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Abstract

A non-linear control strategy is applied to a simply supported uniform elastic beam subjected to an axial end force at
the principal-parametric resonance frequency of the first skew-symmetric mode. The control input consists of the bending
couples applied by two pairs of piezoceramic actuators attached onto both sides of the beam surfaces and symmetrically
with respect to the midspan, driven by the same voltage, thus resulting into symmetric control forces. This control archi-
tecture has zero control authority, in a linear sense, onto skew-symmetric vibrations. The non-linear transfer of energy
from symmetric motions to skew-symmetric modes, due to non-linear inertia and curvature effects, provides the key phys-
ical mechanism for channelling suitable control power from the actuators into the linearly uncontrollable mode. The
reduced dynamics of the system, constructed with the method of multiple scales directly applied to the governing PDE’s
and boundary conditions, suggest effective forms of the control law as a two-frequency input in sub-combination reso-
nance with the parametrically driven mode. The performances of different control laws are investigated. The relative phase
and frequency relationships are designed so as to render the control action the most effective. The control schemes generate
non-linear controller forces which increase the threshold for the activation of the parametric resonance thus resulting into
its annihilation. The theoretical predictions are compared with experimentally obtained results.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The task of copying with resonant disturbances such as parametric excitations has been tackled in many
different ways from direct active disturbance rejection via classical control theory methods to the use of passive
vibration absorbers.

A number of works has addressed both theoretically and experimentally the problem of controlling trans-
verse oscillations by parametric-type control actions in distributed-parameter systems (Fujino et al., 1993) or
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by coupling autoparametrically the system to an electronic circuit (Oueini et al., 1998) or to a passive absorber
(Yabuno et al., 2004a). In particular, Yabuno and co-workers showed that a parametric resonance in a can-
tilever beam can be suppressed by attaching a pendulum absorber to the beam tip.

The active suppression of parametric resonances has also attracted numerous researchers. Among others,
Oueini and Nayfeh (1999) devised a cubic feedback law to suppress the vibrations of the first mode of a can-
tilever beam when subjected to a principal parametric resonance. Maccari (2001) investigated the parametric
resonance of a van der Pol oscillator under state feedback control with a time delay and found appropriate
feedback gains and time delay to prevent quasi-periodic motions and to reduce the amplitude peak of the
parametric resonance. Ji and Leung (2002) used a linear time-delayed feedback control to shift the occurrence
of pitchfork bifurcations and to eliminate saddle-node bifurcations, which may arise in the non-linear
response of a parametrically excited Duffing system under its principal parametric resonance. They showed
that, with appropriate feedback gains, the stable region of the trivial solutions can be broadened. Watanabe
et al. (2003) proposed a robust damping control in a power electric system capable of maintaining stability
also in the presence of an auto-parametric resonance. Because they used a model with a certain structure
and uncertain parameters, they designed a robust controller via l-synthesis, alternative to other existing meth-
ods based on H-infinity control. All of these investigations share the common feature of proposing non-linear
laws to control parametric resonances; however, the problem of collocation of the control action is not spe-
cifically addressed.

Inspired by previous studies, a general methodology was proposed (Lacarbonara et al., 2002) to design, via
asymptotic approaches, non-linear open-loop resonance-cancellation schemes. It was shown that a direct per-
turbation expansion of the system dynamics facilitates understanding of the non-linear mechanisms by which
the actuator inputs may be used to suppress the resonant effects of the excitation. Depending on the specific
system, various non-linear mechanisms for generating effective actuator actions may be exploited. Moreover,
when excitations and actuations are non-collocated (e.g., when the actuation has zero projection, in a linear
sense, on the dynamics to be controlled), classical linear control techniques break down. On the contrary, due
to the inherent non-linear internal forces, the controller action, although non-collocated, may be intelligently
designed to have sufficient authority to cancel or significantly mitigate the resonances.

To show the feasibility of the open-loop resonance-cancellation methodology, a control strategy was
devised (Lacarbonara et al., 2002) for a shallow arch subject to a harmonic longitudinal end displacement that
is parametrically resonant with the first skew-symmetric mode and the control input is a transverse force at the
midspan. The effective mechanism was shown to be a sub-harmonic resonance of order one-half. In a previous
work (Soper et al., 2001), similar concepts were employed to address non-collocated disturbances via non-lin-
ear actuator action in a pendulum-type crane architecture. Moreover, to show the possibility of enhancing the
non-linear control authority with more general disturbances, Lacarbonara and Yabuno (2004) proposed a
closed-loop non-linear scheme to control the first skew-symmetric mode of a hinged–hinged initially curved
beam driven to resonance by an external primary-resonance disturbance.

Recently, the method of parametric resonance cancellation (Lacarbonara et al., 2002) has been theoretically
and experimentally demonstrated in a magnetically levitated body (Yabuno et al., 2004b). Therein, the prin-
cipal parametric resonance of the levitated body has been stabilized using an actively driven pendulum-type
vibration device.

