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ABSTRACT 

The present review article describes invertebrate venoms and various toxins secreted by them. Animal venoms are stores of novel peptides which 
exhibit a wide variety of biological effects and actively interact with pathogen and parasites. Animal toxins selectively bind to ion channels and 
receptors and display show hemolytic, cytolytic, proteolytic, anti-diabetic, antimicrobial and analgesic activity. These generate allergic and 
inflammatory responses in victims. These disrupt cell membranes and inhibit bacterial growth and kill them. Animal toxins inhibit virus entry into 
host cells and obstruct virus replication. These were also found highly effective against protozoan and fungal pathogens. By using bioinformatics 
tools, methods and approaches, both structural and functional diversity of toxin peptides could be harnessed to develop highly effective broad-
spectrum drugs for therapeutics. Animal venoms are an inexhaustible source of bioactive molecules, which could be used for the development of 
immune diagnostics, various pharmaceuticals for therapeutics and bio-insecticides. Present article tries to explore the exceptional specificity and 
high potency of animal toxins for drug development. 
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INTRODUCTION 

In the animal kingdom, a large diversity of venom-bearing animal 
species exists. These belong to both invertebrates and vertebrates. 
Animal venoms are the natural depository or source of various bio-
molecules, mainly toxins and enzymes. These venom toxins were 
evolved during long evolutionary periods as selective and targeted 
molecules. More specifically, these are used in self-defense, for 
paralyzing prey and deterring predator from the territory. These 
successfully control angiogenesis and inhibit cell proliferation in 
vitro cancer cell cultures. These toxins displayed anticancer effects 
and inhibit the growth and proliferation of tumor and cancerous 
cells [1]. A number of toxins purified from anemones, centipedes, 
bees, or wasps, hornets, snails, spider and scorpion and sea, fish, 
toads, fry, and the snake has been isolated and screened for their 
anticancer effects. These successfully showed inhibition of cancer 
cell invasion, cell cycle arrest, proliferation, migration, induction of 
apoptosis activity and neo-vascularization and blocking signaling 
pathways [2]. Animal toxins could be used as therapeutic molecules, 
mainly in drug development. 

Animal venom glands are natural depositories of diverse toxin 
molecules which possess large numbers of chemical structures with 
a variety of action on cancer-affected cells. Similarly, snake venom 
toxin successfully inhibits cell growth at very low IC50 value 4.5 
μg/ml (Vipera lebetina). Snake toxin-induced apoptosis in ovarian 
cancer cells via inactivation of nuclear factor kβ and inhibits DNA 
binding activities of toxin [3]. Snake venom toxin combined with 
salicylic acid and states3, these have significantly increased 
inhibition of cell growth. These act as signal transducers [4]. 

Source of information  

For writing this comprehensive research review on invertebrate 
animal toxins/peptides/proteins, various databases were searched. 
For the collection of relevant information, specific terms such as 
medical subject headings (MeSH) and key text words, such as 
“animal venom toxins and its therapeutic uses” published till 2022 
were used in MEDLINE. Most specially for retrieving all articles 
pertaining to the use of animal venoms for various therapies, 
electronic bibliographic databases were searched and abstracts of 
published studies with relevant information on the venom 
toxins/proteins were collected. Furthermore, additional references 

were included through searching the references cited by the studies 
done on the present topic. Relevant terms were used individually and 
in combination to ensure an extensive literature search. For updating the 
information about a subject and incorporating of recent knowledge, 
relevant research articles, books, conferences proceedings’ and public 
health organization survey reports were selected and collated based on 
the broader objective of the review. This was achieved by searching 
databases, including SCOPUS, Web of Science, and EMBASE, Pubmed, 
Swiss rot, Google searches” From this common methodology, discoveries 
and findings were identified and summarized in this final review.  

Cytolytic or neurotoxic effects 

Cnidarians possess nematocysts which also inflict toxins to target 
their prey. They target different animals, such as insects, crustaceans 
and vertebrates. Sea anemones possess proteins and peptides which 
show cytolytic or neurotoxic activity. Potency of these toxins varies 
with the structure and site of action [5, 6]. Sea anemones toxins bind 
to voltage-gated Na⁺ and K⁺ channels and acid-sensing ion channel 
toxins. Few cytolysins act as Kunitz-type protease inhibitors activity 
and Phospholipase A2 activity. Similarly, Palythoa caribaeorum 
venom toxins show cytolytic activity against U251 and SKLU-1 
cancer cell lines. Cnidarian venoms show cytotoxic and hemolytic 
effects (table 1) [7]. 

Hemolytic activity 

Sea Anemone Entacmaea quadricolor contain venom toxins in 
nematocysts that show haemolytic effects [8]. The A. equina mucus 
matrix shows hemolytic activity on rabbit erythrocytes, cytotoxic 
activity against the tumor cell line K562 (human erythromyeloblastoid 
leukemia) and antibacterial lysozyme-like activity [9]. H. crispa contain 
actinoporins which show potential hemolytic activity, it is employed as 
offensive and defensive chemicals by corals as armaments [10]. 
Actinoporin show consistent different hemolytic activity in all their 
representatives [11]. Sea anemones H. crispa is a pore-forming toxin 
belongs to actinoporins that show hemolytic activity [12]. 
Pocilopotoxin-Spi1 toxin (α-PCTX-Spi1) isolated from Stylophora 
pistillata shows hemolytic activity (table 1) [13]. 

Anti-parasitic activity 

Sea-Anemone Stichodactyla helianthus contains collision I and II 
from (St I and St II) and Actiniaequina (EqtII) contain equinatoxin II 
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[14]. Sea-anemone also contains cytolysins which have Kunitz-type 
protease inhibitors activity. These toxins efficiently kill Giardia cells 
and show anti-parasite specificity with anti-Giardia antibodies (table 
1) [15, 16]. 

