuum during its propagation [148].2

5.3.3. Detector entanglement as a proxy for vacuum entanglement

To operationally probe vacuum entanglement across spacetime regions, consider two

detectors, A and B, each interacting locally with the field ϕ for a finite amount of

time, after which the detectors become correlated [116, 118, 117]. If these detectors

remain spacelike separated for the duration of their interaction with the field, then

any correlations that arise between them must have been harvested from the vacuum

state of the field. Thus, their behaviour serves as an operational proxy of vacuum

correlations. If it is not the case that the detectors remain spacelike separated, then

again correlations may be transferred from the vacuum state of the field to the detec-

2This conclusion was arrived at by evaluating the Bogolyubov coefficients between the in and
out Minkowski-like regions that sandwich a gravitational wave spacetime and demonstrating the
absence of particle creation. This setup models a gravitational wave traveling in Minkowski space. In
backgrounds other than Minkowski, gravitational wave perturbations may cause particle production
[158].
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Figure 5.1: The concurrence C(ρAB)/λ2 is plotted as a measure of entanglement
between the two detectors as a function of their energy Ωσ and average proper
separation D/σ for detectors situated in (a) Minkowski space and a gravitational
wave spacetime with (b) t0 = 0 and (c) with t0 = 1. The gravitational wave
contribution degrades the concurrence relative to detectors in Minkowski space for
t0 = 0, as can be seen by comparing (a) and (b); however, for t ≠ 0, as shown in (c),
the concurrence can either be amplified or degraded due to the presence of a
gravitational wave.

tors. However, in this case even though the detectors do not interact directly, they

can still be coupled by a field-mediated interaction, that may now have the time to

propagate between the detectors leading to detector correlations.

Consider the following trajectories of detectors A and B specified in Minkowski

coordinates

xA(t) = (t,0,0,0), (5.12)

xB(t) = (t,D,0,0). (5.13)

Note that since the detectors interact with the field for an approximate amount of

proper time σ, detectors moving along these trajectories can be considered approxi-

mately spacelike separated throughout the interaction when D > σ and timelike when

D < σ; D corresponds to the average proper distance between the detectors.3 Further-

3Technically, because we employ Gaussian switching functions, the tails of which never vanish
exactly, the distinction between spacelike and timelike is not exact.
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5.3 Detectors in the presence of gravitational waves

more, suppose these detectors are initially (t → −∞) prepared in their ground state,

and the state of the field is in an appropriately defined vacuum state ∣0⟩, so that the

joint state of the detectors and field together is ∣Ψi⟩ = ∣0⟩A ∣0⟩B ∣0⟩. Given that the

interaction between each detector and the field is described by the Hamiltonian in

Eq. (5.8), the final (t→∞) state of the detectors and field is

∣Ψf ⟩ = T e−i ∫R dt [HA(t)+HB(t)] ∣Ψi⟩ , (5.14)

where HA and HB are given in Eq. (5.8) and T denotes the time ordering operator.

The reduced state of the detectors is obtained by tracing over the field

ρAB ∶= trϕ ( ∣Ψf ⟩⟨Ψf ∣ )

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 − 2P 0 0 X

0 P C 0

0 C∗ P 0

X∗ 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+O(λ4) , (5.15)

expressed in the basis {∣0A0B⟩ , ∣0A1B⟩ , ∣1A0B⟩ , ∣1A1B⟩}, and the matrix elements X

and C are given by integrals over the Wightman function evaluated along the de-

tectors’ trajectories and are computed analytically in Appendix B.2. These matrix

elements are the sum of two terms, X = XM +XGW and C = CM + CGW. The first

terms, XM and CM, correspond to the value X and C would take if the detectors were

situated in Minkowski space and coincides with the result obtained using equal-time

quantization [139, 141],

XM ∶= i
σλ2

4D
√
π
e−σ

2Ω2−2iΩt0− D2

4σ2 [erf (iD
2σ
) − 1], (5.16)

CM ∶=
σλ2

4D
√
π
e−

D2

4σ2 × (Im [eiDΩ erf (i D
2σ
+ σΩ)] − sin ΩD) . (5.17)
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Figure 5.2: The gravitational wave contribution ΘGW/Aλ2 to the concurrence is
plotted as a function of the gravitational wave frequency ωσ for both timelike (left)
and spacelike (right) seperated detectors for t0 = 0. We see that around the
resonance condition ω ≈ 2Ω the gravitational contribution is negative, which implies
a degradation of harvested entanglement relative to detectors in Minkowski space.

The second terms, XGW and CGW, correspond to the modification to the matrix

elements X and C stemming from the gravitational wave

XGW ∶=
Aσλ2

4D2π3/2f(ω,Ω, σ, t0) (I1 + I2) , (5.18a)

CGW ∶= −
Aσλ2

4D2π3/2 e
−σ2ω2

4 cos (ωt0) (I3 + I4) , (5.18b)

where the terms I1 and I2 are complicated functions of ω, D, and σ and the terms

I3 and I4 are complicated functions of ω, D, σ, and Ω, which have been defined in

Appendix B.2, and

f(ω,Ω, σ, t0) ∶= e−
σ2

4
(ω−2Ω)2−it0(ω+2Ω) + e−σ2

4
(ω+2Ω)2+it0(ω−2Ω). (5.19)

To quantify the entanglement harvested by the detectors, which will serve as a

proxy measure for vacuum entanglement, we use the concurrence as an entanglement
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5.3 Detectors in the presence of gravitational waves

measure [159]. For the two detector state in Eq. (5.15) the concurrence is [139, 141]

C(ρAB) = 2 max[0, ∣X ∣ − P ] + O(λ4) . (5.20)

Being a simple difference of a local term P and non-local term ∣X ∣, the concurrence

C(ρAB) is convenient in interpreting the results to follow. The concurrence can be

expressed as sum of the Minkowski space contribution ΘM and the modification due

to the gravitational wave ΘGW

C(ρAB) = 2 max[0,ΘM +ΘGW] + O(λ4) , (5.21)

where

ΘM ∶= ∣XM∣ − P, (5.22)

ΘGW ∶=
Re [XGWX∗M]
∣XM∣

. (5.23)

Note that ΘGW has been expanded to first order in the gravitational wave amplitude

A, since this analysis is within the linearized gravity regime.

Figure 5.1 compares the behaviour of the concurrence of the final state of two

detectors in Minkowski space with an equivalent pair of detectors in the presence of

a gravitational wave as a function of the detectors’ energy Ωσ and their separation

D/σ; both t0 = 0 and t0 ≠ 0 are depicted. Since XM only depends on t0 through an

overall phase in Eq. (5.16) and ΘM depends on ∣XM∣, the Minkowski contribution to

the harvested entanglement is unaffected by t0. From Fig. 5.1, it is seen that in all

instances the concurrence (and thus vacuum entanglement) falls off as the distance

D/σ between the detectors grows; this could have been anticipated by noting that

both XM and XGW are proportional to e−D
2/4σ2

. More interestingly, Fig. 5.1b illus-
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Figure 5.3: The gravitational wave contribution ΘGW/Aλ2 to the concurrence is
plotted as a function of the gravitational wave frequency ωσ for both timelike (left)
and spacelike (right) separated detectors for t0/σ = 1. We see that around the
resonance condition ω ≈ 2Ω the gravitational contribution oscillates around zero,
which implies that the gravitational wave can either amplify or degrade the
harvested entanglement relative to detectors in Minkowski space.

trates that for t0 = 0 a gravitational wave degrades the concurrence when compared to

an equivalent pair of detectors in Minkowski space (Fig. 5.1a). However, when t0 ≠ 0,

a gravitational wave can both amplify or degrade the concurrence depending on the

detector separation and gravitational wave frequency, as can be seen in Fig. 5.1c.

A more detailed study of the gravitational wave contribution to the concurrence

is shown in Figs. 5.2 and 5.3 in which ΘGW/Aλ2 is plotted as a function of the

gravitational wave frequency ωσ for different detector energies Ωσ for both spacelike

and timelike separated detectors. From Fig. 5.2, we see that for both spacelike and

timelike separated detectors ΘGW is a negative quantity, supporting the conclusion

that gravitational waves degrade field entanglement for t0 = 0, as described in the

previous paragraph. Moreover, Fig. 5.2 reveals a strong resonance effect when the

frequency of the gravitational wave is approximately equal to the energy gap of the

detector, ω ≈ 2Ω, around which the harvested entanglement is maximally degraded.

This resonance is due to the dependence of ΘGW on the Gaussian profile centered
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at ω = 2Ω that appears in Eq. (5.19). Away from this resonance, ΘGW approaches

zero asymptotically, which implies that the gravitational wave does not influence the

harvested entanglement significantly when ∣ω −Ω∣ ≫ 1/σ. Note that if the atom had

begun in its excited state, Ω→ −Ω, then ΘGW would be identical, which implies that

for t0 = 0 the harvested entanglement would be degraded by the same amount.

In contrast, Fig. 5.3 depicts ΘGW when t0 ≠ 0, revealing oscillatory behaviour

of the concurrence as a function of ω around the resonance condition ω ≈ 2Ω. The

frequency of these oscillations is t0, which can be seen by expanding the numerator

in Eq. (5.23) and noting that it is a sum of terms that oscillate with this frequency.

It is thus seen that ΘGW can be positive or negative, indicating that a gravitational

wave can either amplify or degrade the harvested entanglement depending on ωσ and

t0/σ. Again, when ω moves away from ω ≈ 2Ω, ΘGW approaches zero asymptotically.

