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ABSTRACT 
 
Larval Blue Ridge Two-lined Salamanders (Eurycea wilderae) are significant 
components of Appalachian streams, reaching densities up to 100/m2. Not surprisingly, 
these salamanders fall prey to many types of predator. In order to test the hypothesis 
that larval E. wilderae actively avoid predators, we paired them against a variety of 
predators of this species. Predators included Banded Sculpins (Cottus carolinae), 
Chattahoochee Crayfish (Cambarus howardi), and Spring Salamanders (Gyrinophilus 
porphyriticus), both adult and larval. We placed larvae in a 1-m metal trough filled with 
water with a predator placed in a cage at one end. A control treatment consisted of an 
empty cage. For each trial, we placed a larval E. wilderae. After the larva stopped in one 
place for 10 min, we measured the distance between the larva and the cage. We ran 18‒
20 replicates for each of the five treatments. A Kruskal-Wallis test showed no significant 
difference between any of the treatments in mean distance. Disagreement between our 
results and those of other workers suggests the possibility of interspecific or 
interpopulation variation in anti-predator behavior. In addition, because of their high 
densities and wide variety of predators, larval E. wilderae may not suffer sufficient 
predatory pressure from a particular species of predator to evolve appropriate 
behavioral responses. 
 
Key Words: predator, prey, behavioral avoidance, salamander, larvae, Appalachian 
streams, Eurycea wilderae  

 
INTRODUCTION   

  
Predation is a critical process influencing the distribution and abundance of many 
organisms, especially in aquatic ecosystems. In fact, aquatic taxa can sort themselves 
among habitats according to the presence of their predators (Barr and Babbitt, 2002). 
Moreover, predator-induced, behavioral responses can dramatically affect population 
and community dynamics (e.g., Reznick et al., 2001; Binckley and Resetartis, 2003; 
Vonesh et al., 2009). 

How a prey species responds to potential predators depends on a number of 
factors. For one thing, anti-predator responses vary depending on the type of predator. 
In stream systems, prey organisms respond differently to invertebrate versus vertebrate 
predators (Wooster and Sih, 1995). Responses also vary with individual prey species 
such as variance in vulnerability of prey species determining how small fish respond to 
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larger fish predators (Schlosser, 1987). In some cases, aquatic species including both 
fish and amphibians (Kraus 1993; Lutterschmidt et al., 1994; Chivers and Smith, 1998) 
respond to alarm signalling (“Schreckstoff”). 

Anti-predator responses can be further complicated by the prey species’ stage of 
development, particularly when different stages are associated with different ecological 
niches. Predator-avoidance behaviors, for instance, are most evident in the youngest 
stages of fishes (Fuiman and Magurran, 1994). How prey species respond to familiar 
predator species versus unfamiliar ones is another influential factor (Sanson et al., 
2001), and some species such as Brook Trout (Salvelinus fontinalis) can learn to 
recognize predators (Mirza and Chivers, 2000). 

While lungless salamanders of the family Plethodontidae have long been 
recognized for their ecological importance to terrestrial systems (e.g., Burton and 
Likens, 1975), a better understanding of the role of plethodontid larvae in aquatic 
systems has recently been emerging. Aquatic larvae are important components of 
headwater streams of the Appalachian Mountains, having a biomass that significantly 
influences both energy flow and nutrient cycling (Milanovich et al., 2015). Densities of 
some plethodontid species such as the Blue Ridge Two-lined salamander (Eurycea 
wilderae) can reach as high as 100/m2 (Peterson and Truslow, 2008).  

Several stream predators feed on larvae of the plethodontid genus Eurycea. 
Potentially important predators include Banded Sculpins (Cottus carolinae; Tumlison 
and Cline 2002), various crayfish species (Gamradt and Katz, 1996; Cruz and Robelo, 
2005), and Spring Salamanders (Gyrinophilus porphyriticus; Burton, 1976; Bruce, 
1979).  

