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Abstract

We investigate the predictability of payoffs from selling variance swaps on the

S&P500, US 10‐year treasuries, gold, and crude oil. In‐sample analysis shows

that structural breaks are an important feature when modeling payoffs, and

hence the ex post variance risk premium. Out‐of‐sample tests, on the other

hand, reveal that structural break models do not improve forecast performance

relative to simpler linear (or state invariant) models. We show that a host of

variables that had previously been shown to forecast excess returns for the four

asset classes, contain predictive power for ex post realizations of the respective

variance risk premia as well. We also find that models fit directly to payoffs

perform as well or better than models that combine the current variance swap

rate with a realized variance forecast. These novel findings have important

implications for variance swap sellers, and investors seeking to include

volatility as an asset in their portfolio.
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1 | INTRODUCTION

Financial markets have long recognized that asset's volatility is stochastic, making investors exposed to variance risk. In
a seminal contribution, Carr and Wu (2009) show that variance risk is significantly priced. In investment practice,
volatility trading and hedging have grown tremendously over the past two decades. Variance swaps, in particular,
have become popular vehicles for investors to achieve their desired volatility exposures and to possibly harvest the
variance risk premium (VRP). In this paper we seek to forecast the payoffs from selling variance swaps, as those payoffs
represent ex post realizations of the VRP.1

Existing research investigates the size and dynamics of the VRP (e.g., Bakshi & Kapadia, 2003; Carr & Wu, 2009;
Eraker & Wu, 2017; Li & Zinna, 2018, among many others), while several studies, starting with Bollerslev et al. (2009),
focus on the predictive power of the VRP for the equity risk premium. Other contributions focus on the effects of
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including variance swaps or other volatility products within an asset allocation framework (important examples are
Alexander et al., 2016; Brière et al., 2010; Chen et al., 2011; Doran, 2020; Egloff et al., 2010; Nieto et al., 2014;
Warren, 2012).

Despite this growing literature, the number of papers that look specifically at the out‐of‐sample (OOS)
forecasting of the VRP is rather limited: most of the studies only present in‐sample analysis, typically relying on a
few predictive variables.2 The literature on return predictability has long recognized that a large set of predictors
may be useful in forecasting excess returns across assets.3 These variables have been shown to track changes in
macroeconomic and business conditions, and thus to anticipate fluctuations in risk premia for the respective asset
classes. Consequently, it seems natural to ask whether they are also able to forecast the VRP. This is because the
latter is indeed a compensation for bearing systematic risk, and may therefore display time‐variation originating
from changes in the economic or market environment. We address the issue by employing a host of predictors
from the return predictability literature.4

Another drawback of VRP forecasting studies is the focus on a single model specification, typically a linear multiple
regression or a vector autoregression (VAR). Given the need for more complex dynamics, such as regime switching,
emphasized by recent literature (Rombouts et al., 2020), and given the more general concern of model uncertainty, it
seems relevant to explore a variety of model structures within a unified framework for assessing forecasting ability.5 We
therefore consider a large set of forecasting models and rely on (a) the Model Confidence Set (MCS) approach of
Hansen et al. (2011) to evaluate OOS forecasting performance and (b) forecast combination (or model averaging) to
alleviate issues arising from model misspecification.

Finally, the few papers that look at OOS forecasting of the VRP focus almost exclusively on the equity VRP. We also
investigate the predictability of the VRP for government bonds, gold, and crude oil.6

To the best of our knowledge, this is the first study on the OOS predictability of the VRP that entertains: (a) a
variety of model specifications, linear as well as nonlinear; (b) a large set of predictive variables; and (c) four major
asset classes.

Our in‐sample analysis shows that for all four assets, the dynamics of the realized (or ex post) VRP is
characterized by marked regime changes (or structural breaks). Longer periods of positive, less volatile, and
more persistent payoffs for variance swap sellers, alternate with shorter stretches of negative (typically large),
more volatile, and less predictable payoffs. The OOS analysis generates five main conclusions. First, nonlinear
specifications that include structural breaks do not generate superior forecasts relative to linear models. Second,
the variables previously utilized in the literature to predict excess returns also contain predictive power for the
respective ex post VRP realizations as they outperform a no‐predictability (or prevailing mean) benchmark. For
equities and treasuries, the specifications that utilize predictors (specifically, by extracting their principal
components [PCs]) outperform pure time‐series models (e.g., the autoregressive moving average [ARMA] class of
processes); while for gold and crude oil, the time‐series models are not outperformed by those that include
predictors. Third, for equities, gold, and oil, relatively simple benchmarks (namely, for gold and oil, a linear
autoregressive [AR] specification; for equities, a linear model containing only the lagged first PC of predictors)
perform as well or better than richer models or model combinations. For treasuries, on the other hand, a
combination of PC models and a combination of MIDAS models are the best performers. Fourth, models fit
directly to variance swap payoffs generally perform as well or better than models that combine a realized
variance forecast with the current variance swap rate. Fifth, in terms of economic significance, the predictors for

2Feunou et al. (2014) consider a comprehensive set of predictors for the equity VRP, but their analysis is in‐sample and relies exclusively on linear
models.
3Rapach and Zhou (2013) provide a survey of the literature for equities. See Gao and Nardari (2018) for applications to Treasury bonds and to
commodities.
4In Section 3.1, we discuss the conceptual foundations that link time‐variation in the VRP with the macro and business environment.
5Konstantinidi and Skiadopoulos (2016) forecast the return from a position on a variance swap on the S&P500 using a range of predictors. Whilst a
number of variables are considered, their models are confined to simple linear regressions. Andreou and Ghysels (2021) construct various factors
(short‐run funding spreads, and long‐run corporate and government bond spreads) to predict the Volatility Index (VIX), realized volatility (RV), and
VRP in the equity market. The factors work well when forecasting the VIX and RV OOS. However the VRP results are not reported: according to the
authors (p. 23, footnote 18) “The OOS results for the VRP are also relatively more weak than those of the VIX and RV and therefore are not reported.”
Further, Andreou and Ghysels (2021) only consider simple linear regression as well as Mixed‐Data Sampling (MIDAS) regression.
6Prokopczuk et al. (2011) analyze the VRP for many commodities using synthetic variance swaps. Choi et al. (2017) comprehensively study the VRP
in the US Treasury market and evaluate trading strategies that rely on variance swaps. Neither study, though, investigates the predictability of
the VRP.
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equity, gold, and oil VRPs appear to improve trading performance relative to strategies based on a prevailing
mean forecast and to strategies based on pure time‐series models. That is not the case, however, for the
predictors of the bond VRP. Our novel evidence should be of relevance for variance swap sellers, hedgers as well
as portfolio managers.

The paper proceeds as follows. Section 2 outlines the methodology, which includes an overview of the models
considered, the MCS approach, and model averaging. Section 3 discusses the data, namely, the predictors and the
method used to extract swap payoffs. Empirical results are presented in Section 4, which examines in‐sample fit, OOS
forecast performance, and some simple trading strategies. Section 5 concludes.

2 | METHODOLOGY

A variance swap entered at time t and held to maturity, t T+ , is a zero‐cost contract that pays the difference
between the physical, realized variance over the period, RVt T, , and the agreed upon (i.e., fixed) variance swap
rate at the time the contract is entered into, VSt T, . The difference is paid per dollar of notional amount. The
variance swap rate is set as the expectation, under the risk‐neutral measure, of the realized variance over the life of
the swap, EVS = (RV )t T t

Q
t T, , , so that investors are indifferent between the fixed and the floating legs of the swap.

The ex ante VRP is then defined as

EVRP = (RV ) − VS .t T t
P

t T t T, , , (1)

The payoff (per unit of notional) on a long variance swap contract entered at time t and held to maturity T is
computed as

PL = RV − VS .t T t T t T, , , (2)

It can be shown that this payoff equals the return in excess of the risk‐free rate of a fully collateralized long position
on the variance swap.7

At the end of each month t, we seek to forecast the payoff (PL) over the forthcoming month of a long position on a
variance swap with a 1‐month maturity:

PL = RV − VS ,t t t t t t, +1 , +1 , +1 (3)

where RVt t, +1 is the realized variance over the month, and VSt t, +1, the variance swap rate for the forthcoming month,
is observable at time t. The variance swap payoff we aim to forecast (Equation 3), therefore represents an ex post
realization of the VRP defined in Equation (1). If E (RV ) = RVt

P
t T t T, , , as per Bollerslev et al. (2011) the ex ante

VRP is equivalent to the ex post VRP. In what follows we use the terms ex post VRP and variance swap payoff
interchangeably.8

We analyze the returns on fully collateralized positions as that is customary in the literature when looking at the
performance of zero‐investment assets, such as futures and swaps. In addition, the asset allocation literature that

7The return on a long variance swap position with a required collateral is the sum of the return on the contract and the return on the collateral. Let
rft T, be the net return on a risk‐free asset between t andT and cf be the amount of collateral required per dollar notional in the swap, which we term
the “collateralization factor.” Then

≡


 


r r

1

cf
˜ + rf .t T t T t T,

swap, long
,
swap

,

It follows that the excess return on a long swap position xrt T,
swap, long equals the scaled payoff of the swap contract:

rxr =
1

cf
˜ .t T t T,

swap, long
,
swap

With full collateralization, cf = 1, this excess return equals the payoff in Equation (2).
8This is consistent with the equity premium forecasting literature where realized returns are often used as a noisy proxy for expected returns.
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investigates the value of adding pure variance exposure to equity and/or fixed income, typically relies on fully
collateralized positions as well.9,10

We consider two alternative forecasting approaches. The first approach fits models directly to the payoff series and uses
the model to make a one‐step‐ahead forecast. Given that PL is not observed until the end of the month, this approach ignores
the most recent VS rate at time t. We refer to this first approach as a direct forecast. The second approach forecasts RV
conditional on the information available at time t. The RV forecast is then combined with the VS rate at time t to form the
payoff forecast for t + 1. The second approach therefore combines the VS rate with a model‐based forecast (RV), and is
referred to as a hybrid forecast. The RV models are estimated using daily data and the monthly variance forecast obtained via
aggregation. An examination into the relative performance of these two approaches has not been considered in the literature.

OOS forecasts are generated using a recursive scheme on an expanding window. Namely, the models are first estimated
using information available up to time T0 and then used to forecast the payoff at the end of period T + 10 for a 1‐month
variance swap sold at T0. At T + 10 , the realized payoff on the swap is observed. The models are then re‐estimated using the
additional information available and the forecasts reperformed for T + 20 . This is continued until the end of the data set.

Forecast performance is then evaluated using the Mean‐Squared Error (MSE), where the actual is the realized payoff.
We employ a large set of predictors and forecast models which may raise concerns regarding multiple‐testing. The
MCS approach of Hansen et al. (2011) is designed to handle this situation, so we use it to rank forecast performance and
arrive at a final set of models with equal predictive ability (EPA). Let M0 represent the initial set of models. The MCS
identifies a subset of models, M* which are superior in predictive ability with respect to all other models in M0.11

2.1 | Models

2.1.1 | Direct swap payoff forecasts

For the first approach, the direct forecast of payoffs, we consider pure time‐series models as well as models with
predictors (i.e., models that include independent lagged forecasting variables in addition to lags of the dependent
variable). For the pure time‐series models we consider the following specifications: ARMA, breakpoint regression,
threshold regression, and Markov switching (MS) regressions. For the models with predictors, we augment all the pure
time‐series specifications with predictors. We also consider reduced form VAR, linear regression against lagged
PCs extracted from the predictors, and MIDAS regressions. As the ARMA, reduced form VAR and linear regression
against lagged PCs specifications are well understood, in what follows we only briefly detail the remaining processes.

