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Abstract

Synergy is a concept in the neuroscience field, wherein the central nervous sys-

tem (CNS) uses a much smaller set of variables to control a large group of muscles

to generate movements in biological systems, including humans. The co-activation

of a set of muscles from a smaller number of neural commands, that is, motor syn-

ergies, can reduce the burden of the CNS significantly while imposing a certain level

of coordination between joints that are closely related to each other for a certain

movement. Essentially, motor synergies reduce the dimensionality in terms of the

degrees of freedom of motion. These motor synergies are acquired by biological sys-

tems through natural growth and learning processes. Researchers in this field have

been observing and analyzing existing motor synergies in biological systems, posing

various hypotheses about the origin of the motor synergies in living organisms. In-

spired by these studies, and in an attempt to further understand the motor synergy

concepts behind the biological systems, the primary motivation in this thesis is to

transit from the observation to creation of motor synergies.

To recreate the synergy emergence process, it is necessary to simulate the learning

process of a biological system from its blank state to its functional state, that is,

the state in which it is able to carry out a task efficiently using the learned motor

synergies. The proposition in this thesis is to use simulated robotic agents to replace

biological systems, and employ a learning algorithm, ideally an algorithm that shares

certain similarities with the human learning process, to allow the robotic agent

to learn to perform a task from scratch. Because the concerned robotic agents

are highly redundant to better mimic biological systems, it is necessary to have a

powerful learning algorithm to control the agents despite the redundancy.

The deep reinforcement learning (DRL) algorithm is the perfect choice for this

thesis. First, the optimization process of a DRL algorithm is able to find the opti-

mum control strategies in the infinite possible solution space of redundant robots.



Indeed, DRL has been proven to be a general algorithm that can be applied to a

range of different robotic models and robotic tasks, and has been gaining attention

in the field of robotics. More importantly, the reward system in DRL shares certain

similarities with the biological goal-directed learning process. The synergy level dur-

ing the learning phase of the DRL algorithm was then quantified to demonstrate the

synergy emergence phenomenon. By attempting to recreate the synergy emergence

process, it was desired to reveal the relationship between the motor synergies and

the energy efficiency in the execution of a task. The findings from this study further

provided the foundation for the subsequent two studies in this thesis, that is, the

joint redundancy quantification study and the gait mode specification study, both

having a strong relationship with the motor synergy concepts demonstrated in this

thesis.

This thesis made three contributions, all revolving around the motor synergy

concept and the DRL.

In the first study, the objective was to recreate the synergy emergence process

in simulated agents using DRL algorithms, with the aim of analyzing the relation-

ship between the motor synergy development and the energy efficiency of the agents

throughout the learning process. Two state-of-the-art DRL algorithms were used

to train several simulated robotic models with quadrupedal/half-quadrupedal struc-

tures, and their objective was to run forward as quickly as possible. Initially, the

joints of the simulated agents were not sufficiently coordinated to perform a smooth

running motion. As the learning progressed, the joints of the agents became more

coordinated, or synergetic, and the running motion also improved accordingly. This

phenomenon is referred to as the synergy emergence phenomenon. New synergy met-

rics were proposed that allow the measurement of the synergy level or the degree

of coordination between joints during the DRL learning processes. The experimen-

tal results demonstrated that the running performance and energy efficiency of the

agents increased as the synergy level steadily increased during learning. This syn-

ergy emergence phenomenon could be observed statistically in the learning agents,

even though a synergy constraint has never been encoded into the reward function

of the DRL algorithms. The proposed synergy-related metrics successfully distin-

guished the learning capability of the two DRL algorithms, suggesting that these

metrics could be used as additional indices to evaluate DRL algorithms for motor

learning. In addition, synergy analysis was also performed on a human-like robotic

arm to show that the same results could be obtained for another type of robotic

agent. It is also hoped that a DRL algorithm tends to determine solutions that are

more synergetic than that by a PD controller.



As the second contribution of this thesis, a synergy metric proposed in the first

part of this thesis, the Synergy Exploration Area (SEA) metric, was used as an alter-

native approach to quantify joint redundancy in redundant robotic agents. Various

experiments were conducted with different robotic structures for different tasks,

ranging from a simple robotic arm manipulation to a more complex robotic loco-

motion. The experimental results demonstrated that the SEA metric effectively

quantified the relative joint redundancy over different robotic structures with vary-

ing degrees of freedom under unknown dynamic situations. The SEA metric could

also quantify the kinematic and dynamic factors that affect the joint redundancy

of a robotic agent. Indeed, the study successfully applied the concepts of the DRL

optimization process to the quantification of redundancy in robotic agents, and the

SEA metric acted as a bridge between these two domains. In addition, it was demon-

strated that the SEA metric could be potentially used to evaluate the optimality of

a robotic structure for a given task. This could help to select a better design for

a robotic agent to ensure it had the appropriate degree of joint redundancy for an

intended task, which would subsequently reduce the complexities of the final control

method and prevent wasting resources by using an overly complex robot.

Finally, DRL was employed for quadruped gait generation for energetic analy-

sis. To counter the fact that the DRL-trained agents do not necessarily possess a

well-known gait type, a method was proposed to impose a certain gait type on the

DRL-trained agents. The experimental results demonstrated that specifying a gait

mode in the DRL learning process, it allowed a faster convergence of the learning

process and synergy emergence process. This was because the mode specification

reduced redundant solution space. More importantly, the proposed method success-

fully imposed a certain gait type on the quadrupeds, as opposed to the case without

any gait specification. The advantages of using DRL were equally demonstrated

as it could automatically exploit the physical condition of the robots, such as the

passive spring effect between the joints during the learning process, similar to the

adaptation skills of an animal. This study provides a framework for quadrupedal

trot-gallop energetic analysis for different body structures, body mass distributions,

and joint characteristics using DRL.
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Chapter 1

Introduction

1.1 Background

Synergy [1][2] is a concept in the neuroscience field, wherein the central ner-

vous system (CNS) uses a much smaller set of variables to control a large group of

muscles to generate movements in biological systems, including humans [3][4]. The

co-activation of a set of muscles from a smaller number of neural commands, that

is, motor synergies, can reduce the burden of CNS significantly [5] while imposing

a certain level of coordination between joints that are closely related to each other

for a certain movement. Essentially, motor synergies reduce the dimensionality in

terms of the degrees of freedom of motion. These motor synergies are acquired by

biological systems through natural growth and learning processes. Researchers in

this field have been observing and analyzing existing motor synergies in biological

systems [3][4][6][7], posing various hypotheses about the origin of the motor syner-

gies in the living organisms. Inspired by these studies, and in an attempt to further

understand the motor synergy concepts behind the biological systems, the primary

motivation in this thesis is to transit from the observation to the creation of motor

synergy, as shown in the Fig. 1.1.

To recreate the synergy emergence process, it is necessary to simulate the learning

process of a biological system from its blank state to its functional state, that is, the

state in which it is able to carry out a task energy efficiently using the learned motor

synergies. The proposition in this thesis is to use simulated robotic agents to replace

the biological systems, and employ a learning algorithm, ideally an algorithm which

shares certain similarities with the human learning process, to allow the robotic

agent to learn to perform a task from scratch. Because the concerned robotic agents

are highly redundant to better mimic biological systems, it is necessary to have a

1



Chapter 1. Introduction

powerful learning algorithm to control the agents despite the redundancy.

The deep reinforcement learning (DRL) algorithm is the perfect choice for this

thesis. First, the optimization process of a DRL algorithm is able to find the opti-

mum control strategies in the infinite possible solution space of redundant robots.

Indeed, DRL has been proven to be a general algorithm that can be applied to

a range of different robotic models and robotic tasks [8][9], and has been gaining

attention in the field of robotics [10][11]. More importantly, the reward system in

DRL shares certain similarities with the biological goal-directed learning process

[12][13][14][15]. The synergy level during the learning phase of the DRL algorithm

was then quantified to demonstrate the synergy emergence phenomenon. By at-

tempting to recreate the synergy emergence process, it was desired to reveal the

relationship between the motor synergies and the energy efficiency in the execution

of a task. The findings from this study further provided the foundation for the

subsequent two studies in this thesis, that is, the joint redundancy quantification

study and the gait mode specification study, both having a strong relationship with

the motor synergy concepts demonstrated in this thesis.

In this section, the background of several concepts used in this thesis are in-

troduced, including the motor synergy concept and its calculation, the joint re-

dundancy, and the quadrupedal gait types. The knowledge of DRL necessary to

understand this thesis is also explained in this section.

From Observation to Creation of Motor Synergy

Biological
System

Robotic
Agent

Recreation of the
Synergy Emergence

Process

 Observation and
Analysis of the 

Existing Synergies

Deep
Reinforcement

Learning

Acquisition of
Synergies through

Growth and 
Learning

Figure 1.1: The primary motivation of the thesis. Taking inspiration from the study
of motor synergy in biological systems, this thesis aims to recreate the synergy
emergence process in robotic agents using deep reinforcement learning.
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1.1. Background

1.1.1 Motor synergy

As mentioned previously, motor synergy is a concept in the neuroscience field

where the CNS has shown to use a much smaller set of variables to control a large

group of muscles to generate movements in human. For illustrative purpose, Fig. 1.2

shows the motor synergy concept through a simplistic example of the CNS sending

commands to a moving limb.

The authors of [16][17] formalized the calculation for extracting different types

of motor synergy. The spatiotemporal synergy is first explained as it is mainly used

in this thesis. One could also refer to [18] for a similar study of spatiotemporal

synergy analysis. The spatiotemporal synergy has been proposed to model source

Figure 1.2: A graphical illustration of the motor synergy concept in a limb displace-
ment task. The green components Ci represent the control signals from the CNS
and the Wi represent the motor synergy components. The combinations of the con-
trol signals and the synergy components produce the final signals for the muscles
responsible for the limb movements. The CNS typically sends fewer control signals
Ci to control a large group of muscles for a certain task. [2]
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signal pattern that is invariant in both space and time. The spatiotemporal synergy

decomposition is as (1.1.1) where xl(t) indicates the source signals at time point t in

trial number l and P is the total number of spatiotemporal synergy components. clp

are the mixing weights that change between trials while wp(t) is the pth spatiotem-

poral synergy component, which is dependent on t but assumed to be invariant over

trials.

xl(t) =
P∑
p=1

clp · wp(t) + residuals (1.1.1)

The advantage of the spatiotemporal synergy decomposition is that it summa-

rizes the space and time information in the source signals, hence it is more compact.

Another type of synergy which is equally commonly used is the spatial synergy

[16][19]. Spatial synergy models source signal pattern that is invariant in time and

its decomposition is as (1.1.2), where the notations are the same as (1.1.1) except

that the clp(t) is now dependent on t while wp, which is the spatial synergy is con-

stant over time. Fig. 1.3 gives a clearer idea of the spatial and spatiotemporal

synergy extraction process of some sample signals. Fig. 1.4 illustrates in details

the preprocessing methods of the raw collected signals for both the spatial synergy

extraction and spatiotemporal synergy extracion.

xl(t) =
P∑
p=1

wp · clp(t) + residuals (1.1.2)

If (1.1.1) and (1.1.2) are written in the matrix form and the residuals term are

ignored, (1.1.3) is the simplified equation to be solved for both types of synergy,

where X represents the source signals, W the synergy components matrix and C

the corresponding activation matrix.

X = W · C (1.1.3)

One of the most commonly used algorithms to solve (1.1.3) is the principal

component analysis (PCA). While the details of PCA are not presented here, the

core idea is that there exists some underlying alternative axes that can replace

the original axes of the data. The properties of these alternative axes are such

that the first axis explains the most variance of the data, following by axes that

explain less and less variance of the data. Figure 1.5 shows an example of the PCA
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Figure 1.3: An illustration of the spatial (left) and spatiotemporal (right) synergies
extraction process. On top of the diagram is the simulated signals with six channels
and N trials are simulated. The signals are then preprocessed in preparation for
the spatial or spatiotemporal synergies extraction. The processing method for each
synergy extraction type is explained later in Figure 1.4. PCA is then used to decom-
pose the preprocessed signals into synergy components Wi and the accompanying
Ci components. The number of synergy components Wi can be varied during the
PCA extraction process. In this example, three synergy components are extracted.
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Figure 1.4: Preprocessing and reshaping of the input collected signals prior to the
spatial synergy extraction (top right) and spatiotemporal synergy extraction (bot-
tom). The collected signals consist of N trials, a certain length of time steps of
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ple. For the spatial synergy extraction, the raw collected signals are preprocessed
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of the figure.

components of the 2-dimensional data. As it can be easily noticed from the plot, the

first PCA component explain the most variance of the data, followed by the second

PCA component which explains less variance. While this example shows a simple

2-dimensional data, it can be easily scaled to very high-dimensional sparse data, and

the first few PCA components of these data can typically explain most of the variance

of the data. This is the main function of PCA, which is the dimension reduction

for high-dimensional data that have high correlation between different dimensions.

This is exactly what is needed in finding synergy components which can explain the

highly correlated input signals. In simple explanations, the PCA algorithm finds

the PCA components by minimizing the reconstruction error in (1.1.4) with respect

to the source signals X by optimizing the C and W matrices, with ‖ · ‖F being the

Frobenius Norm.

E2 = ‖X −W · C‖2F (1.1.4)

The metric that is usually used to evaluate how well X can be represented from

a certain W and its corresponding C is the coefficient of determination, or the R2

metric. The R2 can be calculated according to (1.1.5) and it ranges from zero to
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one, with one indicating the perfect reconstruction of the input signal.

R2 = 1− ‖X −W · C‖
2
F

‖X −X‖2F
(1.1.5)

In the following of this thesis, when a source signal can be reconstructed with

fewer synergy components and has higher R2, the corresponding source signal is said

to be more synergetic, or with a higher synergy level.

1.1.2 Joint redundancy

By definition, the degree of redundancy (DOR) is the resources that a system

possesses to accomplish a given task. The joint redundancy can be affected by

various factors such as the number of joints, the kinematic properties and the dy-

namic properties of the system. A system is called a redundant system when it has

excessive DOR to execute a task.

As mentioned previously, one of the factors which can affect the DOR of a system

is the difference between the dimensions of the action space (e.g. the number of

joints) and the task space. For example, a human arm, as illustrated in Fig. 1.6, is

typically redundant as it has seven degree of freedom (DOF) while it accomplishes

tasks in a three dimensional space.
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Figure 1.6: A human arm skeleton model with seven degree of freedom. [23]

The kinematic properties of a redundant system, such as its ability to accomplish

a task in different ways or motions, are also factors which can affect its DOR. This

can be illustrated with the example of an arm trying to reach for an object. If the

object is within the range of motion of the arm, there exists many ways to reach for

the object, hence it has high joint redundancy in this case. However, if the object

is placed far from the arm, there are less possible motions to reach for the object,

reducing its joint redundancy in this case.

The dynamic properties of a redundant system,, such as its weight and its force

range, can also affect its DOR. For example, a heavily loaded robotic arm can move

less freely than an unloaded robotic arm, thus having a lower joint redundancy in

this case. The same reasoning can be made with a reduced input-torque robotic

arm. All the above factors affecting the joint redundancy are studied in the second

chapter of this thesis.

A motivation to quantify the joint redundancy is that it affects the dexterity of

a robotic system [20][21][22]. Improved robotic dexterity can equip a robot with

various skills to carry out daily tasks, such as picking, sorting, grasping, and ma-

nipulating objects. These skills are highly valuable, and the challenging task of

creating a dexterous robot is still a topic of active research. Hence, by quantifying

the joint redundancy, it can inform users about the suitability of a redundant robot

to accomplish a task dexterously.

The joint redundancy analysis in redundant robotic systems is part of the synergy

analysis. Indeed, as the synergy is related to the coordination between moving joints,

then it is not surprising that the synergy analysis can also review information about

the joint redundancy of a robot as demonstrated later in this thesis.

8



1.1. Background

1.1.3 Quadrupedal gaits

Figure 1.7: Various gait types of a
quadruped at moving different speed. The
phase delay of each limb is indicated be-
side the corresponding limb [24].

A quadruped robot is a bio-inspired

robot with four feet that is designed to

mimic a quadruped [25]. It is typically

studied for the properties of its various

gait types. In Fig. 1.7, the different gait

types are shown as studied in [24]. The

gait diagrams of some quadrupedal gaits

are equally shown in Fig. 1.8 [26].

Studies such as [24][27][28] study the

gait types of the quadruped when mov-

ing at different speeds and on different

terrains. Typically, a quadruped is re-

dundant in the running task which is the

task being studied in this thesis. Indeed,

a quadruped can be modelled as a multi-

joints robot and due to the redundancy of joints, the solution space for the running

task is large and it would be hard to control it without specifying beforehand what

kind of gait that it will possess in the running motion. This will become one of

the motivations for one chapter of this thesis, i.e. to reduce the solution space by

specifying the gait type a priori.

Figure 1.8: Gait diagrams of some well-known quadruped gait types [26]. For each
diagram, one cycle of gait is shown, with the black horizontal bars indicates the
stance phase of that particular limb. The label LH represents the left hind limb; LF
represents the left fore limb; RF represents the right front limb; RH represents the
right hind limb.
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Chapter 1. Introduction

Besides studying the gait type, in this thesis, it is also desired to demonstrate that

different physical properties can affect the energy efficiency of a running quadruped

robots, and that a DRL algorithm can exploit the properties to maximize the run-

ning performance. To this end, the passive spring-joint effect is studied. When a

quadruped is running/galloping at a high speed, it has been shown that there is an

efficient interchange between the kinetic energy and the elastic energy stored in the

joints, as shown in the Fig. 1.9. The elastic energy is due to the passive joint-spring

effects between the joints, and it is common that researchers model the limbs of a

quadruped with springs between the joints, as shown in the Fig. 1.10, as the passive

joint-spring effect plays an important role in the efficient running gait.

Figure 1.9: The transfer between the kinetic energy and the elastic energy of a
cheetah during a galloping motion.

Figure 1.10: The limb model with springs between joints to mimic the passive joint
spring effect in a quadruped’s limb.
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1.1. Background

1.1.4 Deep reinforcement learning

Deep reinforcement learning (DRL) is the combination of deep learning tech-

niques and the reinforcement learning theory [29]. DRL is a framework that allows

an agent to interact with its environment and adapt its behavior overtime according

to the feedback it receives from the environment. DRL has been solving problems

that are unsolvable using classical approaches [8][30]. [31] further shows the advan-

tage of DRL over classical controllers in generating energy efficient gaits for snake

robots. The potential of DRL becomes the motivation in this thesis to use it as

an alternative to classical methods to perform redundant robotic analysis. Indeed,

in redundant robotic systems, there are infinite possible solutions to accomplish a

task and it is becoming increasingly difficult to use classical methods to control

them. DRL is hence the natural choice to search for the optimum solution in the

infinite solution space of a redundant system. The necessary background of DRL

is explained in this subsection in order to better understand the following of this

thesis.

A reinforcement learning (RL) algorithm can be modeled as an infinite-horizon

Markov decision process (MDP) which is defined by the tuple (S,A, p, r), where

the state space S and the action space A are continuous, and the unknown state

transition probability p : S × A × S → [0,∞) represents the probability density of

the next state st+1 ∈ S given the current state st ∈ S and action at ∈ A, while

r : S × A → IR is the reward emitted from the environment on each transition. ρπ

denotes the trajectory distribution induced by a policy π(at|st). Fig. 1.11 illustrates

the basic RL framework.

In RL, two quantities are used to characterise the usefulness of a certain state

for the agent acting in the environment. The value function V π(s), written as the

Eq. 1.1.6, characterises the value of a state by the expected return Eτ∼π[R(τ)] that

could be obtained from the trajectory τ starting from the state s when the agent

acts according to the policy π. Similarly, to quantify the usefulness of an action a

when taken in a state s, the Q function, Qπ(s, a) is used as shown in the Eq. 1.1.7.

