
Large-scale Semi-supervised Learning of Neural
NLP Models

著者 Kiyono Shun
学位授与機関 Tohoku University
学位授与番号 11301甲第20476号
URL http://hdl.handle.net/10097/00135845

Large-scale Semi-supervised
Learning of Neural NLP Models

ニューラルネットワークを用いた
自然言語処理のための大規模半教師あり学習

Shun Kiyono

Graduate School of Information Sciences
Tohoku University

This dissertation is submitted for the degree of
Doctor of Information Science

January 2022

Acknowledgements

本研究の遂行にあたり、多くの方々にご協力をいただきました。ここに、心より
感謝の意を表します。

主指導教官である乾健太郎教授には、学部 3年次での研究室配属から、6年間の研
究活動において、多大なご助言を頂戴しました。また、社会人として博士号の取
得を目指すという非常に貴重な機会をいただきました。深く感謝いたします。

ご多忙の中、審査委員として本論文を査読してくださいました岡谷貴之教授、な
らびに大関真之教授に深く感謝いたします。

鈴木潤教授には実装、実験、論文執筆や発表資料の作成など、研究活動に含まれ
るありとあらゆる営みについて細部までご指導いただきました。研究遂行のため
の技術に留まらず、もう一段メタな技術（ものの見方・考え方・取り組み方）を
学ばせていただき、心より感謝しています。

東京工業大学の高瀬翔さんには、NTTコミュニーケーション科学基礎研究所での
インターンシップにおいて大変お世話になりました。心より感謝しております。
研究の組み立て方、プログラミングのテクニックや論文の書き方だけではなく、
けいはんなの美味しい食べ物やクラフトビールを、ときには夜遅くまでご指導い
ただき、ゼロから国際会議論文を仕上げることができました。また、現在も週次
でミーティングする機会をいただき、活発かつ熱心に議論させていただいており
ます。今後ともよろしくお願いいたします。

産業技術総合研究所の渡邉研斗さんには、学部 2年生時の StepQiアドバンス創造
工学研修において大変お世話になりました。回文生成という研究課題への半年間
の取り組みは、私が自然言語処理やプログラミングの面白さに魅了されるきっか
けでした。また、乾・岡崎研究室（当時）で研究に熱心に取り組んでいる研斗さ
んの姿は、座学中心のモノトーンな大学生活を送っていた私にとって非常に魅力
的に映り、研修終了後に現在の研究室へ配属希望を出す大きな理由の一つとなり
ました。この場を借りて深く感謝申し上げます。

株式会社 Preferred Networksの小林颯介さんには、主に博士後期課程の研究で大変
お世話になりました。心より感謝しております。学部 4年に弊研究室に配属され

て以来、小林さんはずっと憧れの先輩です。週次のミーティングでの議論は大変
刺激的で、私にとって他に代えがたい研究の糧になっています。今後ともよろし
くお願いいたします。

乾研究室の伊藤拓海さんには、主に課外活動、つまりは週末の登山やスノーボー
ドで大変お世話になりました。長い研究室生活において心中穏やかではいられな
いような時期もあった中で、良いリフレッシュの機会をいただきました。大変感
謝しております。今後も一緒に遊びに行ってもらえると嬉しいです。

株式会社リクルートホールディングスの今野颯人さんには、研究室内部での共同
研究でお世話になりました。私は今野さんのメンターという立場ではありました
が、実際には私のほうが多くのことを学ばせてもらったと思っています。深く感
謝申し上げます。また東京で会いましょう。

菅原真由美さん、相澤知佳さん、磯部順子さんには、研究活動だけではなく私の
未熟な事務処理能力を辛抱強くサポートしていただきました。深く感謝申し上げ
ます。

山口健史さんには、研究室の計算機クラスタの管理で大変お世話になりました。
無茶な計算機の使い方をしてご迷惑をおかけすることもありましたが、その度に
手厚くサポートしていただきました。心より感謝いたします。

また、博士課程の研究を通して、私の大規模な実験を支えてくれた計算機クラス
タである RAIDENと miniRAIDEN、およびその管理者の方々に感謝いたします。
DGX-1と DGX-2シリーズの演算能力なくしては、本博士論文は執筆できていなか
ったことは間違いありません。

最後に、乾研究室の皆様からは様々なご助言をいただき、研究生活を暖かく支え
ていただきました。心より感謝を申し上げます。本当にありがとうございました。

iii

Abstract

Deep neural network (DNN) based approaches have achieved remarkable performance in
multiple research fields, such as natural language processing, computer vision, and speech
processing. However, it is widely acknowledged that DNNs are extremely data-hungry,
i.e., in order to take full advantage of DNN, one needs to incorporate large-scale data into
the training. Semi-supervised learning (SSL), the method of incorporating unlabeled data
into the training, is one of the promising approaches for mitigating the difficulty of training
DNNs. The goal of this thesis is to establish the SSL methodology with “more unlabeled
data, better performance” property, i.e., simply scaling the amount of unlabeled data leads
to better model performance.

In order to accomplish the goal, one needs to consider the scalability of the given SSL
method. In other words, the method needs to (i) process large-scale unlabeled data in a
reasonable amount of computational time and (ii) improve the model performance through
more unlabeled data. Pretrained language model is a generic SSL method in which a single
pretrained model can be applied to arbitrary downstream tasks, satisfies these scalability
requirements. On the other hand, the scalability of the remaining task-oriented SSLmethods
is under-explored in the literature; this fact leaves a series of issues to address to achieve our
final goal.

We first develop a scalable task-oriented SSL method for the text classification task,
which is one of the simplest tasks of NLP. The proposed method is called a mixture of
expert/imitator networks. The method demonstrates promising scalability concerning the
amount of unlabeled data, which leads to the state-of-the-art performance on text classifica-
tion benchmark datasets. Moreover, the experimental findings provide several implications
for adapting the method for more complex NLP tasks.

Towards adapting the scalable SSL method to more complex tasks, we investigate the
scalability of the existing SSL method(s) on two sequence-to-sequence tasks, namely, gram-
matical error correction and machine translation. As a result, we demonstrate that the SSL
method with the highest scalability can achieve state-of-the-art performance. In addition,
we reveal the limits of the “more unlabeled data” paradigm on both tasks.

Finally, we tackle the limits of SSL bymaking a tinymodification in a training procedure.
Using the position generalization issue of Transformer models, we simulate the situation
such that more data does not improve the performance. Our proposed method, shifted ab-
solute position embeddings, makes a minimal modification to the position representation of
the Transformer. The method significantly improves the models’ generalization to positions.

v

Table of contents

List of figures ix

List of tables xi

1 Introduction 1
1.1 Research Issues . 3
1.2 Contributions . 3
1.3 Thesis Overview . 4

2 Semi-supervised Learning for NLP 6
2.1 Task-oriented SSL . 6
2.2 Generic SSL . 7
2.3 Scalability of SSL . 8

3 Large-scale Task-oriented Semi-supervised Learning for Text Classification 10
3.1 Introduction . 10
3.2 Related Work . 12
3.3 Task Description and Notation Rules . 13
3.4 Baseline Network: LSTM with MLP . 14
3.5 Proposed Model: Mixture of Expert/Imitator Networks (MEIN) 15

3.5.1 Basic Idea . 15
3.5.2 Network Architecture . 16
3.5.3 Definition of IMNs . 17
3.5.4 Training Framework . 18

3.6 Experiments . 19
3.6.1 Datasets . 19
3.6.2 Baseline DNNs . 20
3.6.3 Network Configurations . 20

Table of contents

3.6.4 Results . 21
3.7 Analysis . 23

3.7.1 More Data, Better Performance Property 23
3.7.2 Scalability with Amount of Unlabeled Data 24
3.7.3 Effect of Window Size of the IMN 25

3.8 Discussion . 25
3.8.1 Variations of the IMN . 25
3.8.2 Stronger Baseline DNN . 27

3.9 Conclusion . 27

4 Massive Exploration of Pseudo Data for Grammatical Error Correction 29
4.1 Introduction . 29
4.2 Problem Formulation and Notation . 30
4.3 Methods for Generating Pseudo Data . 32

4.3.1 Noisy Back-translation: BACKTRANS (NOISY) 34
4.3.2 Direct Noizing: DIRECTNOISE and DIRECTNOISE (SPELL) 34

4.4 Experiments . 35
4.4.1 Experimental Configurations . 35
4.4.2 Aspect (i): Pseudo Data Generation 39
4.4.3 Aspect (ii): Seed Corpus 𝒯 . 42
4.4.4 Aspect (iii): Optimization Setting 42
4.4.5 Comparison with Current Top Models 45

4.5 Analysis . 46
4.5.1 Effectiveness of Different Seed Corpora 47
4.5.2 Strengths and Weaknesses of PRETLARGE 52

4.6 Related Work . 54
4.6.1 Methods for Generating Pseudo Data 54
4.6.2 Seed Corpus . 55
4.6.3 Optimization Settings . 56

4.7 Conclusions . 56

5 The Role of Semi-supervised Learning in the State-of-the-Art Machine Trans-
lation System 58
5.1 Introduction . 58
5.2 Dataset and Preprocessing . 59

5.2.1 Bitext . 59
5.2.2 Monolingual Corpus . 59

vii

Table of contents

5.3 System Overview . 61
5.3.1 Base Model and Hyperparameter 61
5.3.2 Subword Size . 61
5.3.3 Large-scale Back-translation . 61
5.3.4 Fine-tuning . 64
5.3.5 Ensemble . 65
5.3.6 Right-to-Left Models . 65
5.3.7 Reranking . 65
5.3.8 Post-processing . 67
5.3.9 Post-ensemble . 67

5.4 Results . 67
5.5 Analysis . 69

5.5.1 Negative Results on Synthetic Data Filtering 69
5.5.2 Effectiveness of Incorporating Forward-Translation 73
5.5.3 Negative Result on Reranking . 73
5.5.4 Japanese Text and Brackets . 73

5.6 Conclusion . 74

6 Shifted Absolute Position Embedding for Transformers 75
6.1 Introduction . 75
6.2 Position Representations . 76

6.2.1 Absolute Position Embedding (APE) 77
6.2.2 Relative Position Embedding (RPE) 77
6.2.3 Shifted Absolute Position Embedding (SHAPE) 78

6.3 Experiments . 78
6.3.1 Experimental Configuration . 79
6.3.2 Experiment 1: Shift Invariance . 83
6.3.3 Experiment 2: Performance Comparison 84

6.4 Analysis . 86
6.5 Conclusion . 88

7 Conclusion 89

References 91

List of Publications 107

viii

List of figures

3.1 Overview of our framework: the Mixture of Expert/Imitator Networks
(MEIN) . 11

3.2 Overview of the 1st IMN (c1 = 1). The IMN must predict the label estima-
tion of the EXN from a limited amount of information. $ denotes a special
token used to pad the input (a zero vector). 16

3.3 Error rate (%) at different amounts of unlabeled data. The x-axis is in log-
scale. A lower error rate indicates better performance. The dashed hori-
zontal line represents the performance of the base EXN (ADV-LM-LSTM). 24

3.4 Effect of the IMNwith different window sizes ci on the final error rate (%) of
ADV-LM-LSTM.A lower error rate indicates better performance. Base:
EXN (ADV-LM-LSTM) without the IMN, A: ci = 1, B: ci = 1, 2, C: ci =
1, 2, 3, D: ci = 1, 2, 3, 4. 26

4.1 Examples of sentences generated by BACKTRANS (NOISY), DIRECTNOISE and
DIRECTNOISE (SPELL) methods. 33

4.2 Performance of the model on BEA-valid with varying parameters DIRECT-
NOISE (𝜇mask). 40

4.3 Performance of the model on BEA-valid with varying parameters BACK-
TRANS (NOISY) (𝛽random). 41

4.4 Performance on BEA-valid for different amounts of pseudo data (|𝒟p|). The
seed corpus 𝒯 is Gigaword. 45

4.5 Performance of the different seed corpora on BEA-valid across various error
types. Only the 10 most frequent error types are presented. For a detailed
description of each error type, see (Bryant et al., 2017). 47

4.6 Error type distribution across different proficiency levels. Only the 10 most
frequent error types are presented. 48

ix

List of figures

4.7 Effect of the seed corpus on proficiencyA, B, B, andN. The y-axis represents
the F0.5 score. 49

4.8 NOUN error generated by our model (PRETLARGE+SSE). Bold text
indicates the grammatical error successfully corrected by the model.
Underlined text indicates the grammatical errors not corrected by the model. 50

4.9 Performance of the models on BEA-valid across various error types. Only
the 10 most frequent error types are presented. For a detailed description of
each error type, see (Bryant et al., 2017). 51

4.10 Performance of the model on each proficiency level in BEA-valid. 53

5.1 Overview of our system. 60
5.2 Error analysis of En→Ja translation. 72

6.1 Overview of position representations. (a) APE and (c) SHAPE consider
absolute positions in the input layer, whereas (b) RPE considers the relative
position of a given token pair in the self-attention mechanism. 76

6.2 Distribution of source sequence length of each dataset. 81
6.3 Cosine similarities of encoder hidden states with different offsets k ∈

{0, 100, 250, 500}. Only the representation of SHAPE is invariant with k. . . 84
6.4 BLEU score improvement from APE on validation and test sets with respect

to the source sequence length. The gray color means no training data. . . . 86
6.5 Tokenwise analysis on gold references: the value in each cell represents the

ratio that SHAPE assigns a higher score to a gold token than APE. 87

x

List of tables

3.1 Summary of datasets. Each value represents the number of instances con-
tained in each dataset. 20

3.2 Summary of hyperparameters . 21
3.3 Test performance (error rate (%)) on each dataset. A lower error rate in-

dicates better performance. Models using the unlabeled data are marked
with †. Results marked with ∗ are statistically significant compared with
ADV-LM-LSTM. Miyato 2017: the result reported byMiyato et al. (2017).
Sato 2018: the result reported by Sato et al. (2018). 22

3.4 Number of tokens processed per second during the training 25
3.5 Effect of removing IMNs with smaller window sizes on the error rate (%) of

ADV-LM-LSTM on the Elec dataset. A lower error rate indicates better
performance. 27

4.1 Summary of datasets used in our experiments. Dataset marked with “*” is a
seed corpus 𝒯 . 36

4.2 Hyper-parameter for JOINT optimization 38
4.3 Hyper-parameter for PRETRAIN optimization 39
4.4 Performance of models on BEA-valid: a value in bold indicates the best

result within the column. The seed corpus 𝒯 is SimpleWiki. 39
4.5 Performance on BEA-valid when changing the seed corpus 𝒯 used for gen-

erating pseudo data (|𝒟p| = 1.4M). 42
4.6 Performance of themodel with different optimization settings on BEA-valid.

The seed corpus 𝒯 is Gigaword. 43
4.7 Comparison of our bestmodel and current topmodels: a bold value indicates

the best result within the column. 44

5.1 List of hyperparameters for each model. 62
5.2 Effectiveness of different subword sizes on the validation set of En↔Ja task. 63

xi

List of tables

5.3 Number of sentence pairs in the synthetic data of each language pair 63
5.4 Effectiveness of using the synthetic data on En→De 64
5.5 Effectiveness of each technique: we use newstest2019 and official validation

set for En↔De and En↔Ja respectively. The best result from WMT’19 is
unavailable for En↔Ja, because this task has newly appeared this year. . . . 68

5.6 Performance on WMT’20 Test Set: refer to Table 5.5 for model ID. 68
5.7 Effectiveness of corpus filtering on En→De. 70
5.8 Effectiveness of incorporating forward-translation and back-translation on

En→De. 70

6.1 Summary of statistics, preprocessing, and evaluation metric of datasets used
in our experiment. 80

6.2 List of hyperparameters. †: this corresponds to “learning rate” variable de-
fined in OpenNMT-py framework. 82

6.3 BLEU score on the sub-sampled training data of INTERPOLATE (10,000
pairs). InOriginal and Swapped, the order of input sequence is X1, … , X10
and X2, … , X10, X1, respectively. 83

6.4 BLEU scores on newstest2010-2016. Valid is the average of newstest2010-
2013. Test is the average of newstest2014-2016. †: the values are averages
of five distinct trials with five different random seeds. ∗: not available as the
implementation was very slow. Speed is the relative speed to APE (larger is
faster). 85

xii

Chapter 1

Introduction

To date, deep neural networks (DNNs) have been achieving excellent performance on many
tasks acrossmultiple research fields, such asmachine translation (MT) (Vaswani et al., 2017),
image recognition (He et al., 2016), and automatic speech recognition (Amodei et al., 2016).
Several studies even claim that their models surpass the human-level performance on bench-
mark datasets (Hassan et al., 2018; He et al., 2020; Kiela et al., 2021).

However, DNNs are extremely data-hungry, i.e., in order to take full advantage of DNN’s
performance, one needs to feed themodel with large-scale data for training. OtherwiseDNNs
may severely over-fit the training data with little or no generalization. For example, Koehn
and Knowles (2017) conducted an experiment on MT for comparing neural machine trans-
lation model (NMT) (Bahdanau et al., 2015; Luong et al., 2015; Sutskever et al., 2014) with
the conventional phrase-based statistical machine translation model (PBSMT) (Koehn et al.,
2007). They trained two models while varying the amount of parallel corpus, i.e., train-
ing data, from low-resource to high-resource setting. They demonstrated that NMT under-
performs PBSMT by a large margin when the models are trained in low-resource settings.
Sennrich and Zhang (2019) conducted a similar experiment. They conducted an extensive
hyper-parameter search on NMT and found that NMT can outperform PBSMT. Neverthe-
less, the performance gap between the two models is smaller for the low-resource settings
than for high-resource settings. Thus, the amount of data plays an increasingly important
role in the current DNN paradigm.

A naive approach for boosting the performance of DNNs is to collect more labeled data
for training. However, this approach is often infeasible because one cannot afford extra an-
notation. For example, Dua et al. (2019) reported that annotation of around 100k question-
answer pairs cost US$60k. Such high cost originates in the annotation difficulty of many

1

NLP tasks; they often require a highly skilled annotator with a sophisticated linguistic back-
ground1.

Semi-supervised learning (SSL) is one of the promising approaches for overcoming the
lack of labeled data. SSL incorporates unlabeled data into the training in addition to labeled
data. SSL takes advantage of the fact that, compared to labeled data, unlabeled data is rel-
atively easy to collect. For example, in NLP, unlabeled data is essentially a raw text; thus,
large-scale unlabeled data can be collected by crawling the Web. In fact, several terabyte-
scale corpus of such crawled data are publicly available (Gao et al., 2021; Ortiz Suárez et al.,
2019; Raffel et al., 2020). The goal of this thesis is to establish SSL methodology with the
property of “more unlabeled data, better performance” and make full use of such gigantic
unlabeled data.

SSL methodologies can be classified into two categories: (1) generic SSL and (2) task-
oriented SSL. The former refers to the methodologies that utilize unlabeled data in a manner
that is independent of the target task, e.g., word vectors (Mikolov et al., 2013; Pennington
et al., 2014) and pretrained language models (PLMs) (Devlin et al., 2019; Peters et al., 2018).
In other words, the generic SSL aims to acquire useful information for downstream tasks in
general. On the other hand, the task-oriented methodologies incorporate the target task infor-
mation into their algorithm, e.g., using labeled training data of the target task (Miyato et al.,
2017; Suzuki and Isozaki, 2008; Suzuki et al., 2009). Here, task-oriented SSL attempts
to acquire information specifically useful for the target downstream task. It has been em-
pirically demonstrated that generic SSL and task-oriented SSL are complementary to each
other (Kiyono et al., 2019; Miyato et al., 2017).

Towards the goal of utilizing terabyte-scale unlabeled data, we must consider the scala-
bility of SSL. Here, scalability refers to the following two distinct concepts:

Computational Scalability considers if a given SSL method can process large-scale unla-
beled data in a reasonable amount of computational time.