Plethodontid salamanders have well developed visual systems, and visual 
communication through displays and movements convey information about aggression 
and other social cues (Jaeger and Forester, 1993). Plethodontids also use 
chemoreception to identify predators to avoid them (Madison et al., 1999). Therefore, it 
is likely that plethodontid larvae recognize and avoid predators. Because of their 
numerical importance to their respective ecosystems, how plethodontid larvae respond 
to potential predators may be important in determining the availability of resources to 
the surrounding members of the ecosystem.  

While larval ambystomatid salamanders respond to the presence of predatory 
fish (e.g., Holomuzki, 1986; Semlitsch, 1987), studies of interactions between Eurycea 
larvae and their predators have yielded mixed results. Larvae of the Northern Two-lined 
Salamander (E. bislineata) shift activity schedules in the presence of predatory Brook 
Trout (Barr and Babbitt, 2007). Moreover, they have a negative association with Brook 
Trout across spatial scales (Barr and Babbitt, 2002). Larval G. porphyriticus can reduce 
the survival of larval E. wilderae (Beachy, 1994) and inhibit the nighttime activity of 
larval E. cirrigera (Gustafson, 1994). In addition, adult E. cirrigera avoid chemical cues 
from G. porphyriticus (Marvin and Cupp 2018), while larval Eurycea have been shown 
to avoid chemical cues of predatory fish (Petranka et al., 1987; DeSantis et al., 2013). On 
the other hand, larval E. cirrigera from an Indiana population did not respond to 
chemical stimuli from crayfish within their native ranges (Vollmer and Gall, 2014), and 
larvae of E. wilderae from Georgia showed no reaction to the presence of fish predators 
(Lombard and Camp, 2020).  

Because the E. wilderae tested by Lombard and Camp (2020) were from a 
fishless stream, the absence of a response by these larvae may have been due to the fact 
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that the predators tested were not from their resident stream. Our purpose was to test 
the hypothesis that E. wilderae larvae respond to the presence of predators with which 
they reside, i.e., crayfish and G. porphyriticus. 
  

MATERIALS & METHODS 
 
In order to test larval response to potential predators, we collected larvae (n = 60) of E. 
wilderae from the same stream used in the study by Lombard and Camp (2020). This 
stream is a small, headwater stream on the campus of Piedmont University in Demorest, 
Habersham County, Georgia. We collected predatory Chattahoochee Crayfish 
(Cambarus howardi) and larval G. porphyriticus from the same stream. In addition, we 
collected adult G. porphyriticus from a tributary of the West Fork of Wolf Creek located 
in Sosebee Cove in Union County, Georgia.  

We housed all specimens in aerated tanks at 21 C for several days before testing 
began. The lights were kept off, although natural lighting from two windows gave a 
photoperiod of ~12.5 hr.  

We had four treatments, which were as follows: 1) a predator-free control; 2) a 
larval G. porphyriticus; 3) an adult G. porphyriticus; and 4) an adult C. howardi. We 
replicated each treatment 20 times except for the larval G. porphyriticus, which 
treatment had 18 replicates.  

In the avoidance trials, we followed the methods of Lombard and Camp (2020), 
using the same metal troughs used in that study. Each trough was 1 m in length and 
lined with Press-n-Seal® to prevent leaks. At the end of each trough, we placed a screen 
cage (9.5 x 8.5 x 10 cm) with an aerator to house a predator. The control treatment 
consisted of an empty cage with an aerator.   

For each trial, we filled a trough with water, placing a predator in the aerated 
cage. To prevent a predator’s escape, we covered each cage with a screen lid. We placed 
a larval E. wilderae in the middle of the trough and checked its position every 10 min. 
Once the salamander remained in the same place for two consecutive observations (10 
min), we measured the distance of the salamander from the cage. For each subsequent 
trial, we replaced the water and used a different larva. We ran all trials with only natural 
light from the windows. We never used a larval E. wilderae more than once. Once the 
trials were completed, we released all subjects at their original streams with the 
exception of the larval G. porphyriticus, which died prematurely.  