The Q function indicates the expected return Eτ∼π[R(τ)] that could be obtained

from the trajectory τ starting from the state s and action a when the agent acts

according to the policy π.

V π(s) = Eτ∼π [R(τ)|s0 = s] (1.1.6)
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Chapter 1. Introduction

Qπ(s, a) = Eτ∼π [R(τ)|s0 = s, a0 = a] (1.1.7)

To obtain the true value function V ∗(s) and the true Q function Q∗(s, a), the

Bellman equations are used to update the value function V π(s) and the Q function

Qπ(s, a), which are shown in the Eq. 1.1.8 and the Eq. 1.1.9 respectively.

V π(s) = Ea∼π,s′∼P [r(s, a) + γV π (s′)] (1.1.8)

Qπ(s, a) = Es′∼P
[
r(s, a) + γ E

a′∼π
[Qπ (s′, a′)]

]
(1.1.9)

In DRL, the two functions V π(s) and Qπ(s, a) are often approximated using

neural networks with a certain set of parameters, and they can be written as Vψ(s)

and Qφ(s, a), with ψ and φ the parameters of the neural networks respectively.

A prerequisite for the studies in this thesis is the choice of DRL algorithms

that are capable of solving complex robotic tasks. To this end, SAC [32] and TD3

[33] are chosen as they are the state-of-the-art DRL algorithms. The choice of two

algorithms instead of one is to have a less biased choice of algorithms as they are from

two different classes of DRL algorithms distinguished by their exploration strategy.

Soft Actor-Critic (SAC) algorithm

SAC is a stochastic DRL algorithm which learns a policy πθ(at|st) that maps a state

of an agent to a probability distribution of actions from which an action is chosen

to maximize the objective functions. The particularity of SAC is that it learns a

policy by maximizing the expected Q values in parallel with the expected entropy

Environment

Agent

Action
States
+

Rewards

Figure 1.11: The basic reinforcement learning (RL) framework. An agent interacts
with the environment by taking some actions. In return, it receives some feedback
about the states of the environment as a result of the executed actions. Rewards
are also given for each action to enable the agent to adjust its behavior overtime.
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1.1. Background

of the policy, H(πθ(at|st)) weighted by a temperature parameter α as shown in the

Eq. 1.1.10. The entropy of the policy, H(πθ(at|st)) can be represented by the Eq.

1.1.11.

Jπ(θ) = Est∼ρπθ [Eat∼πθ [Qφ(st, at) + α ·H(πθ(at|st))]] (1.1.10)

H(πθ(at|st)) = −log(πθ(at|st)) (1.1.11)

By maximizing the expected entropy, the authors of [32] pointed out that the

learnt policy will have a variety of choices of actions to be taken that bring an

equal amount of rewards in a given state. This is shown in their paper to improve

exploration and hence speed up learning and reduce greatly sub-optimal solutions.

The cost function for updating the Qφ function is written as the Eq. 1.1.12,

where Vφ(st) is the V function represented in the Eq. 1.1.13. φtarg denotes the

parameters for the target networks.

JQ(φ) = E(st,at,st+1)∼ρπθ [
1

2
(Qφ(st, at)− (r(st, at) + γVφtarg(st+1)))

2] (1.1.12)

Vφ(st) = Eat∼ρπθ [Qφ(st, at) + α ·H(πθ(at|st))] (1.1.13)

Finally, the temperature parameter α is automatically adjusted so that the en-

tropy of the policy, H(πθ(at|st)) is approximately same as the target entropy, Htarg

set by the user. The cost function for the temperature α is written as the Eq. 1.1.14.

J(α) = Eat∼ρπθ [−αlog(πθ(at|st))− αHtarg] (1.1.14)

The detailed training loop of the SAC algorithm is shown in the Algorithm 1.

Twin Delayed Deep Deterministic (TD3) algorithm

TD3 is a deterministic DRL algorithm which learns a policy πθ(at|st) that maps a

state of an agent to the presumably best action to be taken in this state according

to the current policy parameters. The objective to be maximized to learn the policy

13



Chapter 1. Introduction

is the expected Q values as shown in (1.1.15),

Jπ(θ) = Est∼ρπθ [Qφ(st, πθ(at|st))] (1.1.15)

One major drawback of deterministic algorithms is the lack of exploration for new

actions during learning which in turn results in local minima. In order to overcome

this problem, Gaussian noises are added to the output of the deterministic policy

for better exploration.

The cost function for updating the Qφ function in TD3 is written as the Eq.

1.1.16, where φtarg and θtarg are the target networks for the Q function and the

policy π respectively.

JQ(φ) = E(st,at,st+1)∼ρπθ [(Qφ(st, at)−(r(st, at)+γQφtarg(st, πθtarg(st+1)+ε))
2] (1.1.16)

The ε is a gaussian noise sample introduced by the TD3 authors to improve their

algorithm performance. The detailed training loop of the TD3 algorithm is shown

in the Algorithm 2.
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Algorithm 1 Soft Actor-Critic (SAC)

1: Initialize policy parameters θ, Q-function parameters φ1, φ2, an empty replay
buffer D, the update frequency f , the number updates n, learning rates λQ,λθ,λα

2: Set target parameters equal to main parameters φtarg 1
← φ1, φtarg 2

← φ2

3: repeat
4: Observe the current state s and sample an action a ∼ πθ(· | s)
5: Execute a in the environment
6: Observe the next state s′, the reward r, and the terminal signal d
7: Store (s, a, r, s′, d) in the replay buffer D
8: If s′ is terminal (d is true), reset the environment state.
9: if iteration iter modulo f then

10: for n times do
11: Sample a batch of transitions, B = {(s, a, r, s′, d)} from D
12: Update Q-functions by one step of gradient descent using:

φi ← φi − λQ∇φiJQ(φi) for i = 1, 2

13: Update the policy by one step of gradient ascent using:

θ ← θ + λθ∇θJπ(θ)

14: Update temperature α with:

α← α− λα∇αJ(α)

15: Update target networks with

φtarg i ← ρφtarg i + (1− ρ)φi for i = 1, 2

16: end for
17: end if
18: until convergence
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Algorithm 2 Twin Delayed Deep Deterministic (TD3)

1: Initialize policy parameters θ, Q-function parameters φ1, φ2, an empty replay
buffer D, the update frequency f

2: Set target parameters equal to main parameters θtarg ← θ, φtarg 1
← φ1, φtarg 2

←
φ2

3: repeat
4: Select action with exploration noise a ∼ πθ(s) + ε, ε ∼ N(0, σ)
5: Execute a in the environment
6: Observe the next state s′ and the reward r
7: Store (s, a, r, s′) in the replay buffer D

8: Sample a batch of transitions, B = {(s, a, r, s′)} from D
9: ã← πθtarg(s

′) + ε, ε ∼ clip(N(0, σ̃),−c, c)
10: y ← r + γmini=1,2Qφtargi

(s′, ã)
11: Update φi ← argminφi |B|−1

∑
(y −Qφi(s, a))2

12: if iteration iter modulo f then
13: Update θ by the deterministic policy gradient:

∇θJπ(θ) = |B|−1
∑
∇aQφ1(s, a)|a=πθ(s)∇θπθ(s)

14: Update target networks:

φtarg i ← ρφtarg i + (1− ρ)φi for i = 1, 2

θtarg ← ρθtarg + (1− ρ)θ

15: end if
16: until convergence
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1.2. Research Objective

1.2 Research Objective

1.2.1 General Objectives

There are three main chapters in this thesis, each having their own objective

and are inter-correlated with each other as shown in the Fig. 1.12. The general

objectives are:

• Recreate the synergy emergence process and carry out a synergy analysis on

simulated redundant agents trained using DRL, before proposing several syn-

ergy metrics to evaluate the synergy level of an agent.

• Quantify the joint redundancy of several DRL-trained simulated redundant

agents using the results in the first study.

• Propose gait mode specification method to impose a certain synergy mode on

simulated quadruped agents trained using DRL, with the aim to carry out an

energetic analysis subsequently.

Redundancy

Exploration with 
Deep Reinforcement

Learning

Synergy Emergence
(Chapter 2)

Quantification
(Chapter 3)

Mode
specification
(Chapter 4)

Figure 1.12: The thesis structure overview.

1.2.2 Specific Objectives

• Study the motor synergy concepts and find related works about synergy.
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• Adapt the motor synergy concept to the robotic settings where there are only

joints in a redundant robot and not muscles as in the case of human.

• Demonstrate the synergy emergence phenomenon.

• Study the relationship between the synergy level, i.e. the level of coordination

between joints of a robotic agent, and the performance of the agent for the

given task.

• Study the energy efficiency of a trained robotic agent and its association with

its synergy level.

• Proposition of several synergy-related metrics to evaluate a DRL algorithm.

• Use one of the previously proposed synergy metrics to quantify the joint re-

dundancy of DRL-trained agents.

• Demonstrate that the proposed redundancy quantification methodology can

effectively quantify the relative joint redundancy of several agents executing

different tasks with varying number of joints.

• Show that the proposed methodology can also bring extra information, such

as the importance of a joint in a certain task.

• Demonstrate that the proposed methodology can also quantify the kinematic

and dynamic factors which affect the joint redundancy of a human-like robotic

arm.

• Demonstrate the possibility of using the proposed methodology to evaluate

the optimality of a robotic structure for a given task.

• As the final part of the thesis, implement a DRL algorithm which can specify

the gait mode of a quadruped agent, which indirectly impose a certain synergy

mode on the agent.

• Demonstrate that the gait mode specification speeds up the learning process

and allows energetic study between two gait modes, i.e. the gallop and trot

gaits, for two different forward speeds.

• Demonstrate the advantage of DRL in exploiting the body condition of the

robots, i.e. the passive joint-spring effect, similar to the adaptation skills of

an animal.
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1.3 Related Work

With the background of several key concepts explained in the previous section,

works that are closely related to this thesis are presented in this section.

1.3.1 Human Motor Synergy Studies

As the motor synergy concept is originated from the human studies, a few related

works on the motor synergy in human motor control are elaborated here. The

authors in [6] measured the hand paths of infants at different ages when reaching

and grabbing toys, which indirectly revealed the motor synergy development through

growth and learning. Fig. 1.13 illustrates the typical movements of infants at the age

of 19, 29, and 42 weeks during the pre-reaching, early reaching and stable reaching

periods. As illustrated by the rather random motion shown in Fig. 1.13 (a)(A),

in the first few months of life, infants follows an indirect route to the target. As

they reach and grab for toys faster and more smoothly with age, the high variability

of early reaches reduces, as reflected in Fig. 1.13 (c)(A). Also, as shown in Fig.

1.13 (a)(C), the phase portrait between the shoulder joint angle and the elbow joint

angle of early reaches clearly shows that the coordination between the shoulder and

elbow is poor and variable. However, when it shifts to a stable reach period, the

phase portrait shows an aligned combination between the shoulder joint angle and

the elbow joint angle, as depicted in Fig. 1.13 (c)(C), which means that the shoulder

and the elbow motion become tightly coupled. The result suggests that infants can

improve their motor control ability through repetitive practice as they acquire motor

synergies for efficient motion.

In [7], the authors described the spatiotemporal organization of the muscle pat-

terns for fast-reaching movements, which is another human motor synergy study

related to this thesis. Specifically, they recorded electromyographic (EMG) activity

for up to 19 shoulder and arm muscles during point-to-point movements between

a central location and one of eight peripheral locations, which were arranged on a

circle, either in the sagittal or frontal plane as shown in Fig. 1.14. These movements

were performed with different loads on the hand (the experiment 1, see Fig. 1.14

(a), (b)) or with different postures of the forearm (the experiment 2, see Fig. 1.14

(d). They also studied more complex reaching movements (the experiment 3, see

Fig. 1.14 (f), (g)): continuous movements from one central or peripheral position to

a second position and back to the first (reversal movements), and movements from

one peripheral position to a second peripheral position through the central position

(warp point movements). The authors tested whether synergies could reconstruct
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(a) Pre-reaching period. (b) Early-reaching period. (c) Stable reaching period.

Figure 1.13: Experimental results in [6]. The trajectories of the hand
from the start to the end point (A) and the phase portraits between
the shoulder joint angle and the elbow joint angle (C) for infants of

the age of 19 (a), 29 (b), 42 (c) weeks.

Figure 1.14: Experimental apparatus and conditions in [7] for the
control of fast-reaching movements.
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muscle patterns of the point-to-point movements. They have demonstrated that

the complex characteristics of the muscle patterns for reaching were captured by

a small number of combinations of components, suggesting that the mechanism of

motor control exploits low dimensionality to simplify control. This is exactly the

manifestation of the motor synergies in the human motion when executing the tasks.

In [3][4], the authors studied the synergy development in human learning pro-

cesses using the PCA. Fig. 1.15 shows the synergy analysis being done in [4]. The

discussions in [5] about the role of muscle synergies in simplifying motion generation

are also closely related to this thesis as well. On the other hand, the relationship

between the muscle synergies, performance, and energy consumption was studied in

[34][35], supporting the analysis and results in this thesis. While simulated robotic

agents instead of human subjects are studied in this thesis, their concepts of study

could be found in this thesis and they justify the study approach used here.

Figure 1.15: The synergy analysis of the human waking as done in [4]. For (A),
the weights Wi are the spatial synergy components and the basic patterns are the
activation signals Ci as explained in the previous sections. (B) shows the different
walking phases of a baby.
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1.3.2 Motor Synergy in Robotic Control and Deep Rein-

forcement Learning

While the motor synergy concept is primarily studied in human subjects, it has

been shown in several studies that the motor synergy concept can equally be found

and/or applied in the optimal robotics control, and the motor synergy is necessary

for the coordination of multiple robotic joints to achieve optimal task performance.

In [36], the authors conducted experiments with a simple two-joint simulated arm

(Fig. 1.16 A) to study the synergies arising from the optimal motor behavior. The

iLQR algorithm is used to calculate the optimal control signals minimizing the

trajectory cost functions for the arm. The synergies are then extracted by using a

dimension reduction algorithm on the control signals. As shown in the Fig. 1.16

B, the authors found that a small number of synergies are enough to reconstruct

the original signal with minimal errors, indicating that optimal movements can be

planned in a low-dimensional space.

The authors of [37] aimed to study the role of synergies for robot motor coordi-

nation, and used a weightlifting task (Fig. 1.17 A) to demonstrate how synergies can

emerge from a trial-and-error learning (claimed to be similar to the reinforcement

learning). The authors used two PD controllers with a total of 24 parameters opti-

mized through a random search to control the weightlifter. As shown in Fig. 1.17

B, it has been shown that as the learning progresses, the joint coupling increases

with or without a payload, indicating the emergence of synergies. The effort to

accomplish the task also decreases overtime for the no payload case, demonstrating

that the joint coupling effect exploits the dynamics for energy efficient solution.

A B

Figure 1.16: The experiment as done in [36]. (A) Via-point movements computed
using the iLQR of a two-joint simulated arm. (B) The root mean squared error
(RMSE) between actual and reconstructed control signals for via-point tasks as a
function of the number of synergies used in the reconstruction. The error bars give
the standard deviation of the mean.
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A

B C

Figure 1.17: The experiment in [37]. (A) The start, via-point, and goal phases of
a simulated three-link robotic arm with an obstacle and no payload. (B) Effects of
payload and learning on coupling and effort for the standard solution. Pairs of solid
markers denote statistically significant differences at the corresponding trial point.
(C) Effects of coupling and via points on effort with a 2kg payload for the standard
solution.

In Fig. 1.17 C, the authors have also demonstrated that by explicitly controlling

the coupling condition of the two PD controllers, it can also be shown that less

effort is needed to lift the weight when the coupling increases. As stated by the

authors, the increased coupling indicated a progression from independent PD con-

trollers to a more sophisticated nonlinear controller with substantial communication

among components for optimal performance and dynamics exploitation. The results

of this study are coherent with the human motor synergy studies, suggesting that

the synergy concept plays an important role in the robotic control as well.

To the best of our knowledge, there is no known attempt to apply the synergy

development concept in DRL algorithms. However, there are a few ideas that have

been proposed in classical RL to exploit the joints redundancy of robots by using

synergy-inspired strategies. Typically, the authors improve the efficiency of RL algo-

rithms for robotics by assuming that there should be a certain degree of coordination

between closely related joints. These joints could be controlled in a low-dimensional

latent space with fewer variables than the number of joints and there are a few

approaches to find this latent space. The authors of [38] used dimensionality reduc-

tion techniques while Expectation-Maximization (EM) approach is used in [39] to
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search for this latent space respectively. The authors of [40] further allowed prior

structural knowledge about locality synergies to be included in their algorithm by

specifying distinct groups of correlated sub-components. For example, all the joints

in the arm of a robot can be grouped together by the user to specify that these

joints are closely related to each other as a constraint. While the concept of synergy

is not used in [41], their analysis on the performance and energy efficiency of RL

algorithms is related to the study in this thesis. The authors of [42] also mentioned

the energy efficiency issue of RL algorithms in their survey.

As far as we are concerned, there is no closely related work on analyzing existing

DRL algorithms throughout the training phase for revealing the relationship between

the synergy development, the performance and the energy efficiency. Indeed, the

authors of [38][39][40] made the presumption that the joint synergy is indeed the

latent variable to be controlled to improve the performance, and accelerate the

learning process of RL algorithms. Nevertheless, it is not straightforward about

how the joint synergy level develops along with the performance during the learning

process. In the first study of this thesis, instead of making the same assumption,

a study on the role of synergy in state-of-the-art DRL algorithms for robotics is

carried out, conceptually similar to [36][37] but with more complicated simulated

robots and new approaches.

1.3.3 Quantification of Joint Redundancy

While a considerable number of studies have focused on the subject of control-

ling redundant robots [43][44][45][46][47], there have been significantly fewer studies

published on the quantification of joint redundancy. A handful of existing studies

[48][49][50][51][52][53] have aimed to quantify the redundancy of a robotics joint us-

ing model-based approaches, which are one of the most commonly used methods

for this subject. There are two notable drawbacks to the use of the classical model-

based approach. First, this approach relies on the availability of a mathematical

model of the robot, which is usually obtained by making assumptions and simplifi-

cations of the actual robotics design to ensure the analytical model is mathematically

tractable. These assumptions may not be ideal and the accuracy of the study could

be compromised. The second drawback, which is a consequence of the first, is the

constraint on the complexity of the robotic structure that can be studied. Indeed,

for non-conventional complex robots, this classical approach fails, as the mathemat-

ical model will become intractable [54]. The existing studies [48][49][50][51][52][53]

were thus limited to basing their studies on canonical redundant robots whose math-

ematical models are tractable. This poses a problem for modern robotics, as robots
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are becoming increasingly complex. Thus, a more scalable method is needed for the

quantification of joint redundancy.

Based on the contribution of the first study in this thesis [55] regarding the

finding of synergy development process during DRL, one metric in particular, the

absolute surface area (ASA) of the synergy development is capable of quantifying the

amount of exploration performed by a DRL algorithm before arriving at an optimal

control policy to accomplish a given task. When the algorithm needs to explore

excessive suboptimal sequences of joint movements during the training phase before

finding an optimal solution, this typically indicates that the robotic agent has a high

degree of redundancy, and vice versa. Indeed, the excessive exploration required

before accomplishing the primary task is a manifestation of high redundancy, as by

definition, a redundant robot is one that possesses more resources than those strictly

required to execute its primary task [56].

Applying the above concept in the second study of this thesis, the synergy ex-

ploration area (SEA) metric, which is renamed after the ASA metric, is used to

quantify the relative joint redundancy of a robotic agent between different joint

configurations, tasks and dynamical properties. As far as we are concerned, while

there are a few works studying the kinematic factors [57][58] which affect the joint

redundancy in the robotic field, there is no known work which tries to quantify the

kinematic and dynamic factors which affect the joint redundancy.