α-amylase inhibitor activity 

Sea Anemone Heteractis magnifica contain magnificamide a 44 
amino acid peptide (4.77kDa) Da) [17]. It shows major α-amylase 
inhibitory activity on cytoplasmic membranes and ion channels. 
More especially, pancreatic Sea Anemone Metridium senile contain 
peptide toxins TXMs 9a-1 [18, 19]. 

The transient receptor potential ankyrin-repeat 1 (TRPA1) is an 
important player in pain and inflammatory pathways [20-22]. It 
shows anti-inflammatory effects in experimental mice [23, 24]. Sea 
anemone Heteractis crispa Kunitz-type peptides showed anti-
inflammatory and anti-histamine effects [25]. Ueq 12-1 is a unique 
peptide potentiator of the TRPA1 receptor that produces anti-
inflammatory effects in vivo. Sea anemone Urticina eques contains a 
bioactive peptide named α-AnmTxUeq 12-1. It consists of 45 amino 
acids, including 10 cysteine residues with (table 1) [26]. 

Neuroprotective activity 

Cnidarians have been known since ancient times for the painful 
stings they induce to humans. The effects of the stings range from 
skin irritation to cardiotoxicity and can result in the death of human 
beings [27]. α-AnmTXMs 9a-1 has been isolated from the venom of 
sea anemone Metridium senile. It potentiates the response of TRPA1 
to endogenous agonists, followed by persistent functional loss of 
TRPA1-expressing neurons. It imposes potent analgesic and anti-
inflammatory effects in mice. The sea Anemone Heteractis crispa 
contains Kunitz-peptides shows neuroprotective activity against 6-
hydroxydopamine [28]. Sea anemone Heteractis crispa venoms have 
Kunitz-type peptides, which are also known as the "analgesic 
cluster" of the HCGS peptide subfamily (table 1) [29]. 

Anti-helminthic activity  

Nematostella vectensis nematocyst venom proteins are 
metallopeptidases belong to Tolloid family and a cysteine-rich 
protein. These show anti-helminthic activity [30]. AnewKunitz-type 
protease inhibitor InhVJ was isolated from the sea anemone Heteractis 
crispa (Radianthus macrodactylus). It also shows similarity to serine 
protease [31] (fig. 2). Sea anemone Anthopleura dowii Verrill venom 
toxins act like proteases. These also synthesize neurotoxins which 
potentially inhibit potassium (K+) or sodium (Na+) channels, 
proteases, phospholipases A2, and the activity of other polypeptides 
[32]. These also activate TRPV1 channels [33]. The Sea Anemone 
Bunodactisverrucosa venom contains metalloproteinases and 
neurotoxins, which activate TRPV1 channels [34]. These also affect 
basal cell metabolism and biosynthesis of antibiotics (table 1) [35]. 

Anti-diabetic activity 

Sea Anemone Heteractis magnificamucus, contain Magnificamide, a 
α-Defensin-Like Peptide target, mainly on cytoplasmic membranes 
and ion channels. It is a rich source of pancreatic α-amylase 
inhibitors, which maintain the glucose level in the blood and can be 
used for the treatment of prediabetes and type 2 diabetes mellitus. 
The main function of magnificamide is the inhibition of α-amylases, 
and also acts as a potential drug candidate for the treatment of type 
2 diabetes mellitus (table 1) [36]. 

Immunomodulating activity 

Sea Anemone Stichodactyla helianthus immunomodulates CCR7-
effector memory T (TEM) lymphocytes. This also acts as potent 
immunomodulators for the treatment of autoimmune diseases [37]. 
Similarly, ShK-186, a synthetic analog of ShK is used as a therapeutic 
agent for autoimmune diseases (table 1) (fig. 2) [38]. 

Channel inhibitors  

Jellyfish is scyphozoans which possess venoms which is rich sources 
of toxin peptides and protein. Jellyfish use stings to capture prey or 
deter predators. A toxin aurelin from Aurelia aurita and 
phospholipases from Nemopile manomurai phospholipases display 

high lethality after stinging. These toxins mainly cell membrane-and 
show thrombin-like activity and cause hemolysis [39]. Different 
Jellyfish species Stomolophus meleagris, Aurelia aurita, Nemopile 
manomurai shows channel inhibition. Preproaurelin is an 84-residue 
signal peptide that has 22 amino acids is much similar to defensins 
blocks K+channel belongs to ShKT domain family (table 1, fig. 2) 
[40]. 

Other major toxin components from Jellyfish are C-type lectin, 
phospholipase A₂, potassium channel inhibitor, protease inhibitor, 
metalloprotease, hemolysin and other toxins. Presence of the 
compounds makes the sting more toxic [41]. Jellyfish envenomations 
shows dermatological symptoms and cause inflammation [42]. This 
venom-induced inflammation may be caused due to inhibitory 
effects of matrix metalloproteinase (MMP) inhibitors for venom-
induced inflammation were explored at a cellular level (table 1) [43]. 

Cnidarians, mainly hydra, jellyfish, and sea anemones organisms, 
inflict deadly toxins for hunting prey and for territorial defense [44]. 
Zoanthid Protopalythoa variabilis are neurotoxic peptides, hemostatic 
and hemorrhagic toxins, membrane-active (pore-forming) proteins, 
protease inhibitors, mixed-function venom enzymes, and auxiliary 
venom proteins. Most of them belong to ShK/Aurelin family [45]. Sea 
anemones secrete α-actitoxin-Ate1a (Ate1a) which selectively inhibit 
voltage-gated potassium channel 18 BDS-I and II, and selectively 
which target Kv3.4 channels (table 1) (fig. 2). 