The present work investigates an open-loop scheme tailored to cancel the parametric resonance of the first
skew-symmetric mode of a beam which is hinged at one end and acted upon by a time-varying load on the
other end, a roller support with a lumped mass. The symmetric control action – bending moments imparted
by two pairs of symmetrically attached piezoceramic actuators – is non-collocated as it is orthogonal, in a lin-
ear sense, to the externally excited mode. The control input is designed so as to be capable of suppressing the
resonant part of the beam flexural vibrations with feasible control efforts. Proving that a non-linear controller
with a symmetric input can reduce also skew-symmetric vibrations entails that the control authority is
expanded in comparison with the linear theory by exploiting the structural non-linearities. The same control-
ler, designed primarily to reduce symmetric oscillations, may be used to reduce skew-symmetric vibrations
which, under some excitation conditions (e.g., at the so-called crossovers), can be excited simultaneously with
symmetric vibrations. Because the fact that a symmetric input has control authority over symmetric vibrations
is trivial, in the present study, the effectiveness of the symmetric non-linear input in reducing skew-symmetric
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vibrations of an elastic beam is theoretically investigated and experimentally validated. The designed control
law is a two-frequency input in sub-combination resonance with the frequency of the parametrically excited
mode.

The paper is organized as follows. In Section 2, the geometrically exact equations of motion of the beam
including the piezoceramic actuators are presented. In Section 3, the derivation of the open-loop control strat-
egy via a direct perturbation treatment of the governing equations of motion, including the controllers, is dis-
cussed. In Section 4, the features of the theoretically and experimentally obtained uncontrolled and controlled
responses are documented and discussed. In Section 5, the concluding remarks are presented.

2. Equations of motion

In this section, following (Lacarbonara and Yabuno, 2006), the mechanical formulation to describe overall
planar motions of slender beams, with the addition of the controllers, is summarized. The beam is straight in
its reference configuration C0 (Fig. 1 top); it is assumed sufficiently slender with a compact cross-section and is
made of a hyperelastic and homogeneous material. It is further assumed that, due to its slenderness, the beam
is unshearable and, due to the axially unrestrained nature of the motions, it is inextensible.

A Lagrangian description of the motion is adopted. Denoting with ei (i = 1,2,3) the orthonormal unit vec-
tors of a fixed inertial reference frame in E3 Euclidean space such that e1 is parallel to the beam undeformed
axis, the position of a material point is represented by X(x) :¼ xe1 where x denotes the coordinate along the
straight undeformed beam axis with the origin O fixed at the left end. Therefore, the elastodynamic problem is
parameterized with x spanning the compact support D :¼ {xjx 2 [0,‘]} – ‘ is the length of the undeformed
beam axis – and time t. A material section in the reference configuration is specified by the pair of orthonormal
vectors a2 and a3, a1 = a2 · a3 so that ai is a right-handed orthonormal basis and · denotes the vector product.
Due to body forces b(x, t) and couples mðx; tÞa3 per unit reference length, due to an end load P(t)e1 applied at
the right roller support, the beam is assumed to undergo a naturally planar deformation process in the (e1,e2)-
plane, a plane of symmetry for the beam.

Denoting the displacement vector with u :¼ ua1 + va2, the current section placement is then defined by
x(x, t) :¼ X(x) + u(x, t) and by the pair of orthonormal directors d2(x, t) and d3(x, t), respectively, with
d1 = d2 · d3. The directors di (i = 1,2) can be expressed as di = Rai where R(x, t) is the proper orthogonal rota-
tion tensor, restricted to the plane (e1,e2), describing a finite rotation about the a3-axis.

The beam strains are calculated as the components of the following strain vector and curvature tensor,
respectively: �(x, t) :¼ R>x 0 � X 0 and K(x, t) :¼ R>R 0 where the prime denotes differentiation with respect to
x and > indicates the transpose.

Because the beam is considered unshearable and inextensible, the internal kinematic constraint � = 0 is
enforced thereby leading to
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Fig. 1. Scheme of the beam with the end mass in the rest (top) and current (bottom) configurations. A–A 0 is a cross-section of the
piezoceramic patch assembly.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u0Þ2 þ ðv0Þ2

q
¼ 1; h ¼ tan�1 v0

1þ u0

� �
ð1Þ
Employing (1)2, the bending curvature k(x, t) :¼ h 0(x, t) is expressed as k(x, t) = v00 + u 0v00 � u00v 0. Solving the

inextensibility constraint, Eq. (1)1 with respect to u 0 yields u0 ¼ �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv0Þ2

q
whose expansion in a Mac

Laurin series gives, to within second order, u0 � � 1
2
ðv0Þ2. Consequently, the curvature becomes
kðx; tÞ ¼ v00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv0Þ2

q � v00 þ 1

2
ðv0Þ2v00 ð2Þ
Further, sin h = v 0 and cos h ¼ 1þ u0 � 1� 1
2
ðv0Þ2.