We end this section with some remarks on our parameter choices. Notice that we

choose to survey detector energies Ωσ ∈ (−2,2). This upper bound is to ensure the

validity of the Taylor expansion A to first-order in Eq. (5.21). To be more precise, in

the numerator of Eq. (5.23), XM approaches zero as Ωσ gets larger, which causes the

second order contribution in A (which would only depend on XGW) to dominate ΘGW.

Such restriction also bounds the value of ωσ due to the resonance effect. Since the

period of the gravitational wave as seen by the detectors is 2π
ω , we find that within the

parameter space surveyed, the detectors will not see multiple cycles of gravitational

wave throughout the interaction time σ. This fact then makes the value of t0 more

physically relevant since it determines the time at which the interaction with the field

is centered.

The effect a gravitational wave has on the total correlations harvested by a pair

of detectors is discussed in Appendix B.3, revealing that harvested correlations are

affected in a similar fashion as harvested entanglement.
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Section 5.4

Conclusion and outlook

We examined the effect that a gravitational wave has on Unruh-DeWitt detectors.

To do so, the Wightman function for a massless scalar field living in a gravitational

wave background was derived and used to compute the final states of one and two

detectors locally coupled to the field for a finite period of time.

It was shown that the transition probability of an inertial detector is unaffected

by a gravitational wave, in agreement with Gibbon’s observation that a gravitational

wave does not excite particles from the vacuum [148]. In contrast, the entanglement

structure of the vacuum was shown to be modified by the presence of a gravitational

wave as witnessed by the entanglement harvesting protocol. When the detectors are

tuned to the frequency of the gravitational wave, it was shown that depending on

when the detectors interact with the field relative to where the gravitational wave is

in its cycle, the harvested entanglement can be either amplified or degraded relative

to an equivalent pair of detectors in Minkowski space.

The relative size of the gravitational wave contribution to the entanglement har-

vested, ∣ΘGW/ΘM∣, is proportional to the amplitude of the gravitational wave. In gen-

eral, the amplitudes of gravitational waves detected on Earth tend to be very small,

with some whose strain is on the order of 10−21 as reported by LIGO [160]. Thus,

we think that it would be very difficult to detect the effects of gravitational waves

through the entanglement harvesting protocol given our current technological limita-

tions. Since our analysis was carried out in the linearized gravity regime, it would be

interesting to extend the analysis to the strong gravity regime where similar resonance

effects would presumably exist, which may generate a more easily detectable gravita-

tional wave signal. Moreover, different detector configurations could potentially yield
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further amplification of harvested entanglement. Furthermore, in the strong grav-

ity regime it would be interesting to examine the consequences of gravitational-wave

memory effect [161, 162] on vacuum entanglement, revealing potential differences in

the way in which classical and quantum systems are affected. One might also imagine

extending this analysis to investigate gravitational-wave induced decoherence; since

one cannot shield from gravity, such a decoherence mechanism might be expected to

affect all systems.
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Chapter 6

Unruh-DeWitt detector’s response

to a non-relativistic particle

Section 6.1

Introduction

A conceptual idealized particle detector model in the context of quantum field theory

was initially proposed by Unruh [4] to resolve the ambiguity of defining a physical

particle state in a general spacetime background. Later, DeWitt simplified this model

by introducing a local two-level system moving along a classical trajectory to replace

the field description of the detector [5], which is now known as Unruh-DeWitt (UDW)

detector. The UDW detector has a simple interpretation of particles; the transition

from the ground state to the excited state of the two-level system is regarded as an

absorption of the field quanta, and therefore the detection of a particle of the field.

One of the most well-known example of the UDW detector’s application is the

proof of the Unruh effect [4], which states that from the perspective of an uniformly

accelerated observer, the Minkowski spacetime vacuum state is a thermal state. As

a simple and useful tool, the UDW detector has also received considerable attention
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in many other areas, including the study of black hole thermodynamics [163, 164],

Lorentz-violating dispersion relations [165, 166, 167], finite spacial extensions of the

detector and the corresponding regularization schemes [168, 169, 170, 171, 172], and

the coupling to a fermionic field [173, 174, 175, 176] (for more examples, see recent

reviews [177, 178, 179] and references therein). More recently, UDW detectors have

been used extensively in the so-called entanglement harvesting protocol [92], where a

pair of UDW detectors coupled to a quantum field can be used to extract the vacuum

entanglement of the field, and therefore to probe the nontrivial field properties in a

wide range of scenarios [89, 91, 122, 180, 181, 182, 183, 184, 185, 186, 187, 141, 188,

189].

However, despite many successful applications of the UDW detectors, most works

primarily focus on the vacuum state of a massless quantum field, with a few excep-

tions for the massive field and single excitation state [190, 191]. As a type of particle

detector, it is of natural interest to ask how does the UDW detector respond to the

field state that represents the matter/particle distribution, and what are the proper-

ties of such field state that can be operationally accessed by coupling the field to the

UWD detector. Despite the fact that excitation state exhibits quite different theoret-

ical properties including the entanglement entropy [192] and phase transition [193],

these questions are also directly related to the problem of measuring the quantum

field as it is known that the projective measurement does not directly generalize to

the framework of quantum field theory [194, 195, 196, 197], while the particle detector

based model can be promising to formulate the measurement process [198] . It is the

purpose of this chapter to investigate the transition probability of the UDW detector

in the presence of a non-relativistic particle as a starting point of such attempt, where

the transition probability can be interpreted as the probability of finding the particle

at the position of the detector.
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Working with a non-relativistic particle state allows us to compare the transi-

tion probability of the UDW detector with the well-understood probability density

of the corresponding free Gaussian wave packet in the non-relativistic quantum me-

chanical description, which is proportional to the energy density of the field in the

non-relativistic limit as we show in Sec. 6.2. To keep the model simple with a focus

on particle properties, we consider a massive scalar field living in the two-dimensional

Minkowski spacetime, where we can consider the interaction to have a sharp switch-

on and switch-off instead of introducing technical details of smearing the detector

over time. We find that the total transition probability of the detector splits into

the vacuum contribution and the matter contribution, and we show that the matter

contribution gives a qualitatively similar description to the probability density of the

particle. Such result indicates that our detector model can serve as a faithful field

theoretic measurement model for the single particle detection. Unique features inher-

ent to the detector model are found as the matter part contribution oscillates with

the interaction time whose period is determined by the difference between the energy

gap of the detector and the mass of the particle. Moreover, we observe that there is

a strong resonance pattern for the transition probability when the energy gap of the

detector is tuned to the mass of the particle.

The chapter is organized as follows. In Sec. 6.2 we give a quick review of the field

description for a non-relativistic particle and calculate its energy density. In Sec. 6.3,

after introducing the UDW model and a quick review of the transition probability for

the detector in the vacuum, we present our main results on the matter part contribu-

tion to the transition probability. Both analytical results for the detector coinciding

with the particle and numerical results for more general scenarios are discussed. A

comparison between the vacuum contribution and the matter part contribution has

also been explored with different parameter choices. Sec. 6.4 gives concluding remarks
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of the chapter. Throughout this chapter, we use natural units h̵ = c = 1 and the metric

of the two-dimensional Minkowski spacetime has signature (−,+).

Section 6.2

Single particle description in the

two-dimensional Minkowski spacetime

In this section, we briefly review the quantum field description of a non-relativistic

particle. Consider a free real scalar field ϕ(t, x) of mass m in two-dimensional

Minkowski spacetime, which satisfies the Klein-Gordan equation:

(− ◻ +m2)ϕ(t, x) = 0, (6.1)

where ◻ ∶= ∂ν∂ν is the d’Alembertian operator. Solving this field equation and impos-

ing the canonical quantization for the field, the expression of the field operator can

be obtained as

ϕ (t, x) = ∫
dk√
(2π)22ωk

(a(k)eikµxµ + a†(k)e−ikµxµ) , (6.2)

where ωk =
√
k2 +m2 is the energy of a single mode and the creation and annihilation

operators satisfy the usual commutation rule:

[a(k), a†(k′)] = δ(k − k′). (6.3)

A non-relativistic particle localized at x0 and with momentum k0 can be described

by the initial field state [199]:

∣ψ(0)⟩ = N ∫
dk√
(2π)22ωk

e−
1

2σ2 (k−k0)2−ikx0a†(k)∣0⟩, (6.4)
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where N is the normalization constant. The field state description of the particle is

non-relativistic to a good approximation provided the characteristic radius satisfies

σ−1 ≫ m−1 and the momentum k0 satisfies ∣k0∣ ≪ m. Under these conditions, the

normalization constant is approximately ∣N ∣ = 2π1/4
√
m/σ.

A natural way to see that such an initial state provides a similar description to

a free localized Gaussian wave packet with position x0 and momentum k0 in non-

relativistic quantum mechanics is to compare the expectation value of the energy

density T00 = 1
2
[m2ϕ2 + ϕ̇2 + (∂ϕ∂x)2] for the initial state with the time-dependent prob-

ability density of the corresponding wave-function. In the non-relativistic limit, the

expectation value of the energy density approximately reduces to a simpler form:

⟨T00⟩ = m2⟨ϕ2⟩, where we have neglected the vacuum energy terms and also (∂ϕ∂x)2

term since it’s proportional to k20, which is small compared with m2. Note that we

also employed the fact that the expectation value of time derivative term reduces to

1
2m

2⟨ϕ2⟩ in such limit.