PhcrTx1 toxin characterized from the sea Anemone phymanthus 
crucifer, is ASIC inhibitor, it shows lower potency on kV channels 
[46]. Sea Anemone anthopleuradowii Verrill venom contains 
neurotoxins which act as potassium (K+) or sodium (Na+) channels 
inhibitors [47]. These neurotoxins act upon a diverse panel of ion 
channels, such as voltage-gated sodium and potassium channels. 
These mainly target sodium channels and modify those21. Four 
different types of neurotoxins with different structures and modes 
of action have been isolated from sea anemones (table 1) [48]. 

These toxins consist of cysteine-rich peptides which are capable of 
binding to different extracellular sites of this channel protein. These 
specially targets voltage-gated Na (+) channels which perform 
conduction of electrical impulses in sea anemones, Sea Anemone 
type 1 peptides known to be found active on Na(v) 1. x channels. 
These peptides are 46-49 amino acid residues long; contain three 
disulfide bonds and their molecular weights range between 3-5 Kda 
[49]. Sea Anemone Anthopleura immaculate contain three peptide 
toxins (Am I-III) with crab toxicity Type 1 sea Anemone sodium 
channel toxins, both Am I (27 residues) and II (46 residues) are 
potent neurotoxins [50]. Sea Anemone Heteractis crispa contain 
neurotoxin RTX-VI that modulates the voltage-gated sodium 
channels (NaV). The RTX-VI molecule consists of two disulfide-
linked peptide chains and is devoid of Arg13, for the NaV channels. 
System (NaV1.2, NaV1.6) and insect (BgNaV1, VdNaV1) sodium 
channels [51]. A neurotoxin (BDS)-like antimicrobial peptides 
(AMPs)-Crassicorin-I and its putative homolog (Crassicorin-II) that 
was isolated from the pharynx extract of an anthozoan sea anemone 
(Urticina crassicornis). Crassicorin-I shows functional linkage 
between AMPs and neurotoxins in a basally branching metazoan 
(table 1) [52]. 

The Sea Anemone Stichodactyla haddoni contains peptide toxins, 
SHTX I-III with crab-paralyzing activity. SHTX I (new toxin, 28 
residues), II (analogue of SHTX I, 28 residues) and III (Kunitz-type 
protease inhibitor, 62 residues) are potassium channel toxins and 
SHTX IV (48 residues) is a member of the type 2 Sea 
Anemonesodium channel toxins [53]. Indeed, cnidarians are 
considered is the largest phylum of toxic animals [54]. Stichodactyla 
helianthus contains potassium channel blocker shookits analogue 
ShK-186 for the treatment of autoimmune diseases [55]. These toxic 
products, particularly peptide toxins, could be used as a promising 
target for biomedicine research. 

Allergic and immune hypersensitivity 

Myrmeciapilosulais an Australian ant, its venom contains Pilosulin 3, 
pilosulin 1 and Pilosulin 4.1. Among which, pilosulin 1 and Pilosulin 
4.1 are minor allergens. Its sting causes allergy and imposes immune 
hyper sensitivity and sometimes fatal anaphylaxis [56]. Fire ant 
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stings induce eosinophil recruitment and production of Th2 
cytokines [57]. Fire antsirritates skin, severe pain, cross-reactive to 
oter ants and non-sensitive individuals through sera from sensitive 
individuals [58]. An Ectomomyrmex spp. sting causes 
hypersensitivity with many incidents of allergic reactions and 
generates a high level of specific IgE. It mediates type I 
hypersensitivity in patients [59]. Similar systemic hypersensitive 
reactions can pose life-threatening complications are also seen in 
red Imported Fire Ant (RIFA) Solenopsis invicta Buren (Insecta: 
Formicidae). It shows immediate effects due to the presence of 
major (>95%) toxic alkaloids [60]. Fire ant stings also are capable of 
causing serum sickness, nephrotic syndrome, seizures, worsening of 
pre-existing cardiopulmonary disease, and anaphylaxis (fig. 2). 

Proteolytic activity 

The crude venom from invertebrates, mainly sea anemones, show 
high proteolytic activity on azocasein an optimal pH 8.0 and 37 °C. In 
the presence of protease inhibitors as aprotinin, leupeptin and 
EDTA, the azo-caseinolytic activity was reduced by 45%, 29% and 
9%, respectively (table 1) (fig. 2) [61]. 

Anti-angiotensin converting enzyme activity 

The anti-angiotensin I converting enzyme activity of box jellyfish, 
Chiropsalmus quadrigatus Haeckel contain venom hydrolyzate. 
Angiotensin I converting enzyme (ACE) show inhibitory activity (fig. 2) 
[62].  

Histamine-releasing activities 

A pilosulin-like toxin peptide 1-6, isolated from the predatory ant 
Odontomachus monticola displays hemolytic, and histamine-
releasing activities (fig. 2) [63]. 

Fibrinogenolytic activity 

Ant Odontomachus bauri crude venom degrades the fibrinogen α-chain 
faster than the α-chain, while the fibrinogen α-chain remained 
unchanged. It is due to the presence of serine proteases (table 1) (fig. 2) 
[64]. 

