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Abstract 
Due to advances in DNA sequencing technologies, the number of available genome 

assemblies rapidly grows over the last decades. Nowadays, thousands of genomes 

representing a great variety of clades are available for the scientific community. Genomic data 

allows deep and detailed comparative analysis, which are important for relevant research 

questions such as discovery connections between genotype and phenotype, exploring 

particularities in complex proteins, and advancing medical applications. To address all these 

questions, it is necessary to annotate protein-coding genes and infer orthologs in newly 

sequenced genomes. However, the existing methods for genome analysis are not adapted for 

increased data scales. Therefore, the major challenge in comparative genomics is not the 

number of available genome assemblies but rather the development of high-throughput data 

analysis methods. 

To address these issues, I propose a novel paradigm of genome annotation and 

orthology inference that uses whole-genome alignments. Whereas the currently applied gene 

annotation and orthology inference methods only rely on presumably coding sequences, 

expanding input data to neutrally evolving sequences would provide a genomic context for 

better and more complete annotations by highlighting orthologous loci, which can be predicted 

before gene annotation. By using pairwise genome alignments, the proposed methodology 

could be easily scaled to thousands of considered genomes. 

In this work, I present TOGA (Tool to infer Orthologs from Genome Alignments) - a 

bioinformatics method that implements the proposed concept, combining orthology inference 

and gene annotation in a single pipeline. TOGA uses machine learning to distinguish orthologs 

from paralogs or processed pseudogenes based on alignments of intronic and intergenic 

regions. 

The quality evaluation results show that the TOGA pipeline outcompetes the traditional 

approaches within the Placentals clade. It provides excellent orthology loci classification 

quality and detects loss genes with a high degree of accuracy.  Earlier TOGA versions have 

been applied in several studies resulting in two publications so far. Using TOGA, we generated 

gene annotations for 500 mammalian genomes, creating the most extensive comparative 

dataset. 

The results suggest that TOGA has the potential to become a widely accepted gene 

annotation method. I show that it can perfectly complement the currently applied techniques 

to create comprehensive genome annotations.



 
 

 

Zusammenfassung 
Aufgrund von Fortschritten im Bereich der DNA-Sequenzierung hat die Anzahl 

verfügbarer Genome in den letzten Jahrzehnten rapide zugenommen. Tausende bereits heute 

zur Verfügung stehende Genome ermöglichen detaillierte vergleichende Analysen, welche für 

die Beantwortung relevanter Fragestellungen essentiell sind. Dies betrifft die Assoziation von 

Genotyp und Phänotyp, die Erforschung der Besonderheiten komplexer Proteine und die 

Weiterentwicklung medizinischer Anwendungen. Um all diese Fragen zu beantworten ist es 

notwendig, proteinkodierende Gene in neu sequenzierten Genomen zu annotieren und ihre 

Homologieverhältnisse zu bestimmen. Die bestehenden Methoden der Genomanalyse sind 

jedoch nicht für Menge heutzutage anfallender Datenmengen ausgelegt. Daher ist die zentrale 

Herausforderung in der vergleichenden Genomik nicht die Anzahl der verfügbaren Genome, 

sondern die Entwicklung neuer Methoden zur Datenanalyse im Hochdurchsatz. 

Um diese Probleme zu adressieren, schlage ich ein neues Paradigma der Annotation 

von Genomen und der Inferenz von Homologieverhältnissen vor, welches auf dem Alignment 

gesamter Genome basiert. Während die derzeit angewendeten Methoden zur Gen-Annotation 

und Bestimmung der Homologie ausschließlich auf codierenden Sequenzen beruhen, könnten 

durch die Einbeziehung des umgebenden neutral evolvierenden genomischen Kontextes 

bessere und vollständigere Annotationen vorgenommen werden. Die Verwendung von 

Genom-Alignments ermöglicht eine beliebige Skalierung der vorgeschlagenen Methodik auf 

Tausende Genome. 

In dieser Arbeit stelle ich TOGA (Tool to infer Orthologs from Genome Alignments) vor, 

eine bioinformatische Methode, welche dieses Konzept implementiert und Homologie-

Klassifizierung und Gen-Annotation in einer einzelnen Pipeline kombiniert. TOGA verwendet 

Machine-Learning, um Orthologe von Paralogen basierend auf dem Alignment von 

intronischer und intergener Regionen zu unterscheiden. 

Die Ergebnisse des Benchmarkings zeigen, dass TOGA die herkömmlichen Ansätze 

innerhalb der Placentalia übertrifft. TOGA klassifiziert Homologieverhältnisse mit hoher 

Präzision und identifiziert zuverlässig   inaktivierte Gene als solchet. Frühere Versionen von 

TOGA fanden in mehreren Studien Anwendung und wurden in zwei Publikationen verwendet. 

Außerdem wurde TOGA erfolgreich zur Annotation von 500 Säugetiergeenomen verwendet, 

dies ist der bisher umfangreichste solche Datensatz. 

Diese Ergebnisse zeigen, dass TOGA das Potenzial hat, sich zu einer etablierten 

Methode zur Gen-Annotation zu entwickeln und die derzeit angewandten Techniken zu 

ergänzen.
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1. General Introduction 

1.1 The genome encodes most phenotypes 

Evolution has led to a great diversity of living forms that inhabit every single corner of 

the Earth. These forms vary in different aspects, such as physical scale, appearance, accepted 

energy sources, and responsiveness to different stimuli. Various creatures represent the 

diversity of life, including unicellular photosynthetic algae, flying frugivorous drosophilae, or 

gigantic marine predators, which are well adapted to their environments. 

This tremendous biological multifariousness is encoded in the DNA sequences of four 

characters: A, T, G, and C. Each adaptation and peculiarity is reflected in the species' genome. 

Nowadays, the genomes of thousands of different species are sequenced, ranging from 

relatively primitive unicellular life forms to profoundly complex mammals, and this number 

continues to grow. Plenty of available genomic data allows us to connect differences in 

genomic sequences with specific phenotypic traits. Discovering these connections, being the 

fundamental challenge of comparative genomics, requires identifying the genetic origin of 

phenotypic variation, and reveals insights into the underlying molecular and cellular 

mechanisms. 

1.1.1 Overview of genomic changes related to phenotypic variation 

Numerous studies published in scientific literature describe various connections 

between genomic changes and phenotypic adaptations in different species. Genomic DNA 

comprises many types of sequences, such as repeats (e.g., transposons, tandem repeats, 

centromeres, telomeres), regulatory elements (e.g., enhancers, transcription factor binding 

sites, nrRNAs), RNA- and protein-coding genes. However, the vast majority of these studies 

focus on changes in protein-coding genes because they can significantly affect phenotypes 

(Brandes et al., 2020). 

Therefore, annotating protein-coding genes is typically the first step to be performed 

on a newly sequenced genome. Even though only a minor fraction of the genomic DNA 

encodes proteins (for human, ~1% (International Human Genome Sequencing Consortium, 

2001)), mutations in these regions could affect virtually any system of the organism. For 

example, these mutations can influence the performance of the immune system (Jebb et al., 

2020), affect teeth development (Springer et al., 2019), or contribute to the evolution of 

echolocation (Li et al., 2010; Liu et al., 2014; Lee et al., 2018). Also, many human diseases 

are associated with mutations in protein-coding genes such as GNAT2, TJP2, BAAT, or TTN 
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(Kohl et al., 2002, p. 2; Carlton et al., 2003; Lange et al., 2005). In the following subsections, I 

give a brief overview of mutations affecting protein-coding genes. 

1.1.1.1 Amino acid changes in the functionally critical regions 

Mutations that alter the amino acid sequence, such as substitutions, insertions, or 

deletions, are random and have a different impact on the protein functionality, depending on 

mutation localization and radicality (Choi et al., 2012). Radical amino acid changes occurring 

in critical protein regions are likely to influence biological function. For instance, mutations in 

the active center of an enzyme might affect substrate specificity towards another compound 

(Smooker et al., 2000; Kirilenko et al., 2019). Moreover, they can diversify the DNA-binding 

protein specificity (Jalal et al., 2020). Consequently, this class of mutations has a great 

potential to affect the phenotype. 

1.1.1.2 Evolutionary origins of new genes 

Another evolutionary process that deserves particular attention is the creation of new genes. 

Mechanisms that enrich gene repertoire include gene duplication, gene fusion/fission, 

horizontal gene transfer, and even the emergence of entirely new genes from previously non-

coding regions (Kaessmann, 2010; Neme and Tautz, 2014).  

Gene duplication (figure 1.1, A) is one major mechanism that provides gene repertoire 

variation (Taylor and Raes, 2004). Such events as DNA reparation errors or the activity of 

mobile genetic elements may duplicate regions containing genes (Zhang, 2003). Duplications 

of these regions introduce a redundant coding sequence into a genome. Further, the 

redundant copies can escape the original gene's functional limitations and develop new 

activities while the original copy retains the same role (Peterson et al., 2009). For example, 

entire gene families such as myosins or histones were created through this mechanism - each 

family originates from a single ancestral gene duplicated multiple times, followed by a 

functional adjustment (Thompson and Langford, 2002; Malik and Henikoff, 2003). 

New genes can also originate from existing ones through processes of gene fusion and fission 

where previously independent genes are joined or separated, respectively (figure 1.1, B and 

C). Given the combinatory nature of these processes, they play a crucial role in proteome 

evolution - combining various protein domains leads to the emergence of novel functionality. 

These processes are known to be significant contributors to protein variability in bacteria 

(Pasek et al., 2006) and fungi (Leonard and Richards, 2012). Besides, many remarkable genes 

in the human genome originate from these mechanisms, including Ubiquitin Specific Peptidase 

6 (USP6) (Paulding et al., 2003) and ATP citrate lyase (ACL) (Gawryluk et al., 2015). 

Species could also exchange genetic material between each other through horizontal 

gene transfer. This mechanism has paramount importance for the evolution of unicellular forms 
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of life. For example, HGT is considered the primary mechanism for acquiring antibiotic 

resistance in bacteria (Kay et al., 2002; Gyles and Boerlin, 2014). Additionally, this process 

had a crucial importance in the early evolution of eukaryotes - many mitochondrial and plastid 

genes have derived from the bacterial endosymbiotic ancestors (Blanchard and Lynch, 2000; 

Mower et al., 2010). However, for more complex species, it is mainly limited to rare events 

associated with endosymbiosis and parasitism (Keeling and Palmer, 2008; Xia et al., 2021). 

In previous paragraphs, I provided a brief overview of genetic innovation mechanisms 

based on already existing coding sequences such as gene duplication or fusion. However, 

new genes may also evolve from ancestrally non-coding DNA sequences (Carvunis et al., 

2012) (figure 1.1, D). Non-coding regions occupy most of the genome and provide plenty of 

raw material for novel transcriptional events. These events lead to an entirely new protein 

sequence and, therefore, are considered the primary driver of evolutionary innovation (Van 

Oss and Carvunis, 2019). 

 
Figure 1.1 Different scenarios of the novel gene emergence 
Panel A illustrates a schematic representation of the gene duplication process. After the duplication, a 

redundant copy can develop new activities. Panels B and C illustrate processes of gene fusion and 

fission, respectively. These processes could also be followed by functional change. Panel D illustrates 

a de novo gene birth from non-coding DNA sequences.  

1.1.1.3 Gene loss 

During evolution, protein-coding genes not only emerge but sometimes they also get 

lost. Lost gene, also known as a unitary pseudogene, implies the absence of previously 

functional protein and affects the repertoire of gene functions (Zhang et al., 2010). Loss of 

protein-coding genes is a radical genetic change that proved to have the potential to affect 

phenotypic evolution (Sharma et al., 2018). For example, the loss of the egg yolk genes 

contributed to the development of the lactation mechanism in mammals (Brawand et al., 2008). 

Moreover, this event played an important role in the phenotypic evolution of birds: instead of 

the lost teeth, they use beak and muscular gizzard for food collecting and processing and birds 

have lost six genes essential for the proper formation of dentin and enamel (Meredith et al., 

2014). 

Gene loss may occur through various mechanisms. The simplest, although not the 

most widespread, gene loss mechanism is the deletion of the gene-containing locus. Not only 

the complete deletion is necessary for gene inactivation - if this event affects a significant part 
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of the coding sequence, it could also be considered a loss-of-function mutation (Hahn et al., 

2007). Nevertheless, gene inactivation events usually occur by accumulating loss-of-function 

mutations. 

Loss-of-function (inactivating) mutations such as frameshifting indels or premature stop 

codons disorganize the reading frame in different manners (figure 1.2). It is doubtful that a 

gene affected by such an ORF-disrupting mutation encodes a functional protein (Behe, 2010). 

Such nonfunctional regions resembling protein-coding genes are termed "pseudogenes." 

 
Figure 1.2 Frameshifting and nonsense mutations 
The figure shows two pairwise alignments of protein-coding sequences between an ancestor and 

descendant. Panel A illustrates the consequences of frameshifting mutations resulting in entirely 

different protein sequence downstream. Panel B illustrates the premature stop codon resulting in protein 

truncation. 

 

Usually, the following mutations are considered to be gene-inactivating: 

1) Frameshifting mutations imply deletions or insertions of the number of base pairs that 

are not a multiple of three. Given that the ribosome reads the coding sequence 

nucleotides three-by-three, frameshift leads to a translation of entirely different and 

randomized amino acid sequences downstream. Moreover, randomized nucleotide 

sequence contains abundant stop codons, which means that the affected protein 

sequence is most likely also truncated. There is a chance that a gene corrupted by 

such mutation is partially or fully inactivated. 

2) Point-nonsense mutations that terminate a translation process prematurely, leading to 

the synthesis of incomplete protein chains. Usually, heavily truncated proteins lack the 

functionality of the ancestral protein and therefore are inactivated. 

3) Disruption of consensus splice sites in multi-exon genes confuses the exon boundaries 

recognition process leading to incorrect splicing of premature mRNA. It can result in a 

complete exon exclusion from the mature mRNA, which has the potential of inactivating 

the gene if the excluded region contributes to the functionality of the encoded protein. 

Another possible consequence of this mutation is the retention of an intron in the 
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mature mRNA. This event is expected to be deleterious because it implies the insertion 

of non-homologous and nearly random sequences in the mature mRNA. 

4) Large-scale frame-preserving insertions and deletions could also be deleterious for the 

functionality of a protein. These mutations diminish the sequence similarity in the 

affected region. Consequently, it could lead to improper protein folding or corruption of 

the active center. However, this mutation is less drastic than previously listed ones 

because such mutations indeed appear sometimes in conserved genes. 

5) Loss of start codon might be considered as another loss-of-function mutation, but with 

particular reservations. Indeed, in the absence of the start site, the translation process 

is doubtful to be initiated. However, for many genes, it is hard to determine whether it 

is truly absent. The actual start codon could be shifted outside the locus, where its 

presence was expected. Therefore, the presumably absent ATG codon could be, in 

fact, present but not detected. 

 

Any of the mutations enlisted above disrupt the ancestral coding sequence and are 

likely to reduce the encoded protein functionality drastically or even eliminate it entirely. 

However, occasionally these mutations can contribute to functional variation. For instance, the 

Ornithine decarboxylase antizyme 1 (OAZ1) encoding gene comprises two overlapping ORFs 

where the choice of the particular frame is regulated at the translational level by the 

concentration of polyamines. Specifically, the increased polyamine levels induce programmed 

+1 ribosomal frameshift resulting in the full-length functional OAZ1 bypassing a nonsense 

codon (Kurian et al., 2011).  

1.1.2 Identification of mutations connected to phenotype 

To recognize the evolutionary events listed above, this is essential to identify protein-

coding genes in the considered genomes and comprehensively annotate them. An overview 

of protein-coding gene annotation methods is provided in part 1.2 of the present work. Another 

crucial step following gene annotation is the separation of paralogous from orthologous genes 

since the latter usually utilize the same function (Tatusov, 1997; Altenhoff et al., 2012). Part 

1.3 explains the differences between orthologs and paralogs, including an overview of 

methods to distinguish them. 

1.2 Gene annotation 

Protein-coding gene annotation is one of the earliest and longstanding challenges in 

bioinformatics and genomics. Pioneering gene annotation methods have been designed to 

operate on early bacteria genomes, while the modern methods advanced to annotate more 
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complex eukaryotic genes and continue to improve (Brent, 2005; Zerbino et al., 2020). 

Besides, the present work also contributes to gene annotation methods development. 

Gene annotation provides the gene repertoire of the analyzed species, which is the 

starting point of virtually any comparative genomics research. This could include comparative 

studies revealing the genetic origin of various adaptations within entire clades (Huelsmann et 

al., 2019; Jebb et al., 2020), research of distinct metabolic pathways (Pizarro et al., 2020), or 

even the analysis of individual genes in the evolutionary context (Jebb and Hiller, 2018; 

Kirilenko et al., 2019). 

Section 1.2.1 describes the main structural elements of a protein-coding gene that 

annotation methods aim to identify. Then, section 1.2.2 provides an overview of practically 

applied techniques of gene annotation. In detail, I covered the following classes: (i) ab initio 

methods, (ii) reference-based approaches, and (iii) transcriptome-based methods. 

1.2.1 Eukaryotic gene structure and expression 

Broadly, a protein-coding gene is a DNA region coding for the RNA, which 

consequently encodes the amino acid sequence in a polypeptide chain. Making an RNA copy 

of a gene sequence is called transcription; the following protein synthesis process is called 

translation. Transcribed regions comprise two types of sequence: (i) introns and (ii) exons. 

Introns are excluded from the mature mRNA during splicing, whereas exons constitute the 

resulting processed mRNA molecule. While eukaryotic genes often have at least one intron, 

about a third of mammalian genes do not have introns and consist of a single exon. 

Furthermore, exons also split between two sequence types: (i) coding sequence 

(CDS), which actually encodes the polypeptide chain, and (ii) untranslated regions (UTR), 

those flanking the CDS and regulating the process of translation. CDS is subdivided into 

triplets of nucleotides, known as codons, where each codon encodes an amino acid or the 

signal of protein synthesis termination. Typically, CDS starts with methionine-encoding “ATG”-

codon, which designates the translation initiation, and ends with one of three stop codons: 

“TGA”, “TAG”, or “TAA”. This structure of consecutive nucleotide triplets that encode 

polypeptide chains is called the open reading frame (ORF). 

Additionally, non-coding intronic sequences also expose some particular 

characteristics. The intronic sequence starts and ends with a specific sequence of nucleotides 

necessary for proper recognition by the spliceosome. For protein synthesis, this is crucial to 

recognize the boundary between coding and non-coding gene regions accurately. Usually, the 

intron sequence starts with a "GT" dinucleotide, which determines the 5' splice junction, also 

known as the donor splice site. At the 3' terminus, the intron sequence typically ends with the 

"AG" dinucleotide, which defines the acceptor splice site. 
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The vast majority (about 99%) of introns are flanked with conserved “GT”-”AG” 

dinucleotides and are recognized by the major U2-spliceosome. However, a minority of introns 

are spliced by a minor U12-spliceosome and are flanked with alternative sets of dinucleotides. 

Concretely, U12 introns splice sites can comprise various dinucleotide pairs except for the 

canonical “GT-AG” pair, including “AT”-”AC”, “GT”-”AG”, “GT”-”GG”, “AT”-”AT”, or “AT”-”AA” 

(Levine and Durbin, 2001). 

Figure 1.3 demonstrates the main structural elements of a multi-exon gene mapped to 

a hypothetical genomic sequence. Throughout this thesis, I apply the same visual conception 

to illustrate protein-coding genes consistent with the UCSC genome browser style of data 

representation. Specifically, the conception implies the following: boxes depict exons, and 

lines between them represent introns. Arrows covering intronic regions illustrate the direction 

of transcription and translation. Thinner parts of the exons represent the UTR regions, whereas 

a thicker part illustrates the CDS. 

 
Figure 1.3 Eukaryotic gene structure 
The figure shows basic structural elements of a protein-coding gene mapped to genome coordinates. 

Boxes illustrate exons, whereas lines between them show introns. The thinner fraction of exons 

represents UTRs. In contrast, thicker fractions represent CDS, and each stripe (different shades of blue) 

shows an individual codon. The start codon is marked with a green, whereas the red color indicates a 

stop codon (ORF start and end are magnified). Arrows covering intronic fractions indicate the direction 

of gene expression. Additionally, this figure shows canonical splice sites flanking introns.  

1.2.1.1 Alternative splicing isoforms 

It is not compulsory that an individual gene is invariably translated into a single protein. 

Instead, most eukaryotic genes are usually translated into different proteins because of the 

alternative splicing process, which is considered the principal mechanism for producing a 

complex proteome from a limited set of genes (Roy et al., 2013). During the splicing process, 

not only introns can be excluded from the mature mRNA, but also some exons. This process 

can produce multiple ORFs from the same set of exons by combining them in various ways, 

thus increasing the variability of the encoded proteins. This process of building alternative 

ORFs from a limited set of exons is called alternative splicing (Baralle and Giudice, 2017). 

Each distinct ORF produced by combining different exons through alternative splicing is called 
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an isoform or a transcript variant. Protein isoforms can differ in various aspects, such as 

substrate specificity, protein domain composition, or cellular localization (Yang et al., 2016). 

To provide one example, different isoforms of the Fas Cell Surface Death Receptor 

(FAS) gene are produced by an exon-skipping mechanism (figure 1.4). There are two isoforms 

of the Fas receptor, typically occurring in humans: a longer one that includes exon number six 

and the alternative, where this exon is skipped. Since the 6th exon encodes a transmembrane 

domain, the isoforms differ in terms of cellular localization: the protein encoded by the longer 

isoform, which includes this exon, is membrane-binding, whereas the product of the shorter 

isoform is water-soluble. Thus, the longer isoform can bind transmembrane ligands, which 

promotes the apoptosis process. It was shown that the expression of the longer isoform is 

increased in skin cells chronically exposed to the sun, which suggests that this may be 

important to eliminate pre-cancerous cells (Hughes and Crispe, 1995).  

Summarizing that, annotating a gene implies identifying the locations of all constituting 

exons in the considered genome. In addition to this, it is necessary to distinguish discrete 

isoforms of the respected gene. The following section introduces conventional techniques of 

gene annotation. 

 
Figure 1.4 Alternative splicing isoforms of the FAS gene 
The figure shows a locus in the human genome comprising exons 5, 6, and 7 of the FAS gene. Two 

FAS gene isoforms naturally occurring in humans are mapped to this region. Exon 6 is skipped in the 

shorter isoform due to the alternative splicing mechanism. 

1.2.2: Overview of gene annotation methods 

The gene annotation challenge has a long history, and many different methods and 

approaches for this problem have been developed up to this date. It is hard to undervalue the 

significance of gene annotation for bioinformatics and comparative biology. On account of this 

importance, the scientific community continues to advance the existing techniques, inventing 

various heuristics to improve the annotation quality (Ejigu and Jung, 2020). Ideally, a 

comprehensive gene annotation should satisfy the following criteria: 

1. Sensitivity: correctly annotate all protein-coding genes and their isoforms existing in 

the considered species. 

2. Specificity: do not annotate regions that do not belong to protein-coding genes in the 

considered species. 
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The existing gene annotation techniques could be divided into three major branches, 

particularly: 

1. Ab initio methods (subsection 1.2.2.1). These methods exploit various heuristics such 

as the maximum likelihood to identify the regions that statistically are likely to be 

protein-coding genes. In general, these methods show high sensitivity but report a 

considerable number of false annotations.  

2. Reference-based methods (subsection 1.2.2.2). These methods employ already 

existing annotations of closely related (reference) species to detect similar genes in 

the annotated (query) genome. Reference-based methods have reasonable sensitivity 

and usually outperform ab initio methods in terms of specificity.  

3. Transcriptome-based methods. These methods use RNA sequencing data to annotate 

genomes. The mRNA sequences that designate actually translated regions are 

mapped back to the genome sequence. These methods provide the best sensitivity; 

however, they strongly depend on sample collecting quality. These methods are 

explained in detail in subsection 1.2.2.3 

1.2.2.1 Ab initio method predictions 

Ab initio methods are the most straightforward to use because they require only a 

genome sequence and a pre-trained model describing characteristic properties of genes. 

Moreover, there are plenty of available pre-trained models for all major clades. This category 

includes popular and widely applied methods such as  AUGUSTUS (Nachtweide and Stanke, 

2019), GeneScan (Burge, 1997), and SNAP (Korf, 2004). In general, these methods are based 

on the evidence that protein-coding sequences have distinct statistical properties that could 

be utilized to discriminate them from non-coding regions. 

Ab initio methods detect specific coding sequence patterns such as codon and 

hexamer usage, exon and intron lengths, GC content, nucleotide periodicity, or the 

compositional bias between codon positions. Additionally, they rely on signal detection, 

recognizing different ORF features, such as start and stop codons, donor and acceptor splice 

sites, CpG islands, promoter and terminator sequences (Huang et al., 2016, p. ). 

These methods typically employ statistical models, such as Hidden Markov Models or 

Support Vector Machines, to predict potential coding genes. The biggest challenge in applying 

these methods is the training of probabilistic models, implying the extraction of statistical 

properties from already annotated genes. However, in-depth details of this problem are beyond 

the scope of this thesis.   

Since these methods do not depend on external evidence, they can identify previously 

unknown genes or genes that diverged beyond the recognition limits of homology-based 

approaches. Thus, they provide a convenient approach to obtain an exhaustive genome 
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annotation. However, this category of annotation methods has certain limitations: they 

regularly suffer from overprediction, implying the low specificity of the results. 

1.2.2.2 Reference-based annotation methods 

Reference-based approaches, in contrast to ab initio methods, rely on external 

evidence to annotate genes. In view of the fact that tremendous resources have already been 

invested in annotating genomes of model organisms, it is reasonable to utilize this information 

to annotate other species (Yates et al., 2019; Zerbino et al., 2020; Frankish et al., 2021). For 

example, highly-complete human and mouse genome annotations provide an outstanding 

source of external evidence. The methods that exploit external gene annotations to identify 

genes in the analyzed species belong to the reference-based class and are described in this 

subsection. 

The idea behind these methods is that gene sequences necessary for species survival 

are usually conserved, especially in closely related species (Clark et al., 2019). Hence, similar 

protein-coding sequences could be identified in different species employing nucleotide 

alignment tools. This class incorporates methods such as AgenDA (Taher et al., 2003), 

GenomeThreader (Gremme et al., 2005), TWINSCAN (Korf et al., 2001), and SGP2 (Parra et 

al., 2003). Typically, those methods align reference protein-coding sequences to the query 

genome utilizing local sequence aligners such as BLAST (Altschul et al., 1990). The significant 

matches then are processed using numerous heuristics to annotate the regions that likely 

represent protein-coding genes. 

However, this class of methods has specific caveats. The overall performance of such 

methods significantly depends on the reference annotation quality. Additionally, the high 

evolutionary distance between the reference and query genomes reduces the overall method 

accuracy, therefore for some clades, the search for suitable reference could be challenging. 

Moreover, the prediction of genes with different properties between reference and the query 

could be challenging due to reference bias (Chen et al., 2021). 

For instance, if annotation of some gene includes only a reference-specific isoform, it 

involves a risk of incorrect gene annotation. Furthermore, annotated genes are limited to 

reference gene homologs - query-specific genes are obscure for these methods. In contrast 

to ab initio methods, homology-based methods ensure that the number of false discoveries 

would be minimal, especially if the reference and query species are close relatives. 

1.2.2.3 Transcriptome-based approaches 

As opposed to previously introduced methods, this class consists of very reliable 

approaches supported by experimental data. The idea behind these methods is that 

messenger RNA, which is usually translated from coding regions, can be sequenced and then 
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aligned back to the genomic DNA sequence to recognize exons of a gene. This approach 

allows revealing the exon-intron structure of the genes that are indeed expressed in the 

organism, approaching nearly perfect specificity (Kuo et al., 2020). 

However, those methods come with several conditions. First, some genes are 

expressed at shallow levels or are strictly tissue-specific, so there is a high chance that RNA-

sequencing will not capture them (Wang et al., 2016). To capture all genes actually expressed 

in the considered species, the RNA-seq data should be genuinely comprehensive and cover 

all possible tissues and development stages, which could be highly complicated in practice for 

most species. Second, sequenced RNA might represent incorrectly spliced transcripts, NMD-

targets, degraded RNA, or to be a product of background translation (Minoche et al., 2015). 

Moreover, these methods are much more expensive and challenging to apply than the 

other methods listed in this subsection. As for extinct species, acquiring this data appears to 

be nearly impossible. Nevertheless, only the experimental support can theoretically provide 

the ideal annotation quality. 

 

Although, the common practice to produce reliable and comprehensive annotations is 

combining independent methods (Haas et al., 2008). This practice allows to neutralize the 

limitations of each particular method and increase the overall gene annotation performance. 

Moreover, the annotation of the most critical genes can be curated manually or involve 

additional experiments. The subsequent challenge after protein-coding gene prediction is to 

identify homologous genes that share common evolutionary ancestry and classify them into 

orthologs and paralogs, as explained in the following part. 

1.3 Gene homology 

Homology is a property that describes evolutionary history. Orthologs and paralogs are 

two fundamentally different types of homologs diverged by speciation and duplication events, 

respectively. Proper identification of orthologs is crucial for various comparative studies 

because orthologs are generally assumed to carry out biologically equivalent functions in 

different organisms (Tatusov, 1997; Altenhoff et al., 2012). In contrast, paralogs can 

functionally diverge after duplication and therefore alter the functionality. 

This part gives a detailed explanation of orthology and paralogy concepts (section 

1.3.1) and provides an overview of modern techniques to distinguish orthologs from paralogs 

(section 1.3.2).  
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1.3.1 Differences between orthologs and paralogs 

Orthology and paralogy concepts focus on the mode of descent from their common 

ancestor (Fitch, 1970; Fitch, 2000), not on the level of sequence or function conservation. 

However, sequence similarity is a plausible indicator of common ancestry (Pearson, 2013). 

Orthologs are a subset of homologs that evolved from the same ancestral sequence and are 

separated by a speciation event. It means when a species diverges into two separate ones, 

the descendants of the single ancestral gene remaining in these species are called orthologs 

(Koonin, 2005). In contrast to orthologs, paralogous sequences are separated by a duplication 

event that occurred within the ancestral genome. Sequences diverged from different copies 

are said to be paralogous (Koonin, 2005). The figure below illustrates these concepts on a 

theoretical gene tree (figure 1.5). 

 
Figure 1.5 Difference between orthology and paralogy 
In this particular example, a hypothetical ancestral gene is duplicated within the ancestor of mammals 

and birds. The resulting copies of this duplication are called A and B. Then, after two speciation events, 

we may detect A and B copies in the exemplified species. The path between the human and mouse 

copies of gene A goes through the speciation event (shown in blue); thus, these genes are orthologous. 

