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ASTRACT 
 

Anthropogenic impacts such as bridge sites can greatly alter established 
streambed morphology, associated ecology and flora and fauna. At bridge 
sites, streams are often channelized approaching the site and deep pools are 
created at the bridge site causing ecological alterations of faunal 
assemblages. However, restoring channels and reducing negative 
construction practices allows the return of natural habitats that are likely to 
include more sensitive species. Recent conservation studies have suggested 
that anthropogenic sites may serve as potential habitats for reestablishment 
of populations following a drought event. This study examined the impact 
of bridges on fish assemblages at first through fourth order streams in the 
Suwannee River Basin of South Georgia.  Collections were made at bridge, 
upstream and downstream sites via seining and setting of gill nets. 
Assemblage structure at bridge sites was compared to bridge structure, 
biological and physiochemical factors at fourteen bridge sites. Fish 
assemblages were least diverse upstream of bridge sites, most diverse at 
bridge sites, and intermediate in diversity downstream of bridge sites.  The 
results suggest that bridge sites, if properly engineered, can serve as 
valuable refuges for reestablishing fish assemblages up and down stream 
after events such as the severe drought that impacted South Georgia in 2011. 

 
Keywords: fish assemblages, low order streams, bridges, South Georgia  

 
INTRODUCTION 

 
 Anthropogenic disturbance is any relatively discrete event in time that disrupts an 
ecosystem, community, or population structure changing resources such as availability of 
substratum or the physical environment (Resh et al. 1988). However, at recovered or 
naturalized bridge sites, the development of riffle and run habitats, similar to the natural 
stream pattern, may reestablish community structure as well as sensitive species (Lau et 
al. 2006). Naturalized bridge sites may have influences on erosion, sediment loads, 
riparian zones, substrate, and removal of accumulated natural debris decreased through 
time (Lau et al. 2006). Disturbances from bridge construction can be further mitigated if 
normal water flow is maintained despite the blocking effect of embankments and bridge 
piers.  This objective can be achieved through designs that favor short ramps, long spans, 
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hydraulically shaped piers, and streamlined artificial islands (Larson 1993). One factor 
that can affect fish species, but is not controlled for, is the sound produced by vehicular 
traffic passing over a bridge (Covo, et al. 2015; Holt and Johnston, 2015). 

Highway and bridge construction cause negative perturbations on stream 
structure, associated algal communities, macroinvertebrates, and fish assemblages (Cline 
et al. 1982; Larsen 1993; Tiemann, 2004, Blettler et al. 2005; Chadwick et al. 2006; Lau 
et al. 2006). Physical impacts on aquatic habitat includes bridge pillars, dredging, 
alteration of embankments, and highway construction (Larsen 1993). Channelization, 
and deep pool formation constitute an ecological disturbance for aquatic fauna 
assemblages present (Cline et al. 1982; Resh et al. 1988). Positive effects of bridges on 
riparian ecosystems do not occur initially following construction but should be considered 
following a period of habitat naturalization (Death, 1996). Research has demonstrated 
that r-strategist species assemblages related to sandy unstable sediments can colonize the 
habitats successfully less than one year after disturbances (Blettler and Marchese 2005; 
Death 1996). Upstream bridges sites with silt-clayed sediments have demonstrated higher 
species richness and higher levels of benthic biomass than bridge and downstream sites 
(Blettler and Marchese 2005).  

Negative effects of bridge construction on riparian ecosystems have been well 
documented in fifth and higher order streams supporting the importance of medium and 
large streams for macroinvertebrates, game fish, and vegetation (Vannote et al. 1980; 
Blettler and Marchese 2005). Some studies have considered macroinvertebrate and fish 
assemblages following a period of recovery or naturalization at fifth and higher order 
bridge sites.  A few studies have considered macroinvertebrate assemblages on fourth and 
lower order streams following a period of naturalization, but rarely have studies 
considered the effects on fish assemblages at fourth and lower order stream bridge sites 
(Joy and Death 2000; Blettler and Marchese 2005). 

Natural streams characteristically display greater substrate size heterogeneity, 
while anthropogenic affected sites characteristically display greater substrate size 
homogeneity (Lau et al. 2006). Variation in substrate type can affect feeding and 
reproductive behaviors in organisms leading to changes in assemblage from having both 
sensitive and tolerant species present to just tolerant species.  Sparse to moderate 
instream cover and overhanging vegetation is present in natural streams and often absent 
at bridge sites, which decreases the number of potential niches available (Lau et al. 2006). 
Research on the impact of canopy cover on aquatic fawn and vegetation have been studied 
extensively (Arimoro et al. 2012, Casatti 2009, Kaluza et al. 2020, Wallace and Eggert 
2009). 

The purpose of the original research was to appraise the impact of naturalized 
bridge sites at first through fourth order streams in the Suwannee River basin of South 
Georgia, USA, as related to macroinvertebrate and fish assemblages (Wright 2015). The 
work presented here examines the fish communities above, at and below 14 bridges sites. 
Variations in physiochemical and biological factors were assessed for their effects on the 
fish assemblage structures to determine the overall level of anthropogenic effect bridges 
have on species diversity and biotic potential. This has allowed the development of an 
understanding of the difference between bridge site and natural site assemblages, while 
determining bridge sites might be a source of wetland species and assemblage diversity 
following stochastic drought events. 
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The significance of this research was that it addressed the absence of research on 
fish species found at bridge sites at first through fourth order streams. The research was 
accentuated by the severe drought in the Southern United States during the summer of 
2011 (Wisniewski et al. 2013). Additional concerns for the health of rivers and streams 
have been brought to bear considering increases of combined investment by all levels of 
government in highway and bridge infrastructure. Bridges averaged 40 years old with half 
built before 1964 with the possibility that 26.7% of all bridges structurally deficient or 
functionally obsolete in the study area (Peters, 2006). Present day fauna are the result of 
geology, human habitation, and distance from species source populations (Joy and Death 
2000). 