The breakpoint regression is a standard linear regression model with say T periods and m breaks (resulting in
m + 1 regimes). For the observations in regime j

y X β Z δ σ= ′ + ′ + ϵt t t j j t (4)

9See, for instance, C. Alexander et al. (2016), Brière et al. (2010), Doran (2020), Egloff et al. (2010), Nieto et al. (2014), Warren (2012), and Chen et al. (2011).
10Alternatively, one may consider returns on variance swap positions with no collateral. The return in such case is computed by scaling PL with the
agreed upon swap rate, VSt T, , as shown, for instance, in Konstantinidi and Skiadopoulos (2016). As discussed in Carr and Wu (2009), this notion of
return aligns with an alternative way of defining the VRP. Namely,







EVRP =

1

VS
(RV − VS ) .t T

t T
t
P

t T t T,
,

, ,

In their analysis of ex post returns based on this definition of VRP, Carr and Wu (2009) actually use ∕ln(RV VS) and interpret it as the continuously
compounded excess return to going long a variance swap and holding it until maturity. However in their study VSt T, is seen as the initial investment,
whereas (2) and (3) regard a $1 notional as the initial investment.
11The starting hypothesis is that all models have EPA which is measured by the loss function Li j, . Define the loss differential between two models as

d L L= −i j i t j t, , , for all ≠ ∈i j M0. Let d n d=ij t
n

ij t
−1

=1 , be the relative performance of models i and j and ∈d m d= ( − 1)i j M i j
−1

, denotes model i's

performance relative to the average of the models in M . The null hypothesis is ∀ ≠ ∈H E d i j M: ( ) = 0,M ij0,
00 . The tests employ the range TR statistic,

∈
 

T = maxR i j M
d

d
,

var( )

ij

ij
, where the sum is over all models inM and dvar( )ij is a bootstrap estimate of the variance of dij. To control for any serial correlation, a

block bootstrap is employed with 10,000 replications. If the null is rejected, the model with the highest standardized loss, ∕∈ d dargmax var( )i M i i is removed

( dvar( )i is also a bootstrap estimate). This is repeated until the null can no longer be rejected for a given level of confidence. The surviving models are
the MCS.
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for regimes j m= 0, 1, …, , where the β coefficients on the X variables do not vary across regimes, while the Z variables
have coefficients that are regime specific. The variance of the errors may also be regime dependent ( ≠ ⋯σ σm0 ). In all
our specifications Zt contains the lagged yt while additional predictors may be either in Zt or in Xt, as detailed below.

The threshold regression has the same linear specification for each of the j m= 0, 1, …, regimes. The difference is that
threshold regression switches between regimes according to the values of an observable variable qt . Consider strictly
increasing threshold values ⋯γ γ γ< < < m1 2 so that the process is in regime j if ≤γ q γ<j t j+1, where ∞γ = −0 and

∞γ =m+1 . If qt is the dth lag of yt, the model is a self‐exciting model with delay d. If the model is self‐exciting with only a
constant and AR component in each regime, the model is a self‐exciting threshold autoregression. Given the large number of
predictors considered below, to avoid model proliferation all threshold regressions we consider are self‐exciting.

Breakpoint regression is therefore equivalent to a threshold regression with time as the threshold variable. This
means that threshold regression can re‐enter a regime after exiting, however, breakpoint regression cannot. For both
models, the breakpoints are determined using sequential tests of l + 1 versus l breakpoints. This is applied sequentially
until the null of l breakpoints is no longer rejected.

MS models assume that yt follows a process that depends on a latent state variable st. For each of the m regimes

y X β Z δ σ= ′ + ′ + ϵ ,t t t j j t (5)

where ϵt is i.i.d. standard normal and σj is state dependent. Again, Zt contains the lagged yt while additional predictors
may be either in Zt or in Xt. A first‐order Markov process is used for the regime probabilities where

∕P s j s i p( = = ) = ,t t ij−1 (6)

where pij is the probability of transitioning from regime i to regime j in period t .
The PC models we consider can also be cast within Equation (4) where Xt contains the lagged PCs extracted from

the predictors and Zt contains the lagged yt. Therefore, we consider PC models with breakpoint, threshold, and MS
specifications for the lagged dependent variable. For all these models, lagged PCs are state invariant and are therefore
in Xt. State dependence is captured via the constant and AR(1) term (i.e., via Zt).

The above models require all variables to be measured at the same frequency. The MIDAS model (Ghysels et al.,
2004) enables variables with different frequencies to enter the regression. The most common specification regresses a
low‐frequency dependent variable against higher‐frequency regressors. The MIDAS model for a single explanatory
variable and h‐step ahead forecasting is

∕y β β B L θ x ε= + ( ; ) + ,t
m

t h
m

t0 1
1

−
( )

(7)

where ∕ ∕B L θ b j θ L( ; ) = Σ ( ; )m
j
K j m1
=1

( −1) , K is the lag length, and ∕
∕L x x=s m

t
m

t s m
m

−1
( )

−1−
( ) . Here t is the low‐frequency time

unit (say monthly) and m is the higher sampling frequency (say daily), where ∕L m1 operates at the higher frequency.
This has been extended to the p‐order AR‐MIDAS model

∕y β λ y β B L θ x ε= + + ( ; ) + .t
i

p

i t h i
m

t h
m

t0
=1

− − +1 1
1

−
( )

(8)

A common polynomial choice is the exponential Almon lag which parameterizes b j θ( ; ) as

b j θ
θ j θ j

θ j θ j
( ; ) =

exp( + )

exp( + )
.

j
K

1 2
2

=1 1 2
2 (9)

The model requires estimation via nonlinear least squares. Parameter estimates can be sensitive to starting values
and convergence issues often result. This is particularly problematic when estimating a large number of models with
rolling or expanding windows, so we also consider analytically estimated MIDAS models. The first model is the
polynomial distributed lag (PDL) which lets

b j θ θ j( ; ) = ,
k

Q

k
k

=0
(10)
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however, there are significant costs if an incorrect polynomial order (Q) or lag length is imposed. An alternative
model employs stepwise weights (Forsberg & Ghysels, 2007) which require determination of the number of steps
(or step size)

∈ ∈b j θ θ I θ I( ; ) = + .j a a

p

R

P j a a1 [ , ]

=2

[ , ]p p0 1 −1 (11)

The p + 1 parameters a a, …, p0 are thresholds with ⋯a a a K= 1 < < < =p0 1 and ∈Ij a a[ , ]p p−1
is an indicator equal

to 1 if ≤a j a<p p−1 , otherwise zero. With the polynomial specification in (11), Equation (8) becomes a STEP AR
(p) MIDAS model.

2.1.2 | Hybrid forecasting models

For the second (or hybrid) forecasting approach we fit ARFIMA(1, d, 1) and Heterogeneous Autoregressive (HAR)
models to daily RV and daily log(RV) conditional on the information available at time t. The second approach,
therefore, utilizes data at a much higher frequency and hence relies on considerably more observations.

The HAR–RV model is

c β β β εRV = + RV + RV + RV + ,t
D D

t
D W

t
W M

t
M

t+1
( ) ( ) ( ) ( ) ( ) ( ) ( )

+1 (12)

where RVt
D( ) denotes the realized variance for day t , and RVt

W( ) and RVt
M( ) denotes the weekly and monthly averages,

respectively. For example,

RV =
1

5
RV .t

W

i

t i
( )

=0

4

− (13)

The ARFIMA(1, d, 1)–RV model is specified as

ϕL L μ θL ε(1 − )(1 − ) (RV − ) = (1 + ) ,d
t t (14)

where ∕ ∕L dL d d L d d d L(1 − ) = 1 − − (1 − ) 2! − (1 − )(2 − ) 3! − …d 2 3 and the roots of the AR and moving average
polynomials lie outside the unit circle. Daily RV forecasts over the coming month are generated recursively and then
aggregated to form the monthly RV. This is combined with the monthly VS rate at time t to create the VRP forecast via
Equation (1).

2.1.3 | Model averaging

Finally, we construct model average forecasts separately for each of the model classes detailed above. Namely, (i) pure
time‐series models (i.e., models with no predictors), (ii) models for each monthly predictor, (iii) PC models, and (iv)
MIDAS models.12 Only models deemed to have EPA via the MCS will be included in the respective averages. Given the
conservative nature of the MCS, we consider model averages using 10% and 25% levels of significance. The model
average forecasts for each model class are computed by equally weighting the individual one‐step ahead forecasts from
the models in the MCS for that class.13

12Initially, we set out to compute the MCS and hence a model‐averaged forecast for the hybrid models presented in Section 2.1.2. However, as it will
be apparent below, there was never a case where more than one hybrid model was in the MCS. Consequently, a model average forecast was not
constructed for the hybrid models. Instead, their individual forecast performance is compared with the model combinations from the other model
classes.
13Timmermann (2006) and D. E. Rapach et al. (2010) demonstrate the benefits of using equally weighted forecast combinations for predicting the
equity risk premium. Intuitively, using equal weights avoids an additional layer of estimation, which could potentially induce estimation error and
thus deteriorate the OOS performance.
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3 | DATA

There is no publicly available source of variance swaps data as they are OTC products. Fortunately, absent data on
traded swaps, the variance swap rate, VSt T, , can be estimated by any measure of expected variance under Q. A large
portion of the literature, starting with Carr and Wu (2009), relies on option‐implied variance, IVt

T . We follow this
literature and extract synthetic variance swap rates from options data.

Specifically, we employ options written against: the S&P500 index, US T‐bond futures, gold futures, and West Texas
Intermediate crude oil futures. We employ the midpoint of the bid and ask for options that span a 30‐day maturity. To
overcome the absence of a continuum of options with strikes from 0 to∞, the observed option prices are translated into
implied volatilities via the Black–Scholes–Merton (BSM) model. To create a finer equally spaced grid, a cubic spline is
then fit to implied BSM volatilities with an extrapolation beyond the endpoints assuming constant endpoint volatility.
We then interpolate the implied volatilities for both maturities in the strike dimension. The interpolated implied
volatilities are then back transformed into dollar option prices, retaining put prices for strikes below the current futures
price K0, and call prices for strikes above the current futures price. A smoothed version of the Bakshi and Kapadia (2003)
methodology is used to compute the price of two log‐return contracts. The annualized variance swap rate is equal to

V U

T
VS =

−
,t T,

2

(15)

where the first of the two contracts pays V, the squared log return on the underlying asset (spot for the S&P500 or the
futures for the other assets) and the second contract pays U, the log return on the underlying asset.14 Finally, we calculate
realized variances RVt T, as the sum of squared 5min returns using the S&P500 spot index and the nearby futures contract
for the other assets. The final data set commences January 1, 1996 and ends July 31, 2018 (271 monthly observations).15

Figure 1 plots the payoffs (PL) for the four asset classes from January 1996 to July 2018. Payoffs behave very
differently from traditional financial market returns. Payoffs appear to be characterized by regime switches between
low volatility periods with a consistently negative payoff (or positive payoff for the swap seller) and high volatility
episodes where the payoff can spike significantly—with the positive spikes representing a significant loss or negative
tail event for the swap seller. These visual inspections motivate our use of the breakpoint, threshold regression, and MS
models in addition to linear specifications.

