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{firstname.lastname}@tu-dresden.de

Abstract— With rapidly increasing datasets and more dynamic
workloads, adaptive partial indexing becomes an important way
to keep indexing efficiently. During times of changing workloads,
the query performance suffers from inefficient tables scans while
the index tuning mechanism adapts the partial index. In this
paper we present the Adaptive Index Buffer. The Adaptive Index
Buffer reduces the cost of table scans by quickly indexing tuples
in memory until the partial index has adapted to the workload
again. We explain the basic operating mode of an Index Buffer
and discuss how it adapts to changing workload situations.
Further, we present three experiments that show the Index Buffer
at work.

I. INTRODUCTION

With constantly growing datasets partial indexing becomes

more and more important. Partial indexing focuses indexes on

the data of interest [1], [2]. Data of less interest, e.g., data

primarily kept for reasons of revision, linage, and versioning,

remain unindexed and do not allocated storage, memory and

maintenance resources. The main drawback of partial indexes,

of course, is high cost for users that query unindexed data.

Having stable workloads, the DBA can reduce this effect by

carefully designing and adjusting the definition of the partial

indexes. In dynamic workload environments, an online tuning

facility continuously adapts the partial indexes.

Partial indexing is especially powerful for secondary in-

dexes. A generally interesting tuple is not necessarily interest-

ing for every secondary index. For instance, cheap products

may be often queried by price, whereas well known and

specifically advertised products may be often queried by their

name. Since secondary indexes are purely redundant data

managed for fast retrieval, it is even more important to focus

secondary indexes on the tuples that are actually retrieved

through that access path.

Index adaptation is not for free. Adding and removing

entries from an index involves I/O and memory activities,

which add to the total execution cost of the database workload.

To gain cost benefits, the achieved reduction of query exe-

cution costs must outweigh the adaptation costs. In dynamic

environments the future workload is not predictable. Hence,

an online tuning facility triggers only adaptation steps that

would have provided enough query cost reductions in the

recent past to sanctify their adaptation costs. Inevitably, the

necessary monitoring time introduces a control loop delay to

every online tuning.

Figure 1 illustrates the control loop delay with a simulation

of an adaptive partial indexing. Queried is a single column
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Fig. 1. Control Loop Delay in Adaptive Partial Indexing

of integer values. The simulated tuning mechanism indexes

a queried value if it has shown enough potential query cost

reduction during the last twenty queries. For simplicity of

the simulation, a value is assumed to reach the threshold if

it was queried at least six times in the monitoring window.

Entries are removed from the index based on a least recently

used strategy. The simulation runs for 500 queries. Between

query 200 and 300 the focus of the queries shifts from values

less 15 to values greater 15 – depicted with the queried value

range in the figure. The indexed value range depicts the values

covered by the partial index. As can be clearly seen, it takes the

tuning mechanism about 200 queries to follow the workload

change. During adaptation time the hit rate of the partial

index drops significantly. With a low partial index hit rate,

the rate of expensive table scans increases. Because of this

effect, workload changes burden the database system twice.

The required adaptation adds to the total execution costs and

additionally the query costs increase because of a suboptimal

index configuration.

In this paper, we address this double burden of workload

changes. We present the Adaptive Index Buffer, a technique to

speed up table scans under the presence of partial secondary

indexes. The technique builds on the index-aware usage of the

database buffer. In-memory and without need for recovery, the

Index Buffer can build up index information with significantly

lower cost than adapting traditional indexes. Consequently, the

Adaptive Index Buffer exhibits a notably shorter control loop

delay than traditional index adaptation. As a scratch pad index,

the Adaptive Index Buffer backs the partial indexes during

times of unstable workload. It helps during spikes of deviating
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Fig. 2. Partial index

workload, too short to adapt the disk-based partial index, as

well as during periods of workload changes.