As derived in Appendix C.1, the expectation value of ϕ2 for ∣ψ(0)⟩ is given by

⟨ψ(0)∣ϕ (t, x)2 ∣ψ(0)⟩ = 1

m

⎡⎢⎢⎢⎢⎢⎣

σ2

π (1 + (σ2t
m
)2)

⎤⎥⎥⎥⎥⎥⎦

1
2

exp

⎡⎢⎢⎢⎢⎣
−σ2
(x − x0 − k0t

m
)2

1 + (σ2t
m
)2
⎤⎥⎥⎥⎥⎦
, (6.5)

which coincides with the non-relativistic probability density up to a constant m−1

(for quantum mechanical description, see Appendix C.2). From Eq. (6.5), we see the

variance of the energy density (probability density) grows with time t, indicating the

particle state spreads spatially over time.
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Section 6.3

Transition probability of the Unruh-Dewitt

detector

The point like Unruh-Dewitt detector can be thought as a two-level system moving

along some timelike spacetime trajectory xD(τ) where τ is the proper time of the

detector. The Hilbert space of the detector is spanned by the ground state ∣0D⟩ and

the excited ∣1D⟩ separated by an energy gap Ω. The detector couples to the scalar

field locally through the interaction Hamiltonian

Hint(τ) = λχ (τ) (eiΩτσ+ + e−iΩτσ−)ϕ [xD(τ)] , (6.6)

where λ is the coupling strength, σ+ = ∣1D⟩⟨0D∣ and σ− = ∣0D⟩⟨1D∣ are ladder operators

acting on the detector’s Hilbert space, χ(t) is a compact switching function which

controls the switch-on and switch-off moments of the interaction.

In the following, we shall consider an inertial detector at rest at the origin of the

coordinate system with its worldline given by the Minkowski coordinate1:

xD(τ) = (τ,0). (6.7)

Such worldline has the simple interpretation that the particle position x0 is also the

separation distance between the particle and the detector.

6.3.1. Transition probability in the vacuum background

Supposing that the detector and the field states are initially prepared in the ground

state ∣0D⟩ and the vacuum state ∣0⟩ before the interaction, the transition probability

1Without loss of generality, one can always go to the reference frame of the detector, provided
that the relative speed between the particle and the detector is non-relativistic.

109



6.3 Transition probability of the Unruh-Dewitt detector

for the detector to jump to the excited state ∣1D⟩ after the interaction has ceased is

given to the leading order of the coupling constant by [170]

Pv = λ2∫ dτdτ ′χ(τ)χ(τ ′)e−iΩ(τ−τ ′)Wv (xD(τ), xD(τ ′)) , (6.8)

where Wv (xD(τ), xD(τ ′)) ∶= ⟨0∣ϕ(xD(τ))ϕ(xD(τ ′))∣0⟩ is the pull back of the vacuum

Wightman function to the detector’s worldline.

We remark that the vacuum Wightman function in general should be regarded a

distribution on the spacetime and one usually needs to consider a smooth switching

function χ(τ) to cure the possible divergence in Eq. (6.8) in order to obtain un-

ambiguous results for the transition probability. However, as a special case in the

two-dimensional Minkowski spacetime for the free massive scalar field, the coinci-

dence singularity of the vacuum Wightman function is only logarithmic [200] and we

can consider a sharp switching function:

χ(τ) = Θ(τ − τi)Θ(τf − τ), (6.9)

where Θ(τ) is the Heaviside step function and τi (τf ) indicates the switch-on (off)

moment while Pv remains well defined. Note that we have implicitly assumed that

τf ≥ τi, i.e., we always first switch on the interaction and then switch it off with a

finite interaction time duration ∆τ ∶= τf − τi.

The pull back of the vacuum Wightman function for a massive scalar field in the

two-dimensional Minkowski spacetime to the detector’s worldline is [174, 190]

Wv(τ, τ ′) =
1

2π
K0(m[ϵ + i(τ − τ ′)]), (6.10)

where K0 is the modified Bessel function of the second kind with limit ϵ→ 0+ under-
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stood.

The transition probability Pv then can be found as [190]

Pv = −
λ2

2m2 ∫
∆τ̃

0
du(∆τ̃ − u)[J0(u) sin(µu) + Y0(u) cos(µu)], (6.11)

where ∆τ̃ =m(τf − τi), µ = Ω/m, J0 and Y0 are the Bessel’s function of the first kind

and the second kind.

6.3.2. Transition probability in the presence of a particle

Now we are ready to discuss the transition probability of the detector in the presence

of a non-relativistic particle. Supposing that the field state is prepared as in Eq. (6.4)

at τ = 0 with the detector in its ground state ∣0D⟩ and adopting the switching function

χ(τ) in Eq. (6.9) with τi ≥ 0, the transition probability for the detector to the leading

order of the coupling strength is [170]

Pp =λ2∫
τf

τi
∫

τf

τi
dτdτ ′e−iΩ(τ−τ

′)⟨ψ(0)∣ϕ(xD(τ))ϕ(xD(τ ′))∣ψ(0)⟩. (6.12)

The two-point function in Eq. (6.12) can be expressed as a sum of the vacuum con-

tribution and the matter contribution (see derivation in appendix C.1):

⟨ψ(0)∣ϕ(xD(τ))ϕ(xD(τ ′))∣ψ(0)⟩ =Wv(τ, τ ′) +Wm(τ, τ ′), (6.13)

where

Wm(τ, τ ′) =
1

2
√
πmσ

e−im(τ−τ
′)− k20

σ2

√
( 1
σ2 + iτ

m
) ( 1

σ2 − iτ ′

m
)

exp
⎛
⎝
( k0
σ2 − ix0)

2

2 ( 1
σ2 + iτ

m
)
+
( k0
σ2 + ix0)

2

2 ( 1
σ2 − iτ ′

m
)
⎞
⎠

+ {τ ⇐⇒ τ ′}. (6.14)
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Note that to reach Eq. (6.14), we have taken the non-relativistic limit approxima-

tion. Substituting Eq. (6.14) into Eq. (6.12), we then obtain the transition probability

as a sum of the vacuum contribution and the matter part contribution:

Pp = Pv + Pm

= Pv + λ2∫
τf

τi
∫

τf

τi
dτdτ ′e−iΩ(τ−τ

′)Wm(τ, τ ′). (6.15)

The expression of Pm is a complicated integral which does not admit an analytical

form in general. In the following two subsections, we shall first discuss a special case

of x0 = 0 and k0 = 0, where analytical results can be obtained and then we employ

numerical methods to study the dependence of Pm on other parameters.

Analytical results. In case of x0 = 0 and k0 = 0, the point-like detector essentially

overlaps with the particle and the matter part contribution to the two-point function

simplifies to

Wm(τ, τ ′) =
1

2
√
πmσ

e−im(τ−τ
′)

√
( 1
σ2 + iτ

m
) ( 1

σ2 − iτ ′

m
)
+ {τ ⇐⇒ τ ′}. (6.16)

Substituting Eq. (6.16) into Eq. (6.12), we find

Pm =
λ2

2
√
πmσ

∫
τf

τi
∫

τf

τi
dτdτ ′e−iΩ(τ−τ

′)
⎛
⎜
⎝

e−im(τ−τ
′)

√
( 1
σ2 + iτ

m
) ( 1

σ2 − iτ ′

m
)
+ {τ ⇐⇒ τ ′}

⎞
⎟
⎠

= λ2m

2
√
πσ3
(∣I(τf ,Ω) − I(τi,Ω)∣

2

+ {Ω⇐⇒ −Ω}) , (6.17)

where we have introduced function I(τ,Ω) defined as

I(τ,Ω) ∶= e
2m(m+Ω)

σ2

√
1 + iτσ

2

m
E 1

2
(m(m +Ω)

σ2
+ i(m +Ω)τ) , (6.18)
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6.3 Transition probability of the Unruh-Dewitt detector

with E1/2 the exponential integral.

We now discuss properties of Pm in Eq. (6.17). From Eq. (6.17) we see that Pm is

invariant under the change of Ω → −Ω, indicating that the matter part contribution

to the transition probability is the same for both the excitation and the de-excitation

of the detector2. As a matter of fact, this conclusion also applies to particles with

non-zero momentum k0 and position x0 since Wm(τ, τ ′) is a symmetrical function of

τ and τ ′ and the transformation of Ω → −Ω in Eq. (6.12) amounts to the exchange

of variables τ and τ ′ in the integral, which then gives the same result. We note that

the vacuum Wightman function Wv(τ, τ ′) is, however, non-symmetrical.

A closer study of the function I(τ,Ω) reveals more details on how Pm depends

on time τ and energy gap Ω. In the long time limit τf → +∞ (which corresponds to

infinite interaction time duration ∆τ → +∞), I(τf ,Ω) approaches zero asymptotically,

resulting Pm an initial time τi dependent quantity. This asymptotic property of the

I(τ,Ω) function also means that Pm decreases as τi gets larger with a fixed interaction

time duration, which is in agreement with the fact that the particle state spreads

spatially over time with a decreasing energy/probability density. We note that the

exponential integral has an oscillatory dependence on its imaginary component, and

therefore Pm also oscillates with interaction time duration ∆τ . For a positive value of

Ω, the first term in Eq. (6.17) is dominated by the second term and the period of Pm

is approximately given by T = 2π/(m−Ω). Moreover, as we shall see in the following,

there is a strong resonance effect at Ω =m where Pm obtains its peak value.