However, the evolutionary path between the chicken copy of gene A and the human gene goes through 

the gene duplication in the ancestral genome (shown in red); therefore, these genes are said to be 

paralogs. 

 
It is worth considering a slightly more complicated evolutionary structure. The case 

illustrated above (figure 1.5) represents the case of one-to-one orthology, implying that each 

considering species has a single copy of the ortholog. However, the duplication event might 

happen after the speciation, as exemplified in Figure 1.6. 
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Figure 1.6 Example of co-orthology 
The phylogenetic tree shows a theoretical gene A that underwent independent duplications after the 

speciation event. In such a case, mouse genes a1 and a2 are said to be co-orthologs of human genes 

A1 and A2.  

  

In this example, a hypothetical gene underwent independent duplications in the human 

and mouse lineages. In this case, mouse genes a1 and a2 are said to be co-orthologs 

regarding each human gene, and vice versa. Together, these genes establish a many-to-many 

orthology connection, or comprise an orthologous group (Gabaldón and Koonin, 2013). 

Notably, the applicability of orthology and paralogy concepts is not restricted to protein-

coding regions. In fact, it applies to any class of sequences that allows the determination of 

evolutionary relationships. For instance, that could be non-coding RNA regions (Bryzghalov et 

al., 2019) or regulatory elements (Hallikas et al., 2006). One may potentially detect the same 

evolutionary origin and inspect for such sequences, whether they arose because of speciation 

or duplication events, and therefore classify them as orthologs and paralogs. However, this 

work principally focuses on protein-coding genes. In the following section, I outline the principal 

methodological approaches of orthology inference. 

1.3.2 State of art methods to distinguish orthologs from paralogs 

During the last decades, plenty of approaches for inferring orthology were developed. 

However, they have a common feature - as input, they require a set of already annotated 

genes with their coding and protein sequences for each considered species. This observation 

explains why gene annotation generally precedes orthology inference. Moreover, gene 
annotation quality has a substantial influence on the accuracy of the orthology inference 

process. In general, the assortment of orthology inference methods could be divided into two 
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major types: graph-based methods, introduced in subsection 1.3.2.1, and tree-based 

approaches, described in subsection 1.3.2.2. 

1.3.2.1 Graph-based methods 

Graph-based, also known as sequence-similarity methods, are built on the assumption that 

the protein sequences originated from orthologous genes exhibit a higher degree of sequence 

similarity since they are by definition more closely related. These methods cluster annotated 

genes into groups based on pairwise sequence similarity to employ this concept. This 

approach is implemented in a great variety of methods, such as OrthoFinder (Emms and Kelly, 

2015), OrthoMCL (Li, 2003), and OrthoVenn (Wang et al., 2015). 

Usually, graph-based methods use techniques such as BLAST search to identify gene 

pairs having the highest sequence identity. As a result of this search, a graph-based approach 

generates a graph where nodes stand for genes, and edges characterize sequence similarities 

between genes. Then, clustering techniques are applied to segregate groups of orthologous 

genes. However, the premise that orthologs always show substantially higher sequence 

similarity than paralogs is not always correct. Therefore, to increase the accuracy, most of 

these methods further include post-processing steps involving various heuristics. 

1.3.2.2 Tree-based methods 

Tree-based methods implement the classical approach for orthology identification. 

Methods of this category determine whether a pair of genes coalesce in speciation or a 

duplication node in the gene tree (Zmasek and Eddy, 2001; Li, 2003; van der Heijden et al., 

2007; Huerta-Cepas et al., 2007; Vilella et al., 2008; Emms and Kelly, 2015; Herrero et al., 

2016). To separate orthologs and paralogs, these methods construct a tree of considered 

genes, using various approaches such as maximum parsimony (Felsenstein, 1978), maximum 

likelihood (Vandamme, 2009), or Bayesian algorithms (Yang and Rannala, 2012). Then, they 

map the resulting gene tree to an already established phylogeny of species that host the 

analyzed genes. Since the gene and species trees have different topologies due to 

evolutionary events performing particularly on genes, such as duplications or losses, the 

problem of orthology inference is reduced to the reconciliation of combined phylogenetic trees. 

Typically, these methods search for orthology/paralogy configuration that could be explained 

by the smallest number of evolutionary events to reconcile the tree (Altenhoff et al., 2019).  

It is worth mentioning that gene tree-based algorithms could be confused by 

evolutionary events such as reciprocal gene deletion (Gabaldón, 2008). Figure 1.7 provides a 

hypothetical example of such an event. In this case, the deletion of mouse gene A and human 

gene B may cause the ancestral duplication event undetected, consequently leading to the 

erroneous assignment of human gene A and mouse gene B as orthologs. 
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Figure 1.7 Gene deletion leading to inaccurate orthology inference 
In this case, human genes A and mouse gene B are split by a duplication event that happened in the 

ancestor, and therefore are paralogs. However, since the orthologs of these genes that arose by 

speciation event (human gene B and mouse gene A) are deleted, the duplication event can be 

undetected by a tree reconciliation algorithm. Consequently, human A and mouse B genes can be 

erroneously classified as orthologs.  

 

The methods of orthology inference introduced above established themselves as 

reliable approaches with discovered advantages and downsides. The orthology connections 

found using these methods shaped the comparative biology research of the last decades. 

However, nowadays, they are subjected to novel challenges, which are described in the next 

part. 

1.4 Major challenges in the field 

On account of advances in DNA sequencing technologies, the number of available 

genome assemblies rapidly grows in the last years. Indeed, for certain clades such as 

mammals (appendix B) there are several hundred genomes available nowadays. The scientific 

community encountered unprecedented challenges in adapting the existing methodology to 

meet the increased data scales (Sonnhammer et al., 2014; Nevers et al., 2020). Moreover, the 

requirements for genome annotation quality and completeness have been increased 

(Salzberg, 2019). To meet the challenges related to the latest large-scale genome sequencing 

projects such as the EBP (Lewin et al., 2018), we crucially need the next generation of high-

throughput annotation methods that scale to the abundance of data. 

It is worth considering that currently applied orthology inference and gene annotation 

approaches were developed in entirely different circumstances, where smaller amounts of 

data were accessible. Moreover, the overall quality and completeness of data have 

significantly improved since then. Most of the underlying techniques are adapted to process 
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dozens of genomes and require an unreasonable amount of computational resources when it 

comes to hundreds of them. Thus, they lack scalability and cannot meet the increased data 

amounts. Thus, the bottleneck of comparative genomics is shifting from the amount of 

available assembled genomes to the throughput of computational methods. 

In this work, I present TOGA (Tool to infer Orthologs from Genome Alignments) - a 

bioinformatics method that implements a novel paradigm of genome annotation and orthology 

inference at scale. In contrast to other methodologies, this paradigm does not exclusively rely 

on the protein-coding sequences to infer orthology. Instead, it uses whole-genome alignments 

to integrate detecting intact or lost genes, determining gene orthology, and annotating 

orthologous genes in a comparative manner. In contrast to current orthology-detection 

methods that rely on the similarity between gene sequences, TOGA extracts rich information 

on how the genomic context around genes aligns between species and uses machine learning 

to distinguish orthologs from paralogs accurately.  

Exploiting the whole genomic context, we can approach the classic challenges from 

new directions, and the proposed design demonstrated solid performance compared to hi-end 

techniques (see part 3.4). Additionally, the TOGA method can be effortlessly scaled to 

hundreds of genomes. Background on additional concepts required by TOGA is explained in 

the following part (1.5), while the TOGA method itself is described in chapter 2. 

1.5 TOGA method novelty 

To the best of my knowledge, TOGA is the first method that integrates inferring 

orthologs and annotating genes in a single pipeline. Historically, these two steps were 

considered separate since orthology inference methods require already existing gene 

annotation. Instead, TOGA solves the problem in the reversed order. First, TOGA accurately 

identifies orthologous loci in the annotated genome using whole-genome alignments. To infer 

orthology ahead of gene annotation, it employs divergence of neutrally evolving sequences 

such as introns and intergenic regions, in contrast to other methods that rely exclusively on 

coding sequence alignments. The idea behind this is that neutrally evolving sequences in 

orthologous regions tend to be less diverged than in the paralogous loci. As shown below (part 

3.1), the utilization of non-coding regions of a gene enables TOGA to infer orthologs at high 

accuracy. Second, TOGA realigns reference genes to predicted orthologous loci using the 

HMM-based method CESAR (Sharma et al., 2016; Sharma et al., 2017), and third, eventually 

resolves the orthology relationships using the graph method.  

This design provides TOGA various advantages compared to other methods. For 

instance, previous orthology inference methods are insufficient for genes that have virtually 

identical protein sequences. For TOGA, which uses additional information, this is not a 
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problem. In addition to this, the TOGA pipeline is able to detect and annotate lost genes, 

representing orthologous but inactivated (non-functional) genes. Also, TOGA can identify 

orthologs in highly fragmented assemblies where genes are often split between different 

scaffolds. 

In the following sections, I provide an explanation of how exactly the whole-genome 

alignments can highlight the orthologous loci in the query genome. First of all, I introduce the 

approach of genome alignment representation that TOGA actively uses - the genome 

alignment chains. Then, I show the differences between chains that indicate alignments to 

orthologous or paralogous loci in the annotated genome. 

1.5.1 Pairwise genome-wide alignments 

Alignments between entire genomes are the foundation for most comparative 

genomics analyses, and a key input for TOGA. Pairwise genome alignments establish the 

correspondence between different regions in the reference and query genomes based on the 

sequence similarity. In other words, they provide a collection of local alignments distributed 

along with the entire genome sequences. Usually, these alignments connect homologous 

sequences such as genic regions or regulatory elements between each other. 

Building genome alignments is a computationally heavy task, and many various 

methods to solve it are currently available. For instance, BLAT (Kent, 2002) is a famous and 

fast local alignment tool that could be applied to produce whole-genome alignments. Also, 

BLASTZ (Schwartz, 2003) and its successor LASTZ (Harris, 2007) are local aligners adjusted 

to provide a higher sensitivity than standard BLAST (Ma et al., 2002). Similarly, LAST 

(Kielbasa et al., 2011) could compete with other methods applying numerous heuristics to 

approach the genome alignment challenge. The resulting genome alignments could be 

represented in many different ways and formats. To perform the computations, TOGA utilizes 

chains (Kent et al., 2003) of collinear local alignments described in the following section. 

1.5.2 Alignment chains introduction 

Chains of co-linear local alignments are a form of pairwise genome alignment 

representation. Local alignments, also known as aligning blocks that occur in the same order 

and orientation (strand) in both reference and query genome, are chained together to build 

alignment chains (Kent et al., 2003). Aligning blocks can be separated by insertions and 

deletions that occurred in either the reference or query genome. Also, blocks can be separated 

by regions where the reference or the query genome underwent a deletion, inversion, or 

translocation. In case the local alignments of the rearranged regions are not co-linear with the 

primary chain, they can form a separate one. 
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Each individual chain establishes the one-to-one correspondence between aligned 

regions in the reference and query genome. Therefore, having a region in the reference 

overlapped by an aligning block, it is possible to obtain the aligned region's coordinates in the 

query. Technically, the chain consists of the following elements: 

1) Aligning blocks representing an aligned ungapped region between the reference and 

the query. Since an alignment block establishes an explicit connection between two genomes, 

it has two sets of coordinates: in the reference and the query genomes, respectively.  

2) Gaps between blocks representing either a not-aligned region or a deletion of the 

corresponding region in the query genome. 

 

Figure 1.8 below shows the main elements of the alignment chain. The visualization 

style is consistent with the UCSC genome browser (Kent et al., 2002) representation. 

 
Figure 1.8 Alignment chain structure 
Each box represents a non-gapped alignment between the reference and query genome (alignment 

block). Additionally, double lines between blocks indicate that corresponding regions do not align 

between reference and query genomes. Furthermore, a single line shown between aligning blocks 

signifies that the corresponding region is deleted in the query (or inserted in the reference; a pairwise 

comparison cannot distinguish between both). 

 

To make the concept of alignment chains clearer, figure 1.9 below illustrates a genome 

alignment between two theoretical genomes represented by a chain. It shows that alignment 

blocks establish associations between genomic regions in the reference and query based on 

the sequence similarity. The single line implies that regions corresponding to flanking 

alignment blocks are adjacent in the query genome. Alternatively, they might be considered 

as non-homologous insertions in the reference genome from the query perspective. Not 

aligned regions may have different lengths in the reference and query; therefore, they do not 

determine reciprocal connections between genome coordinates unequivocally like the 

alignment blocks. 
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Figure 1.9 Alignment chains on genomic sequences 
The figure shows two loci in a reference and query genomes and a chain representing alignment 

between these regions. 

 

Moreover, a single region in the reference genome could be aligned to several regions 

in the query genome. In this case, multiple chains cover this region simultaneously, pointing 

to different aligned loci, revealing that the locus underwent a duplication. Furthermore, 

alignment chains can represent other evolutionary events such as translocations or inversions, 

as shown in Figure 1.10. 

 
Figure 1.10 Chains indicating translocations 
UCSC genome browser screenshot shows the locus in the human genome containing CKMT1B and 

STRC genes. Also, it illustrates two alignment chains to the guinea pig genome. The top-level chain 

(blue) aligns to the ancestral locus in the guinea pig genome. The second-level chain (red) is shorted 

and indicates a translocated region in the guinea pig. Thus, multiple chains can align to the same locus 

in the reference genome. 

1.5.3 Differences between orthologous and paralogous alignment chains 

In general, for related species where neutrally-evolving regions are still partially 

alignable, the key distinguishing feature of chains representing alignments between 

orthologous loci is that alignment blocks cover not only conserved coding exons but also some 

intronic and intergenic regions that typically evolve neutrally. Additionally, such chains are 

often characterized by conserved gene order (synteny): orthologous chains tend to cover 

multiple consecutive genes because orthologs usually appear in the conserved order. In 

contrast, alignment blocks of non-orthologous chains mainly cover the regions that evolve 

under purifying selection, such as exons or regulatory elements. Usually, such chains illustrate 

that neutrally evolving regions are misaligned. 
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To illustrate these characteristic differences of chains representing orthologous and 

non-orthologous alignments, Figure 1.11 shows a UCSC genome browser screenshot of a 

locus in the human genome that contains the EHD1 gene. This gene belongs to a conserved 

gene family of EPS15 homology domain-containing proteins, which also includes EHD1 

paralogs, named EHD2, 3, and 4. The top annotation track on this screenshot illustrates the 

exon-intron structure of three isoforms of the EHD1 gene. A track below shows several 

alignment chains corresponding to different loci in the mouse genome.  However, only one of 

these chains aligns to the ortholog in the mouse genome (Ehd1). This chain is vividly exhibited 

contrary to the rest by aligning blocks intersecting both exons and introns. The rest of the 

chains show that respective loci in the query align only to exons - they represent other genes 

belonging to the EHD family, which are clearly paralogous. Also, one of the chains shows that 

in the corresponding locus, introns are completely deleted - this indicates that this chain aligns 

to a processed pseudogene copy. 

 
Figure 1.11 Differences between orthologous and paralogous chains 
UCSC genome browser shows the locus in the human genome comprising the EHD1 gene. Also, it 

shows 5 chains representing alignments to different loci in the mouse genome. The top-level chain 

represents the alignment to the mouse Edh1 gene (ortholog). This chain shows that (i) exons, (ii) introns 

(highlighted), and (iii) intergenic regions align between orthologous regions in the human and mouse. 

Other chains show that corresponding loci in the query genome align only to exons, and therefore, they 

represent non-orthologous regions in the mouse: paralogs and processed pseudogene copies. 

 

The differences between the appearance of orthologous and paralogous chains are 

explained by molecular divergence. The molecular distance between orthologous genes is 

substantially shorter than between paralogs. For instance, the speciation event that separated 

EHD1 genes in the human and mouse happened ~96 Million years ago (Nei et al., 2001). 

However, since both human and chicken have an EDH1 and EDH2 gene, the duplication that 

separated EHD1 and EHD2 happened in the Vertebrata ancestor, at least 450Mya. 

 In molecular terms, neutrally evolving sequences in orthologous genes did not have 

enough time to diverge strongly. Contrary, the molecular distance between paralogs is 
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substantially larger. More precisely, we expect 0.5 substitutions per neutral site between 

orthologous loci in the human and mouse genomes (Hiller et al., 2013), which implies 

approximately 50% of neutral sequence identity. Practically, it suggests that some parts of 

intronic and intergenic regions will still align. 

In contrast, we expect much more than one substitution per neutral site between 

paralogous sequences, which means that neutral regions are fully randomized and therefore 

do not align. Summarizing that, we expect that neutral sequence similarity remains only for 

orthologous sequences. 

Figure 1.12 illustrates this principle on an EDH1/2 gene tree. Split between EDH1 

orthologs in the human and mouse happened simultaneously with the speciation event. 

However, the evolutionary distance between paralogs is significantly longer than between 

orthologs because the path between paralogs crosses the duplication event that happened in 

the vertebrates' ancestors. 

 
Figure 1.12 Molecular divergence explains the differences between orthologous and 
paralogous chains 
Split between EDH1 orthologs in the human and mouse happened simultaneously with the speciation 

event (~96Mya, blue dotted line). Thus, we expect 0.5 substitutions per neutral site - introns and 

intergenic regions still align between orthologous loci. However, the evolutionary distance between 

paralogs is significantly longer than between orthologs because the path between paralogs crosses the 

duplication event that happened in the vertebrates' ancestors (~490 Mya, red dotted line). Therefore, 

neutral sequences in paralogous loci are randomized and do not align. 
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1.5.4 TOGA conceptual idea 

TOGA captures these characteristic differences that separate orthologous from 

paralogous chains in features that measure e.g., alignment coverage of introns, alignments of 

gene-flanking regions, and synteny. In a machine learning framework, these features are used 

to classify each chain as orthologous and non-orthologous. This concept enables TOGA to 

recognize orthologous loci with a great degree of accuracy. 

It is worth mentioning that in contrast to traditional methods, TOGA does not rely on 

coding sequence alignment features - neutral sequence divergence is sufficient enough to 

identify orthology accurately. As demonstrated in the following chapters, TOGA can compete 

with and even outperform traditional approaches that rely on coding sequence alignments and 

gene trees. 



 
23 

2. TOGA pipeline 
This chapter covers the details of the TOGA computational pipeline implementation. 

Briefly, the genome annotation pipeline implemented in TOGA consists of the following steps: 

1. At first, TOGA checks the input data (described in part 2.1) for correctness, and if it 

does not contain any mistakes, it continues the algorithm execution. For each coding 

gene annotated in the reference genome, TOGA detects alignment chains that 

intersect it and extracts numeric features that describe the appearance of alignment. 

Then it applies a gradient boosting binary classification algorithm to determine chains 

that represent orthologous loci in the query genome. This procedure is explained in 

part 2.2. Then, part 2.3 introduces the TOGA annotations naming convention. 

2. To recognize all coding exons of a reference gene in the corresponding orthologous 

loci, TOGA uses the CESAR2.0 method (Sharma et al., 2016; Sharma et al., 2017). In 

parallel, TOGA scans the predicted reading frame for inactivating mutations and 

determines whether any exons are missing due to assembly gaps. Then it classifies 

the predicted transcripts as intact, missing, or inactivated. This pipeline step is detailed 

in part 2.4. 

3. In the end, TOGA infers the orthology type between genes and resolves spurious N-

to-M relationships that are only supported by weak orthology. Part 2.5 contains the 

details of this pipeline step. 

 

The TOGA pipeline steps listed above are briefly illustrated in figure 2.1. Later in this 

chapter, parts 2.6 and 2.7 outline the pipeline output and a procedure of reference gene set 

filtering, respectively. 

The pipeline is implemented in Python and C languages and requires a minimal 

number of external dependencies, which improves the tool accessibility. Feature extraction 

and realigning reference genes in the query genome are heavy computational tasks 

recommended to be performed on an HPC system. To handle cluster-dependent steps, TOGA 

uses Nextflow, which maximizes the set of compatible HPC systems. 
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Figure 2.1 TOGA pipeline overview 
1: As input, TOGA accepts reference genome annotation; several isoforms might represent each gene. 

2: Given alignment chains, TOGA identifies those that likely represent orthologous loci (3 orthologous 

chains shown in different colors, non-orthologous chains are shown in grey). 3: TOGA projects reference 

genes to predicted orthologous loci and scans predicted reading frames for inactivating mutations. Then 

it classifies predicted genes as intact, missing, or lost. Note that TOGA does not annotate UTR regions, 

only the CDS. 4: At the end, TOGA performs the final orthology inference, establishing orthologous 

connections between reference and query genes. 

2.1 TOGA pipeline input 

The genome annotation pipeline implemented in TOGA requires the following files as input: 

1) Reference and query genome sequences. The TOGA implementation presented in 

this thesis requires the genome to be provided in the 2bit format 

(https://genome.ucsc.edu/goldenPath/help/twoBit.html), containing a compressed and 

indexed sequence of the entire genome. Users can easily convert a genome in a multi-fasta 

format to a 2bit using the faToTwoBit program from the UCSC genome browser toolset. 

2) Annotation of coding genes in the reference assembly in bed-12 format. If reference 

genome annotation provides more than one isoform for a gene, TOGA also considers this if 

the appropriate file is provided. Additionally, a user may provide information about U12 introns 

localization as a part of reference genome annotation, which is non-mandatory but 

recommended. The quality of reference genome annotation has a significant input on the 

TOGA output. Part 2.7 of this chapter provides information on how the annotation could be 

filtered to avoid input-related errors. 
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3) Genome alignment file containing chains of collinear local alignments between the 

reference and query genomes - this file could be extracted from any pairwise genome 

alignment. It is worth mentioning that chain quality influences the orthology loci classification 

step. Part 3.5 of chapter 3 discusses this influence. 

 

Compared to other genome annotation methods, the required set of input files for 

TOGA is minimalistic. Nevertheless, it provides a sufficient amount of information to perform 

all pipeline steps with a high degree of accuracy. 

2.2 Inferring orthologous loci from pairwise genome alignments 

To infer orthologous loci, TOGA uses pairwise chains of collinear local alignments, 

computed between a reference and query genome (see part 1.5), and the gene annotation of 

the reference genome. Each gene-chain pair uniquely determines a single locus in the query 

genome. At the first step, TOGA identifies candidate chains for each reference gene, then 

extracts numeric features from each gene-chain pair, and at the end applies machine learning 

to distinguish orthologous loci in the query (figure 2.2). 

 
Figure 2.2 Inference of orthologous loci 
UCSC browser screenshots show a region in the human genome containing the EHD1 gene. A: Five 

mouse chains align to this region. B: TOGA extracts characteristic features for each chain and applies 

a gradient boosting model to identify orthologous chains. For the human EDH1 gene, the top-level 

alignment chain represents the alignment to the orthologous locus (on chromosome 19). TOGA then 

annotates the ortholog in the respective locus in the query genome. 

2.2.1 Identifying candidate chains 

At the very beginning, for each provided reference transcript, TOGA identifies 

intersected alignment chains. This procedure is necessary to establish the set of potential 

gene-chain pairs for further classification and analysis. Since a naïve algorithm that iterates 
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over all possible gene-chain pairs and checks whether they intersect is time-consuming, TOGA 

implements a faster method that utilizes the sorting of gene and chain regions on the same 

chromosome: 

1. Specifically, on each reference chromosome/scaffold, TOGA sorts the genomic 

regions of all genes and chains by the start coordinate. 

2. Then, for each chain, TOGA iterates over the sorted list of genes, starting with the first 

gene that intersected the previous chain. Since the list of genes is sorted, all genes 

that precede the selected one indeed do not intersect the considered chain. Therefore, 

they can be excluded from the computation, which saves computational time. 

3. We determine whether the chain overlaps or spans at least one coding exon for each 

gene, making this chain a candidate chain. The iteration is stopped at the first gene 

that starts downstream of the current chain end. Again, since the genes' list is sorted, 

all following genes will start upstream of the current chain end and, consequently, 

indeed do not intersect the considered chain. 

 

As a result of this algorithm, we quickly acquire a list of chains that intersect each gene. 

As well as the naïve approach, this procedure also has an asymptotic worst-case O(N2) 

runtime. However, for the naïve approach, the worst and average case scenarios are identical: 

it iterates over all possible gene-chain pairs, and the runtime only depends on the number of 

genes and chains. Our optimized approach has the quadratic runtime only in the worst case 

where every chain overlaps every gene. In practice, we found that this procedure results in a 

speedup of ~70 fold because it avoids examining numerous upstream or downstream genes 

of a considered chain. 

2.2.1.1 Filtering low-scored chains 

It is also worth mentioning that alignment chains undergo the filtering procedure to 

spare computational runtime further. Genome alignment tools do not take into account the 

function of the aligned sequence. Therefore, alignment chains may appear in any fraction of 

the genome unless they are masked. Thus, the vast majority of chains are very short and cover 

minor regions of a few hundred bp long and are characterized by low alignment scores. It can 

be expected that most of these chains are very unlikely to align any significant fraction of a 

protein-coding gene. However, extracting features from each chain requires computational 

resources. To avoid unnecessary computations, TOGA considers only the chains with any 

prospect to align with protein-coding regions in the query genome. 

In particular, TOGA first removes chains with alignment scores below 5000 and then 

selects those that span at least one coding exon for a given protein-coding transcript (figure 
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2.3). This filter allows TOGA to optimize the runtime because the low-scored chains comprise 

up to 90% of the total number of chains and do not contribute to the pipeline results. 

 
Figure 2.3 Low-scoring alignment chains 
Chains that are shown here on the grey background are ignored as they are unlikely to represent 

complete transcripts.  

2.2.2 Features extraction for machine learning 

At this step, TOGA computes numeric features describing alignment appearance for 

each gene-chain pair. To compute these features, it intersects the reference coordinates of 

chain aligning blocks with different gene regions, such as CDS, UTRs, and introns. In 

particular, TOGA extracts the following values: 

● c: number of reference bases in the intersection between chain aligning blocks and 

CDS of the analyzed gene. 

● C: number of reference bases in the intersection between chain blocks and coding 

exons of all genes covered by the analyzed gene. If the chain overlaps a single gene, 

this value is equal to "c." 

● a: number of reference bases in the intersection between chain blocks and coding 

exons and introns of the gene under consideration. 

● A: number of reference bases in the intersection between chain blocks and coding 

exons and introns of all genes and intergenic regions covered by the considered chain. 

It is worth mentioning that this value could not be equal to value "a" even if the chain 

covers a single gene because value a does not include intergenic regions. 

● i: number of reference bases in the intersection between chain blocks and introns of 

the gene under consideration. 

● I: the sum of all intron lengths of the gene under consideration. 

● CDS: length of the CDS of the gene under consideration. 

● f: number of reference bases in chain blocks overlapping the 10 kb flanks of the gene 

under consideration. Alignment blocks overlapping exons of another gene located in 

these 10 kb flanks are ignored. 
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Using these values, TOGA computes the following characteristic features: 

● "global CDS fraction" as C / A. Chains with a C / A value closer to one have alignments 

that largely overlap coding exons, which is a signature of paralogous or processed 

pseudogene chains. In contrast, chains with the C /A value closer to 0 also align many 

intronic and intergenic regions, which is a hallmark of orthologous chains.  

● "local CDS fraction" as c / a. Orthologous chains tend to have this value closer to 0, as 

intronic regions partially align. For paralogous chains, the c /a value is usually closer 

to 1. This feature is not computed for single-exon genes since they have no intronic 

fraction. 

● "local intron fraction" as i / I. This feature shows the fraction of aligned introns. 

Orthologous chains tend to have a higher i / I ratio. Like the previous, this feature is not 

computed for single-exon genes. 

● "flank fraction" as f / 20000. Orthologous chains tend to have higher values, as flanking 

intergenic regions usually align. This feature is essential to detect orthologous loci of 

single-exon genes since we cannot rely on intron-related features in this case. 

● "synteny" as log10 of the number of genes, whose coding exons overlap by at least 

one base aligning blocks of this chain. Orthologous chains tend to cover several genes 

located in a conserved order, resulting in higher synteny values. 

● "local CDS coverage" as c / CDS, which is only used for single-exon genes.  

 

It is necessary to remark that the term 'global' refers to features computed from all 

genes that overlap the chain, whereas 'local' refers to features calculated from the single gene 

under consideration. For example, if a chain covers two genes, 'global' features computed for 

both genes will be identical, but 'local' will differ. Most of these features quantify how well 

neutrally evolving intronic and intergenic regions align in comparison to coding exons, which 

mainly evolve under purifying selection. Because selection in UTR exons is variable, 

alignments overlapping UTR exons are ignored for feature computation. All features are 

visually explained in figure 2.4.  
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2.2.3 Machine learning classification of chains 

To classify the extracted transcript-chain pairs as orthologous and not, we apply a pre-

trained gradient boosting model. Model selection, training, and testing are described in part 

3.1 of this thesis. Model input is a predefined set of features per transcript-chain pair, and 

output is a number ranging from 0 to 1, which indicates the probability of orthology. We 

consider each transcript-chain pair that gained the orthology score of ≥ 0.5 as pointing to an 

orthologous locus. To extract high-confidence orthologs for phylogeny inference, we use a 

higher score threshold of ≥0.95 (part 4.1).  

 
Figure 2.4 Graphical representation of extracted features 
The figure shows a locus in the reference genome comprising three genes and an aligning chain. 

Additionally, it provides graphical representations of “C”, “c”, “A”, “a”, “f”,” “I”, “I”, and CDS values (details 

in the main text). 

2.2.4 Handling gene-spanning chains 

We use the term spanning for the chains that cover entirely deleted, missing due to 

assembly gaps, or heavily diverged genes. In this case, the chain blocks are located up and 

downstream of the considered gene (figure 2.5). 
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Figure 2.5 Gene-spanning alignment chains 
Chains that align up/downstream of the gene and do not have aligning blocks intersecting exons are 

processed separately because the feature extraction for such chains is impossible. Usually, they 

represent either the deletion or high sequence divergence in the respective locus in the query genome. 

  

In the absence of aligning blocks intersecting exons, it is impossible to adequately 

compute the “local” features listed above for such transcript-chain pairs. Therefore, our 

machine learning classification procedure is inapplicable in this case, so TOGA processes 

these chains separately. To deal with these chains, TOGA extracts them before classification 

and treats them as follows: If aligning blocks of this chain overlap coding exons of less than 

two other genes, TOGA excludes it from further computations. Otherwise, we consider it an 

orthologous chain candidate. For such chains, we run CESAR 2.0, as described below, on the 

query locus defined by the closest upstream and downstream aligning blocks. 