The remainder of the paper first takes a closer look at

partial indexing and its effects on queries not covered by a

partial index (Section II). Second, Section III presents the

Index Buffer; how it collects index information and speeds up

table scans. Third, we discuss the adaption mechanism of the

Index Buffer; how it discards collected index information and

how it balances between multiple partial indexes (Section IV).

Fourth, Section V talks about the results of the evaluation we

conducted. Finally, we outline how other approaches related

to the concept of the Index Buffer (Section VI) and conclude

the paper (Section VII).

II. PARTIAL INDEXING

Partial indexes cover only a subset of the values of a column.

Consider the example in Figure 2. Assume a database about

the on-time performance of international flights. It lists all

flights with their departure times, arrival times, and delays.

Since the provider mainly sells reports to U.S. airports, it

queries the flights most frequently by U.S. airports and uses a

partial index on its airport column. As shown in the figure, the

index only contains U.S. airports. If the database is queried by

the Chicago O’Hare International Aiport (ORD), the database

system can use the partial index to answer the query efficiently.

It scans the index for ORD and then fetches the qualifying

tuple from their respective pages. Because the index is partial,

it only requires storage and maintenances resources for U.S.

airports.

However, if the provider suddenly creates reports for Ger-

man airports, the database system cannot use the index. As

shown in the figure, a query for Frankfurt Airport (FRA)

can only be answered with a full scan of the table. Until the

partial index adapts to the new workload situation, the system

executes the queries for German reports very inefficiently. In

consequence, not only the German reports take longer, but

also occupy significantly more resources than their share in

the workload would suggest.

Even if a query does not hit the partial index, the index

provides useful information. All tuples referenced in the index

will not be part of the result set – otherwise the query would

have hit the index – and can be safely excluded from the set of

candidates. However, the database system can make only use
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Fig. 3. Share of fully indexed pages with partial indexing

of this knowledge to reduce its I/O if a page solely contains

tuples indexed in the partial index. In such a case, the database

system can skip the page during the table scan without missing

a matching tuple. If only a single tuple in a page is not covered

by the partial index, though, the database system has to read

the whole page.

The probability of pages fully indexed by a partial index

depends on three aspects: (1) the number of tuples per page,

(2) the probability of tuples to be in the partial index, and (3)

how strong the physical order of the tuples correlates with their

logical order regarding the partial index. We have simulated

different correlations between logical order and physical order.

The simulation started with a logically order set of tuples

(correlation equals 1) and gradually swapped randomly picked

tuples to decrease the correlation. In each step, we counted

the number of fully indexed pages. Figure 3 shows the results

for six scenarios. All scenarios are based on 100,000 tuples.

For perfectly clustered data (i.e., correlation equals 1), the

fraction of fully indexed pages corresponds to the number of

tuples covered by the partial index. As can be seen in the

figure, the fraction drops quickly with decreasing correlation.

For typically page sizes of 10 or more tuples and a correlation

of 0.8 or less, less than 5% of the pages remain fully indexed.

In general, the physical order and the logical order are barely

correlated for multiple secondary indexes. Consequently, pages

that are completely covered by a partial index are extremely

unlikely and in the outstanding majority of cases the database

system has to perform a full table scan.

III. INDEX BUFFER

The Index Buffer leverages the idea of skipping fully

indexed pages. As we have shown, pages fully indexed by a

partial index are very unlikely. The index buffer complements

the partial index by covering the remaining unindexed tuples

of a page. This way, more pages become fully indexed and

can be skipped safely during a table scan.

Figure 4 illustrates the idea. Here, the Index Buffer indexes

the remaining unindexed tuples of Page 2 and Page 5 – HEL

and FRA, respectively – so that Page 2 and Page 5 are fully

indexed. Now, the table scan, which is necessary to answer a

query for Frankfurt Airport, can skip these two pages, which

significantly reduces its I/O cost. To find all matching tuples,
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Fig. 4. Partial index with Index Buffer

the database system additionally scans the Index Buffer. In the

example, this yields the second FRA tuple from Page 5.