Let the internal contact force and couple, mutually exerted by two adjoining sections, be expressed as
nðx; tÞ :¼ Nðx; tÞd1ðx; tÞ þ Qðx; tÞd2ðx; tÞ; mðx; tÞ :¼ Mðx; tÞd3 ð3Þ

where N and Q indicate the axial load and shear force, respectively, and M is the bending moment. The equi-
librium equations, namely the balance of linear momentum and angular momentum, are
n0 þ b ¼ 0; M 0 þ d3 � ðx0 � nÞ þm ¼ 0 ð4Þ

which, once the reactive shear force has been filtered out, are put in componential form
N 0 þ kM 0 þ kmþ b1 ¼ 0
M 00 þm0 � kN � b2 ¼ 0

ð5Þ
where b = b1d1 + b2d2 and the dot indicates the standard inner product in Euclidean space.
Neglecting the rotatory inertia, we express the applied body forces and the translational inertial and distrib-

uted damping forces, by virtue of D’Alembert’s principle, in the form b ¼ fðx; tÞ � qA€x� ðcu _ua1þ
cv _va2Þ ¼ ðf1 � cu _u� qA€uÞa1 þ ðf2 � cv _v� qA€vÞa2 where q is the beam mass density, A is the area of the
cross-section, cu and cv denote the viscous damping coefficients in the global longitudinal and transverse direc-
tions, respectively, and the overdot indicates differentiation with respect to time. The kinematic boundary con-
ditions are u(0, t) = 0, v(0, t) = 0, v(‘, t) = 0. Further, the mechanical boundary conditions are
Mð0; tÞ ¼ Mð‘; tÞ ¼ 0; N cos hþM 0 sin h ¼ �m‘€u� P ðtÞ at x ¼ ‘ ð6Þ

where m‘ is the lumped mass and P(t) is the end load (see Fig. 1).

From a constitutive point of view, because the curvature is assumed finite but small, a linear constitutive
relationship between the bending moment and the curvature is considered in the standard form
Mðx; tÞ ¼ EbIbðxÞkðx; tÞ ð7Þ

where Eb and Ib indicate Young’s modulus and the moment of inertia of the beam cross-section about the a3-
axis, one of the principal inertia axes.

Integrating (5)1 and using the mechanical boundary condition (6) yield the axial load as
Nðx; tÞ ¼ �½M 0 tan hþ sec hðm‘€uþ P ðtÞÞ�jx¼‘ �
Z x

‘

kM 0 dx�
Z x

‘

kmdx�
Z x

‘

b1 dx ð8Þ
Substituting (8) into (5)2 gives the condensed equation of motion
M 00 þ ½M 0 tan hþ sec hðm‘€uþ P ðtÞÞ�jx¼‘k þ k
Z x

‘

kM 0 dxþ k
Z x

‘

b1 dx� b2 þm0 þ k
Z x

‘

ðkmÞdx ¼ 0 ð9Þ
It is worth noting that the bending couples distribution m enters the equation of motion (9) as a direct and a
non-linear parametric forcing term.

To express the equation of motion in the transverse displacement component only, using the kinematic
boundary condition u(0, t) = 0 and Eq. (1)1, we incorporate the resulting longitudinal motion into the inertial
and damping forces, and substitute them along with (2) into (9).

The following non-dimensionalization is suitably employed to render the equations non-dimensional:
t� :¼ xbt; x� :¼ x
‘
; v� :¼ v

l
; a :¼ m‘

qA‘
; P � :¼ ‘2

EbIb

P ; m� :¼ m‘2

EbIb

; 2c�v :¼ cv‘
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EbIbqA
p ð10Þ
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where xb :¼ [(EbIb)/(qA‘4)]1/2; the star indicates non-dimensional variables. Henceforth, the star will be
dropped for ease of notation and the employed variables will be non-dimensional unless otherwise specified.

The resulting geometrically exact equation of motion is then expanded up to third order thus yielding
€vþLv ¼ �2�m1 cv _v� �m2 P ðtÞv00 þN3ðv; v; vÞ þI3ðv; v;€vÞ þ �I3ðv; _v; _vÞ þm0 þ v00
Z x

1

mv00 dx ð11Þ
where ð�; mjÞ 2 Rþ; �	 1 is an ordering parameter, cv 2 Rþ is the distributed beam damping coefficient,
Lv ¼ v0000 is the linear stiffness term, and the non-linear forces are defined according to the following operators:
N3ðv; v; vÞ :¼ �½v000v0�jx¼1v00 � 1

2
v0

2

v00
� �00

� v00
Z x

1

v00v000 dx ð12Þ

I3ðv; v;€vÞ :¼ �v0
Z x

0

v0€v0 dxþ v00
Z x

1

v0€vdx� v00
Z x

1

Z x

0

v0€v0 dxþ 1

2
€vv02 þ av00

Z 1

0

v0€v0 dx ð13Þ

�I3ðv; _v; _vÞ :¼ �v0
Z x

0

ð _v0Þ2 dx� v00
Z x

1

Z x

0

_v02 dxþ av00
Z 1

0

_v02 dx ð14Þ
The operator N3 accounts for the internal restoring forces due to the non-linear curvature whereas I3 and �I3

incorporate the non-linear inertia forces (I3 and �I3 are distinctly expressed for computational purposes). The
governing mechanical boundary conditions, in their expanded form, are v00 þ 1

2
ðv0Þ2v00 ¼ 0 at both ends.