1.3.4 Quadrupedal Gait Generation and Analysis

Quadruped robot is a common research area and there are numerous research

topics which revolve around it, such as energetic studies [27][28][59], design prin-

ciples [25], gait transition studies [24], etc. These studies play an important role

in shedding light on the gait nature of quadrupeds under different circumstances

such as varying walking speed [24] and terrain conditions [60], giving us a bet-

ter understanding of quadrupeds as well as insights on better control strategies for

quadrupeds. However, to carry out gait studies on quadruped robots, researchers

have always been relying on hand-crafted controllers to generate various gait loco-

motion on a case-by-case basis [60][61][62][24][59], requiring domain expertise and

time-consuming parameters tuning. Therefore, it is desirable to have a more general

strategy which allows specific gait generations on quadruped robots with minimum

fine-tuning in the search for optimal parameters.

In recent years, deep reinforcement learning (DRL) has been gaining attention

as an alternative to classical controllers in quadruped robotic research [10][11][63].
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As an example, Fig. 1.18 shows a quadruped being controlled by a DRL algorithm

for gait planning as studied in [11]. The use of DRL as an alternative can be due

to several advantages that DRL has over classical control strategies. One of the

advantages is that the robotic agents trained with DRL has the ability to generalize

over various situations unseen during training [64][65], giving the robots adaptation

skills similar to animals. DRL also requires less parameter tuning, providing that

the reward function is well designed, as the learning process will find a set of optimal

parameters via the optimization process.

Unfortunately, DRL has some disadvantages. It is well known that DRL requires

long training time [30] and it increases with the complexity of the robots. In the case

of quadruped research, there is no guarantee that the DRL-trained agents will finally

possess a well-known gait type, making it difficult to carry out the same analysis

as in the case of classical controllers. There is however a handful of work such as

[66] which imposes a gait type or mode on a quadruped system by introducing prior

knowledge in the DRL learning process.

Motivated by the potential of DRL in quadruped system studies, it is desired

that some of the downsides of DRL can be overcome by imposing the gait modes,

such that it is possible to be used in quadruped energetic studies as presented in the

third study of this thesis.

Figure 1.18: The authors of [11] use a DRL algorithm for the gait planning of a
simulated quadruped. It is shown that DRL generated gaits are more robust in
various terrains.

1.4 Outline

This thesis is organized into five chapters as follows.

26



1.4. Outline

Chapter 1 briefly mentions the motivation of this thesis and then the background

of some key concepts used in this thesis are explained. Related works of each study

in this thesis are also presented, followed by the general objectives and the specific

objectives of this thesis.

Chapter 2 presents the first study in this thesis, which is the recreation of the

synergy emergence process in simulated robotic systems using Deep Reinforcement

Learning. To study the synergy development of the robotic systems, a new frame-

work was proposed to quantify the synergy level of the robotics systems throughout

the learning phase of the DRL algorithms. Several synergy-related metrics were also

proposed to study the relationship between the synergy level of a robotic agent and

the performance of a given task. The energy efficiency of a trained robotic agent

and its association with its synergy level was equally studied. The experimental re-

sults indicated that the synergy emergence phenomenon could be observed in DRL

algorithms, and the motor synergies were required for energy efficient solutions,

similar to the results published in studies such as [36]1.17. The results of the study

also demonstrated that it is possible to use the proposed synergy-related metrics to

evaluate a DRL algorithm statistically.

The first study of this thesis was presented in a paper entitled ”Motor Synergy

Development in High-performing Deep Reinforcement Learning algorithms” [55],

which was accepted for the IEEE Robotics and Automation Letters (RA-L) and

also the 2020 International Conference on Robotics and Automation (ICRA).

Chapter 3 describes the methodology to quantify the joint redundancy in DRL-

trained redundant robots using one of the synergy-related metrics proposed in the

Chapter 2. While it is the same metric used in the previous study, however, its func-

tion changes totally in this study. The observations that led to the use of this metric

for the joint redundancy quantification was first explained from the perspective of

the exploration properties of DRL algorithms. Then, the proposed redundancy

quantification methodology was demonstrated to be able to effectively quantify the

relative joint redundancy of several simulated redundant agents executing different

tasks with varying number of joints. The advantages of the proposed quantification

method were further proved through the extraction of useful extra information such

as the importance of a joint in a certain task. It has also been demonstrated that the

proposed method could quantify the kinematic and dynamic factors which affect the

joint redundancy of a 7-DOF human-like robotic arm. Finally, it was also possible

to evaluate the optimality of a robotic structure for a given task using the proposed

framework.
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The second study of this thesis was presented in a paper entitled ”Quantification

of Joint Redundancy considering Dynamic Feasibility using Deep Reinforcement

Learning”, which was accepted for the 2021 International Conference on Robotics

and Automation (ICRA).

Chapter 4 focuses on the study of a quadruped robot by using a DRL algorithm.

Different from the studies done in the previous two chapters, this chapter proposes

the use of the DRL algorithm to manipulate the synergy properties of the quadruped

agent, i.e. the gait mode of the agent. A new method to specify a gait mode for the

quadruped robot was proposed. The results showed that the specification of gait

mode sped up the learning process of the DRL algorithm, as well as the synergy

emergence process. The study also demonstrated the possibility to carry out an

energetic study of DRL-trained quadruped robots with two gait modes, i.e. the

gallop and trot gaits, for two different speeds. The advantage of DRL in exploiting

the body condition of the robots were also demonstrated.

The third study of this thesis is submitted to the 43rd Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) as

a paper entitled ”Deep Reinforcement Learning with Gait Mode Specification for

Quadrupedal Trot-Gallop Energetic Analysis”.

Finally, chapter 5 summarizes the findings of the previous chapters. The three

studies are centered around the motor synergy concepts and they are compared

between them. The role of the DRL in the three studies are also discussed and how

it can be used in redundant robotic analysis. To conclude, the main contributions

of this thesis and possible future works are presented.
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Chapter 2

Synergy Development in Deep

Reinforcement Learning

2.1 Introduction

In the neuroscience research field, researchers [3][4][5] have shown that the con-

cept of motor synergy exists in the CNS which uses a much smaller set of variables

to control a large group of muscles to generate movements. The co-activations of

a set of muscles from a smaller number of neural commands, i.e. motor synergies

can reduce the burden of CNS significantly while at the same time imposing a cer-

tain level of coordination between joints that are closely related to each other for

a certain movement. It has been shown in [4][6] that as humans grow and learn,

they acquire motor synergies for optimal motor skills. The motor synergy develop-

ment may explain the ability of human to perform complex movements naturally

and energy-efficiently without thinking too much about the way to perform the

movements.

Inspired by the role of the motor synergies in human motor skills, researchers

[36][37] have conducted experiments in robotic agents to verify if the motor synergy

concept is equally present in the robotic optimal control. The experimental results

suggest that during the optimization process in search for optimal control strategy

in [36][37], the synergy emergence phenomenon is observed as the robotic agents

learn to conduct the given task more energy efficiently. These studies suggest that

the motor synergy concept does not only play a crucial role in human motor skills,

but also in the robotic optimal control field as well.

While the mentioned robotic studies are promising, the authors [36][37] con-

30



2.1. Introduction

ducted experiments on simple robotic agents and used relatively straightforward

optimization algorithms. However, complex robotic agents which possess a lot of

redundancy might be a key for the synergy development process. This is because

that with the presence of redundancy, as in the case of human beings, it allows the

agent to have the ability to opt for the optimal motor skills among other sub-optimal

motor skills, giving rise to the synergy emergence process during the learning phase.

Therefore, in this chapter, robotic agents with more joint redundancy are employed

in the experiments.

A more complicated robotic agent requires a more advanced learning algorithm,

ideally one which shares some similarities with the human learning process. The

DRL algorithm is the natural choice in this chapter as it is able to find a near op-

timal solution in a redundant solution space [8][9], besides having a reward system

similar to the human goal-directed learning process [12][13][14][15]. It is desired that

the synergy emergence process could be recreated in DRL algorithms as well, and

provides some understandings on the following questions: How is the coordination

between robotic joints gradually being discovered during the training of DRL algo-

rithms? How does this coordination relate to the performance and energy efficiency

of the robots? These questions interrogate if the motor synergy plays an essential

role in the DRL algorithms in the search for energy efficient motor skills in robotic

agents.

In the first part of this chapter, a joint-space synergy analysis is carried out

on multi-joint running agents in simulated environments trained using two state-of-

the-art deep reinforcement learning algorithms. The global idea of the first study in

this chapter is illustrated in Fig. 2.1. In the second part of this chapter, a similar

synergy analysis is done on a 7-DOF arm to compare between a classical controller

and a DRL algorithm. This second study shows the learning advantage of a DRL

algorithm over a classical controller in the search for a synergetic solution, while at

the same time shows that the proposed synergy analysis is applicable also to agents

different from the first study.
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Figure 2.1: Illustration of the joint synergies extraction process using PCA de-
composition on action signals (blue) collected from the policy π at certain training
checkpoint. The number of joint synergies W to be extracted can be varied during
the decomposition. In this example, there are three spatiotemporal synergies repre-
sented by the matrices W1, W2 and W3 with the corresponding activation coefficients
C1, C2 and C3. The linear combination of Wi and Ci results in a reconstruction of
the action signals (red).

2.2 Synergy analysis on DRL-trained running agents

2.2.1 Method

2.2.1.1 Simulated agents

This study is carried out on simulated agents using a simulation engine called Mu-

JoCo [67] that are widely used in studying multi-joint locomotion in the DRL re-

search community. An off-the-shelf robotic agent provided by the OpenAI’s Gym

library [68], namely HalfCheetah (HC) is used in this study. To show that the study

is still valid on the same type of agent with different dynamical properties, a second

agent named Heavy HalfCheetah (HeavyHC) is introduced, which has double the

weight of HC. For our third agent, the HC is extended into FullCheetah (FC) and

the two types of agents are illustrated in Fig. 2.2.

HC and HeavyHC are six-joints agents and FC is a twelve-joints agent which

can move in two degrees of freedom (DOF). The motivation behind the choice of

these agents is that they are stable in steady-state and do not need any control to

maintain an upright position. This property is important as it eliminates unneces-
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2.2. Synergy analysis on DRL-trained running agents

sary complexities in the joint synergy analysis. Besides, they are also redundant in

terms of number of joints for the running task in the forward direction, i.e. a task

of two degrees of freedom. The agents are not allowed to deviate from the forward

direction, reducing therefore one degree of freedom in the three dimensional space.

It would not be easy to design classical controllers to control these two redundant

robots for the running tasks as all the joints of the robots need to be coordinated

to run forward efficiently. This is also one of the motivations to use DRL algorithm

to search for the optimal solution in the vast redundant joint space.

The objective of these agents is to run forward as far as possible in a given

duration of time, hence the reward at each time step is the forward velocity of the

agent, as shown in the equation (2.2.1). The second term in the reward function

(2.2.1), with Ai(t) being the torque input for the joint i, is a penalty by default to

impose a little consideration on the energy consumption of the agent during running.

The simplicity of this periodic task is suitable for the study of the coordination of

the joints as highly synergetic movements are required to move forward quickly and

less synergetic control of the joints may lead to inferior performance.

R(t) = v(t)− 0.1 ·
∑
i

Ai(t)
2 (2.2.1)

Two reward-related metrics are used to evaluate the quality of the solutions

found by DRL algorithms for these agents. The first one is the performance, which

measures how far has the agent moved in the forward direction in the given length

of time, as shown in the equation (2.2.2) where δt is one time step in the simulation

environment. The second metric is the performance-energy index, which is the

performance per energy spent during the running task, as shown in the equation

(2.2.3) where E(t) is the energy consumption per time step. In other words, the

performance-energy index indicates the energy efficiency of an agent. The energy

calculation method is discussed in the next subsection.

Figure 2.2: HalfCheetah (HC) and FullCheetah (FC) used in our study. Heavy
HalfCheetah (HeavyHC) is structurally the same as HC but with its weight doubled.
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Performance =
∑
t

v(t)δt (2.2.2)

Performance-energy =
∑
t

v(t)δt/
∑
t

E(t) (2.2.3)

2.2.1.2 Energy equation

Energy is one of the key notions used in this study and therefore it is important to

clearly define the energy equation used in this study. Studies such as [35][41][69]

based their analysis on simulated models and they calculated the energy consump-

tion as a function of the input force to the models. The energy equation at each

time step employed in this study is as (2.2.4):

E(t) =
∑
i

|τi(t) · θ̇i(t)| (2.2.4)

where i is each joint of the agent, τi(t) being the torque applied and θ̇i(t) the angular

velocity of joint i at time step t.

2.2.1.3 Joint synergy analysis on simulated agents

In this section, the human motor synergy analysis previously described in section

1.1.1 is adapted for this study. Since the movements of simulated agents are studied

here, the control signals generated by the DRL-trained policy will be used as the

source signals X in the equation (1.1.3). PCA is then used to solve the equation

(1.1.3) for the matrix of joint synergies W and the matrix of activation signals C in

the same way as in Fig. 2.1.

Once the joint synergies W and the activation signals C are obtained, the original

control signals can be reconstructed with a certain degree of accuracy indicated by

the R2 metric. The R2 accuracy will vary based on the number of joint synergies used

in the reconstruction and this is illustrated on the left in Fig. 2.3. As the number

of synergy components increases, the accuracy of reconstruction also increases. The

shaded region is the area under the curve calculated by
∫ 9

1
R2dx, with R2 being the

accuracy metric, x being the number of synergy components variable. This area

quantifies the synergy level of that accuracy curve in the graph.

When the control signals from different training checkpoints of the policy are
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2.2. Synergy analysis on DRL-trained running agents

collected, the R2 accuracy curves for these checkpoints can then be plotted on the

same diagram and each curve can be associated with different colors from a color

gradient, as illustrated on the right of Fig. 2.3. The light green curves correspond

to the early phase of training and the purple curves correspond to the ending phase

of the training. In this example, it can be noted that the synergy level of the curves

increases towards the end of the training, as fewer synergy components are required

to achieve higher R2 accuracy. It is this type of plot, termed synergy development

graph, that the analysis in this study is based on as this figure contains rich infor-

mation about the development of synergetic movements of an agent throughout the

training phase indicated by the surface area covered by each curve.

Figure 2.3: Graphs of R2 accuracy versus the number of synergy components. On
the left, the accuracy curve for one training checkpoint is shown, with the shaded
region as the area covered by the curve. On the right, the accuracy curves for all
checkpoints are plotted on the same diagram with different colors associated with
them.

2.2.1.4 Synergy-related metrics

The synergy development graph is useful but it is not convenient as it is in graphical

form. Graphical interpretation of experiment results can sometimes be subjective.

Besides, if many experiments are carried out, then it will be hard to keep track

of all the figures. Hence, it will be better to devise a method to evaluate the

synergy development graph quantitatively and objectively. To evaluate the motions

of an agent at the end of the training phase, three synergy-related metrics that

can summarize the information contained in the synergy development graph are

proposed, namely the Final Surface Area (FSA), the Delta Surface Area (DSA) and

the Absolute Surface Area (ASA) as illustrated in Fig. 2.4.
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Chapter 2. Synergy Development in Deep Reinforcement Learning

The FSA is the area covered by the curve of the last training checkpoint of an

agent in the synergy development graph, i.e. the darkest purple line in the graph.

This metric could be interpreted as the synergy level of the motions at the end of the

training, i.e the compactness of the control policy so that fewer set of synergies are

needed to control a larger number of joints. Since human is shown through previous

studies [3][5] that synergy is used to achieve a task smoothly, the FSA is expected

to be big at the end of the training when the performance of the agent for the given

task is high.

The DSA is the area covered between the lines of the last training checkpoint

and the first training checkpoint of an agent and could be interpreted as the net im-

provement in the synergy level of the motions during the learning phase. Generally,

the DSA is expected to be positive, i.e. the purple line is above the yellow line. For

example, in the human learning case, the synergy level of the gestures of an expert

violinist is higher than a novice player in playing a violin [3]. This suggests that

during the learning phase of a human violin player, the synergy level of the playing

skills also increases. If the DSA is calculated in this case, it should also be positive.

A negative DSA indicates a net decrease in the synergy level for the agent’s motions.

The ASA is the biggest surface area covered between any two lines in the synergy

development graph. This metric can be interpreted as the total action space explored

by all the training checkpoints during the learning phase. If different modes of

motion are discovered during the learning, this should be visible in the synergy

development graph as different motions have different synergy levels. Indeed, by

using this metric, the amount of exploration done by any two algorithms during

the learning phase for the same neural networks initialization can be quantified and
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Figure 2.4: The three synergy-related metrics with the shaded regions indicating
the area considered in each metric.
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2.2. Synergy analysis on DRL-trained running agents

compared indirectly. Typically, if the ASA is small, then the agent is likely stuck

to a local action space, which can be a good or a bad subspace and further training

may not increase the performance significantly. On the other hand, when the ASA

is big, the policy is considered to be exploring sufficiently the action space.

While the FSA, DSA and ASA metrics are ad hoc propositions made in this

study, they are thoughtfully designed to quantify the results and they provide the

required information to draw useful conclusions.

2.2.2 Experimental Results

2.2.2.1 Data collection and preprocessing

For all the experiments, SAC and TD3 algorithms, as described in section 1.1.4,

are used to train HC, HeavyHC and FC agents with 15 different random seeds for

each algorithm, for a total of 3 million training time steps. The parameters of the

algorithms are the same as reported in the original papers [32][33] and the codes

are adapted from Softlearning library [70] provided by the SAC authors. During

the training, a training checkpoint is kept every 100 thousand time steps. Fig. 2.5

shows the sequence of running motions of HC and FC agents at the end of training.

After the training phase, the actions signals output by the DRL policy for each

joint of the agent are collected. This is similar to the human synergy analysis [3][4][5]

where the researchers collect electromyography (EMG) signals for the synergy anal-

ysis. In this study, the DRL policy analogically plays the role of the CNS, and

the action signals output by the policy are analogically similar to the EMG signals.

The overview of the data collection and preprocessing process are illustrated in Fig.

2.6. Specifically, in this study, 10 rollouts of 1000 time steps of action signals for

A

B

Figure 2.5: The sequence of running motions of (A) HC agent and (B) FC agent
after the training phase. For the FC agent, the right limbs are red-colored to better
differentiate them from the left side limbs for visualization. At the end of training,
the running motions are periodic and the above sequences are representative of the
running motions with eventually some variations.
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Windows
Truncation
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DRL policy

Figure 2.6: The data collection and preprocessing pipeline for one training check-
point of the DRL policy. The preprocessed data will eventually be decomposed using
PCA for the synergy analysis.

the running motion are collected without any exploratory actions for each training

checkpoint. As a preprocessing step before extracting the synergies, these collected

signals are normalized by subtracting the mean from each dimension of the signals

followed by the truncation of each rollout using a time window as the action signals

are presumably periodic in a running task. In order to take into consideration the

different running speeds of the agent during different checkpoints, adaptive time

windows whose sizes change according to the time needed for an agent to run a D

distance are used. The adaptive time windows truncation is illustrated in Fig. 2.7.

After extracting the joint synergies using PCA, the synergy analysis is carried out as

described in the previous section. The energy consumption per rollout is calculated

using the energy equation (2.2.4) with 1000 time steps. The source code of this

paper can be found at https://github.com/JiazhengChai/synergyDRL.

2.2.2.2 Evidence of Synergy Emergence

First, the action signals and the spatiotemporal synergies of one cycle of running

motion of a HalfCheetah agent trained using the SAC algorithm are analyzed. The

results at the beginning of the training can be found in Fig. 2.8(A) while the results

at the end of the training are shown in the Fig. 2.8(B). As it can be remarked in

the Fig. 2.8(A) , the action signals between neighboring joints, i.e. joints 1-2-3 and

joints 4-5-6, are not correlated which implies a low synergy level as the joints are not

coordinated for the running task. The reconstruction with residual errors in Fig.

2.8(A) also suggests that more synergies are needed to represent the action signals.

The activation coefficients C1, C2 and C3 are of the same magnitude in this case.