The Index Buffer is an index structure residing within the

database buffer. As a helping structure during times of partial

index adaptation, the Index Buffer should only consume or

occupy resources if it is actually used while it must be quickly

available if it is needed. Main memory allows quick adaptation

at low cost, which ensures that the Index Buffer involves a

significantly smaller Control Loop Delay than the partial index

tuning. The Index Buffer builds on a normal B*-Tree [3].

Main memory-optimized index structures such as the CSB+-

Tree [4] or a hash table can be used too. Which particular

index structure is used is not essential for the general idea

of the Index Buffer. Additionally to the B*-Tree, the Index

Buffer maintains a counter C[p] for each page p that represents

the number of unindexed tuples in the page. The array of all

counters is initialized during the creation of the partial index.

Every counter is initially set to the number of tuples in the

page minus the tuples covered by the partial index.

Queries that do not hit a partial index build up the Index

Buffer. While such a query scans the table, the system inserts

the so far unindexed tuples of pages chosen beforehand.

Algorithm 1 shows the basic procedure. Assume a query

with a predicate q, which is not part of the partial index.

The algorithm consists of three essential steps. First, the

system selects the pages that should be indexed in the Index

Buffer (Line 7). Second, the algorithm scans the Index Buffer

and adds qualifying tuples to the result (Line 8–10). Third,

it scans the table (Line 11–17). Pages with a counter equal

zero are skipped, since they are fully indexed. For all other

pages, the system scans through all tuples in the page. If a

tuple matches the query predicate, it is added to the result

set (Line 14). If the page was selected to be indexed and the

scanned tuple is not covered by the partial index, the system

adds the tuple to the Index Buffer (Line 16). Additionally, it

sets the corresponding page counter to zero.

During each table scan, the system indexes a set I of pages

in the Index Buffer. This results in a fixed benefit of |I| pages

that can be skipped by the next scan. The page counters allow

picking the pages most beneficial for indexing. Since the goal

is to skip pages during table scans, pages with many already

indexed tuples are more valuable for the Index Buffer. The

benefit of |I| skippable pages is achieved with less buffer space

compared to pages with fewer tuples already indexed in the

Algorithm 1 Indexing Table Scan

1: procedure INDEXINGSCAN(R, q, C, B)

2: � q: queried predicate

3: � R: set of pages to scan

4: � C: counters of unindexed tuples

5: � B: Index Buffer for queried column

6: Q← ∅ � initialize result set

7: I ← SelectPagesForBuffer()

8: for t ∈ B do � Index Buffer scan

9: if q(t) then � tuple matches predicate

10: Q← Q ∪ {t}
11: for p ∈ R with C[p] > 0 do � table scan

12: for t ∈ p do
13: if q(t) then
14: Q← Q ∪ {t}
15: if p ∈ I ∧ t /∈ IX then
16: B.Add(t)

17: C[p]← 0

18: return Q

partial index. Note that the system determines I dynamically

depending on the current index buffer utilization.

The Index Buffer maintains the B*-Tree index and the

counters during inserts, updates, deletes and partial index

adaptions. Which operation the system has to perform depends

(1) if the old tuple told was in the partial index, (2) if the

updated tuple tnew will be in the partial index, (3) if the old

page pold that contained the tuple is in the Index Buffer, and

(4) if the new page pnew that will contain the new tuple is in the

Index Buffer. Table I lists the different maintenance scenarios

with necessary operations.

IV. INDEX BUFFER MANAGEMENT

With various partial indexes in a database, multiple Index

Buffers are created over time. All Index Buffers reside in the

Index Buffer Space, a share of the database buffer of limited

size. The database system controls the size of the Index Buffer

Space before it adds new entries with a tables scan. In case the

new entries would cause the Index Buffer Space to exceed its

configured space bound, the system discards index information

from the space to maintain the limit.