2.2.5 Annotating processed pseudogenes  

Non-orthologous chains do not necessarily align to paralogous copies - paralogs are 

only a subset of the possibilities. For example, they could also indicate alignments to 

processed pseudogene (PP) copies. Alignment chains leading to PP copies are characterized 

by the deletion of intronic regions (figure 2.6). This feature is derived from the fact that, by 

definition, processed pseudogenes are copies of reverse-transcribed mRNAs (where introns 

are deleted) that have been inserted back into the genome (Kabza et al., 2014). TOGA exploits 

this key feature to separate processed pseudogene from the rest of non-orthologous chains. 

This enables TOGA to enrich the query genome annotation by including processed 

pseudogenes to the output. 
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Figure 2.6 Chains aligning to processed pseudogene copies 
UCSC browser screenshot shows locus in the human genome containing ZC3H15 gene and rat aligning 

chains. Intronic regions are highlighted in grey. Chains aligning to processed pseudogene copies 

indicate that respective intronic regions are entirely deleted in the query genomes. This feature is used 

in TOGA to separate these chains from the rest of the non-orthologous ones. 

 

To distinguish processed pseudogenes chains, TOGA computes the “alignment to 

query span” value for multi-exon genes. Defining e as the number of reference bases in the 

intersection between chain blocks and exons (here using both UTR and CDS) and defining Q 

as the span of the chain in the query genome, “alignment to query span” is computed as e / 

Q.  For chains that represent processed pseudogenes copies, this value is close to 1 because 

the intronic fraction in such copies is deleted, by definition. Thus, the cumulative length of exon 

alignments is close to the total chain length in the query. Therefore, non-orthologous chains 

that overlap only one multi-exon gene and have the "alignment to query span" value greater 

than 0.95 are classified as processed pseudogene chains. To annotate PP copies in the query 

genome, TOGA extracts the corresponding coordinates directly from chain blocks, omitting 

the CESAR realignment step. 

 

Two examples of processed pseudogene annotations extracted by TOGA are shown 

on UCSC genome browser screenshots below (figure 2.7). In panel A, the TOGA prediction of 

the processed pseudogene coincides with the PP annotation track from Ensembl. In the 

example presented in panel B, TOGA identified a processed pseudogene in an intergenic 

region which is not detected by Ensembl. 
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Figure 2.7 TOGA annotation of processed pseudogene copies 
UCSC genome browser screenshots show TOGA annotation track in two loci in the rat genome. On 

panel A, the TOGA-predicted processed pseudogene copy intersects PP copy annotated by Ensembl. 

On panel B, TOGA annotated a processed pseudogene copy undetected by the Ensembl pipeline.  

2.2.6 Assembly of fragmented genes 

While contemporary genome projects often aim at producing complete, chromosome-

scale scaffolds, some of the species are still represented by strongly fragmented genome 

assemblies. In such fragmented assemblies, protein-coding genes can be split between 

different scaffolds. In this case, multiple non-overlapping chains representing alignments 

residing on different scaffolds overlap the gene and could be misclassified as multiple partial 

duplications. 

Since we observed that TOGA could detect partial gene duplications (Figure 1.10), I 

implemented a feature that enables TOGA to identify the specific patterns exhibited by 

alignments to fragmented orthologs. If this is the case, TOGA joins the respective orthologous 

chains and reassembles the fragmented gene, annotating it as a whole. 

Figure 2.8 provides two specific examples of joined genes. Panel A demonstrates that 

gene fragmentation could occur even in high-quality genome assemblies such as the rat's, 

where the MKX gene is split into two pieces. Panel B shows a side-by-side comparison 

between genome assemblies of very closely related species: the Kogia and the sperm whale 

on the example of the human LRCH3 gene. In the Kogia, this gene is split into six pieces 

located on different assemblies, whereas in the sperm whale, a single orthologous aligns. 

Since these species are closest relatives, it suggests that Kogia actually possesses a single 

undivided ortholog but not six partial copies. 
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Figure 2.8 Gene residing on multiple scaffolds 
UCSC browser screenshot on panel A shows the human MKX gene and rat alignment chains. Notably, 

the rat ortholog of this gene is split into two pieces. TOGA detects such an event and annotates this 

ortholog as a whole. Panel B illustrates Kogia and sperm whale alignment chains covering the human 

LRCH3 gene. This gene is split into six pieces located on different scaffolds in the Kogia genome, 

whereas in the closest relative (sperm whale), this gene is complete, suggesting that Kogia also 

possesses a single orthologous copy. As in the first example, TOGA recognizes this pattern and 

annotates the LRCH3 ortholog in the Kogia as a whole. 

 

To achieve this, TOGA verifies whether multiple orthologous chains overlapping a gene 

represent a single ortholog residing on multiple scaffolds after the chain classification step. 

TOGA performs the inspection unless no orthologous chain covers the gene entirely, but the 

number of orthologous chains is greater than 1. 

Based on the start and end coordinates of each orthologous chain along with the 

orthology confidence score, TOGA builds a directed acyclic graph (DAG) with chains as 

vertices and orthology score as the edges' weight. Nodes representing adjacent chains are 

connected. Next, TOGA performs a search for the highest-scoring path in the graph connecting 

chains from the beginning of the gene to the end. Then, the corresponding loci of the chains 

comprising the detected path are merged. This merged sequence is further used as an input 

for the CESAR realignment step. Therefore, the orthologous gene is being annotated as a 

whole. 

To be conservative, TOGA tries to recover only one-to-one orthologs using this 

methodology. This limitation is justified because a highly complex chain configuration implies 

multiple optimal paths and, consequently, a high probability of incorrect gene reassembly. 

However, the vast majority of orthologs are one-to-one, hence this rule does not lead to drastic 

information loss. With this method, TOGA can extract many additional orthologs from strongly 

fragmented genomes, which would be otherwise classified as missing. 
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2.3 Naming convention of the predicted transcripts 

Potentially, TOGA could detect multiple orthologous chains for any reference 

transcript, which means that those transcripts are projected to the query genome multiple 

times. Therefore, we need a naming convention that uniquely identifies each projected 

transcript without loss of information. Each alignment chain is associated with a unique 

identifier, which means that a combination of a transcript name with chain ID uniquely 

determines projection and could be used to identify TOGA annotations. 

Inside TOGA, we use the following notation: transcript ID and chain ID are separated 

by a dot character. For example, a transcript A projected through chain 9 will be named “A.9” 

in the query genome. It also allows for any transcript annotated by TOGA to trace which exact 

reference transcript was projected, and which chain was used for the projection. Figure 2.9 

explains this naming convention. 

 

 
Figure 2.9 Naming convention of the predicted transcripts 
TOGA combines the projected reference transcript and orthologous chain identifiers to create unique 

identifiers for predicted transcripts in the query. For example, reference transcript "AY" projected to the 

query through chain 51 is annotated as AY.51.  

2.4 Aligning reference transcripts to orthologous query loci 

The first step of the TOGA pipeline yields a set of transcript-chain pairs classified as 

orthologous. Each of those transcript-chains unambiguously determines the locus in the query 

genome where the ortholog of the respected transcript could be detected. In the second step 

of the pipeline, TOGA projects reference transcripts to orthologous loci in the query to produce 

query genome annotation. To recognize reference transcripts in the query genome, TOGA 

applies CESAR (Codon Exon Structure Aware Realigner) version 2.0 in multi-exon mode 

(Sharma et al., 2016; Sharma et al., 2017). 
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2.4.1 CESAR approach 

Briefly, CESAR 2.0 is a Hidden Markov model-based method that takes the reference 

exons together with the query sequence as input and produces a pairwise nucleotide 

alignment, detecting reference exons in the query sequence. In contrast to other nucleotide 

aligners, CESAR considers reading frame and splice site information to generate the 

alignments. This method was created principally to align protein-coding sequences, taking 

specific features of them into account. 

This method has high precision in aligning shifted splice sites, can detect precise intron 

deletions that merge two neighboring exons, and generates alignments of intact exons 

whenever possible (Sharma et al., 2016; Sharma et al., 2017). CESAR provides a more 

suitable option to create protein-coding gene annotations than universal nucleotide alignment 

methods such as BLAST (Sharma and Hiller, 2019). 

2.4.1.1 Handling selenocysteine-coding reference codons 

CESAR examines the input exon sequences to ensure that they constitute an intact 

reading frame. For example, CESAR performs inspections for sequence lengths (must be 

multiple of three), the correct location of split codons, and the absence of premature stop 

codons. If any of the conditions are violated, then CESAR terminates and shows an error 

message. 

In general, the requirement for the absence of in-frame stop codons is justified because 

typically intact protein-coding genes do not have them. However, internal TGA codons are 

used to encode a selenocysteine in a few dozen eukaryotic genes, and consequently, CESAR 

cannot correctly process such genes. To handle selenocysteine-coding genes, TOGA 

temporarily replaces in-frame TGA codons in the reference sequence with NNN while running 

CESAR. This replacement enables CESAR to align such stop codons to sense or stop codons. 

2.4.1.2 U2 and U12 splice sites. 

Another potential issue is that CESAR tries to find the most optimal alignment, 

assuming that all introns are flanked with canonical splice sites by default. Indeed, 99% of 

mammalian introns have canonical “GT”-”AG” or “GC”-”AG” termini spliced by the major U2-

dependent spliceosome. Albeit, the minority of introns in higher eukaryotes have different 

termini spliced by the U12-spliceosome (Burge et al., 1998; Patel and Steitz, 2003).  

Thus, for U12-spliced introns, this premise could result in (i) the emission of a corrupted 

splice site or (ii) incorrect insertions or deletion on exon borders to detect a canonical 

dinucleotide. However, the information about U12 introns locations in the reference can be 
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provided to TOGA as input. TOGA can further pass this information to CESAR to handle U12 

splice sites properly. 

As U12 intron splice sites can comprise a great variety of dinucleotides, I have changed 

the U12 donor and acceptor splice site profile in CESAR to capture this splice site diversity 

with a uniform nucleotide distribution. Since information about U12 introns in the reference 

genome may be incomplete or not available, TOGA considers every intron in the reference 

without canonical “GT”/”GC”-”AG” splice sites as a putative U12 intron. To generate TOGA 

annotations with human and mouse genomes as the reference (part 3.7), we used U12 data 

from U12DB (Alioto, 2007). 

2.4.2 Individual exon classification: remaining, deleted, missing 

After parsing the CESAR output, TOGA classifies each predicted exon in the query as 

present (P), missing (M), or deleted (D). This step is necessary since the Viterbi algorithm 

implemented in CESAR outputs alignments of all input reference exons, including those that 

do not actually exist in the query locus. For instance, it might produce alignments for cases 

where the exon is truly deleted or diverged to the extent that no meaningful alignment is 

possible (class D) or because the exon overlaps an assembly gap in the query genome (class 

M). 

To distinguish between class P, M, and D, TOGA leverages that an orthologous chain 

provides not only the orthologous query locus, but the aligning chain blocks also provide 

information about the location of individual exons, as illustrated in figure 2.10. 

 
Figure 2.10 Exon alignment classification 
The illustration shows an alignment between query and reference genomes. The reference region 

contains two genes. Using a chain, TOGA could identify for each exon where it is expected to be found 

(light blue curly bracket). Then, TOGA can check whether CESAR-predicted exons are located in the 

expected region. Four different scenarios are considered: (i) CESAR and genome alignment agree on 

exon locus in the query, (ii) CESAR finds exon in the region bounded by aligning blocks (within the 

expected region), (iii) CESAR finds the exon outside the expected region. If the exon is not covered by 

chain span (iv), TOGA considers such exons as missing.  
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TOGA determines whether the predicted exon coordinates overlap the query genome 

locus that should contain the exon according to the genome alignment chain. In case both the 

nucleotide-based genome alignment chain and the codon-based CESAR alignment agree on 

the exon location in the query, TOGA classifies these exons as present (P). For exons, where 

the chain and CESAR disagree on the exon location or the exon aligns only with the more 

sensitive CESAR method, TOGA uses two metrics to evaluate whether the exon aligns better 

than randomized exons. 

The first metric is the %nucleotide identity, defined as the percentage of identical bases 

in the CESAR alignment. The second metric, %BLOSUM, measures the amino acid similarity 

between reference and query using the BLOSUM62 matrix. The %BLOSUM value is computed 

as follows. Let SRQ be the sum of BLOSUM scores for each amino acid pair between reference 

(R) and query (Q), using a score of -1 for insertions and deletions. As SRQ depends on the 

exon's length, we also determine the maximum score possible for this exon by comparing the 

reference sequence to itself, thus computing SRR. Thus, %BLOSUM is defined as SRQ / SRR * 

100. It is perhaps possible that this value exceeds 100, then we forcibly set it to 100 for numeric 

consistency. 

To determine thresholds that separate real and randomized exon alignments, we 

extracted 137935 exons of human-mouse one-to-one orthologous genes for which the TOGA-

annotated exon overlaps an Ensembl-annotated exon. This resulting set presumably consists 

of real exons since they are supported by two independent methods. To obtain randomized 

exons, we reversed the exon sequence and aligned it to the factual query sequence with 

CESAR. By comparing %nucleotide identity and %BLOSUM between actual and random 

CESAR exon alignments, we defined thresholds as %nucleotide identity ≥ 45% and 

%BLOSUM ≥ 20%. These thresholds correspond to a sensitivity of 0.9808 and a precision of 

0.99075. The plot of these values for actual and randomized exons is illustrated in figure 2.11. 
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Figure 2.11 Percent nucleotide identity and BLOSUM thresholds obtained from 
alignments between real and randomized exons 
Blue dots illustrate real exons, whereas red dots represent random exon alignments. As expected, 

randomized exons exhibit lower sequence similarity (nucleotide %identity and BLOSUM score) values. 

We defined exon annotation thresholds as %nucleotide identity ≥ 45% and %BLOSUM ≥ 20% taking 

this data into account (blue region). %BLOSUM and %nucleotide identity greater than 50 and 65, 

respectively, are used to identify high-confidence exon projections. 

 

Exons that exceed these thresholds are classified as present (P). For all other exons, 

TOGA determines whether the query locus expected to contain this exon overlaps an 

assembly gap (10 consecutive N characters) in the query genome. If so, TOGA classifies the 

exon as missing (M). Otherwise, it is classified as deleted (class D). Exons not spanned by an 
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orthologous chain are also classified as missing (M), as such cases are often due to assembly 

incompleteness. The decision process is illustrated in figure 2.12. 

 

 

 
Figure 2.12 Exon classification decision tree 
Applying the illustrated procedure, TOGA classifies exons as Present, Deleted, or Missing. For a given 

exon, TOGA assesses whether the orthologous chain ends inside this exon or whether it is not spanned 

by an orthologous chain (if yes – it is classified as Missing) (1). For all other exons, TOGA determines 

an ‘expected region’, which is a region in the query genome that should overlap or contain the exon 

according to the genome alignment chain (figure 2.10). TOGA then assesses whether CESAR 2.0 in 

multi-exon mode finds an exon candidate in the expected region (3), which shows that genome 

alignment and CESAR agree on the exon location in the query. Such exons are classified as present 

(P), and the subset of these exons which fulfills %nucleotide identity ≥ 65% and %BLOSUM ≥ 40% are 

labeled as high confidence and further considered for phylogeny inference (yellow background box). 

Exons, for which genome alignment and CESAR disagree on the query location (3), are classified as 

present (P) if the CESAR exon alignment is better than randomized exon alignments, which TOGA 

determines using a threshold of %nucleotide identity ≥ 45% and %BLOSUM ≥ 20% (4). For exons that 

do not align at all in the genome alignment (2), the ‘expected region’ is defined as the query region 

bounded by the nearest up- and downstream alignment block in the chain. Exons for which the CESAR 

exon candidate is found in the expected region (3) and that align better than randomized exons (4) are 

also classified as present (P). For all other exons, TOGA determines whether the expected region 

overlaps an assembly gap in the query genome (5). If so, the exon is classified missing (M), otherwise 

as deleted (D). 
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2.4.3 Detecting gene-inactivating mutations 

Inactivating mutations detection procedure implemented in TOGA rigorously scans the 

predicted reading frame of every transcript predicted by CESAR. This procedure is necessary 

to distinguish between intact and lost transcripts. In particular, TOGA considers the following 

gene-inactivating mutations: 

1) frameshifting insertions and deletions, 

2) in-frame (premature) stop codons, 

3) mutations that disrupt the canonical donor (“GT”/”GC”) or acceptor (“AG”) splice site 

dinucleotides, 

4) deletions of single or multiple consecutive exons that together have a total length not 

multiple of three, resulting in frameshifts. 

 

The abovementioned mutations and their influence on the reading frame are described 

in detail in subsection 1.1.1.3 of the introductory chapter. 

2.4.3.1 Differences with previously published gene loss pipeline 

Gene loss detection pipeline integrated into TOGA is based on previously published 

work (Sharma et al., 2018). Despite this, the version integrated into TOGA has several 

changes that improve gene loss detection accuracy. These changes are described in detail in 

this subsection. 

Contrary to our previous work, we do not consider larger frame-preserving insertions 

and deletions as inactivating mutations. We observed many cases where such deletions longer 

than 600bp inside huge exons can occur in conserved genes. These large frame-preserving 

deletions result in substantially shorter but likely functional proteins. Figure 2.13 (next page) 

provides two UCSC genome browser screenshots exemplifying these cases. In example A, 

the alignment chain indicates that the large RESF1 exon exhibits a 636pb-long deletion. 

However, the corresponding gene in the mouse genome is intact. The human RESF1 gene 

encodes a 1747 amino acid long protein, whereas the mouse ortholog is shorter and encodes 

a 1521 amino acid long protein. Similarly, example B illustrates 114 bp insertion in the mouse 

ortholog of the human CRNN gene. The previous gene loss pipeline implementation would 

consider this insertion as a loss-of-function mutation. However, the orthologous gene is intact 

in the mouse and encodes a longer protein. 

These examples suggest that large frame-preserving insertions and deletions may not 

result in gene inactivation. For that reason, the gene loss detection pipeline implemented in 

TOGA does not consider them as such, which allows TOGA to make more careful gene 

inactivation predictions. 
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Figure 2.13 Large frame-preserving deletions in large exons may not result in gene 
inactivation 
Panel A: UCSC browser screenshot shows that human gene RESF1 (1747 aa) is substantially longer 

than the mouse ortholog Resf1 (1521 aa). Despite this, both genes are intact. The alignment chain 

shows 636bp deletion in rodents. Panel B shows a similar example: Mouse Crnn gene (520 aa) is longer 

than human ortholog (CRNN, 495 aa long). 

 

Moreover, we do not consider frame-preserving exon deletions as loss-of-functions 

mutations. This is based on observations that deletions of the entire exons can occur in intact 

protein-coding genes. Figure 2.14 illustrates this case on the example of the CALCOCO2 

gene. This gene exhibits drastic exon structure changes between the human and mouse 

genomes. The human gene consists of 12 coding exons conserved in placental mammals and 

encodes a 446 amino acid long protein. However, in the mouse genome, the last seven 

consecutive exons of this gene are deleted. Despite these exon deletions, the mouse gene 

has an intact reading frame, encodes a shorter protein of 331 amino acids, and is expressed 

as confirmed by the mouse mRNA track. In order to avoid the misclassification of such genes 

as lost, TOGA considers exon deletions as inactivating only if they disrupt the ORF. 
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Figure 2.14 Example of radically different exon-intron structure between orthologs 
UCSC browser shows CALCOCO2 genes in human and mouse genomes. Seven consecutive exons of 

this gene are deleted in the mouse Calcoco2 gene. However, this gene is still intact in the mouse 

genome, as transcriptomic data illustrates. 

 

Importantly, frame-preserving exon deletion may result in the assembly of a stop codon 

at the exon-exon boundaries (figure 2.15). TOGA additionally scans the predicted reading 

frame for such mutations and, if detected, considers them inactivating. 

 
Figure 2.15 Frame-preserving exon deletion introduces a premature stop codon 
In this example, the deletion of the exon two is not considered inactivating mutation because it does not 

disrupt the gene ORF. However, after the exon deletion, boundaries of exons 1 (T-) and 3 (-AG) can 

form a premature stop codon. 

 

Gene loss detection pipeline integrated into TOGA ignores “TGA” in-frame codons that 

are already present in the reference sequence. This modification is important to avoid 

erroneously reporting the inactivation of selenocysteine-coding genes because such “TGA” 

codons usually do not interrupt the protein translation process. 
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2.4.3.2 Inactivating mutations filtering 

Accurately detecting gene-inactivating mutations in predicted transcripts poses 

numerous challenges. For example, sequencing errors and alignment artifacts may mimic 

inactivating mutations in genes that are, in fact, conserved. Moreover, even factual inactivating 

mutations do not guarantee that a gene does not encode an intact protein. For example, two 

frameshifting indels may compensate each other (figure 2.16). Compensated frameshifts alter 

the amino acid sequence, but the resulting protein preserves some sequence similarity and 

most likely is intact.  

 
Figure 2.16 Compensated frameshifts 
The figure illustrates a frameshift compensation event: consecutive +1 and -1 frameshifts compensate 

each other. The sequence between these frameshifts is expressed in an alternative frame. If the 

alternative sequence does not comprise a stop codon, this mutation is not considered inactivating. 

Sequence after the last frameshift is translated in the ancestral frame. 

 

Also, inactivating mutations that occur close to the N or C termini of the encoded 

proteins are less likely to inactivate the gene because these regions are shown to be under 

weaker evolutionary constraints (MacArthur et al., 2012). Figure 2.17 below illustrates this 

postulate on the distribution of frameshift positions discovered in the mouse coding sequence. 

Out of 5566 considered frameshifting mutations, 58% of them are detected in the first or last 

10% of CDS. Since the majority of detected frameshifting mutations occur close to the N or C 

termini of the proteins, it confirms that these regions are more tolerant to inactivating 

mutations. In addition, to avoid misclassification of potentially conserved genes as lost, TOGA 

applies the following filters that were used in our previous implementation: 

1. In the case of precise intron deletions that merge two neighboring exons into a single 

larger exon, we do not consider subsequent deletion of the splice sites an inactivating 

mutation. 

2. We do not consider splice site mutations for U12 splice sites labeled as such in the 

reference or inferred from non-canonical reference splice site dinucleotides. 

3. If two or more frameshifts compensate each other (e.g., a -1 and -2 bp deletion, or 

three -1 bp deletions) and do not result in a stop codon in the new reading frame are 

not considered as inactivating mutations (figure 2.16). 
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Figure 2.17 Relative position of frameshifts in the mouse coding sequence predicted by 
TOGA 
Figure shows that the vast majority of the frameshifts in the mouse coding sequence are located close 

to 3' or 5' termini. These regions evolve under weaker evolutionary constraints; therefore, TOGA ignores 

inactivating mutations detected in the first or last 10% of the CDS. 

 

The series of filters integrated into TOGA drastically reduced the number of falsely 

reported inactivating mutations. The detailed evaluation of gene loss detection specificity is 

presented in part 3.3 of this work. 
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2.4.4 Transcript annotation and classification 

To annotate transcripts in the query genome, TOGA utilizes the coordinates of CESAR 

exons predictions that were classified as present in the previous step. Gene orthology must 

be inferred based on the number of (co-)orthologs in the query genome that encode a 

functional protein. For example, even if TOGA detects a single orthologous locus for the given 

gene with high confidence, the predicted gene could be inactivated in the query, resulting in a 

one-to-zero orthology relationship. Similarly, TOGA may detect multiple orthologous loci for a 

single gene and infer one-to-one orthology due to the inactivation of redundant copies. Figure 

2.18 below provides a specific example of this principle in action. 

 
Figure 2.18 Loss of ancestral copy 
As the UCSC genome browser screenshot shows, TOGA reveals four orthologous loci for the STRC 

gene in the guinea pig genome. However, the gene is inactivated in three of those orthologous loci, 

including the ancestral one. Instead of classifying this gene as lost, TOGA detects one intact copy and 

reveals the correct one-to-one orthology relationship between human and guinea pig STRC. It is worth 

mentioning that the CKMT1B gene is intact in the ancestral locus but is inactivated in others. 

 

To determine whether an annotated transcript is expected to encode a functional 

protein, TOGA implements a transcript classification step. Transcript classification is not a 

straightforward problem since assembly gaps result in missing parts of the CDS, and individual 

exons can get lost in otherwise clearly conserved genes, as shown in previous work (Sharma 

et al., 2018). To take this complexity into account, we decided to classify annotated transcripts 

into five different classes (figure 2.19): 

1) "Intact" transcripts, which are expected to encode functional proteins. In these 

transcripts, the middle 80% of the CDS is present (no missing sequence detected) and 

exhibits no gene-inactivating mutation. 

2) "Partial Intact" transcripts, for which ≥50% of the CDS is present, and the middle 80% 

of the CDS exhibits no inactivating mutation. These transcripts are also very likely to 
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encode functional proteins, but the evidence is weaker as more CDS is missing due to 

assembly gaps. 

3) "Missing" transcripts, for which less than 50% of the CDS is present, and the middle 

80% of the CDS exhibits no inactivating mutation. These transcripts are undecided as 

more than half of the CDS is missing, but no strong evidence for loss was detected. 

Additionally, we distinguish the "partial missing" subclass for which the orthologous 

chain spans less than 35% of CDS. This subclass is even more questionable because 

it is hard to determine whether this copy exists in the query.  

4) "Uncertain Loss" transcripts exhibit at least one inactivating mutation in the middle 80% 

of the CDS. The evidence is not strong enough to classify the transcript as lost; hence, 

the chances of whether it encodes a functional transcript or not are barely equal. 

5) "Lost" transcripts, for which evidence for loss is sufficiently strong, are unlikely to 

encode a functional protein. Gene loss criteria are explained in detail in the following 

section. 

 
Figure 2.19 Decision tree of gene classification 
TOGA begins the transcript classification by first determining whether the transcript exhibits no or at 

least one gene-inactivating mutation in the middle 80% of the CDS. This fundamental distinction is 

motivated by earlier observations that inactivating mutations in conserved genes mainly occur in the 

first or last 10% of the CDS. Transcripts that exhibit no inactivating mutations in the 80% of the CDS are 

further classified as "Intact," "Partial Intact," or "Missing," depending on the amount of missing 

sequence. Transcripts that have inactivating mutations in this region are classified as "lost" or "uncertain 

loss," depending on the satisfaction of gene loss criteria.  
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2.4.4.1 Transcript loss criteria 

Analyzing the list of detected inactivating mutations, TOGA quantifies the maximum 

percent of the reading frame that remains intact in the query.  To distinguish between intact, 

partially intact, and missing transcripts, TOGA computes this value ignoring missing 

sequences and pretending that this sequence was never included in the CDS.  Alternatively, 

to distinguish between uncertain loss and lost transcripts, TOGA considers the missing 

sequence as aligning codons, making the careful assumption that missing codons correspond 

to sense codons in the unknown query sequence. To compute these values, TOGA applies a 

procedure explained in figure 2.20. This procedure results in a consistent classification of 

transcripts with the same inactivating mutations and only differing in the amount of missing 

sequence. 

 
Figure 2.20 %intact calculation procedure 
In this particular example, the examined transcript has 30 codons. “NNN” triplets represent a missing 

sequence occurring due to assembly gaps. Two inactivating mutations (stop codon and frameshift, 

highlighted in red) determine the boundaries of three individual parts of the reading frame that remain 

intact in the query species. We determine the number of codons that align, ignoring deleted and inserted 

codons for each consecutively intact part. We compute two versions of the %intact value: (i) ignoring 

the missing sequence and (ii) pretending that the missing sequence is intact. In case (i), the maximum 

percent of the reading frame that remains intact is the third part in this example, with 10 of 30 codons 

aligning (30%). In case (ii), the maximum percent of the reading frame that remains intact covers 15 of 

30 total codons (50%). 

 

Following previous work (Sharma et al., 2018), we use the following criteria to classify 

transcripts that exhibit at least one inactivating mutation in the middle 80% of the CDS as 

"uncertain loss" or "lost." Lost transcripts have a maximum percent intact reading frame <60% 

and exhibit inactivating mutations in at least two coding exons. The latter requirement is 

motivated by previous observations that loss-of-function mutations in a single exon of an 

otherwise-conserved gene do not provide strong evidence to infer gene loss. For genes 

consisting of more than ten exons, we require inactivating mutations in at least 20% of the 

coding exons. 

By definition, this requirement cannot be satisfied in single-exon genes; therefore, we 

require two inactivating mutations in such genes to infer gene loss. Moreover, since the sizes 

of individual exons can be relatively large, we make an exception for multi-exon transcripts, 
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where a single large exon represents a significant part of the CDS (threshold 40% of CDS). 

Such transcripts are also classified as "lost" if at least two inactivating mutations occurred in 

this biggest exon. All other transcripts that have at least one inactivating mutation in the middle 

80% of the CDS are classified as "uncertain loss," indicating that evidence for loss is not strong 

enough as a more significant part of the CDS remains potentially intact (>60%), or not enough 

exons exhibit inactivating mutations. Figure 2.21 summarizes all possible transcript 

classifications, illustrating different cases and the maximum percent of the intact reading frame 

in the query species.  

 
Figure 2.21 Examples of different transcript classes 
Exemplified transcripts consist of 5-7 coding exons that make up 10%, 20%, or 40% of the total CDS 

(boxes of different sizes). Blue and red boxes represent coding exons with and without inactivating 

mutations, respectively. Also, grey boxes represent coding exons missing in the query (usually due to 

assembly gaps). For transcripts exhibiting mutations in the middle 80% of the CDS, we conservatively 

count missing sequence parts as present sequences lacking inactivating mutations when determining 

the maximum percent of the intact reading frame.  

 

Since TOGA does not consider frame-preserving deletions as inactivating mutations in 

the current implementation, this could lead to the classification of wholly and nearly deleted 

transcripts as intact. To avoid this misclassification, we added an additional step to re-classify 

likely non-functional genes where the significant fraction of CDS is lost due to frame-preserving 

deletions. For this purpose, we compute the percentage of reference codons that align to 

sense codons in the query and classify a transcript as “uncertain loss” if this value is less than 

50% and as “lost” if it is less than 35%. Please note that this value is equal to 0% by definition 

if and only if a gene is entirely deleted. 
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2.5 Orthology inference 

TOGA performs the final orthology inference, considering that: 

1. each transcript might have several orthologous loci, 

2. each of these loci could be orthologous for several reference transcripts, and 

3. some of these predicted genes could be classified as lost at the final step of the 

pipeline. 

 

To accomplish this, TOGA aggregates the obtained data across both reference and query 

and classifies the predicted orthologs as one-to-one, one-to-many, many-to-one, or many-to-

many. 

