

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-813596

Steffen Preißler, Dirk Habich, Wolfgang Lehner

Standing Processes in Service-Oriented Environments

Erstveröffentlichung in / First published in:

Congress on Services - I. Los Angeles, 06.07-10.07.2009. IEEE, S. 115-122. ISBN 978-0-7695-3708-
5

DOI: https://doi.org/10.1109/SERVICES-I.2009.102

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-813596
https://doi.org/10.1109/SERVICES-I.2009.102

Standing Processes in Service-Oriented Environments

Steffen Preißler, Dirk Habich, Wolfgang Lehner

Technische Universität Dresden
Database Technology Group

01062 Dresden, Germany

Abstract—Current realization techniques for service-
oriented architectures (SOA) and business process management
(BPM) cannot be efficiently applied to any kind of application
scenario. For example, an important requirement in the fi-
nance sector is the continuous evaluation of stock prices to
automatically trigger business processes—e.g. the buying or
selling of stocks—with regard to several strategies. In this
paper, we address the continuous evaluation of message streams
within BPM to establish a common environment for stream-
based message processing and traditional business processes.
In detail, we propose the notion of standing processes 1 as
(i) a process-centric concept for the interpretation of message
streams, and (ii) a trigger element for subsequent business
processes. The demonstration system focuses on the execution
of standing processes and the smooth interaction with the
traditional business process environment.

I. INTRODUCTION

The ever increasing networking in today’s society clears

the way for the provision of desired information to business

operators or individual users in near real-time. In general,

there is a constant propagation of information—also called

data—from a variety of distributed sources, which are

normally offered and encapsulated as services (e.g., status
of payment/delivery, sensor/monitoring data, stock market
data, etc.). Based on such continuous data, operators can

stay informed about changes to their individual business

and can also react to occurring events immediately with

the execution of application-specific business processes (e.g.,

buying or selling stocks).

Basically, two different and independent technologies

have emerged to deal with business processes and event /

continuous data processing. First, the concept of service-

oriented architectures (SOA) introduced an abstraction of

functional components that can be used independently and

in a loosely coupled way. Since SOA is just an abstract

paradigm, Web services [1] have been established as the

standard solution for implementing a SOA in industry and

science. On top of SOA, Business Process Management

(BPM) has received a lot of attention in the last several

years. BPM in a SOA describes tools and techniques to or-

chestrate SOA components to so-called business processes.

One de-facto standard is the Web Service Business Process

1The project was funded by means of the German Federal Min-
istry of Economy and Technology under the promotional reference
”’01MQ07012”’. The authors take responsibility for the contents.

S
erv

ice / D
ata so

u
rce

E
n

v
iro

n
m

en
t

S
ta

n
d

in
g

 P
ro

ce
ss

E
n

v
ir

o
n

m
en

t

BPM

Environment

CEP

Environment

Service 1

Service 2

Service 3use

use

use

Figure 1. Overall Standing Process Environment.

Execution Language (WSBPEL or simply BPEL [2]). It pro-

vides a comprehensive syntax system for the description of

workflow logic and offers a number of predefined activities

to realize fully-fledged business processes.

Second, the area of event processing originated in data

stream processing and event pattern detection within data

streams is called Complex Event Processing (CEP). Ap-

proaches and tools for CEP are orthogonal to the BPM

layer [3] since the concept of BPM is based on the strict

request-response paradigm and a step-wise, control flow-

oriented execution of workflow logic. This, e.g. implies, that

in BPM, an input message triggers the explicit generation

and execution of a new process instance. For n incoming

messages, n process instances are created. Another reason

for the architectural separation of BPM and CEP is that

service invocations with continuous data are not supported

inherently by the request-response paradigm in SOA. In-

stead, event/message processing, as it is the goal of CEP,

requires a stream-based, data-driven handling of data.

To bridge the gap between BPM and CEP, effort has been

put into a better interaction of both areas, but currently,

these approaches still consider BPM and CEP as mostly

independent [3]. However, from an architectural point of

view, it would be beneficial to treat BPM and CEP with the

same technologies and concepts. In this case, a corporate IT

infrastructure could be used to build application scenarios

of both areas with common tools. Furthermore, both kinds

of technologies could be implemented using a common

environment resulting in a seamless integration with no

infrastructural hurdles.