As to the external bending couples appearing in Eq. (9), these are associated with the control input provided
by two piezoceramic actuators, with the kth pair of actuators of length ‘k attached to the beam lower and
upper surfaces at xk, the latter being the coordinate of the midspan axis of the piezoceramic patch (Figs. 1,
2, and 4). In the limit case of perfect bonding between the patches and the beam, the mechanical effect of a
pair of piezoceramic patches results into two bending couples, of opposite direction exerted at the ends of
the patches; hence, the ensuing piezoceramic action in the proposed architecture can be expressed as
mðx; tÞ ¼
X2

k¼1

MkðtÞ½dðx� x�k Þ � dðx� xþk Þ� ð15Þ
where d(x) indicates the Dirac delta function, x
k :¼ xk 
 1
2
‘k
‘
, and MkðtÞ is the magnitude of the bending mo-

ments delivered by the piezoactuators and given, in dimensional form, as
MkðtÞ ¼ mkV kðtÞ; mk ¼
EbIb

2EbIb þ EkIk
Ekðhb þ hkÞwd31k ð16Þ
Here, mk is the bending couple per unit Volt of the kth pair of patches; Vk(t) is the applied time-varying volt-
age; w is the common width of the beam and patches; hk is the thickness of a single patch and Ik is the moment
of inertia of a pair of piezoceramic patches with respect to the neutral axis of the assembly; Ek and d31k are
Young’s modulus and the transverse charge constant of the kth piezoelectric material, respectively. The
non-dimensional couple is M�

k ¼Mk‘
2=ðEbIbÞ.
signal generator

piezo 1,2
driver

piezo 3,4
P cos Ωt

V (t) = V1 cos Ω1t + V2 cos (Ω2t + ψ)

Fig. 2. A schematic view of the beam with the controller scheme.
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In conclusion, the control action enters the equations of motion, at leading order, in the non-dimensional
form
Uðx; tÞ :¼ m0 ¼
X2

k¼1

mkðtÞV kðtÞ½H 00ðx� x�k Þ � H 00ðx� xþk Þ� ð17Þ
where H denotes the Heaviside unit-step function and use of d(x) = H 0(x) has been made.

3. Design of the control laws via asymptotics

In this section, the resonance cancellation strategy, devised employing a perturbation approach, is illus-
trated. The method of multiple scales is used to attack directly the governing equation of motion and bound-
ary conditions instead of treating finite-degree-of-freedom discretized versions. With this approach, the
problem of order reduction is overcome along with other drawbacks such as spillover effects potentially arising
from the unmodelled dynamics.

The disturbance is caused by a harmonic end load, P(t) :¼ PcosXt with X � 2x2, where x2 is the circular
frequency of the second mode. To design the control laws, we determine the responses of the beam to a prin-
cipal parametric resonance of the second mode when this mode is away from internal resonances, that is, it can
not interact with any other mode.

The objective of the sought control algorithm is to activate – applying symmetric control actions – internal
forces possessing skew-symmetric components and of a like type as those induced by the external principal
parametric resonance, that is, / A expðix2tÞ where i is the imaginary unit and A indicates the complex-valued
amplitude of the response at the system second natural frequency and the bar denotes the complex conjugate.
Guided by the fact that the non-linear forces are cubic, the control signal (i.e., the applied voltage) is assumed
as a two-frequency input in the form
V ðtÞ ¼ 1

2
V 1eiX1t þ V 2eiðX2tþwÞ� �

þ cc ð18Þ
where cc indicates the complex conjugate of the preceding terms and w is the relative phase between the
control signals. A symmetric controller arrangement is obtained (see Fig. 2) by two pairs of like-length piez-
oceramic patches (‘1 = ‘2) with x1 + x2 = 1 and m1 = m2 = mp. Consequently, the control action takes the
form
Uðx; tÞ ¼ 1

2
mp½V 1eiX1t þ V 2eiðX2tþwÞ�

X2

k¼1

½H 00ðx� x�k Þ � H 00ðx� xþk Þ� þ cc ð19Þ
The two control frequencies are chosen so as to activate a sub-combination resonance of the sum or difference
type with the excited mode. The resulting response at leading order is / [Aexp(ix2t),V1 exp(iX1t),V2 exp(iX2t)].
Therefore, part of the induced third-order non-linear forces are / m2

pV 1V 2A expðix2tÞ if and only if
X2 � X1

2
� x2 ð20Þ
This equation expresses the condition on the effective control frequencies.