 
MATERIALS and METHODS 

 
Field-site Description 
 
 During a drought in the southeastern United States, 14 bridge sites in south-central 
Georgia in the Suwannee River drainage basin were assessed for anthropogenically 
generated affects upon fish and macroinvertebrate assemblages (Wright 2015) of which 
the impact on fish is presented here. The sites were predominantly below baseflow for 
much of the year and at some sites flow was completely interrupted for an extended time-
period. Latitude and longitude were calculated for each site with a Garmin Handheld 
Global Positioning System (GPS) using World Geodetic System (WGS) 84. Global 
Positions were cross verified using Google Earth set to Garmin GPS WGS 84 (Google Inc., 
2012), and converted to decimal degrees expediting the geo-location of each site in the 
Geographic Information System Arc Map edition 10 from Environmental Systems 
Research Institute (Esri 2014, 2016, 2017). The conversion to decimal degrees facilitated 
the assessment of each site using PASSaGE 2 statistical software (Rosenberg and 
Anderson 1998). 

 
Collection Sites and Protocol 
 

Research sites were in the Tifton Upland and Okefenokee Plains regions of Georgia 
(Table I, Figure 1) (Griffith et al. 2001). Streams in these regions are dominated by 
agricultural land use, which is predominately coniferous sylvan culture. Third and fourth 
order streams were in the Tifton Upland and first and second order streams were in the 
Okefenokee Plains region (Wright 2015). Sites were divided into upstream (U), bridge (B) 
and downstream (D) subsites producing 42 data sets. Upstream subsites were defined as 
areas above pools and runs associated with bridges and served as controls against which 
the bridge and downstream subsites were compared. Upstream habitats were often 
complex with many areas of roots and braided stream morphology through shallow 
flatwoods blackwater habitats. Downstream habitats were often shallow runs with modest 
riffles and large woody debris and often extended into woodlands. Some upstream and 
downstream sites shared morphological features or similar levels of desiccation due to 
the drought. All bridge subsites had a deep run morphology generating a thalweg for the 
riparian system and most had aquatic macrophytes. The first and second order streams 
had shallow flatwoods systems entering the bridge run from braided morphology and 
exiting to braided morphology. The third and fourth order streams had flatwoods systems 
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entering the bridge run from winding channel morphology and exiting to winding channel 
morphology. 

Fish species were collected during riverine base flow or lower to provide the 
maximum accuracy for assessing fish species assemblage diversity (Lau et al. 
2006; Chadwick et al. 2006). Fish were collected through seining of all subsites 
  
Table I. Bridge sites sampled. Site codes (column 1) are listed alphanumerically with a 
number indicating stream order and a letter indicating individual sites. Descriptions 
(column 2) provide the stream names and highways (Hwy)/roads (Rd.) of bridge sites. 
Latitude (column 3) and Longitude (column 4) provide geographic coordinate data for 
locations. Date (column 5) indicates collection date in 2011.  

Sites Descriptions Latitude Longitude Date 

1A Grand Bay Cr. At Hwy 221 83.1300 30.9516 11-May 

1B Mud Cr. at Perimeter Rd. 83.2351 30.8048 13-May 

1C Suwanoochee Cr. at Hwy 94 82.5821 30.6833 7-Aug 

2A Grand Bay Cr. at Hwy 84 83.0934 30.9025 25-May 

2B Grand Bay Cr. at Hwy 94 83.1354 30.7686 6-Jul 

2C Mud Cr. at Vann Rd. 83.1800 30.7779 3-Jun 

3A Alapahoochee R. at Hwy 376 83.1213 30.7037 6-Jun 

3B Alapahoochee R. at Hwy 135 83.0881 30.6287 4-Jun 

3C Little R. at Hwy 122 83.4569 31.0005 20-Aug 

4A New R. at Hwy 125 83.4283 31.3610 30-May 

4B New R. at CR 252 83.4206 31.2944 1-Jul 

4C Withlacoochee R. at Hwy 37 83.3217 31.1204 18-Jun 

4D Withlacoochee R. at Hwy 122 83.3019 31.0139 25-Jun 

4E Withlacoochee R. at Staten Rd. 83.2890 30.9330 2-Sep 
 
while at upstream and downstream subsites, repeated seine hauls were made in all habitat 
sites with ten seine hauls being made after the last new species was collected.  Collections 
from each subsite were preserved and stored in separate containers. Seining of unique 
habitats was performed for each subsite to obtain samples of narrow niche species. Two 
seines used were a 170 cm width x 120 cm high with a 0.5 cm mesh, and a 450 cm width 
x 125 cm high with a 0.25 cm mesh with the net used dependent on the habitat being 
seined. Prior to collecting of fish, physicochemical data was collected and a monofilament 
gill net (30.48 m long x 1.83 m high with 7.62 cm mesh) for open water fish was set-up in 
runs and pools at the bridge subsites, upstream subsites, and downstream subsites that 
were too deep to seine. Due to drought conditions, very few runs of a depth requiring the 
use of a gill net were found upstream or downstream.  
 Fish were euthanized in the field using buffered tricaine methyl sulfonate (MS222) 
at a concentration of 500 mg/L in accordance IACUC with the American Fisheries Society 
(AFS 2014) and the American Society of Ichthyologists and Herpetologists (ASIH 2013). 
Specimens were fixed in 10% formalin for 24 hours, soaked in water for 24 hours, and 
preserved in 55% isopropyl alcohol. Collections were made under the Georgia 
Department of Natural Resources scientific collection permit CN:9134. Specimens were 
deposited at the Georgia Museum of Natural History-Athens (GMNH 2016). 
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 Independent variable data sets initially included all variables listed in Table II 
(construction parameters, physical, chemical, and biological). Substrate samples of 0.25 
L were collected during the summer at each subsite, homogenized, and oven dried at 60OC 
for 3 days. A 10 ml sample was oven heated at 550 OC for 4 hours to eliminate all organic 
material and then weighted. Organic content was based on the original weight minus the 
final weight. A 50.0 ml sample was sifted through substrate sieves and the resultant 
volumes collected in each sieve were measured to assess substrate ratios for each subsite.  
 