Anti-angiogenic activity  

Sea Anemone Anemonia viridis contains a low molecular weight 
protein that shows anti-angiogenic activity. It also limits the 
proliferation of endothelial cells proliferation and angiogenesis. It 
shows trypsin activity inhibition like a Kunitz-type inhibitor. It 
interacts with integrin protein of membrane due to presence of an 
Arginine Glycin Aspartate (RGD) motif [65]. This inhibitor stops 
formation of new blood vessels or anti-angiogenesis effects [66]. It 
prevents HT-29 colorectal cancer cell migration [67]. Sea Anemone 
secretions are actinoporins Sticholysins I and II (Sts, StI/II), which 
interact with biological membranes of cells and form pores. 
Sticholysins I and II also show anti-tumor effects [68]. Few 
important cnidarians species such as Palythoa caribaeorum venom 
contains compounds which show ant-cancer activity [69]. Palythoa 
caribaeorum possess PLA2 activity that shows specific cytotoxicity 
against U251 and SKLU-1 cancer cell lines [70]. These cause cell 
swelling, impairment of ionic gradients and cell death. A marine-
derived compound PE displays anti-angiogenesis and. anti-tumor 
activities. PE shows inhibition of VEGFR2 signaling, and anti-tumor 
activity and increased apoptosis of both endothelial cells and tumor 
cells (table 1) (fig. 2) [71]. 

Anti-proliferative activity 

Melittindisplays anti-proliferative activity [72] and inhibits 
angiogenesis [73]. Its recombinant form is used for making 
immunotoxins by fusion of genes [74]. Melittin also binds to anti-
asialo glycoprotein receptor (ASGPR) a single-chain variable 
fragment antibody (Ca) shows anti-invasive activity in hepato 
cellular carcinoma cells [75]. More specifically, CTLA-4-targeted 
scFv-melittin fusion protein acts as a potential immunosuppressive 
agent showed selective cytotoxicity assist in organ transplants [76]. 
Melittin coupled to avidin, when released induces immediate cell 
lysis [77] and stop cancer cell latency [78]. Asterosaponin 1 is 
isolated from starfish Culcitano vaeguineae. It was found active 

against malignant glioblastoma. It more efficiently kill glioblastoma 
cells and is used in anti-tumor chemotherapy [79]. It also shows 
potential anti-proliferative and pro-apoptotic activity of in A549 
human lung cancer cells. Asterosaponin 1 inhibits the proliferation 
of A549 cells through induction of ER stress-associated apoptosis, 
making asterosaponin 1 a candidate new anticancer drug for lung 
cancer therapy (table 1) (fig. 2) [80]. 

Amphibians are reservoirs of biologically active toxin molecules 
with antitumor activity. Toads, Bufo Bufo gargarizans possess toxins 
in their skin and poison glands. Their toxins are bufadienolides, such 
as bufalin, cinobufagin, resibufogenin, and telocinobufagin. These 
are major active compounds derived from the toad skin. Among all 
these cinobufacini (e. g. bufalin and cinobufagin) shows inhibit of 
cell proliferation, induction of cell differentiation, induction of 
apoptosis, disruption of the cell cycle, and inhibition of cancer 
angiogenesis. 

Cinobufacini have effective anticancer activity with low toxicity and 
few side effects [81]. Arenobufagin, is used in Chinese medicine for 
cancer therapy. It inhibits cell growth in several cancer cell lines. It 
shows anti-angiogenic activity. Arenobufagin inhibited vascular 
endothelial growth factor (VEGF)-induced viability, migration, 
invasion and tube formation in human umbilical vein endothelial 
cells (HUVECs) in vitro. More specifically, arenobufagin is a specific 
inhibitor of VEGF-mediated angiogenesis (table 1) (fig. 2) [82]. 

Snake venom-based drugs are widely used to treat various types of 
cancer. Caspian cobra venom toxins showed cytotoxic effects against 
human cancer cell lines [83]. Leaven is a snake venom disintegrin 
which generates anti-angiogenic effects by inhibiting vascular 
endothelial growth factors (VEGF) [84]. A toxin-derived drugs from 
snakes effectively check cancer cell proliferation, migration, 
invasion, and neovascularization and induce apoptotic activity. CrTX 
toxin was found effective against viper Crotalusdurissusterrificus, in 
human lung adenocarcinoma A549 cells (table 1) (fig. 2). 

Inducing cell apoptosis due to activation of P38MAPK and caspase-3, and 
by cell cycle arrest mediated by increased wt p53 expression. In addition, 
CrTX displayed anti-angiogenic effects in vivo [85]. Snake venom-derived 
drug cerivastatin also reduces the proliferation and invasion of 
aggressive breast cancer cells [86]. DisBa-01, a low molecular weight 
recombinant protein, specifically interacted with alpha(v)beta3 integrin 
and shows potent anti-metastatic and anti-angiogenic properties. It 
causes hemostasis and thrombosis (table 1) (fig. 2) [87]. 

Similar effects, and anti-angiogenic effect with the integration are 
seen in Lebetin 2 isolated from Macrovipera lebetina exhibits [88]. 
Dabmaurin-1 exhibits anti-angiogenic effects in vitro with similar 
anti-integration properties. Contortrostatin (CN), a disintegrin from 
southern copperhead snake venom, possesses anti-angiogenic 
activity both in vitro and in vivo [89]. A cryptic plasminogen-derived 
domain, kringle 5, inhibits endothelial cell growth [90]. 
Phospholipases type A2 (PLA2s) are the most abundant proteins 
found in Viperidae snake venom. It exerts neurotoxicity, 
myotoxicity, hemolytic activity, antibacterial, anticoagulant, and 
anti-platelet effects; some venom PLA2s show antitumor and anti-
angiogenic activities by mechanisms independent of their enzymatic 
activity (table 1) (fig. 2) [91]. 