On the contrary, the action signals at the end of the training in Fig. 2.8(B) show

clear coordination between joints for the running task, implying a high synergy

level. The up-down phase in the signals seems very similar over neighboring joints.
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Figure 2.7: The truncated action signals collected at the 15th and 30th training
checkpoints of the DRL policy. The truncation window used for the 15th-checkpoint
action signals is of 40 time steps in width while the window of the 30th-checkpoint
is of 32 time steps in width. This is due to the faster running speed of the 30th-
checkpoint HC agent which can finish a predetermined running distance faster than
the 15-th checkpoint agent. It can also be noted that the 30th-checkpoint action
signals are more periodic and coordinated between joints.
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Figure 2.8: (A) The results at the beginning of the training. On the left, the dotted
curves (red) are the reconstruction of the action signals (blue) of a HalfCheetah
agent. The reconstruction is done by the linear combination of the synergies Wi

and the appropriate activation coefficients Ci. On the right, three spatiotemporal
synergies of the running motion are shown. (B) The results at the end of the training.
The emergence of a common phase over neighboring joints can be remarked.
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2.2. Synergy analysis on DRL-trained running agents

Indeed, the action signals of the joints 1-2-3 and the joints 4-5-6 are of opposite

signs, which suggests that the two limbs of the HalfCheetah agent are moving in

opposite directions to create the typical running motion of the front legs and the

rear legs of a quadruped. In this case, the activation coefficient C1 is dominant while

C2 and C3 are negligible. This suggests that the action signals could be represented

with one spatiotemporal synergy at the end of the training for this agent.

The emergence of synergy through the training phase can also be observed using

the spatial synergies. In Fig. 2.9, the spatial synergies of the running motion of

the HC agent are shown. Before training, the HC agent is not good at using its six

joints to execute the running motion smoothly. Indeed, there is no clear pattern

of the joint usage before training as shown on the left of the Fig. 2.9. To execute

an efficient running motion, it is obvious that the front thigh joint (fthigh) and the

back thigh joint (bthigh) must move in opposite phase, i.e. the sign of fthigh joint

and the sign of bthigh joint on the left of the Fig. 2.9 must be of opposite signs.

This is not the case before the DRL training. However, after the training phase, the

emergence of the synergy can be observed and there is a clear pattern of the usage

of the joints for executing the running motion as shown on the right of the Fig. 2.9.

It can be noted that all the joints of the front limb move in opposite phase with all

the joints of the back limb as shown by the opposite signs of the two limbs in the

spatial synergy. This emergence of synergy can be observed even it is not explicitly

written in the reward function, suggesting that the synergy emergence is part of the

obvious solution to run forward efficiently.
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Figure 2.9: The spatial synergies of the HC agent before and after training. Only the
most significant spatial synergy component W1 is shown here. On the vertical axis
of both horizontal bar plots, the first letter of each label indicates whether it belongs
to the front limb (f) or the back limb (b). The foot, shin, thigh joints correspond
to the lower, middle, upper joints of each limb of the HC agent respectively.
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2.2.2.3 Synergy Development Graphs

The previous HalfCheetah example demonstrates clearly that as the HC agent being

trained using the DRL algorithm, the synergy level increases as the joint coordina-

tion increases to execute an energy efficient running motion. Before continuing to

evaluate the relationship between the performance, energy efficiency and the syn-

ergy level of an agent trained using DRL, it is worth taking a qualitative look at

the synergy development graphs of the HC, HCheavy and FC agents throughout the

DRL training phase.

Fig. 2.10 shows the synergy development graphs of the three agents trained

using SAC and TD3 algorithms. Each row in the figure belongs to an agent as

indicated by the title above each plot. Left side plots correspond to the SAC al-

gorithm results and the right side plots correspond to the TD3 algorithm results.

The definition of the colors of each curve in all plots is the same as explained in

Fig. 2.3, i.e. light green curves correspond to the beginning phase of the training

and the purple curves correspond to the ending phase of the training. The more the

curves progress towards the upper left corner of the plot as the training progresses,

the more synergetic the agent is. This is because that fewer PCA components are

required to achieve high R2 score, indicating that the actions signals for different

joints of the agent can be easily represented by fewer variables, showing a high level

of coordination between joints for the running task.

For each agent, it can be easily remarked that the SAC trained agents are more

synergetic than the TD3 trained agents. The curves of SAC-trained agents pro-

gresses towards the upper left region of the plots much more than the TD3-trained

agents. Visually, this suggests already that the SAC algorithm is able to find more

synergetic running solution than the TD3 algorithm due to its better exploration

strategy. It must also be noted that the direction of progression of the curves for the

SAC algorithm are generally towards the upper left, while the direction is sometimes

not so clear for the TD3 algorithm. Indeed, the curves of the synergy development

graphs of TD3 algorithm tend to concentrated around one narrow region and not

much progression happens during the training phase. On the contrary, the pro-

gression of the curves for the SAC algorithm is obvious and it happens by a large

margin. This can again be explained by the exploration strategy of each algorithm,

with the TD3 exploration strategy tends to be less effective as it explores only the

running solution in a nearby neighbourhood of the current solution, resulting in the

narrow synergy development graphs as shown in Fig. 2.10.

In most of the time, the DRL optimization process can find an optimal solution
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Figure 2.10: The synergy development graphs of HC, HCheavy and FC agents
trained using the SAC and the TD3 algorithms. The top row shows the HC syn-
ergy development graphs; the middle row shows the HCheavy synergy development
graphs; the final row shows the FC synergy development graphs. The SAC and
TD3 results of each agent are aligned side by side so that they are easily comparable
between them.
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Chapter 2. Synergy Development in Deep Reinforcement Learning

and the synergy level will increase throughout the training as shown in most of

the plots in Fig. 2.10. However, in some rare cases, the DRL algorithm will fail

to find an optimal solution due to reasons such as bad parameters initialization

which is normally out of the user’s control, the synergy development graph will

show a negative progression of the curves throughout the training, i.e. the synergy

level of the agent decreases throughout the training, as shown in the Fig. 2.11. In

such cases, the DRL algorithm converges to a suboptimal solution and the resulting

performance and energy efficiency of the agent are also inferior to the normal cases.

This is interesting as the synergy development graph can provide information on

the quality of the found solution and this shows potential to be exploited for further

applications of the synergy development graph.

While the qualitative reasoning of the synergy development graphs can already

give some insightful ideas about the properties of the SAC and TD3 algorithms, it is

always better to have a quantitative evaluation of all experiments in order to be able

to judge them objectively. Indeed, the synergy development graphs in Fig. 2.10 are

only one sample among the 15 experiments that are carried out for each agent. It is

impossible to keep track of all the results qualitatively. In the next section, the three
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R
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Figure 2.11: The negative progression of the curves, i.e. the synergy level decreases
throughout the training, in a synergy development graph when the DRL optimiza-
tion process fails to find an optimal solution and converged to a suboptimal solution
instead.
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2.2. Synergy analysis on DRL-trained running agents

synergy-related metrics are used to evaluate the experiment results quantitatively.

2.2.2.4 Performance, Energy efficiency and Synergy-related metrics Eval-

uation

With the concept of synergy level and joint coordination illustrated via the previous

HalfCheetah example, a more detail analysis can be done on the relationship between

the development of the performance, the performance-energy and the synergy level

of the three agents during the training phase where the synergy level is represented

by the surface area defined in Fig. 2.3. As shown in Fig. 2.12, the synergy level

for the SAC experiments develops more significantly and correlates well with the

two reward-related metrics, especially towards the end of the training. On the

other hand, the synergy level for the TD3 experiments remains almost constant or

even decreasing while the reward-related metrics are gradually increasing during

the training phase. If Fig. 2.12 is analyzed carefully regarding the growth of the

synergy level represented by the surface area and the growth of the performance-

energy index, it can be noted that they are globally correlated. If the growth of

the performance-energy index is minimal, the change of the synergy level is also

minimal. The higher synergy level and the better reward-related metrics for the

SAC algorithm suggest that the synergy might be indeed the latent variable to

improve the learning process of a RL algorithm, which has been questioned in the

earlier part of this study.

Next, the policies are evaluated at the end of the training phase using the pro-

posed synergy-related metrics. The results of these metrics are presented in Fig.

2.13. To show the pertinence of each metric, the p-values of the Two-Sample t-

Tests are calculated between the results of the two algorithms for each agent. If the

p-values are smaller than 0.05, it indicates that the difference between the results

of SAC experiments and TD3 experiments are significant and that this particular

metric can differentiate SAC-trained agents from TD3-trained agents. It can be

remarked that the synergy-related metrics, with the exception of the DSA metric,

distinguish clearly SAC and TD3. The FSA, which represents the synergy level of

the agent at the end of the training, is higher in SAC than TD3. This suggests that

SAC tends to find solutions that result in more synergetic motions for the robot

agents and this property cannot be observed via the usual performance metric. It

should be noted that a high synergy level might suggest that uncomplicated motions

are learnt by the agents and can possibly have a negative impact on the performance.

However, this is not the case for the results in this study as shown previously in Fig.

2.12.
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Chapter 2. Synergy Development in Deep Reinforcement Learning

Figure 2.12: Graphs showing the development of the synergy level represented by the
surface area (purple), the performance (green) and the performance-energy (orange)
for the three agents during the training phase. The three vertical axes of different
scales on the same row are common for the two graphs on that row.
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2.2. Synergy analysis on DRL-trained running agents

Figure 2.13: Bar plots showing the results of the three synergy-related metrics for
three different agents trained with SAC and TD3. The p-values for the Two-Sample
t-Tests between each agent are given above the corresponding bars. * is to denote
p < 0.001.

Secondly, the DSA, which shows the net improvement in the synergy level after

the training phase, is also higher in SAC experiments than in TD3 experiments.

Although the standard deviation is higher, the DSA of SAC is positive on average

but TD3 fails to have this property. This might be related to the exploration strategy

of TD3 as it explores by adding noise to the actions suggested by its policy. This

random exploration of the action space might cause the synergy level of the motions

to change rapidly without any specific order. SAC, on the other hand, explores more

systematically by maximizing the entropy of the policy. This enables the policy to

propose systematically better actions, which is translated by the positive DSA. The

ASA, which represents the action space explored by all training checkpoints, is

likewise higher in SAC than TD3. Noting that the neural networks are randomly

initialized for both algorithms, this suggests that SAC explores more than TD3,

which is proven in SAC paper [32] as a result of their entropy-maximizing exploration

strategy. It equally implies that SAC gets stuck to local solution less often, which

matches with the higher performance shown in Fig. 2.12.

47



Chapter 2. Synergy Development in Deep Reinforcement Learning

Now, the reward-related metrics for the two algorithms are compared at the end

of the training, which are shown in Fig. 2.14. The performance of SAC is better than

TD3, which is already proven in [32]. The performance achieved by TD3-trained

agents is still acceptably competitive with SAC in the simpler HC and HeavyHC

cases as indicated by the higher p-values of the Two-Sample t-Tests. However, if

the two algorithms are examined closer by looking also at the energy consumption

of the agent during the task, the energy consumed is lower in SAC than in TD3,

resulting in higher performance-energy for SAC. As a result, the performance-energy

index shows that SAC is overall better than TD3, achieving a solution that allows

the agent to achieve high reward with lower energy consumption.

From these results, it can be deduced that a DRL algorithm cannot be evaluated

using only the performance metric. This metric fails to distinguish the SAC and TD3

algorithms while the performance-energy index and the proposed synergy-related

metrics indicate that the two algorithms are indeed distinct from each other based

on the Two-Sample t-Tests results. The proposed synergy-related metrics show that

SAC is one example of a DRL algorithm that has very nice properties in terms of

the synergy concept which may explain its better performance.

Figure 2.14: Bar plots comparing the results of the usual performance metrics, and
also two energy-related metrics between SAC and TD3 for all agents. The p-values
are presented above the corresponding bars.
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2.2.3 Discussion

For this study, if the reward-energy-related metrics is associated with the synergy-

related metrics, there are some interesting implications. First, the higher synergy

level in SAC, indicated by the FSA and the DSA, does mean higher performance for

the agents. This can be further extended by observing that a higher synergy level

also means higher energy efficiency in accomplishing a task. The biological motiva-

tion behind this outcome can be found in the work of [34] where the authors did

experiments on human subjects and showed that the use of synergies led to higher

rowing economy, which is equivalent to the energy efficiency metric in the task of

rowing. The similarity with the human study [34] provides convincing supports for

the outcomes of this study.

2.3 Synergy analysis on DRL-trained 7-DOF robotic

arm

In this second part of the chapter, a similar synergy analysis is done on a 7-DOF

robotic arm. However, in this second part, there are two objectives. First, the

performance and energy efficiency of the robotic arm controlled by either a classical

PD controller or the SAC algorithm are compared. By doing this, it is hoped that

the advantages of a DRL algorithm over the classical PD controller could be shown.

In particular, the learning ability in the DRL algorithm should make the control

strategy more accurate and energy efficient, which is one of the main motivation of

this thesis. Second, this second study of the chapter is intended to demonstrate that

the synergy analysis done on the running agents in the first part of this chapter is

also applicable to a different kind of agent, the 7-DOF robotic arm. It is desirable

that the synergy emergence phenomenon could also be observed in the DRL learning

phase of the humanoid arm.

2.3.1 Method

2.3.1.1 7-DOF simulated robotic arm

In this study, a 7-DOF robotic arm simulated by the MuJoCo engine is used, as

depicted in Fig. 2.15. In the following, this agent will be named as the Arm3D

agent. The Arm3D agent comprises three parts, i.e. a 3-DOF shoulder joint for

abduction, flexion, and rotation; a 2-DOF elbow joint for flexion and pronation; and
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Figure 2.15: The Arm3D agent (left) and its corresponding kinematic diagram
(right). Joints i1 to i3 enable shoulder abduction, flexion, and rotation, respectively;
i4 and i5 enable elbow flexion and pronation, respectively; and i6 and i7 enable wrist
flexion and abduction, respectively. The orange extremity is the fingertip.

a 2-DOF wrist joint for abduction and flexion. Based on the 7-DOF Arm3D robotic

agent, a 3-DOF Arm3D agent is also created by allowing only the joint rotations in

the sagittal plane, i.e. the joints i2 , i4, and i7 in the Fig. 2.15. The motivation

of using two versions of the Arm3D agents in the experiments is to compare the

consistency of the results from both the lower DOF and the higher DOF Arm3D

agents.

For the physical properties (e.g., body segment dimensions and weights) of the

Arm3D agent, it is made sure that the physical properties of the robotic agent

are suitable and reasonable that a feasible solution can be found through the DRL

algorithms by considering the agent’s dynamic conditions. Specifically, the arm

segment length and weight are set as the following, with l1, l2, l3 correspond to the

length of the upper arm, lower arm, and the wrist respectively, while m1, m2, m3

correspond to the weight of the upper arm, lower arm, and the wrist respectively.

l1 = 0.35 [m] l2 = 0.23 [m] l3 = 0.08 [m]

m1 = 1.98 [kg] m2 = 1.18 [kg] m3 = 0.45 [kg]
(2.3.1)

After having described the two variations of the Arm3D agent, two different

tasks are assigned to each variation of the Arm3D agent, as shown in the Figure

2.16. For the 3-DOF Arm3D agent on the left of the Figure 2.16, the planar point

tracking task is assigned and the agent need to track the moving red target point

as accurately as possible in the sagittal plane. To be more precise, the red target

point will move in the 2D plane according to the Eq. (2.3.2), where p1 and p2 are
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Figure 2.16: The point tracking tasks assigned to the Arm3D agents. On the left of
the figure, the 3-DOF Arm3D agent is assigned the planar point tracking task. The
red point is the target that moves back and forth along the blue dotted trajectory.
On the right of the figure, the 7-DOF Arm3D agent is assigned the circular drawing
task in the 3D space.

the two extremities of the straight line fixed manually before the experiments, and

f being the frequency of the point.

q(t) = (p1 − p2)sin(2πft)/2 + (p1 + p2)/2 (2.3.2)

For the 7-DOF Arm3D agent on the right of the Figure 2.16, the circle drawing

task in the 3D space is assigned. The red moving target moves in a circular trajectory

according to the Eq. (2.3.3), where pc is the center of the circular trajectory, and

the second term is the vector specifying the circular trajectory in the 3D space. In

both the straight line tracking and the circle drawing tasks, the red target is moving

with a frequency f of 0.5 Hz.

q(t) = pc + [−0.18 sin(2πft) − 0.18 cos(2πft) 0]T (2.3.3)

The choice of the planar point tracking task and the circle drawing task are not

by chance. In the motor control domain, the planar point to point reaching is well-

known and it can be found in previous studies such as [69][7][71]. The simplicity

of this task is important as it allows for easy understanding and analysis of the

experimental results. The circle drawing task assigned to the 7-DOF Arm3D agent

can be found in studies such as [72][73][74]. It is a more difficult task as it requires

the coordination of both shoulder and elbow joint movements to draw the circle

smoothly.

Similar to the running-agent study in the first part of this chapter, all dynamics
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parameters, such as the segment inertia and the mass, as well as the model of the

Arm3D itself, are completely blind to the DRL algorithm, more specifically the SAC

algorithm. This study aims to minimize the tracking error between the finger of the

Arm3D model and the red target point while considering the energy efficiency of

the movement. Hence, the reward function for the SAC algorithm is set as shown

in the Eq. (2.3.4):

R(t) = −ω1 · ||
#                   »

fingertip(x, y, z, t)− #          »
target(x, y, z, t)||2 − ω2 ·

∑
i

Ai(t)
2 (2.3.4)

where ||.||2 denotes the Euclidean Norm;
#                   »

fingertip(x, y, z, t) is the vector repre-

senting the position of the finger tip in the 3D space;
#          »
target(x, y, z, t) is the vector

representing the position of the target point in the 3D space; Ai(t) the input torque

at each joint i; ω1 and ω2 are the constant coefficients to give different weightings be-

tween the first and the second term in the Eq. (2.3.4). The first term is the distance

between the target position and the current fingertip position at each time step,

while the second term is for the energy expenditure consideration during the move-

ment. ω1 is set to be always larger than ω2 so that the tracking error is minimized

first before considering any form of energy saving in the optimizaiton process.

The SAC training length for the 3-DOF Arm3D agent are 30 thousand training

steps while for the 7-DOF Arm3D agent, 60 thousand training steps are used. During

the training process, one roll-out of the arm motion is kept every 1000 training steps.

Thus, for all training steps, a total of 30 rollouts are collected for the 3-DOF Arm3D

agent while a total of 60 rollouts are collected for the 7-DOF Arm3D agent. The

length of one training step is 1000 simulation steps. The training steps were adjusted

based on the complexity of the Arm3D agents in order to converge in terms of task

performance.

In the current study, an emphasis are put on analyzing the coordinated move-

ments between wrist, shoulder and elbow joint. Hence, the fingers’ degree of freedom

is not considered.

2.3.1.2 Classical PD controller

The classical PD controller that is used in this study to compare to the SAC algo-

rithm is illustrated in Figure 2.17. It is the similar classical PD controller described

in [75] where the authors carried out their study on a robotic model structurally
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Figure 2.17: The classical PD controller for the Arm3D point tracking tasks. The
P block represents the proportional controller while the PD block represents the
proportional-derivative controller. The block JT (θ) and FK are to map the param-
eters back and forth between the 3D task space and the Arm3D joint space.

similar to the Arm3D agent. The control loop in Figure 2.17 contains a few different

steps. First, the distance between the target point q(t) and the current finger tip

position x(t) is calculated, denoted as ∆p. The endpoint error then passes through a

proportional (P) block to become the feedback force error. The feedback force error

is mapped by the inverse Jacobian of the Arm3D agent, the JT (θ) block into the

motor-command error in the joint space. The output of the local PD controller in

the joint space, which contributes to the smooth changes of the joint angles, is added

together with the motor-command error and produce input torque commands for

the Arm3D’s joints. The block FK then maps the resulting joint angle and angular

velocity back into the task space as the finger endpoint x(t), and the control loop

repeats.