The purpose of the Index Buffer is to allow page skipping

during a table scan. A single entry in the Index Buffer

can reference multiple pages. Further, a single page can be

referenced by multiple index entries. Hence, discarding a

single entry from the Index Buffer has a double negative effect.

First, one or more pages obtain an unindexed tuple and cannot

be skipped anymore. Second, all other entries in the Index

Buffer referencing these pages occupy memory in the Index

Buffer Space without creating any benefit. In consequence,

discarding single entries from the Index Buffer contradicts the

buffer’s purpose.

For the precise and efficient discarding of entries from an

Index Buffer, we partition the B*-Tree of an Index Buffer.
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TABLE I

INDEX BUFFER MAINTENANCE

told ∈ IX told /∈ IX
tnew ∈ IX tnew /∈ IX tnew ∈ IX tnew /∈ IX

IX .Update(told, tnew) IX .Remove(told) IX .Add(tnew) -

pold ∈ B
pnew ∈ B - B.Add(tnew) B.Remove(told) B.Update(told, tnew)
pnew /∈ B - Cpnew++ B.Remove(told) B.Remove(told), Cpnew++

pold /∈ B
pnew ∈ B - B.Add(tnew) Cpold-- B.Add(tnew), Cpold--
pnew /∈ B - Cpnew++ Cpold-- Cpold--, Cpnew++
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Fig. 5. Partitioned Index Buffers

Each partition covers P pages of the table, so that, the

partitions are disjunct in the sets of pages they reference. For

instance, if an index entry in Partition 3 references Page 8,

all other Index Buffer entries that reference Page 8, as well,

are in Partition 3, too. In case the system decides to discard

index information, it always drops complete partitions form

the Index Buffer Space. This efficiently discards all entries

that reference a set of pages.

Figure 5 shows an example with two Index Buffers in

the Index Buffer Space. The first Index Buffer complements

the partial index on Column X and is partitioned in three

partitions. Each partition indexes P = 2 pages. For instance,

Partition 1 indexes the three tuples in Page 1 and Page 7,

which are not covered by the partial index. The second Index

Buffer complements the partial index on Column A and is

partitioned in two partitions. Note that, similar to normal

secondary indexes, it is insignificant for the separation of Index

Buffers whether the columns are in the same table or not.

The Index Buffer Space is managed based on the benefit

and the size of index information. New index information can

displace old index information of same or larger size if it

provides more benefit than the old index information. The

benefit of index information in the Index Buffer depends on

two factors: (1) The number of pages covered by the index

information and (2) how frequent the index information is

used. The higher the factors are the more pages the workload

TABLE II

LRU-K OPERATIONS

Index Buffer B of Index Buffer B′ of
queried column other columns

partial
HB [0]++ HB′ [0]++

index hit
no partial

shift(HB , +1); HB [0] = 0 HB′ [0]++
index hit

can skip. The size of the index information is the memory it

requires to be stored. Generally, the number of entries in an

index causes the size of the index.

How frequent an Index Buffer is used, is determined based

on its access history. Analogously to the LRU-K algorithm [5],

the system maintains a history HB of the K last access

intervals for each Index Buffer B. The average of the history

of Index Buffer B gives the mean access interval TB so

that TB = K−1 ·∑HB
HB [i]. Queries that the system can

answer with the partial index do not utilize the Index Buffer.

Consequently, the Index Buffer Management shifts the history

to the next interval only if a query actually uses an Index

Buffer. Table II summarizes the operations on the LRU-K

history of Index Buffers in the cases the partial index of the

queried column is hit or is not hit.

Further, let the number of pages covered a partition p be

Xp. Then, the benefit of partition p results from bp = Xp ·
T −1
B where B is the Index Buffer the partition belongs to.

Accordingly, the benefit of an Index Buffer B is the sum of

the benefits of its partitions:

bB =
∑

p∈B
bp .