 
Figure 1. Collections sites in south central Georgia, USA. Sites lie within the Tifton Upland and Okefenokee 
Plains regions and identified in blue squares. Site descriptions are in Table I. Blue lines and images 
represent streams and water bodies. The Okefenokee swamp is indicated in green. Thick dark/black lines 
with numeric values indicate major roads and narrow lines indicate side roads. Interstate I-75 is 
represented by a dark orange line. Map was developed from ArcMap (2012). 

 Temperature, chemical properties (oxygen content, pH, and conductivity), and flow 
were collected May to September 2011, and January to February 2012 for each subsite. 
Temperature and oxygen were measured using an YSIDO200 meter, pH was measured 
using a Fisher Scientific AP85A Waterproof pH/Conductivity meter, and conductivity was 
measured using a WTW Cond 340i meter. Physical properties, quantitative infrared (IR) 
samples, and vegetation coverage were collected once during the summer from May to 
September. Physical properties involving the size of water bodies included evenly spaced 
transect lines set at 5 m apart across the bridge site width, a bisecting line for the bridge 
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site run length, and depth measurements. Depth measurements were measured from the 
center of the stream with one in the open area of the bridge pool, one under the bridge, 
one upstream, and one downstream from the bridge. The physical property of surface area 
was calculated using Google Earth measurement applications (Google Inc. 2012). 
Vegetation surface area was calculated by multiplying the mean width of all vegetation 
measurements at a site times the length of the main pool where vegetation ran the length 
of the pool.   
 Quantitative infrared samples were collected using a 0.25 L scoop and the resulting 
slurry was placed in a 1.25 L Zip-lock freezer bag and stored at -60OC. Samples were 
thawed, decanted onto filter paper, and rinsed to dissolve limestone-based ions and 
minerals (i.e., CaCO3, CaSO4 etc.) present. Samples were dried on the filter paper in a 
fume hood at room temperature, 25 g samples were extracted and soaked in 10 ml of 
methanol for 48 hours. The resulting solution was filtered using 0.20 um filter paper and 
added one drop at a time to 3 M Polyethylene Type 61-100-12 IR Cards (Manning et   al. 
2004). The dried cards were tested using a Mattison FTIR spectrophotometer, Mattison 
Instruments 2013.  

 
Specimen Identification 
 
 Baseline data for fish species most likely to be found at collecting sites was 
retrieved from Barnett et al. (2007), Canister (2007) and Canister and Bechler (2019). 
Fish were identified using the Peterson Field Guide to Freshwater Fishes and other 
sources (Page and Burr 1991; Fishbase 2012; Darden 2008; Lazara 2002; Ghedotti and 
Grose 1997; Gilbert et al. 1992; Rivas 1966; Brown 1956; Wiley 1986; Brown 1958; Wiley 
and Hall 1975; Snelson et al. 2009; Rider and Schell 2012; Fishes of Georgia 2022) and 
personal communication with Dr. Brett Albanese 2012 (Georgia Department of Natural 
Resources).  Fish assemblages were defined as all fish collected at each subsite and were 
divided into guilds based on species use of environmental resources (Page and Burr 1991, 
Simberloff 1991). Guild categories were: (1) benthic-near or on the bottom, (2) open 
water-mid to upper water column, (3) near vegetation-near or slightly in vegetation, (4) 
vegetation-lives in vegetation, and (5) open water-lives at the top of the water column.  
 
Statistical Methods 
 
 Data were organized using Microsoft Excel (Microsoft 2010, 2021); and for 
parametric analyses, fish data was standardized using hectometers for the main bridge 
pool length prior to statistical analyses. Friedman’s test, one-way analysis of variance 
(ANOVA), and Scheffé multiple comparisons test were performed in StatsDirect 
(StatsDirect Ltd. 2007). Shapiro-Wilkes tests in Statistica (StatSoft Inc. 2012) were used 
to test for normalization of data sets prior to regression analyses and modeling. Variables 
that were not normal were transformed using log normal (ln x), log to the 10th (log10 x), 
squared (x2), and square-root (√x) values. Transformed variables were tested for 
normality and the strongest P value ≤ 0.05 was chosen to replace the original data.  
Following, normalization of data sets Primer v6 (Clarke and Gorley 2006), StatsDirect 
(StatsDirect Ltd. 2007), Sigma Plot (Systat Software 2012), and Statistica (StatSoft Inc. 
2012) were used to conduct Principal Components Analyses (PCA), regression analyses 
and pair-wise multiple comparisons modeling.  
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RESULTS 

 
Scientific and common names of fish species collected are in Appendix Table I and 

Table II. A total of 7,056 specimens and 43 species (Table II, Appendix Table I) were 
collected across all subsites. A range of 23 to 33 species were collected across individual 
sites and a range of nine to 29 species across all subsites. The seven most common species 
were Aphredoderus sayanus (n = 319), Micropterus salmoides (n = 335), Centrarchus 
macropterus (n = 356), Notropis petersoni (n = 415), Lepomis macrochirus l (n = 766), 
Gambusia holbrooki (n = 1,049), and Labidesthes sicculus (n = 2,495). The seven least 
common species were Amia calva (n = 1), Ameiurus brunneus (n = 1), Ameiurus 
nebulosus (n = 1), Elassoma evergladei (n = 1), Lepisosteus osseus (n = 2), Umbra 
pygmaea (n = 2), and Acantharchus pomotis (n = 2). Seven species collected within only  
 
Table II. Fish families and number of species collected at 14 bridge sites. Families are 
listed in phylogenetic order by columns from top to bottom and left to right. Number of 
species collected per each family are listed after the family name.  