The torque input for the Arm3D agent described above can be written in equation

as the Eq. (2.3.5).

τ(t) = −JT (θ)k∆p− Aθ −Bθ̇ (2.3.5)

where τ(t) is the control torque inputs for the joints; θ the joint angels; θ̇ the angular

velocity; JT (θ) the transpose of the Jacobian of the Arm3D; k the gain of the task

space proportional feedback; ∆p the endpoint error vector; A and B the diagonal

matrices which consist of the proportional and derivative gains of the local PD

controller in the joint space.

In contrary to the DRL algorithm which needs to be trained, the PD feedback

control does not require any training. For the experiments in this study, the PD
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control is tested with 1000 simulation steps, which is corresponding to 20 s, for both

the 3-DOF and 7-DOF Arm3D agents.

2.3.1.3 Additional evaluation metrics

To evaluate the results of the Arm3D agents, the previous synergy analysis and

the energy equation 2.2.4 are equally used in this study. In addition, a few eval-

uation metrics are introduced here. First, to evaluate the tracking performance of

the Arm3D agent, the average endpoint error during the training steps are calcu-

lated, which is the root-mean-square (RMS) error between the target point and the

fingertip endpoint throughout one rollout of simulation.

Second, a new measure is introduced to correctly evaluate the rate of motion

accuracy per the energetic effort. It is used in [75] to evaluate the coupled index

over both error and energy for a reaching task, and it is named as the E-E index,

which means (1/Error)/Energy. It is simply the tracking accuracy rate per energy

consumption. 1/Error indicates the tracking accuracy, and is a hyperbolic measure

used to evaluate a situation with lesser error as a priority. The zero error situation

would not occur in the moving-object-following task. This index was used for a

posterior evaluation of the performance of the Arm3D agent controlled by both the

SAC algorithm and the PD controller.

Lastly, the joint correlation metric characterizes the coordination of the Arm3D’s

shoulder and elbow joint movements is also introduced. This metric is also employed

in neuro-rehabilitation study [76] to measure motor synergies. In this study, for the

3-DOF Arm3D agent, the joint correlations are calculated from the shoulder and

elbow joint angles in the sagittal plane. For the 7-DOF Arm3D agent, the joint

correlations are computed from the shoulder flexion angle and elbow flexion angle

since flexion of both joints are mainly required to perform the circular reaching task

in this study.

2.3.2 Experimental Results

2.3.2.1 Performance and Energy efficiency Comparison between DRL

and PD controller

Figure 2.18 illustrates the fingertip endpoint transition during the planar tracking

task of the 3-DOF Arm3D agent when controlled by: (a) the PD feedback control

and (b) the DRL algorithm. On the left of the Figure 2.18, a cool color map,
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Figure 2.18: The endpoint transitions of 3-DOF Arm3D agent (a) with the PD
feedback control and (b) with the DRL algorithm. For the PD controller (left), the
color of the curve changes as the simulation step advances. For the DRL algorithm
(right), the color of the curves changes as the training step advances. The black
solid lines in both plots are the trajectory of the target point.

which illustrates sequential transition of the endpoint, is used for the PD feedback

control, while a PiYG color map (ranging from purple to green) is used for the DRL

algorithm to illustrate the sequential learning transition. The endpoint transition in

the Figure 2.18(a) shows that the PD feedback controller is affected by the gravity

(the downward direction of the y-axis) and the interaction torques between joints of

the Arm3D agent. Since there is no learning effect for the PD feedback control, the

endpoint loop remains unchanged after the initial transitory phase and a constant

error exists. By contrast, in the case of the DRL algorithm, it can be noticed that

the fingertip trajectory gets closer to the target (black solid line) as the training

progresses, reducing the effects of gravity and interaction torque. This qualitative

result is already demonstrating the advantage of the DRL algorithm over a classical

PD controller, specifically the learning ability of the DRL algorithm.

Next, the quantitative results are presented in the Table 2.1, including the end-

point tracking error, the energy consumption, and the E-E index developments

throughout the training phase of the 3-DOF Arm3D agent. As there is no training

for the PD controller, only the first row of the table is filled. From this table, it

can be noticed that while at the early stage of the training, the performance of the

DRL algorithm is worse than the PD controller in terms of the three metrics in the

table. However, as the training progresses, the DRL algorithm eventually surpasses

the PD controller as it achieves lower tracking error, lower energy consumption and

higher energy efficiency in controlling the Arm3D agent.
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Table 2.1: Endpoint Tracking Error, Energy Consumption, and E-E Index of the
Planar Tracking Task for the 3-DOF Arm3D agent

PD Feedback Control DRL Control

Error Energy E-E Error Energy E-E
1000 0.041 10.890 2.262 0.224 2.299 1.940
6000 0.045 6.318 3.544
12000 0.022 5.836 7.853
18000 - - - 0.019 5.724 9.116
24000 0.017 5.684 10.290
30000 0.016 5.581 10.749

Figure 2.19 illustrates the top view of fingertip endpoint transition during the

circle drawing tasks for the 7-DOF Arm3D agent when controlled by: (a) the PD

feedback control and (b) the DRL algorithm. Similarly to the previous task, there

is a constant tracking error for the PD controller. For the DRL algorithm on the

right of the Figure 2.19, the final tracking error after the training is clearly lower

than that of the PD controller. However, the initial fingertip endpoint transition of

the DRL algorithm is more random than the PD controller due to the exploration

for a better solution at the early learning phase. This is one of the key characteristic

of a DRL algorithm.

The quantitative results for the 7-DOF Arm3D agent is presented in the Ta-

ble 2.2, including the endpoint error, the energy consumption, and the E-E index

developments throughout the training. From this table, it can equally be noticed
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Figure 2.19: The endpoint transitions of 7-DOF Arm3D agent (a) with the PD
feedback control and (b) with the DRL algorithm. For the PD controller (left), the
color of the curve changes as the simulation step advances. For the DRL algorithm
(right), the color of the curves changes as the training step advances. The black
solid circles in both plots are the trajectory of the target point.
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Table 2.2: Endpoint Tracking Error, Energy Consumption, and E-E Index of the
Planar Tracking Task for the 7-DOF Arm3D agent

PD Feedback Control DRL Control

Error Energy E-E Error Energy E-E
1000 0.086 8.771 1.326 0.249 1.222 3.286
10000 0.137 14.612 0.501
20000 0.164 20.542 0.297
30000 - - - 0.089 19.528 0.574
50000 0.035 16.978 1.666
60000 0.026 17.903 2.140

that after training, the performance of the DRL algorithm is better than the PD

controller in exception of the energy consumption metric. This can be due to the

existent of extra joint rotations for minor improvement of the tracking error. Despite

the higher energy consumption, the energy efficiency E-E of the DRL algorithm is

still higher than the PD controller.

2.3.2.2 Synergy Emergence Phenomenon

Figures 2.20 and 2.21 illustrate the phase portraits between the shoulder and elbow

joint angles of the 3-DOF and 7-DOF arm3D agents respectively, where on the

left of the figures are for the PD controller and the right of the figures are for the

DRL algorithm. The phase portraits are time-independent and they shows how well

the two joints coupled to each other in the working space. The joint correlation

coefficient is also calculated and shown in the top left of each plot to indicate how

closely coupled are the joints. For both the 3- and 7-DOF agents, the PD controller

shows more unrelated and non-synergetic solutions between the shoulder and elbow

as the joint correlation coefficient is lower than the DRL algorithm. Indeed, the DRL

solutions consistently converge to an aligned joint combinations during learning,
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Figure 2.20: The phase portrait of the 3-DOF Arm3D agent between the shoulder
and the elbow joint angles for (a) the PD controller and (b)the DRL algorithm. The
coefficient of the joint correlation in the final phase is shown in the upper left corner
of each plot as a metric of the joint synergy.
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Figure 2.21: The phase portrait of the 7-DOF Arm3D agent between the shoulder
and the elbow joint angles for (a) the PD controller and (b)the DRL algorithm. The
coefficient of the joint correlation in the final phase is shown in the upper left corner
of each plot as a metric of the joint synergy.

indicating that the shoulder and elbow motions become tightly coupled to execute

the given tasks. This indicates that the joint synergy emerges through the learning

phase for the DRL algorithm.

As a final confirmation to show the synergy emergence phenomenon in the DRL

learning process, the synergy development graph introduced in the first part of this

chapter is plotted. Figure 2.22 shows the synergy development graphs for both the 3-

DOF Arm3D agent (left) and the 7-DOF Arm3D agent (right). As one can notice on

the graphs, the synergy level increases as the learning progresses, indicating more

coordinated movements are carried out to accomplish the tracking tasks. These

results match well with the joint correlation coefficient results.

2.4 Discussion

As mentioned before, the synergy concept is not explicitly implemented in SAC,

however, it can be observed in both studies of the chapter that it converges to the

optimal cases by arriving at a synergetic solution which is similar to the human

learning case. This ultimately suggests that the synergy concept is indeed needed in

a learning process for an agent with redundant joints to achieve a task in an optimal

way [69][75]. Indeed, SAC and TD3 are applicable for a lot of different problems

other than for robotics, which suggests that a highly-specialized learning algorithm

with the synergy concept integrated into it may be more suitable for robotic tasks

and further improve the performance and energy efficiency achieved by SAC and

TD3. The importance of energy efficiency is mentioned in [41][42] as the energy

consumption issue is no longer negligible in a real-world robot.

For the current work, it is the first step to try to apply the synergy concept in

analyzing DRL algorithms and the joint synergy analysis is only done on simulated
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Number of Synergy Components

A B3 -DOF Arm3D 7 -DOF Arm3D

Figure 2.22: The synergy development graph for the 3-DOF Arm3D agent on the
left and the 7-DOF Arm3D agent on the right. The purple curves correspond to the
early training phase while the green curves correspond to the end of the training
phase. The fewer number of curves for the 3-DOF Arm3D graph is due to the fewer
training steps needed for the easier 2D planar tracking task. Both the graphs show
that the synergy level increases throughout the DRL training phase.

agents. There is still room for improvement in both the studies. For example, in the

synergy extraction process, low energy simple movements can a have high synergy

level (but low performance), and this may make the results harder to interpret.

Another issue is that while the physics engine MujoCo [67] and OpenAI gym [68]

may simulate complex dynamics for the locomotion task, there could be some gap

from the real-world dynamics. As a result, more future works need to be done on

more complex agents and environments. This chapter serves as a preliminary step

to show that the synergies are indeed related to the improvement in performance

and energy efficiency during the learning phase of DRL algorithms.

2.5 Conclusion

The analysis in this chapter has tried to link two different fields of research, which

is the human motor synergy concept and the DRL for robotics, and demonstrated

some promising relationships between the two domains. Although the synergy con-

straint has never been encoded into the reward function of a DRL algorithm, the

synergy emergence phenomenon could be observed statistically in the learning agent

in both studies in this chapter. To our knowledge, it is the first attempt to quan-

tify the synergy development in detail and evaluate its emergence process during
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deep learning motor control tasks. Indeed, it has been successfully shown that the

synergy level correlates overall well with the performance and the energy efficiency

metrics for the SAC-trained agents, while for the TD3-trained agents, the synergy

level remains constant or decreases even if the two metrics are gradually increas-

ing. Interestingly, the proposed synergy-related metrics equally reflected a better

learning capability of SAC over TD3. It suggests that these metrics could be ad-

ditional new indices to evaluate DRL algorithms for motor learning. As a result of

this study, it has been demonstrated that the synergy concept may be one of the

key elements for DRL algorithms and one should consider to include synergy con-

straints when designing a new DRL algorithm for robotics. This may speed up the

learning process of a robotic agent with better performance and energy efficiency.

The results also indicated that the synergy of the body control is an issue related to

the coupling of performance and energy, as proposed in some previous studies of the

coordination of a redundant robotic arm [75][77]. In the second part of this chapter,

it has also been shown that the learning ability of a DRL algorithm is one of the

advantages that it is better than a classical PD controller. This ability enables DRL

algorithm to achieve higher performance and more energy-efficient solutions than

the PD controller, besides confirming the synergy emergence phenomenon in DRL,

as shown by the results of the Arm3D point tracking tasks.
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Chapter 3

Deep Reinforcement Learning for

Joint Redundancy Quantification

3.1 Introduction

In the previous chapter, a synergy analysis is carried out on simulated redundant

agent using DRL and several synergy-related metrics are introduced. One metric in

particular, the absolute surface area (ASA) of the synergy development, is found to

be capable of quantifying the amount of exploration performed by a DRL algorithm

before arriving at an optimal control policy to accomplish a given task. When the

algorithm needs to explore excessive suboptimal sequences of joint movements dur-

ing the training phase before finding an optimal solution, this typically indicates

that the robotic agent has a high degree of joint redundancy, and vice versa. In-

deed, the excessive exploration required before accomplishing the primary task is a

manifestation of high joint redundancy, as by definition, a redundant robot is one

that possesses more resources than those strictly required to execute its primary

task [56].

Applying the above concept in the study in this chapter, the ASA metric is used

to quantify the relative joint redundancy of a robotic agent between different joint

configurations. In the following of this study, the ASA metric is renamed to the

synergy exploration area (SEA) metric, which is more appropriate for the context

in this study. Indeed, synergy [55] can be interpreted as the mode of motion of a

robotic agent. As a DRL algorithm explores different modes of motion to find an

optimal policy for the given task, it indirectly conveys information about the robotic

joint redundancy.
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Motivated by the possibilities that DL offers in terms of scaling to difficult prob-

lems, DRL is used to approach the problem of quantifying robotic joint redundancy.

To further show that the degree of redundancy is more than just counting the num-

ber of joints a robotic agent has, further experiments are carried out to use the SEA

metric for quantifying the joint redundancy affected by the kinematic properties and

the dynamic properties of an agent. Fig. 3.1 gives a quick glance at the simulated

robotic agents and the corresponding tasks used in our study. Detailed explanations

are given further in this chapter.

A B

C D

E F

Figure 3.1: The simulated robotic agents with their respective task(s) used in our
joint redundancy quantification study. (A) Planar line trajectory-following task for
the Arm2D agent with a red mobile target; (B) 3D circular trajectory-following task
for the Arm3D agent; (C) running task for the Half-Cheetah; (D) squatting task for
the Half-Cheetah; (E) running task for the Ant; (F) squatting task for the Ant.

3.2 Method

3.2.1 Configurations of simulated agents

A total of four different types of simulated agents are investigated in this chapter

as shown in Fig. 3.2. These simulated agents were simulated using a simulation en-

gine named MuJoCo [78] with specific physical properties such as the body segment

weights and dimensions. The physical properties of the robotic agents are made

sure to be reasonable and a feasible solution could be found by the DRL algorithms

considering the dynamic condition of the agents.
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Figure 3.2: Simulated robotic agents with their corresponding kinematic diagrams.
All joints are hinge joints and each joint is annotated with a letter and a subscript
number: (A) Arm2D, a simplistic multi-joint robotic arm for following planar tra-
jectories. The green extremity is the fingertip. (B) Arm3D, a human-like robotic
arm with seven degrees of freedom for following circular trajectories in the three-
dimensional (3D) space. Joints i1 to i3 enable shoulder abduction, flexion, and ro-
tation, respectively; i4 and i5 enable elbow flexion and pronation, respectively; and
i6 and i7 enable wrist flexion and abduction, respectively. The orange extremity is
the fingertip. (C) Half-Cheetah, a robotic agent that mimics the limb configuration
of a half-side of a quadruped; (D) Ant, a robotic agent with four limbs having two
joints each. There are two types of limb, namely the regular limb and the redundant
limb, that are used in two different experiments. The hip joints are annotated k1
(k′1) to k4 (k′4) and the knee joints are annotated k5 to k8.
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First, a simplistic multi-joint robotic arm, the Arm2D agent (Fig. 3.2A) is used

as a toy example to demonstrate that the SEA metric can effectively measure the

relative joint redundancy in the simplest case. The Arm2D is designed to follow

a planar line trajectory (Fig. 3.1A), and the number of joints aligned in parallel

is varied from two to eight in these experiments by removing certain joints (Table

3.1), with the remaining joints always distributed equidistantly between the pink

shoulder joint and the green fingertip. In theory, two degrees of freedom (DOF) are

enough for tracking the planar trajectory in the 2D space. This toy example allows

us to isolate the joint redundancy aspect of interest without the need to consider

other non-essential aspects. Additionally, a more realistic human-like robotic arm,

the Arm3D agent (Fig. Fig. 3.2B) is used to illustrate that the proposed method can

be scaled to a more complicated case. This agent is assigned to perform the circle

drawing task in the 3D space (Fig. 3.1B). This task demands at least three DOF for

the position tracking, four DOF when the hand orientation is maintained, and the

Arm3D is well-suited for this task. The Arm3D has seven DOF, with three DOF

assigned to the shoulder for abduction, flexion, and rotation; two DOF assigned

to the elbow for flexion and pronation; and two DOF assigned to the wrist for

abduction and flexion. To investigate the relative joint redundancy of the Arm3D

under different configurations, the less important joints were gradually added to a

3-DOF Arm3D agent (Table 3.1) in the experiments, thus increasing the degree of

joint redundancy. The aim of these experiments is to verify that the SEA metric can

provide relevant information for the added joint redundancy in the Arm3D agent

as it executes a circular tracking task. Indeed, the joint configurations in Table

3.1 are designed such that the most crucial joints for the given task will always be

present, with the less important joints gradually added to highlight the increase in

joint redundancy, if any occurs.

To further extend the study to uncommon cases, two additional robotic agents

are investigated; the Half-Cheetah (Fig. 3.2C) and the Ant (Fig. 3.2D). These two

agents have unconventional robotic structures, and classical model-based approaches

to quantify their joint redundancy will easily fail as the dynamically feasible redun-

dant solution space is not easily computed for the free-moving robots. Indeed,

different from the Arm2D and Arm3D agents whose shoulder joints are anchored at

a fixed point, the Half-Cheetah and Ant agents can move freely in the 2D and 3D

space respectively interacting with the environment. When a robot base is fixed at

a reference point, the dynamic feasibility depends solely on the body side dynamics

condition, free from the environmental interaction. However, for the free-moving

robots, the state of the contact is not static, then the redundancy of dynamically

feasible solution is difficult to be quantified in a systematic way.
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Table 3.1: Joint configurations for varying the DOF of each agent

DOF Arm2D Arm3D Half-Cheetah (Redundant-)
Ant

2 h1, h5 - j1 − j2 -

3 - i2 − i4 - -

4 h1, h3, i1 − i4 j1 − j4 -
h5, h7

5 - i1 − i4, i6 - -

6 h1, h3, i1 − i4, j1 − j6 -
h5 − h8 i6 − i7

7 - i1 − i7 - -

8 h1 − h8 - - (k′1 − k′4)/k1 − k4,
k5 − k8

The Half-Cheetah and the Ant structures serve as the first verifications that our

DRL-based joint redundancy quantification approach can scale to complex robotic

agents. First, a running task (Fig. 3.1C) is considered for the Half-Cheetah with

two-, four- and six-joint configurations (Table 3.1). Then, the task is changed to

a squatting task (Fig. 3.1D), i.e., the Half-Cheetah must try to reach the lowest

and highest reachable points alternatively with respect to the center of its body.

By performing these two sets of experiments with different tasks, we aim to demon-

strate that the SEA metric can not only provide information about the relative joint

redundancy of an agent for a single task, but also about functions across different

tasks. From this perspective, a running (Fig. 3.1E) and a squatting task (Fig.

3.1F) are similarly designed for the Ant with different joint configurations (Table

3.1). Specifically, the four hip joints of the Ant are first set to enable abduction,

i.e., rotation around the vertical axis at the center of its body, within a fixed range.