Figure 1 depicts a high-level architecture of our proposed

approach. We introduce the notion of standing processes

Final edited form was published in "Congress on Services - I. Los Angeles 2009", S. 115-122, ISBN 978-0-7695-3708-5
https://doi.org/10.1109/SERVICES-I.2009.102

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Figure 2. Scenario 1.

that integrates both areas in one common environment by

adjusting the execution semantic and slightly extending the

modeling semantic of BPM to empower business modelers

to integrate stream-based processing of events/continuous

data in a process centric way. As a building block, we

enhance Web service invocation to handle continuous data

allowing us to flexibly extend the functionality of stream-

based message processing in standing processes.

Our Contribution and Outline: In this paper, we intro-

duce the concept of stream-based processing of continuous

data in service-oriented environments. We start our expla-

nations with an introduction to a application scenario in

Section II. This application scenario is the central guideline

in this paper. Subsequently, we introduce our developed

concept of stream-based Web service invocation in Sec-

tion III. This stream-based Web service invocation is a one

building block for our concept of standing processes, which

is explained in Section IV afterwards. Moreover, we describe

(1) details of our prototypical implementation and (2) our

demonstration system (Section V). In general, the demon-

stration combines standing processes and traditional business

processes. This combination is essential to demonstrate (1)

the integrated approach, (2) the seamless interaction between

our concept and the traditional environment, and (3) the

possibilities of our developed concepts. Finally, we review

briefly some related work (Section VI) and conclude our

paper (Section VII).

II. APPLICATION SCENARIO

In this section, we provide a detailed introduction to our

considered finance application scenario. In this domain, we

monitor stock prices with the intention to (semi-) automati-

cally trigger traditional business processes, like the buying or

selling of stocks. The monitoring should be done using our

concept of standing processes. Therefore, we focus on the

description of two realistic examples of standing processes

in this section.

Figure 2 represents a first simple standing process with

a connection to the corresponding traditional business

processes—the buying and selling of stocks. The starting

point is a stock exchange ticker data source, which continu-

ously propagates stock exchange messages to subscribers. In

our case, the illustrated standing process is such a subscriber.

The process receives many of these messages depending on

the granularity of the subscription. Whenever a new message

arrives that does not contain any stock of interest for further

processing, the message is filtered. In our example, only

messages from XYZ Inc. are interesting. Then, the selected

stock messages (stock prices) are evaluated over a time

window—usually 200 trading days—using a service called

(Simple Decision Service) that computes simple moving
average values internally. Based on these moving averages

and the actual stock prices, the following simple strategies

are used as common standard:

Buying Strategy:
Stocks are to be bought as soon as the stock’s

current price intersects the moving average from

below.

Selling Strategy:
Stocks are to be sold as soon as the stock’s current

price intersects the moving average from above.

These strategies are illustrated with a small example

in Figure 3, which depicts a stock price curve and the

corresponding 200-day moving average curve. Furthermore,

important time points regarding the previously introduced

strategies are highlighted. For every incoming message, the

Simple Decision Service returns one of the three possible

values: no action, buy or sell. These response messages

are evaluated by the subsequent switch operator in our

illustrated standing process, and the corresponding actions

are triggered.

As we can see in Figure 3, the strategies based on

simple moving averages are not very sophisticated and

many signals are wrong. Therefore, more sophisticated

methods have been proposed in this area. For example,

one technique is to use crossing moving averages. In this

case, a long-term (e.g., 200 days) and a short-term (e.g., 20
days) moving average are considered and the strategies are

as follows:

Figure 3. Example for Scenario 1.

Final edited form was published in "Congress on Services - I. Los Angeles 2009", S. 115-122, ISBN 978-0-7695-3708-5
https://doi.org/10.1109/SERVICES-I.2009.102

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Buying Strategy:
Stocks are to be bought as soon as the short-

term moving average curve intersects the long-term

moving average from below.

Selling Strategy:
Stocks are to be sold as soon as the short-term

moving average curve intersects the long-term

moving average from above.

The corresponding enhanced standing process is shown

in Figure 4. In this process description, several services

are combined to reach the aim. The long-term and short-

term averages are computed using two services that return

a new message with a new adopted value for each arriving

message. Then, the corresponding average values are sent

to the Decision Service, which is responsible for the eval-

uation. Again, the response message takes one of the three

values: no action, buy or sell. Based on the response, the

corresponding actions are triggered.