Bridge Study Site Fish Families and Species Numbers  
Lepisosteidae 2 Cyprinidae 6 Poeciliidae 2 
Amiidae 1 Catastomidae 2 Centrarchidae 12 
Aphredoderidae 1 Ictaluridae 4 Elassomatidae 3 
Umbridae 1 Atherinopsidae 1 Percidae 3 
Esocidae 2 Fundulidae 3  

 
one subsite and one stream order included: first order sites, Enneacanthus obesus, 
second order sites, Amia calva; and fourth order sites, Lepisosteus platyrhincus, 
Fundulus chrysotus, Elassoma evergladei, Etheostoma edwini and Acantharchus 
pomotis. Appendix Table I provides subsites information for all species. No species were 
unique to third order streams. Species listed in Appendix Table I show that within 
subsites no species were unique to only upstream subsites, one species was unique to 
downstream sites and 11 species were found at only bridge subsites. One species was only 
found at upstream and bridge subsites, three species only at bridge and downstream 
subsites, and 25 species were found at all subsites. A Chi Square Goodness of Fit test, 
assuming a random distribution of 3.583 species per subsite and combined subsites, was 
significant (Species n = 43, DF = 6, Chi-square = 51.561, P < 0.0001).  

A Friedman’s test on fish species assemblages for all subsites by stream order was 
significant (T2 [F] = 5.5242, df = 1763, Critical t = 1.9613, and P < 0.0001). Significant 
results were found in 40.65% of the 861 comparisons with 4.00% of significant 
comparisons occurring within subsites from the same stream order and 36.65% of 
significant differences occurring between different stream orders and subsites. A 
Friedman pair-wise multiple comparison test provided percentage dissimilarities by 
stream order by site. Comparison of dissimilarities of fish species composition by stream 
orders (Figure 2) produced a general pattern such that an increase in dissimilarities 
occurred from first to fourth order sites. Comparisons of same stream order sites resulted 
in lower dissimilarity vales than comparisons of different stream order sites. 

Fish species totals comparing all subsites were entered into a one-way analysis of 
variance (ANOVA) followed by a Scheffé multiple comparisons test. The one-way ANOVA 
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was significant (F [variance ratio] = 6.4638, P = 0.0038), and the Scheffé multiple 
comparisons test identified only bridge subsites as being significantly different from 
upstream subsites (critical value = 2.5448; B vs. U, P = 0.004; D vs. U, P = 0.1176; and B 
vs. D, P = 0.3609). The mean number of species in fish assemblages by stream order and 
subsites (Figure 3) shows two key patterns. Pattern 1, bridge sites possessed the greatest 
mean diversity of fish species followed by downstream subsites with lowest mean 
diversity occurring at upstream sites. Pattern 2 showed that the mean number of species 
at each subsite increases from first order to fourth order. Bridge sites at third order 
streams showed minor variation in mean species numbers. 

 

 
Figure 2. Percent dissimilarities within and between stream orders. Dissimilarities are based on all species 
collected at all subsites by stream order. The letter ‘v’ stands for ‘verses’ such that 1 v 2 indicates all first 
order sites compared to all second order sites. 

 

 
Figure 3 Mean number of fish species per subsites per stream order. Open bars represent upstream subsites, 
sold bars represent bridge subsites and slash bars represent downstream subsites. 
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Fish species numbers organized by habitat guilds (Figure 4) were entered into a 
one-way ANOVA followed by a Scheffé multiple comparisons test. The one-way ANOVA 
was significant (F [variance ratio] = 11.366859, P < 0.0001), and the Scheffé multiple 
comparisons test supported the use of guilds to identifying variations by habitats within 
sites and the number of species associated with habitats (Critical Value = 4.93954, P < 
0.0001). The greatest species diversity in habitat guilds occurred at bridge subsites, then 
downstream subsites, and lowest at upstream subsites. The debris guild at each subsite 
was substantially less diverse than other guilds, which were more similar in mean 
numbers and pattern.  

 

 
Figure 4. Mean number of fish species in guild assemblages by subsites. Open bars represent upstream 
subsites, sold bars represent bridge subsites and slash bars present downstream subsites. 

 
Fish assemblage data for each subsite by stream order was run in Primer 6 (Clarke 

and Gorley 2006) generating eigenvector values and a Cluster Analysis (Figure 5). At each 
subsite, five species with the highest eigenvector values (Table IV) and positions in the 
Cluster Analysis (Wright 2013) were used to assess species with the greatest variability. Eight 
species with the highest levels of variation across subsites were: C. macropterus (n = 9 
subsites), G. holbrooki (n = 8 subsites), E. americanus vermiculatus (n = 5 subsites), L. 
sicculus (n = 4 subsites) and L. gulosus, M. salmoides, N. texanus and P. nigrofasciata 
(n = 3 subsites each). The other 15 species occurred at only one or two subsites. No C. 
macropterus were collected at third order sites but were at all other stream orders. 
Gambusia holbrooki were collected within all stream orders and predominately at 
upstream and downstream sites. Esox americanus vermiculatus were collected at only 
first and second stream order sites with specimens collected at all subsites. Labidesthes  
sicculus were collected at second, third and fourth order downstream subsites and third 
order upstream subsites.  