2.5.1 Classifying genes based on the classification of all transcripts and 
all orthologous loci 

A gene in the reference genome may have several isoforms and several inferred 

orthologous loci in the query. TOGA uses all orthologous loci and the classification of all 

predicted transcripts to determine whether the gene has at least one functional ortholog in the 

query and, if so, what the orthology type is (one-to-one, one-to-many, many-to-one, or many-

to-many). For a given gene and one orthologous locus, TOGA considers the classification of 

all transcripts that were annotated for this locus and applies the following order of precedence: 

"intact," "partially intact," "uncertain loss," "missing," "lost," "partial missing," and "paralogous 

projection." 

Therefore, if at least a single transcript is classified as intact, TOGA concludes that this 

orthologous locus contains at least one functional gene ortholog. An orthologous locus is 

inferred to contain a lost gene if and only if (i) all annotated transcripts of the given gene are 

classified as lost or (ii) annotated transcripts classification exhibits a mixture of lost and "partial 

missing" classes. 

The higher rank order of "missing" class compared to "lost" reflects our reasoning that 

a missing transcript, for which the query sequence of some exons is unknown, might actually 

encode a functional transcript, making TOGA's gene loss inferences conservative. However, 

the "partial missing" class has a lower rank than "lost" because such transcripts are unlikely to 

represent a functional gene. 

To determine orthology type, TOGA considers classifications of each reference gene 

in all respective orthologous loci, and for each of these query loci, which reference genes were 

annotated. This principle of hierarchical classification is illustrated in figure 2.22. In this 

example, the hypothetical gene “XYZ123” consists of two isoforms called A and B. 

Furthermore, this gene has two orthologous loci in the query represented by chains 1 and 2. 
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Thus, each isoform is projected twice to the query genome, resulting in four individual 

projections (predicted transcripts) in the query genome. Further, each of those projections gets 

classified. 

In this example, isoform A is classified as "intact" in the first locus and "lost" in the 

second locus. Simultaneously, in the same loci, isoform B is classified as "uncertainty lost" 

and "missing," respectively. Following the transcript classification principle, isoform A is 

classified as intact because one of the respective projections is classified as such. For isoform 

B, the highest rank of projection is "uncertain loss." The entire “XYZ123” gene obtains the 

"intact" class, because it is the highest-ranking class of all orthologous transcripts. 

 

 
Figure 2.22 Transcripts classification order 
Reference gene XYZ123 comprises two alternative splicing isoforms: A and B. Also, two orthologous 

chains align to this region: 1 and 2. Therefore, TOGA annotates four different XYZ123 transcripts in the 

query genome: A.1, A.2, B.1, and B.2. To classify the XYZ123 gene in the query, TOGA selects the 

highest rank of the predicted transcripts. Since the projection A.1 was classified as intact, TOGA 

classifies the entire gene XYZ123 as intact in the query species. 
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2.5.2 Association of predicted transcripts into genes 
Noticeably, during the preceding steps, TOGA predicts individual transcripts in the 

query genome but not the entire genes. However, consolidation of individual transcripts into 

genes is necessary for the final orthology inference. Specifically, it is essential to infer many-

to-one and many-to-many orthologs because these orthology classes imply projections of 

several reference genes to the same locus in the query genome. 

To associate predicted transcripts into genes, TOGA groups transcripts located in the 

same locus. Within each group, it identifies pairs of transcripts that (i) are located on the same 

strand and (ii) have overlap between predicted CDS. Pairs that satisfy these two criteria are 

assigned to the same query gene (figure 2.23, panel A). Also, panels B and C in figure 2.23 

exemplify cases where intersecting transcripts are not assigned to the same gene.  

 
Figure 2.23 Association of predicted transcripts into genes 
Case A: three TOGA projections are located on the same strand, and their CDS intersect. Therefore, 

TOGA associates them with a single query gene. Cabe B: CDS of the TOGA projections W1 and M1 

intersect. However, they are located on the opposite strands. Thus, TOGA annotates them as 

representatives of two separate genes. Case C: E1 is a nested transcript, and its CDS does not intersect 

with the CDS of the projection D1. Therefore, TOGA does not associate D1 and E1 with the same gene 

in the query. 

  



TOGA pipeline 
 

 
52 

2.5.3 Building an orthology graph 
In the last step, TOGA builds a bipartite graph where nodes represent reference and 

query genes and edges symbolize the inferred orthology relationships weighted by the gradient 

boosting orthology score of the respective chain. Then, it splits the graph into connected 

components, classifying each subgraph as one-2-one, one-2-many, many-2-one, or many-2-

many orthology connections. This principle is illustrated in figure 2.24. 

 
Figure 2.24 Final orthology inference 
1: TOGA builds a bipartite graph where nodes are reference or query genes, and edges represent 

identified orthology connections between these genes. Then, it splits the graph into connected 

components. 2: TOGA classifies individual subgraphs as one-to-one, one-to-many, many-to-one, or 

many-to-many. 

 

However, some many-to-many orthology subgraphs may stay incomplete, which 

means that some reference and query gene nodes are not connected within the subgraph. 

These graphs are subject to more detailed analysis because they may contain edges that have 

considerably weaker support. To remove individual orthology relationships within a set of 

many-to-many orthologous genes that have substantially weaker support, TOGA uses the 

chain orthology scores. For genes with a putative many-to-many orthology relationship, where 

'cross-gene' orthology is supported only by alignment chains with weak orthology scores, this 

procedure typically results in correct one-to-one orthology relationships. 
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In detail, TOGA analyzes whether edges with substantially weaker orthology scores 

can be removed from the incomplete many-to-many orthology graph (figure 2.25). To this end, 

TOGA subdivides all edges into two sets: The first set contains all edges that connect a leaf 

node (reference or query gene that has only one inferred ortholog). Set 2 contains all other 

edges. Let Smin be the minimum orthology score of edges in set 1. Branches in set 2 with a 

score < Smin * 0.9 will be removed unless this would result in either (i) an isolated node that 

loses all its orthology connections or (ii) a split of reference genes that have > 1 mutual 

connections between different subgraphs. These exceptions make the TOGA orthology 

refinement procedure conservative. 

Panel A illustrates the most trivial case, where a weak 1-B edge (score 0.54) that 

connects A-1 and B-2-3 orthologs can be removed because the remaining edges show a 

higher (>0.89) support. This procedure results in a separation of weakly supported many-to-

many orthologs into strongly supported components representing one-to-one and one-to-many 

orthologs. 

In panel B, reference genes A and B have two mutual orthologous connections to query 

genes 1 and 2 and are considered indivisible. Edges 1-B and 2-B show significantly weaker 

connection support than the rest of the edges. However, removal of these edges separates A 

and B into different components, which TOGA does not permit. Therefore, TOGA does not 

perform this operation, annotating connections between nodes A, B, 1, 2, and 3 as many-to-

many orthologs. 

Panel C provides an example where deletion of weaker nodes results in isolated node 

C, which is not permitted. Finally, a complete many-to-many graph is illustrated in panel D. 

TOGA takes no action in this case because all orthologous connections have substantially 

strong support. 
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Figure 2.25 Graph pruning to resolve complex many-to-many orthology cases 
Case A illustrates a trivial case where a weak B-1 edge can be deleted. Therefore, putative many-to-

many orthology is split into two orthology groups with more substantial support: one-to-one (A-1) and 

one-to-many (2-B-3). Case B: since reference genes A and B have >1 mutual orthologous connections, 

TOGA does not permit the separation of them into different orthology groups. Case C: removal of weakly 

supported connections produces a separate node C, which is not permitted. Case D illustrates a 

complete bipartite graph: in this case, TOGA does not take any action. 
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2.6 TOGA output 

As for the pipeline output, TOGA produces the following files: 

1. Query genome annotation in bed-12 format. Each predicted transcript is named 

following the convention described in part 2.3. Bed-12 can be further converted into 

other formats. 

2. Isoforms table for the query annotation. This file establishes the correspondence 

between predicted transcripts and genes in the query genome. 

3. Orthology classifications table that establishes the correspondence between 

orthologous genes in reference in query. For each connection between reference and 

query genes, the table also shows the orthology connection class such as one-to-one, 

one-to-many, etc. 

4. A table containing gene loss pipeline output. For each predicted transcript and gene, 

the table assigns a class such as "intact", "lost", etc. 

5. Fasta file containing nucleotide alignments per exon. 

6. Fasta file containing pairwise protein alignments. All protein alignments are corrected 

for frame-disrupting mutations such that frameshifting indels do not change the amino 

acid sequence downstream of the mutation. 

7. Fasta file containing codon alignments. These alignments are also corrected for 

frameshifting indels; therefore, alignment downstream of the frameshifting mutations is 

not affected and remains intact. 

8. A table containing a list of detected inactivating mutations in each predicted transcript. 

 

Output files are designed in a user-friendly manner such that they are easy to parse 

with basic command-line tools such as grep. Therefore, TOGA output files can be used in 

subsequent analysis tools with minimal effort. 

2.7 Filtering reference genome annotation 

Many controversial TOGA results we observed during the TOGA development phases 

come from incorrect transcript annotations in the reference. For instance, the same reference 

gene could be annotated twice under different identifiers, resulting in erroneous reports of a 

two-to-two orthology. As another example, if a gene is represented only by reference-specific 

isoforms, it could lead to a false gene loss report since the factual gene in the query has a 

different exon-intron composition. Even the state of art collections of representative transcripts 

like APPRIS (Rodriguez et al., 2013) might contain transcripts that could potentially lead to 

obstacles, such as NMD transcripts, incomplete annotations, or reference-specific ones. 
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Additionally, many sequenced genomes do not have a high-quality gene annotation. In 

such genome annotations, inaccurate gene mappings that could confuse the TOGA pipeline 

are usually abundant. Reference-based annotation approaches such as toga strongly depend 

on the reference annotation quality; therefore, filtering procedure is crucial for such 

assemblies. To avoid reference annotation-related issues, I implemented a filter to thoroughly 

check the reference annotation and remove all potentially problematic transcripts. In particular, 

the filtering step is capable of recognizing the following cases: 

● incomplete transcripts with CDS length not multiple of 3, which CESAR cannot correctly 

process because it requires an intact protein-coding transcript 

● transcripts with annotated micro introns (shorter than 20bp) because they are usually 

false introns introduced to mask frameshifts 

● transcripts that are shorter than 80% of the longest isoform 

● potential NMD targets 

● transcripts that do not start with ATG codon 

● transcripts that do not end with a stop codon 

● transcripts containing in-frame stop codons different from TGA, which may encode 

selenocysteine. 

 

Furthermore, the filter handles transcripts with identical annotated CDS leaving one 

with the longest annotated UTR to avoid duplicates. However, the filter is unable to identify 

fused transcripts in the reference genome annotation. The reason is that actual fusion 

transcripts are indistinguishable from proper transcripts covering multiple reference-specific 

annotations using the data at our disposal. The proper distinction of these cases requires 

external sources of information. Notwithstanding, these filters are sufficient to prevent the vast 

majority of reference annotation-related issues and apply moderate-quality genome 

annotations as the reference for the TOGA pipeline.
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3. TOGA results 
In the third chapter of the present work, I evaluate the quality of different TOGA 

methodology aspects as follows: part 3.1 covers the creation, training, and evaluation of 

machine learning models for alignment chain classification. Then, part 3.2 shows the 

assessment of annotating and assembling fragmented genes in low-quality genomes. 

Subsequent part 3.3. contains the evaluation of gene loss detection accuracy. After this, part 

3.4 shows the evaluation of overall TOGA annotation quality compared to state-of-the-art 

genome annotation methods. Part 3.5 describes how genome alignment sensitivity affects 

TOGA results. 

Additionally, this chapter mentions projects that successfully used TOGA (part 3.6): (i) 

producing comprehensive genome annotations of 6 bat species (section 3.6.3) and (ii) a study 

of BAAT gene evolutionary history (section 3.6.2). To demonstrate that TOGA scales to 

hundreds of genomes, I describe the application of TOGA to 500 mammalian genomes in part 

3.7. Furthermore, part 3.8 describes the extension to UCSC browser that I have developed in 

supplement to the main TOGA pipeline.  

3.1 Orthology classification accuracy 

In the following part, I describe the procedure of building the training dataset for chain 

classification (section 3.1.1). Afterward, I explain the machine learning model selection 

(section 3.1.2) and provide classification quality evaluation (section 3.1.3).  

3.1.1 Creating training dataset to distinguish orthologous chains 

To train a machine learning model for orthologs classification, this is essential to obtain 

a comprehensive and precise dataset of orthologs and paralogs. Albeit, at the time of writing, 

there is no openly available dataset suitable for our purpose - even the most advanced 

datasets may include mistakes and controversial cases.  These mistakes, such as an 

erroneous identification of paralogs and orthologs, may confuse the training procedure and 

therefore decrease the overall prediction accuracy. 

In order to generate the high-quality training dataset for our classification model, we 

first downloaded the most recent dataset from Ensembl BIOMART (version 99) containing 

one-to-one orthologs between the human and mouse with high orthology confidence. Second, 

to exclude potentially erroneous and controversial data points, we implemented a series of 

strict filters (subsection 3.1.1.1). To avoid duplicates, we considered only the longest isoform 
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for each gene such that each reference locus is represented only once. Furthermore, we 

included data points simulating translocation events to compensate for the low frequency of 

this event in the one-to-one orthologs data (subsection 3.1.1.2).  

In detail, we created a dataset of the following structure: for each incorporated gene-

chain pair that uniquely identifies a locus in the query genome, we computed a set of 

characteristic features (subsection 2.2.2). Then we split the resulting data points into two 

classes: positives, which presumably represent orthologous connections, and negatives, 

which are likely to represent a non-orthologous alignment. 

3.1.1.1 Filters and positive - negative chains 

As for positives (orthologous chains), we selected those chain-gene pairs, where (i) 

the chain is the top-level (highest-scoring) chain covering the gene, and (ii) the chain 

represents a factual orthologous alignment of the gene. To satisfy the latter condition, we 

require that the Ensembl-annotated one-to-one ortholog in the mouse is located at the query 

coordinates provided by this chain. To obtain negatives (non-orthologous chains that typically 

represent alignments to paralogs or processed pseudogenes), we reasoned that other chains 

overlapping exons of one-to-one orthologous genes by definition could not represent co-

orthologs. Consequently, we added such gene-chain pairs to the negative set.  

To avoid including negative chains that cover only an insignificant fraction of a gene, 

we only considered non-orthologous chains, where aligning blocks overlap at least 35% of the 

CDS. Furthermore, we only considered chains with an alignment score of at least 7500 and 

genes whose coding exons overlap less than 75 chains for the positive and negative sets. The 

latter requirement is implemented to exclude genes belonging to big gene families because 

the proper determination of homology class could be non-trivial for such genes. 

UCSC genome browser screenshots shown in figures 3.1 and 3.2 demonstrate this 

principle. In example A (figure 3.1), as Ensembl reads, the illustrated human transcripts are 

one-to-one orthologs between human and mouse genomes. The orthologs of these genes 

annotated by Ensembl are located on chromosome 3 in the mouse genome at the coordinates 

corresponding to the top-level chain. Since the above-defined criteria are satisfied, we used 

the gene-chain pairs, including this chain, as positive instances in the training data. Since one-

to-one orthology relationship implies that other exon-overlapping chains cannot represent co-

ortholog, we used remaining chains as negative (non-orthologous) training data. Indeed, these 

chains represent alignments to paralogous or processed pseudogenes. 
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Figure 3.1 Producing training dataset, example A 
The genes shown on this UCSC browser screenshot are classified as one-to-one orthologs between 

human and mouse by Ensembl. Therefore, we used the top-level chain as positive training data. Other 

chains fulfil the negative training data, since they represent paralogs. 

 

The second example (B, figure 3.2) illustrates a comparable situation: the top-level 

chain provides coordinates of Ensembl-annotated orthologs in the mouse genome located on 

chromosome 6. Accordingly, we included this chain into our training data as the orthologous 

set representative. Other chains visualized in this screenshot actually represent alignments to 

paralogs and processed pseudogenes; thus, we used them as negative (non-orthologous) 

data points. 

 
Figure 3.2 Producing training dataset, example B 
Similar to figure 3.1: top-level chain represents an Ensembl one-to-one ortholog and was used as 

positive training data, the rest of chains were added to the negatives set. 

3.1.1.2 Augmenting translocations 

After creating the human-to-mouse orthologous gene set, we noticed that one-to-one 

orthologs aroused by inversions or translocations are underrepresented in the resulting data. 

This underrepresentation could result in the model overfitting towards high synteny values and 

following lack of accuracy in detecting translocated orthologs. In order to avoid this, we 

enriched the positive training dataset with artificially rearranged chain-gene pairs.   

To produce the set imitating translocation events, we trimmed long syntenic chains to 

shorter single gene-covering chains. In particular, we considered all one-to-one orthologs 

whose orthologous chain is among the set of top 100 scoring orthologous chains already 

appeared in the positive training set. To determine the breakpoints of an artificial 
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rearrangement for each of these genes, we selected gene start and end coordinates and 

shifted them by a random number ranging from -3000 to 10000. As a result, the artificial 

rearrangement may even lack some parts of the gene's beginning or end. However, to avoid 

cases where the artificial rearrangement lacks most of the coding sequence, we only 

considered artificial rearrangements that include at least 80% of the CDS (figure 3.3).  

 

 
Figure 3.3 Augmenting the training dataset with artificial translocation events 
The UCSC genome browser screenshot shows that top-level alignment chain to the rat genome covers 

all four human genes located in this 216kb locus. The entire chain spans 12.5 Mb locus of the human 

genome, which includes dozens of genes. Therefore, this chain exhibits a very high synteny value and 

provides excellent material to fulfill the augmented dataset. The resulting gene-covering chains obtained 

by syntenic chain split are visualized on the track below. Since the shorter chains lack synteny and 

intergenic alignments, they perfectly mimic the actual translocation events. 

 

To produce the final training dataset with balanced proportions, we combined 14376 

real orthologous and 5844 artificially rearranged gene-chain pairs as the positive set and 

considered 20220 randomly chosen gene-chain pairs as the negative set. To create 

independent test datasets, we applied the same procedure to genome alignments of different 

query species, such as human-to-rat, human-to-dog, and human-to-armadillo.  

3.1.2 Machine learning model selection and optimization 

Since we aim to separate a given set of gene-chain pairs (determining genomic loci in 

the query genome) into orthologs and paralogs, we encounter the ordinary binary classification 

problem. Binary classification methods have a long history and found applications in a great 

variety of fields such as medical testing (Esteva et al., 2017), quality control in industry 

(Aminzadeh and Kurfess, 2019), anti-spam filters (Dada et al., 2019), and many others. Since 

the binary classification problem is remarkably widespread, numerous algorithms, including 

those based on machine learning concepts, were developed to solve it. The set of machine 

learning algorithms that solve classification problems include but is not limited to approaches 

such as decision trees, support vector machines (Cortes and Vapnik, 1995), linear regression 

(Stigler, 1986), ensemble algorithms (Polikar, 2006), and neural networks (NNs) (Krizhevsky 
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et al., 2017). These methods vary in terms of complexity, accuracy, and applicability to different 

situations.  

We classify gene-chain pairs using a fixed number of features - hence, our data is 

structured. On structured data, ensemble approaches such as gradient boosting and random 

forest typically outperform resource-demanding neural networks (Hu et al., 2020), whereas 

NNs perform better on unstructured data such as images, sound, or natural text (Sutskever et 

al., 2014; Krizhevsky et al., 2017). This observation designates that ensemble-based machine 

learning algorithms provide a reasonable solution for our type of challenge. 

Ensemble algorithms are based on the concept that multiple weak classifiers such as 

decision trees obtain significantly better performance than any constituent learning classifier 

alone (Opitz and Maclin, 1999). The most extensively applied ensemble algorithms are 

Random Forest (Tin Kam Ho, 1995) or Gradient Boosting (Mason et al., n.d.). 

Briefly, a random forest classifier consists of multiple decision trees where each of them 

is trained individually on a random subset of the training data. Distinct random forest algorithm 

implementations offer various procedures of random dataset splitting and individual tree 

learning. Random forest is a voting method: to produce the prediction, it aggregates 

predictions from each separate tree. The result supported by the highest number of votes 

represents the prediction of the entire model. Within this classifier, individual trees compensate 

for each other's errors, providing an outstanding prediction quality. Furthermore, since each 

tree can be evaluated individually, this approach provides substantial parallelization abilities. 

Therefore, random forests have a plethora of practical applications. 

Gradient boosting on trees depicts a more advanced class of ensemble prediction 

algorithms. Gradient boosting is also based on multiple weak decision trees; however, it works 

in a forward stage-wise manner, compensating the shortcomings of previously generated trees 

before including a new one into the sequence of estimators. The exact procedure to evaluate 

the shortcomings of already added trees varies between different gradient boosting 

implementations, although the general idea is to minimize the loss function using the gradient 

descent. In contrast to random forests, gradient boosting algorithms aggregate ensemble 

results sequentially: the outcome of one model is the input to the next one. Therefore, gradient 

boosting algorithms cannot be parallelized as efficiently as random forests; however, some 

heuristics to achieve the parallelization exist. Typically, gradient boosting algorithms 

demonstrate higher classification performance over random forests. However, for some 

situations, this statement is somewhat disputed. 

Out of numerous ensemble machine learning classification methods, we selected the 

cutting-edge XGBoost (Chen and Guestrin, 2016) gradient boosting algorithm - a method that 

combines parallelization, optimizations, tree pruning, and many other features. This method 

provides the best in the class performance for various tasks, including those comparable to 
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our chain classification challenge. In the following subsection, I cover the XGBoost model 

hyperparameters optimization process and learning procedure. After, I review individual 

feature impact on the prediction process. 

3.1.2.1 XGBoost hyperparameters optimization 

To achieve the optimal classification accuracy, we adjusted the principal model 

parameters such as the number of trees, the learning rate, and tree depth using the 

conventional cross-validation procedure. Cross-validation is a resampling procedure that 

randomly splits the whole dataset into training and testing subsets given the number of times. 

In particular, we used 80% of the dataset for training and 20% for validation. Using this 

procedure, I evaluated various combinations of model hyperparameters on random subsets of 

our data. As a result, I selected the following combination of model parameters as the most 

optimal for our task: (i) 50 decision trees with (ii) a maximal depth of 3 and (iii) a learning rate 

of 0.05 for both multi- and single-exon classifiers. 

3.1.2.2 Feature importance 

To identify what features contribute to the predictive performance of the entire model, 

I computed the "gain" value (Chen and Guestrin, 2016). This value aggregates the contribution 

of each feature for each tree in the model. The higher value of this metric indicates the higher 

relative importance of a given feature for generating a prediction. The plot showing the "gain" 

value for both multi- and single- exon models is shown in figure 3.4. 

Global CDS fraction exhibits a substantially higher “gain” value that other features. It 

implies that this feature has the most significant impact on the prediction process in both multi- 

and single-exon modes than any other feature participating in the classification. Basically, this 

feature indicates how well a given chain aligns to a neutrally evolving sequence, and for the 

majority of classification cases, this is conclusive. Also, the data clearly shows that synteny is 

an auxiliary but not determining feature. Figures 3.8, 3.9, and 3.10 in the manual results 

evaluation subsection (3.1.3.2) show several examples of actual single gene rearrangements 

that were correctly classified as orthologous by TOGA, confirming the lower importance of 

synteny for the decision-making procedure. 
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Figure 3.4 Feature importance 
The plot shows the "gain" value computed for each feature applied in multi- and single-exon models. 

The higher value indicates the higher feature importance in generating a prediction. The plot explicitly 

shows that the "global CDS fraction" feature is the most critical feature for both models. It also illustrates 

that synteny is not a determining feature. 
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3.1.3 Evaluation of prediction accuracy 

To evaluate the classification model's performance, we built a ROC curve and 

calculated the area under it, which is the standard approach for binary classifiers evaluation. 

Additionally, we manually analyzed the cases of detected misclassification (subsections 

3.1.3.3 and 3.1.3.4). Overall, we are completely satisfied with the quality provided by our 

model. 

3.1.3.1 ROC curve 

The ROC curve is created by plotting the True Positive Rate (TPR) against the False 

Positive Rate (FPR) at various discrimination thresholds for a considered binary classifier. It 

applies to binary classifiers providing the evaluations as a float number from 0 to 1. For 

example, suppose the discrimination threshold for such a classifier is set to 0.9. In that case, 

all items that gained a value ≥ 0.9 are classified as positives, and the rest are assigned to the 

negatives class. True Positive Rate or recall is defined as TP / (TP +FN), and False Positive 

Rate is defined as FP / (FP + TN). Here, TN stands for a quantity of true negative 

classifications, FP - false positives, and FN - false negatives. The ROC curve is built as follows. 

For a discrimination threshold of 0, all items are classified as positive; hence both TPR and 

FPR equal to 1. In contrast, the threshold of 1 results in TPR and FPR both equal to 0. Then, 

one may compute TPR and FPR values for each threshold from 0 to 1 and, as a result, obtain 

the ROC curve. 

Area Under ROC Curve (ROC-AUC) provides an aggregate benchmark of binary 

classifier performance across all possible discrimination thresholds. The ROC-AUC value 

ranges from 0 to 1 and could be interpreted as the probability that the model ranks a random 

positive item higher than a random negative item. The absolutely precise model that makes 

no mistakes has a ROC-AUC value of 1, and a model based on the flipping coin would have 

the value of 0.5. A model that always makes mistakes would demonstrate the ROC-AUC of 0. 

However, the inversion of model predictions could transform it into an ideal model. 

To evaluate the model quality (trained on mouse), we built ROC curves based on 

TOGA annotation of three mammalian genomes: rat, dog, and armadillo. For each assembly, 

we evaluated both multi- and single- exon models. Consequently, for each model evaluation, 

we computed AUC for the entire gene set and artificially translocated genes only. This results 

in 3 * 2 * 2 = 12 ROC curves illustrated in figure 3.5. 
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Figure 3.5 ROC curves to evaluate classification quality 
The model was trained on the alignment between human and mouse genomes and validated on fully 

independent datasets. AUC value is >0.998 in all tests, suggesting that both models provide nearly ideal 

classification quality. 

 

In fact, the selected features for chain classification are already very distinctive. To 

demonstrate this, I built a primitive classifier based on a single feature and applied a threshold 

to separate positives from negatives. In particular, I utilized the most important "global CDS 

fraction" feature and evaluated its predictive power for both single- and multi-exon genes. For 

multi-exon genes, the primitive classifier showed an accuracy of 96.8% with a separating 

threshold of 0.3 (figure 3.6). Further, I applied the same procedure for the single-exon genes 

classifier. This classifier also demonstrated a great predictive power with accuracy of 95.9% 

(figure 3.7). 
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Figure 3.6 The most distinctive feature of the multi-exon model 
The plot illustrates the "global CDS fraction feature" distribution in positives (blue) and negatives (red) 

in the multi-exon dataset. A primitive classifier based only on this feature with the threshold of 0.3 

provides a classification accuracy of 96.8%.  

 

 
Figure 3.7 The most distinctive feature of the single-exon model 
Similar to 3.6, but for the single-exon dataset. With a threshold of 0.25, this feature solely provides the 

classification quality of 95.9%. 

 

Indeed, if a single feature provides high predictive power, it would be fair to expect that 

a combination of distinctive features has the potential to perform even better. The best gradient 

boosting algorithm in the class realized this potential, which emerged in the presented 

classification quality. Notwithstanding, we conducted a manual analysis of the results to 

confirm that this incredible accuracy is not a consequence of evaluation mistakes. For manual 

quality evaluation, we arbitrarily selected cases falling into the following classes: 

1. True positive cases where the synteny feature value was very low (subsection 3.1.3.2) 

2. Cases resulting in a false-positive outcome (subsection 3.1.3.3) 

3. Cases of false-negative results (subsection 3.1.3.4) 
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3.1.3.2 Low synteny true positive examples 

To confirm that TOGA is able to identify orthologous genes that underwent actual 

rearrangements correctly, we manually inspected genes with low synteny feature values. 

Figures below show UCSC browser screenshots illustrating three selected examples. 

Example A (figure 3.8) illustrates the locus in the human genome containing genes 

FI44L and IFI44. In contrast to the mouse and other mammals, the IFI44L gene is inverted in 

rats. The second-level chr2+ chain representing the ortholog in the rat genome exposes the 

inversion because it is located on the opposite strand to the top-level chain (chr2-). This local 

inversion breaks co-linearity with the surrounding alignments, resulting in a chain that covers 

only this gene. Consequently, the synteny feature of this chain has value 1. Nevertheless, due 

to training the classifier on a dataset augmented with artificial single-gene rearrangements and 

using other features in addition to synteny, TOGA correctly classifies this chain as the ortholog 

with the probability of 0.98. The third-level chain represents the alignment between human 

IFI44L and the rat paralog IFI44, and the model correctly classified this chain as non-

orthologous. 

 
Figure 3.8 Correct classification of translocated ortholog, example A 
UCSC browser screenshot shows locus in the human genome containing genes IFI44L and IFI44. The 

second-level alignment corresponding to inverted ortholog in the rat genome was correctly classified as 

such by TOGA.  

 

In example B (figure 3.9), we consider the RRP7A gene locus in the human genome. 

The second level alignment chain represents the ortholog and indicates that it is translocated 

in the rat genome. Importantly, inspecting chains of other mammals (for clarity not shown here) 

revealed that this rearrangement happened along the primate lineage before the great apes 

split. Thus, the rearrangement occurred in the lineage leading to the reference species. As in 

example A, the chain covers only RRP7A, and its synteny feature has the value of 1. 

Nevertheless, due to intronic and gene-flanking alignments, the model can correctly identify 

this chain as the ortholog with a high probability of 0.99. 
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Figure 3.9 Correct classification of translocated ortholog, example B 
Similar to 3.8. TOGA correctly identified the second-level chain as orthologous. 

 

Additionally, Example C (figure 3.10) considers a single-exon gene TACSTD2. The 

chain representing the ortholog in the rat genome covers only this gene, together with 

upstream and downstream flanks. The reason is that TACSTD2 was translocated to a different 

locus in the rat (this translocation is shared with the mouse, not shown here). Features 

quantifying the amount of gene-flanking alignments enable TOGA to correctly classify this 

chain as orthologous with a probability of 0.94, despite the lack of conserved gene order.  

 
Figure 3.10 Correct classification of translocated ortholog, example C 
Similar to 3.8 and 3.9, TOGA correctly identified the translocated TACSTD2 copy in the rat genome. 

 

These results suggest that TOGA is able to detect actual translocation events in the 

absence of synteny. Specifically, low synteny values do not lead to misclassification of co-

orthologs as paralogs. In the following subsections, I consider examples where TOGA 

prediction contradicts the evaluation dataset. 