We plot Pm as a function of the dimensionless interaction time duration ∆τσ and

the energy gap Ω/σ with different switch-on moments τi in Figs. 6.1 and 6.2. From

Fig. 6.1, we see Pm oscillates with a period approximately of 2π/(m/σ−Ω/σ) = 2σ and

its peak value gradually decreases over time as we remarked previously. Comparing

2If Ω is a negative quantity, ∣1D⟩ effectively becomes the ground state with ∣0D⟩ being the excited
state.
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Figure 6.1: The matter part contribution to the transition probability Pm and the
vacuum part contribution Pv are plotted as functions of the dimensionless
interaction time duration ∆τσ. We see that both Pm and Pv oscillate with the time
duration and its peak value decreases gradually over time.

different switch-on moments τiσ, we see the transition probability gets smaller for

larger values of τiσ with a fixed interaction time duration. For a comparison with the

vacuum contribution, the dependence on the interaction duration of Pv is also plotted

in Fig. 6.1, and it can be seen that the amplitude of Pv is much smaller than Pm here.

Fig. 6.2 shows the symmetrical dependence of Pm on the dimensionless energy gap

Ω/σ. Moreover, we see from Fig. 6.2 that there is a strong resonance effect for Pm

when the energy gap of the detector is tuned to Ω = ±m. Such resonance should come

as no surprise since that the non-relativistic particle would have the same energy as

the excited state of the detector in this case. Again, Fig. 6.2 reveals a smaller Pm

with larger values of the starting time moment τiσ with other parameters fixed.
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Figure 6.2: The matter part contribution to the transition probability Pm is plotted
as a function of the dimensionless detector energy gap Ω/σ. We see a symmetrical
dependence of Pm on the energy gap with its peak values obtained in the resonance
condition Ω = ±m.

In Fig. 6.3 we compare the dependence on the dimensionless energy gap Ω/σ for

Pm and Pv. It is seen that for positive value of Ω/σ, Pv is dominated by Pm when

the energy gap of the detector is close to the resonance condition Ω =m, which is in

agreement with Fig 6.1. However, for negative value of Ω/σ, Pv is significantly larger

than Pm with its peak around Ω = −m [190], indicating that the detector has much

higher probability to de-excite compared with the excitation rate in the presence of

vacuum and it is less sensitive to the matter part contribution for the de-excitation.

We end this subsection with some more discussion on the resonance effect for

Pm. Taking m = Ω, the second term in Eq. (6.17) is in fact ill-defined since E1/2(0)

is formally infinite. This apparent infinity is due to the improper treatment of the
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Figure 6.3: The matter part contribution to the transition probability Pm and the
vacuum part contribution Pv are plotted as functions of the dimensionless energy
gap Ω/σ. We see that Pm dominates Pv for positive value of the energy gap in the
resonance region, and for negative value of the energy gap Pv gets significantly
larger than Pm with its peak around Ω = −m.

integration in Eq. (6.17). Taking m = Ω in the integral, we obtain

Pm =
λ2m

2
√
πσ3

⎡⎢⎢⎢⎢⎣
∣I(τf ,Ω) − I(τi,Ω)∣

2

+ ∣
√

1 −
iτfσ2

m
−
√

1 − iτiσ
2

m
∣
2⎤⎥⎥⎥⎥⎦
. (6.19)

The expression of Pm in Eq. (6.19) is, however, also problematical if one consider large

difference between τf and τi as Pm can gets larger than one. Such divergence implies

that in the resonance condition, the first order result for the transition probability

is invalid for long interaction time duration and one has to take into account the

contribution from higher order terms. We note that such first order divergence is due

to the stronger infrared divergence in the lower dimensional quantum field theory.
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The power of the denominator in Eq. (6.16) increases with the dimension of the

spacetime, and therefore Eq. (6.19) would converge in higher dimensional spacetimes.
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Figure 6.4: (a) The matter contribution to the transition probability Pm is plotted
as a function of the dimensionless initial particle position x0σ and the particle
momentum k0/σ. We see the peak of the probability moves in the opposite
directions in the position space as the momentum increases in the positive direction.
(b) A more study of Pm is plotted versus initial particle position x0σ with different
momentum k0/σ. The switch-on moments in both (a) and (b) are τiσ = 0.

Numerical results. The integration for Pm with non-zero initial position x0 and

momentum k0 can hardly be evaluated analytically. With the dependence on time

τ and energy gap Ω discussed in the previous subsection, we shall employ numerical

methods in this subsection to focus on exploring the dependence of Pm on x0 and k0.

Some comments are in order here before we discuss the numerical plots. Similar

to the energy/probability density in Eq. (6.5), it can be seen from Eq. (6.14) that

Wm(τ, τ ′) roughly decreases exponentially with the square of the particle position x0,

and therefore Pm would also fall off exponentially with larger value of x0. Further-

more, since Pv is independent of the particle position x0, in case of sufficiently large

separation between the particle and the detector, the vacuum contribution would
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6.3 Transition probability of the Unruh-Dewitt detector

dominate the matter contribution.

Fig. 6.4 displays the numerical plot of Pm. Fig. 6.4 (a) is a density plot of Pm as a

function of the dimensionless initial particle position x0σ and the particle momentum

k0/σ, from which one can see that for each fixed value of the momentum k0/σ, there is

a corresponding peak of the probability in the position space. As the particle deviates

from such peak position, Pm falls off in both directions quickly. Furthermore, we see

that as the momentum k0/σ increases in the positive direction, the peak of the Pm

in the position space moves in the opposite direction to the negative values for x0σ.

Fig. 6.4 (b) depicts a more detailed numerical study on Pm as a function of the initial

particle position x0σ with different momentum k0/σ as well as the vacuum contribu-

tion to the transition probability Pv. We see that as the detector sits sufficiently far

from the particle, the vacuum contribution Pv gets greater than the matter contribu-

tion Pm and eventually dominates it. Moreover, it can be seen more clearly that for

zero momentum, Pm falls off exponentially in both directions in a symmetrical fash-

ion, and in case of the non-zero momentum for the particle, the peak of Pm is shifted

in the corresponding direction by a certain value as we have seen in Fig. 6.4 (a). We

remark that such behaviour agrees with the energy/probability density dependence

in the phase space of the particle. Intuitively one would expect that Pm should be

larger if the particle is moving towards the detector during the interaction time inter-

val in contrast to the case when it’s moving away from the detector since the average

energy/probability density during the interaction time interval at the position of the

detector is greater in the former case.

However, the similarity between the non-relativistic probability density and Pm

should only be understood in a qualitative sense. To compare the matter part contri-

bution to the transition probability of the detector with the non-relativistic probabil-

ity density of the particle, we define the averaged probability density at the position

118



6.3 Transition probability of the Unruh-Dewitt detector

-2 -1 0 1 2
0.85

0.90

0.95

1.00

1.05

1.10

1.15

Figure 6.5: The normalized ration of Pavg/Pm is plotted as a function of the
dimensionless initial particle position x0σ with different momentum k0/σ. The
normalization is taken such that Pavg/Pm = 1 for x0σ = 0 and k0/σ = 0.

of the detector as

Pavg ∶=
m

τf − τi ∫
τf

τi
dτ⟨ψ(0)∣ϕ (τ,0)ϕ (τ,0) ∣ψ(0)⟩, (6.20)

where we have used the fact that the expectation value of ϕ2 coincides with the non-

relativistic probability density up to a constant m−1. Fig. 6.5 shows the normalized

ratio plot of Pavg/Pm versus the initial particle position x0σ with different momentum

k0/σ, where an implicit normalization constant has been taken such that Pavg/Pm

equals to 1 for x0 = 0 and k0 = 0. It can be seen that these two quantities do not have

a strict linear relationship and the matter part contribution Pm decays slower over

the separation distance between the detector and the particle compared with Pavg.
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6.4 Conclusion and outlook

Section 6.4

Conclusion and outlook

In this chapter we studied in detail the transition probability of the UDW detector

in the presence of a non-relativistic particle. We introduced an initial state of a

massive scalar field that represents a non-relativistic particle and we calculated it’s

energy density which is shown to be proportional to the corresponding non-relativistic

probability density.

Coupling the UDW detector to such an initial field state, we found that the transi-

tion probability splits into the vacuum contribution and the matter part contribution.

An analytical result for the matter part contribution is obtained in the special case

when the particle coincides with the detector during the interaction. It was shown

that the matter contribution oscillates with the interaction time duration, and with

its peak gradually deceasing over time to its initial time dependent asymptotic value.

The frequency of the oscillation is determined by the difference between the mass of

the particle and the energy gap of the detector. When the mass equals to the energy

gap, we found a strong resonance effect for the transition probability. The comparison

between the vacuum contribution and the matter part contribution was performed

and we found that for the excitation of the detector, the matter contribution would

mostly dominate the vacuum contribution while for the de-excitation of the detector,

the situation is reversed. We employed numerical methods to investigate the more

general scenarios when the particle does not coincide with the detector and we found

that the matter part contribution behaves similar to the averaged energy density of

the particle at the position of the detector during the interaction. Such similarity, as
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we have checked, should only be understood in a qualitative sense.

Although we have done the analysis in a two-dimensional flat spacetime, we ex-

pect that most properties of the matter contribution to the transition probability

are still valid in higher dimensional spacetime as the two-point functions for a non-

relativistic particle state share similar structures. This chapter has paved the way

for operationally investigating field properties in the presence of matter. It would be

interesting to extend the analysis to either more general matter distribution scenarios

(such as superposition or entangled excitation state) or different interaction types.