Similar to partitions, the benefit of new index information

results from bI = |I| · T −1
I , where I is the set of pages to

index and TI is the mean access interval of the Index Buffer

that will accommodate the new index information.

For the size of index information, we denote the number of

entries in a partition p as np. Analogously, the size of new

index information results from the number of entries to add,

denoted as nI . Based on the counters for unindexed tuples in

pages, the system can easily determine nI as
∑

s∈I
C[s] .

Further, let nF be the free space left in the Index Buffer Space.
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Algorithm 2 Select Pages for Indexation

1: procedure SELECTPAGESFORBUFFER(R, C, S)

2: � R: set of pages to scan

3: � C: counters of unindexed tuples

4: � S: set of all partitions in Index Buffer Space

5: D′ ← ∅ � D′: set to collect candidate partitions

6: I ′ ← ∅ � I ′′: set to collect candidate pages

7: repeat
8: nA ← nF +

∑
p∈D′ np

9: I ← I ′

10: I ′′ ← I ′

11: repeat
12: I ′ ← I ′′

13: I ′′ ← I ′′ ∪ {SelectNextPage(C,R)}
14: until nI′′ > nA ∨ |I ′′| > IMAX

15: bI′ ← |I ′| · T −1
I′

16: D ← D′

17: D′ ← D′ ∪ {SelectNextPartition(S)}
18: until bI′ ≤∑

p∈D′ bp ∨ I ′ = I
19: DropPartitions(D)
20: return I

Before the system adds new index information to the Index

Buffer, it has to select the pages it wants to index. At that point

the system also checks the space bound of the Index Buffer

Space and triggers displacement of old index information

if required. The page selection routine ensures that there is

enough Index Buffer Space available to index the pages it

returns.

The management strategy of the Index Buffer wants to

achieve two contrasting goals. On the one hand the Index

Buffer should index as much pages as possible to be quickly

of help. On the other hand existing index information should

stay as long as possible in the Index Buffer to be present

if needed. To balance between both goals, the management

strategy indexes precisely so many pages that the resulting

new index information is more benefical than the old index

information that the system must discard to clear the space

required for the new index information. Additionally, there is

configurable upper bound for new index information per table

scan.

Algorithm 2 shows the page selection routine. It returns the

set I of pages for indexation (Line 20) and discard a set D of

partitions to ensure that enough space is available (Line 19).

To determine I and D, the routine gradually adds partitions

to D (Line 17). In each iteration the algorithm preforms three

steps. First, the algorithm determines the total size of the

partitions in D (Line 8). Second, it selects the set of pages

I so that the new index information will fit in the available

space (Line 9–14). Specifically, the algorithm adds pages in

ascending order of there counter C as long as

nI ≤ nF +
∑

p∈D
np .

At most the system indexes IMAX pages during one table scan.

Third, the algorithm determines the benefit of the new index

information bI resulting from an indexation of the pages in

I (Line 15). The algorithm repeats the three steps as long as

the benefit of indexing the pages in I is higher than the benefit

of the partitions in D

bI >
∑

p∈D
bp

or I does not change anymore (Line 18).

The system selects each partition in D following a two-

staged selection algorithm. In the first stage, the algorithm

randomly selects an Index Buffer B with the probability

b−1
B∑

B′∈S\BN
b−1
B′

,

where S is the set of all Index Buffers in the Index Buffer

Space and BN is the Index Buffer the new entries should be

added to. Index Buffers with a low benefit are more likely to

be picked. In the second stage, the algorithm selects a partition

from that Index Buffer. A possible incomplete partition (Xp <
P ) has the lowest benefit within an Index Buffer and will

be picked first. Afterwards, complete partitions are picked in

descending order of their size (np), beause they have the same

benefit.