Performance Scalability considers if scaling the amount of unlabeled data indeed im-
proves the model performance.

PLM, the current most successful generic SSL method in NLP, satisfies both scalability
requirements. Specifically, PLMs use Transformer architecture (Vaswani et al., 2017), whose
computation is highly parallelizable, to satisfy computational scalability. In addition, Kaplan
et al. (2020) empirically demonstrated the performance scalability through the “scaling law,”
that is, there is a power-law relationship between the amount of unlabeled data and the test

1The PropBank (Bonial et al., 2010), which is a widely-used dataset for semantic role labeling, has the
annotation guideline of 89 pages.

2

1.1 Research Issues

performance (i.e., perplexity) of a language model. As a result, PLM has been achieving
excellent performance on a variety of downstream tasks. However, on the other hand, the
scalability of task-oriented SSL methods are relatively under-explored, which motivates us
to investigate the following research issues.

1.1 Research Issues
What makes task-oriented SSL scalable?: As we elaborate in Chapter 2, findings on the
performance scalability of task-oriented SSL are mixed in the research field. Thus, the
properties that make the underlying method scalable (or unscalable) are unclear.

Scalable task-oriented SSL method applicable for arbitrary tasks: The task-oriented
SSL method often makes the huge assumption on the target task. Thus, it is unclear if a
finding on a specific task can transfer to the other. One must confirm the effectiveness of
scalable task-oriented SSL across multiple tasks.

What are the limits of task-oriented SSL methods?: Suppose that we have a scalable
SSLmethod at hand; is incorporating more unlabeled data all we need for improving model
performance? What are limitations or remaining challenges of scalable task-oriented SSL?

1.2 Contributions
This thesis makes the following contributions:

Building a scalable task-oriented SSL method: We propose a novel task-oriented SSL
method. We demonstrate that our method scales to the amount of unlabeled data using the
text classification benchmark data. Through the analysis, we investigate the requirements
for a scalable task-oriented SSL method. Finally, we demonstrate that our method can be
combined with the state-of-the-art generic SSL method to improve the performance.

Expanding the applicability of scalable task-oriented SSL method: We expand the ap-
plicability of scalable task-oriented SSL by tackling one of sequence-to-sequence prob-
lems, namely, grammatical error correction (GEC). We conduct a controlled empirical
comparison of existing task-oriented SSL methods on GEC. We identify the best scalable
method through the experiment and achieve the state-of-the-art performance on multiple
GEC benchmark datasets.

3

1.3 Thesis Overview

Exploring the limits of task-oriented SSL methods: For MT and GEC, we analyze the
models trained on a massive amount of unlabeled data. We reveal the limitations of the
scaling the amount of unlabeled data through the analysis.

Minimal architecture modification as a means of compensating the lack of data with
desired property: We enhance the state-of-the-art Transformer model to address the lim-
itations of current SSL methods. Using the issue of length extrapolation, we demonstrate
that an enhancement in Transformers’ position representation can improve the model’s gen-
eralization to the sequences that are longer than those observed during the training.

1.3 Thesis Overview
The rest of this thesis is structured as follows:

Chapter 2: Semi-supervised Learning for NLP. This chapter provides the overview of
current SSL methodologies for neural networks. We first organize the methodologies into
two categories and then discuss their scalability aspects to highlight the importance of this
thesis’ research issues.

Chapter 3: Large-scale Task-oriented Semi-supervised Learning for Text Classifica-
tion. This chapter proposes a novel SSL method: a Mixture of Expert/Imitator Networks
(MEIN). The experiment on multiple text classification benchmark dataset reveals that the
proposed method not only outperforms the state-of-the-art methods but also shows supe-
rior computational scalability. MEIN also demonstrates performance scalability; that is,
increasing the amount of unlabeled data leads to better model performance.

Chapter 4: Massive Exploration of Pseudo Data for Grammatical Error Correction.
This chapter presents an extensive empirical comparison of current SSL methods. Then we
incorporate large-scale unlabeled data (70M sentence pairs) into the training of the DNN
model and achieve state-of-the-art performance on GEC benchmark datasets. Finally, we
conduct a thorough analysis of the model through the viewpoint of English proficiency and
grammatical error type. We then reveal both the limitations of the SSL method and the
remaining challenges of the task.

Chapter 5: The Role of Semi-supervised Learning in the State-of-the-Art Machine
Translation System. This chapter introduces the winning system that we submitted to
the WMT 2020 news translation shared task. We demonstrate that merely using the current
best SSL method (back-translation) is insufficient for building the winning system. Instead,
combining multiple enhancements, e.g., model ensembles and reranking, is crucial.

4

1.3 Thesis Overview

Chapter 6: Shifted Absolute Position Embedding for Transformers. The length extrap-
olation is one of the crucial abilities for a robust natural language generation system. We
exploit the concept of length extrapolation for simulating the situation in which SSL meth-
ods cannot generate data with the desirable property. We then propose a novel position
representation for the Transformer to improve the length extrapolation ability.

Chapter 7: Conclusion. This chapter summarizes the contribution.

5

Chapter 2

Semi-supervised Learning for
NLP

This chapter gives an overview of Semi-supervised Learning (SSL) for NLP. SSL is one of
the machine learning paradigms in which a model is trained with a set of unlabeled data
in addition to a set of labeled data. Here, the goal is to achieve a better generalization of
the target task. Historically, SSL has been actively studied for various machine learning
methods, including support vector machines (Bennett and Demiriz, 1999) and conditional
random fields (Suzuki and Isozaki, 2008). Recently, almost the entire research field has
shifted to neural network-based methods; thus, the neural SSL method has been actively
developed (Yang et al., 2021). Neural SSL methods can be categorized into a task-oriented
SSL and generic SSL.

2.1 Task-oriented SSL
Task-oriented SSL is an SSL method that exclusively aims to achieve better performance
on the target task. To do this, the family of this SSL method incorporates the target task
information into their algorithm, e.g., through the use of labeled training data of the target
task.

Consistency regularization is one of the most successful task-oriented SSL approaches
for NLP,whose idea is to train amodel to generate probability distributions that are consistent
across the given input and its nearby data points. In consistency regularization, the model
with parameter set 𝜃 generates two probability distributions for a given input x; the one
is for the input without the noise p(y|x, 𝜃) and the other is the one with the noise p(y|x +
𝜖, 𝜃). These predictions are regarded as the soft target and the model prediction, respectively.

6

2.2 Generic SSL

Then we compute the loss J(𝜃) from two distributions and update the model parameters.
Here, KL divergence is typically used as a loss function J(𝜃). Consistency regularization
has been successfully applied to a variety of NLP tasks, including not only a naive text
classification (Chen et al., 2020a; Miyato et al., 2017; Sato et al., 2018) but also sequential
tagging (Chen et al., 2020b; Clark et al., 2018) and sequence generation (Sato et al., 2019;
Takase and Kiyono, 2021).

The underlying challenge of consistency regularization is to formulate a “good” noise 𝜖
that can effectively improve the model’s generalization on the target task; in fact, several so-
phisticated noise generation algorithms have been proposed to address such challenge. For
example, adversarial noise (Goodfellow et al., 2015) is generated by computing the perturba-
tion that most severely increases the loss value. Similarly, virtual adversarial noise (Miyato
et al., 2017) can be computed from unlabeled data by computing the perturbation to which
the model’s prediction is the most sensitive. In addition, Cross-view training (CVT) (Clark
et al., 2018) casts the concept of the noise to the restricted views of the given input; that is,
the model is forced to make a prediction from a part of the input. For example, in the case of
sequential tagging problems, such restricted views include the sequence without the future
(i.e., right-hand-side) and the past (i.e., left-hand-side) contexts.

2.2 Generic SSL
In contrast to task-oriented SSL, generic SSL uses unlabeled data in a manner that is entirely
independent of the target task. Generic SSL aims to acquire a set of features that are generally
useful for arbitrary downstream tasks.

A most common approach is to use unlabeled data for pretraining on language modeling
objectives, that is, the objective of predicting the missing word from given contexts (i.e., sur-
rounding words). More specifically, two methodologies exist (1) word embeddings and (2)
pretrained language models (PLMs). The latter approach, PLM, is dominant in the research
field (Bommasani et al., 2021).

The concept of PLM is to pretrain a gigantic model on a language modeling task with a
massive amount of unlabeled data. Then, for a given labeled training data for a target task,
a pretrained model can be used as a feature extractor or an initial parameter for finetuning.
The effectiveness of PLM is first demonstrated by Dai and Le (2015). They pretrained the
RNN-based classifier on language modeling and reported that pretraining not only stabilizes
the training on labeled data but also improves the generalization. Peters et al. (2017) adopted
a similar approach on a much larger scale; they pretrained a multi-layer RNN on huge un-
labeled data, namely, a one billion word benchmark (Chelba et al., 2014), and reported the

7

2.3 Scalability of SSL

improved performance on sequential labeling tasks. The use of such large-scale pretrained
RNN is then expanded to various NLP tasks (Peters et al., 2018). In order to better utilize
the bidirectional context, Devlin et al. (2019) replaced the internal architecture with Trans-
former model (Vaswani et al., 2017) and the language modeling objective with the masked
language modeling objective. Both modifications further improved the downstream perfor-
mance. Interestingly, the language modeling objective is empirically superior to the other
objectives (Wang et al., 2019a). In addition, there exists an attempt to understand the reason
for the effectiveness of the objective from the theoretical viewpoint (Saunshi et al., 2021).

2.3 Scalability of SSL
As discussed in Chapter 1, the final goal of this thesis is to make full use of ever-increasing
unlabeled data in SSL. To achieve the goal, we must consider the scalability of SSLmethods.
More specifically, a scalable SSL must satisfy both of the following two concepts:

Computational Scalability: A given SSL method can process large-scale unlabeled data
in a reasonable amount of computational time.

Performance Scalability: Scaling the amount of unlabeled data improves the model per-
formance.

Among generic SSL (Section 2.2) methods, PLM satisfies both requirements. For exam-
ple, the current state-of-the-art PLM methods satisfy the computational scalability by using
the Transformer model (Vaswani et al., 2017). The internal operations of the Transformer
model, i.e., (self-)attention mechanism (Bahdanau et al., 2015; Lin et al., 2017), are highly
parallelizable; thus, the computation can be accelerated by modern hardware such as GPU
and TPU (Jouppi et al., 2017). In addition, the performance scalability is also satisfied; Ka-
plan et al. (2020) empirically demonstrated the existence of scaling law, that is, there exists
a power-law relationship between test set loss and one of (1) amount of compute, (2) dataset
size, and (3) number of parameters. The effectiveness of scaling the PLM on the down-
stream performance has also been reported in various studies (Brown et al., 2020; Devlin
et al., 2019; Radford et al., 2019).

On the other hand, in task-oriented SSL (Section 2.1), the scalability of each method is
relatively under-explored, and no consensus has been established yet. Although several stud-
ies report the effectiveness of scaling the amount of unlabeled data, no generic findings are
available across different tasks. For example, Edunov et al. (2018) have successfully scaled
the amount of unlabeled data on machine translation; however, it is unclear whether their

8

2.3 Scalability of SSL

findings can generalize to tasks other than machine translation. In fact, Chen et al. (2021)
applied several task-oriented SSL methods, including VAT and CVT, for sequential labeling
tasks. They reported that scaling the amount of unlabeled data from 500K to 1M hurts the
performance; this report suggests the difficulty of achieving the performance scalability in
task-oriented SSL. A similar difficulty is also reported in image classification (Oliver et al.,
2018). Given this background, the scalability of task-oriented SSL leaves us with research
questions discussed in Chapter 1.

9

Chapter 3

Large-scale Task-oriented
Semi-supervised Learning for
Text Classification

3.1 Introduction
It is commonly acknowledged that deep neural networks (DNNs) can achieve excellent per-
formance in many tasks across numerous research fields, such as image classification (He
et al., 2016), speech recognition (Amodei et al., 2016), and machine translation (Wu et al.,
2016). Recent progress in these tasks has been primarily driven by the following two factors:
(1) A large amount of labeled training data exists. For example, ImageNet (Deng et al., 2009),
one of the major datasets for image classification, consists of approximately 14 million la-
beled images. (2) DNNs have the property of achieving better performance when trained on
a larger amount of labeled training data, namely, themore data, better performance property.

However, collecting a sufficient amount of labeled training data is not always easy for
many actual applications. We refer to this issue as the labeled data scarcity issue. This issue
is particularly crucial in the field of natural language processing (NLP), where only a few
thousand or even a few hundred labeled data are available for most tasks. This is because,
in typical NLP tasks, creating the labeled data often requires the professional supervision of
several highly skilled annotators. As a result, the cost of data creation is high relative to the
amount of data.

Unlike labeled data, unlabeled data for NLP tasks is essentially a collection of raw texts;
thus, an enormous amount of unlabeled data can be obtained from the Internet, such as

10

3.1 Introduction

MLP

Softmax

𝑿

LSTM

𝑝(𝑦|𝑿)

Previous
Expert Network Only

Ours
Mixture of Expert/Imitator Networks (MEIN)

MLP

Sum

𝑿

LSTM 1st IMN I-th IMN

		𝜆)		𝜆*

Softmax

𝑝(𝑦|𝑿)

2nd IMN

		𝜆+

Figure 3.1 Overview of our framework: the Mixture of Expert/Imitator Networks (MEIN)

through the Common Crawl website1, at a relatively low cost. With this background, semi-
supervised learning (SSL), which leverages unlabeled data in addition to labeled training
data for training the parameters of DNNs, is one of the promising approaches to practically
addressing the labeled data scarcity issue in NLP. In fact, some intensive studies have re-
cently been undertaken with the aim of developing SSL methods for DNNs and have shown
promising results (Clark et al., 2018; Dai and Le, 2015; Mikolov et al., 2013; Miyato et al.,
2017; Peters et al., 2018).

In this chapter, we also follow this line of research topic, i.e., discussing SSL suitable for
NLP. Our interest lies in the more data, better performance property of the SSL approach
over the unlabeled data, which has been implicitly demonstrated in several previous stud-
ies (Pennington et al., 2014; Peters et al., 2018). In order to take advantage of the huge
amount of unlabeled data and improve performance, we need an SSL approach that scales
with the amount of unlabeled data. However, the scalability of an SSL approach has not
yet been widely discussed, since the primary focus of many of the recent studies on SSL in
DNNs has been on improving the performance. For example, several studies have utilized
unlabeled data as additional training data, which essentially increases the computational cost
of (often complex) DNNs (Clark et al., 2018; Miyato et al., 2017; Sato et al., 2018). Another
SSL approach is to (pre-)train a gigantic bidirectional language model (Peters et al., 2018).
Nevertheless, it has been reported that the training of such a network requires 3 weeks us-
ing 32 GPUs (Jozefowicz et al., 2016). By developing a scalable SSL method, we hope to

1http://commoncrawl.org

11

http://commoncrawl.org

3.2 Related Work

broaden the usefulness and applicability of DNNs since, as mentioned above, the amount of
unlabeled data can be easily increased.

In this chapter, we propose a novel scalable method of SSL, which we refer to as the
Mixture of Expert/Imitator Networks (MEIN). Figure 3.1 gives an overview of the MEIN
framework, which consists of an expert network (EXN) and at least one imitator network
(IMN). To ensure scalability, we design each IMN to be computationally simpler than the
EXN. Moreover, we use unlabeled data exclusively for training each IMN; we train the IMN
so that it imitates the label estimation of the EXN over the unlabeled data. The basic idea
underlying the IMN is that we force it to perform the imitation with only a limited view of
the given input. In this way, the IMN effectively learns a set of features, which potentially
contributes to the EXN. Intuitively, our method can be interpreted as a variant of several
training techniques of DNNs, such as the mixture-of-experts (Jacobs et al., 1991; Shazeer
et al., 2017), knowledge distillation (Ba and Caruana, 2014; Hinton et al., 2015), and ensem-
ble techniques.

We conduct experiments on well-studied text classification datasets to evaluate the effec-
tiveness of the proposed method. We demonstrate that the MEIN framework consistently
improves the performance for three distinct settings of the EXN. We also demonstrate that
our method has the more data, better performance property with promising scalability to
the amount of unlabeled data. In addition, a current popular SSL approach in NLP is to pre-
train the language model and then apply it to downstream tasks (Dai and Le, 2015; McCann
et al., 2017; Mikolov et al., 2013; Peters et al., 2017, 2018). We empirically prove in our
experiments that MEIN can be easily combined with this approach to further improve the
performance of DNNs.

3.2 Related Work
There have been several previous studies in which SSL has been applied to text classifi-
cation tasks. A common approach is to utilize unlabeled data as additional training data
of the DNN. Studies employing this approach mainly focused on developing a means of
effectively acquiring a teaching signal from the unlabeled data. For example, in virtual ad-
versarial training (VAT) (Miyato et al., 2017) the perturbation is computed from unlabeled
data to make the baseline DNN more robust against noise. Sato et al. (2018) proposed an
extension of VAT that generates a more interpretable perturbation. In addition, cross-view
training (CVT) (Clark et al., 2018) considers the auxiliary loss by making a prediction from
an unlabeled input with a restricted view. On the other hand, in our MEIN framework, we
do not use unlabeled data as additional training data for the baseline DNN. Instead, we use

12

3.3 Task Description and Notation Rules

the unlabeled data to train the IMNs to imitate the baseline DNN. The advantage of such
usage is that one can choose an arbitrary architecture for the IMNs. Specifically, we design
the IMN to be computationally simpler than the baseline DNN to ensure better scalability
with the amount of unlabeled data (Table 3.4).

The idea of our expert-imitator approach originated from the SSL framework proposed
by Suzuki and Isozaki (2008). They incorporated several simple generativemodels as a set of
additional features for a supervised linear conditional random field classifier. Our EXN and
IMN can be regarded as their linear classifier and the generative models, respectively. In ad-
dition, they empirically demonstrated that the performance has a linear relationship with the
logarithm of the unlabeled data size. We empirically demonstrate that the proposed method
also exhibits similar behavior (Figure 3.3), namely, increasing the amount of unlabeled data
reduces the error rate of the EXN.

One of the major SSL approaches in NLP is to pre-train a language model over unlabeled
data. The pre-trained weights have many uses, such as parameter initialization (Dai and
Le, 2015) and as a source of additional features (McCann et al., 2017; Peters et al., 2017,
2018), in downstream tasks. For example, Peters et al. (2018) have recently trained a bi-
directional LSTM language model using the One Billion Word Benchmark dataset (Chelba
et al., 2014). They utilized the hidden state of the LSTM as contextualized embedding,
called ELMo embedding, and achieved state-of-the-art results in many downstream tasks. In
our experiment, we empirically demonstrate that the proposed MEIN is complementary to
the pre-trained language model approach. Specifically, we show that by combining the two
approaches, we can further improve the performance of the baseline DNN.

3.3 Task Description and Notation Rules
This section gives a formal definition of the text classification task discussed in this chapter.
Let 𝒱 represent the vocabulary of the input sentences. xt ∈ {0, 1}|𝒱 | denotes the one-hot
vector of the t-th token (word) in the input sentence, where |𝒱 | represents the number of
tokens in 𝒱 . Here, we introduce the short notation form (xt)T

t=1 to represent a sequence of
vectors for simplicity, that is, (xt)T

t=1 = (x1, … , xT). Suppose we have an input sentence
that consists of T tokens. For a succinct notation, we introduce X to represent a sequence
of one-hot vectors that corresponds to the tokens in the input sentence, namely, X = (xt)T

t=1.
𝒴 denotes a set of output classes. Let y ∈ {1, … , |𝒴 |} be an integer that represents the
output class ID. In addition, we define Xa∶b as the subsequence of X from index a to index b,
namely, Xa∶b = (xa, xa+1 … , xb) and 1 ≤ a ≤ b ≤ T. We also define x[i] as the i-th element
of vector x. For example, if x = (5, 2, 1, –1)⊤, then x[2] = 2 and x[4] = –1.