The presented techniques are only based on the stock ex-

change data. However, more sophisticated methods include

information on the US Dollar, Euro, oil prices, etc. All of

these information sources also represent continuous data and

have to be processed in the same fashion as the stock data.

Furthermore, there are a lot of domains where continuous

data have to be efficiently processed using a process-centric

concept like the one we focus on.

III. STREAM-BASED SERVICE INVOCATION

Generally, the foundation of SOA is the strict request–
response paradigm [4]. Thereby, services are requested by

a client and a response is generated. If a set D of n equally

structured data items di with D = (d1, . . . , di, . . . , dn) has

to be processed by a service in one common context (e.g.,

aggregation), this set has to be transferred to the service

within one request message. The client has to wait for the

request to be fully processed by the service before it is

responded. Alternatively, if the service implements some

kind of session management, it can map different requests

(i.e., invocations) containing different data items di ∈ D
to one context. On the one hand, these invocations can be

single-item requests, where one request contains exactly one

Figure 4. Scenario 2.

data item di. On the other hand, data items can be pooled

into chunks and transferred to the service as chunk-based

invocations. Both approaches have their drawbacks, either

in performance (single-item invocation) [5] or in single-item

response latency (chunk-based invocation) [6].

To efficiently realize our vision of standing processes in a

service-oriented environment, an enhanced invocation model

is needed; it should naturally provide a common context for

all data items a client wishes to process without implement-

ing any kind of session management on the service side (e.g.,

for services like the Simple Decision Service or Long-term
Average Service). Furthermore, the invocation model has to

provide low latency regarding single response items that

allows the standing processes to use fine-grained information

for their stream-based message processing. Therefore, we

use this section to propose our developed invocation model

that meets the stated requirements and that preserves the

basic request–response paradigm. The semantics of request

and response are simply adjusted to incorporate stream

semantics into the service invocation and its execution. In

general, three adjustments have to be made to the traditional

invocation procedure and the service execution. An overview

is depicted in Figure 5 and a detailed description is given

below:

Stream Definition: First, we define a request message R
that contains the data set D of size n as input stream SI for

the service. Furthermore, a response message R′ returned

by the service that contains the data set D′ is defined as

output stream SO. Since the input stream is limited to the

size of D, a stream is only established for the time during

which D is transmitted. Hence, it represents a request from

a traditional point of view. This can be modified to a more

general concept, since |D| is theoretically not limited in the

number of incoming messages in our application scenario.

Every request Rj with one separate Dj creates a new

input stream SI,j and, depending on the service’s function-

ality, an output stream SO,j (see Figure 5). This implies that

every pair of {SI,j and SO,j} belongs to exactly one client

request Rj and one service instance Wj processing Rj . Now,

we have two streams that preserve a common context for all

data items in D.

The streams are structured according to the SOAP spec-

ification. Remember, a SOAP message consists of a header

 Client

b1

b1

bl

QI,j

b
1

bl

b
1

b'l

b'1

b'l

bl bi

b'lb'
1

b'i

SI,j

SO,j

Web Service
Instance Wj

QO,j

Figure 5. Stream-Based Invocation Model.

Final edited form was published in "Congress on Services - I. Los Angeles 2009", S. 115-122, ISBN 978-0-7695-3708-5
https://doi.org/10.1109/SERVICES-I.2009.102

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

containing meta data and a body containing the user data.

So, in our approach, the header comprises meta data about

the stream itself, and the body contains the data set D, which

forms the actual stream. To establish the input stream SI ,

the SOAP header is sent to the service. This establishes a

low-level channel using HTTP and TCP/IP, which remains

open for the time during which D is transmitted. After SI

has been opened, the starting SOAP body tag is transfered.