This configuration of limbs is denoted as the regular limbs (Fig. 3.2D). Then, exclu-

sively for the squatting task, the hip joints are configured to enable flexion within

a small range to demonstrate that the direction of rotation of a joint can affect the

overall joint redundancy for a task. This type of limbs is named as the redundant

limbs (Fig. 3.2D) and the corresponding agent as the Redundant-Ant. Indeed, the

joint redundancy does not depend solely on the number of joints, but also on the

kinematic properties of the joints for the given task. The SEA metric is used in
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hope of capturing this subtle aspect through these experiments. To further show

the usefulness of the SEA metric, it is also tested to verify if it can quantify the

joint redundancy affected by the kinemtaic properties and the dynamic properties

of an agent, which is explained later.

3.2.2 Task specification in Deep Reinforcement Learning

The DRL algorithms employed in all the experiments are the SAC [79] algo-

rithm and the TD3 [80] algorithm. The reward functions for the DRL algorithms

allow us to specify the tasks for each agent. For the Arm2D and Arm3D agents,

the reward function is the distance between the fingertip and the red target point

(Fig. 3.1A, 3.1B). The reward function can be written as the Eq. (3.2.1), where

the positions of the finger tip and the target point are represented by the vectors
#                   »

fingertip and
#          »
target respectively. These vectors are in function of the Cartesian

coordinates (x, y, z) and the time t. Besides the distance penalty in the reward

function, a small penalty on the total torque usage of all joints are included, written

as the term
∑

iAi(t)
2 in the Eq. (3.2.1). This term is to encourage energy efficient

movement of the trained agent, and it is commonly included by default in most DRL

trainings. The two terms in the Eq. (3.2.1) are scaled to give more weight to the

target following objective, with a small consideration for energy saving.

R(t) =− 5 · || #                   »

fingertip(x, y, z, t)− #          »
target(x, y, z, t)||2

− 0.05 ·
∑
i

Ai(t)
2 (3.2.1)

For the running task with the Half-Cheetah and the Ant, the reward function

includes mainly the forward speed of the agent at a given time. The Eq. (3.2.2)

is the detailed reward function for the Half-Cheetah and the Eq. (3.2.3) is for the

Ant. Besides the forward speed reward and the energy saving penalty, there is an

additional reward for staying upright for the Ant, as shown in the Eq. (3.2.3) as the

healthy reward. This reward is added for the Ant as it is found that the Ant will

easily overturn if this reward is not added.

R(t) =
#    »

v(t)− 0.1 ·
∑
i

Ai(t)
2 (3.2.2)
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R(t) =
#    »

v(t)− 0.5 ·
∑
i

Ai(t)
2 + healthy reward (3.2.3)

For the squatting tasks for both the Half-Cheetah and the Ant, a red target

point is defined such that it alternates between the highest and the lowest points

aligned vertically with the agent’s center of gravity. Therefore, the reward function

for the squatting task is the distance between the agent’s center of gravity and the

target point, as shown in the first term of the Eq. (3.2.4). An additional reward,

i.e. the horizontal reward, is added to encourage the agent to stay horizontally flat

while squatting. Similarly to the running task of the Ant, a healthy reward is also

added to prevent the agent from overturning at the early phase of training.

R(t) =− 5 · || #      »

body(x, y, z, t)− #          »
target(x, y, z, t)||2

+ 0.1 · horizontal reward

+ healthy reward

(3.2.4)

3.3 Experimental Results

3.3.1 SEA for joint redundancy quantifications

During the experiments, there were several parameters that must be determined

to calculate the SEA metric. The first parameter is the total number of training

checkpoints for each agent. 20 to 30 training checkpoints are used in this study

depending on the complexity of the robotic agents, with each checkpoint saved

periodically throughout the DRL training process. The details of the choice of the

total number of training checkpoints for each agent are summarised in the Table 3.2.

The second parameter is the time window size for the joint torque signal sampling.

It is necessary to choose a window size that sufficiently covers the essential part of

the signals during a task. For the running task, the window size is determined by

measuring the time needed for a robotic agent to run a fixed distance. For other

tasks, a window size was chosen such that it was sufficiently long to cover a few

cycles of the agent’s joint motions during a given task.
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Table 3.2: Training parameters for each agent in the experiments

Robotic agents Tasks DOF Training Iteration(s) per
iterations checkpoint

Arm2D Path-following 2 30 1
4 30 1
6 390 13
8 390 13

Arm3D Path-following 3 90 3
4 90 3
5 90 3
6 90 3
7 90 3

Half-Cheetah Running 2 3000 100
4 3000 100
6 3000 100

Squatting 2 120 4
4 120 4
6 120 4

Ant Running 8 300 15

Squatting 8 500 20

Redundant-Ant Squatting 8 500 20
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Before analyzing the capability of the proposed DRL-based joint redundancy

quantification approach, the task performance and the SEA development during the

training progress of all the agents with different configurations and different tasks

are plotted. The Fig. 3.3 and the Fig. 3.4 show the training progress for the

SAC algorithm, while the Fig. 3.5 and the Fig. 3.6 show the results for the TD3

algorithm. The solid curves are the average values of five trials of each experiment,

and the standard deviation of these five trials are plotted as the shaded region around

the average curves. As one can notice in the these figures, as the DRL algorithms

explore for better solutions in the early phase of the training, the task performances

increase rapidly together with the SEA metric. When the SEA metric does not show

much changes or has converged, the task performance will equally be constant or

slowly increasing. This validates that the SEA metric can quantify the exploration

of the DRL algorithms as demonstrated in the previous chapter. However, one

interesting new remark is that when the DOF of an agent is lower, the SEA metric

is also lower and the task performance also converges much faster than the agent

with higher DOF. This result can be noticed in all of the plots of all agents and

different DRL algorithms (SAC or TD3), indicating that this is not a coincidence

and it is consistent across all cases. This serves as the first validation step of the

proposition that the DRL-based joint quantification using the SEA metric has high

possibility to work as expected.
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A B

C D

E F

Task performance progress of SAC agents

Figure 3.3: Training progress of SAC algorithm under different agent configurations.
Standard deviation of the task performance is represented as shaded area around
each curve. (A) Training progress of the Arm2D agent with the planar trajectory
following task under different joint configurations. (B) Training progress of the
Arm3D agent with the 3D circle drawing task under different joint configurations.
(C) Training progress of the Half-Cheetah agent with the running task under dif-
ferent joint configurations. (D) Training progress of the Half-Cheetah agent with
the squatting task under different joint configurations. (E) Training progress of the
Ant and Redundant-Ant agents with the squatting task. (F) Training progress of
the Ant agent with the running task.
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A B

C D

E F

SEA progress of SAC agents

Figure 3.4: Training progress of TD3 algorithm under different agent configurations.
Standard deviation of the task performance is represented as shaded area around
each curve. (A) Training progress of the Arm2D agent with the planar trajectory
following task under different joint configurations. (B) Training progress of the
Arm3D agent with the 3D circle drawing task under different joint configurations.
(C) Training progress of the Half-Cheetah agent with the running task under dif-
ferent joint configurations. (D) Training progress of the Half-Cheetah agent with
the squatting task under different joint configurations. (E) Training progress of the
Ant and Redundant-Ant agents with the squatting task. (F) Training progress of
the Ant agent with the running task.
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A B

C

Task performance progress of TD3 agents

D

E F

Figure 3.5: Training progress of TD3 algorithm under different agent configurations.
Standard deviation of the task performance is represented as shaded area around
each curve. (A) Training progress of the Arm2D agent with the planar trajectory
following task under different joint configurations. (B) Training progress of the
Arm3D agent with the 3D circle drawing task under different joint configurations.
(C) Training progress of the Half-Cheetah agent with the running task under dif-
ferent joint configurations. (D) Training progress of the Half-Cheetah agent with
the squatting task under different joint configurations. (E) Training progress of the
Ant and Redundant-Ant agents with the squatting task. (F) Training progress of
the Ant agent with the running task.
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A B

C D

E F

SEA progress of TD3 agents

Figure 3.6: SEA metric evolution of TD3 algorithm under different agent configu-
rations. Standard deviation of the SEA is represented as shaded area around each
curve. (A) SEA of the Arm2D agent during the training phase under different joint
configurations. (B) SEA of the Arm3D agent during the training phase under dif-
ferent joint configurations. (C) SEA of the running Half-Cheetah agent during the
training phase under different joint configurations. (D) SEA of the squatting Half-
Cheetah agent during the training phase under different joint configurations. (E)
SEA of the squatting Ant and Redundant-Ant agents during the training phase. (F)
SEA of the running Ant agent during the training phase.
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Having observed the task performance and the SEA metric development during

the training phase of all agents, it is necessary to investigate in details the capability

of the proposed DRL-based joint redundancy quantification approach. To this end,

the Fig. 3.7 is plotted to compare the end-of-training SEA values between agents of

different configurations. All of the bar plots are constructed by averaging the results

of five experimental trials for each agent configuration. The standard deviation of

each bar is presented on top of the bar. The green bars are the results for the

SAC algorithm and the brown bars are for the TD3 algorithm. Beginning with the

Arm2D experimental results (Fig. 3.7A), it can be observed that as the number of

joints increases, the SEA also increases in a quasi-linear fashion. As all the added

joints are of the same type, one can expect that the amount of redundancy space

added by introducing each extra joint should be similar. Thus, the quasi-linear

increase of SEA matches well with the logical expectation of how the redundancy

space should be increased. This result is obtained purely by the computational

exploration of the joint space, with the joint type added being totally unknown to

the DRL algorithms. This justifies that the SEA metric can quantify the added

redundancy accurately. The quasi-linearity of the increase in the SEA also indicates

that all of the joints play an equal role in the trajectory-following task. As a result,

the absence of one joint can be replaced by another joint in the two-dimensional

(2D) task-space, as long as the Arm2D agent possesses at least two joints, which is

the minimum number required to accomplish the 2D task.

The increase in SEA as the joint redundancy increases can also be observed in

the Arm3D experimental results (Fig. 3.7B), but with some subtleties. The SEA

results suggest that there is a sudden increase in the degree of joint redundancy

for the 3D circle-drawing task when the DOF increases from four to five. This

transition in DOF corresponds to the addition of the i6 joint, which is the wrist

joint that enables wrist flexion. Indeed, the bar plot is very informative as it reveals

that the i6 joint is not essential for the trajectory-following task. The addition of

this joint causes excessive exploration in the DRL optimization process, which is

represented by the higher SEA value. In contrast, the DRL algorithm can find a

solution for the three- and four-DOF cases without extra exploration, as indicated

by the low SEA values. This indicates that joints i1 to i4 are the main joints for

accomplishing the primary task, and any extra joints, i.e., joints i5 to i7 are non-

essential for the primary task and can be potentially eliminated if the extra joint

redundancy is not desired. Compared with the Arm2D agent, the joints of the

Arm3D agent do not exhibit the same importance in the trajectory-following task,

as indicated by the SEA results. This outcome is critically important, as we know

that the elbow pronation or the wrist movements can be excluded in a trajectory-
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Figure 3.7: SEA metric evolution of SAC algorithm under different agent configu-
rations. Standard deviation of the SEA is represented as shaded area around each
curve. (A) SEA of the Arm2D agent during the training phase under different joint
configurations. (B) SEA of the Arm3D agent during the training phase under dif-
ferent joint configurations. (C) SEA of the running Half-Cheetah agent during the
training phase under different joint configurations. (D) SEA of the squatting Half-
Cheetah agent during the training phase under different joint configurations. (E)
SEA of the squatting Ant and Redundant-Ant agents during the training phase. (F)
SEA of the running Ant agent during the training phase.
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following task in real life. Indeed, humans can perform a circle drawing task with

only the shoulder joints articulation together with the flexion of the elbow. As

these four DOF are essentially required without having extra joint redundancy, the

result (Fig. 3.7B) indicates that the SEA metric could capture well the redundancy

situation of the arm given the joint configurations and the task. This result matches

well with the known fact in robotics that four DOF is required for a circle drawing

task, as a popular robotic design for this task is to use a 4-DOF arm robot. It is

important to remark that no prior information on the robotic agent was provided

to the DRL algorithms, and the SEA is obtained purely through the automated

exploration process of the algorithms. However, the SEA metric does not allow for

direct comparison of the joint redundancy between two different robotic agents, e.g.,

the Arm2D and Arm3D models, as they are structurally different and thus they do

not share the same joint space.

In contrast, the results of the running and the squatting tasks for the Half-

Cheetah (Fig. 3.7C, 4D) can be compared between them as they are based on

the same robotic agent. The joint space of the less redundant version of the Half-

Cheetah is a subset of that in the more redundant version in our experiments. It can

be remarked that increasing the number of joints in the Half-Cheetah also results in

an increase in the SEA value as the joint redundancy increases for the running task.

However, the SEA values for the squatting task are higher than those for the running

task regardless of the number of joints. This suggests that the current design of the

Half-Cheetah agent is more suitable for the running task than the squatting task

regardless of the joint configurations, as the joints are more fully exploited for the

running task. Indeed, for the squatting task, the SEA does not increase significantly

when more joints are added. This indicates that the added redundancy space is not

relevant for this task. To better understand these two results, it must be noted

that when the degree of joint redundancy is low, it indicates that the robotic agent

does not possess the freedom to perform any secondary tasks, as all of the joints are

engaged in executing the primary task [48][49], and vice versa. Using this concept,

it is reasonable to conclude that the Half-Cheetah agent does not fully utilize its

joint redundancy resource when executing the squatting task.

From the perspective of the DRL optimization process, higher SEA values indi-

cate that significant exploration of the joint space is required before arriving at an

acceptable solution. There are two factors that lead to this situation. In some cases,

it is due to the DRL algorithm being indecisive between equally attractive solutions

owing to the redundant joint space, which offers various approaches to solve the pri-

mary task. This suggests that there exists more than one way to solve the primary

task, referred to as local optima in the DRL. For example, for the Half-Cheetah
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running task (Fig. 3.7C), there are possibly a few suboptimal ways to perform

running with six joints. The second factor that leads to a high SEA metric is an

inappropriate choice of robotic agent for a task, which leads to a redundant joint

space with the acceptable solution space concentrated in a small space. This is typ-

ically the case for the Half-Cheetah squatting task (Fig. 3.7D), as the robotic agent

could possibly be jumping up and down instead of squatting, leading to extra explo-

ration by DRL algorithms to find a solution and consequently a high SEA metric.

In any case, when a higher SEA metric is observed relative to other configurations,

there is indeed extra joint redundancy as explained above. The same results can

be observed for the Ant experiments (Fig. 3.7E) with the same explanations as for

the Half-Cheetah experiments. Interestingly, both the Ant and the Redundant-Ant

configurations have the same number of joints, but the Redundant-Ant has a higher

SEA value. This is because that the hip joints of the Redundant-Ant are configured

to allow flexion to induce extra joint redundancy in the squatting task by allowing

the Redundant-Ant to squat in a wider range. This property is accurately captured

by the SEA metric.

The results between the SAC algorithm and the TD3 algorithm are fairly consis-

tent in all cases. This is a positive sign that the proposed method is not specific for

one particular DRL algorithm. The slight differences between these two algorithms,

notably for the Half-Cheetah running task (Fig. 3.7C) and the Half-Cheetah squat-

ting task (Fig. 3.7D), are due to the different exploration methods used by each

algorithm during the training process. As the SEA values are higher in the case of

the SAC algorithm, it can be concluded that the SAC algorithm explores more joint

space than the TD3 algorithm. This result corresponds well to the known property

of the SAC algorithm, which is its high exploration efficiency as it uses entropy

maximization in its objective function [79]. This result also supports the idea that

the SEA metric corresponds well to the exploration level of the solution space.

3.3.2 SEA for kinematics-specific and dynamics-specific joint

redundancy quantification

In the previous subsection, it has been shown that the SEA metric can quantify

the joint redundancy, as well as provide information that could never be easily ob-

tained, such as the joint importance for a task and the task-specific joint redundancy.

Indeed, it must be noted that the DOR is more complicated than just counting the

number of joints that a robotic agent possesses. It is about the resources that an

agent possess to achieve a task. The more DOR (resources) an agent has, the more

ways there are to solve the given task. This is already well demonstrated through the
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examples of the Arm3D results in Fig. 3.7B and also the task-specific joint redun-

dancy results for the Half-Cheetah (Fig. 3.7C, D) and also the Ant (Fig. 3.7E). To

further prove this point and demonstrate that the SEA metric can indeed quantify

the DOR of an agent, two extra experiments are designed to verify if the SEA metric

can quantify the joint redundancy affected by the kinematics and dynamics of an

agent correctly. In the following, these two kinds of joint redundancy are named the

kinematics-specific joint redundancy and the dynamics-specific joint redundancy.

The 7-DOF Arm3D agent is used in these experiments as the human-like robotic

arm can help one to easily understand the kinematics-specific and dynamics-specific

joint redundancy by making analogies to one’s daily life.

The kinematics-specific joint redundancy is affected by kinematic factors such

as the range of motion of an agent. It affects the number of ways/ motions that an

agent possesses to accomplish a task. For example, when a seated person wants to

reach for a cup right in front of him, he has a lot of different ways to approach the

cup as the cup is within his range of motion, and hence the kinematics-specific joint

redundancy of his arm is high in this case. However, when the cup is put far enough

from that person such that he can just barely touch the cup, he can only reach for

the cup by extending his arm straight out to the direction of the cup, making the

kinematics-specific joint redundancy of his arm low in this case. To show that the

SEA metric can quantify the kinematics-specific joint redundancy as described in

the previous examples, some experiments are carried out with the Arm3D agent.

The previous circle-drawing task is reused here, but with the center of the circle

being closer and also further from the Arm3D agent, hoping to recreate the scenario

described previously. In Fig 3.8, there are three separate circle centers, i.e. C1, C2,

and C3, placed in front of the Arm3D agent one at a time for each experiment. The

center C2 is the same as the experiment done previously in Fig. 3.7B for the 7-DOF

Arm3D agent, with the center being placed at a distance D from the origin of the

coordinate space. The center C1 is placed closer to the Arm3D agent, placed at a

distance of 0.2D from the origin of the coordinate space. Finally, the center C3 is

placed further from the Arm3D agent at a distance of 2D from the origin of the

coordinate space. The 7-DOF Arm3D agent is then required to draw circles around

these centers. The C3 case is designed such that the Arm3D agent can barely draw

a circle (or a part of the circle) around the center C3 as it is placed at the reaching

limit of the agent. The C1 case is then to further increase the kinematics-specific

joint redundancy of the Arm3D agent. The experiments are carried out to verify if

the SEA metric can quantify the kinematics-specific joint redundancy as expected.

The sequences of the circle-drawing motion for C1, C2 and C3 cases can be found

in the Fig. 3.9.
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C1 2 3C C

Figure 3.8: The 7-DOF Arm3D agent with different circle centers of the circle-
drawing tasks. The center C2 is the same as the one used in the experiment in the
Fig. 3.7B, which is placed at a distance of D from the coordinate space origin. The
center C1 is placed at a distance of 0.2D from the coordinate space origin, while
the center C3 is placed at a distance of 2D from the coordinate space origin. The
kinematics-specific joint redundancy of the Arm3D agent increases from the center
C1 to C3.

A

B

C

Figure 3.9: The circle-drawing motions for the centers (A) C1, (B) C2 and (C) C3.
For (A), it is obvious that the circle is within the reach of the Arm3D agent. For
(C), the circle is almost out of reach of the Arm3D agent and the arm is almost
always stretched out.
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The experiment results can be found in the Fig. 3.10. From the results of the

Fig. 3.10, it can be noticed that the SEA of the Arm3D agent decreases as the

circle gets further from the agent. This verifies that the SEA metric can indeed

quantify the kinematics-specific joint redundancy of the Arm3D agent. The SEA

for the C1 case and the C2 case do not vary too much as the kinematics-specific joint

redundancy to draw the circle is believed to be near its maximum value. Indeed,

it is reasonable as all the circles which are close enough to the Arm3D agent will

enable the agent to have an equally infinite ways to draw the circle, hence the upper

limit on the kinematics-specific joint redundancy and also the SEA of the agent. As

the circle gets almost out of reach from the Arm3D agent, the SEA metric decreases

remarkably as the kinematics-specific joint redundancy also decreases in this case.