13

3.4 Baseline Network: LSTM with MLP

In the supervised training framework for text classification tasks modeled by DNNs, we
aim to maximize the (conditional) probability p(y|X) over a given set of labeled training data
(X, y) ∈ 𝒟s by using DNNs. In the semi-supervised training, the objective of maximizing
the probability is identical but we also use a set of unlabeled training data X ∈ 𝒟u.

3.4 Baseline Network: LSTM with MLP
In this section, we briefly describe a baseline DNN for text classification. Among the many
choices, we select the LSTM-based text classificationmodel described byMiyato et al. (2017)
as our baseline DNN architecture since they achieved the current best results on several well-
studied text classification benchmark datasets. The network consists of the LSTM (Hochre-
iter and Schmidhuber, 1997) cell and a multi layer perceptron (MLP).

First, the LSTM cell calculates a hidden state sequence (ht)T
t=1, where ht ∈ ℝH for all

t and H is the size of the hidden state, as ht = LSTM(Ext, ht–1). Here, E ∈ ℝD×|𝒱 | is the
word embedding matrix, D denotes the size of the word embedding, and h0 is a zero vector.

Then the T-th hidden state hT is passed through theMLP, which consists of a single fully
connected layer with ReLU nonlinearity (Glorot et al., 2011), to compute the final hidden
state s ∈ ℝM. Specifically, s is computed as s = ReLU(WhhT + bh), where Wh ∈ ℝM×H

is a trainable parameter matrix and bh ∈ ℝM is a bias term. Here, M denotes the size of the
final hidden state of the MLP.

Finally, the baseline DNN estimates the conditional probability from the final hidden
state s as follows:

zy = w⊤
y s + by, (3.1)

p(y|X, 𝚯) =
exp(zy)

∑y′∈𝒴 exp(zy′) , (3.2)

where wy ∈ ℝM is the weight vector of class y and by is the scalar bias term of class y. Also,
𝚯 denotes all the trainable parameters of the baseline DNN.

For the training process of the parameters in the baseline DNN 𝚯, we seek the (sub-
)optimal parameters that minimize the (empirical) negative log-likelihood for the given la-

14

3.5 Proposed Model: Mixture of Expert/Imitator Networks (MEIN)

beled training data 𝒟s, which can be written as the following optimization problem:

𝚯′ = arg min
𝚯

{Ls(𝚯|𝒟s)}, (3.3)

Ls(𝚯|𝒟s) = – 1
|𝒟s| ∑

(X,y)∈𝒟s

log (p(y|X, 𝚯)), (3.4)

where 𝚯′ represents the set of obtained parameters in the baseline DNN, by solving the
above minimization problem. Practically, we apply a variant of a stochastic gradient descent
algorithm such as Adam (Kingma and Ba, 2015).

3.5 Proposed Model: Mixture of Expert/Imitator Net-
works (MEIN)

Figure 3.1 gives an overview of the proposed method, which we refer to as MEIN. MEIN
consists of an expert network (EXN) and a set of imitator networks (IMNs). Once trained,
the EXN and the set of IMNs jointly predict the label of a given input X. Figure 3.1 shows
the baseline DNN (LSTM with MLP) as an example of the EXN. Note that MEIN can adopt
an arbitrary classification network as the EXN.

3.5.1 Basic Idea
A brief description of MEIN is as follows: (1) The EXN is trained using labeled training
data. Thus, the EXN is expected to be very accurate over inputs that are similar to the labeled
training data. (2) IMNs (we basically assume that we have more than one IMN) are trained to
imitate the EXN. To accomplish this, we train each IMN to minimize the Kullback‒Leibler
(KL) divergence between estimations of label distributions of the EXN and the IMNs over
the unlabeled data. (3) Our final classification network is a mixture of the EXN and IMN(s).
Here, we fine-tune the EXN using the labeled training data jointly with the estimations of
all the IMNs.

The basic idea underlying MEIN is that we force each IMN to imitate estimated label
distributions with only a limited view of the given input. Specifically, we adopt a sliding
window to divide the input into several fragments of n-grams. Given a large amount of unla-
beled data and the estimation by the EXN, the IMN learns to represent the label “tendency”
of each fragment in the form of a label distribution (i.e., certain n-grams are more likely
to have positive/negative labels than others). Our assumption here is that this tendency can
potentially contribute a set of features for the classification. Thus, after training the IMNs,

15

3.5 Proposed Model: Mixture of Expert/Imitator Networks (MEIN)

Baseline
DNN

(Section 4)

0.9 0.1

big joke not even … be funny
Expert Network (EXN)

$ big joke not even funny… be $

…

Imitator Network (IMN)

CNN & Leaky ReLU

Word Embedding

Fully Connected Layer & Softmax

Hidden States (𝐨#)#%&
'

IMN Estimation	𝑝* ,# (𝑦|𝑿/:1, 𝚽)

…

…

…

Unlabeled Data 𝐗 ∈ 𝓓6

EXN Estimation 𝑝(𝑦|𝑿, 𝚯8)

MLP

Softmax

LSTM

Compute Imitation Loss:	KL(𝑝(𝑦|𝑿,𝚯)||𝑝* ,# 𝑦 𝑿/:1, 𝚽)

Figure 3.2 Overview of the 1st IMN (c1 = 1). The IMN must predict the label estimation
of the EXN from a limited amount of information. $ denotes a special token used to pad the
input (a zero vector).

we jointly optimize the EXN and the weight of each feature. Here, MEIN may control the
contribution of each feature by updating the corresponding weight.

Intuitively, our MEIN approach can be interpreted as a variant of several successful ma-
chine learning techniques for DNNs. For example, MEIN shares the core concept with the
mixture-of-experts technique (MoE) (Jacobs et al., 1991; Shazeer et al., 2017). The differ-
ence is that MoE considers a mixture of several EXNs, whereas MEIN generates a mixture
from a single EXN and a set of IMNs. In addition, one can interpret MEIN as a variant of the
ensemble, bagging, voting, or boosting technique since the EXN and the IMNs jointly make
a prediction. Moreover, we train each IMN by minimizing the KL-divergence between the
EXN and the IMN through unlabeled data. This process can be seen as a form of “knowledge
distillation” (Ba and Caruana, 2014; Hinton et al., 2015). We utilize these methodologies
and formulate the framework as described below.

3.5.2 Network Architecture
Let 𝜎(⋅) be the sigmoid function defined as 𝜎(𝜆) = (1 + exp(–𝜆))–1. 𝚽 denotes a set of train-
able parameters of the IMNs and I denotes the number of IMNs. Then, the EXN combined
with a set of IMNs models the following (conditional) probability:

p(y|X, 𝚯, 𝚽, 𝚲) =
exp(z′

y)
∑y′∈𝒴 exp(z′

y′) , (3.5)

where z′
y = zy +

I

∑
i=1

𝜎(𝜆i)𝜶i[y]. (3.6)

𝜆i is a scalar parameter that controls the contribution of logit 𝜶i of the i-th IMN and 𝚲 is
defined as 𝚲 = {𝜆1, … , 𝜆I}. Here, logit 𝜶i represents an estimated label distribution, which

16

3.5 Proposed Model: Mixture of Expert/Imitator Networks (MEIN)

we assume to be a feature. Note that the first term of Equation 3.6 is the baseline DNN logit
zy = w⊤

y s + by (Equation 3.1). In addition, if we set 𝜎(𝜆i) = 0 for all i, then Equation 3.5
becomes identical to Equation 3.2 regardless of the value of 𝚽.

Given an input X and the i-th IMN, we create J inputs with a sliding window of size ci,
where ci denotes the window size of the i-th IMN. Then the IMN predicts the EXN for each
input and generates J predictions as a result. We compute the i-th imitator logit 𝜶i by taking
the average of these predictions. Specifically, 𝜶i is defined as

𝜶i = log(
1
J

J

∑
j=1

pi,j(y|Xa∶b, 𝚽)), (3.7)

where a = j – ci and b = j + ci.

Here, a is a scalar index that represents the beginning of the window. Similarly, b represents
the last index of the window.

3.5.3 Definition of IMNs
Note that the architecture of the IMN used to model Equation 3.7 is essentially arbitrary.
In this research, we adopt a single-layer CNN for modeling pi,j(y|Xa∶b, 𝚽). This is because
a CNN has high computational efficiency (Gehring et al., 2017), which is essential for our
primary focus: scalability with the amount of unlabeled data.

Figure 3.2 gives an overview of the architecture of the IMN. First, the IMN takes a se-
quence of word embeddings of input X and computes a sequence of hidden states (oj)J

j=1 by
applying a one-dimensional convolution (Kalchbrenner et al., 2014) and leaky ReLU nonlin-
earity (Maas et al., 2013). We ensure that J is always equal to T. To achieve this, we pad the
beginning and the end of the input X with zero vectors 0 ∈ ℝ|𝒱 ′|×ci , where |𝒱 ′| denotes
the vocabulary size of the IMN.

As explained in Section 3.5.2, each IMN has a predetermined and fixed window size ci.
One can choose an arbitrary window size for the i-th IMN. Here, we define ci as ci = i for
simplicity. For example, as shown in Figure 3.2, the 1st IMN (i = 1) has a window size of
c1 = 1. Such a network imitates the estimation of the EXN from three consecutive tokens.

Then the i-th IMN estimates the probability pi,j(y|X, 𝚽) from each hidden state oj as

pi,j(y|Xa∶b, 𝚽) =
exp(w′⊤

i,yoj + b′
i,y)

∑y′∈𝒴 exp(w′⊤
i,y′oj + b′

i,y′)
, (3.8)

17

3.5 Proposed Model: Mixture of Expert/Imitator Networks (MEIN)

Algorithm 1: Training framework of MEIN
Data: Labeled data 𝒟s and unlabeled data 𝒟u
Result: Trained set of parameters �̂�, �̂�, �̂�

1 𝚯′ ← arg min
𝚯

{Ls(𝚯|𝒟s)} ▷ Train EXN (Equation 3.3)

2 �̂� ← arg min
𝚽

{Lu(𝚽|𝚯′, 𝒟u)} ▷ Train IMN(s) (Equation 3.11)

3 �̂�, �̂� ← arg min
𝚯,𝚲

{L′
s(𝚯, 𝚲|�̂�,𝒟s)} ▷ Train EXN (Equation 3.13)

where w′
i,y ∈ ℝN is the weight vector of the i-th IMN and b′

i,y is the scalar bias term of class
y. N denotes the CNN kernel size.

3.5.4 Training Framework
First, we define the imitation loss of each IMN as the KL-divergence between the estima-
tions of the label distributions of the EXN and the IMN given (unlabeled) data X, namely,
KL(p(y|X, 𝚯)||pi,j(y|Xa∶b, 𝚽)). Note that this imitation loss is defined for an input with the
sliding window Xa∶b. Thus, this definition effectively accomplishes the concept, i.e., the
IMN making a prediction pi,j(y|Xa∶b, 𝚽) from only a limited view of the given input Xa∶b.

Next, our objective is to estimate the set of optimal parameters by minimizing the neg-
ative log-likelihood of Equation 3.5 while also minimizing the total imitation losses for all
IMNs as biases of the network. Therefore, we jointly solve the following two minimization
problems for the parameter estimation of MEIN:

�̂�, �̂� = arg min
𝚯,𝚲

{L′
s(𝚯, 𝚲|�̂�, 𝒟s)} (3.9)

�̂� = arg min
𝚽

{Lu(𝚽|𝚯′, 𝒟u)}. (3.10)

As described in Equations 3.9 and 3.10, we update the different sets of parameters depending
on the labeled/unlabeled training data. Specifically, we use the labeled training data (X, y) ∈
𝒟s to update the set of parameters in the EXN, 𝚯, and the set of mixture parameters of the
IMNs, 𝚲. In addition, we use the unlabeled training data X ∈ 𝒟u to update the parameters
of the IMNs, 𝚽.

To ensure an efficient training procedure, the training framework of MEIN consists of
three consecutive steps (Algorithm 1). First, we perform standard supervised learning to
obtain 𝚯′ using labeled training data while keeping 𝜆i = –∞ unchanged for all i during the

18

3.6 Experiments

training process to ensure that 𝜎(𝜆i) = 0 in Equation 3.6. Note that this optimization step is
essentially equivalent to that of the baseline DNN (Equation 3.4).

Second, we estimate the set of IMN parameters 𝚽 by solving the minimization problem
in Equation 3.10 with the following loss function:

Lu(𝚽|𝚯′, 𝒟u) = 1
|𝒟u| ∑

X∈𝒟u

I

∑
i=1

J

∑
j=1

KL(p||pi,j), (3.11)

KL(p||pi,j) = – ∑
y∈Y

p(y|X, 𝚯′) log (pi,j(y|Xa∶b, 𝚽)) + const, (3.12)

where KL(p||pi,j) is a shorthand notation of the imitation loss KL(p(y|X, 𝚯)||pi,j(y|Xa∶b, 𝚽))
and const is a constant term that is independent of 𝚽.

Finally, we estimate 𝚯 and 𝚲 by solving the minimization problem in Equation 3.9 with
the following loss function:

L′
s(𝚯, 𝚲|�̂�, 𝒟s) = – 1

|𝒟s| ∑
(X,y)∈𝒟s

log (p(y|X, 𝚯, �̂�,𝚲)). (3.13)

3.6 Experiments
To investigate the effectiveness of MEIN, we conducted experiments on two text classifica-
tion tasks: (1) a sentiment classification (SEC) task and (2) a category classification (CAC)
task.

3.6.1 Datasets
For SEC, we selected the following widely used benchmark datasets: IMDB (Maas et al.,
2011), Elec (Johnson and Zhang, 2015), and Rotten Tomatoes (Rotten) (Pang and Lee, 2005).
For the Rotten dataset, we used the Amazon Reviews dataset (McAuley and Leskovec, 2013)
as unlabeled data, following previous studies (Dai and Le, 2015; Miyato et al., 2017; Sato
et al., 2018). For CAC, we used the RCV1 dataset (Lewis et al., 2004). Table 3.1 summarizes
the characteristics of each dataset2.

2DBpedia (Lehmann et al., 2015) is another widely adopted CAC dataset. We did not use this dataset in
our experiment because it does not contain unlabeled data.

19

3.6 Experiments

Table 3.1 Summary of datasets. Each value represents the number of instances contained in
each dataset.

Task Dataset Classes Train Dev Test Unlabeled

SEC
Elec 2 22,500 2,500 25,000 200,000
IMDB 2 21,246 3,754 25,000 50,000
Rotten 2 8,636 960 1,066 7,911,684

CAC RCV1 55 14,007 1,557 49,838 668,640

3.6.2 Baseline DNNs
In order to investigate the effectiveness of the MEIN framework, we combined the IMNwith
following three distinct EXNs and evaluated their performance:

• LSTM: This is the baseline DNN (LSTM with MLP) described in Section 3.4.

• LM-LSTM: Following Dai and Le (2015), we initialized the embedding layer and the
LSTM with a pre-trained RNN-based language model (LM) (Bengio et al., 2003).
We trained the language model using the labeled training data and unlabeled data of
each dataset. Several previous studies have adopted this network as a baseline (Miyato
et al., 2017; Sato et al., 2018).

• ADV-LM-LSTM: Adversarial training (ADV) (Goodfellow et al., 2015) adds small
perturbations to the input and makes the network robust against noise. Miyato et al.
(2017) applied ADV to LM-LSTM for a text classification. We used the reimplemen-
tation of their network.

Note that these three EXNs have an identical network architecture, as described in Sec-
tion 3.4. The only difference is in the initialization or optimization strategy of the network
parameters.

To the best of our knowledge, ADV-LM-LSTMprovides a performance competitive with
the current best result for the configuration of supervised learning (using labeled training data
only). Thus, if the IMN can improve the performance of a strong baseline, the results will
strongly indicate the effectiveness of our method.

3.6.3 Network Configurations
Table 3.2 summarizes the hyperparameters and network configurations of our experiments.
We carefully selected the settings commonly used in the previous studies (Dai and Le, 2015;
Miyato et al., 2017; Sato et al., 2018).

20

3.6 Experiments

Table 3.2 Summary of hyperparameters

Hyperparameter Value

EXN
(baseline DNN)

Word Embedding Dim. (D) 256
Embedding Dropout Rate 0.5
LSTM Hidden State Dim. (H) 1024
MLP Dim. (M) for SEC Task 30
MLP Dim. (M) for CAC Task 128
Activation Function ReLU

IMN
CNN Kernel Dim. (N) 512
Word Embedding Dim. 512
Activation Function Leaky ReLU
Number of IMNs (I) 4

Optimization

Algorithm Adam
Mini-Batch Size 32
Initial Learning Rate 0.001
Fine-tune Learning Rate 0.0001
Decay Rate 0.9998
Baseline Max Epoch 30
Fine-tune Max Epoch 30

We used a different set of vocabulary for the EXN and the IMNs. We created the EXN
vocabulary 𝒱 by following the previous studies (Dai and Le, 2015; Miyato et al., 2017; Sato
et al., 2018), i.e., we removed the tokens that appear only once in the whole dataset. We
created the IMN vocabulary 𝒱 ′ by byte pair encoding (BPE) (Sennrich et al., 2016c)3. The
BPE merge operations are jointly learned from the labeled training data and unlabeled data
of each dataset. We set the number of BPE merge operations to 20,000.

3.6.4 Results
Table 3.3 summarizes the results on all benchmark datasets, where the evaluation metric is
the error rate. Therefore, a lower value indicates better performance. Here, all the reported re-
sults are the average of five distinct trials using five different random seeds. Moreover, for
each trial, we automatically selected the best network in terms of the performance on the val-
idation set among the networks obtained at every epoch. For comparison, we also performed
experiments on training baseline DNNs (LSTM, LM-LSTM, and ADV-LM-LSTM) with in-
corporating random vectors as the replacement of IMNs, which is denoted as “+IMN (Ran-

3We used sentencepiece (Kudo and Richardson, 2018) (https://github.com/google/sentencepiece)
for the BPE operations.

21

https://github.com/google/sentencepiece

3.6 Experiments

Table 3.3 Test performance (error rate (%)) on each dataset. A lower error rate indicates
better performance. Models using the unlabeled data are marked with †. Results marked
with ∗ are statistically significant compared with ADV-LM-LSTM. Miyato 2017: the result
reported by Miyato et al. (2017). Sato 2018: the result reported by Sato et al. (2018).

Method Elec IMDB Rotten RCV1
LSTM 10.09 10.98 26.47 14.14
LSTM+IMN (Random)† 9.87 10.75 27.27 14.04
LSTM+IMN† 8.83 10.04 24.93 12.31
LM-LSTM† 5.72 7.25 16.80 8.37
LM-LSTM+IMN (Random)† 5.71 7.01 16.78 7.83
LM-LSTM+IMN† 5.48 6.51 15.91 7.53
ADV-LM-LSTM† 5.38 6.58 15.73 7.89
ADV-LM-LSTM+IMN (Random)† 5.34 6.27 15.11 7.78
ADV-LM-LSTM+IMN† 5.14* 6.07* 13.98 7.51*

VAT-LM-LSTM (rerun) † 5.47 6.20 18.50 8.44
VAT-LM-LSTM (Miyato 2017)† 5.54 5.91 19.1 7.05
VAT-LM-LSTM (Sato 2018)† 5.66 5.69 14.26 11.80
iVAT-LSTM (Sato 2018)† 5.18 5.66 14.12 11.68

dom)”. Moreover, we present the published results of VAT-LM-LSTM (Miyato et al., 2017)
and iVAT-LSTM (Sato et al., 2018) in the bottom three rows of Table 3.3, which are the
current state-of-the-art networks that adopt unlabeled data. For VAT-LM-LSTM, we also
report the result of the reimplemented network, denoted as “VAT-LM-LSTM (rerun)”.