Now, the client can send all di in D with the help

of l processing buckets b, where one processing bucket

describes the granularity the service can process in one

step (see Bucket Definition). These buckets are actually pure

XML snippets with a predefined structure that embraces a

defined number of data items of data set D. Note that the

buckets are transmitted on a lower XML hierarchy level

than the already transferred body tag. When the client has

finished sending D, it transmits the closing SOAP body tag

(which resides on the same hierarchical level as the starting

body tag) and the closing SOAP envelope tag. This

triggers the disconnection of SI . The advantage of sending

the corresponding body and envelope tags as stream

delimiters is that the whole stream itself forms one large

SOAP message. Therefore, it can be read by a traditional

service that buffers the whole XML stream and processes

the full DOM tree at once. (see Figure 6).

The output stream SO from the service to the client is

established when the first response bucket b′1 has to be sent.

The establishment of output stream SO works in the same

fashion as that of input stream SI . Since one processing

bucket bi can be processed by the service in one step, the

response bucket b′i can be streamed back immediately after

the successful processing of bi, even if further buckets are

still to be received. SO is closed when the last bucket b′l, the

closing body tag, and the closing envelope tag are sent.

Bucket Definition: Remember, data set D represents

an array of equally structured data items di. To process this

set in an efficient and stream-based fashion, the service has

to define the granularity of D that it can process within

one step. So, D is logically structured into streamable

items or processing buckets. We divide data set D into l
processing buckets bi with B = (b1, b2, . . . , bl). Each bucket

itself represents an XML element that embraces the data

items that have to be processed within one step, and it

implies that these data items are child nodes of this bucket

<
h
e
a
d
e
r
>

.
.
.

<
/
h
e
a
d
e
r
>

<
e
n
v
e
l
o
p
e
>

<
/
e
n
v
e
l
o
p
e
>

Stream S <
/
b
o
d
y
>

<
b
o
d
y
> b

1
b
i

b
l... ...

t

Figure 6. Stream-Based SOAP Message.

element. These buckets are used transparently by the client

framework, since they do not contribute to the application

logic directly. A process bucket may contain additional meta

data expressed as attributes of the bucket element. Currently,

every bucket is augmented with an attribute that holds a

unique bucket identifier, which enables the client to correlate

request and response buckets independent from the user data

the bucket embraces. Obviously, such meta data can be used

further to improve reliability and failure tolerance.

As with traditional service invocation models, the number

of data items in each processing bucket can differ between

a request bucket bi and a response bucket b′i. Furthermore,

the number of response buckets b′ can differ for one request

bucket bi. The most common assumption is that every

request bucket bi generates exactly one response bucket b′i.
This describes a traditional 1 : 1 relationship. If the service

generates a number of response buckets for every request

bucket, a 1 : N relationship is described. An example is a

service that returns all invoices of a given customer ID as

single response buckets. Both relationships allow to stream

back response items even though not all request items have

been processed completely.

A different case is the N : 1 relationship, where many

buckets are consumed to generate one response bucket. This

scenario can be found in services that implement aggregation

functions that, for example, compute the average value of all

data items. Since the exact aggregation value is computed

upon the arrival of the last bucket bl (or the last data item

dn, respectively), the client has to wait until D has been

processed completely. Thus, no response buckets can be

streamed back in between. But in certain scenarios, prelimi-

nary values may be used already for further processing or for

the definition of stop criteria. To circumvent the mentioned

drawback, the application logic on the service side can be

extended to put preliminary values into the output stream

SO. Thereby, the type of a value (i.e., preliminary or final)

can be flagged with the help of an additional attribute, which

have to be added to the response item’s XML structure

within the service description.

The description of processing buckets, and thus, the issue

of how to structure the application data into stream items,

is predetermined by the service. Since the service provides

the implementation to process the buckets, its description

must reside within the service’s WSDL document, so that

the client can transmit the given data set accordingly. In

addition, the WSDL must indicate the capability of the

stream-based service. This is briefly described in Section V.

XML Processing Model: The last modification to ad-

vance services with stream semantics is to adjust the exe-

cution environment for the application logic. Traditionally,

one service instance Wj , which is instantiated by one service

request Rj , can randomly access the whole data set Dj of

its request. Wj builds D′
j as the content for R′

j until Dj has

been processed completely. To incorporate stream-based data

Final edited form was published in "Congress on Services - I. Los Angeles 2009", S. 115-122, ISBN 978-0-7695-3708-5
https://doi.org/10.1109/SERVICES-I.2009.102

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

processing into the service execution, the service instance

must be aware of an input queue QI,j , where items di,j

arrive, and an output queue QO,j , where response items d′i,j
have to be delivered to. Both queues work concurrently, i.e.,

the instance can already deliver response items while still

receiving request items.