In particular, it’s worth investigating if there exists a type of the interaction between

the detector and the field that reproduces exactly non-relativistic probability result.

Finally, we notice that it’s also interesting to explore how are the entanglement prop-

erties of the field influenced by the matter presence as seen by a pair of the UDW

detectors, which we postpone to the future work.
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Appendix A

Section A.1

Derivation of the model Hamiltonian

Starting from the Lagrangian in Eq. (3.10) and performing a Legendre transformation,

the Hamiltonian for the model can be found as

H = ∫
L

0
dx [πz(x, t)

2

2ρmWT
+ F

2
(∂uz
∂x
)
2

] + Q2

2C[uz]
+ Φ2

2L
,

(A.1)

where Q and π are the corresponding conjugate momenta for the flux and the dis-

placement field:

Q = δL
δΦ̇

, (A.2a)

πz =
δL

δu̇z
. (A.2b)

Since we require that both ends of the strip are fixed with an applied tensile force

F , the field uz then satisfies the boundary condition: uz(0) = uz(L) = 0, and we can
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A.1 Derivation of the model Hamiltonian

expand it in the normal mode basis as

uz(x, t) =
∞
∑
i=1
xi(t)ui(x), (A.3)

where ui(x) = sin (πixL ), i = 1,2, . . . . Substituting Eq. (A.3) into Eq. (A.1), the strip

Hamiltonian takes the independent harmonic oscillator form:

H = ∑
i

( 1

2m
p2i +

1

2
mω2

i x
2
i ) +

Q2

2C
+ Φ2

2L
, (A.4)

where pi =mdxi

dt , m is the mechanical mode effective strip mass:

m = 1

2
ρmWTL, (A.5)

and ωi is the normal mode frequency:

ωi =
πi

L

√
F

ρmWT
. (A.6)

Quantization proceeds by promoting the coordinates Φ, xi and their conjugate

momenta into operators and imposing the usual commutation rules. Introducing the

creation/annihilation operators defined by

Q = −i
⎛
⎝
h̵

2

√
C

L

⎞
⎠

1/2

(a − a†), (A.7a)

Φ =
⎛
⎝
h̵

2

√
L

C

⎞
⎠

1/2

(a + a†), (A.7b)

xi = (
h̵

2mωi

)
1/2
(bi + b†i), (A.7c)

pi = −i(
mh̵ωi

2
)
1/2
(bi − b†i), (A.7d)
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the Hamiltonian simplifies to

H = h̵Ω(a†a + 1

2
) +∑

n

h̵ωi (b†ibi +
1

2
) , (A.8)

where Ω = 1/
√
LC; both Ω and the creation/annihilation operators a†, a are function-

als of the elastic strip displacement field uz through their dependence on the strip

capacitance C[uz].

Section A.2

Derivation of the coupling constant λi

In order to obtain the optomechanical coupling between the LC circuit and the me-

chanical mode, we expand Ω to first order in the normal mode displacement coordi-

nates:

Ω ≈ Ω0 +∑
i

∂Ω

∂xi
∣
xi=0

xi

= 1√
LC0

−∑
i

Ω0

2C0

∂C

∂xi
∣
xi=0
( h̵

2mωi

)
1/2
(bi + b†i)

= 1√
LC0

+∑
i

Ω0λi(bn + b†n), (A.9)

where we define the coupling constant λi through the last line of Eq. (A.9). To be

consistent with this linear approximation, we must also expand to first order the

LC oscillator creation/annihilation operators in the displacement coordinates. This

results in additional interaction terms of the form a2(bi + b†i) and a†2(bi + b†i), which

are usually neglected through the so-called ‘rotating wave approximation’ [201], hence

resulting in the Hamiltonian (4.3).

In order to determine the explicit form of the coupling constant λi, we require

the mode coordinate derivative of the capacitance. Assuming a positive charge +Q
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A.2 Derivation of the coupling constant λi

placed on the upper conductor of the capacitor and a negative charge −Q placed on

the lower conductor, the electric field between the conductors can be found by solving

the Laplace equation for the electric potential ϕ:

∂2ϕ

∂z2
= 0, (A.10)

where we neglect edge effects and approximate the electric field to be along the z

direction within the capacitor. With the lower strip at z = −d and upper strip at

z = uz(x), the boundary conditions for the electric potential are

ϕ(x, z = −d) = Vl, (A.11a)

ϕ(x, z = uz(x)) = Vu, (A.11b)

where Vl, Vu are the voltages on the lower and upper conductors. Since the dis-

placement field uz is assumed to be much smaller than d0, we can write the electric

potential as a series expansion ϕ = ϕ(0) + ϕ(1) + .... Substituting this series into the

boundary conditions (A.11), we have:

ϕ(0)(x,−d) = Vl, (A.12a)

ϕ(0)(x,0) = Vu, (A.12b)

and

ϕ(1)(x,−d) = 0, (A.13a)

ϕ(1)(x,0) = −∂ϕ
(0)(x, z)
∂z

∣
z=0
uz(x). (A.13b)

Solving the Laplace equation for ϕ(0) and ϕ(1), and taking the gradient, we obtain
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the electric field:

E = −∇(ϕ(0) + ϕ(1))

= −∆V

d
(1 − uz(x)

d
) ẑ, (A.14)

where ∆V = Vu−Vl. In order to determine the relationship between the charge Q and

the voltage difference ∆V , we apply Gauss’s law to a surface that just encloses the

upper surface charge and we have:

Q =ϵ0∆VW∆L

d
− ϵ0∆VW

d2 ∫
L+∆L

2

L−∆L
2

dxuz(x)

=C0∆V −
C0

∆Ld ∫
L+∆L

2

L−∆L
2

dxuz(x). (A.15)

With Eq. (A.15), we have the expression for the capacitance:

C = Q

∆V
= C0 −

1

∆Ld ∫
L+∆L

2

L−∆L
2

dxuz(x). (A.16)

Using the expansion for the displacement field Eq. (A.3) and substituting Eq. (A.16)

into Eq. (A.9), we find

λi = −
L

πid∆L
sinc(πi∆L

2L
) sin(πi

2
)( h̵

2mωi

)
1/2
, (A.17)

where sincx ∶= sinx/x. Expressing the coupling constant λi in a frequency dependent

form, we finally have the expression for λi given by Eq. (3.12):

λi = −
1

2d
sinc( ωi

ωu

) sin(πi
2
)( h̵

2mωi

)
1/2
, (A.18)
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where the upper cut-off frequency is

ωu =
2

∆L

√
F

ρmWT
. (A.19)

Section A.3

Derivation of the strip length condition

From Eq. (A.9), we have:

Ω ≈ Ω0 +∑
i

Ω0λi (
2mωn

h̵
)
1/2
xn. (A.20)

Requiring that the variance of the capacitor frequency to be small compared with the

square of its bare frequency Ω2
0, we have:

⟨(∑
i

Ω0λi (
2mωi

h̵
)
1/2
xi)

2

⟩ ≪ Ω2
0. (A.21)

For a thermal harmonic oscillator with mass m and frequency ω, the variance for x

is:

⟨x2⟩ = h̵

2mω
coth(βh̵ω

2
) , (A.22)

so that Eq. (A.21) becomes

∑
i

λ2i coth(βh̵ωi

2
) ≪ 1, (A.23)
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where we use the fact that different mechanical modes are statistically independent.

Substituting the expression (3.12) for λi into Eq. (A.21), we obtain condition (3.17):

∑
i

h̵

8mωid2
sinc2 ( ωi

ωu

) sin2 (πi
2
)
2

coth(βh̵ωi

2
) ≪ 1. (A.24)
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Appendix B

Section B.1

Derivation of gravitational wave spacetime

Wightman function

Consider a massless scalar field ϕ(x) = ϕ(u, v, x, y) in a gravitational wave background

satisfying the Klein-Gordon equation ◻ϕ(x) = 0 in Eq. (5.2). The Klein-Gordon

equation is separable in the coordinates (u, v, x, y) and an arbitrary solution can be

expanded in the complete set of mode functions

uk⃗(u, v, x, y) =
γ−1(u)√

2k−(2π)3/2
exp [ikxx + ikyy − ik−v −

i

4k−
∫

u

0
dugabkakb] . (B.1)

where γ(u) ∶= (1 −A2 cosωu)1/4 and the integral evaluates to

∫
u

0
dugabkakb = ∫

u

0
du [k2x(1 −A cosωu) + k2y(1 +A cosωu)]

= (k2x + k2y)u − (k2x − k2y)
A

ω
sinωu. (B.2)

129



B.1 Derivation of gravitational wave spacetime Wightman function

These mode functions are normalized and orthogonal to one another with respect to

the usual Klein-Gordon inner product [149, 150]. The Wightman function W (x,x′) ∶=

⟨0∣ϕ(x)ϕ(x′)∣0⟩ can be expressed in terms of these mode as

W (x, x′) = ∫ dk⃗ uk⃗(u, v, x, y), u∗k⃗′(u
′, v′, x′, y′)

= ∫ dk⃗
γ−1(u)γ−1(u′)
(2π)32k−

eikx∆x+iky∆y−ik−∆v− i
4k−
(k2x+k2y)∆u+ i

4k−
(k2x−k2y)Aω (sinωu−sinωu

′)

= ∫ dk⃗
γ−1(u)γ−1(u′)
(2π)32k−

eikx∆x+iky∆y−ik−∆v− ik2x
4k−
[∆u− 2A

ω
sin(ω∆u

2
) cos(ω u+u′

2
)]

× e−
ik2y
4k−
[∆u+ 2A

ω
sin(∆u

2
) cos(u+u

′
2
)]. (B.3)

Expanding to leading order in A yields

W (x, x′) = ∫
dk

(2π)32k−
eikx∆x+iky∆y−ik−∆v− i

4k−
(k2x+k2y)∆u

× [1 + iA
2ω

k2x − k2y
k−

sin (ω2 ∆u) cos (ω2 [u + u
′])] . (B.4)

The first term yields the Minkowski space Wightman function

WM(x, x′) =
1

4πi∆u
δ (σM(x, x

′)
∆u

) +PV
1

4π2σM(x, x′)
, (B.5)

and the second term evaluates to

WGW(x, x′) =
iA

(2π)34ω
sin (ω2 ∆u) cos (ω2 [u + u

′])

× ∫ dkxdkydk− e
ikx∆x+iky∆y−ik−∆v− i

4k−
(k2x+k2y)∆uk

2
x − k2y
k2−

= A

2ωπ2

∆x2 −∆y2

∆u3
sin

ω∆u

2
cos

ω(u + u′)
2 ∫ dk−k−e

ik−(−∆v+∆x2

∆u
+∆y2

∆u
)
.