As shown in Table 3.3, incorporating the IMNs consistently improved the performance
of all baseline DNNs across all benchmark datasets. Note that the source of these improve-
ments is not the extra set of parameters 𝚲 but the outputs of the IMNs. We can confirm
this fact by comparing the results of IMNs, “+IMN”, with those of random vectors, “+IMN
(Random)”, since the difference between these two settings is the incorporation of IMNs or
random vectors.

The most noteworthy observation about MEIN is that the amount of the improvement
upon incorporating the IMN is nearly consistent, regardless of the performance of the base
EXN. For example, Table 3.3 shows that the IMN reduced the error rates of LSTM, LM-
LSTM, and ADV-LM-LSTM by 1.54%, 0.89%, and 1.22%, respectively, for the Rotten
dataset. From these observations, the IMN has the potential to further improve the perfor-
mance of much stronger EXNs developed in the future.

22

3.7 Analysis

We also remark that our best configuration, ADV-LM-LSTM+IMN, outperformed VAT-
LM-LSTM (rerun) on all datasets4. In addition, the best configuration outperformed the
current best published results on the Elec and Rotten datasets, establishing new state-of-the-
art results.

As a comparison with the current strongest SSL method, we combined the IMN with the
current state-of-the-art VAT method, namely, VAT-LM-LSTM+IMN. In the Elec dataset,
the IMN improved the error rate from 5.47% to 5.16%. This result indicates that the IMN and
VAT have a complementary relationship. Note that utilizing VAT is challenging in terms of
the scalability with the amount of unlabeled data. However, if sufficient computing resources
exist, then VAT and the IMN can be used together to achieve even higher performance.

3.7 Analysis

3.7.1 More Data, Better Performance Property
We investigated whether the MEIN framework has the more data, better performance prop-
erty for unlabeled data. Ideally, MEIN should achieve better performance by increasing the
amount of unlabeled data. Thus, we evaluated the performance while changing the amount
of unlabeled data used to train the IMN.

We selected the Elec and RCV1 datasets as the focus of this analysis. We created the
following subsamples of the unlabeled data for each dataset: {5K, 20K, 50K, 100K, Full
Data} for Elec and {5K, 50K, 250K, 500K, Full Data} for RCV1. In addition, for the Elec
dataset, we sampled extra unlabeled data from the electronics section of theAmazonReviews
dataset (McAuley and Leskovec, 2013) and constructed {2M, 4M, 6M} unlabeled data5. For
each (sub)sample, we trained ADV-LM-LSTM+IMN as explained in Section 3.6.

Figures 3.3a and 3.3b demonstrate that increasing the amount of unlabeled data improved
the performance of the EXN. It is noteworthy that in Figure 3.3a, ADV-LM-LSTM+IMN
trained with 6M data achieved an error rate of 5.06%, outperforming the best result in Ta-
ble 3.3 (5.14%). These results explicitly demonstrate the more data, better performance

4The performance of our VAT-LM-LSTM (rerun) is lower than the performances reported by Miyato et al.
(2017) except for the Elec and Rotten datasets. Through extensive trials to reproduce their results, we found that
the hyperparameter of the RNN language model is extremely important in determining the final performance;
therefore, the strict reproduction of the published results is significantly difficult. In fact, a similar difficulty can
be observed in Table 3.3, where VAT-LM-LSTM (Sato 2018) has lower performance than VAT-LM-LSTM
(Miyato 2017) on the Elec and RCV1 datasets. Thus, we believe that VAT-LM-LSTM (rerun) is the most
reliable result for the comparison.

5We discarded instances from the unlabeled data when the non stop-words overlap with instances in the
Elec test set. Thus, the unlabeled data and the Elec test set had no instances in common.

23

3.7 Analysis

102 103 104 105 106

Amount of Unlabeled Data (|Du|)

5.2

5.4

5.6

E
rr

or
R

at
e

(%
)

Baseline (ADV-LM-LSTM)

(a) Elec

102 103 104 105 106

Amount of Unlabeled Data (|Du|)

7.5

7.6

7.7

7.8

7.9

E
rr

or
R

at
e

(%
)

Baseline (ADV-LM-LSTM)

(b) RCV1

Figure 3.3 Error rate (%) at different amounts of unlabeled data. The x-axis is in log-scale.
A lower error rate indicates better performance. The dashed horizontal line represents
the performance of the base EXN (ADV-LM-LSTM).

property of the MEIN framework. We also report that the training process on the largest
amount of unlabeled data (6M) only took approximately a day.

3.7.2 Scalability with Amount of Unlabeled Data
The primary focus of the MEIN framework is its scalability with the amount of unlabeled
data. Thus, in this section, we compare the computational speed of the IMNs with that of
the base EXN. We also compare the IMNs with the state-of-the-art SSL method, VAT-LM-
LSTM, and discuss their scalability. Here, we focus on the computation in the training phase
of the network, where the network processes both forward and backward computations.

We measured the number of tokens that each network processes per second. We used
identical hardware for each measurement, namely, a single NVIDIA Tesla V100 GPU. We
used the cuDNN implementation for the LSTM cell since it is highly optimized and substan-
tially faster than the naive implementation (Bradbury et al., 2017).

Table 3.4 summarizes the results. The table shows that even the slowest IMN (ci =
1, 2, 3, 4) was 1.8 times faster than the optimized cuDNN LSTM network and eight times
faster than VAT-LM-LSTM. This indicates that it is possible to use an even larger amount
of unlabeled data in a practical time to further improve the performance of the EXN. In

24

3.8 Discussion

Table 3.4 Number of tokens processed per second during the training

Method Tokens/sec Relative Speed
LM-LSTM 41,914 -
ADV-LM-LSTM 13,791 0.33x
VAT-LM-LSTM 9,602 0.23x
IMN (ci = 1) 555,613 13.26x
IMN (ci = 1, 2) 236,065 5.63x
IMN (ci = 1, 2, 3) 122,076 2.91x
IMN (ci = 1, 2, 3, 4) 75,393 1.80x

addition, note that each IMN can be trained in parallel. Thus, if multiple GPUs are available,
the training can be carried out much faster than reported in Table 3.4.

3.7.3 Effect of Window Size of the IMN
In this section, we investigate the effectiveness of combining IMNs with different window
sizes ci on the final performance of the EXN. Figure 3.4 summarizes the results across all
datasets. The figure shows that integrating an IMN with a greater window size consistently
reduced the error rate, and the IMNwith the greatest window size (D: ci = 1, 2, 3, 4) achieved
the best performance. This observation implies that the context, which is captured by a
greater window size, contributes to the performance.

3.8 Discussion

3.8.1 Variations of the IMN
In this section, we discuss two possible variations of the IMN to better understand its effec-
tiveness in the MEIN framework.

Incorporating IMN with Greater Window Size

As discussed in Section 3.7.3, Figure 3.4 demonstrates that increasing the window size of the
IMN consistently improves the performance. From this observation, one may hypothesize
that integrating an IMN with an even greater window size will be beneficial. Thus, we
carried out an experiment with such a configuration, i.e., ci = 1, 2, 3, 4, 5, and found that the
hypothesis is valid. For example, the error rates of ADV-LM-LSTM+IMN (ci = 1, 2, 3, 4, 5)

25

3.8 Discussion

Base A B C D
4.0

4.5

5.0

5.5

6.0

E
rr

or
R

at
e

(%
) 5.38 5.30 5.25 5.18 5.14

Elec

Base A B C D
4

5

6

7

8

E
rr

or
R

at
e

(%
)

6.58
6.23 6.23 6.15 6.07

IMDB

Base A B C D
10

12

14

16

E
rr

or
R

at
e

(%
)

15.73

14.68 14.53 14.51
13.98

Rotten Tomatoes

Base A B C D
5

6

7

8

9

E
rr

or
R

at
e

(%
) 7.89

7.64 7.57 7.54 7.51

RCV1

Figure 3.4 Effect of the IMN with different window sizes ci on the final error rate (%) of
ADV-LM-LSTM. A lower error rate indicates better performance. Base: EXN (ADV-
LM-LSTM) without the IMN, A: ci = 1, B: ci = 1, 2, C: ci = 1, 2, 3, D: ci = 1, 2, 3, 4.

were 5.12% and 6.00% for Elec and IMDB, respectively, which are better than the values
reported in Table 3.3.

However, we found that a large window size has a major drawback; the training of IMNs
becomes significantly slower. This undesirable property must be avoided as our primary
focus is the scalability with the amount of unlabeled data. Thus, we do not report these
values as the main results of the experiment in Table 3.3.

Removing IMNs with Smaller Window Sizes

We also investigated the effectiveness of utilizing IMNswith smaller window size in addition
to the larger window sizes. Table 3.5 gives the results of this investigation, and we can see
that combining IMNs with smaller window sizes works better than incorporating a single
IMN with the greatest window size.

26

3.9 Conclusion

Table 3.5 Effect of removing IMNs with smaller window sizes on the error rate (%) of ADV-
LM-LSTM on the Elec dataset. A lower error rate indicates better performance.

Window Size Error Rate (%)
ci = 1, 2, 3, 4 5.14
ci = 2, 3, 4 5.18
ci = 3, 4 5.26
ci = 4 5.23

3.8.2 Stronger Baseline DNN
In this section, we discuss the results of two attempts to improve the performance of baseline
DNNs.

Increasing Number of Parameters

The most straightforward means of improving the performance of baseline DNNs is to in-
crease the number of parameters. Thus, we doubled the word embedding dimension and
trained ADV-LM-LSTM, namely, the ADV-LM-LSTM-Large model. This model has ap-
proximately the same number of parameters as the ADV-LM-LSTM+IMN. However, the
performance did not improve from that of the original ADV-LM-LSTM. Specifically, the
error rate degraded by 0.08 points for the IMDB dataset and was unchanged for the Elec
dataset.

Combining ELMo

ELMo (Peters et al., 2018) is one of the strongest SSL approaches in the research field. Thus,
we conducted an experiment with a baseline that utilizes ELMo. Specifically, we combined
LSTM with the ELMo embeddings, namely, ELMO-LSTM6. The error rate of this network
on the IMDB test set was 8.67%, which is worse than that of LM-LSTM reported in Table 3.3.
This result suggests that, at least in this task setting, pre-training the RNN language model
for initialization is more effective than using the ELMo embeddings.

3.9 Conclusion
In this chapter, we proposed a novel method for SSL, which we named Mixture of Ex-
pert/Imitator Networks (MEIN). The MEIN framework consists of a baseline DNN, i.e.,

6We used the implementation available in AllenNLP (Gardner et al., 2018).

27

3.9 Conclusion

an EXN, and several auxiliary networks, IMNs. The unique property of our method is that
the IMNs learn to “imitate” the estimated label distribution of the EXN over the unlabeled
data with only a limited view of the given input. In this way, the IMNs effectively learn a
set of features that potentially contributes to improving the classification performance of the
EXN.

Experiments on text classification datasets demonstrated that the MEIN framework con-
sistently improved the performance of three distinct settings of the EXN. We also trained the
IMNs with extra large-scale unlabeled data and achieved a new state-of-the-art result. This
result indicates that our method has the more data, better performance property. Further-
more, our method operates eight times faster than the current strongest SSL method (VAT),
and thus, it has promising scalability to the amount of unlabeled data.

28

Chapter 4

Massive Exploration of Pseudo
Data for Grammatical Error
Correction

4.1 Introduction
To date, a number of studies have tackled grammatical error correction (GEC) as a machine
translation (MT) task, in which ungrammatical sentences are regarded as the source lan-
guage and grammatical sentences are regarded as the target language. This approach allows
for the use of cutting-edge neural MT models. For example, the encoder-decoder (EncDec)
model (Bahdanau et al., 2015; Luong et al., 2015; Sutskever et al., 2014; Vaswani et al.,
2017), which was originally proposed for MT, has been widely applied to GEC with re-
markable results (Chollampatt and Ng, 2018; Ge et al., 2018; Grundkiewicz et al., 2019; Ji
et al., 2017; Junczys-Dowmunt et al., 2018; Lichtarge et al., 2019; Xie et al., 2018; Yuan and
Briscoe, 2016; Zhao et al., 2019).

However, a challenge in applying EncDec to GEC is that EncDec requires a large amount
of training data (Koehn and Knowles, 2017); however, the largest set of publicly available
parallel data (Lang-8) in GEC only contains 2million sentence pairs (Mizumoto et al., 2011).
The amount of available data is insufficient for the model to generalize to various grammati-
cal errors. Consequently, there has been much research on methods for augmenting data by
incorporating pseudo training data (Choe et al., 2019; Ge et al., 2018; Grundkiewicz et al.,
2019; Lichtarge et al., 2019; Xie et al., 2018; Zhao et al., 2019).

29

4.2 Problem Formulation and Notation

When incorporating pseudo data, several decisions must be made regarding the exper-
imental configurations, namely, (i) the method of generating the pseudo data, (ii) the seed
corpus for the pseudo data, and (iii) the optimization setting (Section 4.2). However, a con-
sensus on these decisions in the field of GEC has not been reached. For example, Xie et al.
(2018) found that a variant of the back-translation (Sennrich et al., 2016b) method (BACK-
TRANS (NOISY)) outperformed the method of generating pseudo data from raw grammatical
sentences (DIRECTNOISE). However, both the current state of the art model (Zhao et al.,
2019) and the winner of the BEA-2019 shared task (Bryant et al., 2019; Grundkiewicz et al.,
2019) use the DIRECTNOISE-based method.

In this chapter, we investigate the aforementioned decisions regarding pseudo data, with
the aim to provide the research community with an improved understanding of the incorpora-
tion of pseudo data. Through massive amount of experiments, we explore and determine ap-
propriate settings for GEC. In addition, we validate the reliability of the proposed settings by
evaluating their performance on benchmark datasets. Specifically, without any task-specific
techniques or architecture, our off-the-shelf EncDec method outperforms not only all previ-
ous single-model results but also all ensemble results, with the exception of the ensemble
result by Grundkiewicz et al. (2019). By applying additional task-specific techniques, we
further improve the model performance and achieved state-of-the-art performance on the
CoNLL-2014 test set and the official test set of the BEA-2019 shared task.

4.2 Problem Formulation and Notation
In this section, we formally define the GEC task addressed in this chapter. Let 𝒟 be the GEC
training data that comprise pairs of an ungrammatical source sentence X and grammatical
target sentence Y (i.e., 𝒟 = {(Xn, Yn)}n). Here, |𝒟| denotes the number of sentence pairs
in the dataset 𝒟 .

EncDec is currently the dominant approach to the GEC task (Chollampatt and Ng, 2018;
Ji et al., 2017; Junczys-Dowmunt et al., 2018). To describe EncDec, we define X as consist-
ing of a sequence of I tokens, namely, X = (x1, … , xI), where xi denotes the i-th token of X.
Similarly, yj denotes the j-th token of Y. We define Y as always containing two additional
special tokens; ⟨bos⟩ for y0 and ⟨eos⟩ for yJ+1. Thus, Y = (y0, y1, … , yJ, yJ+1), that is, the
length of Y is always J + 2. Then EncDec models the following conditional probability:

p(Y|X) =
J+1

∏
j=1

p(yj|y0∶j–1, X, 𝚯), (4.1)

30

4.2 Problem Formulation and Notation

where 𝚯 represent all trainable parameters of the model. Our objective is to find the opti-
mal parameter set �̂� that minimizes the following objective function ℒ(𝒟, 𝚯) for the given
training data 𝒟 :

ℒ(𝒟, 𝚯) = – 1
|𝒟 | ∑

(X,Y)∈𝒟
log(p(Y|X, 𝚯)), (4.2)

where p(Y|X, 𝚯) denotes the conditional probability of Y given X.
In a standard supervised learning setting, the parallel dataset 𝒟 comprise only “genuine”

parallel data 𝒟g (i.e., 𝒟 = 𝒟g). However, in GEC, it is common to incorporate pseudo data
𝒟p that are generated from grammatical sentencesY ∈ 𝒯 , where𝒯 represents a seed corpus
(i.e., set of grammatical sentences) (Grundkiewicz et al., 2019; Xie et al., 2018; Zhao et al.,
2019).

Our interest lies in the following three nontrivial aspects of (4.2). Aspect (i): There
are multiple methods for generating pseudo data 𝒟p (Section 4.3). Aspect (ii): Options
for the seed corpus 𝒯 are numerous. To the best of our knowledge, the effect of the seed
corpus domain onmodel performance is yet to be shown. We compare three corpora, namely,
Wikipedia, SimpleWikipedia (SimpleWiki) and English Gigaword, as a first trial. Wikipedia
and SimpleWiki have similar domains, but different grammatical complexities. Therefore,
we can investigate how grammatical complexity affects model performance by comparing
these two corpora. We assume that Gigaword contains the smallest amount of noise among
the three corpora. We can therefore use Gigaword to investigate whether clean text improves
model performance. Aspect (iii): There are at least two major settings for incorporating 𝒟p
into the optimization of Equation 4.2. One is to use two datasets jointly by concatenating
them as 𝒟 = 𝒟g ∪ 𝒟p, and then solve the following minimization problem:

�̂� = arg min
𝚯

{ℒ(𝒟g ∪ 𝒟p, 𝚯)}. (4.3)

We hereinafter refer to this optimization to as JOINT.
The other setting is to use 𝒟p for pretraining, namely, minimizing ℒ(𝒟p, 𝚯) to acquire

𝚯′, and then fine-tuning the model by minimizing ℒ(𝒟g, 𝚯′). Specifically, the optimization
operates as follows:

𝚯′ = arg min
𝚯

{ℒ(𝒟p, 𝚯)} (4.4)

�̂� = arg min
𝚯

{ℒ(𝒟g, 𝚯′)}. (4.5)

31

4.3 Methods for Generating Pseudo Data

We refer to this optimization as PRETRAIN. We investigate the aforementioned aspects
through extensive experiments (Section 4.4).

4.3 Methods for Generating Pseudo Data
In this section, we describe three methods for generating pseudo data: noisy back-translation
(BACKTRANS (NOISY)), direct noizing (DIRECTNOISE), and its variant (DIRECTNOISE (SPELL)).
In Section 4.4, we experimentally compare these methods. Examples of each generation
method are presented in Figure 4.1.

32

4.3 Methods for Generating Pseudo Data

Or
ig
in
al:

He
di

ed
th

er
e

,
bu

t
th

e
de

at
h

da
te

is
no

t
cl

ea
r

.
BA

CK
TR

AN
S(

NO
ISY

):
He

di
ed

at
th

er
e

,
bu

t
de

at
h

da
te

is
no

t
cl

ea
r

.
DI

RE
CT

NO
ISE

:
⟨m

as
k⟩

⟨m
as

k⟩
⟨m

as
k⟩

,
2

bu
t

⟨m
as

k⟩
⟨m

as
k⟩

⟨m
as

k⟩
is

no
t

⟨m
as

k⟩
⟨m

as
k⟩

DI
RE

CT
NO

ISE
(SP

EL
L)
:H

@@
o

di
ed

th
er

e
,

bu
t

th
e

de
at

h
te

is
no

t
cl

ea
r

.

Or
ig
in
al:

Gr
e@

@
en

@@
sp

ac
e

In
fo

rm
at

io
n

fo
r

G@
@

re
a@

@
te

r
Lo

nd
on

.
BA

CK
TR

AN
S(

NO
ISY

):
Th

e
in

fo
rm

at
io

n
fo

r
Gr

e@
@

en
@@

sp
ac

e
in

fo
rm

at
io

n
ab

ou
t

G@
@

re
a@

@
te

r
Lo

nd
on

.
DI

RE
CT

NO
ISE

:
⟨m

as
k⟩

⟨m
as

k⟩
⟨m

as
k⟩

fo
r

⟨m
as

k⟩
⟨m

as
k⟩

⟨m
as

k⟩
⟨m

as
k⟩

DI
RE

CT
NO

ISE
(SP

EL
L)
:G

re
@@

en
@@

sp
ac

e
In

fo
rm

at
io

n
op

@@
r@

@
ts

fo
r

G@
@

re
a@

@
te

r
Lo

nd
on

.