3.1.3.3 Analysis of false positive misclassifications 
Following, we inspected the set of false-positive misclassifications - here, TOGA 

classified representatives of the negative group as positives. In this subsection, we present 

two selected cases. Example A (figure 3.11) considers the locus in the human genome that 

comprises the KNOP1 gene. Ensembl lists this gene as a one-to-one ortholog between human 

and rat genomes. Alignment chains indicate that the rat genome contains at least four 

homologous sequences. Here, TOGA correctly classified the top-level chain representing the 

Ensembl-annotated ortholog of KNOP1 as such (probability >0.99). 

Two other chains (aligned to chrX and chr2) represent processed pseudogene copies 

of KNOP1 and are also correctly classified as non-orthologous ones (probabilities < 0.004). 

Notably, the fourth chain (chr12) shows that parts of KNOP1 and the neighboring IQCK gene 

were duplicated in the rat genome. Nearly identical chain block structure in the first and fourth 
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chains supports this statement. The duplicated region is located ~200 kb upstream of the 

original KNOP1 locus in the rat genome. Since Ensembl annotated KNOP1 as a one-to-one 

ortholog between human and rat, we labeled all exon-overlapping chains except the first one 

as negatives in the test dataset (including this fourth chain). 

However, this chain factually represents a co-ortholog (lineage-specific duplication), 

and TOGA indeed estimates a high probability of 0.996 that this chain represents an 

orthologous locus. Supporting this, Ensembl (ENSRNOT00000075020.1) does annotate a 

shorter 380 amino acid-comprising KNOP1 gene at the duplicated locus. Nevertheless, 

Ensembl does not classify this gene as a co-ortholog to human KNOP1. This leads us to the 

conclusion that the fourth chain was mislabeled as a negative in the testing data. Even though 

TOGA correctly classified this chain as co-orthologous, we conservatively classified this case 

as false positive. 

 
Figure 3.11 False-positive chain misclassification, example A 
UCSC genome browser screenshot shows human genome locus containing KNOP1 gene. TOGA 

correctly classifies the top-level chain as orthologous - Ensembl also annotates the KNOP1 ortholog in 

the corresponding locus. However, TOGA also classifies another chr1 chain as co-orthologous 

alignment. Ensembl annotates a gene in the corresponding locus but does not classify this as a co-

ortholog. Being conservative, we classified this case as a false-positive prediction. 

 

In example B (figure 3.12), we consider the PDIA5 gene locus. As previously, Ensembl 

reports a one-to-one orthology relationship between human and rat PDIA5 genes, and TOGA 

correctly classifies the respective top chr11 chain as positive (probability >0.999). However, 

the second chr11 chain indicates that the upstream part of the PDIA5 locus is duplicated in 

the rat genome. As in example A, we mislabeled the second-level chain as negative in our test 

data, relying on the Ensembl ortholog annotation of PDIA5 even though this chain indeed 

represents a co-orthologous locus. Thus, TOGA correctly identifies this chain as an 

orthologous sequence alignment with a high probability of 0.999. 
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Figure 3.12 False-positive chain misclassification, example B 
Similar to 3.11. TOGA identifies two orthologous chains for the human PDIA5 gene. According to 

Ensembl, PDIA5 has only one ortholog in the rat genome. Therefore, we conservatively identified this 

case as false-positive. However, the TOGA-identified co-orthologous locus indeed comprises a gene, 

implying that TOGA is likely correct. 

 

In general, manual inspections show that false-positive chain misclassifications often 

represent partial co-orthologs arising from partial gene duplications and that these chains are 

actually mislabeled as paralogs in the test dataset. This indicates that TOGA correctly 

classified these chains as aligning to a query locus, potentially containing an ortholog. Since 

the orthologous loci identification precedes the transcript annotation, TOGA evaluates the 

actual presence of protein-coding genes within these loci in the following pipeline steps. 

3.1.3.4 False negative misclassifications 

In this subsection, we consider the opposite class of misclassifications: false-

negatives. It implies that TOGA could not identify orthologous loci proposed by Ensembl. Here, 

I review two selected examples of false-negative misclassifications in detail. 

Example A (figure 3.13) shows the case of the PNPLA4 gene. Ensembl correctly 

annotates this gene as a one-to-one ortholog between human and rat genomes. Since 

chromosome X lacks intronic and intergenic alignments, this chain appears to be a typical 

paralogous chain. However, this chain, in fact, represents the orthologous locus of PNPLA4. 

TOGA incorrectly classifies the chain as a non-orthologous locus. The reason for complete 

sequence divergence of all intronic sequences is unknown; however, it could be connected to 

faster X chromosome evolution (Vicoso and Charlesworth, 2006; Charlesworth et al., 2018). 

Notably, most of the ~100 orthologs misclassified by our model are located on the X 

chromosome. 
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Figure 3.13 False-negative chain misclassification, example A 
UCSC genome browser screenshot shows human PNPLA4 gene and rat alignment chains. Due to 

extreme neutral sequence divergence on chromosome X, TOGA misclassified the orthologous chain as 

paralogous.  

 

Example B (figure 3.14) provides a closer look at the case of the NURP2 gene. 

According to Ensembl, this single-exon gene has a one-to-one ortholog in the rat genome, and 

as in the previous example, the chr12 chain represents the actual orthologous locus.  However, 

this chain shows exceptional intron divergence and lack of gene order. Consequently, TOGA 

incorrectly classified it as non-orthologous.  

 
Figure 3.14 False-negative chain misclassification, example B 
Similar to 3.13, TOGA misclassified a truly orthologous chain due to extreme divergence of neutrally 

evolving regions.  

 

It is perhaps worth mentioning that TOGA does annotate a gene at the chrX locus in 

(A) and the chr12 locus in (B) since the respective loci in the human genome receive no 

annotation through an orthologous chain. However, the annotation is labeled as a paralogous 

projection as the chains used for annotation were classified as non-orthologous. As a result of 

the analysis of false-negative classifications, we found that the extraordinary divergence of 

neutral sequences often characterizes false-negative chain misclassifications. These 

examples highlight limitations of the genome alignment-based orthology inference method 

implemented in TOGA. 

3.1.3.5 Manual evaluation summary 

TOGA demonstrates a remarkably high accuracy in the detection of orthologous loci. 

Many of the reported mistakes are explained by inaccuracies in the testing data. However, the 

approach has specific weaknesses - with the TOGA approach, orthologs that exhibit unusual 

divergence of neutrally evolving sequences are indistinguishable from paralogs. Besides, the 

TOGA pipeline includes additional steps following the orthologous loci identification. In the 

following parts, I provide the quality assessment of these subsequent steps. 
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3.2 Fragmented Genomes Handling Accuracy 

As stated in section 2.2.6, the TOGA pipeline includes the functionality to detect 

fragmented genes split between different scaffolds in the query genome and join the respective 

orthologous loci to assemble the gene from these pieces. Here I evaluate the accuracy of this 

approach by applying TOGA to a highly fragmented Kogia (pygmy sperm whale) genome draft 

assembly (contig/scaffold N50 of 26kb/28kb). A close Kogia relative belonging to the same 

family (Physeteridae), the sperm whale, has an assembly of much longer contiguity 

(contig/scaffold N50 of 42kb/122Mb), providing an excellent reference for approach evaluation. 

We compared how similar are assembled Kogia and undivided Physeter genes to 

evaluate the accuracy of this step. Kogia genes located on a single scaffold have a median 

nucleotide sequence identity of 98.76% to Physeter genes (figure 3.15). If the assembled gene 

exhibits a similar nucleotide identity, we could conclude that the procedure is accurate. 

Otherwise, if the procedure makes mistakes and assembles genes from non-homologous 

fragments, we expect sequence similarity to drop. However, I found that genes assembled 

from 2, 3, or 4+ fragments exhibited essentially the same sequence similarity as genes that 

are already contained on one scaffold, indicating that this TOGA step performs accurately. 

 
Figure 3.15 Fragmented genes assembly quality evaluation 
The plot shows nucleotide sequence identities between human orthologs detected in Kogia and the 

sperm whale. The first subplot (on the left) shows sequence identity distribution for genes located on a 

single scaffold. The following subplots show cases where genes in Kogia are assembled from 2, 3, and 

4+ pieces. The results suggest that genes assembled from fragments exhibited the same sequence 

identity as already residing genes on one scaffold. 
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3.3 Gene loss detection quality 

Gene loss detection functionality implemented in TOGA was inspired by the 

methodology previously developed in our lab (Sharma et al., 2018). It follows the same pattern 

involving the extensive search of loss-of-function mutations and computing %intact reading 

frame features for making a prediction. However, this work was pioneering in this field, and in 

the newer implementation, we introduced some changes to increase the method performance 

(section 2.4.3). A crucial difference is that TOGA accounts for multiple orthologous loci while 

the previous pipeline utilized only the top-scoring chains. Henceforth, TOGA can detect an 

intact co-ortholog in the query genome even if it is inactivated in the ancestral locus, whereas 

the previous implementation could misclassify these cases as gene loss. 

The previously implemented pipeline already demonstrated high accuracy. To confirm 

that TOGA implementation of gene loss detection functionality is still accurate, we separately 

evaluated the quality of this step as follows. First, we evaluated the pipeline specificity, 

following the methodology applied in the previous work, which implies quantifying genes 

classified as lost in the conserved gene set. Second, we checked whether the newer 

implementation could replicate the findings revealed by the previous version of the method - 

these findings underwent manual curation and most likely represent actual gene inactivation 

events. Moreover, we evaluated genome assembly quality impact on the classification quality. 

3.3.1 Specificity evaluation 

We performed the method specificity evaluation on a large set of 11,182 human genes 

that are conserved in the mouse (mm10), rat (rn6), cow (bosTau8), and dog (canFam3) 

genomes. To obtain this set, we extracted identifiers of genes that have one-to-one ortholog 

between the human and each of the four analyzed species according to Ensembl database 

version 101. Then, we excluded genes that contain very short introns (<50bp) in any of the 

four considered species from this dataset. This filter is necessary because such introns usually 

mask assembly artifacts, such as frameshifting events and nonsense codons, or real 

inactivating mutations in lost genes. After all, we obtained a set of presumably conserved 

genes, which implies that those genes should encode a functional protein across the four 

mammals. Therefore, any reported gene loss in this set will be conservatively considered as 

a false positive.  

As a result, we detected that gene loss is incorrectly inferred for 17 genes in the mouse 

(specificity=99.84%), 14 genes in the rat (specificity=99.87%), 13 genes in the dog 

(specificity=99.88%), and 10 genes in the cow (specificity=99.1%). 
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Manual inspection showed that most of these rare misclassifications are related to (i) 

incorrect reference transcript selection leading to inaccurate exon boundaries identification, (ii) 

extreme gene divergence in the query, (iii) Ensembl errors, and (iv) orthologs represented by 

a processed pseudogene. Examples of these four types are provided in the next subsections.  

3.3.1.1 Importance of reference isoforms selection 

The example of CD276 gene misclassification illustrates the importance of proper 

reference isoform selection (figure 3.16). TOGA correctly identified the orthologous locus of 

this gene in the mouse genome; however, it identified the projected gene as lost. Indeed, the 

ortholog's reading frame is disrupted by numerous inactivating mutations, occupying a 

significant fraction of the CDS in the middle of this gene. The localization and number of 

inactivating mutations suggest that this gene is clearly inactivated in the mouse genome, which 

raises the question of why Ensembl annotated it as intact. However, we noticed that the 

detected inactivating mutations occurred only in exons 3 and 4 and that there is an alternative 

non-APPRIS isoform, which was excluded from the reference input annotation, that does not 

contain exons 3 and 4. 

Since we pursued the highest quality of the reference annotations to avoid ambiguous 

results, we utilized only the APPRIS isoforms. For an unclear reason, the alternative isoform 

was not included in the APPRIS database; therefore, we neglected it in our analysis. Afterward, 

we inspected the alternative isoform ortholog in the mouse genome and did not detect any 

gene-inactivating mutations with TOGA, which indicates that it is clearly intact. Summarizing 

that, we may conclude that this misclassification was induced by incorrect reference isoforms 

selection. 

 
Figure 3.16 Incorrect isoform selection leads to gene misclassification 
UCSC genome browser screenshot shows two isoforms of the human CD276 gene. The longest isoform 

comprises exons 3 and 4, which carry inactivating mutations in the orthologous locus, and is classified 

as lost. However, the alternative isoform does not include these exons, and as a result, orthologous 

projection exhibits no loss-of-function mutations and is classified as "intact." 
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3.3.1.2 Extreme gene sequence divergence may confuse gene loss detection quality 

Another reason why a representative of our conserved gene set could be misclassified 

as lost is extraordinary sequence divergence. In this work, I exemplify this category with the 

ESX1 gene, located on chromosome X. According to Ensembl, the nucleotide sequence 

identity of the human and mouse orthologs is 37%, slightly higher than the expected identity 

of two random sequences (figure 3.17).  

A lack of sequence similarity suggests that detected inactivating mutations are possibly 

located in the non-homologous regions that actually do not encode the protein sequence in 

the mouse genome. Indeed, the 5' terminus of the gene underwent significant structural 

rearrangements. Two non-homologous exons compensate for the reported deletion of the first 

exon in the mouse genome. Also, CESAR could not identify the translation end in the 3' exon 

due to extreme sequence divergence in this region. Instead, it predicted a slightly longer exon 

introducing a +1 frameshifting insertion. In general, this case clearly illustrates the limitations 

of reference-based methods in annotating genes with low sequence similarity. 

 
Figure 3.17 Gene misclassification induced by extreme sequence divergence 
UCSC genome browser screenshot shows the ESX1 gene in human and mouse genomes. Panel A: 

mouse alignment chains to the human genome show that 3' and 5' termini of this gene are misaligned. 

B: TOGA annotates the ESX1 ortholog as lost in the mouse; however, Ensembl annotates an intact 

transcript. Mouse mRNA track shows that this gene is actually expressed in the mouse. Different exon 

composition suggests that inactivating mutations detected by TOGA are located in non-coding regions. 

C: Plot showing inactivating mutations detected in the TOGA projection of ESX1 gene in the mouse 

genome. D: screenshot from Ensembl showing that nucleotide sequence identity between ESX1 

orthologs is human to mouse is lower than 40%, suggesting that this gene has highly diverged. 
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3.3.1.3 Errors in the conserved gene dataset 

Despite our efforts to obtain an error-free conserved gene set, we included some non-

orthologous genes in our analysis. For example, TOGA classified the ZNF239 ortholog in the 

mouse genome as lost, and our subsequent analysis of this case suggested that it is a likely 

Ensembl error. This gene is a member of an abundant family of zinc finger motif containing 

genes represented by hundreds of genes in mammalian genomes. This gene family is 

challenging for orthology inference methods, and only a fraction of the total family 

representatives could be correctly classified with modern techniques. TOGA is not an 

exception, as discussed in subsection 5.1.1.3. 

As shown in figure 3.18, hundreds of alignment chains cover this gene. However, in 

this particular case, only the top-level chain represents an orthologous alignment, and TOGA 

correctly recognizes it. Meanwhile, other chains primarily represent paralogous alignments or 

align only to the zinc finger domain. Analysis of the projected gene revealed abundant 

inactivating mutations, suggesting that the only one orthology candidate gene is lost. 

For this gene, Ensembl mistakenly identifies another ZNF gene (mouse 

ENSMUSG00000042097) as the putative ortholog. This transcript prediction is located in the 

downstream region of the human ZNF239 ortholog predicted by TOGA and is clearly 

paralogous. Presumably, gene trees could not correctly resolve the homology relationships 

between different ZNF genes. 

 
Figure 3.18 Inaccuracy in the test data 
UCSC genome browser screenshot shows the ZNF239 gene in human and mouse alignment chains. 

TOGA identified the top-level chain as orthologous. However, the predicted transcript exhibits numerous 

inactivating mutations. Thus, according to TOGA, the mouse does not have a ZNF239 ortholog, which 

contradicts the Ensembl data. Numerous alignment chains suggest that Ensembl likely misclassified 

some of the paralogs as the ortholog. 
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3.3.1.4 Edge case: Cyclin-Q processed ortholog in mouse 

In this subsection, I discuss a CCNQ gene case that revealed a potential TOGA 

weakness. In fact, TOGA classifies chains aligning to multi-exon genes that (i) are classified 

as non-orthologous, (ii) indicate deletions in intronic regions, and (iii) show absence of gene 

flanking alignment, as processed pseudogene alignments and annotates corresponding 

regions accordingly. These requirements imply that the aligned sequence is a cDNA copy of 

processed mRNAs, and usually, these regions are non-coding. Nevertheless, our 

implementation does not acknowledge that a minor fraction of PPs could retain activity if 

inserted close to an RNA polymerase II promoter (Kabza et al., 2014). However, in general 

processed pseudogene copies can adequately substitute the ancestral gene with a similar 

expression pattern only in very rare cases.  

TOGA correctly identifies the top-level chain that covers the CCNQ gene as 

orthologous. Additionally, it also classifies remaining chains as alignments to processed 

pseudogene copies because the intronic regions in these copies are wholly deleted. Since this 

gene appears in our conserved gene set, Ensembl suggests that there exists an intact CCNQ 

one-to-one ortholog in the mouse. Presumably, the top-level chain aligns to the locus 

containing the ortholog predicted by Ensembl (figure 3.19). 

However, TOGA detects numerous inactivating mutations in the ancestral CCNQ gene 

copy, suggesting that this gene is likely lost. Interestingly, Ensembl also annotates this copy 

as a pseudogene, so TOGA and Ensembl agree here. However, Ensembl annotates an 

ortholog of CCNQ in a different locus, where TOGA annotated a processed pseudogene copy 

(chromosome 11). Surprisingly, EST data reveals that this processed copy still encodes the 

RNA. Whether this processed pseudogene copy has a similar expression pattern and function 

as the ancestral gene is not known. Nevertheless, CCNQ could comprise a rare case where a 

processed pseudogene could substitute for a lost ancestral gene. Nevertheless, TOGA 

provides an annotation track for processed pseudogene copies together with identifiers of 

corresponding reference transcripts. In case of necessity, this data could be analyzed 

separately. 
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Figure 3.19 Expression of a processed copy 
UCSC genome browser screenshots show different CCNQ-homologs containing loci in the human and 

mouse genomes. A: screenshot shows human locus containing CCNQ gene and mouse alignment 

chains. The top-level chain points to the ancestral orthologous locus in the mouse. Chain pointing to 

mouse genome locus on chromosome 11 was classified as processed pseudogene alignment since it 

indicates the deletion of the intronic fraction. Panel B shows the ancestral CCNQ locus in the mouse. 

TOGA and Ensembl annotate a pseudogene suggesting that this gene is lost. Panel C shows the 

processed pseudogene locus. TOGA annotates a processed pseudogene copy, whereas Ensembl 

annotates this copy as an intact single-exon gene. Surprisingly, transcriptomic data indicates that this 

copy is actually expressed and potentially substitutes the lost ancestral copy.  

3.3.2 TOGA implementation of GLP reproduces previous findings 

We additionally checked whether TOGA could reproduce gene loss events previously 

reported by our lab. Published gene losses underwent rigorous manual review, including 

mapping of raw sequencing reads to inactivated sequences and analysis of transcriptomic 

data. For instance, the gene inactivation events reported in our previous work were identified 

by TOGA (Sharma et al., 2018). Moreover, TOGA could reproduce findings published in our 

paper about gene losses associated with aquatic adaptations in Cetaceans (Huelsmann et al., 

2019). 
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Additionally, it confirmed the inactivation of the Toll-like receptor 5 (TLR5) gene in four 

independent mammalian lineages (Sharma et al., 2020). Accordingly, this evaluation suggests 

that TOGA can sufficiently substitute the previous gene loss detection pipeline implementation 

since it is able to reproduce the earlier findings with a high degree of specificity. 

3.3.3 Genome assembly quality influences gene loss classification 

accuracy 

As I noted before, assembly artifacts could mimic inactivating mutations. Conservative 

gene loss criteria were introduced to minimize this issue, such that a single inactivating 

mutation detected due to genome assembly issues does not provide enough evidence of the 

gene loss. However, even with these preventive measures, truly intact genes could be 

misclassified as lost. To demonstrate explicit examples of this issue, we compared gene 

classifications for two different cow genome assemblies, GCA_000003055.5 (The Bovine 

Genome Sequencing and Analysis Consortium, 2009) and GCA_002263795.2 (Rosen et al., 

2020). We discovered that eight genes classified as “intact” in the 2014 assembly changed 

their class to "lost" in the 2018 version. 

Figure 3.20 illustrates a selected example for this case. The newer assembly 

introduces two +1 insertions in the RRP8 gene, resulting in the classification of this gene as 

"Lost". However, the earlier genome assembly does not exhibit any loss-of-function mutations 

in this gene.  

 
Figure 3.20 Assembly artifacts mimic inactivating mutations 
The plot shows the coding exon of the RRP8 gene in the human and two different cow genome 

assemblies. RRP8 annotated in the newer cow genome assembly (bottom) exhibits two frameshifting 

mutations absent in the previous assembly (middle). Most likely, there are no actual inactivating 

mutations but assembly artifacts introduced in the newer cow genome assembly.  

 

Most likely, the differences are explained by sequencing technologies used to produce 

these assemblies. The older one was initially produced using Sanger sequencing technology, 

providing data of high base accuracy, while the newer genome was sequenced with more 

error-prone PacBio technology. PacBio reads, being relatively long (about 15kb), are 
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characterized by frequent +1/-1 insertions, as the provided example demonstrates. Therefore, 

it is necessary to refine the PacBio-based assemblies with more precise short-reads 

technologies (Watson and Warr, 2019). It appears that a minor fraction of these frameshifting 

mutations ended up uncaptured in the newer assembly. 

3.4 Overall TOGA annotation accuracy 

In the preceding parts, I provided the quality evaluation of different separate aspects 

of the TOGA pipeline (chain classification, gene loss detection). This part focuses on the 

performance of the entire TOGA pipeline. To evaluate this, I compared TOGA to the gold-

standard annotation dataset provided by Ensembl (section 3.4.1). Later, I evaluated the 

completeness of conserved gene annotations from the BUSCO gene set (section 3.4.2). 

3.4.1 Comparing vs. Ensembl 

To demonstrate that the TOGA provides high-quality, reliable annotations, we 

compared TOGA results to a gold standard dataset. The Ensembl database contains highly 

reliable annotations that are publicly available for numerous species. To achieve this 

annotation quality, Ensembl applies various techniques, including gene trees and alignment of 

biological sequences such as cDNAs, proteins, and RNA-seq reads (Curwen, 2004; Aken et 

al., 2016). Because of that, the Ensembl data is widely applied in numerous studies. It is 

perhaps worth mentioning that we applied Ensembl data to establish and validate different 

aspects of the TOGA pipeline, but to avoid circularity, training (human-mouse) and test 

datasets are independent. 

At first, we compared the number of human orthologs that TOGA and Ensembl 

detected in the rat genome. Surprisingly, despite the entirely different genome annotation 

approach, two methods demonstrated a high degree of agreement - both methods detected 

orthologs of 16617 human genes (figure 3.21, panel A). This evidence suggests that the TOGA 

approach is entirely viable. However, there are 415 human genes for which Ensembl identified 

an ortholog in the rat genome, but TOGA did not. On the other hand, TOGA exclusively 

annotated 1336 orthologs that did not appear in the Ensembl orthology database. In total, two 

methods could annotate 18368 human genes in the rat genome. 
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Figure 3.21 Detailed comparison between TOGA and Ensembl orthology predictions 
Panel A: Venn diagram showing sets of human orthologs detected in the rat genome by Ensembl and 

TOGA. Mainly, two methods agree; both methods detected orthologs for 16617 human genes. Panels 

B and C: similar to A, but for the cow and elephant genomes, respectively. Panel D: statistics for 

orthologs identified in the rat (i) only by TOGA, (ii) by both methods, and (iii) by Ensembl only. Details 

in the main text. 

 

We additionally checked whether the sets of orthologs predicted only by TOGA (TOGA-

only) and exclusively by Ensembl (Ensembl-only) exhibit statistical differences with the genes 

on the intersection. In particular, for each group, we evaluated the following features: 

nucleotide %identity, gene coverage, and level of orthology confidence, that were either 

computed by TOGA or extracted from Ensembl Biomart. The combination of data sources is 

necessary because the methods cannot provide these values for orthologs they could not 

predict. Therefore, for orthologs discovered exclusively by TOGA, we do not have values from 

Ensembl, and vice versa. However, for the genes annotated by both, we could evaluate the 

feature distribution from two sources. 

Noticeably, TOGA and Ensembl provide different distributions of the nucleotide 

sequence identity for the same genes. This difference is explained by different techniques to 
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evaluate the nucleotide identity in both methods: TOGA computes the number of identical 

bases in the pairwise nucleotide alignment, while Ensembl computes the percentage of query 

sequences matching the reference sequence. 

Nevertheless, as shown in figure 3.21 (panel D), the data suggest that orthologs, 

predicted by both methods, exhibit high confidence and sequence identity values. TOGA-

specific predictions show slightly lower sequence identity, but still, the median is close to 80%. 

The results imply that TOGA-specific predictions are likely mostly actual orthologs. However, 

the Ensembl-specific predictions have significantly lower values than orthologs predicted by 

both methods; for example, the median %identity is close to 50%. This suggests that the 

Ensembl-specific prediction set is likely to contain many non-orthologous gene annotations.  

To check whether these results are consistent for a wider set of species, we performed 

a similar comparison for 14 additional mammals - the results are illustrated in figure 3.22.  

 
Figure 3.22 Comparison between TOGA and Ensembl on multiple species 
The plot shows sets of human orthologs detected (i) only by Ensembl, (ii) by both methods, and (iii) by 

TOGA only in 14 different mammals. The data suggest that methods mostly agree, but TOGA detects 

slightly more orthologs for placental mammals. For marsupials and monotremes, Ensembl outperforms 

TOGA because these species are more distant from the reference (human). 

 

Indeed, for most placental mammals, 90% of human gene orthologs are detected by 

both methods. Sizes of the gene set predicted by only one method repeat the same pattern: 

Ensembl continuously detects a few hundreds of orthologs undetected by TOGA, and TOGA 

detects about a thousand additional orthologs. This implies that two approaches can nicely 
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complement each other to provide an extensive genome annotation. However, for more distant 

species such as Marsupials and Monotremes, Ensembl clearly outperforms TOGA. On these 

evolutionary distances, neutral regions are almost randomized, even in orthologous regions. 

This aspect and ways to overcome these limitations are discussed in detail in section 5.3.1. 

Additionally, we manually inspected the sets of genes predicted by only one of the 

considered methods. The results revealed insights into the methodological advantages and 

weaknesses of TOGA compared to the classic gene annotation approach. Subsection 3.4.1.1 

provides the results of TOGA-only gene evaluations, while subsection 3.4.1.2 is devoted to an 

Ensembl-only set of genes. 

3.4.1.1 Characterize cases where Ensembl didn’t find any orthologs 

This subsection gives an overview of TOGA-specific orthology predictions that do not 

appear in the Ensembl database. This set of genes highlights the advantages of TOGA 

methodology in inferring orthology where gene trees may lack predictive power. 

An example of the Y-box-binding protein 1 (YBX1) gene illustrates the weaknesses of 

tree-based methods in inferring orthology for extremely conserved genes. YBX1 is an essential 

gene encoding a DNA- and RNA-binding protein involved in various fundamental cellular 

processes (Chen et al., 2000; Capowski et al., 2001; Gaudreault et al., 2004; Chattopadhyay 

et al., 2008). TOGA correctly identifies the orthologous alignment chain and annotates the 

corresponding gene in the rat genome. Ensembl also annotates the same gene precisely in 

the same locus, also called Ybx1, implying that it is the human YBX1 gene ortholog (figure 

3.23). Surprisingly, the Ensembl states that the human does not have a YBX1 ortholog in the 

rat genome. 

 
Figure 3.23 Ensembl did not infer ortholog for the YBX1 gene 
UCSC genome browser shows the human YBX1 gene and orthologous rat alignment chain. Both 

Ensembl and TOGA annotate a YBX1 ortholog in the respective locus in the rat genome. However, 

Ensembl does not list these genes as orthologs.  
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The fact that Ensembl did not connect the annotated YBX1 orthologs suggests that the 

gene tree could not resolve the homology relationships between these genes with a high 

degree of confidence. A potential reason for that could be that the gene exhibits a very high 

sequence similarity, so the number of changes between sequences does not provide enough 

evidence to resolve the homology. Indeed, the protein alignment of the YBX1 gene exhibits 

nearly 100% protein sequence identity (figure 3.24). There are only four amino acids that are 

not identical. 

 
Figure 3.24 YBX1 gene protein sequence alignment 
The alignment shows that the YBX1 gene is highly conservative and has only four amino acid changes 

between the human and rat genomes. 

 

This case illustrates the advantages of not only using coding sequences to infer 

orthologs. By using additional evidence, such as intronic and intergenic alignments, TOGA can 

infer orthologs where gene trees may have limitations. 

Another representative of this group is the cyclin B2 (CCNB2) gene (figure 3.25). This 

gene is essential for controlling the cell cycle at the mitosis transition; therefore, the loss of this 

gene is unexpected in highly complex mammalian species. Alignment chains explicitly point to 

a single orthologous locus in the rat genome, and TOGA classifies it accordingly. Furthermore, 

TOGA detected several loss-of-function mutations in exon six. Since the loss of a single exon 

does not provide enough evidence to classify this transcript as "Lost," TOGA assigned the 

"Uncertain Loss" class to this gene. Subsequently, TOGA included this gene in the final 

orthology set. However, in this locus, the Ensembl annotation is absent, which is likely a 

mistake. Presumably, Ensembl did not annotate CCNB2 because transcriptomic data for the 

rat genome does not reveal the expression of the entire gene. Instead, aligned RNA 

sequences correspond to one or another human non-coding RNAs, with a bit of overlap. 
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Figure 3.25 Ensembl did not infer ortholog of CCNB2 gene 
A: UCSC genome browser shows CCNB2 gene locus in the human genome and rat alignment chain. 

In addition, two non-coding RNAs are expressed from the same locus in the human. B: respective locus 

in the rat genome. For some reason, Ensembl does not annotate any transcript in this region. Potentially, 

this is because there is no EST that cover the gene entirely. 

 

As the next example of TOGA-specific orthology prediction, I examine the Keratin 

Associated Protein 5-9 (KRTAP5-9) encoding gene (figure 3.26). The top-level alignment 

chain appears to be orthologous, and TOGA classifies it accordingly. However, other chains 

indicate that alignment blocks covering this gene are collinear with alignments up and 

downstream of the demonstrated locus. This observation reflects that KRTAP genes appear 

in clusters. 