(B.6)
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To evaluate the last integral, consider a function f = f(x) and the following integral

∫
∞

0
dxxeifx = −i d

df ∫
∞

0
dxeifx = −i d

df
[πδ(f) +PV

i

f
] = −[iδ′(f) +PV

1

f 2
] . (B.7)

Then, the gravitational wave Wightman function becomes

WGW(x, x′) = −
A

4π2

sin (ω2 ∆u)
ω
2 ∆u

cos (ω2 [u + u
′]) ∆x2 −∆y2

∆u2

× [iπδ′ (σM(x, x
′)

∆u
) +PV

∆u2

σ2
M(x, x′)

] . (B.8)

Section B.2

Computing P , X and C

Derivation of P

Recall from Eq. (5.9) that the probability P for a detector to transition from its

ground state to its excited state to leading order in the interaction strength is

P = λ2∫ dtdt′ χ(t)χ(t′)e−iΩ(t−t′)W (xD(t), xD(t′)) , (B.9)

Substituting in the explicit form of the switching functions, it follows that

P = λ2∫ dt∫ dt′e−
(t−t0)

2+(t′−t0)
2

2σ2 e−iΩ(t−t
′)W (x(t), x(t′)). (B.10)

Consider the trajectory of a single detector in Eq. (5.10); since ∆x = ∆y = 0, we

immediately see that the gravitational wave contribution to the Wightman function in

Eq. (5.7) vanishes. Thus, the transition probability of a single detector is unaffected by

the presence of a gravitational wave. To evaluate the transition probability, consider
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the change of variable a ∶=∆t = t − t′ and b ∶= t + t′, yielding

P = 1

2
λ2∫ da∫ db e−

a2+(b−2t0)
2

4σ2 e−iΩa [ 1

4πia
δ (−a) +PV

1

4π2(−a2)
]

= λ2σ
√
π∫ da e

−a2
4σ2 e−iΩa [ 1

4πia
δ (a) +PV

1

4π2(−a2)
]

= λ2σ
√
π [−Ω

4π
+ 1

4π
√
πσ

e−σ
2Ω2 + Ω erf(σΩ)

4π
]

= λ
2

4π
[e−σ2Ω2 −

√
πσΩ erfc(σΩ)] . (B.11)

The second last equality follows from the distribution identities: δ(x)
x = −δ′(x) and

PV∫
∞

∞
dx

f(x)
x2
= ∫

∞

0
dx

f(x) + f(−x) − 2f(0)
x2

, (B.12)

where it is assumed f(x) reaches 0 as x→ ±∞.

Derivation of XM

The matrix element is given by

XM = − λ2∫
∞

−∞
dt∫

t

−∞
dt′ e−

(t−t0)
2+(t′−t0)

2

2σ2 e−iΩ(t+t
′)

× [WM(xA(t′), xB(t)) +WM(xB(t′), xA(t))] . (B.13)

The Wightman function for Minkowski space for our trajectories becomes

WM(xA(t′), xB(t)) = −
1

4πi∆t
δ (∆t − D

2

∆t
) +PV

1

4π2(−∆t2 +D2)
. (B.14)

By changing variables to a =∆t, b = t+ t′, we find the matrix element X in Minkowski
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space

XM = −2λ2∫
∞

−∞
dt∫

t

−∞
dt′ e−

(t−t0)
2+(t′−t0)

2

2σ2 e−iΩ(t+t
′)

× [− 1

4πi∆t
δ (∆t − D

2

∆t
) +PV

1

4π2(−∆t2 +D2)
]

= −λ2∫
∞

−∞
dbe−

(b−2t0)
2

4σ2 −iΩb∫
∞

0
da e−

a2

4σ2 [ 1

4πia
δ (a − D

2

a
) +PV

1

4π2(a2 −D2)
]

= 2σ
√
πλ2e−Ω

2σ2−2iΩt0 ∫
∞

0
da e−

a2

4σ2 [ 1

4πia
δ (a − D

2

a
) +PV

1

4π2(a2 −D2)
]

= i λ2σ

4D
√
π
e−σ

2Ω2−2iΩt0− D2

4σ2 [erf (i D
2σ
) − 1] . (B.15)

where the principal value integration was evaluated using methods similar to those

in [141].

Derivation of XGW

The matrix element X is given by [118, 123, 141, 139]

XGW = −λ2∫
∞

−∞
dt∫

t

−∞
dt′ e−

t2+t′2
2σ2 e−iΩ(t+t

′) [WGW(xA(t′), xB(t)) +WGW(xB(t′), xA(t))] .

From Eq. (5.13), it is seen that σM(xA(t′), xB(t)) = σM(xB(t′), xA(t)) = −∆t2+D2. It

follows

WGW(xA(t′), xB(t)) =WGW(xB(t′), xA(t))

= − A

4π2

sin (ω2 ∆t)
ω
2 ∆t

cos (ω2 [t + t
′]) D

2

∆t2
[iπδ′ (∆t − D

2

∆t
) +PV ( ∆t

D2 −∆t2
)
2

] . (B.16)
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which we note is invariant under t↔ t′. It follows that X may be expressed as

XGW =A
λ2D2

2π2 ∫
∞

−∞
dt∫

t

−∞
dt′ e−iΩ(t

′+t)e−
(t′+t−2t0)

2

4σ2 cos (ω2 [t + t
′])

× e
−∆t2

4σ2

∆t2
sin (ω2 ∆t)

ω
2 ∆t

[iπδ′ (∆t − D
2

∆t
) +PV ( ∆t

D2 −∆t2
)
2

] . (B.17)

Changing integration variables to a ∶=∆t and b ∶= t′ + t, yields

XGW =
Aλ2D2

4π2 ∫
∞

−∞
db e−iΩbe−

(b−2t0)
2

4σ2 cos (ω2 b)∫
∞

0
da
e−

a2

4σ2

a2
sin (ω2 a)

ω
2 a

× [iπδ′ (a − D
2

a
) +PV ( a

D2 − a2
)
2

]

= Aλ
2D2

2π2

√
πσe

−(σ
2ω2

4
+σ2Ω2)

e−2it0Ω cosh (ωΩσ2 − it0ω)

× ∫
∞

0
da
e−

a2

4σ2

a2
sin (ω2 a)

ω
2 a

[iπδ′ (a − D
2

a
) +PV ( a

D2 − a2
)
2

]

= Aλ2

2D2π2

√
πσe

−(σ
2ω2

4
+σ2Ω2+2it0Ω)

cosh (ωΩσ2 − it0ω) (I1 + I2) , (B.18)

where the last equality defines the I1 and I2 that remain to be evaluated. To evaluate

the first integral in Eq. (B.18), note that

d

da
δ (a − D

2

a
) = δ′ (a − D

2

a
)(D

2

a2
+ 1) Ô⇒ δ′ (a − D

2

a
) = [ d

da
δ (a − D

2

a
)](D

2

a2
+ 1)

−1

.