V. EVALUATION

To evaluate our Index Buffer approach, we conducted a

series of experiments. We implemented the Index Buffer

concept prototypical in the H2 Database Engine 1.3 [6]. We

ran all experiments on an Intel Core 2 Duo U9600 processor

at 1.6 GHz with 4 GB of DDR3 main memory and a 128 GB

Samsung SSD. We used Microsoft Windows 7 64bit edition as

the operating system and Java SE 6 as runtime environment.

For all experiments, we used a common data setup, which

consists of a single table with three INTEGER columns

(A,B,C) for indexing and one VARCHAR(512) column as

payload. The integer columns are populated with random

values uniformly distributed from 1 to 50,000. The size of the

payload values is also uniformly distributed, but ranges from

1 to 512. We filled the table with 500,000 tuples, resulting in

an effective table size of 220 MB on disk. In each column the

top 10% of the value range are indexed in a partial index, i.e.,

values from 1 to 5,000. In experiment 1, 2 and 3 we queried

the unindexed values randomly. The experiment 4 shows the

case queries address also value covered by the partial index.

In each experiment the workload consists of 200 queries.

The first experiment illustrates the basic behavior of a single

Index Buffer. Accordingly, we queried only Column A. The

Index Buffer Space was set to unlimited size, IMAX = 5,000
pages were index at most during a table scan, and each Index

Buffer partition indexed a maximum of P = 10,000 pages. For

each query, we measured the runtime of individual queries, the

total number of entries in the Index Buffer, and the number

of pages that were skipped. Figure 6 shows the results. For

comparison, the figure also shows the runtimes of the same

queries without tables scan. As can be seen, the first couple
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of queries exhibited a slightly longer runtime, but quickly the

execution time dropped below the level of the table scan.

The obvious reason is the Index Buffer, which indexed an

increasing number of tuples. Quickly, the tables scan was

able to skip a large number of pages. Since the Index Buffer

Space was of unlimited size in this experiment, all pages were

complete indexed after 20 queries. At that point, the query

execution times had the level of an index scan.

The second experiment shows the influence of the maximum

number of pages indexed per table scan IMAX and the space

bound of the Index Buffer Space L. We run this experiments

with the same setting as the first experiment, expect that we

varied IMAX and L. The effects of IMAX and L are independent

from each other and can be seen in a single experiment. As

Figure 7 shows, IMAX determines how aggressive the Index

Buffer indexes new pages. The higher IMAX, the more pages

were indexed during one scan. In consequence, the query

execution times dropped more quickly within the first 15

queries for higher IMAX. Of course, the Index Buffer also

occupied Index Buffer Space more quickly for higher IMAX

(not shown in the figure). The size of the Index Buffer Space

limited the maximum number of entries and with it the number

of pages that could be skipped. As Figure 7 also shows, the

smaller the Index Buffer Space, the less the Index Buffer could

speed up table scans.

The third experiment shows the Index Buffer Management.

We ran the workload of 200 queries on all three columns.

Half of the queries selected tuples on Column A, one third on

Column B, and one sixth on Column C. After 100 queries, we

switched the query mix to: One sixth on Column A, one third

on Column B, and one half on Column C. The Index Buffer

Space was limited to 800,000 entries, at most IMAX = 5,000
pages were index during each table scan, and each Index

Buffer partition indexed a maximum of P = 10,000 pages.

Figure 8 shows the number of entries in each of the three

Index Buffers. In the first workload period the Index Buffer on

Column A occupied more than half of the Index Buffer Space.

The Index Buffer on Column B occupid most of the remaining

Index Buffer Space, while the Index Buffer on Column C

only sporadically accumulated entries. After the switch of the

query mix, the situation quickly turned around. In the second

workload period, the Index Buffer on Column C rapidly grew

to roughly 55% of the Index Buffer Space and the Index Buffer

on Column A practically shrinked to zero.

The fourth experiment considers the Index Buffer Manage-

ment under the influence of varying partial index hit rates.