Ant venom toxins inhibit angiogenesis and apoptosis [92]. Ant 
venom (SAV) Pachycondyla sennaarensis shows anti-neoplastic 
activity HepG2, MCF-7, and LoVo in different cancer cell lines. Its 
shows the differential dose-dependent antineoplastic effect with an 
increased level of significant cytokines, including Interleukin (IL)-1β, 
IL-6, and IL-8 and transcription factor, nuclear factor-kappa B (NF-
kB) [93]. Mastoparan is an α-helical and amphipathic 
tetradecapeptide obtained from the venom of the wasp Vespula 
lewisii (fig. 1). This peptide kills cancer cells by causing irreparable 
membrane damage and cell lysis, or by inducing apoptosis [94]. It 
shows strong tumor cell cytotoxicity and induces caspase-dependent 
apoptosis in melanoma cells through the intrinsic mitochondrial 
[95]. Melittin (MEL), isolated from bee venom is one of the major 
amphipathic 26-residue peptide that shows anti-arthrosclerosis 
effects [96]. This is also a good candidate for cancer therapy [97]. 
Melittin induces apoptotic cell death in cervical cancerous cellsand 
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shows an inhibitory effect on the proliferation of cancer cells. [98]. 
α-mangostin is a major active compound with potential anticancer 
activity in T. laeviceps cerumen in Thailand [99] (fig. 1). Propolis is a 
complex resinous honeybee product it shows antimicrobial, anti-
inflammatory and anti-tumor properties. A. mellifera propolis 
contains cardanol and cardol, both display potential anti-cancer 
bioactivity and could be used for future development of anti-cancer 
drugs [100, 101]. Apis mellifera BV, venom glands possesses melittin 
(MEL) and phospholipase A2 (PLA2). Both showed cytotoxic effect 
on human colon carcinoma cells (HCT116), and synergistic effect on 
other cancer cells [102]. Venom anti-cancer peptide 1, VACP1 was 
derived from the wasp venom of Vespa ducalis SMITHVACP1. It more 
potently suppressed cell proliferation and induced the cell apoptosis 
of OS cells by inducing the activation of the p38 MAPK and JNK 

signaling pathways [103]. Spider venom shows anticancer activity in 
a variety of human malignancies, including lung cancer. Anti-cancer 
peptide toxin LVTX-8, from the spider Lycosa vittata LVTX-8 shows 
strong cytotoxicity and anti-metastasis towards lung cancer. LVTX-8 
anticancer peptide with high efficiency and acceptable specificity, 
LVTX-8 may become a potential precursor of a therapeutic agent for 
lung cancer in the future [104]. A proteinaceous toxin, named 
Latroeggtoxin-V, isolated form Latrodectus tredecimguttatus. Black 
widow spider selectively acts on breast cancer line MDA-MB-231 
cells. It is not only arresting their cell cycle, inhibiting their 
proliferation and migration, but also inducing their apoptosis. 
Latroeggtoxin-V belongs to the ATPase inhibitor protein family and 
used in the anticancer drug development (table 1) (fig. 2) [105]. 

 

 

Fig. 1: Showing animal toxins peptides 

 

 

Fig. 2: Showing biological effects of animal venom toxins 
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Table 1: Showing animal peptide toxins ant and its biological effects 

S. No.  Animal species  Peptides  Biological activities  Reference 
1. Palythoa caribaeorum Sticholysin I and II PLA2 activity, cytotoxicity [4] 
2. Entacmaea quadri color Cytolysins Haemolytic effects [7] 
3. Lasioglossum laticeps Lasiocepsin Antimicrobial peptide [13] 
4. Urticin aeques Ueq 12-1 Analgesic activity [14] 
5. Urticina grebelnyi Ugr 9-129 amino acid peptides Analgesic activity [15] 
6. Urticina eques α-AnmTxUeq 12-1 Anti-inflammatory activity  [16] 
7. Rhizostoma pulmo  collagen peptides Antioxidant activities [17] 
8. Bunodactis verrucosa metalloproteinases Anti-helminthic activity  [27] 
9. Metridium senile τ-AnmTXMs 9a-1 Analgesic and anti-inflammatory effects [41] 
10. Odontomachus monticola. Pilosulin-like peptides Antimicrobial, hemolytic, and histamine-

releasing activities.  
[53] 

11. Odontomachus bauri serine proteases Fibrinogenolytic activity [54] 
Insect 
venom  

Cnidopus japonicas linear polypeptides (Cys-free) Analgesic effects [58] 

12. Platymeris biguttatus  S1 proteases, redulysins, Ptu1-like 
peptides 

Shows neurotoxic, hemolytic, antibacterial, 
and cytotoxic effects 

[59] 
 

13. Sea anemone Cytolysins, α-AnmTxUeq 12-1 Voltage-gated Na⁺ and K⁺ channels toxins, 
acid-sensing ion channel toxins, Kunitz-type 
protease inhibitors activity and toxins with 
Phospholipase A2 activity 

[61] 

14. Chiropsalmus quadrigatus hydrolysate. Angiotensin I converting 
enzyme 

Inhibitory activity [62] 

15. Anemonia viridis linear polypeptides (Cys-free) Cytotoxic and anti-proliferative activities [63] 
16. Pelagia noctiluca Sticholysin I and IIv Anticancer and nitric Oxide (NO) inhibition 

activities 
[74] 

17. Pachycondyla sennaarensis Serine proteases Anti-neoplastic activity, induction of 
angiogenesis and apoptosis 

 [86] 

18. Neoponera goeldii  Ponericins  Haemolytic, antibacterial, insecticidal activity [86] 
19. Myrmecia pilosula Pilosulin 3, pilosulin 1 and Pilosulin 4 Allergenic activities [87] 
20. Macropis fulvipes macro pin (MAC-1) Antimicrobial peptides [88] 
21. Macropis fulvipes AcKTSPI-Kd, microbial serine proteases 