(B.19)
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Then,

I1 ∶= iD4π∫
∞

0
da
e−

a2

4σ2

a2
sin (ω2 a)

ω
2 a

δ′ (a − D
2

a
)

= iD4π∫
∞

0
da [ d

da
δ (a − D

2

a
)](D

2

a2
+ 1)

−1 e−
a2

4σ2

a2
sin (ω2 a)

ω
2 a

= −iD4π∫
∞

0
da δ (D

2

a
− a) d

da

⎡⎢⎢⎢⎢⎣
(D

2

a2
+ 1)

−1 e−
a2

4σ2

a2
sin (ω2 a)

ω
2 a

⎤⎥⎥⎥⎥⎦

= −iD4π∫
∞

0
da
δ (D − a)

2

d

da

⎡⎢⎢⎢⎢⎣
(D

2

a2
+ 1)

−1 e−
a2

4σ2

a2
sin (ω2 a)

ω
2 a

⎤⎥⎥⎥⎥⎦

= iπe
− D2

4σ2

ω
[(D

2

4σ2
+ 1) sin (ω2D) −

Dω

4
cos (ω2D)] . (B.20)

Next, evaluating the second integral in Eq. B.18 yields

I2 ∶=D4 PV∫
∞

0
da e−

a2

4σ2
sin (ω2 a)

ω
2 a

(D2 − a2)−2

=D4 PV∫
∞

−∞
da e−

a2

4σ2
sin (ω2 a)
ωa

(D2 − a2)−2

= D
4

ω
PV∫

∞

−∞
da e−

a2

4σ2 sin (ω2 a)∫
∞

−∞
dā δ(ā − a) 1

ā(ā2 −D2)2

= D
4

ω
PV∫

∞

−∞
da e−

a2

4σ2 sin (ω2 a)∫
∞

−∞
dā ( 1

2π ∫
∞

−∞
ds ei(ā−a)s) 1

ā(ā2 −D2)2

= D4

2πω
PV∫

∞

−∞
ds [∫

∞

−∞
da e−iase−

a2

4σ2 sin (ω2 a)] [∫
∞

−∞
dā eiās

1

ā(ā2 −D2)2
]

=
√
πσ

2ω
e−(

σω
2
)2 ∫

∞

−∞
ds sgn (s) e−σ2s2 sinh (σ2ωs) [2 − 2 cos (Ds) −Ds sin (Ds)]

= π
ω
(erf (σω

2
) − e−

D2

4σ2 Re [eiω2 D (1 + D
2

4σ2
− iDω

4
) erf (ω

2
σ + iD

2σ
)]) . (B.21)

Derivation of CM

The expression for CM is the following

CM = λ2∫
∞

−∞
dt∫

∞

−∞
dt′ e−

(t−t0)
2+(t′−t0)

2

2σ2 eiΩ(t−t
′)WM(xA(t′), xB(t)). (B.22)
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By plugging in the Wightman function in Minkowski space for the trajectories of the

detectors and then changing variables to a =∆t, b = t + t′, we obtain

CM =
λ2

2 ∫
∞

−∞
dbe−

(b−2t0)
2

4σ2 ∫
∞

−∞
dae−

a2

4σ2 +iΩa [− 1

4πia
δ (a − D

2

a
) +PV

1

4π2(−a2 +D2)
]

= −σ
√
πλ2∫

∞

−∞
dae−

a2

4σ2 +iΩa [ 1

4πia
δ (a − D

2

a
) +PV

1

4π2(a2 −D2)
]

= σ
√
πλ2e−

D2

4σ2 [sin(ΩD)
4Dπ

+ 1

4Dπ
Re(ieiDΩ erf [i D

2σ
+ σΩ])]

= σλ2

4D
√
π
e−

D2

4σ2 (Im [eiDΩ erf (i D
2σ
+ σΩ)] − sin ΩD) , (B.23)

where the principal value integration was evaluated using methods similar to those

in [141].

Derivation of CGW

The expression for CGW is given by [118, 123, 141, 139]

CGW = λ2∫
∞

−∞
dt∫

∞

−∞
dt′ e−

(t−t0)
2+(t′−t0)

2

2σ2 eiΩ(t−t
′)WGW(xA(t′), xB(t)). (B.24)

Using Eq. (B.16) and changing integration variables to a ∶=∆t and b ∶= t+t′, Eq. (B.24)
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becomes

CGW = −
λ2AD2

4π2 ∫
∞

−∞
dt∫

∞

−∞
dt′ e−

(t+t′−2t0)
2

4σ2 cos (ω2 [t + t
′])

× eiΩ∆t e
−∆t2

4σ2

∆t2
sin (ω2 ∆t)

ω
2 ∆t

[iπδ′ (∆t − D
2

∆t
) +PV ( ∆t

D2 −∆t2
)
2

]

= −λ
2AD2

8π2 ∫
∞

−∞
db e−

(b−2t0)
2

4σ2 cos (ω2 b)∫
∞

−∞
da eiΩa e

− a2

4σ2

a2
sin (ω2 a)

ω
2 a

× [iπδ′ (a − D
2

a
) +PV ( a

D2 − a2
)
2

]

= −λ
2AD2

8π2
[2
√
πσe−(

ω
2
σ)2 cos (ωt0)]∫

∞

−∞
da eiΩa e

− a2

4σ2

a2
sin (ω2 a)

ω
2 a

× [iπδ′ (a − D
2

a
) +PV ( a

D2 − a2
)
2

]

= − λ2Aσ

4D2π3/2 e
−(ω

2
σ)2 cos (ωt0) (I3 + I4) , (B.25)

where

I3 ∶= iD4π∫
∞

−∞
da eiΩa e

− a2

4σ2

a2
sin (ω2 a)

ω
2 a

δ′ (a − D
2

a
)

= iD4π∫
∞

−∞
da eiΩa e

− a2

4σ2

a2
sin (ω2 a)

ω
2 a

[ d
da
δ (a − D

2

a
)](D

2

a2
+ 1)

−1

= −iD4π∫
∞

−∞
da δ (a − D

2

a
) d
da

⎡⎢⎢⎢⎢⎣
eiΩa e

− a2

4σ2

a2
sin (ω2 a)

ω
2 a

(D
2

a2
+ 1)

−1⎤⎥⎥⎥⎥⎦

= −iD4π∫
∞

−∞
da
δ (D + a) + δ (D − a)

2

d

da

⎡⎢⎢⎢⎢⎣
eiΩa e

− a2

4σ2

a2
sin (ω2 a)

ω
2 a

(D
2

a2
+ 1)

−1⎤⎥⎥⎥⎥⎦

= πe
− D2

4σ2

4ω

⎡⎢⎢⎢⎢⎣
(Dω + 2DΩ) sin(D [ω

2
+Ω]) + (Dω − 2DΩ) sin(D [ω

2
−Ω])

+ (D
2

σ2
+ 4)(cos(D [ω

2
+Ω]) − cos(D [ω

2
−Ω]))

⎤⎥⎥⎥⎥⎦
(B.26)
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and

I4 ∶=D4 PV∫
∞

−∞
da eiΩa

sin (ω2 a)
ω
2 a

e−
a2

4σ2

(a2 −D2)2

= 2D4

ω
PV∫

∞

−∞
da eiΩa sin (ω2 a) e

− a2

4σ2 ∫
∞

−∞
dā δ(ā − a) 1

ā (ā2 −D2)2

= 2D4

ω
PV∫

∞

−∞
da eiΩa sin (ω2 a) e

− a2

4σ2 ∫
∞

−∞
dā( 1

2π ∫
∞

−∞
ds ei(ā−a)s) 1

ā (ā2 −D2)2

= D
4

πω
PV∫

∞

−∞
ds∫

∞

−∞
da ei(Ω−s)a sin (ω2 a) e

− a2

4σ2 ∫
∞

−∞
dā

eiās

ā (ā2 −D2)2

= π
ω
(erf [σ (ω

2
−Ω)] + erf [σ (ω

2
+Ω)] − e−

D2

4σ2 Re [Q+R+ +Q−R−]) , (B.27)

where we have defined Q± ∶= −ieiD(
ω
2
±Ω) erf [i D2σ + σ (

ω
2 ±Ω)] and R± ∶= D

2
(ω
2 ±Ω) +

i (1 + D2

4σ2).

Section B.3

The effect of gravitational waves on vacuum

correlations

In Sec. 5.3.3, the dependence of the concurrence on the properties of gravitational

waves and detectors was investigated, which quantifies the harvested entanglement in

the final state of the detectors and is interpreted as a proxy for field entanglement.

However, these detectors also harvest classical correlations from the vacuum. Thus,

to quantify the total correlations harvested by a pair of detectors, interpreted anal-

ogously as a proxy for correlations between the region in which detectors interact,

the correlations between local energy measurements (i.e., measurements of σz) can

be computed. Such correlations are quantified by the correlation function [139, 141]

corrρAB ∶=
∣X ∣2 + ∣C ∣2

P
+O(λ4) = ΨM +ΨGW +O(λ4), (B.28)
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(a) (b) (c)
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Figure B.1: The correlation function corr(ρAB)/λ2 is plotted as a function of the
detectors’ energy Ωσ and the detectors’ average proper separation D/σ for detectors
in (a) Minkowski space and detectors in a gravitational wave spacetime for (b) t = 0
and (c) t ≠ 0. Analogous to the concurrence, we see that correlations between two
detectors can be degraded or amplified depending on the value of t0

where in the second equality the correlation function has been expressed as a sum of

the Minkowski space and gravitational wave contributions to the correlation function,

defined respectively as

ΨM ∶=
∣XM∣2 + ∣CM∣2

P
, (B.29)

ΨGW ∶= 2
Re[XGWX∗M] +Re[CGWC∗M]

P
. (B.30)

To examine the effect a gravitational wave has on the correlations harvested by the

detectors, Fig. B.1 compares correlations between detectors in Minkowski space with

detectors in a gravitational wave spacetime, revealing similar behaviour as the con-

currence depicted in Fig. 5.1. The gravitational wave contribution to the correlation

function ΨGW is plotted in Figs. B.2 and B.3 for t0 = 0 and t0 ≠ 0, respectively. Similar

to the concurrence, the correlation function exhibits a resonance around ω ≈ 2Ω and

oscillatory behaviour for nonzero t0.
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Figure B.2: The gravitational wave contribution ΨGW/Aλ2 to the correlation
function is plotted as a function of the gravitational wave frequency ωσ for both
timelike (left) and spacelike (right) separated detectors for t0/σ = 0 for different
values of the detectors energy Ωσ. Similar to ΘGW, ΨGW is always negative, which
implies that detector correlations are always degraded for t0 = 0.
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Figure B.3: The gravitational wave contribution ΨGW/Aλ2 to the correlation
function is plotted as a function of the gravitational wave frequency ωσ for both
timelike (left) and spacelike (right) separated detectors for t0/σ = 1 for different
values of the detectors energy Ωσ. Similar to ΘGW, ΨGW can be both positive and
negative implying that a gravitational wave can amplify and degrade detector
correlations.
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Appendix C

Section C.1

Derivation of the two point function

The purpose of this section is twofold. We shall first derive the expectation value of

ϕ2 as in Eq. (6.5) and then calculate the two point function as in Eq. (6.14).