IV. PROCESS MODEL

The previously presented stream-based invocation model

is only one step in the right direction to realize our vision.

Next, we introduce our concept of standing processes that

takes the paradigm of BPM and the core activities of the

traditional workflow approach (BPEL) and advances its

execution semantics to handle stream of incoming messages

from different sources in a stream-based fashion.

State-of-the-Art Process Execution: Traditional work-

flow engines execute processes in an instance-based execu-
tion model, i.e., one incoming message is executed in one

process instance in a step-wise fashion [7]. In this control-

flow-oriented model, one instance is typically executed in

a single-threaded approach. This implies that a stream of

n incoming messages executes n process instances. This

methodology fits very well in traditional business process

scenarios but fails when applied to our scenario, where a

standing process instance has to handle n incoming mes-

sages in one common context.

Stream-Based Process Model: Compared to the tradi-

tional instance-based execution model, the fundamental dif-

ference of our approach is that n messages generate only one
process instance Pstanding . This conceptually provides one

context for all incoming messages on the process side. Of

course, the execution semantics of all activities in Pstanding

have to be modified to allow them to process all messages

consecutively. This is done by replacing the instance-based
execution model with the pipes-and-filters execution model,
where every modeled activity represents a separate operator

that is conceptually executed in a single thread, and each

flow edge between two consecutive activities contains a

message queue. Thereby, this execution model also replaces

the control-flow-oriented execution with a data-flow-oriented

execution.

Generally, in our extended execution environment, each

activity Ai references an input queue QI and an output
queue QO. The output queue QO of the activity Ai cor-

responds to the input queue QI of the consecutive activity

Ai+1. When a message enters Pstanding , a message context

M is created and the message payload, along with other

meta data (such as a message context id, a time stamp, and

meta data from the SOAP header, e.g., replyTo), is placed

inside M . In a next step, M is placed in the input queue

QI of the first activity A1.

Each activity in Pstanding consumes a message context

if at least one is available in the input queue. Furthermore,

it processes the message context M corresponding to the

send

receive

MsgCtx
id=123

MsgCtx'
id=123

in
vo
ke

b123

b'123 ...

...

QI

QO

internal
queue

SI

SO

Figure 7. Modified Invoke Operator.

activity’s type and outputs the modified message context M ′

to the referenced output queue. If no M is available in the

input queue, the activity blocks until a new message context

is available. If the last message context is consumed by an

activity Ai, and if the input queue has been closed by a

preceding activity Ai−1, activity Ai closes its output queue

accordingly and terminates.

While most activities can be transferred to stream-

processing activities without further effort, the straight-

forward modification of the invoke activity would lead

to single service calls for every message context that is

processed. This traditional invoke activity can be used to

realize the seamless integration of our standing process

environment with services and processes in the traditional

business process environment (e.g., Buy Business Process,

Figure 2). We rename this invocation activity to business
invoke (short: binvoke) in order to denote its semantics

explicitly. Nevertheless, the drawbacks stated in Section III

still occur.

Since we want to efficiently extend the stream-based func-

tionality of our standing processes, we modify the traditional

invoke activity to use services that are implemented with our

stream-based service invocation approach. Figure 7 depicts

this new activity in detail. Internally, the modified invoke
operation is divided into two components that are executed

concurrently. The send component takes a message context

M out of the input queue and places the corresponding ap-

plication data into one processing bucket b (see Section III).

It sets the bucket id to its message context id. After the

bucket has been sent, M is placed in an internal queue that

the receive component consumes. Since the bucket id is not

touched by the service implementation, it remains the same

for the response bucket b′, and it can be correlated to the

corresponding message context. This correlation is needed

if the cardinalities of request buckets and response buckets

are different (see Section III). Note that our invoke activity

Final edited form was published in "Congress on Services - I. Los Angeles 2009", S. 115-122, ISBN 978-0-7695-3708-5
https://doi.org/10.1109/SERVICES-I.2009.102

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

d
is

ca
rd

in
v
o
k
e

S
D

 S
er

v
ic

e

fi
lt

er
in

g
st

o
ck

s

d
ec

is
io

n

b
in
v
o
k
e

B
u

y
 P

ro
ce

ss
b
in
v
o
k
e

S
al

es
 P

ro
ce

ss

B
u

y
S

el
l

N
o

 A
ct

io
n

d
is

ca
rd

o
k

d
is

ca
rd

m

sg

re
c
e
iv
e

Figure 8. Standing Process of Scenario 1 in BPEL-like Notation.

opens one request stream SI when the first message context

is processed. Accordingly, the response stream SO from the

service is registered. Both streams stay open until the last

message has been consumed and the input queue is closed.