For statistical analysis, we added the results of the 20 trials run earlier by 
Lombard and Camp (2020) with the predatory C. carolinae as an additional treatment. 
Because of the non-normal nature of some of the data, we tested for differences among 
treatments in mean distance using a Kruskal-Wallis. We ran these analyses using SPSS 
ver. 24. 
  

RESULTS 
 
The distance (mean ± 1 SE) from the predator’s cage for each of the five treatments was 
35.48 ± 6.51 cm for adult G. porphyriticus, 47.70 ± 6.90 cm for larval G. porphyriticus, 
43.53 ± 7.47 cm for C. howardi, 37.23 ± 7.30 cm for C. carolinae, and 39.48 ± 7.22 cm 
for the control (Figure 1). There was no significant difference among the five treatments 
(H = 3.060, DF = 4, p = 0.545). 
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Figure 1.  Mean distance from larval Euryca wilderae and control cage or cage containing one 
of the following predators: Banded Sculpin (Cottus carolinae), Chattahoochee Crayfish 
(Cambarus howardi), adult or larval Spring Salamander (Gyrinophilus phorphyriticus). 

  
 

DISCUSSION 
 

In our study, E. wilderae larvae did not avoid any of the tested predators. Our results 
did not support our hypothesis that larval salamanders would avoid predators (i.e., 
crayfish, G. porphyriticus) that came from the same stream. Similarly, Vollmer and Gall 
(2014) found that larvae of the closely related E. cirrigera did not recognize predatory 
crayfish. In contrast, Petranka et al. (1987) found that larval E. cirrigera avoided water 
conditioned with predatory fish. The mixed results of these studies suggest that 
predator-avoidance behavior might be species or even population specific. 
 Differences in anti-predator behavior among populations of the same species 
could result from variation in the species of predator that are present or differences in 
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predator density. Variation in behavior could also result from discrepancies in the 
ability of Eurycea larvae to hide from predators, either because of differences in refuge 
availability or in cryptic coloration of the larvae themselves. Larval Eurycea, which are 
brown and spotted, differ markedly in appearance from the respective adults, which are 
brown, yellow, or orange with longitudinal stripes (Petranka, 1998). Cryptic coloration 
is generally more important to the predator-avoidance toolkit of larval fishes than it is to 
adults (Fuiman and Magurran, 1994). The larvae of both E. wilderae and E. cirrigera 
exhibit inter-population variation in color (Benfield et al., 2015), a possible adaptive 
response to variance in predation pressure. 

Another possible reason for the lack of avoidance of predators by larval E. 
wilderae may be a synergism between the high density of this species and the diversity 
of predators with which they must contend. Larval E. wilderae are extremely abundant 
in Appalachian streams, reaching densities approaching or even exceeding 100/m2 
(Peterson and Truslow 2008). Moreover, the diversity of predators including fish, 
salamanders, and crustaceans translates into predator pressure coming from many 
different directions. Given the sheer numbers of Eurycea larvae and the wide variety of 
visual and chemical cues emitted by different predators, the larval population of E. 
wilderae simply may not suffer sufficient pressure from a single predator species to 
select for behavioral avoidance of that particular predator. 

In contrast to our results with larval E. wilderae, Marvin and Cupp (2018) 
demonstrated that adult E. cirrigera avoid adult G. porphyriticus, suggesting the 
possibility of a difference between life-history stages in anti-predator behavior. Selection 
for the enhancement of adult survivorship sometimes works in opposition to selection 
for greater larval survival, forcing a tradeoff between larval and adult ontogenetic stages. 
Such tradeoffs between larval and adult ontogenetic stages in species with biphasic life 
cycles are not uncommon (e.g., Sentinella et al., 2013; Lindstedt et al., 2016). 

Our study adds another piece to the emerging picture of predator-prey 
interactions involving larval plethodontids. Even so, it is obvious that an abundance of 
unanswered questions remain. In particular, the possibility of inter-population 
differences in anti-predator responses would seem an interesting and fruitful avenue for 
future research in this area. 
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