Using the expression of the initial field state in Eq. (6.4) and sandwiching two

field operators in between, we have:

⟨ψ(0)∣ϕ (x, t)ϕ (x′, t′) ∣ψ(0)⟩ = ∣N ∣2∫
dk1

(2π)1/2(2ωk1)1/2
e−

1
2σ2 (k1−k0)2−ik1r0

∫
dk2

(2π)1/2(2ωk2)1/2
e−

1
2σ2 (k2−k0)2+ik2r0 ∫

dk

(2π)1/2(2ωk)1/2 ∫
dk′

(2π)1/2(2ωk′)1/2

⟨0∣a(k2) (a(k)a†(k′)eixµkµ−ix′µk′µ + a†(k)a(k′)eix′µk′µ−ikµxµ))a†(k1)∣0⟩. (C.1)

where we have dropped odd multiples of creation/anihilation operators since they

give vanishing result. Using the commutation relation [a(k), a†(k′)] = δ(k − k′), the
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expectation values of the operator products in Eq. (C.1) can be simplified to

⟨0∣a(k2)a(k)a†(k′)a†(k1)∣0⟩ = δ(k − k′)δ(k1 − k2) + δ(k − k1)δ(k′ − k2), (C.2)

and

⟨0∣a(k2)a†(k)a(k′)a†(k1)∣0⟩ = δ(k1 − k′)δ(k2 − k). (C.3)

Substituting Eq. (C2) and Eq. (C3) into Eq. ( C.1) we then have:

⟨ψ(0)∣ϕ (x, t)ϕ (x′, t′) ∣ψ(0)⟩ = ∣N ∣2∫
dk1

4πωk1

e−
1
σ2 (k1−k0)2 ∫

dk

4πωk

eikµ(x−x
′)µ

+ ∣N ∣2∫
dk1

4πωk1

e−
1

2σ2 (k1−k0)2−ik1x0+ik1µxµ

∫
dk2

4πωk2

e−
1

2σ2 (k2−k0)2+ik2x0−ik2µx′µ

+ ∣N ∣2∫
dk1

4πωk1

e−
1

2σ2 (k1−k0)2−ik1x0+ik1µx′µ ∫
dk2

4πωk2

e−
1

2σ2 (k2−k0)2+ik2x0−ik2µxµ

. (C.4)

As can be easily checked, the first line of Eq. (C4) is just the vacuum Wightman

function of the scalar field.

We now first derive the energy density term in Eq. (6.5). Setting x = x′ and t = t′,

Eq. (C4) reduces to

⟨ψ(0)∣ϕ (x, t)ϕ (x, t) ∣ψ(0)⟩ =∣N ∣2∫
dk1

4πωk1

e−
1
σ2 (k1−k0)2 ∫

dk

4πωk

+ 2∣N ∣2∣ ∫
dk1

4πωk1

e−
1

2σ2 (k1−k0)2−ik1x0+ik1µxµ

∣
2

(C.5)

The first integral corresponds to the infinite vacuum energy term which we shall ig-

nore. To evaluate the second integral, we employ the non-relativistic approximation

by expanding the ωkt phase terms to second order in k and making the approxima-

tion ωk = m for the terms appearing in the denominators, the resulting approximate
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C.2 A free quantum particle description

Gaussian integral is

⟨ψ(0)∣ϕ (t, x)ϕ (t, x) ∣ψ(0)⟩ = 1

m

⎡⎢⎢⎢⎢⎢⎣

σ2

π (1 + (σ2t
m
)2)

⎤⎥⎥⎥⎥⎥⎦

1
2

exp

⎡⎢⎢⎢⎢⎣
−σ2
(x − x0 − k0t

m
)2

1 + (σ2t
m
)2
⎤⎥⎥⎥⎥⎦
, (C.6)

which is Eq. (6.5).

Next we calculate the pull back of the two-point function to the detector worldline

which is given in Eq. (6.7). Replacing the operator ϕ (x, t)ϕ (x′, t′) by ϕ (0, τ)ϕ (0, τ ′)

in Eq. (C4) and adopting the similar approximation methods, we have

⟨ψ(0)∣ϕ (0, τ)ϕ (0, τ ′) ∣ψ(0)⟩ =Wv(τ, τ ′) +Wm(τ, τ ′), (C.7)

where Wv(τ, τ ′) is given in Eq. (6.10) and Wm(τ, τ ′) can be found as

Wm(τ, τ ′) =
1

2
√
πmσ

e−im(τ−τ
′)− k20

σ2

√
( 1
σ2 + iτ

m
) ( 1

σ2 − iτ ′

m
)

exp
⎛
⎝
( k0
σ2 − ix0)

2

2 ( 1
σ2 + iτ

m
)
+
( k0
σ2 + ix0)

2

2 ( 1
σ2 − iτ ′

m
)
⎞
⎠

+ {τ ⇐⇒ τ ′}. (C.8)

Section C.2

A free quantum particle description

Consider a Gaussian wave packet state that describes a particle with position x0 and

momentum k0:

Ψ(x, t = 0) = N ∫ dke−
1

2σ2 (k−k0)2+ik(x−x0) = N(2πσ2)3/2e−σ2

2
(x−x0)2eik0(x−x0) (C.9)

where N = (2σπ3/2)−3/2 is the normalization constant. The time evolution of the parti-

cle state can be obtained by solving the Schrödinger equation for the free Hamiltonian
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C.2 A free quantum particle description

H = p2/(2m), and we have

Ψ(r, t) = [ σ√
π (1 + itσ2/m)

]
1/2

exp [−σ
2

2

(x − x0 − k0t/m)2

1 + iσ2t/m
+ ik0 (x − x0) − ik20t/(2m)] ,

(C.10)

from which one then finds probability density as

∣Ψ(r, t)∣2 =
⎡⎢⎢⎢⎢⎢⎣

σ2

π (1 + (σ2t
m
)2)

⎤⎥⎥⎥⎥⎥⎦

1/2

exp

⎡⎢⎢⎢⎢⎣
−σ2 (x − x0 − k0t/m)

2

1 + (σ2t
m
)2

⎤⎥⎥⎥⎥⎦
. (C.11)

We see this result coincides with the expectation value of ϕ2 in Eq. (6.5) up to a

constant of m.
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Č. Brukner, and R. B. Mann, “Quantum temporal superposition: The case

of quantum field theory,” Physical review letters, vol. 125, no. 13, p. 131602,

2020.

165



BIBLIOGRAPHY

[185] R. Faure, T. R. Perche, and B. de SL Torres, “Particle detectors as witnesses

for quantum gravity,” Physical Review D, vol. 101, no. 12, p. 125018, 2020.

[186] G. Ver Steeg and N. C. Menicucci, “Entangling power of an expanding uni-

verse,” Physical Review D, vol. 79, no. 4, p. 044027, 2009.

[187] Z. Huang and Z. Tian, “Dynamics of quantum entanglement in de sitter space-

time and thermal minkowski spacetime,” Nuclear Physics B, vol. 923, pp. 458–

474, 2017.

[188] Q. Xu, S. A. Ahmad, and A. R. Smith, “Gravitational waves affect vacuum

entanglement,” Physical Review D, vol. 102, no. 6, p. 065019, 2020.

[189] Z. Liu, J. Zhang, and H. Yu, “Harvesting entanglement by uniformly ac-

celerated detectors in the presence of a reflecting boundary,” arXiv preprint

arXiv:2101.00114, 2021.

[190] V. Toussaint and J. Louko, “Detecting the massive bosonic zero-mode in ex-

panding cosmological spacetimes,” arXiv preprint arXiv:2102.04284, 2021.

[191] A. R. Lee and I. Fuentes, “Spatially extended unruh-dewitt detectors for rel-

ativistic quantum information,” Physical Review D, vol. 89, no. 8, p. 085041,

2014.

[192] S. Das and S. Shankaranarayanan, “How robust is the entanglement entropy-

area relation?,” Physical Review D, vol. 73, no. 12, p. 121701, 2006.

[193] M. Caprio, P. Cejnar, and F. Iachello, “Excited state quantum phase transitions

in many-body systems,” Annals of Physics, vol. 323, no. 5, pp. 1106–1135, 2008.

166



BIBLIOGRAPHY

[194] R. D. Sorkin, “Impossible measurements on quantum fields,” in Directions in

general relativity: Proceedings of the 1993 International Symposium, Maryland,

vol. 2, pp. 293–305, 1993.

[195] S.-Y. Lin, “Notes on nonlocal projective measurements in relativistic systems,”

Annals of Physics, vol. 351, pp. 773–786, 2014.

[196] L. Borsten, I. Jubb, and G. Kells, “Impossible measurements revisited,” Phys-

ical Review D, vol. 104, no. 2, p. 025012, 2021.

[197] H. Bostelmann, C. J. Fewster, and M. H. Ruep, “Impossible measurements

require impossible apparatus,” Physical Review D, vol. 103, no. 2, p. 025017,

2021.
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