Kazal-type serine protease inhibitors 
Antibacterial activity against Gram-positive 
bacteria 

[90] 

22. Panurgus calcaratus  Panurgines  Antimicrobial peptides (AMPs), antifungal 
activity, and low hemolytic activity against 
human erythrocytes 

[91] 

23. A. baumannii Agelaia-MPI and Polybia-MPII Antibacterial activity against both Gram-
positive and Gram-negative bacteria 

[93] 

24. Vespula vulgaris  
 

Mastoparan V1 (MP-V1) Antimicrobial peptide 
against Salmonella infection MP-V1 

[94] 

25. Equmenine wasp Antimicrobial α-helical peptides antimicrobial peptide [95] 
26. eumenine wasp eumenine mastoparan-EM1 and 

eumenine mastoparan-EM2 peptides 
Kazal-type serine protease inhibitors exhibit 
thrombin, elastase, plasmin, proteinase K, or 
subtilisin A inhibition activity 

[96] 

27. Laches anatarabaevi Cytolytic peptides Antibacterial activity against Gram-negative 
and Gram-positive bacteria 

[100] 

28. Polistes dominulus EMP-EM peptides Disrupt bacterial cell membranes and 
mammalian cell membranes 

[105] 

29. Microplitis mediator VRF1, a metalloprotease homolog 
venom protein 

Interferes with the Toll signaling pathway in 
the host hemocytes. 

[106] 
 

30. Polybia paulista Polybia-CP Antibacterial activity [105] 
31. Tetramorium bicarinatum Dermaseptin-, defensin-, ICK-, pilosulin-

and ponericin-like antimicrobial peptides 
Antimicrobial activity [105] 

32. B. verrucosa  Metalloproteinases and neurotoxins Antimicrobial activity [105] 
33. Hydra Hydramacin-1 Antimicrobial activity [105] 
34. Hydra Arminin 1a-C Antimicrobial peptide [105] 
35. Pseudopolybia vespiceps Mastoparan Antimicrobial activity against bacteria [105] 
36. Opistophtalmus carinatus Opistoporin 1 and parabutoporin Pore-forming and hemolytic peptides [105] 
37. Polybiapaulista Polybia-MPI, anoplin (GLLKRIKTLL-NH2) Antifungal activity [106] 
Cnidarians  Fusarium culmorum polybia-CP, Hefutoxin 1 Antifungal activity [107] 
38. T. stigmurus Polybia-CP Antifungal efficacy [108] 
39. Orancistrocerus drewseni OdVP2 and OdVP2L Antifungal activities [109] 
40. Palythoa caribaeorum Actinoporins Pore-forming toxins [110] 
41. Ectatomma tuberculatum Ponericin peptides Antibacterial activity, growth inhibition of 

Gram-positive and Gram-negative bacteria 
[111] 

42. Heteractis crispa Kunitz-type peptides Anti-inflammatory effects [114] 
43. H. crispa  Actinoporins Hemolytic activity [115] 
44. Apis dorsata Mast cell degranulating peptide (MCD), 

apamin, or the small peptides melittin 
(MLT) 

Anti-HCV activity against hepatitis C virus 
(HCV 

[118] 

45. Nasonia vitripennis Mastoparan Anti-trypanosomal [119] 
46. Bombyx mori Bacterial prodigiosin Antiviral activity [121] 
47. Scorpion mucroporin-M1, Kn2-7 Antiviral activity [126] 
48. Tick  Defensins Antimicrobial peptides [126] 
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Antimicrobial peptides 

The macropin (MAC-1) is antimicrobial peptides (AMPs) isolated 
from the venom of the solitary bee Macropis fulvipes having the 
sequence Gly-Phe-Gly-Met-Ala-Leu-Lys-Leu-Leu-Lys-Lys-Val-Leu-
NH2MAC-1 exhibited antimicrobial activity against both Gram-
positive and Gram-negative bacteria [106]. AcKTSPI-Kd showed 
antibacterial activity against Gram-positive bacteria (table 1). It also 
acts as an inhibitor of microbial serine proteases, Kazal-type serine 
protease inhibitors [107]. Three antimicrobial peptides (AMPs), 
named penguins (PNGs), were isolated from the venom of the wild 
bee Panurgus calcaratus. The dodecapeptide of the sequence 
LNWGAILKHIIK-NH₂ (PNG-1) belongs to the category of α-helical 
amphipathic AMPs. All three peptides exhibited antimicrobial 
activity against Gram-positive bacteria and Gram-negative bacteria, 
antifungal activity, and low hemolytic activity against human 
erythrocytes (table 1) (fig. 2) [108]. 

Mastoparan peptide isolated from the venom of the social wasp 
Pseudopolybia vespiceps shows antimicrobial activity against 
bacteria (Staphylococcus aureus and Mycobacterium abscessus subsp. 
massiliense), fungi (Candida albicans and Cryptococcus neoformans) 
and in vivo S. aureus infection. These antimicrobial peptides display 
pore-forming ability in membrane and could be used as 
antimicrobial drugs. Polybia-MPII proved to be highly effective, with 
a lower haemolysis rate compared with peptides of the same family 
(fig. 1). Mastoparan V1 (MP-V1), a mastoparan from the venom of 
the social wasp Vespula vulgaris, is a potent antimicrobial peptide 
against Salmonella infection MP-V1 [109]. Cationic Polydim-I 
exhibits powerful antimicrobial activity against different and diverse 
microorganisms [110]. Wasp venoms contained such antimicrobial 
α-helical peptides as the major peptide component [111]. Polydim-I 
provoked cell wall disruption and exhibited non-cytotoxicity 
towards mammalian cells (table 1) (fig. 2). 