Or
ig
in
al:

Th
e

cl
i@

@
p

is
mi

xe
d

wi
th

im
ag

es
of

To
ro

nt
o

st
re

et
s

du
ri

ng
po

we
r

fa
il

ur
e

.
BA

CK
TR

AN
S(

NO
ISY

):
Th

e
cl

i@
@

p
is

mi
x

wi
th

im
ag

es
of

To
ro

nt
o

st
re

et
s

du
ri

ng
po

we
r

fa
il

ur
e

.
DI

RE
CT

NO
ISE

:
Th

e
⟨m

as
k⟩

is
mi

xe
d

⟨m
as

k⟩
im

ag
es

si
@@

of
Th

e
⟨m

as
k⟩

st
re

et
s

la
rg

e
⟨m

as
k⟩

po
we

r
R@

@
fa

il
ur

e
pl

ac
e

⟨ m
as

k⟩
DI

RE
CT

NO
ISE

(SP
EL

L)
:T

he
V@

@
li

@@
p

is
mi

xe
d

wi
th

im
ag

es
of

To
ro

nt
o

st
re

et
s

du
ri

ng
po

we
r

fa
il

ur
e

.

Or
ig
in
al:

At
th

e
in

@@
st

it
ut

e
,

sh
e

in
tr

od
uc

ed
ti

s@
@

su
e

cu
lt

ur
e

me
th

od
s

th
at

sh
e

ha
d

le
ar

ne
d

in
th

e
U.

@@
S.

BA
CK

TR
AN

S(
NO

ISY
):

At
in

@@
st

it
ut

e
,

Sh
e

in
tr

od
uc

ed
ti

s@
@

su
e

cu
lt

ur
e

me
th

od
th

at
sh

e
le

ar
ne

d
in

U.
@@

S.
DI

RE
CT

NO
ISE

:
⟨m

as
k⟩

th
e

th
e

⟨m
as

k⟩
⟨m

as
k⟩

⟨m
as

k⟩
⟨m

as
k⟩

ti
s@

@
cu

lt
ur

e
R@

@
me

th
od

s
,

sh
e

P
⟨m

as
k⟩

th
e

s
U.

@@
⟨m

as
k⟩

DI
RE

CT
NO

ISE
(SP

EL
L)
:A

t
th

e
in

@@
st

it
ut

e
,

sh
e

in
tr

od
uc

ed
ti

s@
@

su
e

cu
lt

ur
e

me
th

od
s

th
at

sh
e

ha
d

l@
@

Ge
n@

@
em

@@
d

th
e

U.
@@

S.

Fi
gu

re
4.
1
Ex

am
pl
es

of
se
nt
en

ce
sg

en
er
ate

d
by

BA
CK

TR
AN

S(
NO

ISY
),
DI

RE
CT

NO
ISE

an
d
DI

RE
CT

NO
ISE

(SP
EL

L)
m
eth

od
s.

33

4.3 Methods for Generating Pseudo Data

4.3.1 Noisy Back-translation: Backtrans (noisy)
Back-translation for the EncDec model was originally proposed for MT by Sennrich et al.
(2016b). In back-translation, a reverse model, which generates a source (ungrammatical)
sentence X from a given target (grammatical) sentence Y, is trained. Then the output of the
reverse model is paired with the input and used as pseudo data.

Currently, in the field of MT research, back-translation is considered to be the de facto
standard method for generating pseudo data due to its strong empirical performance (Edunov
et al., 2018; Haddow et al., 2018). However, this is not the case for GEC. Xie et al. (2018)
reported that naively applying back-translation leads to only a minor improvement in per-
formance; they demonstrate that in vanilla back-translation, the reverse model is gener-
ally too conservative and does not generate a sufficient quantity of grammatical errors. To
overcome this issue, Xie et al. (2018) proposed a variant of back-translation1 called BACK-
TRANS (NOISY). This method adds r𝛽random to the score of each hypothesis in the beam
for every time step. Here, scalar noise r is uniformly sampled from the interval [0, 1], and
𝛽random ∈ ℝ≥0 is a hyper-parameter that controls the noise scale. If we set 𝛽random = 0,
then BACKTRANS (NOISY) is identical to vanilla back-translation.

4.3.2 Direct Noizing: DirectNoise and DirectNoise (spell)
Whereas BACKTRANS (NOISY) generates ungrammatical sentences with a reverse model, DI-
RECTNOISE injects noise “directly” into grammatical sentences (Choe et al., 2019; Edunov
et al., 2018; Grundkiewicz et al., 2019; Zhao et al., 2019). Specifically, for each token in
a given sentence, this method probabilistically selects one of the following operations: (i)
masking with a placeholder token ⟨mask⟩, (ii) deletion, (iii) insertion of a random token sam-
pled from unigram distribution, and (iv) keeping the original token. A detailed algorithm
is provided in Algorithm 2. For each token, the selection is made based on the categorical
distribution (𝜇mask, 𝜇deletion, 𝜇insertion, 𝜇keep). The DIRECTNOISE algorithm is described in
Algorithm 2.

Recently, Grundkiewicz et al. (2019) proposed another method for generating pseudo
data. The central idea of their method is to use an off-the-shelf spell checker to generate a
confusion set for a given word. Then, they probabilistically replace words with ones in the
confusion sets. This method can be generally interpreted as a variant of DIRECTNOISE, in
which the masking operation is discarded and the replacement operation is adopted. Thus,
we refer to the method as DIRECTNOISE (SPELL).

1referred as “random noizing” in Xie et al. (2018)

34

4.4 Experiments

Algorithm 2: DIRECTNOISE Algorithm
Data: Grammatical sentence Y ∈ 𝒯
Result: Pseudo Corpus 𝒟p

1 𝒟p = {} // create empty set
2 𝝁 = (𝜇mask, 𝜇deletion, 𝜇insertion, 𝜇keep) s.t. Σ𝝁=1
3 for Y ∈ 𝒯 do
4 X = ()
5 for j ∈ (1, … , J) do
6 action ∼ Cat(action|𝝁)
7 if action is keep then
8 append yj to X
9 else if action is mask then
10 append ⟨mask⟩ to X
11 else if action is deletion then
12 continue
13 else if action is insertion then
14 append yj to X
15 w ∼ unigram_distribution(𝒟g)
16 append w to X

17 𝒟p = 𝒟p ∪ {(X, Y)}

4.4 Experiments
The goal of our experiments is to investigate Aspect (i)–(iii) introduced in Section 4.2. We
design our experiments to ensure that the experimental findings are reproducible and gen-
erally applicable to GEC (Bouthillier et al., 2019). Specifically, the experiments are based
on the following two strategies. (i) We use an off-the-shelf EncDec model without any task-
specific architecture or techniques. (ii) We perform hyperparameter tuning, evaluation, and
comparison for each method and setting on a validation set. In Section 4.4.5, we summa-
rize our findings and propose appropriate settings. We then evaluate their performance on
multiple benchmark test sets.

4.4.1 Experimental Configurations
Dataset The BEA-2019 workshop official dataset (Bryant et al., 2019) is the origin of the
training, validation and test data of our experiments. This dataset consists of the following
corpora: the First Certificate in English corpus (Yannakoudakis et al., 2011), Lang-8 Cor-

35

4.4 Experiments

Table 4.1 Summary of datasets used in our experiments. Dataset marked with “*” is a seed
corpus 𝒯 .

Dataset #sent (pairs) #refs. Split Scorer
BEA-train 561,410 1 train -
BEA-valid 4,384 1 valid ERRANT
CoNLL-2014 1,312 2 test ERRANT & M2 scorer
JFLEG 1,951 4 test GLEU
BEA-test 4,477 5 test ERRANT
SimpleWiki∗ 1,369,460 - - -
Wikipedia∗ 145,883,941 - - -
Gigaword∗ 131,864,979 - - -

pus of Learner English (Lang-8) (Mizumoto et al., 2011; Tajiri et al., 2012), the National
University of Singapore Corpus of Learner English (NUCLE) (Dahlmeier et al., 2013), and
W&I+LOCNESS (Granger, 1998; Yannakoudakis et al., 2018)2. Hereinafter, we refer to the
training data as BEA-train.

The BEA-train is tokenized using the spaCy tokenizer34. We remove sentence pairs that
have identical source and target sentences from the training set, following (Chollampatt and
Ng, 2018). We then acquire subwords from target sentences through the byte-pair-encoding
(BPE) (Sennrich et al., 2016c) algorithm. We use subword-nmt implementation5. We apply
BPE splitting to both source and target text. The number of merge operations is set to 8,000.

As a seed corpus 𝒯 , we use SimpleWiki6, Wikipedia7, or Gigaword8. We apply the
noizing methods described in Section 4.3 to each corpus and generate pseudo data 𝒟p

9. The
characteristics of each dataset are summarized in Table 4.1.
Evaluation We report results on BEA-valid, the official test set of the BEA-2019 shared
task (BEA-test), the CoNLL-2014 test set (CoNLL-2014) (Ng et al., 2014), and the JFLEG
test set (JFLEG) (Napoles et al., 2017). All reported results (except for ensemble) are the
average of five distinct trials using five different random seeds. We report the scores mea-

2The data are publicly available at https://www.cl.cam.ac.uk/research/nl/bea2019st/.
3https://spacy.io/
4We use the model file en_core_web_sm-2.1.0 available at https://github.com/explosion/

spacy-models/releases/tag/en_core_web_sm-2.1.0
5https://github.com/rsennrich/subword-nmt
6https://simple.wikipedia.org
7We use the 2019-02-25 dump file at https://dumps.wikimedia.org/other/cirrussearch/.
8We use English Gigaword Fifth Edition (LDC Catalog No.: LDC2011T07).
9The original implementation of DIRECTNOISE (SPELL) is not publicly available. Instead, we use an in-house

re-implementation of the method with the hyperparameters described in the paper (Grundkiewicz et al., 2019).

36

https://www.cl.cam.ac.uk/research/nl/bea2019st/
https://spacy.io/
https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-2.1.0
https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-2.1.0
https://github.com/rsennrich/subword-nmt
https://simple.wikipedia.org
https://dumps.wikimedia.org/other/cirrussearch/

4.4 Experiments

sured by ERRANT (Bryant et al., 2017; Felice et al., 2016)10 for BEA-valid, BEA-test, and
CoNLL-2014. Because the reference sentences of BEA-test are not publicly available, we
evaluate the model outputs on the CodaLab11 platform for BEA-test. We also report results
measured by the M2 scorer (Dahlmeier and Ng, 2012) on CoNLL-2014 for comparison with
the results of previous studies. We use the GLEU metric (Napoles et al., 2015, 2016) for
JFLEG.
Model We adopt the Transformer EncDec model (Vaswani et al., 2017) for each experi-
ment. Specifically, we use the implementation available in the fairseq toolkit (Ott et al.,
2019) and “Transformer (big)” settings of Vaswani et al. (2017), in which both the encoder
and decoder have six layers with 16 attention heads in each layer, a word embedding size
dmodel of 1,024, and a feed-forward network size dff of 4,096. The dropout rate is set to 0.3.
Optimization We compare two optimization settings, namely, JOINT and PRETRAIN. For
the JOINT setting, we optimize the model with Adam (Kingma and Ba, 2015). For the PRE-
TRAIN setting, we pretrain the model with Adam and then fine-tune it on BEA-train using
Adafactor (Shazeer and Stern, 2018). The detailed hyperparameters for each setting are pro-
vided in Table 4.2 and Table 4.3.

10https://github.com/chrisjbryant/errant
11https://competitions.codalab.org/competitions/20228

37

https://github.com/chrisjbryant/errant
https://competitions.codalab.org/competitions/20228

4.4 Experiments

Ta
bl
e4

.2
Hy

pe
r-p

ar
am

ete
rf
or

JO
IN

T
op

tim
iza

tio
n

M
od

el
Ar

ch
ite

ctu
re

Tr
an

sfo
rm

er
(V

as
wa

ni
et

al.
,2

01
7)

(“
bi
g”

se
tti
ng

)
Op

tim
ize

r
Ad

am
(K

in
gm

aa
nd

Ba
,2

01
5)

(𝛽
1

=
0.

9,
𝛽 2

=
0.

98
,𝜖

=
1×

10
–8
)

Le
ar
ni
ng

Ra
te

Sc
he

du
le

Sa
m
ea

sd
es
cr
ib
ed

in
Se

cti
on

5.
3
of

Va
sw

an
ie

ta
l.
(2
01

7)
Nu

m
be

ro
fE

po
ch

s
40

Dr
op

ou
t

0.
3

St
op

pi
ng

Cr
ite

rio
n

Tr
ain

m
od

el
fo
r4

0
ep

oc
hs

.
Du

rin
g
th
e
tra

in
in
g,

sa
ve

m
od

el
pa

ra
m
ete

rf
or

ev
er
y
ep

oc
h.

Th
en

tak
ea

ve
ra
ge

of
las

t2
0
ch

ec
kp

oi
nt
s.

Gr
ad

ien
tC

lip
pi
ng

1.
0

Lo
ss

Fu
nc

tio
n

La
be

ls
m
oo

th
ed

cr
os

se
nt
ro
py

(sm
oo

th
in
g
va

lu
e:

𝜖 ls
=

0.
1)

(S
ze

ge
dy

et
al.

,2
01

6)
Be

am
Se

ar
ch

Be
am

siz
e5

wi
th

len
gt
h-
no

rm
ali

za
tio

n

38

4.4 Experiments

Table 4.3 Hyper-parameter for PRETRAIN optimization

Pretraining
Model Architecture Transformer (Vaswani et al., 2017) (“big” setting)
Optimizer Adam (Kingma and Ba, 2015) (𝛽1 = 0.9, 𝛽2 = 0.98, 𝜖 =

1 × 10–8)
Learning Rate Schedule Same as described in Section 5.3 of Vaswani et al. (2017)
Number of Epochs 10
Dropout 0.3
Gradient Clipping 1.0
Loss Function Label smoothed cross entropy (smoothing value: 𝜖ls =

0.1) (Szegedy et al., 2016)
Fine-tuning

Model Architecture Transformer (Vaswani et al., 2017) (“big” setting)
Optimizer Adafactor (Shazeer and Stern, 2018)
Learning Rate Schedule Constant learning rate of 3 × 10–5

Number of Epochs 30
Dropout 0.3
Stopping Criterion Use the model with the best validation perplexity on BEA-

valid
Gradient Clipping 1.0
Loss Function Label smoothed cross entropy (smoothing value: 𝜖ls =

0.1) (Szegedy et al., 2016)
Beam Search Beam size 5 with length-normalization

Table 4.4 Performance of models on BEA-valid: a value in bold indicates the best result
within the column. The seed corpus 𝒯 is SimpleWiki.

Method Prec. Rec. F0.5

Baseline 45.2 22.7 37.7
BACKTRANS (NOISY) 41.7 31.2 39.1
DIRECTNOISE 48.3 25.4 40.9
DIRECTNOISE (SPELL) 44.6 29.5 40.4

4.4.2 Aspect (i): Pseudo Data Generation
We compare the effectiveness of the BACKTRANS (NOISY), DIRECTNOISE, and DIRECTNOISE
(SPELL) methods for generating pseudo data. To do this, we first investigate the hyperpa-
rameters suitable for BACKTRANS (NOISY) and DIRECTNOISE. Then, we make a comparison
of BACKTRANS (NOISY), DIRECTNOISE, and DIRECTNOISE (SPELL). It should be noted that

39

4.4 Experiments

0.1 0.3 0.5 0.7
µmask

39.50

39.75

40.00

40.25

40.50

40.75

41.00

F
0
.5

Figure 4.2 Performance of the model on BEA-valid with varying parameters DIRECTNOISE
(𝜇mask).

throughout this section, we use (i) the JOINT setting and (ii) all of SimpleWiki as the seed
corpus 𝒯 .

As described in Section 4.3.2, DIRECTNOISE contains four hyperparameters:
(𝜇mask, 𝜇deletion, 𝜇insertion, 𝜇keep). Running a grid search over all of these pa-
rameters is computationally expensive: thus, in this thesis, we exclusively fo-
cus on the effect of 𝜇mask. Therefore we deliberately fix 𝜇keep = 0.2, and use
𝜇insertion = 𝜇deletion = (1 – 𝜇keep – 𝜇mask)/2. The results are summarized in Fig-
ure 4.2. Here, 𝜇mask = 0.3 exhibits the best performance; therefore, we use 𝜇mask = 0.3 for
the remainder of the experiments.

We also investigate the effect of varying 𝛽random of BACKTRANS (NOISY) by evaluating its
performance on BEA-valid (Figure 4.3). Here, 𝛽random = 6 achieves the best performance.
It should be noted that according to Figure 4.3, the performance of back-translation without
noise (𝛽random = 0) is worse than the baseline. We found that given no noise, the reverse
model becomes too conservative, and does not generate grammatical errors, which is consis-
tent with the phenomenon reported by Xie et al. (2018). As a result, the pseudo data does
not provide useful teaching signals for the model and eventually harm the performance.

Given the suitable hyperparameters for 𝜇mask and 𝛽random, we compare the performance
of BACKTRANS (NOISY), DIRECTNOISE, and DIRECTNOISE (SPELL). The results are presented
in Table 4.4. The table shows that DIRECTNOISE, DIRECTNOISE (SPELL), and BACKTRANS
(NOISY) all achieve better F0.5 than the baseline, which is consistent with the result reported
by previous studies (Grundkiewicz et al., 2019; Xie et al., 2018; Zhao et al., 2019). It is

40

4.4 Experiments

0 3 6 9 12 15 18
βrandom

35

36

37

38

39

40

F
0
.5 Baseline

Figure 4.3 Performance of the model on BEA-valid with varying parameters BACKTRANS
(NOISY) (𝛽random).

noteworthy that each method improves different metrics; DIRECTNOISE improves precision,
whereas BACKTRANS (NOISY) and DIRECTNOISE (SPELL) improve recall. In addition, DIRECT-
NOISE achieves superior F0.5 to DIRECTNOISE (SPELL). This is surprising because DIRECT-
NOISE does not rely on the external spell checker. We will exclusively use DIRECTNOISE
and BACKTRANS (NOISY) for the rest of the experiments, because they achieve the highest
precision and recall, respectively in Table 4.4.

Why do different methods improve different metrics? We speculate that this result is re-
lated to the quality of the language model of EncDec. In the GEC literature, several studies
reported that a better language model leads to improved precision. For example, Junczys-
Dowmunt and Grundkiewicz (2016) incorporated an n-gram language model trained from
the Web-scale dataset and improved the precision of the vanilla statistical MT model by al-
most 10 points. In addition, recently, Chollampatt et al. (2019) used the scores computed
by a pretrained language model (BERT (Devlin et al., 2019)) as features for re-ranking the
outputs of the system; they reported an improved precision over the model without BERT.
We speculate that a similar effect is occurring in a model trained with DIRECTNOISE, thanks
to the existence of the ⟨mask⟩ token. Here, the decoder of the model cannot rely on the
encoder’s hidden states to generate the sentence, because the ⟨mask⟩ token removes infor-
mation from the source sentence. In other words, the decoder is biased toward developing a
better language model, rather than merely copying the source sentence.

41

4.4 Experiments

Table 4.5 Performance on BEA-valid when changing the seed corpus 𝒯 used for generating
pseudo data (|𝒟p| = 1.4M).