Next, it is also desirable that the SEA metric can quantify the dynamics-specific

joint redundancy of an agent. The dynamics-specific joint redundancy is the re-

dundancy that an agent possesses to accomplish a task subjected to its dynamic

properties such as its weight and its force. For example, when a person holds a

load on his hand, he can move his arm less freely than the case when he is not

holding anything as the total weight on his arm has increased. This is a very simple

and direct way to showcase the idea of dynamics-specific joint redundancy. A dif-

C C C
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SEA of 7-DOF Arm3D vs Various Circle Centers

Figure 3.10: The bar plot of the SEA of the circle-drawing 7-DOF Arm3D agent
as the circle center varies from C1 to C3. It can be seen that as the circle center
gets further from the Arm3D agent (C1 to C3), the SEA metric decreases as well,
verifying that the SEA metric can detect the decreasing kinematics-specific joint
redundancy of the Arm3D agent in these experiments.
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ferent example can be imagined by having the input force of the arm being lessen

instead of adding a weight, both resulting to the same consequence of the reduced

dynamics-specific joint redundancy. Some experiments are carried out to verify if

the SEA metric can equally quantify the dynamics-specific joint redundancy of the

Arm3D agent. In these experiments, the input torque of the Arm3D agent is varied

for the same circle-drawing task. More specifically, if T is the input torque used in

the experiments in Fig. 3.7B, two additional experiments are carried out for the

7-DOF Arm3D agent by changing the input torque to 0.25T and 0.5T , i.e. reduc-

ing the dynamics-specific joint redundancy of the Arm3D agent. It is desired that

the SEA metric can detect this change in dynamics-specific joint redundancy of the

circle-drawing agent. The sequences of the circle-drawing motion for 0.25T , 0.5T

and T input torque cases can be found in the Fig. 3.11.

The experiment results are shown in the Fig. 3.12. It can be noticed that as the

input torque of the Arm3D agent increases for the circle-drawing tasks, the SEA

metric also increases accordingly. This demonstrates that the SEA metric is capable

of quantifying the dynamics-specific joint redundancy as well. Indeed, as the input

torque gets smaller, the Arm3D agent will have less options to draw the circles

as some options are more torque-demanding. This result can also be reasoned by

considering that the less input torque case corresponds to a heavier arm, and the

more input torque case corresponds to a lighter arm. It is logical to do this analogy

as when there is less input torque, it is more difficult to move the arm, therefore

it is the same as if the arm being heavier but with a normal input torque. It is

then possible to reason that as the Arm3D agent is heavier (has less input torque),

A

B

C

Figure 3.11: The circle-drawing motions for the input torque (A) 0.25T , (B) 0.5T
and (C) T . As the input torque increases from (A) to (C), it can be noticed that
the arm can move more easily.
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Figure 3.12: The bar plot of the SEA of the circle-drawing 7-DOF Arm3D agent
as the input torque varies from 0.25T to T . It can be seen that as the input
torque increases, the SEA metric increases as well, verifying that the SEA metric
can detect the increasing dynamics-specific joint redundancy of the Arm3D agent
in these experiments.

the dynamics-specific joint redundancy and the SEA decreases, and vice versa. The

heavier arm (or less input torque) makes the agent has less ways to accomplish the

circle drawing task (less dynamics-specific joint redundancy), and this is precisely

captured by the SEA metric.

3.3.3 Application for body design evaluation

From the bar plots (Fig. 3.7), it is known that the SEA metric can provide extra

information such as the importance of a certain joint for a given task. This leads

to the intuition that the SEA metric can also be used to judge the optimality of

a robotic structure for a given task, i.e., whether the assigned joint redundancy of

a robotic structure is suitable for a task such that the DRL algorithm can find an

optimal solution efficiently without excessive exploration. To this end, the plot of the

task performance versus the SEA metric can be plotted to give us information about

the relationship between the performance and the SEA metric. As shown in the Fig

3.13, the plot of the task performance versus the SEA metric can be divided into four

different regions where each region gives certain information about the structural

characteristics of the agents situated in this region. The top left corner of a plot
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Figure 3.13: The plot of the task performance versus the SEA metric. The plot can
be divided into four different regions, i.e. the optimal region (green) on the top left;
the redundant region (blue) on the top right; the underperformed region (orange)
on the bottom right; the unfit region (grey) on the bottom left. These regions give
information about the structural characteristics of an agent for a certain task.

corresponds to the optimal structure region (green circle), as the DRL algorithm

does not need to perform excessive exploration (small SEA value) to find a solution

(high performance) to the task. The robotic agent is structurally optimal for the

task without unnecessary joint redundancy. The top right region is associated with

the redundant structure region (blue circle), as the DRL algorithm needs to explore

significantly (high SEA value) to arrive at the solution (high performance) of the

task. This shows evidence that the robotic agent is structurally redundant, and it

could be used for other tasks as well. The bottom right region is the underperformed

region (orange circle), as the excessive exploration of DRL algorithms (high SEA

value) fails to lead to a good solution (low task performance). This indicates that

the optimal solution is not reachable within the given robotic joint space despite

excessive training, suggesting that the robotic agent is not suitable for the current

task. Finally, the bottom left region (grey circle) corresponds to the unfit structure

region, as the DRL algorithm fails to find any useful joint space (small SEA value)

for the given task, leading to a low performance solution. This indicates that the

robotic agent is simply inappropriately designed for the given task and it does not

provide much possibility for further deployment.

With the above concept in mind, the plots of the task performance versus the

SEA metric are plotted for each agent with the corresponding tasks (Fig. 3.14).

From these plots, the aim is to gain insight into the effect of the DOF of an agent on

the task performance. For the Arm2D results (Fig. 3.14A), the task performance,

which is the tracking error between the fingertip of the agent and the target point
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Figure 3.14: Task performance versus the SEA metric under different agent configu-
rations. Each data point is associated with an agent having a certain DOF, with the
DOF increases from the left side to the right side of each plot. Standard deviation
of the task performance is represented by an error bar at each data point. Circles
of different colors are the clusters of agents having the similar structural character-
istics. (A) Target-tracking error of the Arm2D agent versus the SEA metric. (B)
Target-tracking error of the Arm3D agent versus the SEA metric. (C) Total dis-
tance covered during the Half-Cheetah running task versus the SEA metric. (D)
Target-tracking error with respect to the alternating high and low target points of
the Half-Cheetah squatting task versus the SEA metric. (E) Target-tracking error
with respect to the alternating high and low target points of the Ant squatting task
versus the SEA metric. Performance of the Ant for the running task is not shown
as there is just one data point
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(Fig. 3.1A), does not vary too much as the DOF of the agent increases from two

to eight. Hence, for the same task performance, the 2-DOF Arm2D agent has the

optimal structure for the 2D planar tracking task, as little exploration (small SEA

value) is required for finding a solution. This is not unexpected as we know that

two DOF is sufficient for solving this task. The 6- and 8-DOF Arm2D agents are

indeed redundant, indicated by the blue circle, as there is too much joint redundancy

for this simple task. For the Arm3D agent (Fig. 3.14B), we can notice that there

are two clearly distinct clusters of agents in the plot. The 3- and 4-DOF Arm3D

agents cluster at the top left region of the plot, which is the optimal structure

region, and the other Arm3D agents cluster at the bottom right region, which is the

underperformed region. If the horizontal axis of Fig. 3.14B was the number of DOF,

there would be no apparent cluster of agents in the plot. Indeed, the SEA metric

has successfully grouped the agents into the respective optimal and underperformed

regions, providing information about the optimal DOF of the Arm3D agent for the

3D circle drawing task. This example demonstrates that the SEA metric can guide

the user to choose the optimal robotic structure for a task.

For the running (Fig. 3.14C) and squatting (Fig. 3.14D) Half-Cheetah results,

the 4- and 6-DOF Half-Cheetah agents are in the redundant structure region (blue

circle). These results support our interpretation of the plot that the agents situated

in the redundant structure region are structurally redundant and they could be used

for multiple different tasks. The 2-DOF Half-Cheetah agent achieves relatively low

performance for both the running and squatting tasks in comparison to the other

two configurations of the Half-Cheetah agent. It is not surprising that the 2-DOF

agent is in the unfit region for the running task and the underperformed region for

the squatting task as two DOF provides insufficient joint redundancy for executing

complex locomotion skills. Through the example of this analysis, a real-life robotic

agent having the same results as the 2-DOF Half-Cheetah agent would be eliminated

from the choice of potential candidates for employment in future tasks. Finally, for

the squatting Ant experiment (Fig. 3.14E), we can notice that the types of limb

used (Fig. 2D) do not affect significantly the task performance. This result is

similar to the Arm2D result (Fig. 3.14A) as the configurations of the agent do not

significantly affect the task performance. In such cases, the agent with the lower

SEA value is preferred as it restricts unnecessary joint redundancy for the task. It

can be observed the SEA captures well the joint redundancy information for the

given task in these results.
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3.4 Discussion

One important aspect of the proposed joint redundancy quantification approach

is that it is DRL-based. The particular feature of a DRL algorithm is the existence of

a reward function, and the optimization process to find a solution for a robotic agent

is guided by this predefined objective function. When a DRL-based approach is used

to quantify the joint redundancy of a robotic agent, the quantification accuracy is

also affected by the reward function. This is because the algorithm only explores

the part of the joint space that seems promising based on the predefined reward

function. The implication of this is that not all of the joint space is explored,

and the SEA metric only quantifies the redundancy of the joint space in which a

solution could exist according to the DRL reward function. While this may seem to

be a limitation of the proposed approach, it could also be reasoned from a different

perspective that this is actually an advantage. The primary objective of quantifying

the joint redundancy is to determine the existence of a solution for a task in the

considered joint space. The exclusion of the non-related joint space reduces the noise

and increases the relevance of our approach for quantifying the joint redundancy of

a robotic agent for a task.

Another issue is that it quantifies the joint redundancy of an agent relatively,

i.e., the SEA value of an agent must be compared to another agent’s SEA value

to know their relative joint redundancy. The downside of this limitation is that

one must train multiple agents under different configurations using DRL algorithms

which may be time-consuming. Thus, one way to apply the proposed quantification

approach in real-life robots is to first carry out a study in a simulation environment,

and then transfer the acquired knowledge, e.g., the optimal robotic joint configu-

ration for a task, to the real-life robots. Nevertheless, the utility of the proposed

quantification approach is believed to be worth the training time, similar to the

other state-of-the-art DRL methods [81][82]. The different regions of structural

characteristics in Fig. 3.14 are also relatively defined by the existence of multiple

clusters of data points of agents in the same plot. However, if the configurations of

the agents in the experiments are sufficiently different among them, this limitation

could be overcome easily as multiple clusters would exist consequently. Besides, the

proposed methodology demands the use of high-performance DRL algorithms, e.g.,

the SAC algorithm [79] or the TD3 algorithm [80], as these algorithms allow the

analysis to be focused on the joint redundancy aspects rather than the details of the

DRL algorithm. Finally, as a consequence of using DRL algorithms, the proposed

approach is inevitably subject to the randomness of the DRL optimization process;

however, this does not seem to be a significant problem, as our results (Fig. 3.7) are

86



3.5. Conclusion

fairly consistent.

3.5 Conclusion

In this chapter, the deep reinforcement learning-based joint redundancy quan-

tification approach is explained. Through the experimental results, it has been ver-

ified that the synergy exploration area (SEA) metric can convey information about

the relative joint redundancy for various robotic agents and across different tasks.

Indeed, the study has successfully applied the concepts of the DRL optimization

process to the quantification of joint redundancy in robotic agents, and the SEA

metric acts as a bridge between these two domains.

One might argue that the Degrees of Redundancy (DOR) can be obtained by

simply subtracting the joint space dimension from the task space dimension. DOR

is influenced by multiple factors such as the DOF, the joint structure design, the

dynamics of the body (dynamics-specific joint redundancy), and the range of the

motion related to the given task (kinematics-specific joint redundancy). In particu-

lar, for complex robots, such as high DOF cases or non-fixed base robots, it is not

straightforward to apply the model-based approach since the agent-environment in-

teraction cannot be fully modeled. By using the proposed DRL approach, one can

make use of the exploration property of the DRL algorithm to obtain information

not only about the DOR, but also additional information such as the importance of

a joint for a given task, as shown by the example of the Arm3D agent (Fig. 3.7B),

and the suitability of a robotic agent for a particular task, as shown by the perfor-

mance analysis in Fig. 3.14. The SEA has also shown to be able to quantify the

kinematics-specific redundancy (Fig. 3.10) and the dynamics-specific joint redun-

dancy (Fig. 3.12) of a robotic agent, via the examples of the circle-drawing Arm3D

agent. These types of information are not obtainable by subtracting the joint space

dimension from the task space dimension or with analytical model-based quantifica-

tion approaches [48][49][50][51][52]. This information can be used to select a better

design for a robotic agent to ensure it has the appropriate degree of joint redundancy

for an intended task, which will subsequently reduce the complexities of the final

control method and prevent wasting resources by using an overly complex robot.

This functionality of robotic design evaluation with the SEA metric can provide

useful information to the robotics field, e.g., the computer-aided design for robotics.

During the robotic design, the optimal joint redundancy to be added to a robot for

a given task can be analyzed with consideration of the dynamic feasibility, as the

solution exploration is performed under the physics-engine driven environment.
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Chapter 4

Quadrupedal Energetic Analysis

using Deep Reinforcement

Learning

4.1 Introduction

In the previous two chapters, DRL has been used to train agents for synergetic

analysis. More specifically, synergy-related metrics have been used to analyze the

synergy properties of DRL-trained redundant agents. The role of DRL is passive in

the previous two studies as it does not explicitly control the synergy properties of

the trained-agents. In this chapter, DRL is used to actively manipulate the synergy

properties of a quadruped robot, changing the gait mode of the robot as specified

by the user. A gait mode specification method for DRL algorithms is introduced

and its effectiveness in imposing a certain gait type is proven. The resulting trained

quadruped robots are used in an energetic analysis to compare the energy efficiency

between two gait modes, i.e. the gallop and trot modes. The joint-spring effect of

the quadruped’s joints are also varied to show the adaptability of a DRL algorithm

to different dynamical properties of the quadruped. The proposed DRL approach

would provide a framework for quadrupedal trot-gallop energetic analysis for differ-

ent body structures, body mass distributions and joint characteristics with minimal

hyperparameter tuning. Fig. 4.1 shows the DRL control loop of a quadruped robot

used throughout this chapter.
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Figure 4.1: The control loop of a quadruped using deep reinforcement learning
(DRL). The raw action inputs are transformed into specific gait inputs as specified
by the user in the learning process, allowing the production of the desired gait mode
locomotion.

4.2 Method

4.2.1 Simulated Quadruped Agent

In this paper, a quadruped model (Fig. 4.1) previously described in the previous

chapters will be used. It is simulated with the Mujoco [67], a famous engine used

in vaious DRL research [32][33] as it simulates realistic physical properties. As this

study is the first step to validate the proposed idea, a simulated agent is sufficient

as it is low-cost and allows fast experimentation. The agent has four limbs, with

each limb having three joints, i.e. the hip joint, the knee joint and the foot joint.

The stiffness and damping parameters of the joints can also be modified to simulate

various degrees of passive joint-spring effect during the running motion.

4.2.2 DRL reward function and evaluation metrics

While it is possible to use any off-the-shelf DRL algorithms to carry out the

experiments in this chapter, the state-of-the-art DRL algorithm, i.e. the SAC [32]

algorithm is used. The only key characteristic of DRL concerned in this paper is the

reward function employed during the learning process. For the experiments in this

study, the robot is required to move forward in a two dimensional plane at a certain

speed while considering at the same time its energy consumption issue. This can be

translated to the reward function defined by the Equation (4.2.1):

R(t) = −|v(t)− vtarget| − 0.1 ·
∑
i

Ai(t)
2 (4.2.1)
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At each time step t, the algorithm has to minimize two terms in the reward function.

The first term requires that the current speed of the quadruped robot, v(t) matches

as close as possible to a given target speed vtarget. The second term of the reward

function is a representation of the energy consumed by the quadruped agent, where

Ai(t) is the magnitude of the torque input for the joint i. This term is scaled by a

small coefficient so that the algorithm will not converge to a sub-optimal solution

of not moving at all.

In the following of this chapter, the performance metric is the distance travelled

by the quadruped robot during a simulation of total time steps T , with each time

step ∆t being evaluated as one unit of time in the simulation environment. The

performance metric can be written as the Equation (4.2.2):

Performance =
∑
T

v(t) ·∆t (4.2.2)

In this study, the energy expenditure index,which is the sum of the second terms

of the reward function (4.2.1) throughout a running trajectory, can be written as

the Equation (4.2.3):

Energy index =
∑
T

∑
i

Ai(t)
2 (4.2.3)

A third evaluation metric, called the performance-energy metric, is equally used

in this study. The performance-energy metric is as described in the first chap-

ter, with the energy term replaced by the energy index used in this study. The

performance-energy metric can be written as the Equation 4.2.4. The performance-

energy can be used to evaluate the energy-efficiency of a DRL-trained agent, con-

sidering both the performance and the energy expenditure of the agent at the same

time.

Performance-energy =
Performance

Energy index
=

∑
T

v(t) ·∆t∑
iAi(t)

2
(4.2.4)

4.2.3 Gait Mode Specification

To specify a gait mode in the DRL learning process, the known fact of certain gait

modes is exploited. In this study, only the gallop and the trot gaits are considered.

For the gallop gait, it is known that the limbs on the right side of the quadruped
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move symmetrically to the limbs on the left side. In reality, there might be a

slight phase delay between the left and the right limbs in a gallop motion, but the

assumption that there is no phase delay is made in this study. Therefore, the gallop

gait is specified by having the DRL policy to produce torque inputs for the left

limbs of the quadruped, then these torque inputs are copied identically for the right

limbs, imposing the symmetric property in a gallop motion. This is translated as

the Equation (4.2.5) where i and j are the corresponding joints on the right side and

the left side of the quadruped respectively. The overview of the proposed control

strategy is illustrated in the Fig. 4.2.

τrighti = τleftj (4.2.5)

It must be noted that this does not constrain the DRL algorithm from finding

an optimal solution as it can still freely output the torque for the left limbs while

receiving feedback about the overall body kinematic condition. For the trot gait, the

limbs on the right and the left side move asymmetrically to each other. Therefore,

the DRL policy torque inputs for the left limbs are negated and copied to the right

limbs to impose a trot gait, as described by the Equation (4.2.6):

τrighti = −τleftj (4.2.6)

Figure 4.2: The DRL control loop with the gait mode specification methods detailed.
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4.3 Experimental Results

For all the experiments, the quadruped robot is trained for 400 thousand time

steps until convergence. Three trials of each experiment are conducted and the

average results as well as the standard deviations are presented. The video for the

quadruped locomotion can be found at https://youtu.be/RD4Uvskp9Zg.

4.3.1 Gait Mode Specification Effects

The effect of the gait mode specification on the DRL learning process is presented

in this subsection. As illustrated on the left of the Figure 4.3, the performance of

the quadruped robot with the trot and gallop mode specified converged faster than

the case without any specification, showing that the gait mode specification has

indeed sped up the DRL learning process. On the right of the Figure 4.3, it can be

remarked that the energy consumption for all cases peaked near the beginning of

the learning process as the algorithm was exploring a gait locomotion starting from

random movements. This corresponds to the beginning phase of the performance

graph on the left of the Figure 4.3 where the performance increased steeply. The

energy consumption decreased steadily in the remaining of the training process as

the DRL algorithm discovered a more energy efficient locomotion to move forward

while spending less energy at the same time, as specified by the second term in

the reward function (4.2.1). This clearly demonstrates the advantage of using DRL

over a classical controller as the reward function can be easily tailored to take into

account different aspects when carrying out a task, much like the learning process

of living things. Figure 4.4 shows the performance-energy plot of the quadruped
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Figure 4.3: The performance (left) and energy metric (right) comparison throughout
the training process between DRL-trained agents with no gait specification (blue),
with a trot mode specification (orange) and with a gallop mode specification (green).
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Figure 4.4: The performance-energy comparison throughout the training process
between DRL-trained agents with no gait specification (blue), with a trot mode
specification (orange) and with a gallop mode specification (green).

robots. This plot considers both the performance and the energy expenditure of

the quadrupeds at the same time, enabling an overview of the energy efficiency of

the quadrupeds with different gait modes. Due to the high performance and the

low energy expenditure of the gallop mode, the performance-energy of the galloping

quadruped is much better than the other cases as shown in the figure. On the other

hand, the trotting quadruped is the least energy efficient due to its high energy

expenditure. The quadruped without any gait mode specification lies between the

other two cases, indicating that the agent without any gait mode specified might

possess a gait which is a mix of the gallop and the trot gait, as it is demonstrated

later.