This is isolated from Polybia dimorpha Neotropical wasp and shows 
anti-mycobacterial activity [112]. Antimicrobial peptides (AMPs) 
have been isolated from scorpion and spider venom [113]. These 
have shown strong antimicrobial activity against pathogenic 
bacteria. Insect-derived Kazal-type serine protease inhibitors exhibit 
thrombin, elastase, plasmin, proteinase K, or subtilisin A inhibition 
activity. Both eumenine mastoparan-EM1 and eumenine 
mastoparan-EM2 peptides exhibited potent antibacterial activity 
(table 1) (fig. 2) [114]. 

Pin2 [14] and Pin2 [17] have the potential to be used as alternative 
antibiotic and anti-tuberculosis agents with reduced hemolytic 
effects [115]. Lasiocepsin is a unique 27-residue antimicrobial 
peptide isolated from Lasioglossum laticeps (wild bee) venom, shows 
antibacterial and antifungal activity [116]. Cardiolipin, found at the 
poles of bacterial cells, showed membrane-permeabilizing activity 
that is not limited to the outer membranes of Gram-negative 
bacteria (fig. 2). 

The peptide interacts with phospholipids initially through its N 
terminus, and its degree of penetration is strongly dependent on the 
presence of cardiolipin. Venom of the social wasp Vespula vulgaris 
contains mastoparan V1 (MP-V1 a potent antimicrobial peptide that 
was found active against Salmonella infection. Eumenine wasps 
Anterhynchium flavor marginatum micado venom contains 
antimicrobial α-helical peptides as the major peptide component. 
These were found active against E. coli. Mastoparan-EM1 and EM2 
are mast cell degranulating peptides which found in social wasp 
venoms [117]. The paper wasp Polistes dominulus venom toxins 
show resistance to polymicrobial disease of vineyards. 
Endoparasitoid wasp, Microplitis mediator secrete VRF1, a 
metalloprotease homolog venom protein that modulates egg 
encapsulation in its host, the cotton bollworm, Helico verpaar 
migera. This end parasitoid wasp venom protein interferes with the 
Toll signaling pathway in the host hemocytes (fig. 2) [118]. 

Similarly, another protein Edin expresses in the fat body of hosts 
and regulates the increase of plasmatocyte numbers and the 
mobilization of sessile hemocytes in Drosophila larvae. Insect venom 
is a rich source of peptides that could be used for drug design and 
innovative therapeutic discoveries. The predatory giant ant 

Dinoponera quadriceps secretes a complex mixture of bioactive 
peptides in its venom. It contains five classes’ e. g., dermaseptin-, 
defensin-, ICK-, pilosulin-and ponericin-like antimicrobial peptides. 
Its synthetic templates sDq-2562 and sDq-3162 are ponericin-like 
dinoponera toxins. The most effective peptide, the 28-residue sDq-
3162 displayed a significant bacteriostatic and bactericidal effect 
with minimal inhibitory concentrations. Similarly, venom peptide 
bicarinalin, from the ant Tetramorium bicarinatum, shows strong 
antimicrobial activity with a broad spectrum of activity against 
Helicobacter pylori. It significantly decreases the density of H. pylori 
on gastric cells. It shows both curative and preventive use. It 
significantly decreases the density of H. pylori on gastric cells. It 
shows both curative and preventive use. It shows low cytotoxicity 
against human lymphocytes at a very low concentration (fig. 4). 
Bicarinalin action is much similar to melting and other humanitarian 
antimicrobial peptides such as pilosulin or defensing [119]. In 
addition, the venom showed antimicrobial activity against 
Staphylococcus aureus and Escherichia coli as well as anti-parasitic 
activity on Toxoplasma gondii infection in vitro table 1). 

Sea Anemone B. verrucosa contain putative toxin, mainly 
metalloproteinases and neurotoxins. These also showed 
antimicrobial effects Hydramacin-1 a toxin isolated from Hydra was 
found potently active against Gram-positive and Gram-negative 
bacteria including multi-resistant human pathogenic strains. 
Arminin 1a-C is also an antimicrobial peptide (AMP) is also isolated 
from metazoan marine Hydra [120]. 

Antibacterial activity 

Venoms from ant species Paraponera clavata, Ectatomma 
quadridens and Ectatomma tuberculatum possess ponericin peptides 
which showed growth inhibition of Gram-positive and Gram-
negative bacteria Lasiocepsin is a unique 27-residue antimicrobial 
peptide, isolated from Lasioglossum laticeps (wild bee) venom, 
shows antibacterial. Similar antibacterial activity is reported in 
synthetic fire ant venom alkaloids trans-2 methyl-6-(cis-6-
pentadecenyl) piperidine against Staphylococcus aureus and 
Escherichia coli in vitro] (table 1) (fig. 2). 

Polybia-CP isolated from wasp Polybia paulista shows potent 
antibacterial activity against both Gram-positive and Gram-negative 
bacteria. This is a membrane-active peptide and passes through 
membrane of bacteria. It shows strong in action against drug 
resistant bacteria. The wasp A. baumannii MPs Agelaia-MPI and 
Polybia-MPII had better action against MDR (multidrug-resistant). 
Anoplin a decapeptide and 19 analogs showed antibacterial activity 
against methicillin-resistant Staphylococcus aureus ATCC 33591 
(MRSA), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa 
(ATCC 27853), vancomycin-resistant Enterococcus faecium (ATCC 
700221) (VRE Opistoporin 1 and parabutoporin) isolated from 
scorpion Opistophtalmus carinatus were found most active in 
inhibiting growth of Gram-negative bacteria. Opistoporin 1 and 
parabutoporin are pore-forming and hemolytic peptides were 
isolated from scorpion Opistophtal muscarinatus and show moderate 
hemolytic activity than melittin. Bee venom is used against different 
types of cancer as well against the challenging (table 1) (fig. 2) [121]. 