Descriptive statistics in Table 1 show that even without conditioning on the market state, swap sellers generally
make significant risk‐adjusted payoffs, as measured by their Sharpe ratios (SRs). The ability to forecast swap payoffs
and switches into and out of the high volatility states could significantly improve these risk‐adjusted payoffs and
facilitate better hedging and asset allocation decisions. These features help motivate the empirical investigation below.

14Specifically,

∞ 
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15For robustness, we also consider the alternative formula for option‐implied variance of Britten‐Jones and Neuberger (2000). This is because the
Bakshi, Kapadia and Madan risk‐neutral variance is the expected holding period variance (Du & Kapadia, 2012), not the variance of the realized 1‐
month return, which is unobservable (Andersen et al., 2015). Implied variance measures for all assets are virtually identical, with correlations
exceeding 0.998.
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3.1 | Predictors

We collect a comprehensive set of predictive variables relied upon by the literature. These variables have typically been
utilized to forecast assets excess returns: as such, they have been shown to track fluctuations in systematic risk for the
respective asset classes.16 Consequently, they appear to be natural candidates for predicting the VRP (and hence

(a)

(b)

(c)

(d)

FIGURE 1 Monthly payoffs: (a) S&P500, (b) bonds, (c) gold, and (d) oil

16The predictors we use for the equity VRP have become standard in the equity premium predictability literature since the work of Welch and Goyal
(2008). The predictors for the bond VRP follow the bond risk premia predictability literature, such as Cochrane and Piazzesi (2005) and Ludvigson
and Ng (2009). The predictors for gold VRP and oil VRP relate to the literature on commodity excess return predictability. See, among others, Bakshi
et al. (2011), Chen et al. (2010), Gao and Nardari (2018), and Gargano and Timmermann (2014).
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variance swap payoffs), as the VRP is compensation for bearing systematic risk and, as discussed below, it may be
characterized by time‐variation and countercyclicality.

3.1.1 | Economic justification

Several contributions rationalize the links of the VRP with macroeconomic and business conditions. For instance, Bollerslev
et al. (2011) consider an economy where asset prices follow affine stochastic volatility models, the volatility risk premium is
linear in the level of volatility and a representative agent has constant relative risk aversion utility. They show that if in
equilibrium the representative agent holds the market portfolio, then the volatility risk premium is directly proportional to
the agent's relative risk aversion coefficient. The authors proceed to argue that the relation still applies (in an approximate
sense) if risk aversion displays time‐variation, possibly induced by state‐dependent preferences as in the framework of
Gordon and St‐Amour (2004). The latter study proposes a modeling development that leads to countercyclicality in risk
aversion and provides empirical evidence supporting the theoretical prediction. Kim (2014) also finds strong empirical
support for countercyclical risk aversion, although within a recursive utility framework.

A separate stream of literature identifies the economic underpinnings of time‐variation and countercyclicality in
aggregate market variance. As summarized by Paye (2012), those features originate from either: (a) uncertainty about future
economic prospects (the true economic states), induced by countercyclical shocks to fundamentals as in long‐run risk
models17 or by learning (Timmermann, 1993, 1996); or (b) uncertainty about expected returns as in Mele (2007).18

It remains an empirical question whether the countercyclicality of the VRP is sufficiently pronounced to be
captured and anticipated by variables that proxy for uncertainty on the state of the economy and/or on expected
returns. It is also an empirical question whether the noise that separates ex ante and ex post VRP masks the predictive
power of the chosen variables. In our investigation we aim to tackle those empirical challenges.

3.1.2 | Selection of variables

We attempt to be as comprehensive as possible within the set of predictive variables, rather than arbitrarily selecting a
few predictors from previous studies. Together with the forecast combination method detailed above, these choices aim

TABLE 1 Descriptive statistics

Monthly swap payoffs

S&P500 Bond Gold Oil

Mean −0.0013 −0.0001 −0.0005 −0.0027

Median −0.0012 −0.0001 −0.0007 −0.0026

Maximum 0.0363 0.0015 0.0127 0.0206

Minimum −0.0123 −0.0028 −0.0146 −0.0256

Standard deviation 0.0032 0.0004 0.0025 0.0060

Skewness 6.063 −1.093 1.023 0.060

Kurtosis 76.258 11.898 13.889 6.021

Jarque–Bera 62,259*** 948*** 1386*** 103***

Sharpe ratio −0.418 −0.133 −0.208 −0.451

Note: Reports descriptive statistics for the monthly payoffs from January 1996 to July 2018. J.B. denotes the Jarque–Bera test for normality. *** denotes
significance at the 1% level (Jarque–Bera test only).

17Long‐run risk models assume that the volatilities of dividends and consumption growth are countercyclical. It follows that market volatility also
displays countercyclical variations.
18In Mele's (2007) framework, expected returns in bad times are relatively more sensitive to fluctuations in a state variable that captures the state of
the economy than in good times. If the asymmetry is sufficiently pronounced, the price dividend ratio is increasing and concave in the state variable,
and thus market volatility increases relatively more on the downside.
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to limit the impact of model misspecification and the concerns of data mining. The predictive variables and their
sources are listed in Appendix A.

For each predictor, ADF and KPSS tests were used to determine their order of integration. When the two tests
provided inconsistent evidence, specifications using the predictor in both levels and first differences were employed.

Given the large number of predictors under consideration, we consider model specifications that include only one
predictor at a time, except for the models that rely on PCs (please see below). To exemplify, for the equity VRP we rely
on 14 predictors: consequently, we estimate 14 different bivariate VAR specifications, each containing the swap payoff
and one of the predictors. Similarly for the other models (breakpoint, threshold, MS, and MIDAS).

While a number of these variables are available daily, several others are only provided monthly and reported with a
lag. For example, many US macroeconomic variables for a given month are not available until the middle of the next
month. We therefore separate the predictor variables according to whether they are available daily and those available
monthly (with a lag). To illustrate, consider a swap seller at the end of February 2000, seeking to predict the payoff on
the swap (or the VRP) over the coming month. The daily variables will be available up to the end of February 2000 and
so they can be used to create a monthly predictor as at the end of February for the swap payoff in March. On the other
hand, for the predictors available only at a monthly frequency (e.g., US unemployment rate), the investor will use their
values as of the end of January 2000 to generate swap payoff forecasts for March 2000.

We follow a similar approach for models using PCs. Namely, we construct two separate sets of PCs: one extracted
from all the monthly time series of predictors constructed using daily data and the other extracted from the time series
that are only available monthly with a lag. For the first set of PCs, the forecast as of the end of February 2000 will
condition on the PCs extracted as at the end of February. For the second set of PCs, the forecast as at the end of
February 2000 will condition on the PCs as of the end of January.

4 | EMPIRICAL RESULTS

4.1 | In‐sample fit

Before conducting the OOS forecasting exercise, we aim for a first model characterization of the swap payoff dynamics
by estimating, over the entire sample, the pure time‐series models illustrated in Section 3. In the interests of space, we
do not report estimates for all models which (including models with predictors) number several hundreds across the
four assets. Details for all models are available on request.

Two main results arise from the in‐sample estimation. First, there is strong evidence supporting structural breaks in
payoffs: the breakpoint, threshold regression, and MS models systematically show a better fit than linear ARMA or PC
models.

Second, among the models with structural breaks, the two‐regime MS model consistently provides the lowest
Akaike information criterion (AIC) and Schwarz information criterion (SIC) for all four asset classes.19,20 We therefore
present detailed results for these MS models in Table 2.

MS models identify significant differences in the AR coefficients between high (δ0,2) and low volatility (δ1,2) states.
The low volatility states all have positive AR coefficients. The high volatility states tend to have either statistically
insignificant (S&P500, gold), or positive but lower magnitude AR coefficients (oil). Bonds are the exception with a
larger positive AR coefficient in the high volatility state. The transition probabilities indicate that, with the possible
exception of the oil VRP, the low volatility state is much more persistent than the high volatility state (p p11 > 22).

To examine the reasonableness of the regimes, Figure 2 plots the smoothed probabilities of being in the low
volatility states (regime 1). Results suggest that variance swap payoffs go through sustained periods of time where

19Three state MS models were also estimated. Testing the number of regimes via MS models is complicated given the presence of unidentified
nuisance parameters under the null. This may be overcome via a Davies procedure. Instead we rely on the AIC to assess the optimal number of
regimes (Psaradakis & Spagnolo, 2003).
20When estimating the three‐state models many different starting values were required as a number of models failed to converge. These problems
were exacerbated over the shorter estimation windows required for the OOS analysis, especially for the bond and gold VRPs. These issues were also
evident when the three state MS models were extended to include predictor variables. Given our desire to re‐estimate these models a large number of
times (namely, 136 times as detailed below) with an expanding window, and given the information provided by the AIC, we decided to proceed with
the two‐state MS models.
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payoffs are stable and highly persistent, suggesting that the VRP could be harvested. This is consistent with the
reported unconditional mean estimates implied by the parameter estimates for each regime. For all assets (excluding
bonds), the unconditional mean is more negative in the low volatility state than the high volatility state. This suggests
that on average, higher returns from selling swaps are achieved when VRP volatility is low.21

For comparative purposes we report selected PC model estimates in Table 3. Models using the first PC of monthly
predictors available at the daily and monthly frequencies are reported. We present AR(1) versions of the models as they
provide a better fit than otherwise equivalent models without AR dynamics. δ0, δ1, and PC1(−1) denote the constant,
AR(1), and lagged first PC coefficients, respectively.

With the exclusion of bonds, the adjusted R2 statistics are modest ranging from 1% to 9%. The AIC and SIC for each
model are also worse than the MS models reported in Table 2. It is well understood that MS models superior in‐sample
fit do not always translate into superior OOS forecast performance. This is largely due to the difficulty associated with
forecasting regime switches (Dacco & Satchell, 1999). We leave this model comparison for Section 4.2.