This provides one execution context on the service side for

all messages that are processed by Pstanding . For instance,

this could be used to implement sliding-window semantics

for the time during which the streams are open.

If we apply our modified execution model to Scenario 1

(with a simple moving-average calculation), Figure 8 depicts

a modeled standing process with a BPEL-like notation.

Thereby, each activity owns an input queue and references an

output queue. The process executes as follows: If a message

enters the process instance using the receive activity, it is

first evaluated against the filter criterion. This filter can

be traditionally modeled using a switch activity with one

decision path (not filtered, ok) leading to the consecutive

process activities shown in Figure 2 and a second decision

path (filtered, discard msg) leading to a terminate activity,

which is modified to discard message contexts instead of

terminating the process instance. If the message is not

filtered (ok path), the payload is prepared and transferred to

the Simple Decision Service using our stream-based service

invocation model and its processing buckets.

Remember, this service provides a common context for

all consecutive messages that have passed the invoke activity

by maintaining separate time windows for all distinct stock

symbols that enter the service. For every bucket the service

receives, it updates its moving average and returns a response

bucket with the current time window information for the

stock and a decision to buy, to sell, or not to act. This

information is stored in the message context and passed to

the second switch activity (decision). There, the decision is

evaluated and a corresponding decision path is chosen: either

nothing is done (No Action—the message is discarded in the

terminate activity) or the invocation of one business process

is executed (Buy or Sell), which triggers stock purchase

or stock disposal. These traditional business processes are

invoked using the business invoke activity.

Within the traditional business environment, processes

are exposed as single services and they are executed upon

explicit requests. A standing process instance can be pro-

vided with message streams in two ways. First, it can

subscribe to producing data sources like RSS feeds or

other event-emitting information sources (e.g., using WS-

Notification). Second, the standing process instance can be

explicitly called by a stream-based invocation-enabled client

that attempts to process a given data set in a stream-based

fashion. In fact, a standing process can expose itself as an

extended service, as we described in Section III.

If the process becomes more complex, as depicted in

Figure 4, the currently available activities derived from

BPEL are no more sufficient, since these activities build

on the instance-based execution model and its control-flow-

centric execution. Therefore, additional activities must be

introduced that cover the data flow aspect more explicitly. To

realize Scenario 2, we have to introduce a copy activity and a

merge activity. The copy activity creates copies of incoming

message contexts and places them into every outgoing

queue. Copied message contexts retain their message context
ids. To join message contexts, the merge activity merges

message contexts with the same message context id based

on a data structure mapping to be specified by the process

modeler.

V. IMPLEMENTATION AND DEMO DETAILS

In this section, we briefly describe implementation details

of our proposed invocation model and the engine to execute

standing processes. Moreover, we give an introduction to our

demonstration system, where the two illustrated scenarios

from Section II are available.

Stream-Based Web Services Implementation: The im-

plementation of our stream-based Web service invocation

model presented in Section III is realized using the AXIS2

SOAP engine (http://ws.apache.org/axis2/—Java environ-

ment). This implementation allows to run both traditional

services and our stream-based services in one single service

engine. The core architecture of this AXIS2 extension, with

its basic components, is shown in Figure 9, where the

modified components are highlighted in gray.

As depicted, the transport layer is modified to receive

the message header and to instantly push it to the message

receiver without waiting for the whole message to arrive.

The message receiver, as the central component for message

processing, instantiates an input queue and triggers the

application logic. If the application has to return data, an

output queue is created accordingly. and the application logic

has references to the input queue instance and the output

queue instance. The application logic uses a cursor concept

to access all processing buckets in the input queue within a

loop. If the input queue is empty but the input stream is still

open, the queue blocks until a new processing bucket arrives.