3.1. Asymptotic analysis

A third-order uniform expansion of the solutions of the equation of motion is determined letting the deflec-
tion v and associated velocity field _v be in the form
vðx; tÞ ¼ �v1ðx; t0; t2Þ þ �3v3ðx; t0; t2Þ þOð�5Þ

_vðx; tÞ ¼ � _v1ðx; t0; t2Þ þ �3 _v3ðx; t0; t2Þ þOð�5Þ
ð21Þ
where t0 = t is the fast scale associated with variations occurring at the frequency of the second mode, and
t2 = �2t is the stretched time scale governing the non-linear slow variations. The small dimensionless parameter
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� is the same parameter introduced in the non-dimensional equation of motion as ordering device. Conse-
quently, the first derivative with respect to time is o

ot ¼ D0 þ �2D2 þOð�4Þ where Dn :¼ o
otn

. Further, the nearness
of the principal parametric resonance is expressed introducing a detuning parameter r1 such that X = 2x2 + �2

r1, whereas the detuning condition of the sub-combination resonance is X2 ± X1 = 2x2 + �2r2 with
(r1,r2) = O(1).

The external excitation and damping are ordered by letting m1 = m2 = 2 so that the damping, excitation and
non-linear resonant forces balance each other at third order. Substituting (21) into the system of first-order (in
time) equations of motion and boundary conditions, using the independence of the time scales, and equating
coefficients of like powers of � yields

Order �
D0v1 � _v1 ¼ 0

D0 _v1 þLv1 ¼
1

2
mp½V 1eiX1t0 þ V 2eiðX2t0þwÞ�

X2

k¼1

½H 00ðx� x�k Þ � H 00ðx� xþk Þ� þ cc
ð22Þ
Order �3
D0v3 � _v3 ¼ �D2v1

D0 _v3 þLv3 ¼ �D2 _v1 � 2cvD0 _v1 þN3ðv1; v1; v1Þ þI3ðv1; v1;D0 _v1Þ þ �I3ðv1; _v1; _v1Þ

þ v001

Z x

1

mv001 dx� P
2

eiXt0 v001 þ cc

� � ð23Þ
For a simply supported beam, the natural frequencies and associated eigenfunctions are xn = n2p2 and
/nðxÞ ¼

ffiffiffi
2
p

sin npx; n ¼ 1; 2; . . . The latter are normalized in the standard fashion,
R 1

0
/m/n dx ¼ dmn;R 1

0
/mL/n dx ¼ x2

ndmn where dmn is the Kronecker delta.
Because the second mode is directly excited by the parametric resonance disturbance and, indirectly, by the

control input and because this mode is away from internal resonances, the solution at order � is assumed as
v1 ¼
1

2
mp

X2

j¼1

½V je
iðXjt0þwjÞBjðxÞ� þ Aðt2Þeix2t0/2ðxÞ þ cc ð24Þ
where w1 = 0, w2 = w, and the functions BjðxÞ are solutions of the following boundary-value problems:
B
0000

j � X2
jBj ¼

X2

k¼1

½H 00ðx� x�k Þ � H 00ðx� xþk Þ� ð25Þ
with the boundary conditions Bjð0Þ ¼ Bjð1Þ ¼ 0 and B00j ð0Þ ¼ B00j ð1Þ ¼ 0, j = 1,2.
The solutions of these two boundary-value problems are obtained, using the modal expansion method, as

infinite series of the symmetric eigenmodes in the form
BjðxÞ ¼
X1
k¼0

b2kþ1

x2
2kþ1 � X2

j

/2kþ1ðxÞ ð26Þ
where
bj :¼ /0jðxþ1 Þ � /0jðx�1 Þ þ /0jðxþ2 Þ � /0jðx�2 Þ ð27Þ
is the jth modal force produced by unitary moments delivered by the two pairs of actuators. Substituting the
first-order solution into the third-order problem, and enforcing the solvability of the resulting inhomogeneous
partial-differential problem yields the following modulation equation:
2ix2ð _Aþ lAÞ ¼ GA2AþUsAþ PKAeir1t þUAeiðr2tþwÞ ð28Þ

where l :¼ cv is the beam damping coefficient (the damping ratio of the second mode is f = l/x2); G and K are
the effective non-linearity coefficient and the effective parametric resonance coefficient, respectively, given by
G :¼ p4ð17098:2� 288p2Þ þ ð49873:4p4Þa; K :¼ � 1

2

Z 1

0

ð/2/
00
2Þdx ¼ 2p2 ð29Þ
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On the other hand, U and Us are the effective control coefficient and the linear frequency shift coefficient,
respectively, expressed as
U ¼ m2
pV 1V 2B3; Us ¼ B1V 2

1 þ B2V 2
2 ð30Þ
The coefficients B1, B2, and B3 are obtained as outcome of the solvability condition. The coefficient B3 can be
conveniently expressed as B3 ¼ B0

3 þ B03a so as to outline the influence of the boundary mass ratio a on the
effective control coefficient.

In the next section, the remaining control parameters, namely, the phase and gains, are determined. To this
end, we first transform the complex-valued modulation equation into real-valued equations governing the
amplitude and phase of the motion. We assume a polar transformation of the complex-valued amplitude in
the form A ¼ 1

2
aeiðr1�cÞ t2.