TOGA annotates two different genes in the locus corresponding to the top-level 

alignment chain: KRTAP5-9 and KRTAP5-2. However, Ensembl also annotates a gene in this 

locus under the KRTAP5-5 name. It also points out that the KRTAP5-9 ortholog in the mouse 

genome does not exist. In contrast, TOGA annotates KRTAP5-5 ortholog in a different locus. 

In this case, TOGA mainly relies on flanking alignments and synteny to make the decision. 

However, it cannot be excluded that its prediction is also incorrect considering the evolutionary 

process of KRTAP genes (Wu et al., 2008; Khan et al., 2014).  
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Figure 3.26 Orthology inference within the KRTAP gene family 
Panel A: UCSC genome browser screenshot shows human locus containing KRTAP5-9 gene and 

mouse alignment chains. TOGA classified the top-level chain as orthologous. Panel B: the respective 

region in the mouse genome. TOGA annotates the respective transcript twice: as KRTAP5-9 and 

KRTAP5-2 ortholog, implying many-to-one orthology. However, Ensembl annotates the same transcript 

as KRTAP5-5. 

 

Since the set of TOGA-specific orthology predictions provides crucial importance in 

understanding the methodology advantages and capabilities, I performed a more profound 

analysis to identify statistically supported characteristics of these genes. As a result, I extracted 

characteristic features of orthologs that are more likely to be identified relying on intron 

divergence than gene-tree-based methods. The details of this deeper analysis are presented 

and discussed in part 5.1. 

3.4.1.2 TOGA classified Ensembl-annotated ortholog as Lost or Missing 

Moreover, we manually inspected orthologous that TOGA could not identify despite the 

presence of corresponding data in the Ensembl dataset. Actually, TOGA classified 366 out of 

415 of these genes as missing or lost, which implies that it correctly classified an orthologous 

chain for these genes. However, for these genes Ensembl and TOGA disagree whether the 

mapped gene actually encodes an intact protein. 

Here, Ensembl has an advantage because it actively uses the transcriptomic data; 

therefore, it could avoid gene misclassification due to assembly artifacts that mimic loss-of-

function mutations. In some of these cases, Ensembl misclassifies a paralog as the ortholog, 

while the actual ortholog is pseudogenized. However, TOGA could miss a real orthologous 

locus, as shown in the CCNQ gene example (subsection 3.3.1.4). For the remaining 51 genes, 

TOGA could not find an orthologous chain; therefore, actual TOGA limitations could explain 

these cases.  
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The vast majority of orthologs inferred exclusively by Ensembl are classified as Lost or 

Missing by TOGA. This implies that TOGA finds orthologous loci for nearly all human genes. 

Since Ensembl uses external evidence to annotate genes, it could distinguish true inactivating 

mutations from assembly errors. In contrast, if assembly errors are abundant, TOGA could 

conclude that a conserved gene is lost. 

The case of the "Creatine Kinase, Mitochondrial 2" (CKMT2) gene clearly illustrates 

this principle (figure 3.27). In Panel A, a UCSC browser screenshot shows CKMT2-containing 

locus in the human genome. As we can see, it is covered by an orthologous chain, indicating 

that the orthologous locus is located on chromosome 2 in the rat genome. Panel B shows the 

respective locus in the rat genome where TOGA and Ensembl both annotate the same CKMT2 

ortholog.  However, TOGA classifies this gene as inactivated since it exhibits inactivating 

mutations in exons 5 and 6 (Panel C). Additionally, exon 9 contains a frameshifting insertion, 

but since it is located in the last 10% of the CDS, TOGA does not consider this mutation 

inactivating. Moreover, exon two is missing because the corresponding locus in the rat genome 

contains an assembly gap.  

 
Figure 3.27 Ensembl introduces false micro introns and splits exons to produce "Intact" 
annotations 
Panel A: UCSC genome browser screenshot shows CKMT2 locus in the human genome and rat 

orthologous chain. Panel B: respective locus in the rat genome, where TOGA annotated CKMT2 

orthologs as pseudogenes. It contradicts Ensembl data: it annotates CKMT2 ortholog as intact. Panel 

C: TOGA detected inactivating mutations in exons 5 and 6, which is why this gene is classified as Lost. 

Panel D: a closer look at rat locus containing exons 5 and 6. Ensembl introduces artificial introns to 

compensate for the inactivating mutations and provide a technically intact transcript. 
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Ensembl annotated this highly-mutated gene as follows: To produce technically correct 

gene annotations, Ensembl introduces tiny artificial introns to avoid the inclusion of disrupted 

regions into the ORF. In fact, such introns are a computational workaround because the 

spliceosome is unable to splicing such short introns in practice. As a result, this Ensembl 

annotation constitutes a reading frame without inactivating mutations, but it does not reflect 

the reality. In contrast, TOGA cannot recognize these inactivating mutations as assembly 

artifacts and concludes that this gene is definitely lost in the query species. However, in the 

absence of external evidence such as RNA data, this is justified.  

3.4.1.3 Actual TOGA limitations 

This subsection is focused on cases that actual TOGA approach limitations could 

explain. Since TOGA heavily relies on intronic and intergenic regions divergence, retroposed 

single-exon genes could be invisible for the method. Moreover, previously shown cases related 

to exceptionally diverged chromosome X also belong to this class (subsection 3.1.3.3). 

Figure 3.28 provides examples of two genes that actually have an ortholog in the rat 

genome, but TOGA classified them as wholly deleted. Indeed, orthologs of the CSNK2A3 (A) 

and AC011005.1 (B) genes undergo translocations and therefore are absent in the ancestral 

locus. Since the flanking alignment and synteny are entirely absent, and genes have no 

intronic fractions, the actual orthologous chains are indistinguishable from paralogous copies 

for TOGA. 

 
Figure 3.28 Translocated single-exon co-orthologs 
A: UCSC browser screenshot shows CSNK2A3 gene in human and rat alignment chains. The gene 

underwent translocation in the rat genome. However, the orthologous chain lacks any flanking alignment 

and therefore was misclassified by TOGA as paralogous. Panel B: similar to panel A, but for 

AC011005.1 gene - orthologous chain can be indistinguishable from paralogous in case of single-exon 

gene translocation.  
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3.4.2 BUSCO completeness scores 

To provide additional evidence for TOGA annotation sufficiency, we measured the 

completeness of Benchmarking Universal Single-Copy Orthologs (BUSCO) gene set 

annotations. The BUSCO set contains universal single-copy genes that are expected to be 

conserved in the given clade, in our particular case for the Vertebrata. The proportion of 

BUSCO genes that a given annotation method is able to recognize is a reliable metric to 

assess gene prediction quality. However, the BUSCO set is also applied to benchmark 

genome assembly quality. For instance, the more considerable number of missing BUSCO 

genes in a given genome is a hallmark of poor assembly quality. Therefore, it is necessary to 

consider that even a flawless annotation method would demonstrate lower prediction 

completeness on such genomes. In such genomes, some loci harboring particular genes might 

be absent. 

To perform the quality evaluation, I downloaded the BUSCO genes set for Vertebrata 

clade (odb9), containing 3306 highly conserved genes that are expected to be present in each 

vertebrate species. Then, I selected several species representing different vertebrate clades 

and annotated them with TOGA using the human genome as the reference. To produce the 

results, I quantified the number of genes representing each TOGA class in each analyzed 

genome, such as Intact, Uncertain, Lost, or Missing. Since TOGA yields a large number of 

gene classes, they are grouped for results interpretability as follows: 

1. The first group unites the following annotation classes: "Intact," "Partial Intact," and 

"Uncertain Loss". For genes classified as such, TOGA establishes the orthologous 

connections between reference and the query. 

2. The second group comprises the classes of "Missing," "Lost," and "Partial missing". 

Association with one of these categories implies that TOGA identified an orthologous 

chain but failed to identify an intact transcript in the query genome. 

3. The third group comprises a single annotation class, "Paralogous projection". For these 

genes, TOGA could not identify an orthologous chain 

4.  And the last group, "no chain", implies the absence of any alignment chains 

intersecting a given gene.  

 

On the next page, figure 3.29 demonstrates the results of BUSCO completeness 

evaluation. 
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Figure 3.29 BUSCO completeness of TOGA annotations 
The plot shows the completeness of BUSCO gene annotations for 19 different vertebrate species. Sps 

means "substitutions per neutral site," which is the measure of molecular distance between species (in 

this case - to the human). The higher value means that the lower fraction of the neutrally evolving 

sequence will align. According to the plot, TOGA provides nearly ideal BUSCO completeness with 

molecular distances below 0.7 sps, which corresponds to the placental clade. If the distance exceeds 

1, then TOGA cannot correctly distinguish orthologs from paralogs for many genes because of the lack 

of neutral sequence alignment.  

 

According to results, TOGA could identify nearly all BUSCO genes in the Boreoeutheria 

species, close relatives to the reference. However, it performed slightly worse on the shrew 

lineage, which is highly diverged and represented by a low-quality genome assembly. 

Armadillo and Elephant represent more phylogenetically distant Xenarthra and Afrotheria 

clades and demonstrate slightly lower but still satisfactory annotation quality. 

Notably, the prediction quality decreases with the molecular distance between species 

(number of substitutions per neutral site, sps). For example, the annotation quality of 

Marsupialia genomes (~0.7 sps) is significantly lower than for Placental species (<0.55 sps). 

In Marsupialia annotations, the number of paralogous projections became noticeable. In such 

cases, TOGA was unable to detect an orthologous chain due to elevated neutral sequence 

divergence. The annotation of the platypus genome (1 sps) demonstrates even lower 

completeness because, at this distance, the neutrally evolving regions are expected to be 

entirely randomized. 
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For molecular distances above 1 sps, orthologs and paralogs are expected to be 

largely indistinguishable for TOGA since intronic and intergenic regions are highly diverged, 

which is illustrated by very poor annotation completeness in species outside the mammalian 

clade. Notwithstanding, it still annotates most of these genes without reaching any conclusions 

regarding orthology relationships (paralogous projections). The influence of molecular 

distance on TOGA annotation quality is further discussed in section 5.3.1 devoted to TOGA 

methodology limitations analysis. Also, the section provides ideas of how to increase TOGA 

annotation completeness for molecular distances closer to 1sps. 

As demonstrated in this section, the TOGA approach provides a high annotation 

completeness in comparison to the gold standard dataset. It outperforms traditional methods 

on relatively close evolutionary distances, manifesting the advantages of the proposed 

concept. The practical applications of this concept are illustrated in the following part. 

3.5 Genome alignment chaining procedure affects TOGA 

prediction quality 

To infer orthology, TOGA utilizes the alignment chains, and ergo the overall pipeline 

performance rigorously depends on the genome alignment quality. Genome alignment 

inaccuracies typically lead to wrong mapping of the coding sequence to the query genome, 

and lack of alignment sensitivity results in orthology underprediction. In this part, I discuss 

potential issues that chain obstructions could cause. Conceptually, chains are a form of 

genome alignment representation, which suggests they could be produced from various 

sources. This section briefly compares different genome aligners to illustrate why alignment 

sensitivity is crucial for TOGA classification quality. In particular, I compared three different 

sources of genome alignment chains: 

1. The LASTZ-based procedure that we applied to produce previously published 120-way 

genome alignment (Hecker and Hiller, 2020) which includes post-processing 

procedures to increase alignment sensitivity (Suarez et al., 2017; Osipova et al., 2019). 

2. The LASTZ-based method used for standard UCSC-browser annotation track (Kent et 

al., 2003) 

3. CACTUS 1000 multiple genome alignments (Armstrong et al., 2020) 

 

Basically, both sets 1 and 2 are produced using the same LASTZ aligner. However, to 

generate our chains, we used an optimized parameter set and applied post-processing 

procedures to increase method sensitivity in poorly aligned regions. Figure 3.30 shows a 

UCSC browser screenshot providing a side-by-side comparison of three genome alignments. 
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Notably, chains produced under the first methodology provide greater sensitivity in neutrally 

evolving regions. Statistically, this implies that more sensitive chains would increase the TOGA 

outcome because the chain classification step of the pipeline heavily relies on neutrally 

evolving sequence alignment. 

 
Figure 3.30 Comparison between alignment chains 
UCSC browser screenshot shows a side-by-side comparison of mouse alignment chains produced 

using different approaches: (i) sensitive LASTZ approach (Hillerlab), (ii) chains extracted from CACTUS 

alignment, and (iii) default LASTZ chains provided by UCSC. Chains align to the S100PBP gene locus 

in the human genome. A highly diverged intronic region is highlighted with grey. 

 

To evaluate the dependency of TOGA pipeline outcome on the alignment chains 

sensitivity, I annotated the mouse (mm10), cow (bosTau8), and dog (canFam3) genomes 

using (i) our and (ii) UCSC chains with the human genome as the reference. Then, I quantified 

orthologous genes detected by TOGA using different chains. The results of this analysis are 

presented in table 1. 

Species Hillerlab chains UCSC chains Difference 

Mouse (mm10) 18117 17926 191 

Cow (bosTau8) 18334 18263 71 

Dog (canFam3) 18193 18113 80 

Table 1 Number of orthologs predicted by TOGA using Hillerlab and UCSC chains 
 

These results suggest that TOGA yields slightly more orthologous connections if the 

genome alignment sensitivity is increased. Below, I consider some examples of orthologs 

missing due to a lack of alignment sensitivity. The first example demonstrates how a lack of 

chain block connectivity affects gene classification (figure 3.31). Our chain post-processing 

procedure could detect the collinearity of the separate aligning blocks and connect them, 

resulting in a complete chain. Further, TOGA identifies the corresponding region in the query 

genome as orthologous for the TMLHE gene. Besides, UCSC alignment recognizes almost 

the same blocks of sequence similarity between the human and mouse genomes; however, it 
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did not connect these blocks together. As a result, TOGA was unable to infer orthology for this 

gene using the UCSC chains set.  

 
Figure 3.31 Not connected alignment blocks in UCSC chain track 
UCSC genome browser screenshot shows TMLHE gene locus in the human genome and two alignment 

chain tracks: (i) Hillerlab and (ii) UCSC. Both tracks exhibit aligning blocks in almost the exact locations. 

However, the UCSC chaining procedure did not detect collinearity of these local alignments and 

therefore created many small chains. In contrast, the Hillerlab procedure chained these blocks together. 

 

The following example considers the human Defensin Beta 4B (DEFB4B) gene 

involved in antimicrobial activity, which exhibits an extreme sequence divergence with its 

ortholog in the mouse genome (figure 3.32). Because of a lack of sensitivity, the UCSC 

genome alignment procedure could not reveal any block of sequence similarity between 

human and mouse genomes resulting in entirely absent chains. The nucleotide alignment 

provided by our chains (on the illustration) clearly illustrates that the coding sequence of this 

gene is indeed highly diverged (sequence identity ~50%). For this reason, TOGA could not 

recognize any DEFB4B ortholog in the mouse genome based on UCSC alignment. However, 

utilizing our chains, TOGA established the orthologous connection between human and mouse 

DEFB4B genes. 

 
Figure 3.32 Absent UCSC alignment to DEFB4B gene 
UCSC genome browser screenshot shows DEFB4B locus in the human genome with two alignment 

chain tracks: (i) Hillerlab and (ii) UCSC. The region has highly diverged (magnified local alignment - 

sequence identity is about 50%), and the UCSC procedure could not identify any sequence similarity 

here. 
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The last selected example illustrates the WFDC12 gene alignment between the human 

and cow genomes (figure 3.33). Actually, this gene underwent tandem triplication in the cow 

genome, and two of these copies got inactivated. Our chains successfully captured all three 

copies of this gene, whereas the UCSC procedure could align this gene to only one of these 

copies. Consequently, using sensitive chains, TOGA could detect an intact copy and establish 

the one-to-one orthology connection between human and cow WFDC12 genes. In contrast, 

using UCSC chains, TOGA examined only one of these copies, which apparently is 

inactivated, and consequently reported that this human gene has no ortholog in the cow 

genome. 

 
Figure 3.33 UCSC genome alignment missed two WFDC12 copies 
UCSC genome browser screenshot shows that Hillerlab chains could align three copies of the WFDC12 

gene in the cow genome (2 copies are inactivated), whereas UCSC chains aligned only a single copy. 

The copy detected by the UCSC genome alignment procedure is inactivated. 

3.6 Practical TOGA applications 

In this part, I give an overview of three independent projects that involved the TOGA 

genome annotation pipeline. Two of them: (i) annotating six reference-quality bat genomes 

(section 3.5.1) and (ii) analysis of the BAAT gene evolutionary history (section 3.5.2), are 

already published in the scientific literature. The third one, producing comprehensive gene 

annotations for 450 mammals (section 3.5.3), provides plenty of data for subsequent 

comparative studies and demonstrates the great method scalability. 

3.6.1 Producing highly complete annotations for six reference-quality bat 

genomes 

An earlier TOGA version was used as one key type of evidence to annotate genes in 

6 reference-quality bat genome assemblies generated by the Bat1K project (Jebb et al., 2020). 

To create these annotations, TOGA results were integrated with other evidences such as ab 

initio approaches and transcriptome data. Using EvidenceModeller (v.1.1.1) (Haas et al., 2008) 

to integrate these evidences, 19,122–21,303 protein-coding genes were annotated in the six 
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bat genome assemblies. This resulting data reached 99.3–99.7% of the BUSCO gene set 

annotation completeness. Notably, the completeness of the produced annotation is higher 

than for available annotations of dog, cat, horse, cow, and pig genomes. Genomes of only two 

species surpassed our annotation: human and mouse, which have received extensive manual 

curation over the last decades.  

In addition to annotation, I used TOGA to generate a comprehensive set of 12931 

orthologous genes across the 6 bats and 42 other mammals. Using this orthology set, we 

performed multiple analyses for gene selection, losses, and gains that uncovered the genetic 

origins of fascinating bat adaptations (details in the article).  This application demonstrated 

that the TOGA approach has the excelling potential to become a widely recognized tool for 

genomes annotation. We had an opportunity to examine TOGA in practice during this project 

and compare it to various standard annotation methods. 

3.6.2 Analysis of the evolutionary history of the BAAT gene 

As another case study, published in Genome Biology and Evolution (Kirilenko et al., 

2019), I applied TOGA in a comparative study to explore the genetic origin of bile acid 

conjugation variability across 120 mammalian species. In vertebrates, bile acids are 

conjugated with amino acids to fulfill their biological functions. However, conjugated amino 

acids are variable among mammals: some species conjugate bile acids with both glycine and 

taurine, whereas others conjugate only taurine. In particular, our study was focused on the bile 

acid coenzyme A: amino acid N-acyltransferase (BAAT) - the enzyme that catalyzes bile acid 

conjugation in humans. 

By applying TOGA to 120 mammalian genomes, we uncovered the complex 

evolutionary history of the BAAT-encoding gene, which included multiple gene loss and 

duplication events. Using the codon alignments, we observed multiple changes in the active 

center of the enzyme between Cysteine and Serine, which likely contribute to the observed 

variability of the bile acid conjugation pattern. This assumption was based on mutagenesis 

experiments showing that replacing Cysteine for Serine in the active center greatly diminishes 

the glycine-conjugating ability in the human enzyme. 

Surprisingly, we found that this residue provides little power outside primates' clade in 

predicting the experimentally measured amino acids that are conjugated with bile acids.  These 

results suggested that the mechanism of BAAT's enzymatic function is incompletely 

understood, despite relying on a classic catalytic triad. More generally, our evolutionary 

analysis indicates that results of mutagenesis experiments may not easily be extrapolated to 

other species. 
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3.7 TOGA annotation of 500 mammalian genomes 

To demonstrate that TOGA scales to many genomes, we applied it to generate 

comprehensive annotations for 500 genomes, representing 450 mammalian species, using 

both the human and mouse genomes as the references (in total 1000 TOGA runs), creating 

the largest comparative dataset so far. The annotated genomes represent about ~10% of all 

known mammalian species and cover all major clades. Consequently, the generated dataset 

provides an unprecedented level of detail, empowering us to perform very comprehensive 

comparative studies. The histogram illustrated in figure 3.34 shows the number of annotated 

human orthologs in these genomes. In half of the analyzed species, TOGA could identify 

orthologs for at least 17862 human genes, or 17408 orthologs on average, which indicates 

that the resulting annotations are highly complete.  

 
Figure 3.34 Number of human orthologs predicted in 500 assemblies of ~450 
mammalian species 
The histogram shows that, on average, TOGA was able to identify orthologs of 17400 human genes in 

500 mammalian genomes representing 450 species. 

 

However, the dataset includes outliers with low numbers of annotated human 

orthologs. The reason is that the assortment of 500 genomes comprises assemblies of variable 

quality. It incorporates highly fragmented draft assemblies (such as the Kogia, see section 

2.2.6) as well as reference-quality mammalian genomes (Jebb et al., 2020). Since low quality 

assemblies do not provide all gene loci, the number of annotated orthologs is expected to be 

lower. Indeed, TOGA could detect only 9968 orthologs of human genes in the Alpine ibex 

genome, most likely because of extreme assembly incompleteness (contig/scaffold N50 of 

380,983/61,905,114). 
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The UCSC genome browser screenshot shown in figure 3.35 illustrates the locus in 

the human genome comprising essential genes encoding the DNA Topoisomerase I (TOP1) 

and Chromodomain Helicase DNA Binding Protein 6 (CHD6). Also, it shows the alignment 

chains for Alpine ibex and domestic goat genomes, which are close relatives. TOP1 and CHD6 

encode essential proteins necessary for DNA replication and transcription. Therefore, it is 

expected that any eukaryotic species including goat and ibex possess them. However, the 

alignment chains indicate that the corresponding region is not assembled in the ibex genome 

in contrast to the goat. Instead, the top-level alignment chain corresponds to the deletion of 

the presumably orthologous locus. This observation suggests that the Alpine Ibex genome is 

highly incomplete, explaining the low number of discovered orthologs. 

 
Figure 3.35 Incomplete genome assembly on the TOP1-containing locus 
UCSC genome browser screenshot shows TOP1-containing locus in the human genome and alignment 

chain tracks to goat and Alpine ibex. The goat chain track exhibits alignment to the orthologous ancestral 

locus. However, the Alpine ibex chain track shows that the respective locus is deleted in the ibex 

genome, implying ibex genome assembly incompleteness since TOP1 is essential for DNA replication. 

3.8 UCSC genome browser visualization for TOGA annotations 

To make all information used by TOGA accessible and transparent to users, we adopted 

code from the UCSC genome browser to create a TOGA annotation track type. For each 

transcript, our modification provides the following data: 

1. The reference transcript identifier together with a link to Ensembl (or another user-

defined gene resource) and reference genome coordinates 

2. The orthology score of the chain used for this projection, together with the features 

used for machine learning classification (section 2.2.2) 

3. The transcript classification (intact, partial intact, etc.) and the features that underlie 

this classification (section 2.4.5) 

4. A figure that visualizes all exons, including their class (present, missing, deleted), and 

plots all identified inactivating mutations (section 2.4.2) 

5. A list of all detected inactivating mutations (section 2.4.3) 
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6. The pairwise protein sequence alignment between reference transcript and TOGA 

prediction 

7. Alignments of individual exons together with coordinates, expected regions, 

%nucleotide identity, and %BLOSUM values (section 2.4.2). 

 

This implementation comprises a handler function in UCSC's "hgc.c" that determines 

whether the user clicks on a TOGA annotation track. If that is the case, our extension fetches 

all data from three SQL tables containing the information described above and uses it to 

produce an HTML page (figure 3.36). 

 
Figure 3.36 TOGA annotation track in the UCSC genome browser 
The figure shows the TOGA annotation track in the UCSC genome browser. We modified the on-click 

action handler such that clicking on TOGA annotation generates an HTML page showing data related 

to the selected transcript (details in the main text).
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4. TOGA extensions 
High-quality orthology inferences from TOGA provide the solid basis to generate 

reliable alignments of orthologous exons and genes, which is invaluable for phylogenetic 

analysis (part 4.1) and selection tests (part 4.2). 

4.1 High-quality alignments of orthologous exons for phylogeny 

inference 

The inference of phylogenetic relationships amongst or within groups of species is one 

of the central goals of evolutionary biology. Phylogeny provides the evolutionary history of a 

group of species crucial for virtually all further evolutionary studies (Soltis and Soltis, 2003). 

The variety of methods for phylogenetic inference include parsimony, maximum 

likelihood, or Bayesian inference. In general, to build a phylogenetic tree for a set of interest 

species, all these methods require multiple sequence alignments. Researchers apply 

sequences of various types to infer phylogeny, such as ultraconserved elements (Faircloth et 

al., 2012), mitochondrial DNA (Braun and Kimball, 2002), and protein-coding genes (Collins et 

al., 2005). These sequences vary in terms of the potential alignment length, level of noise, 

selective pressure on the sequence, etc.  

Phylogeny projects are often negatively influenced by including non-homologous 

sequences due alignment artifacts and errors in orthology inference. These non-homologous 

inclusions may lead to wrong phylogenies. Accurate alignments are therefore critical 

We propose an alternative source of data for phylogeny studies by extracting it from 

high-confidence TOGA annotations. To exclude non-homologous sequences, we employed 

the fact that TOGA considers exonic sequences and the entire gene locus in the query genome 

context. Thus, we can extract a set of very reliable orthologous exons. To overcome alignment 

artifacts, we require that such high-quality exons align well at both nucleotide and protein levels 

and have no insertions or deletions, which lets us eliminate the chance of alignment errors. 

Below I provide the details of our filtering algorithm. 
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4.1.1 Workflow to extract high-quality exons from TOGA annotations 

To minimize the chance of including non-homologous sequences, we implemented a 

sequence of filters. Exons classified as “high-quality” should satisfy all of the requirements 

listed below. First, we extract high-confidence one-to-one orthologs from TOGA output. To do 

so, we select orthologs that were projected through a chain with XGBoost orthology probability 

above 0.95. Besides, we require that no other chain with a score higher >0.2 that covers the 

reference gene exists. These requirements ensure that the considered reference gene has 

only one orthologous copy in the query genome, excluding partial co-orthologs. 

Second, we examine each candidate exon requiring high sequence similarity. In 

particular, we require that exons align well with %Blosum ≥ 75% and %identity ≥ 65%. With 

this requirement, we make sure that exon sequences are homologous, excluding highly 

diverged sequences. Moreover, we require that the exon flanks align, which ensures that the 

exon boundaries are reliably detected. To this end, we focused on the 100 bp up-and 

downstream exon flanks and required that at least 90 of the 100 reference bp intersect with 

aligning blocks from the chain and that insertions in the query do not sum to more than ten bp.  

Third, we require that high-quality exons have no insertions and deletions. To achieve 

this we require that a single aligning block covers the whole exon and pairwise CESAR 

alignment reveals consensus splice sites but no indels. By applying these measures, we 

drastically reduce the chance of alignment ambiguity, which typically arises from an inability to 

precisely locate the positions of insertions or deletions. 

Fourth, the transcript containing potential high-quality exons must be classified as 

"intact" or "partial intact." Also, the considered exon should not exhibit any inactivating 

mutations, including compensated or masked ones, making it likely that the exon evolves 

under purifying selection. 

Fifth, we require that the considered exon is not duplicated in one-to-one orthologous 

query genome locus. This requirement avoids the possibility of including the wrong exon copy 

in the final alignment. To achieve this, we test whether the transcript locus comprises any 

additional exon copy using LASTZ. In case LASTZ detects more than one exon copy, we 

exclude this exon from the high-quality exon set. 

As a result, we obtain a set of high confidence exon alignments that are expected to 

be virtually free of inclusions of non-orthologous sequence. Since the high-quality exons do 

not have any insertions and deletions, no additional alignment steps are required. To produce 

multiple alignments, it is enough to stack resulting exons on top of each other. The power of 

this approach is demonstrated in practice in the next section. 
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4.1.2 Inferring bat phylogeny 

In order to check whether the high-quality exons provide sufficient material for 

phylogeny inference, I have built a phylogeny tree for 48 mammals applying high-quality exons 

exclusively. Then, I compared the resulting tree with a previously published one for the same 

set of species (Jebb et al., 2020). The motivation of the original phylogenetic study was that 

some aspects of bat evolution were still unknown (Foley et al., 2016; Doronina et al., 2017; 

Springer and Gatesy, 2019). This question was revisited considering the high completeness 

of newly sequenced bat genome annotations. 

 
Figure 4.1 Bat’s phylogeny tree on the mammalian background (Jebb. et al, 2020) 
To produce the tree, we used a supermatrix of 12931 concatenated genes and the maximum likelihood 

tree reconstruction method. All nodes received 100% bootstrap support. 

 

For the original study, we extracted sequences of 12.931 orthologous genes provided 

by an earlier TOGA version and combined them with 10.857 orthologous conserved non-

coding elements collected from 48 mammalian genomes. This resulted in a total of 21.4Mp-

long alignments of TOGA sequences and 5.2Mp of non-coding element sequences to 

reconstruct the phylogeny. However, we identified some homologous errors in the resulting 

alignment. Most of these cases involve a short non-homologous first or last coding exon, 

affecting relatively few bases in the overall gene alignment. Some of these cases were caused 



TOGA extensions 
 

 
102 

by the incompleteness of utilized mammalian genome assemblies, where an assembly gap 

covers the real exon, and CESAR2.0 detects a sufficiently similar but non-homologous exon 

candidate. The original tree was produced using IQtree method (Nguyen et al., 2015) with 

1000 bootstrap replicates. The analysis of concatenated protein-coding genes identified the 

origin of bats with 100% bootstrap support across the entire tree. The resulting tree published 

in the original study is demonstrated in figure 4.1. 

To infer the tree based on TOGA results, I extracted a set of high-quality exons from 

the same set of species, which resulted in a 2MB long codon alignment, which is substantially 

shorter than the alignment applied in the original study. Analysis of this alignment did not reveal 

any ambiguous or misaligned region, confirming that the extracted sequence is indeed highly 

conserved. To generate the tree, we applied the same IQtree-based procedure. As a result, 

we obtained a tree of identical topology, which confirms that the proposed method could find 

an application in phylogeny studies. 

4.1.3 UHQ exons summary 

The approach proposed in this part has numerous advantages to generate sequences 

for phylogeny inference. First, produced sequences are relatively short because only a minor 

fraction of the annotated sequences could satisfy the strict criteria. The shortness of 

sequences does not compromise the quality because, by definition, they have a shallow noise 

level. This feature allows performing phylogeny analysis faster, without loss of quality. Another 

advantage is that the alignment step is no longer required. The extracted sequences, by 

definition, are already aligned. Consequently, we avoid any potential alignment mistakes and 

ambiguity. Since the proposed approach operates with exon units but not the entire genes, the 

results are primarily free of recombination events. Therefore, it could be utilized as input for 

coalescent methods that assume that no recombination events happened.  