TABLE 2 Markov switching models

S&P500 Bonds Gold Oil

Coefficient
Standard
error Coefficient

Standard
error Coefficient

Standard
error Coefficient

Standard
error

Regime 1: Low volatility

δ0,1 −0.001*** 0.000 0.000 0.000 −0.001*** 0.000 −0.001*** 0.000

δ0,2 0.512*** 0.049 0.318*** 0.077 0.227*** 0.064 0.606*** 0.127

log(σ1) −6.975*** 0.063 −8.186*** 0.064 −7.172*** 0.083 −6.215*** 0.138

Uncond mean − e1.24 −03 − e3.14 −05 − e6.55 −04 − e2.49 −03

Regime 2: High volatility

δ1,1 −0.001 0.001 0.000 0.000 0.000 0.001 −0.002*** 0.001

δ1,2 0.148 0.163 0.448** 0.185 0.009 0.137 0.209** 0.095

log(σ2) −4.908*** 0.123 −7.028*** 0.194 −5.279*** 0.106 −4.811*** 0.083

Uncond mean − e1.18 −03 − e2.66 −04 − e2.87 −05 − e3.824 −04

Transition matrix parameters

p11 0.942 0.974 0.939 0.874

p22 0.686 0.770 0.787 0.848

Diagnostics

LL 1357.2 1769.5 1381.6 1066.9

SIC −9.924 −12.990 −10.106 −7.766

AIC −10.031 −13.096 −10.213 −7.873

Note: Reports two‐state Markov switching models fit to monthly variance swap payoffs from January 1996 to June 2018 (the last model in the expanding
estimation window). δj,1 and δj,2 denote the constant and first‐order autoregressive coefficient for each state, respectively. Uncond mean is the unconditional
mean estimate implied by the parameter estimates. AIC, Akaike information criterion; LL, log‐likelihood; SIC, Schwarz information criterion. *** and **
denote significance at the 1% and 5% levels, respectively.

21Breakpoint models consistently identify multiple breakpoints with significant variation in the coefficient estimates through time. AR coefficients
demonstrate significant periods of time where the payoffs have high levels of persistence (i.e., highly positive and statistically significant
autoregressive coefficient estimates). This is, again, consistent with long periods where the payoff is predictable. Other periods are also identified
where the AR coefficients are highly negative, statistically significant, and indicate predictable variations in the payoffs.

Two‐state threshold regression models find that when the payoff is negative the AR term is positive and highly persistent. When the payoff is
positive the AR term is negative and much less persistent. Like the breakpoint models, this is consistent with long periods where the payoff is
predictable and the risk premium can be harvested. Threshold regression models with >2 states tend to find a region where the payoff is
approximately zero (or just negative) and the AR term is significantly negative. Outside of this region the AR terms are high and positive or high and
negative, again suggesting high degrees of predictability.
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Finally, we also report the ARFIMA(1, d, 1) and HAR models fit to the daily log realized variances. For a given time
series, both models report similar goodness of fit (adjusted R2, AIC, and SIC). The ARFIMA estimates of d are
consistent with the literature and support the presence of long memory. HAR estimates are also consistent with
expectations with all RV coefficient estimates positive and statistically significant (Tables 4 and 5).22

(a)

(b)

(c)

(d)

FIGURE 2 Markov switching model probability of being in the low volatility state: (a) S&P500, (b) bonds, (c) gold, and (d) oil

22The link between regime switching and long memory is well recognized (Banerjee & Urga, 2005). Both processes can be easily confused, with more
recent literature developing tests for long memory versus breaks (Qu, 2011). We employ the MS models for the direct modeling of the VRP given the
limited number of observations (271 monthly observations). When forecasting, the first estimation window only has 135 observations, which is
inadequate when estimating a long memory model. In contrast, we employ the ARFIMA and HAR models for the daily RVs, given that long memory
processes often forecast as well or better than MS models because they do not require regime forecasts (Diebold & Inoue, 2001).
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4.2 | OOS results

In this section we first determine the MCS for each of the model classes introduced in Section 2.1. Next, we construct
model average forecasts separately for each model class, as illustrated in Section 2.1.3. We then compare the model‐
averaged forecasts with a few simple benchmarks. Finally, we consider the economic relevance for the various forecasts
by analyzing some simple variance swap trading strategies.

In all cases, OOS forecasts are generated using an expanding window. We use the first half of the sample to estimate
the models conditional on the information available on March 31, 2007. The models are then used to forecast the payoff
for a 1‐month ahead variance swap sold as of March 31, 2007. At the end of the month, the payoff is observed. The
models are then re‐estimated using the additional information available and the forecasts reperformed. This is
continued until the end of the data set, generating 136 OOS observations.23

4.2.1 | MCS across model classes

We determine the MCS for the four separate model classes introduced earlier: (i) pure time‐series models (i.e., models
with no predictors), (ii) models for each monthly predictor, (iii) PC models, and (iv) univariate MIDAS models. Given

TABLE 3 PC1‐AR models

SP500 Bonds Gold Oil

Coefficient
Standard
error Coefficient

Standard
error Coefficient

Standard
error Coefficient

Standard
error

Daily

δ0 0.0004 0.0004 0.0000 0.0000 −0.0005*** 0.0002 −0.0022*** 0.0004

δ1 0.3397*** 0.0657 0.3870*** 0.0563 0.0859 0.0626 0.2122*** 0.0619

PC1(−1) − e3.8 −04*** e9.7 −05 − e2.4 −03* e1.4 −03 e3.5 −03** e1.8 −03 − e1.1 −02*** e4.2 −03

Diagnostics

Adjusted R2 0.0943 0.1564 0.0100 0.0892

AIC −8.7528 −12.8384 −9.1036 −7.4795

SIC −8.7126 −12.7982 −9.0635 −7.4394

Monthly

δ0 0.0010* 0.0006 0.0002*** 0.0001 0.0013*** 0.0005 −0.0005 0.0011

δ1 0.2102*** 0.0584 0.3549*** 0.0564 0.0210 0.0602 0.2634*** 0.0591

PC(−1) − e1.7 −05*** e4.5 −06 e5.0 −06*** e1.5 −06 − e1.6 −05*** e4.0 −06 − e1.3 −05 e9.3 −06

Diagnostics

Adjusted R2 0.0915 0.1825 0.0535 0.0711

AIC −8.7497 −12.8698 −9.1449 −7.4565

SIC −8.7095 −12.8296 −9.1047 −7.4163

Note: Reports model estimates for the PC(1) model with an AR(1) coefficient fit to monthly variance swap payoffs from January 1996 to June 2018 (the last
model in the expanding estimation window). The daily models are fit to the first PC extracted using data that are available daily. The monthly models are fit to
the first PC using data that are available monthly and are reported with a 1‐month lag. δ0 and δ1 denote the constant and first‐order autoregressive coefficients.
***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Abbreviations: AIC, Akaike information criterion; AR, autoregressive; PC, principal component; SIC, Schwarz information criterion.

23Given that the in‐sample analysis reveals the importance of structural breaks, we seek to evaluate the forecast performance of this model class
(breakpoint, threshold, and MS) relative to linear or state invariant models. Given our limited number of total observations (271) and the length of
the low volatility regimes, rolling windows may not identify regime switches over short time spans. Under these circumstances expanding windows
are the most logical way to proceed.
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the conservative nature of the MCS, we consider model averages using 10% and 25% levels of significance as
recommended by Hansen et al. (2011).

(i) Pure time series
Table 6 reports losses and MCS results for the eight pure time‐series models considered.24 Across assets, no model is

clearly dominant as most, if not all models are consistently in the MCS. At the 25% confidence level (and hence the less
restrictive 10% level), all models appear to have equal predictive abilities for the bond and oil VRPs. For the S&P500 and
gold, all models are also in the MCS at the 10% level. For gold, even though not all models are in the MCS at the 25%

level, the linear ARMA(1, 1) specification is, meaning that it has EPA with models that allow for breaks and different
regimes. Overall, this evidence leads to a first important conclusion. Namely, while nonlinear specifications with

TABLE 4 ARFIMA(1, d, 1) estimates

SP500 Bonds Gold Oil

Coefficient
Standard
error Coefficient

Standard
error Coefficient

Standard
error Coefficient

Standard
error

c −9.897*** 1.149 −10.768*** 0.773 −10.315* 5.400 −8.518 5.824

d 0.466*** 0.023 0.476*** 0.027 0.494*** 0.015 0.495*** 0.011

ϕ 0.485*** 0.087 0.477*** 0.021 0.347*** 0.024 0.470*** 0.018

θ −0.392*** 0.079 −0.812*** 0.015 −0.687*** 0.022 −0.804*** 0.013

σ2 0.327*** 0.003 1.290*** 0.015 1.191*** 0.017 1.369*** 0.017

Diagnostics

Adjusted R2 0.731 0.148 0.354 0.204

AIC 1.722 3.094 3.015 3.154

SIC 1.726 3.098 3.020 3.158

Note: Reports model estimates for the ARFIMA(1, d, 1) model fit to daily realized volatility (in logs) from January 4, 1996 to June 30, 2018. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

Abbreviations: AIC, Akaike information criterion; SIC, Schwarz information criterion.

TABLE 5 HAR model estimates

S&P500 Bonds Gold Oil

Coefficient
Standard
error Coefficient

Standard
error Coefficient

Standard
error Coefficient

Standard
error

c −0.598*** 0.067 −2.638*** 0.263 −1.518*** 0.155 −1.987*** 0.151

β D( ) 0.564*** 0.012 0.151*** 0.012 0.137*** 0.014 0.151*** 0.012

β W( ) 0.152*** 0.018 0.185*** 0.032 0.291*** 0.028 0.120*** 0.030

β M( ) 0.229*** 0.015 0.437*** 0.039 0.453*** 0.029 0.527*** 0.032

Diagnostics

Adjusted R2 0.726 0.123 0.325 0.193

AIC 1.741 3.122 3.059 3.166

SIC 1.745 3.126 3.063 3.170

Note: Reports model estimates for the HAR model fit to daily realized volatility (in logs) from January 4, 1996 to June 30, 2018. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively.

Abbreviations: AIC, Akaike information criterion; HAR, heterogeneous autoregressive; SIC, Schwarz information criterion.

24Please note the null hypothesis is that the remaining models have EPA. Therefore, failure to reject means the remaining models are in the MCS. A
model in the MCS at 10% (25%) is included if the p value for the model is≥10% (≥25%). Models with one star therefore have p values≥10% but <25%.
Models with two stars have p values ≥25%. Models at the 25% level are therefore a subset of the models included at the 10% level.
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structural breaks provide a better characterization of the VRP dynamics in the sample, this does not translate into an
improvement in OOS forecasting performance relative to a simple ARMA(1, 1) process.

(ii) Models with predictors
Table 7 summarizes the 15 models initially considered for each monthly predictor. All models regress the payoff

against the variables which are separated according to whether they have coefficients that are state dependent or time
invariant.

On considering the MCS across the 15 models for each predictor separately, state‐dependent variances ( ≠ ⋯σ σm0 )
generally provided better or comparable forecasts to state invariant variances ( ⋯σ σ= m0 ). State‐dependent parameters
for the predictors provided no forecasting improvement. For the threshold regressions, a delay of one (d = 1) was

TABLE 6 Out‐of‐sample MSE: Pure time‐series models

Model S&P500 Bonds Gold Oil

ARMA(1, 1) 0.750* 0.0024** 0.074** 0.374**

Breakpoint ( ⋯σ σ= m0 ) 0.744* 0.0024** 0.078** 0.447**

Breakpoint ( ≠ ⋯σ σm0 ) 0.197** 0.0024** 0.080* 0.441**

Threshold ( ∈ ≤ ≤ ⋯d R d σ σ: 1 5, = m0 ) 0.757* 0.0023** 0.124* 0.338**

Threshold ( ⋯d σ σ= 1, = m0 ) 0.203** 0.0023** 0.076** 0.400**

Threshold ( ∈ ≤ ≤ ≠ ⋯d R d σ σ: 1 5, m0 ) 0.270* 0.0023** 0.122* 0.362**

Threshold ( ≠ ⋯d σ σ= 1, m0 ) 0.278* 0.0023** 0.074** 0.367**

MS ( ≠σ σ0 1) 0.278* 0.0024** 0.105* 0.377**

Note: Reports out‐of‐sample MSE × 10,000 from April 2007 to July 2018. ** and * denote inclusion in the MCS at the 25% (M*0.25) and 10% (M*0.10) levels,
respectively. Note ⊂M M* *0.25 0.10. Breakpoint and threshold regression determines breakpoints using a sequential test of l+ 1 versus l breaks. MS denotes a two‐
state Markov switching model.