The structure of the modulation equation suggests that it can be rendered autonomous if the control fre-
quency detunings satisfy the condition r2 = r1 = :r. The control frequencies can then be more conveniently
expressed as X1 ¼ m1

n1
X and X2 ¼ m2

n2
X with
m2

n2

� m1

n1

¼ 1 ð31Þ
The resulting frequency–response equation for the steady-state responses is
r ¼ � Us

x2

þ G

4x2

a2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

x2
2

� 4l2

s
ð32Þ
where F :¼ PK�U, the sign ± depends on whether w = 0 or p as it will be shown. The solution for the uncon-
trolled case can be obtained from (32) setting V1 = V2 = 0. The parametric resonance, in the absence of con-
trols, is activated when the end load P is larger than the threshold value given by P cr ¼ 2x2

l
K

. The
uncontrolled deflection, to within first order, can be expressed as
vðx; tÞ � a cos
1

2
ðXt � cÞ

� �
/2ðxÞ ð33Þ
3.2. Design of the control phase and gains

We require the control-induced force to be in the opposite complex direction of the external parametric-res-
onance force; on account of the fact that K > 0, the relative control phase is determined as
w ¼ 0; if U < 0 and w ¼ p; if U > 0 ð34Þ

Since the threshold for the activation of the parametric resonance is jFj ¼ 2lx2, to inhibit the resonance, we
determine U such that jFj < 2lx2. Accounting for the phase information, F ¼ PK� jUj, then the inequality
entails that the combined control gains, Vc :¼ V1V2, must satisfy the following inequality:
V c1 6 V c 6 V c2; with V c1;2 ¼
PK
 2lx2

m2
pjB3j

ð35Þ
Selecting (V1,V2) such that Vc is within the range given by (35), the parametric resonance is annihilated and
the steady-state controlled transverse displacement field, to within first order, can be expressed as
vðx; tÞ � mp V 1B1ðxÞ cos
m1

n1

Xt
� �

þ V 2B2ðxÞ cos
m2

n2

Xt þ w

� �� �
ð36Þ
To find the optimal gains (V1,V2) within the bounds (35), we choose to minimize, over one period of oscil-
lation, the maximum amplitude of the integral of the square of the deflection at steady state, namely,
J ¼
Z 1

0

vðx; tÞ2 dx ¼ m2
p½J 1V 2

1 cos2 X1t þ J 2V 2
2 cos2ðX2t þ wÞ þ 2J 3V 1V 2 cos X1t cosðX2t þ wÞ� ð37Þ
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where
Table
Proper

Length
Width
Thickn
Densit
Young
Piezoe
J 1;2 ¼
X1
k¼0

b2
2kþ1

ðx2
2kþ1 � X2

1;2Þ
2
; J 3 ¼

X1
k¼0

b2
2kþ1

ðx2
2kþ1 � X2

1Þðx2
2kþ1 � X2

2Þ
ð38Þ
3.3. Different sub-combination resonance control laws

We have investigated two control laws based on sub-combination resonances of the difference type,
X2 � X1 � 2x2. In particular, the considered control laws are
I :
m1

n1

¼ 1;
m2

n2

¼ 2

� �
ðX1 ¼ X;X2 ¼ 2XÞ

II :
m1

n1

¼ 3

4
;
m2

n2

¼ 7

4

� �
X1 ¼

3

4
X;X2 ¼

7

4
X

� � ð39Þ
More elaborate control laws based on simultaneous resonances may be further devised. For example, the con-
dition X1 � 3x2 and X2 � 5x2 entails the presence of two simultaneous resonances, namely a sub-harmonic
resonance of order one-third (X1 � 3x2) and a sub-combination resonance of the difference type. However,
this control law is not here investigated.

4. Results and discussion

The test specimen employed in the experimental investigations is a uniform beam with a rectangular cross-
section made of phosphore bronze and two pairs of piezoceramic patches (FUJI CERAMICS Corporation,
Z0.3T10x45R-SYX) attached at one- and three-quarters of the beam span. The main properties of the beam
and of the piezoactuators are summarized in Table 1. The apparatus (Fig. 3) consists of the test specimen with
its hinges made of radial bearings (JIS 6200). The width direction has been placed in a vertical plane to over-
come the presence of initial curvature due to gravity. The radial bearings are accurately manufactured and
have been cleaned using a procedure consisting in injecting a special high-lubrication oil with high-pressure
(Kure 556). One of the hinges is rigidly clamped onto an aluminum slab. The other hinge is mounted on
top of a sliding linear bearing (IKO Ball Slide Unit, Model BSU 44-50 A). On the lateral end of the linear
bearing (Fig. 3), a linear motor (Showa-Densen-Denran Model 26-02R) applies the dynamic axial force. A
TOA Electronics waveform synthesizer model FS-2201 feeds the sinusoidal signal to a KIKUSUI power
amplifier model BIPOLAR PBX40-10 which, in turn, drives the linear motor. A KEYENCE LB-01 (resolu-
tion of 180 lm and sampling time of 0.7 ms) laser sensor was used to measure the displacement of the beam at
one-quarter of the beam span.