However, this method has certain limitations. It is very problematic to apply this method 

for hundreds of species because high-quality exons are rare. Therefore, the method's 

scalability is limited: with the increasing number of species, the number of exons classified as 

“high-quality” in the majority of them quickly shrinks. Another issue is that this method strictly 

depends on the assembly and alignment quality. If the assembly quality is poor and the 

genome alignment was not sensitive enough, then the number of extracted UHQ exons would 

be impractical. The implemented filters could be too strict for highly diverged species because 

exon flanking regions constitute neutrally evolving regions. The chance that the alignment of 

these regions will satisfy our criteria is relatively low. 
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In general, the method proves its potential in producing data for phylogeny studies 

involving closely related species represented by high-quality genome assemblies. In this 

particular niche, it could complement conventional procedures of data preparation. 

4.2 Extract codon alignments from TOGA for selection analysis 

To recognize particular natural selection patterns in coding sequences, methods such 

as aBSREL (Smith et al., 2015) and PAML (Yang, 2007) evaluate codon substitution rates. To 

detect molecular evolution patterns, these methods compute rates of synonymous (do not alter 

amino acid sequence) and nonsynonymous mutations (affect the amino acid sequence). To 

evaluate these rates, it is essential to have accurate codon alignments of orthologous 

sequences that are all aligned in the same reading frame. Any alignment artifact or genome 

assembly error affects mutation rates evaluation, leading to potentially incorrect conclusions 

(Di Franco et al., 2019). 

Producing codon alignments introduces specific challenges since each aligned 

sequence must be translated in the same reading frame. For instance, any insertion of a non-

homologous sequence or frameshifting indel could disrupt the entire alignment. Figure 4.2 

provides a specific example of a codon alignment corrupted by a frameshifting insertion in the 

Cape golden mole sequence in the gene CRYBA2. The aligner mistakenly associated the 

disrupted codon with the reading frames of other species. These inaccuracies could further 

mimic nonsynonymous mutations resulting in a nonhistorical selection signal. A method such 

as aBSREL (Smith et al., 2015) may interpret them as a signature of positive selection that 

occurred in this species. 

 

 
Figure 4.2 Codon alignment inaccuracies 
The alignment exemplifies a misalignment induced by non-homologous insertion (in the Cape golden 

mole sequence). Such misalignments elevate the nonsynonymous substitution rates resulting in false 

selection signals. 

 

 

  



TOGA extensions 
 

 
104 

To extend TOGA applicability, we developed an extension that extracts codon 

alignment qualified for selection analysis directly from TOGA output files. This extension relies 

on the TOGA feature that extracts pairwise codon alignments masking all frameshifting 

mutations. Subsequently, these masked codon sequences are aligned with MACSE2.0 

(Ranwez et al., 2018) to produce codon alignments of multiple species. By generating gene 

alignments in an “exon-by-exon” fashion, mis-aligning some exon parts to other non-

orthologous exons is avoided. As a result, the generated codon alignments are highly-reliable. 

The next section of this work provides implementation details. 

4.2.1 Extracting masked pairwise codon alignments 

Accompanying the genome annotations, TOGA also produces pairwise codon 

alignments that are corrected for potential inactivating mutations. Accordingly, any frameshift 

that occurred in the query does not influence the codon sequence alignment downstream. This 

implementation is based on the assumption that the reference transcript sequence comprises 

an intact ORF. This feature allows us to sequentially analyze each individual codon alignment 

and mask regions that potentially lead to alignment ambiguity.  

To this end, we split the CESAR alignment segments that contain exactly three bases 

from the reference coding sequence. Then for each segment, we examine whether the 

corresponding query sequence encodes a sense codon. For instance, if the query sequence 

constitutes the number of nucleotides which is not multiple of three (frameshift), we mask this 

region by replacing it with "NNN". Furthermore, if the query sequence contains a stop codon, 

we also mask it with “NNN”. Figure 4.3 illustrates this principle in detail. 

 
Figure 4.3 Correction of pairwise codon alignments 
The figure shows pairwise codon alignments between the reference and query before (on top) and after 

(bottom) the sequence correction procedure. TOGA scans the codon alignment in a codon-by-codon 

manner. If the query sequence aligned to the reference codon comprises a frameshift or stop codon, 

TOGA masks this sequence replacing it with the NNN codon. 
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4.2.2 Using MACSE2.0 to produce multiple codon alignments 

To produce multiple codon alignments, we employ the MACSE2.0 approach (Ranwez 

et al., 2011; Ranwez et al., 2018). This tool was specifically designed to take sequencing errors 

and other biological deviations from the intact reading frame into account. MACSE2.0 aligns 

DNA sequences at the nucleotide level with the possibility of including gap lengths that are not 

multiples of three while scoring the resulting alignments on their amino acid translation. This 

feature distinguishes this tool from other nucleotide aligners that have codon alignment 

functionality mode. 

To additionally reduce the chance of alignment ambiguity, TOGA aligns transcript 

coding sequences in a “exon by exon” mode. Applying this restriction guarantees that different 

exons will not interfere with each other. In other terms, we ensure that codons belonging to 

different exons would never align with each other, minimizing the chance of generating the 

incorrect alignment. Of note, while TOGA has an implicit notion of exon boundaries since it 

works at the genomic level, methods that take protein sequences of annotated genes as input 

cannot implement the more accurate “exon-by-exon” mode because they are not aware of 

exon boundaries.   

In this fashion, we created an additional workflow that enables TOGA to produce data 

for evolutionary selection analysis research. The combination of filters we implemented 

ensures that the probability of any single alignment inaccuracy is insignificant. 

Figure 4.4 below demonstrates the efficiency of the proposed approach. In this 

example, I generated the AMPD3 gene alignment using (top) PRANK (another state-of-the art 

aligner, (Löytynoja, 2014))  in codon alignment mode and (bottom) the proposed MACSE2.0 

based methodology. The sperm whale sequence of the AMPD3 gene contains frameshifts that 

confuse the PRANK alignment procedure resulting in misalignments. Consequently, positive 

selection analysis reports a significant positive selection signal induced by these 

discrepancies.  In contrast, our procedure masks all frameshifting regions, therefore it 

produces a proper codon alignment. 
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Figure 4.4 Comparison of codon alignment performed by Prank and TOGA extension 
The figure shows two codon alignments of the AMPD3 gene produced by (top) PRANK in codon 

alignment mode and (bottom) using the proposed MACSE2.0-based methodology. The sperm whale 

sequence contains frameshifts (frameshifted sequence highlighted in red), confusing the prank 

alignment procedure resulting in misalignments. The frameshifting sequence is masked in the TOGA 

alignment (highlighted in green), which restores the ancestral reading frame in the sperm whale 

sequence. 

 

In general, there are two primary sources of errors leading to the detection of 

nonhistorical selection signals: (i) codon alignment artifacts and (ii) sequencing/assembly 

inaccuracies. Sequentially, the last source is split into assembly errors that (i) mimic loss-of-

function mutations and (ii) display false nucleotide substitutions. Unfortunately, the latter group 

is still an obstacle because such nucleotides are indistinguishable without additional 

information, such as mapped reads.  

Notwithstanding, the proposed technique certainly diminishes the chance of 

introducing any alignment ambiguity by applying a series of filters and the MACSE approach. 

As regards sequencing errors, those leading to frameshifting and nonsense mutations are also 

covered by this method. After the filtering step, the codons comprising such artifacts are 

substituted with “NNN” codons. As a result, this technique provides reliable codon alignments 

for selection analysis that are unlikely to introduce a nonhistorical signal. 
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4.3 TOGA extensions summary 

The set of potential applications of TOGA annotations extends beyond the examples 

presented in this chapter. For instance, the pipeline provides accurate predictions of gene 

inactivation events, which could be applied to identify clade-specific gene losses. Additionally, 

wide-scale annotations could be utilized to detect convergent evolutionary events, 

implementing the Forward Genomics concept (Hiller et al., 2012). Basically, TOGA provides 

the potential to create an entire ecosystem of extensions for various genomic data analyses.
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5. General discussion 

5.1 Summary  

TOGA implements a novel paradigm of orthology inference and gene annotation based 

on neutral sequence divergence, contrasting to traditional methods that primarily rely on 

coding sequence. In this work, I evaluated different aspects of the TOGA pipeline, such as 

accuracy of orthology inference (part 3.1) and detection of lost genes (part 3.2). Additionally, I 

compared TOGA to a widely used Ensembl method (section 3.4.1) and evaluated gene 

annotation completeness on a BUSCO conserved gene set (section 3.4.2). Despite a 

completely different approach to orthology inference, the proposed method can compete with 

and even outperform generally accepted techniques. TOGA results can be applied in various 

comparative studies, such as phylogeny analysis (part 4.1) and selection screens (part 4.2). 

The proposed methodology easily scales to hundreds of genomes, and we applied it to 

produce annotations of 500 mammalian genomes, creating the largest comparative dataset 

so far (part 3.7). After this, we are planning to annotate 300 bird genomes. The method has 

already been applied in several studies, and two of them are already published in peer-

reviewed journals (part 3.6). The results suggest that TOGA has a great potential to become 

a widely-used tool because of its scalability and reliability of the results. 

5.2 TOGA limitations 

Using neutral sequence divergence as a separating criterion to identify orthologous loci 

implies certain limitations on the molecular distance between the reference and query 

genomes. In this part, I discuss the application range of TOGA. 

5.2.1 Annotating distant species 

Orthologs and paralogs are distinguishable within the implemented paradigm until the 

expected nucleotide identity in the orthologous neutrally evolving sequences is higher than a 

specific threshold. This threshold is unquestionably less than one substitution per neutral site, 

because values higher than 1 implies complete randomization of neutral regions. This 

molecular distance corresponds to the divergence between primates and monotremes - on 

such evolutionary distance, the only feature that remains intact to distinguish orthologs is the 

synteny. However, accumulated recombinations also diminish the predictive power of this 

feature with time. 
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Furthermore, even if the expected sequence divergence exceeds 0.7 substitutions per 

neutral site, usually intronic sequences have already diverged enough so that the sensitive 

genome aligner is usually unable to align them. Such a level of divergence corresponds for 

example to the evolutionary distance between primates and marsupials. To illustrate the 

inverse relationship between the number of intronic or intergenic alignments and sequence 

divergence, I show orthologous chains with the human genome as the reference from various 

species (figure 5.1). The represented species cover molecular distances up to 2.5 substitutions 

per neutral site (human vs medaka). 

 
Figure 5.1 Appearance of orthologous chains on different molecular distances 
UCSC genome browser screenshot shows a locus in the human genome containing genes GNAI3, 

GNAT2, and AMPD3. Intronic regions are highlighted with grey. It also shows orthologous alignment 

chains to various species, from a close relative (chimp) to a very distant lamprey indicating molecular 

distance to the species in substitutions per neutral site (sps). The figure shows that intronic alignment 

disappears when the molecular distance exceeds 0.7 sps, which affects the quality of the TOGA 

orthology inference (details in the main text). 

 

The gradient boosting model was trained to infer orthologs between species with a 

neutral sequence divergence of up to ~0.5 substitutions per neutral site covering the entire 

Placentalia clade. However, it should be possible to train the orthologous loci classifier for 

more distant clades, potentially using different features or putting more weight on synteny. 

Such an alternative model could potentially extend TOGA applicability borders to more distant 

species. 
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For example, in the recent high-quality platypus genome assembly (Zhou et al., 2021), 

18373 (97%) out of 18897 aligned genes are intersected by a chain that covers at least two 

genes. The bar plot below illustrates the distribution of platypus genes between alignment 

chains of various synteny (figure 5.2). The first column shows the total number of genes as a 

reference. According to this plot, most human orthologs in platypus appear in a context of 

conserved gene order, which can be exploited to better annotate more distant species, albeit 

at the expense of missing translocated orthologs. 

 
Figure 5.2 Synteny blocks in platypus 
Barplot shows numbers of platypus genes that appear in synteny blocks of a given size. Here, synteny 

block size means the number of genes located in the conserved order. 

 

Nevertheless, projecting genes and inferring orthologs is easier between species that 

are more closely related. Furthermore, by definition, reference-based approaches cannot 

annotate lineage-specific genes. Since more lineage-specific genes will exist between more 

distantly-related lineages, choosing a different reference that is more closely related is likely a 

better idea. For example, to comprehensively annotate marsupial genomes with TOGA, it is 

worth selecting a well-annotated marsupial (e.g., opossum) as the reference. 

5.2.2 Clades outside mammalia 

Theoretically, the TOGA approach is applicable to any pair of species that exhibit 

proper alignment between neutrally evolving sequences in orthologous regions. Despite the 

fact that the development of TOGA used primarily mammalian species, we successfully 

applied it to birds with chicken as the reference. To explore the applicability of TOGA to other 
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clades, we examined whether it could be potentially applied to infer orthologs in plant 

genomes, kindly provided by collaborators. The whole-genome alignment of these species 

revealed that the TOGA approach indeed could be applied to infer orthology in these species 

since the divergence of neutrally evolving sequences is surprisingly low (figure 5.3). Initially, 

we expected a higher degree of divergence between plant genomes. 

 
Figure 5.3 Genome alignment between two plant species 
UCSC genome browser screenshot shows an arbitrarily selected locus in the thale cress genome and 

alignment chains to the saltwater cress. Orthologous alignment chains exhibit intronic and intergenic 

alignments, which indicates that TOGA methodology is potentially applicable to plant genomes. 

 

Using TOGA, I have annotated the saltwater cress genome using the thale cress as a 

reference. For 48227 transcripts annotated by NCBI in the reference genome, TOGA could 

detect orthologs for 39233 (81%) of them, and this result could probably be improved by 

additional parameter optimizations. This example illustrates that the genome annotation 

paradigm proposed in this work has the potential to be extended to other eukaryotic species 

groups where the molecular distance between reference and the query allows distinguishing 

orthologs from paralogs. 

5.2.3 Resolving big gene families 

Resolving orthology relationships between big gene families is a challenging task for 

any orthology inference method and, up to this moment, this task is still unsolved. The most 

complicated cases are gene family clusters consisting of hundreds of relatively short (often 

single-exon) genes with a high sequence similarity, exemplified by ZNF and KRTAP gene 

families (subsections 3.3.1.3 and 3.4.1.1). Since the sequences are relatively short (about 

100aa) and highly similar, gene tree methods are more likely to make a mistake when inferring 

orthology. Similarly, this is also challenging for TOGA since genome aligners are usually 

confused by multiple tandem duplications and cannot provide an adequate genomic context 

for each gene. Besides, features related to intronic alignment are obviously unavailable for 

single-exon genes. 

The most extreme example of a challenging gene family is the odorant receptors (OR), 

representing ~1% of the whole coding sequence in mammals. In each mammalian species, 

they are designated by hundreds of genes. For example, the human genome comprises ~400 
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functional odorant receptor genes, concurrently with the same amount of inactivated copies 

(Matsui et al., 2010). These genes follow the "death and birth" evolutionary pattern implying 

constant gene family expansion and contraction through duplication and pseudogenization 

(Hughes et al., 2018). Some studies are explicitly focused on orthology inference within the 

odorant receptors family, and so far, it was feasible to split this family into several subfamilies 

and associate the number of copies with environmental adaptations (Lane et al., 2001; Niimura 

et al., 2014; Hughes et al., 2018). However, it resembles that the accurate inferring orthology 

for this gene family with automatic methods is impractical.  However, there is a case where 

traditional methods outperform the TOGA approach in annotating short single-exon genes. 

Translocation of these genes leads to complete loss of genomic context, and therefore, TOGA 

cannot adequately infer orthology (figure 3.28). 

5.2.4 Tandem duplications can confuse chaining procedure 

Tandem gene duplications in the query genome may confuse genome aligners causing 

the duplication event undetected. In the chain interpretation, it appears as a single alignment 

chain covering the transcript in the reference. However, in the query coordinates, the chain 

bridges the beginning of the first copy to the end of the second one (figure 5.4). This problem 

arises from the inability of the chaining method to correctly align the tandem duplications. 

 
Figure 5.4 Genome alignment misinterprets tandem gene duplication in the query 
genome 
The figure exemplifies a genome alignment chain that was unable to align tandem gene duplication 

correctly. Incorrect alignment caused the tandem duplication undetected from the reference genome 

perspective. In this case, TOGA will try to project a single gene A copy to the locus, containing two 

copies of this gene. 
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Conceptually, TOGA considers each predicted orthologous locus in the query genome 

for a given transcript-chain pair comprising a single corresponding transcript. Furthermore, 

CESAR itself is designed to retrieve an individual query transcript for the given reference 

coding sequence. Consequently, TOGA could produce a corrupted annotation, mixing exons 

from different actual copies if projecting through such a chain. 

The phylogeny-grade exons filtering procedure described in part 4.1 also accounts for 

the potential chain corruption induced by tandem duplications, employing a lastz-based search 

for exon duplicates in the query locus. The motivation behind this procedure is that candidate 

exons could easily pass other filters, such as sequence similarity or requirement for the 

flanking alignment. Notwithstanding, the exon duplicate search procedure will capture this 

event, ensuring that non-homologous sequences do not appear in the phylogeny-grade 

dataset. Nevertheless, proper alignment of tandem duplications is a demanding challenge for 

genome alignment procedures which is still to be resolved. 

5.3 TOGA-specific ortholog predictions 

In section (3.4.1) devoted to comparing TOGA and Ensembl, I mentioned that TOGA 

consistently finds orthologs for approximately 1000 human genes that do not appear in the 

Ensembl dataset within the mammalian clade. In this section, I review these TOGA-specific 

orthology predictions in general. To analyze this set, I performed the gene set enrichment 

analysis and revealed statistically supported properties of TOGA-specific orthologous 

predictions. Additionally, I separately examined various features of these genes, such as gene 

length or the number of copies. These findings provide particular insights into TOGA 

methodology specificities and capabilities in comparison to traditional approaches. 

I analyzed TOGA-specific predictions for the following query species: mouse, horse, 

and wombat. The latter represents a relatively distant Marsupalia clade, where TOGA performs 

worse than in closer Placentalia clade. I added this species to the analysis to check whether 

TOGA dataset particularities, if they exist, remain intact on higher evolutionary distances. My 

analysis showed that the following gene categories are overrepresented in the TOGA-specific 

orthologs set: 

1. Essential and highly conserved genes, such as those encoding ribosomal proteins. 

2. Short single-exon genes belonging to large gene families such as keratin-associated 

genes. 
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5.3.1 TOGA-only genes enrichment analysis 

To detect statistically overrepresented gene terms within TOGA-specific predictions, I 

performed enrichment analysis using gProfiler (version e102_eg49_p15_7a9b4d6) (Reimand 

et al., 2007) on TOGA-specific orthologous genes prediction in mouse, horse, and wombat. 

The gProfiler enrichment test uses a tailor-made gSCS algorithm for false discovery rate 

corrections. The algorithm considers the hierarchical structure of gene ontology terms and 

should therefore give a tighter threshold to significant results. The experiment-wide 

significance threshold was set to 0.05, which corresponds to negative log10 of corrected P-

value of 16. The tables below (2-4) introduce statistically overrepresented terms for each 

species starting from the mouse. 

term_name term_id negative_log10_of_adj_p_value 

keratinization GO:0031424 34.07753986541037 

Keratinization REAC:R-HSA-6805567 32.69967362335063 

keratinocyte differentiation GO:0030216 29.651485191452146 

epidermal cell differentiation GO:0009913 25.1544653765264 

intermediate filament GO:0005882 24.238382906968774 

intermediate filament cytoskeleton GO:0045111 21.562021326978265 

Ribosome, cytoplasmic CORUM:306 20.703121972088226 

skin development GO:0043588 20.144504643051995 

epidermis development GO:0008544 19.712606490857702 

Herpes simplex virus 1 infection KEGG:05168 19.472737220409947 

Developmental Biology REAC:R-HSA-1266738 16.074061929579933 

Table 2 Enrichment analysis of TOGA-specific orthologs in mouse (N = 955) 
 

Enrichment analysis of TOGA-specific orthology predictions in the mouse genome 

suggests that the gene set is enriched with relatively short keratin-associated genes that 

appear in multiple copies. Besides, the "Ribosome, cytoplasmic" term requires particular 

attention since it consists of essential ribosomal proteins. Furthermore, the "Herpes simplex 

virus one infection" term comprises abundant zinc-finger genes, providing specific insights into 

TOGA orthology inference capabilities. 
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term_name term_id negative_log10_of_ad_p_value 

Herpes simplex virus 1 infection KEGG:05168 37.12810062557136 

intermediate filament GO:0005882 25.87204570564712 

Keratinization REAC:R-HSA-6805567 24.001175010810233 

keratinization GO:0031424 23.62294218589523 

testis; spermatogonia cells [High] HPA:0570813 22.738665578023447 

testis; spermatogonia cells[≥Medium] HPA:0570812 21.728572588680187 

intermediate filament cytoskeleton GO:0045111 21.254086478738834 

testis; preleptotene spermatocytes[≥Medium] HPA:0570782 19.473287745116952 

testis; Sertoli cells[≥Low] HPA:0570801 19.283264776743987 

testis; preleptotene spermatocytes[≥Low] HPA:0570781 18.17977789209747 

keratinocyte differentiation GO:0030216 17.438849806952007 

testis; spermatogonia cells[≥Low] HPA:0570811 16.000132824553216 

Table 3 Enrichment analysis of TOGA-specific orthologs in horse (N = 1660) 
 

Similar to the results for the mouse genome, the keratinization and herpes-related 

terms appeared again in the horse data, suggesting that these genes will definitely require 

additional analysis. Ribosome-related group representation, however, is not significant in this 

species. 

term_name term_id negative_log10_of_ad_p_value 

Herpes simplex virus 1 infection KEGG:05168 18.888890027088735 

hair HPA:0230000 16.100817361596544 

Table 4 Enrichment of TOGA-specific orthologs in wombat (N = 1190) 
 

The wombat gene set analysis revealed only two overrepresented terms. However, the 

herpes-related term appeared also here, indicating that it firmly points to some TOGA 

distinctiveness compared to Ensembl. Another term, hair, is connected to previous results 

indirectly because it contains a general superset of keratin-associated genes. The ontology 

term generalization reflects that wombat represents a relatively distant lineage. It highlights 

that on such evolutionary distances TOGA specificities are smoothened. 

 



General discussion 
 

 
116 

Furthermore, I separately reviewed gene families' representation in TOGA-specific 

genes in all considered species (figure 5.5). As expected, Zinc-finger-containing (ZNF) and 

Keratin-associated (KRTAP) genes are overrepresented. The most surprising finding is that 

ribosomal proteins (RPL) occupy a prominent part of the TOGA-specific predictions in the 

mouse genome. 

 
Figure 5.5 Overrepresented gene families in TOGA-specific predictions 
The pie charts show overrepresented gene families in TOGA-specific orthology predictions for the 

mouse, horse, and wombat. According to this figure, ZNF and KRTAP genes are prevalent in these 

gene sets (details in the text). 

 

In fact, the RPL genes must exist and be intact in any eukaryotic species, which 

suggests that for some reason, Ensembl could not associate human and mouse homologs as 

paralogs. Presumably, this is because these genes evolve under extreme purifying selection 

and therefore are virtually identical in mammals. Consequently, the gene tree-based methods 

cannot resolve the orthologous relationships between these genes because they require 

sequence variability for orthology inference. 

KRTAP (Keratin-associated proteins) is another gene family overrepresented in the 

TOGA-specific orthology predictions set. These genes are essential for the formation of rigid 

and hair shafts. Representatives of this family are relatively short (encoding proteins of ~170aa 

long) single-exon genes, distributed in 5 tandemly arranged clusters in mammals. On average, 

this gene family constitutes ~200-300 individual genes, depending on the considered clade 

(Wu et al., 2008; Khan et al., 2014). 

Furthermore, the Zinc-finger domain-containing genes family takes a significant part of 

TOGA-specific orthology predictions. These genes encode conserved DNA-binding zinc finger 

domains, mostly C2H2, that could be linked together and cover a great variety of possible 

recognized DNA sequences (Rosati et al., 1991). The zinc-finger domain is one of the most 

common DNA-binding motifs observed in eukaryotic transcriptional factors. In humans, zinc-

finger-containing proteins occupy about ~4% of the protein-coding genes (Klug, 2010). They 

are often fused with various protein domains involving them in the regulation of diverse cellular 
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processes. Indeed, zinc-finger genes are recognized to be involved in transcriptional 

regulation, DNA repair, ubiquitin-mediated protein degradation, signal transduction, and 

numerous additional processes (Cassandri et al., 2017). 

Since the ZNF finger domains exhibit high sequence similarity and appear in clusters, 

alignment chains usually cover multiple genes in a row, despite being primarily paralogous. 

These chains are treated as syntenic, which implies that they have a chance of being 

misclassified as orthologous. However, only a minor fraction of them exhibits flanking and 

intergenic alignment, which are important features for the TOGA decision-making process. 

Potentially, a fraction of TOGA-specific orthology predictions for ZNF genes indeed comprises 

false discoveries. However, no known method can resolve the orthology connections within 

this family with a high degree of accuracy given its complex evolutionary history. Therefore, 

statistical evaluation of TOGA quality in predicting ZNF finger genes also appears to be 

impractical. Figure 5.6 illustrates the extraordinary mass of chains that ordinarily cover a ZNF 

gene. 

 
Figure 5.6 Alignment of ZNF gene cluster 
UCSC genome browser screenshot shows mouse alignment chains to ZNF genes cluster. Since the 

zinc-finger domain is ubiquitous, and ZNF genes usually appear in clusters, each ZNF gene is covered 

with thousands of syntenic alignment chains. Orthology inference for such gene families is a nontrivial 

task (details in the main text). 
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5.3.2 Orthology classes representation 

To confirm that TOGA-specific genes mainly belong to large gene families, I compared 

the relative proportion of many-to-many orthologs in all TOGA predictions against a set of 

TOGA-specific ones (figure 5.7). For visualization purposes, the illustrated class “one-to-

many” class comprises both one-to-many and many-to-one categories. 

 
Figure 5.7 Relative orthology classes representation 
The pie charts compare relative representations of different orthology classes (one-to-one, one-to-

many, many-to-many) between (i) all TOGA projections excluding TOGA-specific ones (upper row) and 

(ii) TOGA-specific predictions. The comparison was performed for the mouse, horse, and wombat. For 

visualization purposes, one-to-many and many-to-one orthology classes are collapsed into a "one-to-

many" group. The results show that TOGA-specific predictions have a substantially higher fraction of 

representatives of gene families (one-to-many and many-to-many) than the overall TOGA predictions 

set, where one-to-one orthology is prevalent. 

 

According to data, one-to-one orthologs indeed occupy the majority (~90%) of the total 

TOGA predictions set, and only a minority belongs to the many-to-many class. However, the 

many-to-many category is more prevalent in the TOGA-specific orthology predictions. 

It is worth noticing that many-to-many orthologs contribute only to 15% of predictions 

in the wombat set of TOGA-specific genes. Meanwhile, the many-to-many orthologs occupy 

less than 3% of the total number of genes in the total prediction set for the wombat. Therefore, 

the difference between the entire prediction and toga-specific sets is still significant. The most 

likely explanation is that in a more distant Marsupalia clade, the neutral sequence divergence 

is much higher; therefore, the expected number of detected orthologous connections is 

smaller. 



General discussion 
 

 
119 

The results indicate that TOGA-specific predictions are indeed enriched with genes 

belonging to large gene families. In the next section, I additionally examine the length of 

TOGA-specific predictions. 

5.3.3 Analysis of the TOGA-specific orthologous gene lengths 

The elevated presence of genes belonging to ZNF, KRTAP, and other large gene 

families suggested that TOGA-specific orthologs should be substantially shorter than average. 

In particular, I compared gene CDS length of two sets: (i) TOGA-specific orthologs (TOGA-

only) and (ii) total set of TOGA predictions excluding genes that appear in the first set (all 

genes \ TOGA-only). The histograms showing distributions of gene lengths are shown in figure 

5.8. 

 
Figure 5.8 Predicted gene lengths distribution 
The histograms compare gene length distributions between (i) all TOGA projections excluding TOGA-

specific ones (blue) and (ii) TOGA-specific predictions (red) for three species: mouse, horse, and 

wombat. According to these plots, TOGA-specific orthologs are substantially shorter than the average. 

 



General discussion 
 

 
120 

In general, the overall histogram's appearance does not clarify whether the gene length 

difference is significant between the analyzed sets. To check whether this is the case, I applied 

a pairwise Student's T-test to this distribution (table 5). 