To assess similarities at bridge subsites, fish assemblages at all bridge subsites 
were compared with a cluster diagram (Figure 5) developed from a Curtis-Bray similarity 
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(mean = 58.13) branched off with a wider range of dissimilarity values (minimum and 
maximum = 22.7642 – 64.4509, R = 41.6866) than unpaired subsites (mean = 37.4756) 
which had a narrower range of similarity values (minimum and maximum = 21.4286 –  
 
Table IV. Five species with highest level of variance per subsites by stream order (first, 
second, third, fourth). Species are ranked from highest to lowest variance based on 
maximum Eigen Vector values (Vect.). U = upstream subsites, B = bridge subsites, and D 
= downstream subsites. Full genus and species names are provided in Appendix Table I. 

First Order  Vect. 2nd Order  Vect. Third Order  Vect. 
U   B  D  

C. macropterus  0.929 C. macropterus  0.986 G. holbrooki  0.936 
E. americanus   0.550 N. petersoni -0.562 N. texanus  0.851 
A. sayanus  0.488 M. melanops  0.420 P. nigrofasciata  0.370 
G. holbrooki  0.115 F. lineolatus  0.392 L. sicculus  0.290 
E. gloriosus  0.071 M. salmoides  0.364 H. formosa  0.215 

B  D  Fourth Order    
C. macropterus  0.929 G. holbrooki -0.764 U  
L. omatta -0.540 E. americanus -0.550 M. salmoides -0.977 
E. americanus  0.488 C. macropterus 0.550 E. fusiforme  0.904 
L. macrochirus -0.421 L. macrochirus -0.305 E. zonatum  0.176 
L. gulosus  0.366 L. sicculus -0.251 C. macropterus -0.141 

D  Third Order    O. emiliae -0.136 
C. macropterus  0.987 U  B  
G. holbrooki  0.903 G. holbrooki  0.936 M. salmoides -0.825 
E. americanus  0.204 N. texanus  0.851 C. macropterus -0.800 
A. sayanus  0.184 P. nigrofasciata  0.370 E. fusiforme  0.100 
L. gulosus  0.162 L. sicculus  0.290 L. omatta -0.048 
Second Order    N. petersoni  0.126 E. okefonokee -0.038 

U  B  D  
G. holbrooki -0.764 C. venusta  0.863 L. sicculus -0.999 
L. gulosus  0.580 N. texanus  0.213 C. macropterus -0.664 
E. americanus   0.555 G. holbrooki  0.323 G. holbrooki -0.473 
C. macropterus  0.555 P. nigrofasciata -0.330 L. punctatus -0.400 
L. macrochirus -0.305 L. auritus  0.368 L. auritus -0.256 

 
50.8333, R = 29.4048). Two paired sites involved the same stream orders (first and third) 
and the other two involved different stream orders (first and fourth, second and fourth). 
Unpaired sites included only three stream orders with fourth order sites accounting for 
50.00% (n = 3). Assuming unequal variances between paired and unpaired subsites, an 
unpaired-t test (Excel, Microsoft, 2021) was computed and was not significant (Two-sided 
P = 0.4174).  Among the four paired subsites, two pairs involved the same stream orders 
28.57% (n pairs = 2, n sites = 4), two involved different stream orders 28.57% (n pairs = 
2, n sites = 4), and the six unpaired sites accounted for 42.86% (n = 6).  
 A primary objective of this study was to analyze factors at bridge subsites that 
influenced species diversity. Bridge subsites possessed the highest numbers of species (n 
= 40) and habitat dissimilar to up steam and down steam subsites. Eight species 
collected at only bridge sites where L. platyrhincus, A. calva, U. pygmaea, N. 
crysoleucas, F. chrysotus, L. ommata, E. gloriosus and E. evergladei. Three species that 
were collected at upstream and downstream subsites but not bridge subsites were the  
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Figure 5. Cluster Analysis of fish species assemblages at bridge subsites.  Numbers 1-4 represent stream 
orders. First alpha values (A, B, C, D, E) represents individual sites within stream orders. Second alpha 
value (B) indicates bridge sites. 
 

hybrid Pteronotropis sp. cf. hypselopterus metallicus, and A. brunneus and L. 
marginatus. To access factors influencing the structure of fish assemblages at bridge 
subsites, regression analyses were conducted. Three nonparametric linear regression 
analyses were computed comparing the number of fish species to: (1) stream order, (2) 
number of side pools, and (3) age of the bridge (range years since built = 3 - 64), and a 
multiple linear regression was conducted on bridge construction variables (bridge 
length, bridge width, and length + width). The three nonparametric linear regression 
analyses were none significant (Stream order: tau b = 0.201, Two-sided P = 0.389; Side 
Pool Numbers: tau b =  0.215, Two-sided P = 0.368; Bridge Age, tau b =  0, Two-sided P 
= 0.9558) The multiple linear regression on bridge construction variables, including the 
combined variables of bridge length plus bridge width, which was dropped from the 
model due to high a correlation with the uncombined variables, was not significant ( F = 
1.241645, P = 0.3264, R²  = 0.184175). A best subset regression analysis identified 
bridge width as the most likely predictor, but it was not significant and the estimation of 
variance was low (t = 1.137435, P = 0.2776, R² = 0.097321).   