First, we experimentally characterized the principal parametric resonance of the second mode and com-
pared the experimental results with the theoretical predictions. Subsequently, we investigated the effectiveness
of the resonance-cancellation scheme. In the next section, the parametric resonance without controls is
discussed.
1
ties of the tested beam and piezoceramic patch

Beam PZT

(mm) 450 45
(mm) 10 10
ess (mm) 0.5 0.3
y (kg/m3) 9.2 · 103 7.65 · 103

’s modulus (GPa) 116 62
lectric constant (m/V) – �2.1 · 10�10



Fig. 3. Schematic view of the experimental setup.
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4.1. Parametric resonance of the second mode

We first tested the piezoceramic patches measuring the static beam response to a constant voltage input,
V = 150 V, with a two-fold objective: to identify the properties of the actuators and confirm the level of fidelity
of the model of the piezoceramic action used in the analysis. In Fig. 4, we show the theoretically obtained
beam deflection under the applied DC voltage and the distribution of the bending moment, obtained from
(26), putting Xj = 0, and (7), respectively. In dimensional form,
Fig. 4.
mome
vðxÞ ¼ V
mp‘

3

EbIb

� �X1
k¼0

b2kþ1

x2
2kþ1

/2kþ1ðxÞ; MðxÞ ¼ V ðmp‘Þ
X1
k¼0

b2kþ1

x2
2kþ1

/002kþ1ðxÞ ð40Þ
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(a) Scheme of the beam with the experimental piezoceramic patch assembly, (b) beam static deflection, and (c) static bending
nt when V = 150 V.
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We observe that, using the modal expansion of the static solution, the displacement is well described by five
functions whereas a higher number of functions, at least 10 times, is required to reproduce the piece-wise
constant character of the bending moment. At one-quarter of the beam span, the laser sensor detected a dis-
placement of 0.28 mm whereas the theoretical prediction, according to the parameters given in Table 1, is
0.34 mm.

Then, the natural frequency of the second mode was measured and turned out to be 15.1 Hz which is in
close agreement with the theoretical prediction of 15.38 Hz. To characterize the resonance, in Fig. 5, we show
the theoretically obtained and experimentally detected parametric resonance unstable region (also known as
Mathieu tongue), in the plane of the force frequency and amplitude. The experimental procedure consisted in
determining the tip of the tongue fixing the frequency at twice the natural frequency of the second mode and
increasing the end load amplitude from a low value until activating the resonance at its threshold value. Then,
the amplitude of the force was increased and a frequency sweep was performed. The resonance tongue denoted
with a solid line was computed using the presented theory. The agreement between the theory and the exper-
iments is good both qualitatively and quantitatively.

Moreover, to confirm the non-linear characteristic of the mode and the dependence of the width of the
unstable region on the forcing amplitude, we measured some frequency–response curves. In Fig. 6, we show
the theoretically and experimentally obtained frequency–response curves when the force is nearly twice the
threshold force, namely, P = 0.64 N. The first skew-symmetric mode is clearly a softening mode. Considering
22 24 26 28 30 32 34 36 38 40
0

0.4

0.8

1.2

1.6

2

2.4

P
 [N

]

f [Hz]

Fig. 5. Experimentally (dots) and theoretically (solid line) obtained parametric resonance region in the plane of the disturbance frequency
(in Hz) and amplitude (in N) when the modal damping ratio is f = 0.05.

v 
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m
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20 24 28 32 36

0

1

2

3

4

Fig. 6. Experimentally and theoretically obtained frequency–response curve of the principal parametric resonance of the second mode
when P = 0.64 N and the modal damping ratio is f = 0.05. The dots (crosses) indicate backward (forward) frequency sweeps. The solid
(dashed) line denotes analytical stable (unstable) solutions.
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the end mass ratio a = 9.8, the calculated effective non-linearity coefficient is G ¼ 4:5� 107. Because G > 0,
the mode is predicted as softening. Moreover, the trivial solution exhibits a supercritical pitchfork bifurcation
around 32.1 Hz and a subcritical pitchfork bifurcation around 29.8 Hz. The maximum amplitude is of the
order of 3 mm. The agreement is good at low amplitudes as expected. At higher amplitudes, a higher-order
expansion of the resonance seems to be necessary to capture more accurately the behaviour. In the next sec-
tion, we discuss the main theoretical results relating to the resonance-cancellation scheme and the experimen-
tal validation.
4.2. Resonance-cancellation: theoretical and experimental results

The feasibility and effectiveness of the resonance-cancellation laws were theoretically investigated so as to
determine also the suitable ranges of the gains before performing the experiments. First, we computed the
second-order shape functions shown in Fig. 7 according to the control laws I and II. Generally, five terms
only in the series were sufficient for convergence. Performing the calculations, the results for the coefficients
B1, B2, and B3 of the control laws are summarized in Table 2. The control laws I and II require a relative
phase w = 0.