Abbreviations: ARMA, autoregressive moving average; MCS, Model Confidence Set; MSE, Mean‐Squared Error.

TABLE 7 Initial models estimated for each monthly predictor

Model type Model number State dependent (Zt) State invariant (Xt) Other

VAR(1) 1 − vrp(−1), x(−1) −

Breakpoint 2 vrp(−1), x(−1) − ⋯σ σ= m0

3 vrp(−1) x(−1) ⋯σ σ= m0

4 vrp(−1), x(−1) − ≠ ⋯σ σm0

5 vrp(−1) x(−1) ≠ ⋯σ σm0

Threshold 6 vrp(−1), x(−1) − ∈ ≤ ≤ ⋯d R d σ σ: 1 5, = m0

7 vrp(−1) x(−1) ∈ ≤ ≤ ⋯d R d σ σ: 1 5, = m0

8 vrp(−1), x(−1) − ⋯d σ σ= 1, = m0

9 vrp(−1) x(−1) ⋯d σ σ= 1, = m0

10 vrp(−1), x(−1) − ∈ ≤ ≤ ≠ ⋯d R d σ σ: 1 5, m0

11 vrp(−1) x(−1) ∈ ≤ ≤ ≠ ⋯d R d σ σ: 1 5, m0

12 vrp(−1), x(−1) − ≠ ⋯d σ σ= 1, m0

13 vrp(−1) x(−1) ≠ ⋯d σ σ= 1, m0

MS 14 vrp(−1), x(−1) − 2 states, σ σ=0 1

15 vrp(−1) x(−1) 2 states, ≠σ σ0 1

Note: vrp(−1) denotes the payoff (PL) on the variance swap lagged 1month, x(−1) denotes the predictor lagged 1month. Breakpoint and threshold regression
determines breakpoints using a sequential test of l+ 1 versus l breaks. The following models were selected to evaluate the Model Confidence Set (MCS) for all
predictors: VAR(1), Model 1; Breakpoint regression, Model 5; Threshold regression, Model 13; Markov switching (MS) regression, Model 15.
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generally comparable or better than an approach that selected the delay by minimizing the sum of squared residuals.
The following models for each predictor were therefore considered for inclusion in the MCS: (i) VAR(1) (Model 1), (ii)
Breakpoint regression (Model 5), (iii) Threshold regression (Model 13), and (iv) MS (Model 15).

Tables 8 and 9 report MCS results for the S&P500, bond, gold, and oil VRP payoffs for each of the four models selected in
Table 7. Table 8 reports results for the predictors in levels, and Table 9 reports results for the variables in first differences.
Gold and oil threshold regressions did not identify any breaks, so they were removed from the analysis as forecasts were
identical to VAR(1) forecasts. The MCS for each asset is calculated at the 10% and 25% levels using the models in both tables.

At the 10% level of significance, all models are in the MCS for the S&P500, gold, and oil, indicating that (a) no single
predictor possesses superior forecasting ability; and (b) the linear VAR has similar forecasting performance to models
that allow for structural breaks.25 This is not the case for bonds, where only equity market volatility (EMV) and a few of
the term structure factors generate forecasts in the MCS.

At the 25% level though, a few important differences emerge. For the S&P500, four out of the five models in the
MCS allow for structural breaks, with the dividend payout ratio, the inflation rate, economic policy uncertainty (epu‐3),
and EMV, displaying better predictive performance than the remaining predictors. For bonds, five out of the six models
in the MCS are MS models. The remaining model is a breakpoint regression. For gold, the breakpoint models are
dominant appearing in the MCS 18 times, while the only other model to be included is the VAR, which was included 12
times. For oil, only the breakpoint and MS models are in the MCS. Like gold, the breakpoint model is dominant as it is
in the MCS 18 times with the MS model only included five times.

Overall, the more restrictive test supports the structural break models with predictors relative to their linear
counterparts. It remains to be seen whether this holds after combining forecasts of the models in the MCS.

(iii) PC models
Table 10 reports the results for the PCs models. Results with PCs calculated using the predictors that are available

daily are reported in the Daily columns.26 Results with the PCs calculated using the predictors available monthly (and
thus reported with a 1‐month lag) are reported in the Monthly columns. The MCS for each asset is calculated using the
results in both columns.

The following notation is used to characterize the different PC specifications, detailed in Section 2.1.1. PC(k) for
k = 1, …, 6 indicates a regression that includes all PCs from PC1 to PC(k). Only 1 lag of each PC is employed. PC(k)‐AR
is the same as PC(k) however it also includes a lagged dependent variable. PC(k)‐brk is a breakpoint regression that
includes all PCs from lag 1 to k plus a lagged dependent variable. The specification allows for state‐dependent AR
coefficients and variances. The PC coefficients are state invariant and the maximum number of breaks is 5. PC(k)‐thr is
a threshold regression that includes a lagged dependent variable plus all PCs from lag 1 to k. The AR terms are state
dependent but the PC coefficients are state invariant. There is a maximum of five breaks with a trimming percentage of
15%. PC(k)‐ms is a two‐state MS regression that includes all PCs from lag 1 to k plus a lagged dependent variable. The
model also allows for state‐dependent variances and AR parameters but state invariant PC coefficients.

At the 10% level all models are in the MCS for the S&P500, bonds, and gold. This result obtains whether one uses
only the predictors available daily or those available monthly (with a lag). Approximately 50% of the models are, on the
other hand, included in the MCS for oil. Among those, there are linear specifications (e.g., PC1 and PC2) as well as
specifications with breaks (e.g., PC1‐AR, PC1‐brk, PC1‐thr, and PC1‐ms).

At the 25% level, all models remain in the MCS for the S&P500. Gold and oil have a much smaller number of
models in the MCS. For gold all the included models are linear (with the exception of PC2‐brk), and without any AR
terms. For oil almost all the better forecasting models are still linear but with an AR(1) component. The only exceptions
are PC2‐thr and PC1‐ms. Like the S&P500, a simple linear model that employs the first PC performs well. The
forecasting performance for bonds is somewhat different, as the only model in the 25% MCS employs the first PC but
includes breaks in the constant and AR term.

Overall, the OOS analysis of the PC models delivers two consistent and important messages across all four asset
classes: First, adding PCs beyond the first, provides no statistically significant improvement in forecasting power.
Second, a simple linear model that regresses the VRP against the lagged first PC (constructed using either the daily or
monthly data sets) appears to be sufficient in terms of forecasting accuracy as structural breaks, much like higher‐order
PCs, contain no additional predictive power.

25This result may also reflect the conservative nature of the MCS as well as the power of MSE being compromised in the presence of outliers.
26Given the limited number of bonds predictors available daily, we only extract one or two PCs from those variables.
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TABLE 8 Out‐of‐sample MSE: Monthly predictors (levels)

S&P500 Bonds Gold Oil
Predictor Loss Predictor Loss Predictor Loss Loss

VAR ret 0.265* ret 0.0024 VAR aud 0.082** 0.450*

Breakpoint 0.778* 0.0024 Breakpoint 0.078** 0.374**

Threshold 0.265* 0.0024 MS 0.110* 0.414*

MS 0.284* 0.0023 VAR bdi 0.081** 0.429*

VAR dp 0.254* emv 0.0023 Breakpoint 0.075** 0.360**

Breakpoint 0.744* 0.0023** MS 0.103* 0.379**

Threshold 0.271* 0.0023 VAR ltr 0.083** 0.424*

MS 0.283* 0.0025 Breakpoint 0.080** 0.350**

VAR dy 0.256* epu‐3 0.0024 MS 0.104* 0.385*

Breakpoint 0.743* 0.0023 VAR cad 0.086* 0.426*

Threshold 0.257* 0.0023 Breakpoint 0.084** 0.351**

MS 0.281* 0.0022 MS 0.086* 0.402*

VAR ep 0.258* epu‐news 0.0023 VAR chp 0.087** 0.417*

Breakpoint 0.743* 0.0023 Breakpoint 0.082** 0.347**

Threshold 0.276* 0.0024 MS 0.109* 0.396*

MS 0.305* 0.0023 VAR ret 0.073** 0.449*

VAR de 0.248** f1 0.0023 Breakpoint 0.077** 0.373**

Breakpoint 0.749* 0.0023 MS 0.106* 0.392**

Threshold 0.259* 0.0024 VAR ds 0.086** 0.437*

MS 0.291* 0.0027 Breakpoint 0.091** 0.361**

VAR tms 0.251* f1–3 0.0026 MS 0.087* 0.369**

Breakpoint 0.747* 0.0027 VAR emv 0.093* 0.453*

Threshold 0.264* 0.0028 Breakpoint 0.083* 0.386**

MS 0.310* 0.0021** MS 0.113* 0.420*

VAR infl 0.308* f2 0.0024 VAR epu‐3 0.080** 0.440*

Breakpoint 0.804* 0.0024 Breakpoint 0.125* 0.374**

Threshold 0.322* 0.0023 MS 0.097* 0.424*

MS 0.231** 0.0023 VAR epu‐news 0.069** 0.446*

VAR ltr 0.253* f3 0.0023 Breakpoint 0.071** 0.375**

Breakpoint 0.756* 0.0024 MS 0.086* 0.374**

Threshold 0.266* 0.0023 VAR inr 0.091* 0.427*

MS 0.275* 0.0025 Breakpoint 0.085** 0.353**

VAR dfr 0.481* f4 0.0024 MS 0.107* 0.406*

Breakpoint 1.086* 0.0024 VAR ip 0.085* 0.489*

Threshold 0.494* 0.0025 Breakpoint 0.091* 0.418*

MS 0.287* 0.0023 MS 0.108* 0.420**

VAR epu‐3 0.897* f6 0.0024 VAR ms 0.081** 0.488*

Breakpoint 0.281* 0.0024 Breakpoint 0.082** 0.401**

(Continues)
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(iv) MIDAS models
The final set of models directly forecasting the VRP considers the MIDAS specification, where the monthly

VRP is regressed against daily regressors that commence with a 1‐month lag. Preliminary investigations found
that, across all estimation windows, exponential Almon estimates were often unstable, sensitive to starting values,
and did not converge. We therefore considered four analytically estimated MIDAS specifications. The first two are
Step AR(1)–MIDAS models with step sizes of 15 and 25 lags. The third and fourth models are PDL AR(1)–MIDAS
models with P = 2 and 3. All models select the optimal lag (K ) for each estimation window by minimizing the
residual sum of squares. Residual diagnostics demonstrate that the AR(1) process captures any remaining serial
correlation.