A multiple linear regression analysis examined the influence of chemical variables, 
temperature, substrate variables, current, aquatic pool dimensions and vegetation 
coverage on species numbers. Due to the potential interaction of total surface area (main 
pools and side pools) and vegetation surface area, an additional variable was developed 
adding total surface area plus vegetation surface area (ResearchGate 2022). Dependent 
and independent variables were transformed via z-score, log normal (ln), log10 (l10), 
squared (sq) and square root (sqrt). Original data and all transformed scores were tested 
for normality using Shapiro Wilk (W and V) and Shapiro Francia (W’ and V’) test sores 
(Tables in Wright, 2013). Of the 17 variables, untransformed data for pH, sand, depth, 
and side pool surface area tested normal with all other variables non-normal or likely not 
to have normal distributions (StatsDirect 2020). Standardized independent variables 
with the highest Shapiro Wilk and Francia scores were used in multiple linear regression 
analyses. The multiple linear regression run on all 17 predictor variables failed based on 
Givens rotations QR decomposition and singular value decomposition (SVD) analyses 
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indicating multiple collinearities existing between variables (Daoud, 2017). These results 
were further supported by a Durbin-Watson test statistic (DW = 0.48989) indicating 
positive multiple collinearities between variables. To reduce multiple collinearities, the 17 
predictor variables were divided into three sets of variables: (1) chemical and 
temperature, (2) substrates and current, and (3) physical factors involving main and side 
pool surface area, vegetation surface area and total surface area plus vegetation surface 
area. The three sets of variables were each run in two sets of multiple linear regressions 
comparing the selected original and standardized variables to species numbers per bridge 
subsite followed by a best subset analysis. The regression analysis on chemical variables 
and temperature was not significant (ANOVA, F = 2.3725, P = 0.1296). A best subsets 
analysis was significant (ANOVA, F = 4.86722, P = 0.031) and identified pH (P = 0.0452) 
and conductivity (ln, P = 0.0104), as two key predictor variables. The strength of the two 
variables as predictors of species number per bridge subsite was low (R² = 0.46948). 
Substrate and current multiple linear regression analysis was not significant (ANOVA, F 
= 0.320228, P = 0.919). The best subset analysis identified sand as the best predictive 
variable, but it was not significant (ANOVA, F = 0.897022, P = 0.3623), and the strength 
of predictivity was very low (R² = 0.06955). The multiple linear regression analysis on 
physical factors was not significant (F = 2.263404 P = 0.1546). The best subset analysis 
identified main pool surface area (sqrt, P = 0.0056), side pool surface area (P = 0.0118) 
and total surface area plus vegetation surface area as significant (P = 0.0042), with 
predictivity being low (R² = 0.318529).  

The second set of regression analyses involved Principal Component Regressions 
(PCR) in which the three independent variable data sets listed above were first run 
through PCR and variables with the highest PCA1 and PCA2 scores (≥ 0.600) were used 
in a set of three multiple linear regression analyses on variables selected from each set of 
variables followed by best subsets analyses. The PCA on chemical variables plus 
temperature resulted in the selection of pH, O2 ln, conductivity ln and temperature ln 
being selected. Conductivity ln was the only variable identified as significant (P = 0.0237) 
and the strength of correlation low (R2 = 0.5132). The best subsets analysis identified pH 
(P = 0.0452) and conductivity (P = 0.0104) as significant. The PCA on substrates and 
current resulted in mud ln, gravel ln, and current ln as being selected with no variable 
identified as significant (P ≥ 0.622). The best subset analysis identified gravel ln as the 
only variable selected and it was nonsignificant (P = 0.633). The final set of variables run 
through PCA, pool and vegetation dimensions identified side pool surface area and 
vegetation surface area as key variables with neither being significant (P ≥ 0.113). The 
best subset analysis did not identify any variable as significant (P ≥ 0.113). 

 To further assess what influenced the lack of significance in the above regression 
models, multiple Kendall Ranked Correlations were carried out on non-transformed data 
comparing species numbers per bridge subsite to each of the original 17 variables. No 
ranking of fish species numbers verses each independent variable was significant (ranges 
b = -0.335243 - 0.268194; P = 0.101 - > 0.9999) indicating that no similar patterns of 
rank order existed between fish species number and measured variables. 
 

DISCUSSION 
A key factor impacting this research was the occurrence of moderate (n = 7), severe 

(n = 4) and extremely severe (n = 9) monthly drought events from January 2011 to August 
2012, (Palmer Drought Index 2013), with one normal month of rain occurring after field 
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collections were completed. The drought affected many riparian systems in South 
Georgia, USA, and impacted research on the status of the Blackbanded sunfish and other 
fish species of concern (Bechler and Salter 2013) taking place at the same time in the study 
area. As such, the drought provided an opportunity to assess the impact of bridges on low 
order streams during drought events as possible sites of refugia for fish.   

Past studies have examined macroinvertebrate assemblages on fourth and lower 
order streams following site naturalization; and prior to this study no studies have 
specifically considered the effects on fish assemblages at lower order stream bridge sites 
(Joy and Death 2000; Blettler and Marchese 2005). This study examined the effect 
bridges have on fish species assemblage’s and provides support for bridge sites as having 
potential positive effects downstream from the bridge subsite. Third order bridge sites did 
not have a thalweg at the bridge subsite which resulted in shallower depths, and smaller 
surface areas and perimeters. Afore mentioned changes helped depress silt and clay 
volumes and elevate sand volumes at these subsites towards ones that inhibit 
macroinvertebrate species diversity (Wright 2015). 