Within the loop, the request buckets with its data items are

processed and response buckets are created and placed in the

output queue. When the first response bucket is inserted into

Final edited form was published in "Congress on Services - I. Los Angeles 2009", S. 115-122, ISBN 978-0-7695-3708-5
https://doi.org/10.1109/SERVICES-I.2009.102

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Message
Receiver

T
ra

n
sp

o
rt

 L
ay

er

Web Service
Application

Logic

Q
I

Q
O

H
an

d
le

rs

Figure 9. Extended AXIS2 Architecture.

the output queue, the message receiver triggers the output

stream establishment, and the response message header is

sent to its destination. Moreover, the transport layer is

modified to ensure that the output connection remains open

until the last bucket has been sent.

To access stream-based services successfully, the struc-

ture and size of processing buckets have to be visible in

the service description. Since data set D is an array of

equally structured data items di, the XML Schema definition

describes an unbounded set of complex elements that con-

tain the structure of every data item. To define processing

buckets, we add an attribute processingBucket to the

element that forms the envelope for one data item. Addition-

ally, an attribute maxsize prescribes the maximum number

of data items that can be bundled as one processing bucket.

Figure 10 depicts the WSDL extension for a data structure

for request items, where processing buckets are defined.

The processing bucket definition for response items is not

shown but it is labeled in the same fashion as the request

items. Furthermore, operations that support stream-based

data processing are flagged by a new attribute streaming.

Standing Process Implementation: The implementation

of our process engine consists of two parts. The first

part is the modeling component that enables a standing

process designer to graphically model processes in a stan-

dardized fashion. The editor is based on the Eclipse GMF

technology (http://www.eclipse.org/modeling/gmf). Further-

more, this graphical representation can be used at runtime to

<xs:element name="op1">

 <xs:complexType>

 <xs:sequence>

<xs:element maxOccurs="unbounded" ...>

<xs:complexType name="..."

 nstud:processingBucket="true" nstud:maxsize="2">

 <!--structure of all data items-->

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

}

processing

bucket

data sets XML Schema structure

Figure 10. WSDL Extension within the Data Set’s XML Schema Structure.

Figure 11. Demo Website Screenshot.

show statistical information about the queue utilization and

the operator throughput.

The second part is a standing-process engine that is real-

ized in Java. The operators, as the central execution logic, are

executed in separate threads, which automatically leads to

performance benefits on multi-core systems. Moreover, each

operator provides a monitoring API that allows different

applications to gather runtime information and to process

them accordingly.

A. Demo Details

Since our standing-process modeling component is based

on Eclipse GMF, it is currently not possible to present this

component as a Web-based application. Therefore, we im-

plemented a demo front-end that allows the user to execute

both scenarios presented in Section II as standing processes.

The *-Average and *-Decision services are implemented

using our modified AXIS2 framework, which resides in a

Tomcat server. Our standing processes are deployed in our

standing-process engine and can be executed by the Web-

based demo front-end. Additionally, all invoke activities are

monitored using a PHP Website that fetches the actual val-

ues. All traditional processes that we call from our standing

processes are modeled in the open-source Eclipse BPEL

designer and executed in the open-source BPEL engine

Apache ODE.

Figure 11 depicts the demo website at http://141.76.47.68:

8085/ (no login required). On the left, there is a menu where

the interested user can switch between the two scenarios

discussed in this paper. Basically, for every scenario, an

image of the standing process with a BPEL-like notation

is depicted. Above the process picture, a start and a stop
button are placed, which start and stop the standing process,

Final edited form was published in "Congress on Services - I. Los Angeles 2009", S. 115-122, ISBN 978-0-7695-3708-5
https://doi.org/10.1109/SERVICES-I.2009.102

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

respectively. In the right top corner, the amount of stocks

is displayed that the visitor virtually owns. On the right

hand side, the values of the moving-average stock prices

are displayed, which are retrieved from the running invoke

activities. Below the process image, the numbers of pro-
cessed stock ticker messages are displayed, separated by

the decision path they took in the last switch activity. For

simplicity, no stock messages enter the process that have

to be filtered. If the start button is pushed, the process is

executed and a stock message enters the process every 0.5

seconds. Since the triggered Buy and Sell processes typically

involve human interaction to enter the number of stocks to

be bought and sold, respectively, we define a random number

between 10 and 20 every time such a process is triggered

for our demo purpose.