Results generally found that for a given predictor, the null of equal OOS predictive ability across the four MIDAS
models could not be rejected. If, for a given predictor, there was a difference between model forecasts, it was usually
in favor of Step AR(1)–MIDAS with a step size of 25. For each daily predictor, we therefore report the MCS results for
the Step AR(1)–MIDAS model with P= 25.27

Table 11 reports the MIDAS model results. Bonds, gold, and oil include virtually all models in the MCS at both the
10% and 25% levels, indicating that all daily predictors possess very similar predictive power for the respective VRP. The
S&P500 is the exception as three daily predictors stand above all others: the dividend payout ratio (de), the long‐term
government bond yield (lty), and the S&P RV.

TABLE 8 (Continued)

S&P500 Bonds Gold Oil
Predictor Loss Predictor Loss Predictor Loss Loss

Threshold 0.407* 0.0024 MS 0.105* 0.427*

MS 0.264* 0.0023** VAR nzd 0.083* 0.452*

VAR epu‐news 0.883* f7 0.0024 Breakpoint 0.078** 0.376**

Breakpoint 0.261* 0.0024 MS 0.114* 0.398*

Threshold 0.366* 0.0023 VAR real‐un 0.087* 0.457*

MS 0.283* 0.0023 Breakpoint 0.079** 0.391**

VAR emv 0.827* f8 0.0024 MS 0.105* 0.403*

Breakpoint 0.374* 0.0024 VAR sar 0.083** 0.404*

Threshold 0.312* 0.0024 Breakpoint 0.076** 0.346**

MS 2.639* 0.0023 MS 0.086* 0.409*

VAR real‐un 2.422* real‐un 0.0025 VAR urate 0.090* 0.449*

Breakpoint 3.758* 0.0024 Breakpoint 0.081** 0.377**

Threshold 2.435* 0.0025 MS 0.095* 0.383**

MS 13.223* 0.0025

VAR vix 0.289*

Breakpoint 0.801*

Threshold 0.303*

MS 0.429*

Note: Reports out‐of‐sample MSE × 10,000 from April 2007 to July 2018. ** and * denote inclusion in the MCS at the 25% (M*0.25) and 10% (M*0.10) levels,
respectively. The MCS is calculated for the above models plus the models in Table 9. Note ⊂M M* *0.25 0.10. Model details for each specification are provided in
Table 7, where Model 1 (VAR), 5 (breakpoint), 13 (threshold), and 15 (Markov switching) are employed. Breakpoint and threshold regression determines
breakpoints using a sequential test of l+ 1 versus l breaks. MS denotes a two‐state Markov switching model.

Abbreviations: MS, Markov switching; MSE, Mean‐Squared Error; VAR, vector autoregression.

27As results from the other three specifications are very similar, we do not report them to conserve space and avoid duplications.
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TABLE 9 Out‐of‐sample MSE: Monthly predictors (first differences)

S&P500 Bonds Gold Oil
Predictor Loss Predictor Loss Predictor Loss Loss

VAR d(dp) 0.270* d(emv) 0.0023 VAR d(ec‐act) 0.077** 0.452*

Breakpoint 0.779* 0.0024 Breakpoint 0.074** 0.367**

Threshold 0.271* 0.0023 MS 0.106* 0.379**

MS 0.285* 0.0026 VAR d(emv) 0.080** 0.449*

VAR d(dy) 0.252* f( f− 12) 0.0023 Breakpoint 0.074** 0.365**

Breakpoint 0.737* 0.0024 MS 0.106* 0.369**

Threshold 0.268* 0.0023 VAR d(fin‐un) 0.093* 0.485*

MS 0.279* 0.0025 Breakpoint 0.083** 0.396*

VAR d(ep) 0.279* d( f− 23) 0.0023 MS 0.108* 0.389*

Breakpoint 0.729* 0.0023 VAR d(mac‐un) 0.094* 0.474*

Threshold 0.279* 0.0023 Breakpoint 0.083** 0.390*

MS 0.282* 0.0022** MS 0.107* 0.382*

VAR d(de) 0.251* d( f− 34) 0.0023 VAR d(u‐rate) 0.083* 0.448*

Breakpoint 0.725* 0.0023 Breakpoint 0.075** 0.372**

Threshold 0.250** 0.0023 MS 0.105* 0.384**

MS 0.275* 0.0023

VAR d(bm) 0.252* d( f− 45) 0.0023

Breakpoint 0.738* 0.0023

Threshold 0.251* 0.0023

MS 0.276* 0.0022**

VAR d(tbl) 0.256* d( f1) 0.0024

Breakpoint 0.732* 0.0024

Threshold 0.256* 0.0023

MS 0.264* 0.0023

VAR d(dfy) 0.253* d( f 5) 0.0024

Breakpoint 0.713* 0.0024

Threshold 0.254* 0.0024

MS 0.263* 0.0025

VAR d(lty) 0.254* d( f 7) 0.0024

Breakpoint 0.721* 0.0024

Threshold 0.253* 0.0023

MS 0.264* 0.0022**

VAR d(tms) 0.252* d( f 8) 0.0024

Breakpoint 0.710* 0.0024

Threshold 0.252* 0.0023

MS 0.257* 0.0024

VAR d(ntis) 0.251* d(f‐unc) 0.0026

Breakpoint 0.712* 0.0027

(Continues)
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4.2.2 | Model averaging and final comparisons of modeling approaches

Having determined the MCS for the different model classes, we now construct model‐averaged forecasts for each class.
Only models deemed to have EPA via the MCS will be included in the respective averages.

The model combinations are compared with hybrid forecasts as well as four simple benchmarks. Namely, (1) a
linear AR(1) model fitted on monthly variance swap payoffs28; (2) a naive (or prevailing mean) model, which sets the
forecast at the end of month t equal to the average variance payoff from the beginning of the sample to the end of
month t29,30; (3) a PC model that employs a linear predictor at the end of each month equal to the lagged first PC of all
predictors that are available daily; and (4) the same as (3) but with the first PC extracted from the predictors that are
available only monthly (with a lag). Note that the third and fourth benchmark models are also reported in Table 10
as PC1.

TABLE 9 (Continued)

S&P500 Bonds Gold Oil
Predictor Loss Predictor Loss Predictor Loss Loss

Threshold 0.249* 0.0027

MS 0.261* 0.0026

VAR d(emv) 0.766* d(fwd‐sprd) 0.0023

Breakpoint 0.189** 0.0023

Threshold 0.239** 0.0023

MS 0.261* 0.0023

VAR d(fin‐un) 0.795* d(macr‐unc) 0.0027

Breakpoint 0.620* 0.0027

Threshold 0.265* 0.0027

MS 0.426* 0.0025

VAR d(mac‐un) 0.426* d( y− 1) 0.0023

Breakpoint 1.039* 0.0023

Threshold 0.426* 0.0023

MS 0.281* 0.0025

VAR d(vix) 0.281* d(yld‐sprd) 0.0023

Breakpoint 0.840* 0.0023

Threshold 0.277* 0.0023

MS 0.324* 0.0023

Note: Reports out‐of‐sample MSE × 10,000 from April 2007 to July 2018. ** and * denote inclusion in the MCS at the 25% (M*0.25) and 10% (M*0.10) levels,
respectively. The MCS is calculated for the above models plus the models in Table 8. Note ⊂M M* *0.25 0.10. Model details for each specification are provided in
Table 7, where Model 1 (VAR), 5 (breakpoint), 13 (threshold), and 15 (Markov switching) are employed. Breakpoint and threshold regression
determine breakpoints using a sequential test of l+ 1 versus l breaks. MS denotes a two‐state Markov switching model.

Abbreviations: MCS, Model Confidence Set; MS, Markov switching; MSE, Mean‐Squared Error; VAR, vector autoregression.

28The AR(1) specification is based on autocorrelation and partial autocorrelation functions.
29The prevailing mean forecast is regularly used as benchmark in the literature on risk‐premia predictability. See, for example, the influential Welch
and Goyal (2008) study. Given that the VRP is more persistent than excess returns, we acknowledge that an AR specification may be a more suitable
benchmark than the prevailing mean (Hollstein et al., 2019).
30Although more persistent than realized excess returns, the realized VRP is much less persistent than volatility. The autocorrelation function for the
first lag of the VRP is 0.220 (S&P), 0.392 (bond), 0.057 (gold), and 0.266 (oil). The 2nd lag of the partial autocorrelation function is insignificant. On
the other hand, the autocorrelation function of volatility is in the 0.60 to 0.90 range at the first lag and decays rather slowly.
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Table 12 reports OOS MSE and MCS results for all assets. As we determine the MCS for both the 10% and the 25%
significance levels, we compute model averages and hence their MSE for each significance level. As a result, for each of
the four model classes (Pure Time Series, Monthly Predictors, PC, and MIDAS), the table reports two MSEs: MSE (10%)
and MSE(25%).

At the 10% level, the simple AR benchmark is in the MCS for all four asset classes. The same is true for the
benchmark PC1 daily and PC1 monthly. For bonds, gold, and oil, all model combinations are in the MCS, while for
equity VRP only the PC combination (from the MCS at the 25% level) and the MIDAS combination are in the MCS. At
the more restrictive 25% confidence level, the benchmark AR and pure time‐series combination remain in the MCS for