Differences and similarities in fish species assemblages between upstream, bridge, 
and downstream subsites were supported by analyses of the data sets with upstream and 
downstream subsites sharing more species in common, than upstream and bridge 
subsites, or downstream and bridge subsites. Wellman et al. (2000) studying the impact 
of bridges and culverts and extended reaches above and below them found no major 
differences across their study sites. However, Benton et al. (2008) did find differences in 
Etowah Basin streams in northern Georgia, USA. Warren and Pardew (1998) also found 
variation based on their study of various stream crossings, with Frei (2006) noting the 
importance of hydraulic engineering at stream crossings and confirmed by Hotchkiss and 
Frei (2007). 

Compared to upstream subsites, bridge and downstream subsites possessed 
greater species diversity with bridge subsites possessing the greatest species diversity. As 
such, upstream subsites could serve as controls since they were least affected by bridge 
subsite construction. The importance of such controls has been identified by Jackson et 
al. (1992). If increased fish species diversity is seen as beneficial, then factors originating 
at bridge subsites and downstream subsites can be seen as potentially beneficial. The 
difference between bridge subsite species diversity levels and the other subsite species 
diversity levels were greatest at the lower order streams and decreased from first to fourth 
order streams. This trend supports species diversity being more positively affected by 
bridge construction on lower order streams than higher order streams. This pattern also 
accounts for why research on higher order steams has found negative effects of bridge 
construction on fish (Cline et al. 1982; Larsen 1993; Blettler et al. 2005; Chadwick et al. 
2006; Lau et al. 2006). It also suggests that from fourth to higher order streams, bridge 
site construction shifts from potentially positive to negative. Main and side pool surface 
areas and total surface area with vegetation were significant physical variables related to 
increased fish species diversity in the multiple linear regressions. However, these 
variables might decrease as significant factors as the flow and width of riparian systems 
increase in higher order streams (Pires, et al. 2010) leading to a mean threshold point for 
most systems occurring above fourth order streams. 
 Fish species organized into habitat guilds were used to provide an ecological 
measure for the affects generated by bridge construction. Persinger at al. (2011) and 
Spurgeon et al. (2019) discuss fish guilds as they relate to riverine habitats and 

13

Bechler: Bridges Effects on Low Order Stream Fish Assemblages

Published by Digital Commons @ the Georgia Academy of Science, 2022



preservation of such habitats. Bridge guild data matched the species assemblage data in 
all cases despite the guild data foci being habitat use as opposed to total species diversity. 
Thus, data on fish habitat by subsites matched fish species assemblage diversity data in 
all aforementioned trends. These results support a conceptualization of the bridge sites 
as just generating species diversity, but also generating habitat diversity, at least on lower 
order streams. Thus, converting small portions (bridge subsites) of a riparian system from 
a moderately productive low order stream state to a more productive medium or higher 
order stream with elevated levels of habitat diversity. 

The multiple linear regression analysis on all 17 standardized independent 
variables resulted in the identification of multiple linear correlations among the 
independent variables with no significant variables impacting species diversity 
(StatsDirect 2007). Dividing the 17 independent variables into three sets of variables 
(chemical and temperature, substrates and current, and physical factors and vegetation 
surface area) and recomputing regression analyses via multiple linear regressions and 
principle component regressions on each set of independent variables followed by best 
subsets analyses resulted in the identification of pH, conductivity, main pool surface area, 
side pools surface area, and total surface area plus vegetation surface area as five 
significant variables potentially influencing fish diversity at bridge sites. The work of 
Pires, et al. (2010) supports the results in this study. Lower pH values at lower order 
bridge sites could indicate elevated levels of dissolved oxygen content (DOC) generated 
by concentrated levels of fulvic and humic acids in portions of blackwater systems during 
drought events (Meyer 1990). In the absence of sufficient macrophytes or flow, decreasing 
pH levels might proxy for decreased oxygen levels (Boto and Bunt 1981; Todd et al. 2009). 
Due to the similarities in the measurements of main pool and side pool total surface areas 
and total surface area plus vegetation, each may function as proxies for the other, in that 
they are related to habitat diversity and through that, to vegetation, pH, and oxygen. The 
pH during summer and main pool and side pool total surface areas of the water at the 
bridge subsites can support greater fish species diversity if the pH in summer is properly 
monitored and the surface area of the bridge subsite is maximized during bridge site 
construction and throughout subsequent bridge site renovation events. 

Bridges create environments that often differ from undisturbed stream 
environments with respect to many physiochemical and biological properties. 
Physiochemical and biological factors were assessed for their effects on the assemblage 
structures to determine the overall impact of anthropogenic effect bridges have on species 
diversity and biotic potential. This has allowed the development of an understanding of 
the difference between bridge site and natural site assemblages while determining if 
naturalized bridge sites might be a source of wetland species and assemblage diversity 
following stochastic drought events which are occurring worldwide (Keaton, et al. 2005, 
McCargo and Peterson 2010, Wedderburn, et al. 2012, Wedderburn, et al. 2014). 

A significant point of this research was that it addressed the absence of research 
on the fish species found at bridge sites at first through fourth order streams in South 
Georgia, USA, an area predominated by flatwoods habitat (Barnett et al. 2007; Todd et 
al. 2009).  The research was accentuated by the severe drought in the Southern United 
States during the summer of 2011 (Wisniewski et al. 2013). Additional concerns for the 
health of rivers and streams have been brought to bear considering increases of combined 
investment by all levels of government in highway and bridge infrastructure. Bridges in 
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the United States are averaging 40 years old, and half were built before 1964, with 26.7% 
of all bridges structurally deficient or functionally obsolete (Peters 2006).  
 As part of the river continuum concept, first through third order streams belong to 
the headwater stream set, while fourth through 6th order streams belong to the medium 
stream order set (Vannote et al. 1980). The clearing of the bridge subsite areas of canopy, 
widening of the bridge subsite run, and deepening of the bridge subsite run at lower order 
headwater steams alters the bridge subsites and brings them closer to the physical and 
species state of the fourth through sixth order streams. Medium streams have the highest 
levels of macrophyte, fish, and macroinvertebrate species diversities (Vannote et al. 
1980). In consideration of the properties and variables that have been identified for the 
bridge subsites, it can be consider that bridges provide an effect of elevating the river 
continuum measure of the first through third order streams to higher stream orders.  