In Fig. 8, we show variation of the ranges of the effective control gains with the load amplitude according to
the control laws I and II. Considering the combined voltage gain, Vc = V1V2, the regions of effective gains are
bounded by straight and parallel lines given by Vc1,2. However, assuming the same gains for both signals (i.e,
V1 = V2), then, the regions are bounded by non-linear curves. Clearly, these curves are meaningful only when
P > Pcr. There is a rapid increase of the required voltage right above the instability, thereafter the increase rate
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Fig. 7. The functions B1ðxÞ (left) and B2ðxÞ (right) associated with the response to the control inputs with frequencies X1 and X2,
respectively, and according to the control laws I (a) and II (b).

Table 2
Control law coefficients

Control law B1 B2 B0
3 B03

I 294.841 �15.678 �22.183 �146.203
II 55.339 �15.795 �27.273 �75.198
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flattens out. After calculating the optimal gains within these regions, we obtained the non-dimensional time
histories of the one-quarter span section and compared the uncontrolled deflection with the controlled beam
deflection when r = �25 (Fig. 9). We observe that, for optimal gains, besides suppressing the parametric
resonance, a reasonable reduction of the vibration amplitude may also be achieved. Mention must be made
of the fact that, as expected, the resulting reduced steady-state vibrations are symmetric.

Next, we show the main experimental results. In Fig. 10(a) and (b), we show the time history and FFT of
the excitation force whose amplitude is P = 0.42 N and the frequency is X = 32 Hz. In Fig. 10(c) and (d), the
time history and FFT of the beam response are shown. The activation of the parametric resonance is testified
by the high peak at the beam non-linear natural frequency, namely X/2. Thereafter, we tested the control law
I considering suitable control inputs; the associated time history and FFT are shown in Fig. 11(c) and (d).
The resulting beam response to the control force, shown in Fig. 11(a) and (b), is reported in Fig. 11(e) and
(f). In the FFT of the response, besides the main predicted peak at the control signal frequency X and a
minor peak at 2X, we note that the second mode frequency is cancelled. An overall vibration reduction of
the order of 25% is attained. Since the primary control objective of the methodology is fulfilled cancelling
the parametric resonance of a skew-symmetric mode using a non-collocated input, the reduction of the
resulting overall response is a secondary task. Fine tuning of the control gains to the optimal values can lead
to an enhanced reduction although this has not been pursued.

Moreover, to investigate the capability of the control system of performing while the resonance is fully
developed, we let the beam attain the parametric-resonance steady-state and then turned on the controller.
The recorded input and response are shown in Fig. 12(a) and (b). In the beam response (Fig. 12a), according
to the FFT analyzer, the second mode does not contribute to the beam response. Further, the recovery of the
parametric resonance activation, in the absence of controls, is shown in Fig. 12(d) where the controller was
turned off at a certain time as clear in Fig. 12(c).

In previous studies, although relating to different systems – a shallow arch in Lacarbonara et al. (2002) and
a magnetically levitated body in Yabuno et al. (2004b) – the sensitivity of the controller was investigated
against perturbations, consisting of a series of additional impulses or detunings in the excitation amplitude
and frequency. It was therein shown that the control was still effective in maintaining its control performance,
that is, the suppression of the parametric resonance.
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5. Concluding remarks

In this work the effectiveness of a non-linear strategy for cancelling the parametrically forced skew-symmet-
ric vibrations of a straight elastic beam via a non-collocated input has been theoretically and experimentally
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investigated. The control strategy inhibits activation of the principal parametric resonance of the lowest skew-
symmetric mode using two pairs of symmetrically located piezoceramic actuators. The control algorithm is
open loop because state variables are not used for feedback. The difficulty arises because the disturbance input
and actuator are not physically collocated and the control action is linearly orthogonal to the excited mode.
The key idea is to rely on part of the suitably determined non-linear controller action which is not orthogonal
to the mode and further possesses stabilization effects.

We show that a perturbation analysis can be used to design the proper form of the control input. A control
law based on a two-frequency signal, which is involved in a sub-combination resonance (of the difference or
additive type) with the excited mode, is used for suppressing the parametric resonance. The control signals are
selected as proper ultra-sub-harmonics of the external excitation frequency and, hence, are phase-locked with
the disturbance. The control action is effective in cancelling the resonance provided that the gains are within
certain theoretically determined bounds. These bounds allow for sufficient control gain detunings and, further,
allow optimal reduction of the residual vibrations at the frequencies of the control inputs.

The theoretical predictions have been validated by the experimental results relating both to the uncon-
trolled parametric resonance of the second mode of a simply supported beam and to the control strategy.
The employed equations of motion including the piezoceramic actuators predict the beam responses with high
fidelity. In particular, the static response of the beam to a DC piezoactuation has first been validated. Then,
the resonance instability region of the second mode and frequency–response curves have been measured to
validate the model. The control signal involving a sub-combination resonance of the difference type has been
experimentally proved to be capable of achieving resonance cancellation. An overall optimization of the con-
trol scheme can be further pursued. The main contribution, however, is the demonstration that, contrary to
non-collocated linear control schemes, a relatively simple open-loop control system, relying on non-linear phe-
nomena, is effective in cancelling both symmetric and skew symmetric parametric resonances.
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