Method Seed Corpus 𝒯 Prec. Rec. F0.5

Baseline N/A 45.2 22.7 37.7
BACKTRANS (NOISY) Wikipedia 42.8 30.5 39.6
BACKTRANS (NOISY) SimpleWiki 41.7 31.2 39.1
BACKTRANS (NOISY) Gigaword 42.2 33.1 40.0
DIRECTNOISE Wikipedia 47.1 25.8 40.4
DIRECTNOISE SimpleWiki 48.3 25.4 40.9
DIRECTNOISE Gigaword 47.3 26.7 41.0

4.4.3 Aspect (ii): Seed Corpus 𝒯
We investigate the effectiveness of the seed corpus 𝒯 on generating pseudo data 𝒟p. The
three corpora (Wikipedia, SimpleWiki and Gigaword) are compared in Table 4.5. We set
|𝒟p| = 1.4M. The difference in F0.5 is small, which implies that the seed corpus 𝒯 has only
a minor effect on the model performance. Nevertheless, Gigaword consistently outperforms
the other two corpora. In particular, DIRECTNOISE with Gigaword achieves the best F0.5
value among all configurations. This is a positive result for theGEC community, as Gigaword
is a collection of news articles, that can be collected in high quantities at a relatively low cost
(e.g., News Crawl12).

4.4.4 Aspect (iii): Optimization Setting
Here, we compare JOINT and PRETRAIN optimization settings. We are interested in the per-
formance of each setting when the scale of the pseudo data 𝒟p is (i) approximately the same
(|𝒟p| = 1.4M) and (ii) substantially larger (|𝒟p| = 14M) than that of genuine parallel data
𝒟g (|𝒟g| ≈ 500K).

In the case of (ii), we expect that the teaching signal from the pseudo data 𝒟p becomes
dominant in the JOINT setting, and thus, the model may fail to learn from the genuine data
𝒟g. We call this potential problem as dominant pseudo data. In order to alleviate this
problem, we experiment with upsampling the genuine data 𝒟g in JOINT, namely, JOINT (UP-
SAMPLE). Specifically, we search for the appropriate upsampling rate within the values {1,
2, 4, 8, 16, 25} on BEA-valid. Here, 1 is equivalent to JOINT (without upsampling) and 25

12http://data.statmt.org/news-crawl/

42

http://data.statmt.org/news-crawl/

4.4 Experiments

Table 4.6 Performance of the model with different optimization settings on BEA-valid. The
seed corpus 𝒯 is Gigaword.

Optimization Method |𝒟p| Prec. Rec. F0.5

N/A Baseline 0 45.2 22.7 37.7
PRETRAIN BACKTRANS (NOISY) 1.4M 49.2 27.2 42.3
PRETRAIN DIRECTNOISE 1.4M 47.2 23.3 39.1
JOINT BACKTRANS (NOISY) 1.4M 42.2 33.1 40.0
JOINT DIRECTNOISE 1.4M 47.3 26.7 41.0
PRETRAIN BACKTRANS (NOISY) 14M 50.8 32.6 45.6
PRETRAIN DIRECTNOISE 14M 48.3 27.7 42.0
JOINT BACKTRANS (NOISY) 14M 40.8 37.1 40.0
JOINT DIRECTNOISE 14M 48.0 25.0 40.5
JOINT (UPSAMPLE) BACKTRANS (NOISY) 14M 41.8 37.8 40.9
JOINT (UPSAMPLE) DIRECTNOISE 14M 47.0 28.0 41.4

approximately corresponds to a ratio of |𝒟p| ∶ |𝒟g| = 1 ∶ 1. As a result, an upsampling
rate of 2 achieved the best F0.5 on BEA-valid.

Joint Training or Pretraining

Table 4.6 presents the results. First, let us compare the result of JOINT and JOINT (UPSAMPLE).
In BACKTRANS (NOISY), increasing |𝒟p| (1.4M → 14M) does not improve F0.5 on JOINT
(40.0 → 40.0). On the other hand, by upsampling the genuine data 𝒟g, JOINT (UPSAMPLE)
improves F0.5 (40.0 → 40.9). These results imply that dominant pseudo data indeed exists
in vanilla JOINT, and upsampling genuine data can alleviate such a problem.

Second, the table shows that PRETRAIN is superior to JOINT, especially in terms of
the properties of more pseudo data and better performance. For example, in BACKTRANS
(NOISY), increasing |𝒟p| (1.4M → 14M) improves F0.5 on PRETRAIN bymore than two points
(42.3 → 45.6). This is significantly larger than the improvement achieved by JOINT with up-
sampling (JOINT (UPSAMPLE)); it only improves by 0.9 point (40.0 → 40.9). An intuitive
explanation for this result is that PRETRAIN effectively handles dominant pseudo data, be-
cause themodel is trained only with 𝒟g during the fine-tuning phase. Therefore, we conclude
that PRETRAIN is the best optimization setting in Table 4.6.

43

4.4 Experiments

Ta
bl
e4

.7
Co

m
pa

ris
on

of
ou

rb
es
tm

od
el

an
d
cu

rre
nt

to
p
m
od

els
:a

bo
ld

va
lu
ei

nd
ica

tes
th
eb

es
tr
es
ul
tw

ith
in

th
ec

ol
um

n.

Co
NL

L-
20

14
(M

2
sc
or
er
)

Co
NL

L-
20

14
(E

RR
AN

T)
JF

LE
G

BE
A-

tes
t

(E
RR

AN
T)

M
od

el
En

se
m
bl
e

Pr
ec

.
Re

c.
F 0

.5
Pr

ec
.

Re
c.

F 0
.5

GL
EU

Pr
ec

.
Re

c.
F 0

.5

Ch
ol
lam

pa
tt
an

d
Ng

(2
01

8)
60

.9
23

.7
46

.4
-

-
-

51
.3

-
-

-
Ju
nc

zy
s-D

ow
m
un

te
ta

l.
(2
01

8)
-

-
53

.0
-

-
-

57
.9

-
-

-
Gr

un
dk

iew
icz

an
d
Ju
nc

zy
s-D

ow
m
un

t(
20

18
)

66
.8

34
.5

56
.3

-
-

-
61

.5
-

-
-

Li
ch

tar
ge

et
al.

(2
01

9)
65

.5
37

.1
56

.8
-

-
-

61
.6

-
-

-
Ch

ol
lam

pa
tt
an

d
Ng

(2
01

8)
✓

65
.5

33
.1

54
.8

-
-

-
57

.5
-

-
-

Ju
nc

zy
s-D

ow
m
un

te
ta

l.
(2
01

8)
✓

61
.9

40
.2

55
.8

-
-

-
59

.9
-

-
-

Li
ch

tar
ge

et
al.

(2
01

9)
✓

66
.7

43
.9

60
.4

-
-

-
63

.3
-

-
-

Zh
ao

et
al.

(2
01

9)
✓

71
.6

38
.7

61
.2

-
-

-
61

.0
-

-
-

Gr
un

dk
iew

icz
et

al.
(2
01

9)
✓

-
-

64
.2

-
-

-
61

.2
72

.3
60

.1
69

.5

PR
ET

LA
RG

E
67

.9
44

.1
61

.3
61

.2
42

.0
56

.0
59

.7
65

.5
59

.4
64

.2
PR

ET
LA

RG
E+

SS
E

68
.7

45
.2

62
.2

62
.1

42
.7

57
.0

60
.9

66
.1

60
.9

65
.0

PR
ET

LA
RG

E+
SS

E+
R2

L
✓

72
.4

46
.1

65
.0

67
.3

44
.0

60
.9

61
.4

72
.1

61
.8

69
.8

44

4.4 Experiments

106 107 108

Amount of Pseudo Data |Dp|

40

42

44

46

F
0
.5

sc
or

e

Backtrans (noisy)

DirectNoise

Figure 4.4 Performance on BEA-valid for different amounts of pseudo data (|𝒟p|). The seed
corpus 𝒯 is Gigaword.

Amount of Pseudo Data

We investigate the effect of increasing the amount of pseudo data on the PRETRAIN setting.
To do this, we pretrain the model with different amounts of pseudo data {1.4M, 7M, 14M,
30M, 70M}. The results in Figure 4.4 demonstrate that the sample efficiency of BACKTRANS
(NOISY) is superior to that of DIRECTNOISE. The best model (pretrained with 70M BACK-
TRANS (NOISY)) achieves F0.5 = 46.7.

4.4.5 Comparison with Current Top Models
The experimental results thus far indicate that the following configurations improve model
performance: (i) the combination of JOINT and Gigaword (Section 4.4.3), (ii) an amount of
pseudo data 𝒟p in JOINT that is not too large (Section 4.4.4), and (iii) PRETRAIN with BACK-
TRANS (NOISY) using a large amount of pseudo data 𝒟p (Section 4.4.4). We summarize these
findings and attempt to combine PRETRAIN and JOINT. Specifically, we pretrain the model
using 70M pseudo data of BACKTRANS (NOISY). We then fine-tune the model by combining
BEA-train and a relatively small amount of DIRECTNOISE pseudo data generated from Gi-
gaword (where |𝒟p| = 250K). However, the performance does not improve on BEA-valid.
Therefore, the best available approach is simply to pretrain the model with a large amount

45

4.5 Analysis

(70M) of BACKTRANS (NOISY) pseudo data and then fine-tune using BEA-train, which we
hereinafter refer to as PRETLARGE. We use Gigaword for the seed corpus 𝒯 because it has
the best performance, as illustrated in Table 4.5.

We evaluate the performance of PRETLARGE on test sets and compared the scores with
those of current top models. It is important to note that CoNLL-2014, JFLEG, and BEA-test
all involve different domains. For example, CoNLL-2014 consists of essays, while BEA-
test contains a much broader type of texts, such as letters, stories, and articles. Therefore,
achieving high performance onmultiple test sets should ensure that ourmodel’s superiority is
valid across GEC datasets in general. Table 4.7 reveals that PRETLARGE achievesF0.5 = 61.3
on CoNLL-2014, a result that outperforms not only all previous single-model results but also
all ensemble results except for that by Grundkiewicz et al. (2019).

To further improve the performance, we incorporate the following two techniques that
are widely used in shared tasks such as BEA-2019 (Bryant et al., 2019) and WMT (Barrault
et al., 2019):
Synthetic Spelling Error (SSE) Lichtarge et al. (2019) proposed a method of probabilisti-
cally injecting character-level noise into a source sentence of pseudo data 𝒟p. Specifically,
one of the following operations is applied randomly at a rate of 0.003 per character: deletion,
insertion, replacement, or transposition of adjacent characters.
Right-to-left Re-ranking (R2L) Incorporating a right-to-left model into the decoding pro-
cess was independently proposed by Liu et al. (2016) and Sennrich et al. (2016a), and consis-
tent improvements in performancewere reported. Following previous studies (Grundkiewicz
et al., 2019; Morishita et al., 2019; Sennrich et al., 2017, 2016a), we train four right-to-left
models. The ensemble of four left-to-right models generate n-best candidates and their cor-
responding scores (i.e., conditional probabilities). We then pass each candidate to the ensem-
ble of the four right-to-left models and compute the scores. Finally, we re-rank the original
n-best candidates based on the sum of the two scores. We set n = 5.

Table 4.7 presents the results of applying SSE and R2L. PRETLARGE+SSE+R2L
achieves state-of-the-art performance on both CoNLL-2014 (F0.5 = 65.0) and BEA-test
(F0.5 = 69.8), which is superior to that of the best system in the BEA-2019 shared
task (Grundkiewicz et al., 2019).

4.5 Analysis
In Section 4.4.5, we demonstrate that PRETLARGE and PRETLARGE+SSE configurations
achieve superior performance to that of current top models. In this section, we propose
future directions for further improving the performance. We achieve this by analyzing our

46

4.5 Analysis

PUNCT

OTHER
DET

PREP

VERB:TENSE
VERB

SPELL
ORTH

NOUN

NOUN:N
UM

0

10

20

30

40

50

60

70

F
0.

5

Baseline

Gigaword

Wikipedia

SimpleWiki

Figure 4.5 Performance of the different seed corpora onBEA-valid across various error types.
Only the 10 most frequent error types are presented. For a detailed description of each error
type, see (Bryant et al., 2017).

experimental results in terms of grammatical error type performance and proficiency levels.
Specifically, we conduct an analysis on the following two aspects: (i) how the effectiveness
of the pseudo data varies across different seed corpora (Section 4.5.1), and (ii) the strengths
and weaknesses of PRETLARGE (Section 4.5.2).

4.5.1 Effectiveness of Different Seed Corpora
Error Type Analysis

In this section, we analyze the performance of the models trained with different seed cor-
pora through their performance on each error type on BEA-valid13. Here, the question is
whether one seed corpus is more effective for correcting certain grammatical error types
than the other corpora. To do this, we use the DIRECTNOISE models illustrated in Table 4.5.
Figure 4.5 presents the results. The figure shows that different seed corpora indeed have dif-
ferent characteristics. For example, Gigaword outperforms other seed corpora on error types
such as PUNCT, PREP, and SPELL. On the other hand, SimpleWiki outperforms Gigaword
on the VERB:TENSE error.

13BEA-valid contains error type annotation for each edit, that is automatically annotated by ERRANT.

47

4.5 Analysis

DET

NOUN
NOUN:NUMORTH

OTHER

PREP

PUNCT SPELL

VERB

VERB:TENSE

Proficiency A

DET

NOUN
ORTH

OTHER

PREP

PUNCT

SPELL
VERB

VERB:FORM

VERB:TENSE

Proficiency B

DET

MORPH
NOUN

OTHER

PREP

PUNCT SPELL

VERB

VERB:FORM

VERB:TENSE

Proficiency C

DET

MORPH

NOUN

NOUN:POSS

ORTH
OTHER

PREP

PUNCT

SPELL

VERB

Proficiency N

Figure 4.6 Error type distribution across different proficiency levels. Only the 10 most fre-
quent error types are presented.

48

4.5 Analysis

Baseline SimpleWiki Wikipedia Gigaword
0

10

20

30

40

50

44.6644.6644.66
47.24

44.6644.66
47.24

44.66
47.24 46.63

44.6644.66
47.24

44.66
47.24 46.63

44.66
47.24 46.63 46.65

Proficiency A

Baseline SimpleWiki Wikipedia Gigaword
0

10

20

30

40

50

39.5039.5039.50
41.78

39.5039.50
41.78

39.50
41.78 41.41

39.5039.50
41.78

39.50
41.78 41.41

39.50
41.78 41.41 42.62

Proficiency B

Baseline SimpleWiki Wikipedia Gigaword
0

10

20

30

40

50

29.4529.4529.45
33.14

29.4529.45
33.14

29.45
33.14 32.53

29.4529.45
33.14

29.45
33.14 32.53

29.45
33.14 32.53 32.59

Proficiency C

Baseline SimpleWiki Wikipedia Gigaword
0

10

20

30

40

50

20.6620.6620.66

27.78

20.6620.66

27.78

20.66

27.78 27.68

20.6620.66

27.78

20.66

27.78 27.68

20.66

27.78 27.68
29.61

Proficiency N

Figure 4.7 Effect of the seed corpus on proficiency A, B, B, and N. The y-axis represents the
F0.5 score.

49

4.5 Analysis

So
ur
ce

Se
nt
en

ce
:W

he
n

th
e

co
nc

er
t

fi
ni

sh
ed

,
we

we
nt

to
cl

oa
kr

oo
m

to
ge

t
si

gn
at

ur
es

fr
om

mu
si

ci
an

s
.

Go
ld

Se
nt
en

ce
:

Wh
en

th
e

co
nc

er
t

fi
ni

sh
ed

,
we

we
nt

to
th

e
dr

es
si

ng
ro

om
to

ge
t

au
to

gr
ap

hs
fr

om
mu

si
ci

an
s

.
M

od
el

Ou
tp
ut
:

Wh
en

th
e

co
nc

er
t

fi
ni

sh
ed

,
we

we
nt

to
th

e
cl

oa
kr

oo
m

to
ge

t
si

gn
at

ur
es

fr
om

mu
si

ci
an

s
.

Fi
gu

re
4.
8N

OU
N

er
ro
rg

en
er
ate

db
yo

ur
m
od

el
(P

RE
TL

AR
GE

+S
SE

).
Bo

ld
te
xt

in
di
ca

tes
th
eg

ra
m
m
ati

ca
le

rro
rs

uc
ce

ss
fu
lly

co
rre

cte
d

by
th
em

od
el.

Un
de

rli
ne

d
tex

ti
nd

ica
tes

th
eg

ra
m
m
ati

ca
le

rro
rs

no
tc

or
re
cte

d
by

th
em

od
el.

50

4.5 Analysis

PUNCT

OTHER
DET

PREP

VERB:TENSE
VERB

SPELL
ORTH

NOUN

NOUN:NUM
0

20

40

60

F
0.

5

Baseline

PretLarge

PretLarge+SSE

Figure 4.9 Performance of the models on BEA-valid across various error types. Only the
10 most frequent error types are presented. For a detailed description of each error type,
see (Bryant et al., 2017).

Proficiency-wise Analysis

One notable characteristic of BEA-valid is that it comprises four sections (A, B, C and N)
with different English proficiency levels. Here, A (beginner), B (intermediate), and C (ad-
vanced) are derived fromCEFR levels (Little, 2006). The remaining level (N) corresponds to
text written by native English speakers. These proficiency levels provide us with increased
insight into the behavior of the model. This is because, as illustrated in Figure 4.6, the er-
ror distribution differs significantly among different proficiency levels. For example, the
determiner (DET) error is common in proficiency levels A, B, and C, but not N.

We are interested in the effect of changing the seed corpus on the performance of the
model for each proficiency level, as each proficiency level should require a different seed
corpus. For example, SimpleWiki should be suitable for proficiency levels A, B, and C be-
cause its grammatical complexity is closer to that of English learners. Similarly, Gigaword
should be suitable for proficiency level N because its text is written by native English speak-
ers. We analyze this relationship between the seed corpus and proficiency levels using the
DIRECTNOISE models illustrated in Table 4.5. Specifically, we evaluated the performance of
the model for each proficiency level. Figure 4.7 presents the results. The figure indicates
that SimpleWiki has either comparative or superior performance to Gigaword for proficiency
levels A, B, and C. However, Gigaword outperforms the other two corpora by almost two
points in F0.5 score for proficiency level N. These results support our hypothesis that there

51

4.5 Analysis

is a relationship between the grammatical complexity of the seed corpus and the proficiency
level.

The fact that a certain seed corpus is more suitable for a certain proficiency level than
the other corpora is consistent with our findings in Section 4.5.1. For example, according to
Figure 4.6, the VERB:TENSE error is in the 10 most frequent errors in proficiency levels A,
B, and C. In Section 4.5.1, we found that SimpleWiki demonstrates the best performance on
the correction of the VERB:TENSE error (Figure 4.5). This may be one of the reasons why
SimpleWiki shows strong performance on the proficiency levels A, B, and C in Figure 4.7.

4.5.2 Strengths and Weaknesses of PretLarge
Error Type Analysis

We analyze each model through its performance for each error type on BEA-valid (Fig-
ure 4.9). Specifically, we are interested in the performance of PRETLARGE and PRET-
LARGE+SSE compared to that of the baseline model, which is only trained with genuine
data 𝒟g. It should be noted that BEA-valid contains error type annotation for each edit, that
is automatically annotated by ERRANT.

Figure 4.9 reveals that PRETLARGE improves the performance across all error types com-
pared to the baseline model. In addition, it is surprising that PRETLARGE+SSE improves the
performance of PRETLARGE not only for the SPELL error type but also for most other error
types. We speculate that incorporating SSE makes the model more robust against noise.

Figure 4.9 also indicates a major weakness of our models, that is, they perform relatively
poorly for content word errors, such as NOUN and VERB. This shortcoming is common
across GEC models in general; a similar trend is observed in the error type performance
of systems participating in the BEA-2019 shared task (Bryant et al., 2019). One reason for
this is that there is an insufficient number of content word errors in both genuine data and
pseudo data. For example, as illustrated in Figure 4.6, the ratio of NOUN andVERB errors is
smaller than the ratio of errors such as PREP, PUNCT, and DET. Thus, developing a method
that exclusively generates content word errors is an important direction for future work.