Besides the faster convergence of the DRL learning process, the gait mode speci-

fication also successfully imposed a predetermined gait type on the quadruped robot.

The Figure 4.5 shows the sequences of the quadrupedal gaits for different cases to

give a visual idea on the motions. The gait diagram of each case is equally presented

in the Figure 4.6. As shown on the left of the Figure 4.6, the gait diagram of the

quadruped robot without any gait specification does not correspond to any known

gait type. It is a mix between the gallop gait and the trot gait. Indeed, there is no

guarantee that the output locomotion of a DRL-trained robot would possess the de-

sired gait type, rendering the analysis done using a classical controller [28][27][59][24]

impossible. However, by specifying a certain gait mode in the DRL training process

using the proposed method, the output gait type resembles a well-known gait type,

as shown by the gait diagram of the gallop mode and the trot mode in Figure 4.6.
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A

B

C

Figure 4.5: Sequences of the quadrupedal gaits after training. The right limbs are
colored in red for better visualization. (A) The gaits of the quadruped without any
mode specification. (B) The gaits of the quadruped with the gallop mode specified.
(C) The gaits of the quadruped with the trot mode specified.

The effect of the gait mode specification can also be remarked in the spatial

synergies of the quadruped while running with different gaits. The Figure 4.7 shows

the spatial synergies of the quadruped with different gait mode specifications. It

is expected that these spatial synergies will be able to provide information about

the correlation between the joints of the quadruped while running. If there is a

particular pattern inside the spatial synergy, then it indicates that there exists some

form of joint coordination for running forward. It can be noticed that for the spatial

synergy of the quadruped without any gait mode specification, there is no particular

structure in the spatial synergy and all joints seem to be uncorrelated. This con-

Gallop mode Trot modeWithout specification

Figure 4.6: The gait diagram for quadruped robots with different gait mode specifi-
cation. LF and RF represent the left fore limb and the right fore limb respectively,
while LH and RH represent the left hind limb and the right hind limb respectively.
The colored regions correspond to the stance phase of each limb.
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Figure 4.7: The spatial synergies of the quadruped with different gait mode spec-
ifications. Starting from the left is the spatial synergy of the quadruped without
any specification; with the gallop mode specification (middle); with the trot mode
specification (right). Only the most significant synergy is shown in this example.
On the y-axis, the first letter of the label indicates whether it is a front limb (f) or
a back limb (b); the last letter indicates whether it is a right limb (R) or a left limb
(L). The red dotted boxes group the left and right front limbs together for easier
interpretation.

firms that a DRL-trained quadruped does not necessary possess a well-known gait

type if not specified explicitly. On the middle and the right plots of the Figure 4.7, it

can be easily remarked that there exist some patterns in the spatial synergies of the

quadruped when the gait mode is specified. The red dotted boxes group together

the front limbs of the quadruped for easier interpretation. For the gallop mode

specification, the left and right side of the limbs have the same values in the spa-

tial synergy, indicating that both sides of the limbs are effectively coupled through

our gait mode specification method, hence enabling the gallop motion through the

synchronous motions of the fore limbs and the back limbs respectively. For the trot

mode specification, the left and right side of the limbs have the same values but

opposite signs in the spatial synergy, validating that our trot mode specification

method has enforced the both side of the limbs to move in opposite phase, imitating

the trot gait motion. In both spatial synergies of the two gait mode, the values of

the fore and the back thigh joints are of opposite signs, indicating that they move

constantly in opposite direction to move forward effectively.

The synergy development graph introduced in the first chapter of this thesis is

also plotted for each quadruped with different gait modes, as shown in the Figure

4.8. In all cases, the synergy level increases throughout the training phase. This is as

expected as the all the joints become more coordinated through training. However,

there is a slight difference between the graphs of the quadruped with no specification

and with specifications. It seems that the synergy level of the quadrupeds with gait

mode specified converges faster. This may be due to the gait mode specifications

which impose a certain constraint on the joint movements, hence making the synergy
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Figure 4.8: The synergy development graphs for quadrupeds with no gait specifi-
cation (left); with the gallop mode specified (middle); with the trot mode specified
(right). The color progression is as described in the first chapter, where the yellow
color corresponds to the early phase of the training, and the purple color corresponds
to the end phase of the training.

level to increase and converge faster. One plausible interpretation of this result is

that the proposed gait mode specification during the learning process reduces the

redundant solution space to a much smaller but predefined solution space, enabling

the DRL algorithm to search for a solution in the reduced space much faster. This

result is coherent with the performance graph in Figure 4.3, i.e. the gait mode

specification promotes faster convergence in both the performance and the synergy

level. This shows once again the benefit of introducing some user’s knowledge in the

DRL learning process, in this case the knowledge about certain gait modes.

4.3.2 Energetic Study between Gallop and Trot Gaits

Studies such as [28][27][24][60] suggest that certain gait types are more suitable

for quadruped robots moving at certain speed. In particular, for moving at a higher

velocity, the gallop gait is shown to be more energy efficient while for a lower walking

speed, the trot gait is believed to be preferable. Motivated by this result, we have

conducted a performance and energetic analysis on the quadrupedal gait motions

generated by the DRL algorithm for two different target speeds, i.e. a target speed

of 3 m/∆t and a target speed of 5 m/∆t, where ∆t is one time step of simulation.

From the performance graph on the left of the Figure 4.9, for moving forward at a

speed of 3 m/∆t, the performance of the trot gait is slightly higher than the per-

formance of the gallop gait. However, for the moving speed of 5 m/∆t, the gallop

gait is better than the trot gait. While the performance difference is small, this is

still an encouraging result and shares a similarity with the previously established
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results mentioned earlier. In term of the energy consumption during the forward

motion, it can be observed on the right of the Figure 4.9 that the energy consumed

by the galloping quadruped robots is always significantly lower than the trotting

quadruped robots for both moving speeds. While this does not meet the expecta-

tion that the trot gait would consume less energy at a lower forward speed, one

reason could be that the forward speed of 3 m/∆t is not slow enough and the trot

gait is a running trot gait in reality. It could also be that the passive joint-spring

parameters of the quadruped robotic model favors the gallop gait in this study. This

is reasonable as studies such as [83] has shown that the gallop gait is more energy

efficient as it exploits the passive spring energy stored between the joints, helping

the quadruped robot to move forward easily. This hypothesis may be supported

by the Figure 4.10, which is the performance-energy plot between different gaits at

different speeds. As it can be noticed easily in the Figure 4.10, the performance-

energy of the galloping quadrupeds is always higher than the trotting quadrupeds

at different speeds respectively, showing a higher energy efficiency of the galloping

mode due to the exploitation of the passive spring energy between joints. However,

as the current study is still at the early stage of a more complete study, the current

result is promising as it shares some findings established in previous studies.
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Figure 4.9: The performance (left) and energy metric (right) comparison between
DRL-trained agents with a trot mode specification and a target speed of 3 (blue);
with a trot mode specification and a target speed of 5 (orange); with a gallop mode
specification and a target speed of 3 (green); with a gallop mode specification and a
target speed of 5 (red). The random spikes on the curves are the deviations occurred
during the DRL learning process.

4.3.3 DRL Exploitation of the Passive Joint-Spring Effect

In order to verify that the passive joint-spring effect plays an important role

in the energy efficiency of the forward running motion of a quadruped as stated
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Figure 4.10: The performance-energy comparison throughout the training process
between DRL-trained quadrupeds with different gait modes and different target
running speeds.

in [83][84], the stiffness and the damping parameters of the joints of the galloping

quadruped robot are modified from the default parameters used in the previous sec-

tions. To have a more joint-spring effect, the stiffness and the damping parameters

are decreased for all the joints. On the other hand, to have a less joint-spring ef-

fect, the stiffness and the damping parameters are increased. As illustrated by the

performance graph on the left of the Figure 4.11, the experimental results clearly

show that the more joint-spring effect a quadruped robot has, the higher the gal-

loping performance of the robot. In addition, from the energy curves on the right of

the Figure 4.11, the energy consumption of the galloping motion also decreases as

the joint-spring effect increases. This result matches perfectly with [83][84] as the

passive joint-spring aids the running motion and reduces the energy consumed by

the quadruped robot to gallop forward. The performance-energy plot in the Figure

4.12 demonstrates even clearer that the quadrupeds with more joint-spring effects

are more energy efficient. This result also supports the idea that the DRL algorithm

can serve as a general algorithm that can adapt to different physical conditions of a

quadruped robot to produce gait motions for analysis, contrary to the case of clas-

sical controllers. Indeed, in the case of using classical controllers to generate gait

motions, the parameters of the controllers need to be hand-tuned whenever there

are changes in the physical properties of the quadruped robot or the experimental

environment. DRL algorithms clearly have an advantage over classical controllers

in this regard [64][65]. This result hence shows promises that DRL could provide

framework for studies of quadrupeds with different physical and dynamical prop-
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erties such as different weights, different joint properties, different structures, etc.
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Figure 4.11: The performance (left) and energy metric (right) comparison between
DRL-trained agents with varying joint-spring effects, i.e. the minimum joint-spring
effect during running (blue), the default joint-spring effect (orange), and the max-
imum joint-spring effect during running (green). All the agents are with a gallop
mode specification and a target speed of 3.
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Figure 4.12: The performance-energy comparison throughout the training process
between DRL-trained quadrupeds with the gallop mode specified by with different
joint spring properties.

4.4 Discussion

From the experimental results, it has been shown that using DRL algorithms as

an alternative to classical controllers for gait generations shows some promises for
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quadruped energetic analysis. However, there are also several points that could be

improved in the future.

Currently, the introduced gait mode specification works as expected to impose

a certain gait type on the DRL-trained quadruped robot. As a continuation of this

study, a more complicated gait mode specification method could be introduced to

output a more precise gait locomotion. For example, as mentioned earlier that for

a gallop gait, there might be a slight phase delay between the limbs on each side

of the quadruped. A more complete gait mode specification method could possibly

deal with this issue.

In the future, a more realistic quadruped model could be used for experiments.

Ultimately, a real quadruped robot could be employed to carry out the same experi-

ments in this paper to verify that the DRL-produced gait motion is plausible as well

in a real robot. Ideally, different gait types could also be considered, so that the

analysis done in works such as [28][27][24][60] can be repeated using DRL algorithms

instead of classical controllers for gait generations.

4.5 Conclusion

In this chapter, it has been demonstrated that DRL algorithms show promises

as an alternative to classical controllers for quadruped gait generations for energetic

analysis. The specification of gait mode in the learning process speeds up the con-

vergence of the algorithm as well as imposing a certain gait type on the quadruped

robot, contrary to the case without any specification. DRL algorithms also show the

ability to generalize to situations never seen before, providing optimal locomotion

and removing the need for tedious manual parameters tuning in classical controllers.

This work is the first step towards a more general framework of locomotion anal-

ysis in quadrupeds using DRL, contributing to the research field of understanding

quadrupedal motion control on gait coordination.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, starting from the initial objective of recreating the synergy emer-

gence process in simulated robotic agents using DRL, three resulting studies have

been conducted. All the studies were inter-correlated and revolved around the motor

synergy concept. Important results have been obtained from these studies, such as

the relationship between the motor synergy and the energy efficiency of a motion,

the quantification of joint redundancy using metric deriving from the motor synergy

concept, and the effect of synergy mode specification on the convergence of the DRL

learning process and the synergy emergence process. The DRL algorithms have also

played an important role in this thesis as they were able to find a near optimal so-

lution in a redundant solution space, allowing us to study the relationship between

the discovery of an optimal solution and the synergy development process.

In chapter 2, in an attempt to understand the development of the correlation

between robotic joints in the DRL learning process, i.e. the synergy emergence

process, a synergy analysis which is inspired by the human motion researches was

conducted. In the first part of the chapter, two state-of-the-art DRL algorithms were

used to train several quadruped robots and their running motions were analyzed.

The synergy development graphs were plotted and new synergy-related metrics were

proposed in order to evaluate the synergy level of the robots during and after the

DRL training phase. The experiment results showed that there exists a close rela-

tionship between the running performance, energy efficiency, and the synergy level

of the robots throughout the training phase. More precisely, the higher the synergy

level of the running robots, the higher the performance and energy efficiency of the

robots. Although synergy-related constraint had never been encoded into the re-
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ward function of the DRL algorithms, the synergy emergence phenomenon could be

observed in all agents by purely optimizing the policy for the running performance

only. This shows that there exists an inherent relation between the synergy level

and the running performance, and this result shows certain similarities with some

human studies as well as some robotic studies. It was also demonstrated that the

SAC algorithm found solutions with higher performance and at the same time with

higher synergy level than the TD3 algorithm, suggesting that a good DRL algo-

rithm promotes high synergy level for better performance. This indicates that the

proposed synergy metrics may be used for evaluating DRL algorithms in additional

to classical performance metrics. In the second part of this chapter, in additional to

the previous synergy analysis, a comparison was also made between the SAC algo-

rithm and a classical PD controller in controlling a 7-DOF arm. The superiority of

the DRL algorithm over the PD controller was demonstrated via the performance,

energy efficiency and the synergy level of the 7-DOF arm in two tracking tasks.

In chapter 3, the focus was put on the quantification of the joint redundancy of

some redundant robots using one of the previously proposed synergy-related metric,

renamed to the SEA metric. The intuition behind the use of the SEA metric for the

joint redundancy quantification was that the more redundant a robot is, the more

exploration is needed for the DRL algorithm to find an optimal solution for a given

task. Intuitively, the SEA metric which has been shown to be able to quantify the

exploration of an DRL algorithm can thus potentially quantify the joint redundancy

as well. Experiments were carried out in various redundant robots with various

tasks, with the DRL algorithms used being both the SAC and the TD3 algorithms

to show that the choice of the algorithm was not crucial in the proposed method. The

experiment results showed that the SEA metric had successfully quantified relatively

the joint redundancy of the robots with increasing complexity and with different

tasks, showing promises to be better than analytical methods for joint redundancy

quantification. Indeed, the analytical methods become intractable when the robots

are too complex. Besides, the SEA metric was demonstrated to be able to provide

additional useful information such as the importance of a certain joint for a certain

task, and the difference in the redundancy of a robot when given different tasks.

Experiments were equally carried to demonstrate that the SEA metric could equally

quantify the kinematic and dynamic factors which affect the joint redundancy of a

human-like robotic arm. At the end of the chapter, it was shown that it is possible

to use the SEA metric for evaluating and choosing a suitable robotic design for a

certain task in order to prevent overly complex robots being used for simpler tasks.

In chapter 4, several analysis were done on DRL-trained quadrupeds with dif-

ferent gait types explicitly specified before the experiments. The interest of this
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study was to use the DRL algorithms for the gait generation in quadruped robots

for various purposes. Different from the previous two chapters, the DRL algorithm

was modified to actively modify the synergy properties of the robotic agents. In

more details, gait specification methods were proposed in order to constrain the

DRL algorithm to output a control policy that generates a certain gait type on the

quadruped robots, as opposed to the case without any specification where there is

no specific known gait type at the output. In this way, the DRL algorithm would

modify the spatial synergy of the quadrupeds directly, hence imposing a certain

synergy mode. The experiment results showed that with the proposed gait mode

specification methods, the DRL learning phase and the synergy emergence process

converged faster as the gait mode constraints reduce the redundant solution space

into a smaller space. It was also demonstrated that the proposed gait mode speci-

fication methods had successfully imposed a certain gait type on the DRL-trained

quadrupeds, in contrary to the case where there was no specification. An energetic

study had also been carried out with the DRL-trained quadrupeds to compare the

performance and energy efficiency of the quadrupeds with the gallop and the trot

gaits, and with different target forward speeds. This is a typical study being carried

out on quadrupeds, and it is known that the gallop gait is better suited for moving

at a higher speed. With the DRL-generated gaits in this chapter, similar results

awerere reproduced, i.e. the performance of the galloping quadruped is higher than

the trotting quadruped at a higher target running speed, and the opposite for a

lower target running speed. This showed promises that the DRL algorithm could

indeed be used in quadrupedal studies. To further show the advantage of a DRL

algorithm, the passive joint spring property of the galloping quadruped robots was

modified. The DRL algorithm had shown to be successfully adapted to the changed

dynamics of the quadrupeds, and was able to exploit the passive joint spring effect

when galloping. This adaptive properties of the DRL algorithm is clearly superior

to the classical controllers which need to be readjusted when the properties of the

robots are changed. The results of this chapter demonstrated that the DRL algo-

rithm shows promises to be able to provide a framework for studying quadruped

motion with different physical and dynamical properties.

5.2 Contribution

The main contributions of this thesis are the following.

• Through the recreation of the synergy emergence process using DRL, the close

relationship between the performance, energy efficiency and the synergy level
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of a moving DRL-trained robotic agents was demonstrated.

• The proposition of new synergy-related metrics for analyzing robotic motions

and also DRL algorithms.

• The proposition of a DRL-based relative joint redundancy quantification method

validated through various simulated robots of different complexities and dif-

ferent given tasks.

• The proposition of gait specification methods in DRL algorithms for quadrupedal

studies.

• The demonstration of the possibility to use DRL algorithms as an alternative

to classical controllers, as well as the advantages of the DRL algorithms over

the classical controllers in certain cases.

5.3 Future Work

There are several improvements and further investigations that can be done to

the studies carried out in this thesis.

First of all, all the studies in this thesis were based on simulated robotic agents.

While the MuJoCo simulation engine can simulate physics to a high degree of accu-

racy, however there is still a gap between the simulation environments and the real

world. One possible future work is hence to reproduce the results in this thesis by

conducting studies on real world robots. This should be a very challenging task as

the DRL algorithms are known to be difficult to train in real world situation as they

need a lot of training iterations, in addition to the wear and tear done to the robots

as time passes. Another possible improvement that could be done to the study done

in the first chapter is to solve the weaknesses of the synergy calculation method.

Indeed, for the current synergy calculation method, a static agent will have high

synergy level as the zero signal is easily reconstructed. Hence, further research is

needed to overcome this weakness. It is also mentioned in the chapter 2 that only

the agents which are stable in its static state are used as it makes the synergy calcu-

lation easier. However, it is preferable to be able to carry out the synergy analysis

on wider range of robotic agents and hence, a better synergy calculation method is

needed to take into account the non-stable robotic agents such as a biped. It is also

desirable in the future to design an DRL algorithm which explicitly promotes the

synergy level as it might improve the learning ability of the DRL algorithm.

Besides, more comparisons between the results of DRL-based methods and clas-
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sical methods also need to be carried out in the future. For example, the DRL-based

redundancy quantification method proposed in the chapter 3 can be compared to

the results of some analytical methods. In the chapter 4, the analysis results of the

DRL-generated quadrupedal gaits should also be compared to classical controllers-

generated gaits. The gait mode specification methods introduced in the chapter 4

can also be improved to generate more accurate gait outputs. Indeed, currently, it

is assumed that for the gallop gait, there is no phase delay between the left limbs

and the right limbs of the quadruped robots. This is not accurate as there exists a

small phase delay between the left and right limbs in a galloping quadruped.
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