TABLE 10 Out‐of‐sample MSE: Principal component models

S&P500 Bonds Gold Oil

Daily Monthly Daily Monthly Daily Monthly Daily Monthly

PC6 0.197** 0.171** – 0.003* 0.081* 0.071** 0.042 0.040*

PC5 0.184** 0.155** – 0.003* 0.081* 0.069** 0.041 0.040*

PC4 0.180** 0.159** – 0.003* 0.080* 0.065** 0.040* 0.041

PC3 0.175** 0.155** – 0.003* 0.077* 0.065** 0.040* 0.040*

PC2 0.169** 0.154** 0.003* 0.003* 0.079* 0.063** 0.039* 0.038*

PC1 0.183** 0.161** 0.003* 0.003* 0.078* 0.062** 0.038* 0.041*

PC6‐AR 0.324** 0.243** – 0.002* 0.090* 0.084* 0.039* 0.037**

PC5‐AR 0.297** 0.234** – 0.002* 0.090* 0.079* 0.039* 0.037**

PC4‐AR 0.307** 0.235** – 0.002* 0.089* 0.075* 0.038* 0.038*

PC3‐AR 0.303** 0.255** – 0.002* 0.086* 0.075* 0.038* 0.037**

PC2‐AR 0.290** 0.244** 0.002* 0.002* 0.086* 0.072* 0.037** 0.035**

PC1‐AR 0.259** 0.266** 0.002* 0.002* 0.085* 0.071* 0.036** 0.037**

PC6‐brk 0.783** 0.250** – 0.002* 0.079* 0.091* 0.049 0.044

PC5‐brk 0.765** 0.664* – 0.002* 0.078* 0.078* 0.048 0.043

PC4‐brk 0.777** 0.668** – 0.002* 0.075* 0.086* 0.046 0.044

PC3‐brk 0.762** 0.700** – 0.002* 0.077* 0.088* 0.046 0.043

PC2‐brk 0.759** 0.697** 0.002* 0.002* 0.071** 0.071** 0.046 0.042

PC1‐brk 0.780** 0.729* 0.002* 0.002** 0.073* 0.070* 0.044* 0.045*

PC6‐thr 0.791** 0.654** – 0.002* 0.090* 0.133* 0.041 0.039*

PC5‐thr 0.766** 0.670** – 0.002* 0.090* 0.079* 0.041 0.039*

PC4‐thr 0.790** 0.675** – 0.002* 0.089* 0.117* 0.040* 0.040

PC3‐thr 0.782** 0.725** – 0.002* 0.086* 0.117* 0.040 0.039*

PC2‐thr 0.782** 0.720** 0.002* 0.002* 0.086* 0.071* 0.039* 0.036**

PC1‐thr 0.789** 0.753** 0.002* 0.002* 0.085* 0.071* 0.037* 0.040*

PC3‐ms 0.240** – – 0.003* 0.105* 0.084* 0.035** 0.038*

PC2‐ms 0.270** 0.262** 0.002* 0.003* 0.105* 0.082* 0.037** 0.038*

PC1‐ms 0.287** 0.265** 0.002* 0.003* 0.105* 0.080* 0.039* 0.037**

Note: Reports out‐of‐sample MSE×10,000 from April 2007 to July 2018. ** and * denote inclusion in the MCS at the 25% (M*0.25) and 10% (M*0.10) levels,
respectively. Note ⊂M M* *0.25 0.10. The MCS for each asset is determined for each asset by considering the losses for the daily and monthly variables. The number
after PC denotes the total number of PCs included as regressors, for example, PC3 regresses Yt against lagged first, second, and third PCs. AR includes an
autoregressive term. The remaining models allow for structural breaks via breakpoint (brk), self‐exciting threshold (thr), and two‐state Markov switching
models.

Abbreviations: AR, autoregressive; MCS, Model Confidence Set; MSE, Mean‐Squared Error; PC, principal component.
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gold and oil. For the S&P500, the benchmark PC1 daily and PC1 monthly are in the MCS, as well as the combination of
PC models and the MIDAS combination. For bonds only the PC combination and the MIDAS combination remain in
the MCS. Hybrid models rarely appear in the MCS and never by themselves.

This set of results leads us to four main takeaways. First, in forecasting the S&P, gold, and oil VRPs, several of the
simple benchmarks perform as well as the richer models and model combinations. In particular, for gold and oil, a
linear AR model is never significantly outperformed by models containing predictors, and/or by models containing
structural breaks. Second, the predictors do lead to better forecasting performance for the S&P500 VRP and for the
bond market VRP compared with pure time‐series models. While for the S&P500 a simple linear PC1 model has equal
forecasting ability as any other model containing predictors, for bonds a combination of PC models and a combination
of MIDAS models are the best performers. Third, for all four assets, the inclusion of structural breaks does not improve
OOS forecasting performance relative to one‐regime (or state invariant) specifications. Fourth, for all four assets, the
hybrid models do not lead to improved OOS performance. Therefore, rather than forecasting directly the monthly swap
payoff, there seems to be no advantage in using higher‐frequency data to separately forecast RV and then combine it
with the observed market swap rate.

4.2.3 | Trading strategies

We now consider the economic significance of the various forecasts via two simple trading strategies. The first strategy
shorts a variance swap at the end of the month if the VRP forecast for the forthcoming month is negative and buys a
variance swap if the VRP forecast is positive. We label this strategy as symmetric. The second strategy takes into account
the strength of the signal by shorting a swap only if the VRP forecast is below a certain percentile of the unconditional
VRP distribution. If a negative VRP forecast is not below the percentile, the investor does not take a position in variance
swaps and earns the risk‐free rate. If the VRP forecast is positive, a swap is bought. The second strategy accounts for the
large negative asymmetry in the payoff distribution. Table 13 reports unconditional VRP percentiles that inform the
second strategy. We consider percentiles of 20%, 30%, and 40%. We label these strategies as asymmetric. For all
strategies, the swap position is held to maturity, that is, to the end of the following month as we are using 30‐day swaps.
Only models included in the MCS in Table 12 are evaluated for economic significance.

TABLE 11 Out‐of‐sample MSE: MIDAS models

S&P500 Bonds Gold Oil
Predictor Loss Predictor Loss Predictor Loss Loss

de 0.235** f− 12 0.0024** bdi 0.081** 0.453*

dfy 0.288 y1 0.0024** cad 0.082** 0.430**

dp 0.255 yield 0.0024** chp 0.078** 0.359**

dy 0.263 f− 23 0.0024** dfr 0.084** 0.425**

ep 0.256 fwd‐sprd 0.0023** ret 0.085** 0.366**

lty 0.246** inr 0.082** 0.409**

tbl 0.267 ltr 0.081** 0.374**

tms 0.266 sar 0.080** 0.376**

dfr 0.280 aud 0.083** 0.389**

ltr 0.249 nzd 0.085** 0.425**

RV 0.249**

sp 0.256

vix 0.255

Note: Reports out‐of‐sample MSE×10,000 from April 2007 to July 2018. ** and * denote inclusion in the MCS at the 25% (M*0.25) and 10% (M*0.10) levels,
respectively. Note ⊂M M* *0.25 0.10.

Abbreviations: MCS, Model Confidence Set; MIDAS, Mixed‐Data Sampling; MSE, Mean‐Squared Error.
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TABLE 12 Out‐of‐sample MSE: VRP payoff forecasts

S&P500 Bond Gold Oil

Benchmarks

AR 0.250* 0.0024* 0.074** 0.367**

Naïve 0.271 0.0033 0.086* 0.442*

PC1 daily 0.183** 0.0028* 0.078** 0.375**

PC1 monthly 0.161** 0.0026* 0.062** 0.414*

Combination: Monthly predictors

MSE (10%) 0.353 0.0024* 0.082** 0.384**

MSE (25%) 0.324 – 0.077** 0.407*

Combination: Time series

MSE (10%) 0.359 0.0023* 0.086** 0.371**

MSE (25%) 0.747 – 0.073** –

Combination: PC

MSE (10%) 0.360 0.0023** 0.069** 0.369**

MSE (25%) 0.191** 0.0022** 0.061** 0.353**

Combination: MIDAS

MSE (10%) 0.231** 0.0024** 0.077** 0.359**

MSE (25%) – − – 0.357**

Hybrid

HAR 0.265 0.0033 0.081** 0.725

ln HAR 0.165** 0.0063 0.136* 1.284*

ARFIMA 0.226 0.0041 0.114* 1.255

ln ARFIMA 0.239 0.0058 0.134* 1.386*

Note: The lowest MSE is underlined for each asset. The absence of a result at the 25% level is denoted by “‐”. This occurs when the MCS at 10% contains the
same predictors as the MCS at 25%. Reports out‐of‐sample MSE × 10,000 for VRP payoffs from April 2007 to July 2018. ** and * denote inclusion in the MCS at
the 25% (M*0.25) and 10% (M*0.10) levels, respectively. Note ⊂M M* *0.25 0.10. Benchmark models are naive, AR(2) for S&P500 and bond VRP and AR(1) for gold and
oil VRP, PC1 daily is a linear regression of the VRP against the first principal component (daily variables), PC1 monthly is a comparable model against monthly
predictors. Hybrid employs models that are fit to daily realized variances which are then combined with implied volatility to form the VRP forecast—HAR is
the Heterogeneous Autoregressive model and ARFIMA is an ARFIMA(1, d, 1) model.

Abbreviations: AR, autoregressive; MCS, Model Confidence Set; MIDAS, Mixed‐Data Sampling; MSE, Mean‐Squared Error; PC, principal component; VRP,
variance risk premium.

TABLE 13 Percentiles of the VRP distribution

Percentiles (%) S&P500 Bonds Gold Oil

10 −0.369 −0.048 −0.231 −0.952

20 −0.272 −0.034 −0.163 −0.588

30 −0.195 −0.021 −0.122 −0.468

40 −0.160 −0.012 −0.085 −0.329

50 −0.124 −0.007 −0.066 −0.259

60 −0.086 0.002 −0.044 −0.169

70 −0.056 0.010 −0.021 −0.063

80 −0.035 0.022 0.011 0.066

90 0.008 0.041 0.105 0.391

Note: Reports percentiles of the variance swap payoff distribution× 100 for the period from January 1996 to July 2018.

Abbreviation: VRP, variance risk premium.
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TABLE 14 VRP trading

Returns (%) Sharpe ratio Max drawdown (%)

S&P500

Symmetric strategy

AR 0.118* 0.294 1.072

Naïve 0.119* 0.298 1.336

PC1 daily 0.084* 0.205* 5.038

PC1 monthly 0.100* 0.246* 4.450

Combination: PC 0.091* 0.224* 5.038

Combination: MIDAS 0.131** 0.330* 0.926

ln HAR 0.095* 0.235* 4.450

30% strategy

AR 0.102* 0.276 0.589

Naïve 0.114* 0.311 0.608

PC1 daily 0.052 0.146 4.214

PC1 monthly 0.137** 0.589** 0.825

Combination: PC 0.116* 0.540** 0.589

Combination: MIDAS 0.128** 0.350 0.589

ln HAR 0.123** 0.593** 0.243

Bond

Symmetric strategy

AR 0.007 0.128 0.432

Naïve 0.014** 0.277** 0.258

PC1 daily 0.005* 0.087* 0.379

PC1 monthly 0.013** 0.259** 0.293

Combination: Monthly 0.010** 0.200** 0.411

Combination: Time series 0.008* 0.146* 0.440

Combination: PC 0.010* 0.195* 0.411

Combination: MIDAS 0.012* 0.237** 0.258

30% strategy

AR 0.027** 0.479** 0.293

Naïve 0.021** 0.444** 0.179

PC1 daily 0.032** 0.417** 0.442

PC1 monthly 0.039** 0.473** 0.293

Combination: Monthly 0.027** 0.485** 0.293

Combination: Time series 0.025** 0.461** 0.293

Combination: PC 0.028** 0.496** 0.293

Combination: MIDAS 0.027** 0.551** 0.139

Gold
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TABLE 14 (Continued)

Returns (%) Sharpe ratio Max drawdown (%)