A qualitative analysis through an example in Table 4.8 provides us with other directions
for improving the GEC model. Here, the model (PRETLARGE+SSE) successfully corrected
the DET error by inserting the missing “the” token. However, the model ignored two NOUN
errors in the sentence: one is to replace “cloakroom” with “dressing room”, and the other
is to replace “signature” with “autograph.” For the former error, the model needs to know
that the “musicians” are likely to be in the “dressing room” rather than in the “cloakroom.”
One possible way to do this is to develop a methodology of injecting external commonsense

52

4.5 Analysis

106 107 108

46

48

50

F
0.

5
sc

or
e

Proficiency A

Backtrans (noisy) DirectNoise

106 107 108

42

44

46

48

F
0.

5
sc

or
e

Proficiency B

106 107 108

32

34

36

38

40

F
0.

5
sc

or
e

Proficiency C

106 107 108

30

35

40
F

0.
5

sc
or

e

Proficiency N

Figure 4.10 Performance of the model on each proficiency level in BEA-valid.

knowledge into the model. For the latter error, the source sentence does not contain enough
information for the model to make the correction. This is because “we” in the source sen-
tence cannot be disambiguated: if “we” is the audience, “signature” should be corrected
to “autograph.” However, supposing that “we” refers to the people from the record label,
“signature” seems appropriate (e.g., making a contract). Developing a cross-sentence GEC
model (Chollampatt et al., 2019) is a promising approach to overcome such difficulty of
disambiguation.

Proficiency-wise Analysis

We investigated the effect of increasing the amount of pseudo data with respect to each pro-
ficiency level. If the performance of a certain proficiency level saturated, then an approach
other than increasing the amount of pseudo data would be necessary to improve the perfor-
mance.

53

4.6 Related Work

The results are presented in Figure 4.10. Here, the performances for proficiency levels A
and N scale to the amount of pseudo data, whereas B and C appear to saturate. As discussed
in Section 4.5.1, different seed corpora are appropriate for different proficiency levels. Thus,
we may be able to improve the performance of B and C by incorporating a seed corpus
with lower grammatical complexity. However, the size of SimpleWiki, which contains only
approximately 1.4M sentences, is insufficient for this purpose; extracting text from a raw
corpus (e.g., Common Crawl14) is thus critical.

4.6 Related Work

4.6.1 Methods for Generating Pseudo Data
The lack of genuine data 𝒟g (i.e., manually annotated error tagged data) has been an ongoing
challenge in the field of GEC. The generation of pseudo data has been a central approach
for mitigating this problem. There are generally two methods, which can be divided into the
following: (i) a rule/probability-based method and (ii) an MT-based method.

A common rule/probability-based method involves applying error templates to external
grammatical sentences (i.e., a seed corpus). Here, the templates are generated from a small
amount of genuine data. One of the advantages of this method is that a template can be
easily manipulated; for example, it can be designed to focus on specific error types, such as
mass noun (Brockett et al., 2006), article (Izumi et al., 2003; Rozovskaya and Roth, 2010b;
Rozovskaya et al., 2012), and preposition (Cahill et al., 2013; Rozovskaya and Roth, 2010a;
Rozovskaya et al., 2012), or it may support grammatical errors in general (Choe et al., 2019;
Felice and Yuan, 2014; Yuan and Felice, 2013). More recently, Grundkiewicz et al. (2019)
proposed a similar method; they probabilistically replaced words with ones in confusion sets
created by an off-the-shelf English spell checker. Their model achieved the best performance
in the BEA 2019 shared task (Bryant et al., 2019).

The another rule/probability-based approach is the one proposed by Zhao et al. (2019),
which is to inject synthetic noise into grammatical sentences. This is heavily inspired by
the concept of both denoizing auto-encoders (Vincent et al., 2008) and pretraining gigantic
language models (Devlin et al., 2019; Grundkiewicz et al., 2019; Song et al., 2019; Zhao
et al., 2019). We conducted an experiment using a variant of this method (DIRECTNOISE).

A major disadvantage associated with the rule/probability-based is that it is difficult to
obtain high-quality data that closely resembles the errors present in genuine data such as the
naturally occurring grammatical error. Several studies have reported that pseudo data may

14https://commoncrawl.org/

54

https://commoncrawl.org/

4.6 Related Work

cause performance degradation (Felice and Yuan, 2014; Foster and Andersen, 2009; Yuan
and Felice, 2013). Recently, the MT-based method, where a model is used to generate an er-
ror from a grammatical sentence, has drawn the attention of the research community. Here,
the model is typically either statistical MT (Rei et al., 2017) or neural MT (Kasewa et al.,
2018; Lichtarge et al., 2019; Xie et al., 2018). For example, Lichtarge et al. (2019) proposed
a round-trip translation method. This method regards translation errors generated by the MT
model as pseudo grammatical errors. Here, the method is to first translate a given grammat-
ical sentence to an arbitrary bridge language (e.g., Japanese). Then, a sentence is translated
back to the original language and used as a source sentence of pseudo data. Another MT-
based method is a variant of the back-translation method proposed by Xie et al. (2018), i.e.,
BACKTRANS (NOISY) (Section 4.3.1). They demonstrated that BACKTRANS (NOISY) can gener-
ate sentences that cannot be distinguished from genuine text containing a grammatical error.
In the experiment, we compared BACKTRANS (NOISY) with DIRECTNOISE and demonstrated
that the former exhibits superior performance.

Apart from generating pseudo data, there exists an approach to crawl pseudo data from
the Web. Specifically, Lichtarge et al. (2019) extracted Wikipedia’s revision histories and
constructed pseudo data, namely, Wikipedia Revisions. This approach is orthogonal to ours;
one may jointly use generated pseudo data and Wikipedia Revisions.

4.6.2 Seed Corpus
Historically, numerous types of corpora, e.g., collection of news articles (Brockett et al.,
2006; Grundkiewicz et al., 2019; Rozovskaya and Roth, 2010a; Xie et al., 2018; Zhao et al.,
2019), British National Corpus (Foster and Andersen, 2009), and English Wikipedia (Cahill
et al., 2013; Felice and Yuan, 2014; Rozovskaya and Roth, 2010a,b), have been considered
to be the seed corpus for generating pseudo data. This fact implies that consensus has not
yet been achieved with respect to the choice of seed corpus. Our research question on the
effectiveness of seed corpus on the model performance has been formulated based on such
a situation.

Felice and Yuan (2014) has the motivation similar to our study; the authors denoted that
the variables of seed corpus, including the (i) topic (ii) genre (iii) style (iv) text complexity,
and (v) native language of the writer, should be considered. However, they only considered
English Wikipedia as the seed corpus; and thus, the no sufficient conclusion could be ob-
tained with respect to these variables. In our study, we conducted controlled experiments
and compared three distinctive seed corpora (Section 4.4.3). We found that Gigaword is the
best seed corpus, at least in our setting.

55

4.7 Conclusions

4.6.3 Optimization Settings
As discussed in Section 4.2, there are at least two means of optimization, i.e., JOINT and
PRETRAIN. The effectiveness of JOINT optimization has been observed in both non-neural
models (Felice and Yuan, 2014; Yuan and Felice, 2013) and neural models (Xie et al., 2018).
However, the PRETRAIN approach is being actively explored in the GEC field.

The origin of the PRETRAIN approach with respect to the GEC model is “partial pre-
training” of EncDec. Junczys-Dowmunt et al. (2018) initialized the embedding matrix and
decoder parameters of EncDec with Word2Vec vectors (Mikolov et al., 2013) and pretrained
language model respectively. Further, they reported that both procedures consistently im-
proved the performance of EncDec. A similar approach has also been used by Chollam-
patt et al. (2019). However, more recently, “full pretraining” of EncDec has become domi-
nant (Choe et al., 2019; Grundkiewicz et al., 2019; Lichtarge et al., 2019; Zhao et al., 2019),
owing to its strong empirical performance. This approach pretrains the entire EncDec using
pseudo data, and subsequently fine-tunes it with genuine data.

One interesting aspect of GEC is that even though it incorporates same model (EncDec)
as MT, the dominant optimization setting is different. The JOINT setting is commonly used
in MT (Caswell et al., 2019; Edunov et al., 2018), whereas PRETRAIN is used in the exist-
ing GEC studies. We compared both settings and confirmed the superiority of PRETRAIN
(Section 4.4.4).

4.7 Conclusions
In this chapter, we investigated several aspects of the incorporation of pseudo data in GEC.
By conducting a massive amount of experiments, the following procedures are concluded to
be effective for training the model and for obtaining a strong performance:

1. utilize Gigaword as the seed corpus (Section 4.4.3);

2. pretrain the model with large amount (e.g., 70M) of BACKTRANS (NOISY) data (Sec-
tion 4.4.4); and

3. fine-tune the pretrained model using genuine data (Section 4.4.4).

Further, we demonstrated the effectiveness of this proposal by achieving state-of-the-art per-
formance using the CoNLL-2014 and BEA-2019 test sets (Section 4.4.5).

Subsequently, we conducted an in-depth analysis of the experimental results; our findings
can be summarized as follows.

56

4.7 Conclusions

1. The suitable seed corpus varies across various grammatical error types and proficiency
levels: for example, a seed corpus exhibiting low grammatical complexity is suitable
for low-proficiency texts (Section 4.5.1, Section 4.5.1).

2. When compared with the baseline, our proposed setting (PRETLARGE) improves the
performance with respect to all the grammatical error types. However, the content
word errors remain a challenge (Section 4.5.2).

3. The performance at each proficiency level shows promising scalability with respect to
the amount of pseudo data. However, the performances at proficiency levels B and C
seem to saturate when using the largest data (Section 4.5.2).

Based on these observations, several possible approaches can be suggested to further improve
model performance, especially on content word errors. For example, developing (1) a pseudo
data generation method that can exclusively generate content word errors, (2) a means of
injecting commonsense knowledge into themodel, and (3)more sophisticated cross-sentence
GEC are promising approaches.

57

Chapter 5

The Role of Semi-supervised
Learning in the State-of-the-Art
Machine Translation System

5.1 Introduction
The joint team of Tohoku University, RIKEN AIP, and NTT (Tohoku-AIP-NTT) partic-
ipated in the WMT’20 shared news translation task (Barrault et al., 2020) in two lan-
guage pairs and four language directions: English→German (En→De), German→English
(De→En), English→Japanese (En→Ja), and Japanese→English (Ja→En).

At the very beginning of this year’s shared task, we planned to employ the following
two enhancements at the core of our system. The first enhancement is the noisy synthetic
data filtering (Koehn et al., 2018) to better utilize the millions of back-translated synthetic
data. However, as we analyze in Section 5.5.1, this filtering turned out to be ineffective.
The second enhancement is the reranking of n-best candidates generated a the model. Given
a collection of scores from multiple generative/translation models, our reranking module
selects the best candidate. We attempted to develop sophisticated machine learning based
methods for optimizing the weight of each score. However, we found that those methods are
not as effective as the simple grid search on the BLEU score (details in Section 5.3.7 and
Section 5.5.3).

Eventually, we designed our system as a combination of techniques that are already
widely adopted in the shared task, such as back-translation and fine-tuning. The overview

58

5.2 Dataset and Preprocessing

of our system is shown in Figure 5.1. We achieved the first place in De→En on automatic
evaluation and obtained strong results in other language directions.

5.2 Dataset and Preprocessing

5.2.1 Bitext
For both En↔De and En↔Ja, we used all bitexts that are available for a constrained system.
En↔De Following Ng et al. (2019), we applied language identification filtering (langid)1

to the bitext. In this filtering, sentence pairs were removed if a supposedly En-
glish/German sentence is identified as a non-English/German sentence. Then, we applied
the clean-corpus-n script available in the Moses toolkit (Koehn et al., 2007) and removed
sentence pairs that are either too long and/or their length ratio is too large2. These two
filtering processes provided us with approximately 44M sentence pairs. Then, we trained
and applied the Moses truecaser independently for each language. We also trained byte-
pair encoding (BPE) (Sennrich et al., 2016c) models using the sentencepiece (Kudo and
Richardson, 2018) implementation. For BPE training, we used only a subset of the parallel
corpus (Europarl, NewsCommentary, and RAPID) to prevent extremely rare characters from
contaminating the vocabulary and the subword segmentation.
En↔Ja Similar to En↔De, we applied langid to clean bitext, but we did not use
clean-corpus-n since the Japanese text is not segmented. Instead, we simply removed
sentence pairs in which the English sentence is longer than 500 tokens. Eventually, we ob-
tained about 17M sentence pairs. We used truecaser for the English side only, because
case information does not exist in the Japanese language. We independently trained the BPE
merge operation on the bitext. We set the character coverage option3 of sentencepiece to
1.0 and 0.9998 for English and Japanese, respectively.

5.2.2 Monolingual Corpus
The origins of the monolingual corpus in our system are the Europarl, NewsCommentary,
and entire NewsCrawl (2008-2019) corpora for English andGerman, and the Europarl, News-
Commentary and CommonCrawl corpora for Japanese. After bitext preprocessing (Sec-
tion 5.2.1), we applied langid filtering to all monolingual corpora. These corpora are used
for large-scale back-translation (Section 5.3.3).

1https://github.com/saffsd/langid.py
2We set the minimum length to 1, the maximum length to 250, and the maximum ratio to 3.0.
3--character_coverage

59

https://github.com/saffsd/langid.py

5.2 Dataset and Preprocessing

Target
Monolingual

Target-to-Source
Model

Bitext

Synthetic
Data

Bitext In-domain
Bitext

Test Data

Source-to-Target
Model

N-best
Candidates

Translated
Texts

Left-to-Right
Source-to-Target

Model

Right-to-Left
Source-to-Target

Model

Left-to-Right
Target-to-Source

Model

Left-to-Right
Target-to-Source

Model

Masked
Language Model

×2

Uni-directional
Language Model

×2

Final Output

Base Model
(Section 5.3.1)

Large-scale
Back-translation

(Section 5.3.3)

Fine-tuning
(Section 5.3.4)

Ensemble (Section 5.3.5)
Right-to-Left Models (Section 5.3.6)

Reranking (Section 5.3.7)

Post-ensemble (Section 5.3.9)

Figure 5.1 Overview of our system.

60

5.3 System Overview

5.3 System Overview

5.3.1 Base Model and Hyperparameter
The well-known Transformer model (Vaswani et al., 2017) is our base Encoder Decoder
model. Specifically, we started with the “Transformer (big)” setting described by Vaswani
et al. (2017) and increased the feed-forward network (FFN) size from 4,096 to 8,192. Ng
et al. (2019) reported that this larger FFN setting slightly improves the performance; we also
confirmed it in our preliminary experiment.

Table 5.1 shows a list of hyperparameters for model optimization. We employed an
extremely large mini-batch size of 512,000 tokens using the delaying gradient update tech-
nique (Bogoychev et al., 2018; Ott et al., 2018). This is because previous studies showed
that a large mini-batch size leads to a faster convergence (Ott et al., 2018) and a better gener-
alization (Bawden et al., 2019; Morishita et al., 2019; Popel and Bojar, 2018). We also used
a large learning rate of 0.001 to further accelerate the convergence (Goyal et al., 2017; Liu
et al., 2019; Ott et al., 2018). We use the fairseq toolkit (Ott et al., 2019) for the entire set
of experiments. Every reported BLEU score is measured using SacreBLEU (Post, 2018).

5.3.2 Subword Size
For En↔De, we used the subword size of 32,000, which is commonly used in previous
studies Ng et al. (2019); Vaswani et al. (2017). For En↔Ja, we conducted a hyperparam-
eter search for a suitable subword size; Morishita et al. (2019) empirically showed that a
small subword size (e.g., 4,000) is superior to those commonly adopted in the literature (e.g.,
16,000 and 32,000). Given their findings, we searched for the subword size in the following
range: {4000, 8000, 16000, 32000}.

Table 5.2 shows that the largest subword size achieves the best performance, which is
inconsistent with the result of Morishita et al. (2019). One explanation for this result is
that Morishita et al. (2019) conducted an experiment on the ASPEC corpus, whose size
(approx. 3M) is much smaller than that of the bitext available for the En↔Ja task. That is,
the bitext available for the En↔Ja task is sufficiently large for themodel to learn ameaningful
representation for each subword unit that is close to the word level. Thus, we also used the
subword size of 32,000 for En↔Ja.

5.3.3 Large-scale Back-translation
We used the back-translation technique Sennrich et al. (2016b) to generate large-scale syn-
thetic data. First, we trained models on the bitext for all language pairs. Second, for each

61

5.3 System Overview

Table 5.1 List of hyperparameters for each model.

Base Model
Architecture Transformer (big) with FFN size of 8,192
Optimizer Adam (𝛽1 = 0.9, 𝛽2 = 0.98, 𝜖 = 1 × 10–8)
Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.3
Gradient Clipping 1.0
Label Smoothing 𝜖ls = 0.1 (Szegedy et al., 2016)
Mini-batch Size 512,000 tokens
Number of Updates 40,000 steps for En↔De and 80,000 steps for En↔Ja
Averaging Save checkpoint for every 2,000 steps and take an average

of last 10 checkpoints
Uni-directional Language Model

Architecture transformer_lm_big setting available in fairseq
Optimizer Adam (𝛽1 = 0.9, 𝛽2 = 0.98, 𝜖 = 1 × 10–8)
Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.0005
Dropout 0.1
Gradient Clipping 1.0
Weight Decay 0.0
Mini-batch Size 512,000 tokens
Number of Updates 50,000 steps

Masked Language Model
Architecture RoBERTa-base (Liu et al., 2019)
Optimizer Adam (𝛽1 = 0.9, 𝛽2 = 0.98, 𝜖 = 1 × 10–8)
Learning Rate Schedule Polynomial decay
Warmup Steps 10,000
Max Learning Rate 0.0005
Dropout 0.1
Gradient Clipping 1.0
Weight Decay 0.01
Mini-batch Size 2,048 sentences
Number of Updates 125,000 steps

language, we fed the monolingual corpus (Section 5.2.2) to the model. Here, we used the
beam search of width 6 and length penalty of 1.0. Finally, we applied length and ratio filter-

62

5.3 System Overview

Table 5.2 Effectiveness of different subword sizes on the validation set of En↔Ja task.

Subword Size En→Ja
4,000 19.2
8,000 19.6

16,000 19.4
32,000 19.7

Table 5.3 Number of sentence pairs in the synthetic data of each language pair

En→De De→En En→Ja Ja→En
No filtering 336M 236M 1777M 236M
After filtering 328M 230M 235M 230M

ing to the model outputs4. The size of the synthetic data that we generated for each language
direction is shown in Table 5.3. The size of the synthetic data for En→Ja, which is generated
from CommonCrawl, is extremely large. Thus, we randomly subsampled the synthetic data
of En→Ja so that its size roughly matches those of De→En and Ja→En.

We searched for an effective setting for incorporating the synthetic data. As the most
straightforward starting point, we simply combined bitext and synthetic data and trained the
model. Here, we upsampled the bitext so that the model sees the bitext and synthetic data
at a 1:1 ratio (Ng et al., 2019). Table 5.4 shows the result. Here, naively using the synthetic
data (BASE+BT) decreased the performance of the model trained with the bitext only (BASE).
Given this result, we considered the following two enhancements:
Tagged Back-translation We used the tagged back-translation technique (Tagged-
BT) (Caswell et al., 2019), which prepends a special tag token (e.g., ⟨BT⟩) to the source
sentence of synthetic data. This simple technique can inform the model about the origin
of the given training data, i.e., whether the sentence pair is back-translated. Marie et al.
(2020) empirically demonstrated that the model trained with such tagged data can avoid
overfitting to the synthetic data. In Table 5.4, the Tagged-BT (BASE+TAGGED-BT) success-
fully improves the performance from BASE except for the newstest2019. We suspect that
the performance does not improve on newstest2019 because it does not contain the “trans-
lationese” text, i.e., human-generated translations, which are reported to be the main source
of improvement of back-translation (Bogoychev and Sennrich, 2019; Marie et al., 2020).