 

Species Mean - all Med. - all Mean - TOGA Med. - TOGA T value P value 

Mouse 1787 1341 1141 849 10.5718 4.7439e-26 

Horse 1801 1347 1269 972 11.2555 2.6847e-29 

Wombat 1775 1326 1456 1038 5.7780 7.6721e-09 

Table 5 Gene length in TOGA-specific predictions 
 

Apparently, the results confirm that the TOGA-specific genes are significantly shorter 

than the primary set of TOGA orthologs predictions. These results are consistent with the 

worse performance of the gene tree-based methods on shorter genes. In such cases using 

the whole genomic context compensates for the lack of data provided by short coding 

sequences.
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Appendix A. Software and Data 
Ensembl BIOMART annotation versions: 99, 101 

BUSCO dataset version: Vertebrata odb9 

Python: 3.6.5 

XGBoost: 1.2.1 

Networkx: 2.1 

Nextflow: 20.04 

PRANK: .170427 

MACSE: 2.04 

IQTree: 1.6.12 

Appendix B. Annotated genome assemblies 
species name assembly ID assembly accession Species name Assembly ID assembly accession 

Acinonyx jubatus HLaciJub2 GCF_003709585.1 Monodon monoceros HLmonMon2 Private 

Acomys cahirinus HLacoCah1 GCA_004027535.1 Mormoops blainvillei HLmorBla1 GCA_004026545.1 

Acomys russatus HLacoRus1 GCA_903995435.1 Moschus berezovskii HLmosBer1 GCA_006459085.1 

Aeorestes cinereus HLaeoCin1 GCA_011751065.1 Moschus chrysogaster HLmosChr1 GCA_006461725.1 

Aepyceros melampus HLaepMel1 GCA_006408695.1 Moschus moschiferus HLmosMos1 GCA_004024705.2 

Ailuropoda melanoleuca HLailMel2 GCF_002007445.1 Mungos mungo HLmunMug1 GCA_004023785.1 

Ailurus fulgens HLailFul2 None Muntiacus crinifrons HLmunCri1 GCA_006408485.1 

Alces alces HLalcAlc1 GCA_007570765.1 Muntiacus muntjak HLmunMun1 GCA_008782695.1 

Allactaga bullata HLallBul1 GCA_004027895.1 Muntiacus reevesi HLmunRee1 GCA_008787405.1 

Allenopithecus nigroviridis HLallNig1 None Murina aurata feae HLmurAurFea1 GCA_004026665.1 

Alouatta palliata HLaloPal1 GCA_004027835.1 Mus caroli HLmusCar1 GCF_900094665.1 

Ammotragus lervia HLammLer1 GCA_002201775.1 Mus musculus mm10 GCF_000001635.20 

Anoura caudifer HLanoCau1 GCA_004027475.1 Mus musculus mm39 GCF_000001635.27 

Antechinus flavipes HLantFla1 GCA_016432865.1 Mus pahari HLmusPah1 GCF_900095145.1 

Antidorcas marsupialis HLantMar1 GCA_006408585.1 Mus spicilegus HLmusSpi1 GCA_003336285.1 

Antilocapra americana HLantAme1 GCA_007570785.1 Mus spretus HLmusSpr1 GCA_001624865.1 

Antrozous pallidus HLantPal1 GCA_007922775.1 Muscardinus avellanarius HLmusAve1 GCA_004027005.1 

Aotus nancymaae aotNan1 GCF_000952055.2 Mustela erminea HLmusErm1 GCF_009829155.1 

Aplodontia rufa HLaplRuf1 GCA_004027875.1 Mustela putorius HLmusPut1 GCA_902460205.1 
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Apodemus sylvaticus HLapoSyl1 GCA_001305905.1 Mustela putorius furo HLmusFur2 GCA_011764305.1 

Arctocephalus gazella HLarcGaz2 GCA_900642305.1 Myocastor coypus HLmyoCoy1 GCA_004027025.1 

Artibeus jamaicensis HLartJam1 GCA_004027435.1 Myodes glareolus HLmyoGla2 GCA_902806735.1 

Artibeus jamaicensis HLartJam2 GCA_014825515.1 Myotis albescens HLmyoAlb1 Private 

Arvicanthis niloticus HLarvNil1 GCA_011762505.1 Myotis alcathoe HLmyoAlc1 Private 

Arvicola amphibius HLarvAmp1 GCA_903992535.1 Myotis blythii HLmyoBly1 Private 

Ateles geoffroyi HLateGeo1 GCA_004024785.1 Myotis bocagii HLmyoBoc1 Private 

Axis porcinus HLaxiPor1 GCA_003798545.1 Myotis brandtii myoBra1 GCF_000412655.1 

Balaena mysticetus HLbalMys1 None Myotis californicus HLmyoCal1 Private 

Balaenoptera acutorostrata balAcu1 GCF_000493695.1 Myotis capaccinii HLmyoCap1 Private 

Balaenoptera bonaerensis HLbalBon1 GCA_000978805.1 Myotis dasycneme HLmyoDas1 Private 

Balaenoptera edeni HLbalEde1 None Myotis daubentonii HLmyoDau1 Private 

Balaenoptera musculus HLbalMus1 GCA_009873245.1 Myotis davidii myoDav1 GCF_000327345.1 

Balaenoptera physalus HLbalPhy1 GCA_008795845.1 Myotis elegans HLmyoEle1 Private 

Bassariscus sumichrasti HLbasSum1 None Myotis lucifugus HLmyoLuc1 None 

Beatragus hunteri HLbeaHun1 GCA_004027495.1 Myotis lucifugus myoLuc2 GCF_000147115.1 

Bison bison bison bisBis1 GCF_000754665.1 Myotis myotis HLmyoMyo6 None 

Bos frontalis HLbosFro1 GCA_007844835.1 Myotis mystacinus HLmyoMys1 Private 

Bos gaurus HLbosGau1 GCA_014182915.1 Myotis ricketti HLmyoRic1 Private 

Bos grunniens HLbosGru1 GCA_005887515.2 Myotis scotti HLmyoSco1 Private 

Bos indicus HLbosInd2 GCA_002933975.1 Myotis septentrionalis HLmyoSep1 None 

Bos mutus HLbosMut2 GCA_007646595.3 Myotis siligorensis HLmyoSil1 Private 

Bos taurus bosTau9 GCF_002263795.1 Myotis siligorensis alticraniatus HLmyoSilAlt1 Private 

Bubalus bubalis HLbubBub2 GCF_003121395.1 Myotis thysanodes HLmyoThy1 Private 

Callithrix jacchus HLcalJac4 GCA_011100555.1 Myotis volans HLmyoVol1 Private 

Callithrix pygmaea HLcalPym1 None Myotis welwitschii HLmyoWel1 Private 

Callorhinus ursinus HLcalUrs1 GCF_003265705.1 Myrmecophaga tridactyla HLmyrTri1 GCA_004026745.1 

Camelus bactrianus HLcamBac1 GCF_000767855.1 Nanger granti HLnanGra1 GCA_006408635.1 

Camelus dromedarius HLcamDro2 GCF_000803125.2 Nannospalax galili nanGal1 GCF_000622305.1 

Camelus ferus HLcamFer3 GCF_009834535.1 Nasalis larvatus nasLar1 GCA_000772465.1 

Canis lupus dingo HLcanLupDin1 GCF_003254725.1 Nasua narica HLnasNar1 None 

Canis lupus familiaris canFam4 GCA_011100685.1 Natalus tumidirostris HLnatTum1 Private 

Canis lupus familiaris canFam5 GCA_005444595.1 Neofelis nebulosa HLneoNeb1 None 

Capra aegagrus HLcapAeg1 GCA_000765075.1 Neomonachus schauinslandi neoSch1 GCF_002201575.1 
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Capra hircus HLcapHir2 GCF_001704415.1 Neophocaena asiaeorientalis HLneoAsi1 GCF_003031525.1 

Capra ibex HLcapIbe1 GCA_006410555.1 Neotoma lepida HLneoLep1 GCA_001675575.1 

Capra sibirica HLcapSib1 GCA_003182615.2 Neotragus moschatus HLneoMos1 GCA_006410615.1 

Capreolus pygargus HLcapPyg1 GCA_012922965.1 Neotragus pygmaeus HLneoPyg1 GCA_006410875.1 

Carlito syrichta tarSyr2 GCF_000164805.1 Neovison vison HLneoVis1 GCA_900108605.1 

Carollia perspicillata HLcarPer2 Private Noctilio leporinus HLnocLep1 GCA_004026585.1 

Carollia perspicillata HLcarPer3 GCA_004027735.1 Noctilio leporinus HLnocLep2 Private 

Castor canadensis HLcasCan3 None Nomascus leucogenys HLnomLeu4 GCF_006542625.1 

Catagonus wagneri HLcatWag1 GCA_004024745.2 Notamacropus eugenii HLnotEug3 None 

Cavia aperea cavApe1 GCA_000688575.1 Notamacropus eugenii macEug2 GCA_000004035.1 

Cavia porcellus cavPor3 GCF_000151735.1 Nyctereutes procyonoides HLnycPro3 Private 

Cavia tschudii HLcavTsc1 GCA_004027695.1 Nycticebus coucang HLnycCou1 GCA_004027815.1 

Cebus albifrons HLcebAlb1 GCA_004027755.1 Nycticeius humeralis HLnycHum2 GCA_007922795.1 

Cebus capucinus imitator cebCap1 GCF_001604975.1 Ochotona princeps ochPri3 GCF_000292845.1 

Cephalophus harveyi HLcepHar1 GCA_006410635.1 Octodon degus octDeg1 GCF_000260255.1 

Ceratotherium simum cottoni HLcerSimCot1 GCA_004027795.1 Odobenus rosmarus HLodoRos1 None 

Ceratotherium simum simum cerSim1 GCF_000283155.1 Odobenus rosmarus divergens odoRosDiv1 GCF_000321225.1 

Cercocebus atys cerAty1 GCF_000955945.1 Odocoileus hemionus hemionus HLodoHem1 GCA_004115125.1 

Cercopithecus mona HLcerMon1 GCA_014849445.1 Odocoileus virginianus HLodoVir2 None 

Cercopithecus neglectus HLcerNeg1 GCA_004027615.1 Odocoileus virginianus HLodoVir3 GCA_014726795.1 

Cervus elaphus hippelaphus HLcerEla1 GCA_002197005.1 Odocoileus virginianus texanus HLodoVir1 GCF_002102435.1 

Cervus hanglu yarkandensis HLcerHanYar1 GCA_010411085.1 Okapia johnstoni HLokaJoh2 None 

Cheirogaleus medius HLcheMed1 GCA_008086735.1 Ondatra zibethicus HLondZib1 GCA_004026605.1 

Chinchilla lanigera chiLan1 GCF_000276665.1 Onychomys torridus HLonyTor1 GCA_903995425.1 

Chlorocebus sabaeus chlSab2 GCF_000409795.2 Orcinus orca orcOrc1 GCF_000331955.2 

Choloepus didactylus HLchoDid1 GCA_004027855.1 Oreamnos americanus HLoreAme1 GCA_009758055.1 

Choloepus didactylus HLchoDid2 GCF_015220235.1 Oreotragus oreotragus HLoreOre1 GCA_006410675.1 

Choloepus hoffmanni HLchoHof3 None Ornithorhynchus anatinus HLornAna3 GCA_004115215.1 

Chrysochloris asiatica chrAsi1 GCF_000296735.1 Orycteropus afer afer oryAfe1 GCF_000298275.1 

Coendou prehensilis HLcoePre1 None Oryctolagus cuniculus HLoryCun3 GCA_009806435.1 

Colobus angolensis palliatus colAng1 GCF_000951035.1 Oryctolagus cuniculus oryCun2 GCF_000003625.2 

Condylura cristata conCri1 GCF_000260355.1 Oryctolagus cuniculus cuniculus HLoryCunCun4 GCA_013371645.1 

Connochaetes taurinus HLconTau2 None Oryx dammah HLoryDam1 None 

Craseonycteris thonglongyai HLcraTho1 GCA_004027555.1 Oryx gazella HLoryGaz1 GCA_003945745.1 
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Cricetomys gambianus HLcriGam1 GCA_004027575.1 Osphranter rufus HLospRuf1 None 

Cricetulus griseus HLcriGri3 GCF_003668045.1 Otolemur garnettii otoGar3 GCF_000181295.1 

Crocuta crocuta HLcroCro1 GCA_008692635.1 Ovis ammon HLoviAmm1 GCA_003121645.1 

Cryptoprocta ferox HLcryFer2 None Ovis aries HLoviAri5 GCA_011170295.1 

Ctenodactylus gundi HLcteGun1 GCA_004027205.1 Ovis canadensis HLoviCan2 GCA_004026945.1 

Ctenomys sociabilis HLcteSoc1 GCA_004027165.1 Ovis canadensis canadensis HLoviCan1 GCA_001039535.1 

Cynomys gunnisoni HLcynGun1 GCA_011316645.1 Ovis nivicola lydekkeri HLoviNivLyd1 GCA_903231385.1 

Cynopterus brachyotis HLcynBra1 GCA_009793145.1 Ovis orientalis HLoviOri1 GCA_014523465.1 

Damaliscus lunatus HLdamLun1 GCA_006408505.1 Pan paniscus panPan3 GCF_013052645.1 

Dasyprocta punctata HLdasPun1 GCA_004363535.1 Pan troglodytes panTro6 GCF_002880755.1 

Dasypus novemcinctus dasNov3 GCF_000208655.1 Panthera leo HLpanLeo1 GCA_008795835.1 

Daubentonia madagascariensis HLdauMad1 GCA_004027145.1 Panthera onca HLpanOnc1 GCA_004023805.1 

Delphinapterus leucas HLdelLeu2 GCF_002288925.2 Panthera onca HLpanOnc2 None 

Desmodus rotundus HLdesRot2 Private Panthera pardus HLpanPar1 GCF_001857705.1 

Dicerorhinus sumatrensis HLdicSum1 GCA_002844835.1 Panthera tigris altaica panTig1 GCF_000464555.1 

Diceros bicornis HLdicBic1 GCA_004027315.2 Pantholops hodgsonii panHod1 GCF_000400835.1 

Didelphis virginiana HLdidVir1 None Papio anubis HLpapAnu5 GCF_008728515.1 

Dinomys branickii HLdinBra1 GCA_004027595.1 Paradoxurus hermaphroditus HLparHer1 GCA_004024585.1 

Dipodomys ordii dipOrd2 GCF_000151885.1 Pedetes capensis HLpedCap1 GCA_007922755.1 

Dipodomys stephensi HLdipSte1 GCA_004024685.1 Peponocephala electra HLpepEle1 None 

Dolichotis patagonum HLdolPat1 GCA_004027295.1 Perognathus longimembris HLperLonPac1 GCA_004363475.1 

Dugong dugon HLdugDug1 GCA_015147995.1 Peromyscus californicus insignis HLperCal2 GCA_007827085.2 

Echinops telfairi echTel2 GCF_000313985.1 Peromyscus crinitus HLperCri1 None 

Eidolon dupreanum HLeidDup1 None Peromyscus eremicus HLperEre1 GCA_902702925.1 

Eidolon helvum HLeidHel2 None Peromyscus leucopus HLperLeu1 GCF_004664715.1 

Elaphurus davidianus HLelaDav1 GCA_002443075.1 Peromyscus maniculatus bairdii HLperManBai2 GCA_003704035.1 

Elephantulus edwardii eleEdw1 GCF_000299155.1 Peromyscus nasutus HLperNas1 None 

Elephas maximus HLeleMax1 None Peromyscus polionotus HLperPol1 GCA_003704135.2 

Ellobius lutescens HLellLut1 GCA_001685075.1 Petromus typicus HLpetTyp1 GCA_004026965.1 

Ellobius talpinus HLellTal1 GCA_001685095.1 Phalanger gymnotis HLphaGym1 None 

Enhydra lutris kenyoni enhLutKen1 GCF_002288905.1 Phascolarctos cinereus HLphaCin1 GCF_002099425.1 

Enhydra lutris nereis enhLutNer1 GCA_006410715.1 Phataginus tricuspis HLphaTri2 None 

Eonycteris spelaea HLeonSpe1 GCA_003508835.1 Philantomba maxwellii HLphiMax1 GCA_006410695.1 

Eptesicus fuscus eptFus1 GCF_000308155.1 Phoca vitulina HLphoVit1 GCF_004348235.1 
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Equus asinus HLequAsi1 GCF_001305755.1 Phocoena phocoena HLphoPho1 GCA_004363495.1 

Equus asinus asinus HLequAsiAsi2 GCA_003033725.1 Phocoena phocoena HLphoPho2 None 

Equus burchellii boehmi HLequQuaBoe1 None Phocoena sinus HLphoSin1 GCF_008692025.1 

Equus caballus equCab3 GCF_002863925.1 Phyllostomus discolor HLphyDis3 None 

Equus przewalskii equPrz1 GCF_000696695.1 Physeter catodon HLphyCat2 GCF_002837175.2 

Erethizon dorsatum HLereDor1 GCA_006547115.1 Physeter catodon phyCat1 GCF_000472045.1 

Erignathus barbatus HLeriBar1 None Piliocolobus tephrosceles HLpilTep2 GCF_002776525.3 

Erinaceus europaeus eriEur2 GCF_000296755.1 Pipistrellus kuhlii HLpipKuh2 None 

Erythrocebus patas HLeryPat1 GCA_004027335.1 Pipistrellus pipistrellus HLpipPip1 GCA_004026625.1 

Eschrichtius robustus HLescRob1 GCA_004363415.1 Pipistrellus pipistrellus HLpipPip2 GCA_903992545.1 

Eubalaena glacialis HLeubGla1 None Pithecia pithecia HLpitPit1 GCA_004026645.1 

Eubalaena japonica HLeubJap1 GCA_004363455.1 Platanista minor HLplaMin1 GCA_004363435.1 

Eudorcas thomsonii HLeudTho1 GCA_006408755.1 Plecturocebus donacophilus HLpleDon1 GCA_004027715.1 

Eulemur flavifrons HLeulFla1 None Pongo abelii ponAbe3 GCF_002880775.1 

Eulemur flavifrons eulFla1 GCA_001262665.1 Pontoporia blainvillei HLponBla1 GCA_011754075.1 

Eulemur fulvus HLeulFul1 GCA_004027275.1 Potos flavus HLpotFla1 None 

Eulemur macaco eulMac1 GCA_001262655.1 Prionailurus bengalensis euptilurus HLpriBen1 GCA_005406085.1 

Eulemur mongoz HLeulMon1 None Procapra przewalskii HLproPrz1 GCA_006410515.1 

Eumetopias jubatus HLeumJub1 GCF_004028035.1 Procavia capensis HLproCap3 GCA_004026925.2 

Felis catus felCat9 GCF_000181335.3 Procyon lotor HLproLot1 None 

Felis nigripes HLfelNig1 GCA_004023925.1 Prolemur simus HLproSim1 GCA_003258685.1 

Fukomys damarensis HLfukDam2 GCF_012274545.1 Propithecus coquereli proCoq1 GCF_000956105.1 

Galeopterus variegatus HLgalVar2 GCA_004027255.2 Przewalskium albirostris HLprzAlb1 GCA_006408465.1 

Giraffa camelopardalis HLgirCam1 GCA_006408565.1 Psammomys obesus HLpsaObe1 GCA_002215935.2 

Giraffa camelopardalis HLgirCam2 None Pseudocheirus occidentalis HLpseOcc1 None 

Giraffa tippelskirchi HLgirTip1 GCA_001651235.1 Pseudochirops corinnae HLpseCor1 None 

Glis glis HLgliGli1 GCA_004027185.1 Pseudochirops cupreus HLpseCup1 None 

Globicephala melas HLgloMel1 GCF_006547405.1 Pteronotus parnellii ptePar1 GCA_000465405.1 

Glossophaga soricina HLgloSor2 Private Pteronura brasiliensis HLpteBra1 GCA_004024605.1 

Gorilla gorilla gorilla gorGor6 GCF_008122165.1 Pteronura brasiliensis HLpteBra2 None 

Gracilinanus agilis HLgraAgi1 GCA_016433145.1 Pteropus alecto pteAle1 GCF_000325575.1 

Grammomys surdaster HLgraSur1 GCF_004785775.1 Pteropus giganteus HLpteGig1 GCA_902729225.1 

Graphiurus kelleni HLgraKel3 Private Pteropus pselaphon HLptePse1 GCA_014363405.1 

Graphiurus murinus HLgraMur1 GCA_004027655.1 Pteropus rufus HLpteRuf1 None 
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Gulo gulo HLgulGul1 GCA_900006375.2 Pteropus vampyrus HLpteVam2 GCF_000151845.1 

Gymnobelideus leadbeateri HLgymLea1 GCA_011680675.1 Puma concolor HLpumCon1 GCF_003327715.1 

Halichoerus grypus HLhalGry1 GCA_012393455.1 Puma yagouaroundi HLpumYag1 GCA_014898765.1 

Helogale parvula HLhelPar1 GCA_004023845.1 Pygathrix nemaeus HLpygNem1 GCA_004024825.1 

Hemitragus hylocrius HLhemHyl1 GCA_004026825.1 Rangifer tarandus HLranTar1 GCA_004026565.1 

Heterocephalus glaber hetGla2 GCF_000247695.1 Rangifer tarandus granti HLranTarGra2 GCA_014898785.1 

Heterohyrax brucei HLhetBru1 GCA_004026845.1 Raphicerus campestris HLrapCam1 GCA_006410735.1 

Hippopotamus amphibius HLhipAmp1 GCA_002995585.1 Rattus norvegicus HLratNor7 GCA_015227675.1 

Hippopotamus amphibius HLhipAmp3 GCA_004027065.2 Rattus norvegicus rn6 GCF_000001895.5 

Hipposideros armiger HLhipArm1 GCF_001890085.1 Rattus rattus HLratRat7 GCF_011064425.1 

Hipposideros galeritus HLhipGal1 GCA_004027415.1 Redunca redunca HLredRed1 GCA_006410935.1 

Hippotragus equinus HLhipEqu1 GCA_016433095.1 Rhinoceros unicornis HLrhiUni1 None 

Hippotragus niger niger HLhipNig1 GCA_006942125.1 Rhinolophus ferrumequinum HLrhiFer5 None 

Homo sapiens hg38 GCF_000001405.38 Rhinolophus sinicus HLrhiSin1 GCF_001888835.1 

Hyaena hyaena HLhyaHya1 GCA_003009895.1 Rhinopithecus bieti rhiBie1 GCF_001698545.1 

Hydrochoerus hydrochaeris HLhydHyd1 GCA_004027455.1 Rhinopithecus roxellana HLrhiRox2 GCF_007565055.1 

Hydrodamalis gigas HLhydGig1 GCA_013391785.1 Rhizomys pruinosus HLrhiPru1 GCA_009823505.1 

Hydropotes inermis HLhydIne1 GCA_006459105.1 Rhombomys opimus HLrhoOpi1 GCA_010120015.1 

Hylobates moloch HLhylMol2 GCF_009828535.2 Rousettus aegyptiacus HLrouAeg4 None 

Hystrix cristata HLhysCri1 GCA_004026905.1 Rousettus leschenaultii HLrouLes1 GCA_015472975.1 

Ictidomys tridecemlineatus speTri2 GCF_000236235.1 Rousettus madagascariensis HLrouMad1 None 

Indri indri HLindInd1 GCA_004363605.1 Saccopteryx bilineata HLsacBil1 Private 

Inia geoffrensis HLlniGeo1 GCA_004363515.1 Saguinus imperator HLsagImp1 GCA_004024885.1 

Jaculus jaculus jacJac1 GCF_000280705.1 Saiga tatarica HLsaiTat1 GCA_004024985.1 

Kobus ellipsiprymnus HLkobEll1 GCA_006410655.1 Saimiri boliviensis HLsaiBol1 None 

Kobus leche leche HLkobLecLec1 GCA_014926565.1 Saimiri boliviensis boliviensis saiBol1 GCF_000235385.1 

Kogia breviceps HLkogBre1 GCA_004363705.1 Sapajus apella HLsapApe1 GCF_009761245.1 

Lagenorhynchus obliquidens HLlagObl1 GCF_003676395.1 Sarcophilus harrisii HLsarHar2 GCF_902635505.1 

Lama glama HLlamGla1 None Scalopus aquaticus HLscaAqu1 GCA_004024925.1 

Lama glama chaku HLlamGlaCha1 GCA_013239585.1 Scarturus elater HLallEla1 Private 

Lama guanicoe cacsilensis HLlamGuaCac1 GCA_013239625.1 Sciurus carolinensis HLsciCar1 GCA_902686445.1 

Lasiurus borealis HLlasBor1 GCA_004026805.1 Sciurus vulgaris HLsciVul1 GCA_902686455.1 

Lemur catta HLlemCat1 GCA_004024665.1 Semnopithecus entellus HLsemEnt1 GCA_004025065.1 

Leptonychotes weddellii lepWed1 GCF_000349705.1 Sigmodon hispidus HLsigHis1 GCA_004025045.1 
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Leptonycteris yerbabuenae HLlepYer1 None Solenodon paradoxus HLsolPar1 GCA_004363575.1 

Lepus americanus HLlepAme1 GCA_004026855.1 Sorex araneus sorAra2 GCF_000181275.1 

Lepus timidus HLlepTim1 GCA_009760805.1 Sousa chinensis HLsouChi1 GCA_007760645.1 

Lipotes vexillifer lipVex1 GCF_000442215.1 Spermophilus dauricus HLspeDau1 GCA_002406435.1 

Litocranius walleri HLlitWal1 GCA_006410535.1 Spilogale gracilis HLspiGra1 GCA_004023965.1 

Lontra canadensis HLlonCan1 GCF_010015895.1 Sturnira hondurensis HLstuHon1 GCA_014824575.1 

Loxodonta africana HLloxAfr4 None Submyotodon latirostris HLsubLat1 Private 

Lutra lutra HLlutLut1 GCA_902655055.1 Suricata suricatta HLsurSur1 GCF_006229205.1 

Lycaon pictus HLlycPic2 GCA_004216515.1 Suricata suricatta HLsurSur2 GCA_004023905.1 

Lycaon pictus HLlycPic3 None Sus scrofa susScr11 GCF_000003025.6 

Lynx canadensis HLlynCan1 GCF_007474595.1 Sylvicapra grimmia HLsylGri1 GCA_006408735.1 

Lynx pardinus HLlynPar1 GCA_900661375.1 Sylvilagus bachmani HLsylBac1 None 

Macaca fascicularis HLmacFas6 GCA_012559485.1 Syncerus caffer HLsynCaf1 GCA_902500845.1 

Macaca fuscata HLmacFus1 None Tachyglossus aculeatus HLtacAcu1 GCA_015852505.1 

Macaca mulatta rheMac10 GCF_003339765.1 Tadarida brasiliensis HLtadBra1 GCA_004025005.1 

Macaca nemestrina macNem1 GCF_000956065.1 Tadarida brasiliensis HLtadBra2 Private 

Macroglossus sobrinus HLmacSob1 GCA_004027375.1 Talpa occidentalis HLtalOcc1 GCA_014898055.1 

Macropus fuliginosus HLmacFul1 None Tamandua tetradactyla HLtamTet1 GCA_004025105.1 

Macropus giganteus HLmacGig1 None Tapirus indicus HLtapInd1 GCA_004024905.1 

Macrotus californicus HLmacCal1 GCA_007922815.1 Tapirus indicus HLtapInd2 None 

Madoqua kirkii HLmadKir1 GCA_006408675.1 Tapirus terrestris HLtapTer1 GCA_004025025.1 

Mandrillus leucophaeus manLeu1 GCF_000951045.1 Taxidea taxus jeffersonii HLtaxTax1 GCA_003697995.1 

Mandrillus sphinx HLmanSph1 GCA_004802615.1 Theropithecus gelada HLtheGel1 GCF_003255815.1 

Manis javanica HLmanJav1 GCF_001685135.1 Thryonomys swinderianus HLthrSwi1 GCA_004025085.1 

Manis javanica HLmanJav2 GCA_014570535.1 Thylacinus cynocephalus HLthyCyn1 GCA_007646695.1 

Manis pentadactyla HLmanPen2 GCA_014570555.1 Tolypeutes matacus HLtolMat1 GCA_004025125.1 

Manis pentadactyla manPen1 GCA_000738955.1 Tonatia saurophila HLtonSau1 GCA_004024845.1 

Manis tricuspis HLmanTri1 GCA_004765945.1 Trachypithecus francoisi HLtraFra1 GCF_009764315.1 

Marmota flaviventris HLmarFla1 GCA_003676075.2 Tragelaphus imberbis HLtraImb1 GCA_006410775.1 

Marmota himalayana HLmarHim1 GCA_005280165.1 Tragelaphus scriptus HLtraScr1 GCA_006410495.1 

Marmota marmota marmota HLmarMar1 GCF_001458135.1 Tragelaphus strepsiceros HLtraStr1 GCA_006410795.1 

Marmota monax HLmarMon1 GCA_901343595.1 Tragulus javanicus HLtraJav1 GCA_004024965.2 

Marmota monax HLmarMon2 GCA_014533835.1 Tragulus kanchil HLtraKan1 GCA_006408655.1 

Marmota vancouverensis HLmarVan1 GCA_005458795.1 Trichechus manatus latirostris triMan1 GCF_000243295.1 
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Martes zibellina HLmarZib1 GCA_012583365.1 Trichosurus vulpecula HLtriVul1 GCA_011100635.1 

Mastomys coucha HLmasCou1 GCF_008632895.1 Tupaia belangeri tupBel1 GCA_000181375.1 

Megaderma lyra HLmegLyr2 GCA_004026885.1 Tupaia chinensis tupChi1 GCF_000334495.1 

Megaptera novaeangliae HLmegNov1 GCA_004329385.1 Tursiops aduncus HLturAdu1 GCA_003227395.1 

Mellivora capensis HLmelCap1 GCA_004024625.1 Tursiops aduncus HLturAdu2 None 

Meriones unguiculatus HLmerUng1 GCF_002204375.1 Tursiops truncatus HLturTru3 GCF_001922835.1 

Mesocricetus auratus mesAur1 GCF_000349665.1 Tursiops truncatus HLturTru4 GCF_011762595.1 

Mesoplodon bidens HLmesBid1 GCA_004027085.1 Tursiops truncatus turTru2 GCF_000151865.1 

Microcebus murinus micMur3 GCF_000165445.2 Urocitellus parryii HLuroPar1 GCF_003426925.1 

Microcebus sp. 3 GT-2019 HLmicSpe31 GCA_008750915.1 Uropsilus gracilis HLuroGra1 GCA_004024945.1 

Microcebus tavaratra HLmicTav1 GCA_008750935.1 Urotrichus talpoides HLuroTal1 Private 

Microgale talazaci HLmicTal1 GCA_004026705.1 Ursus americanus HLursAme1 GCA_003344425.1 

Micronycteris hirsuta HLmicHir1 GCA_004026765.1 Ursus americanus HLursAme2 None 

Microtus agrestis HLmicAgr2 GCA_902806775.1 Ursus arctos horribilis HLursArc1 GCF_003584765.1 

Microtus arvalis HLmicArv1 GCA_007455615.1 Ursus maritimus ursMar1 GCF_000687225.1 

Microtus fortis HLmicFor1 GCA_014885135.1 Ursus thibetanus thibetanus HLursThi1 GCA_009660055.1 

Microtus ochrogaster micOch1 GCF_000317375.1 Vicugna pacos vicPac2 GCF_000164845.1 

Microtus oeconomus HLmicOec1 GCA_007455595.1 Vicugna pacos huacaya HLvicPacHua3 GCA_000767525.1 

Miniopterus natalensis HLminNat1 GCF_001595765.1 Vicugna vicugna mensalis HLvicVicMen1 GCA_013265495.1 

Miniopterus schreibersii HLminSch1 GCA_004026525.1 Vombatus ursinus HLvomUrs1 GCF_900497805.2 

Mirounga angustirostris HLmirAng2 None Vulpes lagopus HLvulLag1 GCA_004023825.1 

Mirounga leonina HLmirLeo1 GCF_011800145.1 Vulpes vulpes HLvulVul1 GCF_003160815.1 

Mirza coquereli HLmirCoq1 GCA_004024645.1 Vulpes zerda HLvulZer1 Private 

Mirza zaza HLmirZaz1 GCA_008750895.1 Xerus inauris HLxerIna1 GCA_004024805.1 

Mogera wogura HLmogWog1 Private Zalophus californianus HLzalCal1 GCA_009762305.1 

Molossus molossus HLmolMol2 None Zapus hudsonius HLzapHud1 GCA_004024765.1 

Monodelphis domestica monDom5 GCF_000002295.2 Ziphius cavirostris HLzipCav1 GCA_004364475.1 

Monodon monoceros HLmonMon1 GCF_005190385.1    
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