Symmetric strategy

AR 0.037* 2.010 2.504

Naïve 0.033 0.125 1.457

PC1 daily 0.030* 0.114 1.987

PC1 monthly 0.051** 0.197** 2.504

Combination: Monthly (25%) 0.028* 0.108 3.025

Combination: Time series 0.015 0.057 4.999

Combination: PC 0.041** 0.158** 1.987

Combination: MIDAS 0.028* 0.108 2.504

HAR 0.032* 0.123 2.504

30% strategy

AR 0.037* 0.235** 2.010

Naïve 0.062* 0.249 1.457

PC1 daily 0.045* 0.238 2.127

PC1 monthly 0.098** 0.485** 1.031

Combination: Monthly (25%) 0.055** 0.250 2.495

Combination: Time series 0.033 0.173 2.495

Combination: PC 0.085** 0.401** 1.457

Combination: MIDAS 0.028 0.142 3.408

HAR 0.025 0.100 2.504

Oil

Symmetric strategy

AR 0.230* 0.356* 2.559

Naïve 0.275** 0.437** 2.559

PC1 daily 0.265** 0.418** 2.912

PC1 monthly 0.257** 0.404** 6.562

Combination: Monthly 0.248** 0.388** 2.912

Combination: Time series 0.234* 0.363* 5.737

Combination: PC 0.264** 0.417** 2.912

Combination: MIDAS (25%) 0.259** 0.407** 2.912

ln HAR 0.265** 0.418** 6.562

ln ARFIMA 0.221* 0.340* 6.562

30% strategy

AR 0.132 0.282 2.559

Naïve 0.196* 0.341* 2.559

PC1 daily 0.120 0.364** 1.091

PC1 monthly 0.052 0.592** 0.892

Combination: Monthly 0.131 0.265 2.559

Combination: Time series 0.146 0.302 2.559

(Continues)
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For each strategy and for each considered forecasting model, we compute three performance measures: the average
excess return, the SR, and the Maximum Drawdown (MDD). We compute the SR as it is a standard measure of risk‐
adjusted performance both in the academic literature and in industry practice. The MDD measures the single largest
peak to trough return over the considered OOS period; it therefore represents the worst loss resulted from a fully
collateralized variance swap position over such period (see, e.g., G. Alexander & Baptista, 2006). The MDD is a useful
diagnostic as it focuses on downside risk and, hence, takes into account the large negative asymmetry in variance swap
payoffs illustrated above.31 As we did when comparing forecasting accuracy, we compare trading performance (or
economic significance) by computing the MCS for average returns and SRs within a given strategy.32 Namely, we start
with the null hypothesis that all the, for example, SRs generated by the alternative forecasting models are equal. Then,
we progressively eliminate models until the null can no longer be rejected.

Table 14 reports the OOS performance measures. The average return and SR figures are monthly while the MDD
numbers represent the worst cumulative loss for a given strategy. Results for the asymmetric strategies are similar for
each of the three thresholds, so we only report the results using the 30th percentile. Two main considerations emerge.
First, strategies based on the naive (i.e., prevailing mean) forecast are outperformed by those based on predictors for the
S&P500, gold, and oil, but not for Treasuries. For the latter, the naive strategy is in the MCS, for both symmetric and
asymmetric strategies, in terms of average returns as well as SRs. The MDD measure does not appear to discriminate
across forecasting models either, confirming that the naive strategy is not outperformed by the alternatives. These
findings for bonds are reminiscent of the often reported disconnect between forecasting accuracy and trading
performance in the equity premium prediction literature.33 For equities and gold, the naive strategy is never in the
MCS, while for oil it is in the MCS of the symmetric strategies but not in the MCS at the 25% level of the asymmetric
ones. The improvements in SRs from using the predictors rather than the prevailing mean are economically tangible,
especially from the asymmetric strategies. For equities, the SR from the PC monthly and the Combination PC models
are between 0.54 and 0.59/month (roughly, 1.90 on an annual basis), compared with 0.31 (about 1.07 annualized) for
the naive strategy. Comparably large improvements occur for gold, where the asymmetric strategy based on monthly
PCs almost doubles the SR of the naive strategy or of the AR1‐based strategy.34

Second, the simple PC1 model with monthly predictors appears to be the overall best performer in terms of SR, as it
is in the MCS in all instances and, in the majority of cases (again outside of the bonds case), leads to sizeable gains not
only relative to the naive forecast but also compared with the other specifications. The trading performance of the PC1
monthly model matches the findings on forecasting accuracy. MDDs suggest that the overall improvement in trading

TABLE 14 (Continued)

Returns (%) Sharpe ratio Max drawdown (%)

Combination: PC 0.171 0.329* 2.559

Combination: MIDAS (25%) 0.141 0.287 2.559

ln HAR 0.223* 0.362* 6.562

ln ARFIMA 0.177* 0.284* 6.562

Note: Reports out‐of‐sample returns, Sharpe ratios (SR), and Maximum Drawdown (MDD) from April 2007 to July 2018 for portfolio strategies with monthly
rebalancing. Only the models in the MCS in Table 12 are evaluated for trading purposes. The symmetric strategy sells vol if the VRP forecast is negative and
buys vol if the VRP forecast is positive. The remaining strategies only sell vol if the VRP forecast is below the stated percentile of the unconditional VRP
distribution. If a negative VRP forecast is not below the percentile, the investor does not take a variance swap position for that month and earns the risk‐free
rate. ** and * denote inclusion in the MCS at the 25% (M*0.25) and 10% (M*0.10) levels, respectively. Note ⊂M M* *0.25 0.10.

Abbreviations: AR, autoregressive; HAR, heterogeneous autoregressive; MIDAS, Mixed‐Data Sampling; MSE, Mean‐Squared Error; PC, principal component;
VRP, variance risk premium.

31The MDD statistic is different from other metrics, such as volatility, and downside measures like skewness or semivariance in that it crucially
depends on the order in which the returns occur.
32As it is not obvious how to apply the MCS framework to MDD, we do not conduct formal tests for differences in such measures.
33See, for example, Cenesizoglu and Timmermann (2012) for a thorough illustration.
34We also test whether the SR generated by a given strategy is statistically different from the SR generated by the naive strategy. Following, for
example, DeMiguel et al. (2009), we use the method suggested by Jobson and Korkie (1981) with the correction proposed by Memmel (2003). We find
that the broad conclusion drawn from the MCS tests holds and no additional insights arise. Consequently, we choose not to report these results.
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performance with the PC1 model does not come at the cost of facing large negative returns. For gold and oil, MDD for
the PC1 model compares quite favorably with those generated by other predictive models, in particular among the
asymmetric strategies.

5 | CONCLUSION

In this paper we investigate the OOS predictability of the realized (ex post) VRP across four major asset classes (US
equities, US government bonds, gold, and crude oil) using a large collection of forecasting models. To our knowledge
such a comprehensive forecasting exercise is currently absent from the literature.

Our empirical results convey the following main messages. First, while in‐sample nonlinear specifications that
include structural breaks provide a better characterization of the VRP dynamics, this does not translate into an
improvement in OOS forecasting performance relative to simpler linear (or state invariant) models. Second,
variables that have been shown to forecast excess returns for the four asset classes, contain predictive power for
the respective VRP as well, as they outperform a naive no‐predictability (or prevailing mean) specification. Third,
while for the S&P500 VRP and for the Treasury bond VRP the predictors also outperform pure time‐series models,
for gold and oil a linear AR model is never significantly outperformed by models containing predictors, and/or by
models containing structural breaks. For the S&P500, a linear PC model forecasts as well as any other model
containing predictors. While for the government bonds VRP, a forecast combination of PCs models and a
combination of MIDAS models are the best performers. Fourth, there seems to be no advantage in using higher‐
frequency data to separately forecast RV and combine the forecast with the observed market swap rate rather than
forecasting directly the monthly swap payoff. Fifth, with the exception of the treasuries VRP, the predictors appear
to improve trading performance relative to strategies based on a prevailing mean forecast and to strategies based
on pure time‐series models.

Our novel evidence should be of relevance to variance swap sellers, hedgers, and portfolio managers. Future
research could therefore consider an asset allocation exercise with variance swaps, and the impact of different VRP
models on portfolio performance. Other extensions could consider VRP forecasts and asset allocation decisions using
different swap rate maturities over various horizons.
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APPENDIX A: DATA APPENDIX (TABLE A1)

TABLE A1 Data description

Label Time series Frequency Source

S&P500 S&P500 Total Return Index Monthly, daily, and intradaily Thomson Reuters Tick History

Bond US Treasury Bond futures Monthly, daily, and intradaily Thomson Reuters Tick History

Gold Gold futures Monthly, daily, and intradaily Thomson Reuters Tick History

Oil WTI crude oil futures Monthly, daily, and intradaily Thomson Reuters Tick History

DP log of Dividend Price ratio Monthly and daily Datastream

DY log of Dividend Yield Monthly and daily Datastream

EP log of Earnings to Price ratio Monthly and daily Datastream

DE log of Dividend Payout ratio Monthly and daily Datastream

BM Book‐to‐Market ratio Monthly GW2012

TBL 3‐Month US T‐bill Monthly and daily FRED

DFY Default Yield Spread (AAA–BAA) Monthly and daily FRED

LTY Long‐term government bond yield Monthly and daily FRED

TMS Government bond term spread Monthly and daily FRED

NTIS Net Equity Expansion Monthly and daily Amit Goyal website

INFL Inflation rate Monthly GW2012

LTR Long‐term government bond return Monthly and daily FRED

DFR Default Return Spread Monthly and daily FRED

epu‐3comp US Economic policy uncertainty index
(three components)

Monthly Baker, Bloom and Davis website

(Continues)
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TABLE A1 (Continued)

Label Time series Frequency Source

epu‐news US Economic policy uncertainty index (news based) Monthly Baker, Bloom and Davis website

emv US equity market volatility index Monthly Baker, Bloom and Davis website

real‐un Real uncertainty index Monthly Sidney Ludvigson's website

fin‐un Financial uncertainty index Monthly Sidney Ludvigson's website

mac‐un Macroeconomic uncertainty index Monthly Sidney Ludvigson's website

u‐rate US Unemployment Rate Monthly FRED

ec‐act Kilian's Real Economic Activity Index Monthly Lutz Kilian's website

VIX CBOE Volatility Index (VIX) Monthly and daily CBOE

f1,…, f8 Ludvigson‐Ng Term Structure factors Monthly Sidney Ludvigson's website

y1 log of 1‐year bond yield Monthly and daily CRSP

yld‐sprd Yield Term Spread (5–1 year yield) Monthly and daily CRSP

fij Forward rate between years j and j Monthly CRSP (Fama–Bliss files)

fwd‐sprd Forward Spread ( f y−12 1) Monthly and daily CRSP

AUD Australian Dollar to 1 USD FX return Monthly and daily Datastream

CAD Canadian Dollar to 1 USD FX return Monthly and daily Datastream

CHP Chilean Peso to 1 USD FX return Monthly and daily Datastream

INR Indian Rupee to 1 USD FX return Monthly and daily Datastream

NZD New Zealand Dollar to 1 USD FX return Monthly and daily Datastream

SAR South African Rand to 1 USD FX return Monthly and daily Datastream

BDI Baltic Exchange Dry Index (growth rate) Monthly and daily Datastream

IP US Industrial Production (growth rate) Monthly Datastream

MS US Money Supply M1 (growth rate) Monthly Datastream

Note: GW2012 denotes the data set in Welch and Goyal (2008), which is extended by the authors and available at http://www.hec.unil.ch/agoyal/; CBOE
denotes the website of Chicago Board Options Exchange, http://www.cboe.com/micro/VIX/historical.aspx; FRED denotes the Federal Reserve Economic Data,
the link to Lutz Kilian's website is http://www-personal.umich.edu/~lkilian/; the link to Baker, Bloom, and Davis website is https://www.policyuncertainty.
com/all_country_data.html; CRSP, Center for Research in Security Prices; FX, exchange.
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