VI. RELATED WORK

In the area of workflow-based message processing, [7]

presented an approach to enhance the standard workflow

with pipelined process execution. While this approach in-

creases the throughput and can be used to handle requests

more efficiently, our own approach additionally aims to

provide capabilities for message-stream analysis. Another

recent system is presented in [8]. There, incoming messages

are queued and then transformed according to specified rules

before they are then re-queued in other (internal or external)

queues. In the area of middleware systems and enterprise

service buses, many commercial systems have emerged that

aim to integrate messages between heterogeneous systems

efficiently and that provide modeling capabilities to define

control flows [9]. However, these systems use the instance-
based execution model and do therefore not provide any

process-driven approach for efficient message processing

that includes stream-based message analysis. Furthermore,

Data Stream Management Systems (DSMS) provide capa-

bilities to query data streams and to provide data stream

analysis [10], [11]. However, these systems are based on

relational data models that map incoming messages to flat-

structured tuples and process these data items accordingly.

Furthermore, these descriptive queries do not allow the

modeling of analysis streams with process-centric semantics.

VII. SUMMARY & OUTLOOK

In this paper, we addressed the realization of data

stream semantics in SOA by i) introducing our concept

of stream-based Web service invocation and ii) presenting

the notion of standing processes for process-centric, stream-

based message processing in BPM. In combination, both

approaches enable the flexible creation of message-based

stream-analysis processes with different services used as

stream operators ”in the small.” Next, we want to extend

the notion of standing processes, particularly its activities

to support more data-centric functionalities, such as merge,

join or sort, and thus, to support more than one input stream

in a consistent way. Furthermore, we want to improve the

modeling editor to support these advanced activities in a

convenient way. Moreover, the modeling editor has to be

integrated more tightly with the process engine.

REFERENCES

[1] T. Erl, Service-Oriented Architecture (SOA): Concepts, Tech-
nology, and Design. Prentice Hall PTR, 2005.

[2] OASIS, “Web services business process execution language
2.0 (ws-bpel),” 2007,
http://www.oasis-open.org/committees/tc home.php?wg
abbrev=wsbpel. [Online]. Available: http://www.oasis-open.
org/committees/tc home.php?wg abbrev=wsbpel

[3] C. Zang and Y. Fan, “Complex event processing in enterprise
information systems based on RFID,” Enterp. Inf. Syst., 2007.

[4] OASIS, “Soa reference model,” 2006,
http://www.oasis-open.org/committees/tc home.php?wg
abbrev=soa-rm.

[5] A. Gounaris, C. Yfoulis, R. Sakellariou, and M. D. Dikaiakos,
“Robust runtime optimization of data transfer in queries over
web services,” in ICDE, 2008.

[6] U. Srivastava, K. Munagala, J. Widom, and R. Motwani,
“Query optimization over web services,” in VLDB, 2006.

[7] B. Bioernstad, “A workflow approach to stream processing,”
PhD Thesis, ETH Zurich, 2008. [Online]. Available:
http://e-collection.ethbib.ethz.ch/view/eth:30739

[8] A. Boehm, E. Marth, and C.-C. Kanne, “The demaq system:
declarative development of distributed applications,” in SIG-
MOD, 2008.

[9] IBM, “Ibm websphere message broker,” 2008,
http://www-01.ibm.com/software/integration/
wbimessagebroker/.

[10] J. Krämer and B. Seeger, “Pipes - a public infrastructure for
processing and exploring streams.” in SIGMOD, 2004.

[11] S. Schmidt, T. Legler, S. Schär, and W. Lehner, “Robust real-
time query processing with qstream.” in VLDB, 2005.

Final edited form was published in "Congress on Services - I. Los Angeles 2009", S. 115-122, ISBN 978-0-7695-3708-5
https://doi.org/10.1109/SERVICES-I.2009.102

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	ADPF2ED.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Steffen Preißler, Dirk Habich, Wolfgang Lehner
	Standing Processes in Service-Oriented Environments

	ADPBE80.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Steffen Preißler, Dirk Habich, Wolfgang Lehner
	Standing Processes in Service-Oriented Environments