Bee venom and its components, i.e. melting (MLT), phospholipase 
A2 (PLA2), and apartments, showed inhibitory effects against 
viruses, i.e. Influenza A virus (PR8), Vesicular Stomatitis Virus (VSV), 
Respiratory Syncytial Virus (RSV), and Herpes Simplex Virus (HSV) 
in vitro and in vivo. Similarly, melting also showed antiviral and 
inflammatory responses in vitro and in vivo. Honey bee peptide 
melittin curbs infectivity of a diverse array of viruses, including 
coxsackievirus, enterovirus, influenza A viruses, human 
immunodeficiency virus (HIV), herpes simplex virus (HSV), Junín 
virus (JV), respiratory syncytial virus (RSV), vesicular stomatitis 
virus (VSV), and tobacco mosaic virus (TMV). Honey bee venom 
contains mast cell degranulating peptide (MCD), apamin, or the 
small peptides melittin (MLT) showed anti-HCV activity against 
hepatitis C virus (HCV). It disrupts HCV replication life cycle. It also 
act as a good therapeutic agent (table 1) [122]. 

Mastoparan-derived peptide MP7-NH2 could inactivate viruses of 
multiple types and whether it could stimulate cell-mediated antiviral 
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activity. MP7-NH2 potently inactivated a range of enveloped viruses. 
Melittin and phospholipase A2 (PLA2) are the most abundant 
components of bee venom. These showed antioxidant, antimicrobial, 
neuroprotective or antitumor effects. Bee venom toxins show broad 
spectrum antiviral activity (table 1) (fig. 2) [123]. 

Scorpion-venom-peptide-derived mucroporin-M1 is microbicidal to HIV-
1, it shows mild activity to three RNA viruses are measles viruses, SARS-
CoV, and H5N1 to HIV-1. More specifically, Kn2-7 scorpion venom 
peptide derivative shows most potent anti-HIV-1 activity. Kn2-7 inhibit 
HIV-1 by direct interaction with viral particle and may become a 
promising candidate compound for further development of a 
microbicide against HIV-1. Besides this, some body fluids of invertebrate 
organisms also exhibit antiviral activity (table 1) (fig. 2) [124]. 

Tick defenses are antimicrobial peptides that play a major role in the 
innate immunity of ticks by providing a direct antimicrobial defense 
against viruses. Cationic peptides showed anti-infection and anti-
tumoral activity. [Tyr5, 12, Lys7]-Polyphemus in II) has been shown to 
have strong anti-human immunodeficiency virus (HIV) activity. T22 
inhibits the T cell line-tropic (T-tropic) HIV-1 infection through its 
specific binding to a chemokine receptor CXCR4, which serves as a co-
receptor for the entry of T-tropic HIV-1 strains (table 1) (fig. 2) [125]. 

Mode of action 

Animal toxins bind ligand-gated ion channels, including acid-sensing 
ion channel (ASIC) toxins. These toxins break glycerophospholipids, 
and make pores in cell membrane and disturb most of the cellular 
functions, such as membrane permeability, metabolism enzyme 
activity and cell signaling. These toxins mainly act on voltage-gated 
sodium and potassium channel toxins. Voltage-gated ion channels 
activate non-selective pores within membranes, by which the ions 
can pass using the electrochemical gradient across the membrane 
itself. When this mechanism is altered, the transmission of signals 
through the neurons and muscles is critically disturbed and imposes 
disorders including paralysis. These toxins bind at three sites in the 
sodium channel, and regulate their functioning. By controlling the 
opening and closing of the sodium channel, the toxins control the 
electrical signals that encode and propagate vital information across 
long distances. The activity of the sodium channel toxins shows 
these toxins act as pain blockers. Pharmacological applications and 
produce insecticides. Animal venom toxins show target specificity to 
various receptors present on cell membranes; these also bind and 
inhibit various ion channels. No doubt, toxin peptides from various 
animal groups could become the source of anticancer drugs and best 
therapeutic candidates for the treatment of microbial diseases [126]. 

CONCLUSION 

Animal venoms are large living depositories of diverse peptides and 
proteins which are used in self-defense and to immobilize the prey 
by them. These are low molecular weight toxin peptides interact to 
voltage-gated sodium and potassium channels. These toxins fire 
membranes and form and accelerate active passage of ions which 
pass using the electrochemical gradient across the membrane itself. 
These toxins show diverse biological activity such and cytolytic, 
hemolytic, proteolytic, allergic, inflammatory, histamine-releasing 
activities, fibrinolytic and Kunitz-type protease inhibitor and 
pancreatic α-amylase inhibitor activity. These show diverse 
therapeutic activity such as anti-pathogenic effects against microbes 
such as viruses, bacteria, protozoan and fungal species. These show 
anti-helminthic, analgesic, anti-diabetic and immune-modulating 
activity of great of pharmacological and biotechnological interest. 
These pore-forming toxins show action much similar to actinoporins 
and cause cytolysis of human myelogenous leukemia and cancer cell 
lines, anti-angiogenesis and anticancer activity. These could be used 
for generation of new, highly effective drug molecules for the 
treatment of various human diseases. These toxins could be used as 
a natural source for development of alternative medicine. Animal 
venoms are an invaluable and almost inexhaustible source of 
bioactive molecules, some of which have found use as 
pharmacological tools, human therapeutics, and bioinsecticides. 
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