Future research should address the full extent of the construction shadow effect 
from bridge sites proceeding downstream. Identifying the distance and reduction rate of 
the shadow effect could help support the upstream subsites used as controls. Also, the 
distance of the effect could help in maximizing the full benefits of the naturalized bridge 
site habitat. Testing the effects of bridge sites in the current research to sites with similar 
morphology in areas of sharper relief or elevation could broaden the applicability of the 
research. While this research was carried out in flatwoods habitats, additional work on 
first through fourth order streams should be carried out in other habitat types to assesses 
the impact of such habitats. Such research also has the potential for the identification of 
fish species not known to inhabit such areas such as H. formosa, which was found further 
south of the study area in Lowndes County Georgia by Chaney and Bechler (2006) and 
was found at eight subsites during this study (Wright 2013).  
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APPENDIX 
+Table I. Fish species scientific names (genus and species) collected at study sites. 
Families are in bold fonts. Subsites individual species were collected from are listed as: 
U = upstream, B = bridge, D = downstream and are in parentheses. Numbers preceding 
scientific names correspond to species common names listed in Appendix Table I. Note, 
Pteronotropis hypselopterus has been identified as part of species complex and is listed 
as Pteronotropis sp. cf. hypselopterus metallicus (Mayden and Jason, 2015).  

Family:  Genus and Species Family:  Genus and Species 

Lepisosteidae Fundulidae 

1. Lepisosteus osseus (BD) 1. Fundulus chrysotus (B) 

2. Lepisosteus platyrhincus (B) 2. Fundulus lineolatus (UBD) 

Amiidae 3. Leptolucania ommata (B) 

1. Amia calva (B) Poeciliidae 

Aphredoderidae 3. Gambusia holbrooki (UBD) 

1. Aphredoderus sayanus (UBD) 4. Heterandria formosa (UBD) 

Umbridae Centrarchidae 

1. Umbra pygmaea (B) 1. Micropterus notius (BD) 

Esocidae 2. Micropterus salmoides (UBD) 

1. Esox americanus vermiculatus (UBD) 3. Centrarchus macropterus (UBD) 

2. Esox niger (UBD) 4. Lepomis auritus (UBD) 

Cyprinidae 5. Lepomis gulosus (UBD) 

1. Notemigonus crysoleucas (B) 6. Lepomis macrochirus (UBD) 

2. Opsopoeodus emiliae (UBD) 7. Lepomis marginatus (UD) 

3. Notropis petersoni (UBD) 8. Lepomis punctatus (UBD) 

4. Notropis texanus (UBD) 9. Pomoxis nigromaculatus (UBD) 

5. Cyprinella venusta (UBD) 10. Enneacanthus gloriosus (B) 

6. Pteronotropis sp. cf. hypselopterus 
metallicus (B) 

11. Enneacanthus obesus (B) 

12. Acantharchus pomotis (UB) 

Catostomidae Elassomatidae 

1. Minytrema melanops (UBD) 1. Elassoma evergladei (B) 

2.  Erimyzon sucetta (BD) 2. Elassoma okefenokee (B) 

Ictaluridae 3. Elassoma zonatum (UBD) 

1. Ameiurus brunneus (D) Percidae 

2. Ameiurus nebulosus (B) 1. Percina nigrofasciata (UBD) 

3. Noturus gyrinus (UBD) 2. Etheostoma edwini (UBD) 

4. Noturus leptacanthus (UBD) 3. Etheostoma fusiforme (UBD) 

Atherinopsidae   

1. Labidesthes sicculus (UBD)   
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Table II.  Fish species common names collected at study sites. Families are in 
bold fonts. Subsites species were collected from are listed in Results, Table II.  
Fishes of Georgia (2022) provides information on individual species. 
Family:  Common Names Family:  Common Names 

Lepisosteidae Fundulidae 

1. Longnose gar  1. Golden topminnow  

2. Florida gar  2. Lined topminnow  

Amiidae 3. Pygmy killifish  

1. Bowfin  Poeciliidae 

Aphredoderidae 1. Eastern mosquitofish  

1. Pirate Perch  2. Least killifish  

Umbridae Centrarchidae 

1. Eastern mudminnow 1. Suwannee bass  

Esocidae 2. Largemouth Bass  

1. Redfin pickerel (Eastern) 3. Flier  

2. Chain pickerel  4. Redbreast sunfish  

Cyprinidae 5. Warmouth  

1. Golden shiner6 6. Bluegill  

2. Pugnose minnow  7. Dollar sunfish  

3. Coastal shiner  8. Spotted sunfish  

4. Weed shiner  9. Black crappie  

5. Blacktail shiner  10. Bluespotted sunfish  

6. Sailfin and Metallic Shiner (Hybrid) 11. Banded sunfish  

Catostomidae 12. Mud sunfish 

1. Spotted sucker Elassomatidae 

2. Lake chubsucker  1. Everglades pygmy sunfish  

Ictaluridae 2. Okefenokee pygmy sunfish  

1. Snail bullhead  3. Banded pygmy sunfish  

2. Brown bullhead   Percidae 

3. Tadpole madtom  1. Blackbanded darter  

4. Speckled madtom  2. Brown darter  

Antherinopsidae 3. Swamp darter  

1. Brook silverside   
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