The general setting is similar to the third experiment except

that the queries on Column A also query values covered

in the partial index on that column. To show the influence

of the partial index hits on the allocation of Index Buffer

Space, we switched the definition of the partial index after

100 queries. Queries on Column A among first 100 queries

hit the partial index with a probability of 80%. During the

following 100 queries the partial index hit rate for Column A

queries is only 20%. The query distribution is fixed during the

complete workload. Specifically, half of the queries are against
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Fig. 6. Single Index Buffer with IMAX = 5,000
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Column A, one third against Column B, and one sixth against

Column C. The Index Buffer Space settings were the same as

in experiment three. The maximum number of pages to index

in one table scan was set to IMAX = 10,000 and the maximum

number of pages an Index Buffer partition can index was set to

P = 10,000. Figure 9 shows the three Index Buffers and their

entries in the Index Buffer Space. After the Index Buffer Space

was filled the Index Buffers competed for space. For the first

period the partial index of Column A was hit frequently and

the Index Buffer Manager decided to give less space to this

Index Buffer. Thus, Column B and Column C gain more Index

Buffer Space though they are queried less often. This state

changed after 100 queries and the Index Buffer of Column A

was used more often than in the first period. As can be seen the

Index Buffer of Column A got more Index Buffer Space and

grew quickly after the partial index hit rate changed, whereas

the Index Buffers of Column B and Column C shrink.

VI. RELATED WORK

Substantial research has been done in the field of index

tuning. First research in that area dates back to the late 1970s.

Nowadays commercial database management systems offer

index tuning tools, [7], [8], [9], which recommend an index

configuration for a given workload and a storage bound the

configuration has to fit into. In their core, these tools base on

a what-if interface to the optimizer [10], to evaluate possible

index configurations. What-if calls are expensive since they

involve a complete logical query processing.

However, all these state-of-the-art tools consider the

database workload as static and predictable. If the workload

changes unpredictably, the user has to notice this change and

rerun the tool. Since this is prohibitively labor-intensive with

dynamic workloads, research concentrated on autonomous

index tuning in the recent past. A couple of solutions have been

proposed [11], [12], [13]. All of them stick with the expensive

core concepts of the index tuning tools: what-if evaluation and

creation and dropping of complete indexes. Consequently, they

suffer from a large control loop delay.

Partial Indexes are a way to reduce the control loop delay.

Smaller and more focused indexes are less expensive to create,

to maintain, and to drop. Partial Indexing is a well understood

concept [1], [2] and is available in major database systems,

e.g., SQL Server [14]. A system called Shinobi builds a

fine-grained online tuning approach on the idea of partial

indexing [15]. However, Shinobi realizes the partial index by

partitioning a table into interesting tuples and uninteresting

tuples and indexing the partition of interesting tuples com-

pletely. In case an index is not hit, Shinobi can easily skip all

indexed pages by just scanning the unindexed partition. The

downside is that all indexes of the table index the same set

of tuples. Although Shinobi is an appealing new approach to

online index tuning, it utilizes the power of partial index only

in very limited way. The Index Buffer allows page skipping

without limiting the power of partial indexing.

VII. CONCLUSION

We presented the Adaptive Index Buffer. An Index Buffer

is a scratch pad index. It helps to lower the query cost on

partially indexed columns during times of workload changes,

while the partial index is not adapted yet to the new workload.

During table scans of queries that cannot use the partial

index, the Index Buffer completes the indexing of pages so

that these pages can be skipped in subsequent tables scans.

Memory-based and without expenses for crash recovery, the

Index Buffer can build up index information very quickly. To

not exhaust memory resources, the Index Buffer management

enforces an upper limit of total Index Buffer entries. The

management is based on how often and how many page skips

index information allows. Additionally, we also presented

three experiments which show the behavior and effect of

the Index Buffer. We are convinced that the Index Buffer

is a useful puzzle piece to bring self-tuned adaptive partial

indexing to life.
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