4For En↔De, we removed sentence pairs that contain sentences longer than 250 tokens. For En↔Ja, we
removed sentence pairs such that the English sentence is longer than 250 tokens, or the Japanese sentence is
longer than 500 characters.

63

5.3 System Overview

Table 5.4 Effectiveness of using the synthetic data on En→De

newstest
Setting 2014 2018 2019

BASE 32.2 47.3 42.2
BASE+BT 32.1 45.9 38.8
BASE+TAGGED-BT 33.0 48.0 42.0
BASE (l = 9)+TAGGED-BT 33.1 49.6 42.7
BASE (l = 12)+TAGGED-BT 33.4 49.4 42.3

Deeper Model We also considered increasing the model size to take advantage of a mas-
sive amount of training data. Specifically, we increased the number of layers l from 6 to 9 and
12 (Wang et al., 2019b). Table 5.4 shows that the performances of BASE (l = 9)+TAGGED-
BT and BASE (l = 12)+TAGGED-BT are almost comparable. We determined that BASE
(l = 9)+TAGGED-BT is the best option by considering the model performance and training
efficiency regarding the GPU memory constraints.

5.3.4 Fine-tuning
Fine-tuning the model with an in-domain news corpus is acknowledged as an extremely
important technique for boosting the performance (Bawden et al., 2019; Junczys-Dowmunt,
2019; Ng et al., 2019; Sennrich et al., 2016b). We fine-tuned our models as follows:
En↔De For En↔De, we fine-tuned the model with a collection of newstest2008-2018 and
evaluated its performance on newstest2019. For En→De, we only used sentence pairs whose
source sentence is originally written in English, i.e., we never used texts with translationese
on the source side for fine-tuning. Similarly, for De→En, we used sentence pairs whose
source sentence is originally written in German. This way, we ensured that our model does
not overfit to the translationese texts; since newstest2019 does not contain translationese
texts (Barrault et al., 2019), we expected that newstest2020 does not contain translationese
either.

We fine-tuned the model for 200 iterations with a mini-batch size of 20,000 tokens. Dur-
ing the fine-tuning, we fixed the learning rate to 1e-06 for De→En and 1e-05 for En→De.
We saved the model every 20 iterations and took an average of the last eight saved models
for decoding.
En↔Ja For fine-tuning, we used the Kyoto Free Translation Task (KFTT) corpus and
NewsCommentary as the clean bitext and NewsCommentary as the news bitext. We fine-
tuned the models by a two-step procedure, that is, we first fine-tuned with the clean bitext

64

5.3 System Overview

for 2,000 steps. Then we fine-tuned with the news bitext for 200 steps. We found that the
validation performance of this two-step procedure is slightly better than that of the fine-
tuning with the news bitext only.

5.3.5 Ensemble
Weused themodel ensemblemethod to improve the performance. First, we trained four mod-
els with different random seeds. These models were then simultaneously used for computing
the score of each candidate during the beam search decoding.

5.3.6 Right-to-Left Models
We used Right-to-Left (R2L) models for reranking the n-best candidates from Left-to-Right
(L2R) models. R2L models generate sentences in reverse order. Suppose that conventional
L2R models generate sentences from the beginning-of-the-sentence (BOS) to the end-of-
the-sentence (EOS); R2L models generate from EOS to BOS. This reranking technique was
independently proposed by Liu et al. (2016) and Sennrich et al. (2016a) to mitigate the search
error of L2R models, which may occur around EOS. We trained four R2L models and used
their scores for reranking the n-best candidates generated by L2R models (Section 5.3.5).
Specifically, we computed the score of each candidate with both L2R models and R2L mod-
els. Then, we took the sum of the two scores and obtained the final score. We sorted this
final score and then selected the candidate with the highest score.

5.3.7 Reranking
We also applied a reranking method based on the scores of several translation (or gener-
ative) models, which is closely related to one iteration of Minimum Error Rate Training
(MERT) (Och, 2003) often used in Statistical Machine Translation (SMT). The underlying
idea is to find the balance of likelihood independently computed from the models.

Suppose we have a set of candidate output sentences for each input in either the validation
(training phase) or the test (evaluation phase) sets. In our case, we independently generated
n-best candidates using the L2R and R2L models, and obtained 2n candidates in total for
each. Here, let 𝒞i represent the set of the obtained 2n candidates of the i-th input.

Next, Pj(e) ∈ [0, 1] denotes the score of the candidate e ∈ 𝒞i obtained from the j-th
model, where j ∈ {1, … , J}. Let wj ∈ [0, 1] be a weighting factor of the j-th model, and
w = (w1, … , wJ) be the vector representation of the weighting factor. We then obtained the

65

5.3 System Overview

most likely candidate ̂ei,w from 𝒞i given the i-th input and w as follows:

̂ei,w = arg max
e∈𝒞i

{
J

∑
j=1

wj log(Pj(e))}. (5.1)

Finally, for the parameter estimation of w, we explored ŵ by using the following opti-
mization problem:

ŵ = arg max
w∈𝒢w

{SacreBLEU(ℰ̂w)}, (5.2)

where ̂ℰw = (̂ei,w)I
i=1 and 𝒢w represent a set of values that wj can take, namely, [0, 1]J.

For the reranking experiment, we prepared the following generative and translation mod-
els to compute Pj(e).
Source-to-Target L2R and R2L Model The Source-to-Target L2R and R2L models are
the same as that used for the candidate generation; the ensemble of four L2R models and
four R2L models compute the score of each candidate.
Target-to-Source L2R and R2L Model The Target-to-Source (T2S) model translates a
sequence in a reverse direction, that is, it translates a given target sequence to a source se-
quence. For example, if a candidate sentence is generated by the En→De model, we use the
De→En model for computing the T2S score.
Uni-directional Language Model We used the uni-directional language model (UniLM)
to compute the likelihood of the decoded target sequence. To do this, we trained the
Transformer-based language model (Baevski and Auli, 2019) for all languages on mono-
lingual data. We obtained two distinct scores from two normalization methods: (1) simply
dividing by the target sequence length (Yee et al., 2019) and (2) SLOR (Lau et al., 2020;
Pauls and Klein, 2012). A list of hyperparameters is shown in Table 5.1.
Masked Language Model We also used the pre-trained masked language model
(MLM) (Devlin et al., 2019) for computing the score. Specifically, we trained the RoBERTa-
base (Liu et al., 2019) setting available in fairseq on monolingual data. First, we computed
the unnormalized log-probabilities by the method described byWang and Cho (2019). Then,
we normalized the probability by (1) dividing by the sequence length and (2) PenLP (Lau
et al., 2020; Vaswani et al., 2017). A list of hyperparameters is shown in Table 5.1.

Because the uni-directional language model and MLM both have two distinct variations,
we used a total of six models, namely, J = 6.

66

5.4 Results

5.3.8 Post-processing
We converted the decoded target sequence from a sequence of subwords to tokens. Then
we applied the Moses detruecaser to English and German sequences. We also applied
language-specific post-processing as follows:
En↔De We observed that the rare tokens such as Greek letters in the source sequence are
sometimes translated into ⟨UNK⟩. We handled ⟨UNK⟩ in the decoded sequence by copying the
corresponding token from the source sequence. We determined the corresponding token by
finding the token that does not exist in one of the source-side or target-side vocabularies.
En→Ja We did not take any special measures for ⟨UNK⟩5. We replaced the English style
comma “，” and period “．” with the Japanese style “、” and “。” respectively.
Ja→En We observed that the model translates the Japanese vertical bar “｜” to ⟨UNK⟩.
Thus, we replaced all ⟨UNK⟩ with “|”.

5.3.9 Post-ensemble
Kobayashi (2018) proposed the method of taking the ensemble of multiple models after
decoding the sequence, namely, post-ensemble (POSTENSEMBLE). The underlying idea of
POSTENSEMBLE is to choose “majority-like” candidates by comparing the similarities among
candidates. He applied POSTENSEMBLE to the abstractive summarization task and reported
that the performance is superior to that of the conventional ensemble.

We used POSTENSEMBLE in En→Ja6. Specifically, we adopted the PostCosE variant in
which the cosine similarity is used as a similarity metric. We created 300 dim fasttext word
vectors (Bojanowski et al., 2017) on the Japanese monolingual corpus.

5.4 Results
Performance on the Validation Set We show the validation performance of our system
in Table 5.5. We used newstest2019 and the official validation set for En↔De and En↔Ja,
respectively, for the validation data. The table shows the effectiveness of incorporating each
technique described in Section 5.3. Each technique consistently improves the performance in
most cases. In addition, it is noteworthy that both En→De and De→En models significantly
outperform the performance of the best system from last year’s shared task (WMT’19).

5In fact, we never observed ⟨UNK⟩ in the decoded test set.
6Kobayashi (2018) introduced POSTENSEMBLE as the method that replaces the conventional ensemble. In-

stead, we used two ensemble methods simultaneously.

67

5.4 Results

Table 5.5 Effectiveness of each technique: we use newstest2019 and official validation set for
En↔De and En↔Ja respectively. The best result from WMT’19 is unavailable for En↔Ja,
because this task has newly appeared this year.

ID Setting En→De De→En En→Ja Ja→En
(a) BASE (Section 5.3.1) 42.4 42.0 19.7 21.6
(b) BASE (l = 9)+TAGGED-BT (Section 5.3.3) 42.7 42.5 22.0 23.9
(c) (b) + fine-tuning (Section 5.3.4) 44.9 42.3 23.1 24.4
(d) (c) × 4 (Section 5.3.5) 45.5 42.8 23.9 25.4
(e) (d) + 4 × (c)-R2L (Section 5.3.6) 45.4 43.6 24.2 25.9
(f) (e) + reranking (Section 5.3.7) 45.7 43.8 24.9 26.2
- The best system in WMT’19 44.9 42.8 - -

Table 5.6 Performance on WMT’20 Test Set: refer to Table 5.5 for model ID.

Direction Setting / ID BLEU chrF
En→De (f) (Table 5.5) 37.5 0.647
De→En (f) (Table 5.5) 43.8 0.690
En→Ja (f) (Table 5.5) 40.1 0.343
Ja→En POSTENSEMBLE 25.5 0.536

Performance on the Test Set We show the test set performance that we measured in the
OCELoT system7 in Table 5.6. The system provides us with the SacreBLEU score and the
chrF score (Popović, 2015).

We used the following models for POSTENSEMBLE of Ja→En: (1) model (f) (Table 5.5),
(2) Model (f) with the ensemble of eight models, in which four models are fine-tuned with
the clean bitext and the other four models are fine-tuned with the news bitext, and (3) Model
(2) without n-best candidates from the R2L model.

The performance of En→Ja appears significantly better than the validation performance
reported in Table 5.5; this is because OCELoT computes the BLEU score with character-
level segmentation, whereas we used the MeCab-based word-level segmentation8. We also
computed the BLEU score with the MeCab-based segmentation for reference and obtained
25.8 points.

7https://ocelot.mteval.org/
8The use of the MeCab-based segmentation is recommended by SacreBLEU.

68

https://ocelot.mteval.org/

5.5 Analysis

5.5 Analysis
In this section, we introduce several negative results from our preliminary experiments.
Our attempts include the following: (1) filtering synthetic data, (2) incorporating forward-
translation, and (3) developing a more sophisticated reranking method. We also analyzed
the issue regarding the use of brackets in the En→Ja task.

5.5.1 Negative Results on Synthetic Data Filtering
We applied corpus filtering to the synthetic data created in Section 5.3.3. The goal of this
filtering is to extract and utilize the “clean” subset of synthetic data that may contribute to the
model performance. For each of the sentence pairs in the synthetic data, we assigned scores
that represent the likelihood of being a sentence pair (Section 5.5.1). Then, we regarded
these scores as features for classification; we trained a model classifying clean and noisy
sentence pairs (Section 5.5.1). Finally, on the basis of the confidence scores of the classifier,
we extracted the presumably clean subset of the synthetic data.

Features

Pointwise HSIC We computed the score for each sentence pair using the pointwise
Hilbert‒Schmidt independence criterion (PHSIC) (Yokoi et al., 2018), which is a kernel-
based co-occurrence measure. Given a set of sentence pairs, PHSIC can assign a high score
to a sentence pair that is consistent with the rest of the sentence pairs. To do this, PHSIC
utilizes kernel functions and calculates the sentence similarity. Yokoi et al. (2018) applied
PHSIC to machine translation corpus filtering and reported promising results. Thus, we also
employed PHSIC for corpus synthetic data filtering.

First, we learned the parameters of the PHSIC matrix with a cosine kernel by using all
sentence pairs in the bitext, which are represented as sentence embeddings. Then, we used
this trained matrix to compute the scores for the synthetic data. We used the following
two methods for computing the sentence embeddings: (1) the weighted sum of fasttext vec-
tors (Bojanowski et al., 2017) by smoothed inverse frequency (SIF) weighting (Arora et al.,
2017) and (2) the average of final hidden states of the pre-trained MLM. Here, the fasttext
vector is the same as the one used for post-ensemble (Section 5.3.9), and MLM is the one
from the reranking (Section 5.3.7). The word frequency for SIF weighting is calculated from
the monolingual corpus.

69

5.5 Analysis

Table 5.7 Effectiveness of corpus filtering on En→De.

newstest
Amount of Synthetic Data Used: r (%) 2014 2018 2019

100 33.0 48.0 42.0
50 32.9 48.4 42.3
33 33.1 47.9 42.2
25 32.9 48.5 42.4

Table 5.8 Effectiveness of incorporating forward-translation and back-translation on En→De.

newstest
Setting 2014 2018 2019

BASE 32.2 47.3 42.2
BASE+TAGGED-BT 33.0 48.0 42.0
BASE+TAGGED-FT 31.7 46.7 42.1
BASE+TAGGED-BT+TAGGED-FT 33.1 48.3 42.4

Cross-entropy from T2S Model We computed the word-normalized conditional cross-
entropy using the T2S translation model. For example, the synthetic data generated using
the En→De model are scored using the De→En model.

Training a Classifier

We trained a linear support vector machine model that classifies clean and noisy sentence
pairs. To train the classifier, we used newstest2009-2019 and the official validation set as
clean sentence pairs for En↔De and En↔Ja, respectively. We generated the noisy sentence
pairs by randomly adding the noise presented by Wang et al. (2018) to the clean sentence
pairs.

After training, we classified each sentence pair in the synthetic data. The confidence
score of the classifier was used as an overall score that represents the “cleanness” (i.e., qual-
ity) of the sentence pair.

Results

We investigated the effectiveness of the synthetic data filtering. First, we sorted the synthetic
data according to the score computed with the classifier (Section 5.5.1). Then, we used the
top r% of synthetic data for training.

70

5.5 Analysis

Table 5.7 shows the results of synthetic data filtering with varying r. We trained the
En→De model using the BASE+TAGGED-BT setting. The results showed that our filtering
does not seem to improve the performance over the baseline (r = 100). One of the possible
reasons for this ineffectiveness is the quality of the sentence embeddings used for PHSIC.
That is, the use of fasttext and pre-trained MLM might be inappropriate. Utilizing more
powerful sentence encoders such as Sentence-BERT (Reimers and Gurevych, 2019) and
Universal Sentence Encoder (Cer et al., 2018) is an interesting option to explore in the future;
however, the methods of acquiring such resources in the constrained setting is not trivial.

71

5.5 Analysis

In
pu

t
On

ly
on

em
em

be
ro

ft
he

fa
m
ily

,t
he

n
15

-y
ea
r-o

ld
Ca

ss
id
y
St
ay
,s
ur
vi
ve

d.
Re

fe
re
nc

e
家
族
の
中
で
、
た
だ
一
人
、
当
時

15
歳
だ
っ
た
カ
シ
デ
ィ
・
ス
テ
イ
さ
ん
だ
け
が
一
命
を
取
り
留
め
た
。

M
od

el
Ou

tp
ut
当
時

15
歳
の
キ
ャ
シ
デ
ィ
・
ス
テ
イ

(C
as
sid

y
St
ay

)だ
け
が
生
き
残
っ
た
。

In
pu

t
M

ad
am

Ne
ed

jan
,p

led
ge

dt
he

as
so

cia
tio

n’
ss

up
po

rt
to

th
eh

os
pi
tal

an
dc

all
ed

on
ot
he

ra
ss
oc

iat
io
ns

to
em

ul
ate

th
eg

es
tu
re
.

Re
fe
re
nc

e
マ
ダ
ム
・
ニ
ー
ジ
ャ
ン
は
、
協
会
の
当
病
院
へ
の
支
援
を
約
束
し
、
他
の
団
体
も
こ
う
し
た
行
為
に
追
随
す
る
よ

う
呼
び
か
け
た
。

M
od

el
Ou

tp
ut
マ
ダ
ム
・
ニ
ー
ジ
ャ
ン

(M
ad

am
Ne

ed
jan

)は
、
協
会
が
病
院
を
支
援
す
る
こ
と
を
約
束
し
、
他
の
協
会
に
こ
の

ジ
ェ
ス
チ
ャ
ー
を
模
倣
す
る
よ
う
求
め
た
。

Fi
gu

re
5.
2
Er

ro
ra

na
ly
sis

of
En

→
Ja

tra
ns

lat
io
n.

72

5.5 Analysis

5.5.2 Effectiveness of Incorporating Forward-Translation
Forward-translation (Burlot and Yvon, 2018) is a technique similar to back-translation; the
difference is that while back-translation uses the target-side monolingual data, forward-
translation uses the source-side monolingual data to generate synthetic data. Bogoychev and
Sennrich (2019) reported that forward-translation is effective for improving the translation
of texts that are originally written in the source language (i.e., non-translationese texts).

To determine if we can take the best of the two techniques, namely, forward-translation
and back-translation, we combined the synthetic data and trained the model. As described
in Section 5.3.3, we prepended a distinct tag to each data source: ⟨FT⟩ and ⟨BT⟩ for data
generated by forward-translation and back-translation respectively. Then, we upsampled the
bitext, so that the model is fed with the bitext and synthetic data at a 1:0.5:0.5 ratio.

Table 5.8 shows the result. The model incorporating both back-translation and forward-
translation (BASE+TAGGED-BT+TAGGED-FT) achieves the best result, however, the improve-
ment was marginal. In addition, the performance of the model with forward-translation only
(BASE+TAGGED-FT) was worse than that of the baseline (BASE) in all datasets. Given this
result, we only used back-translation and kept the training procedure as simple as possible
in our final system.

5.5.3 Negative Result on Reranking
We actually investigated several different types of reranking algorithms other than the stan-
dard grid search described in Section 5.3.7. For example, we experiment withed optimizing
model weights by machine learning based methods such as those using support vector ma-
chines, XGBoost (Chen and Guestrin, 2016), and deep neural networks. Unfortunately, none
of them worked well. In this competition, we only used the model scores for the reranking.
This setting immediately leads the overfitting to the development sets, and hard to extract
meaningful generalized weights (rules) that also work well for unseen test data. The devel-
opment of the methods that can further and consistently improve the quality of translations
is our future work for the next year.

5.5.4 Japanese Text and Brackets
Figure 5.2 shows examples from the validation set of the En→Ja task. These examples il-
lustrate the weakness of our model, in which the named entities are often inappropriately
translated. According to the references in the figure, the named entities must be translated
from alphabetical characters to katakana (カタカナ), e.g., Cassidy Stay toカシディ・ステ

73

5.6 Conclusion

イ. Although our model successfully translates the named entities in most of the cases, the
model also copies original alphabetical characters into the brackets. For example, the model
translates Madam Needjan toマダム・ニージャン (Madam Needjan). These alphabetical
characters damage the BLEU score. We can remove the extra brackets by the rule-based
post-processing; however, we find that this naive operation hurts the brevity penalty.

This extra bracket problem seems to reflect the way that the named entities are written
in the En↔Ja training data such as KFTT. We should have considered special preprocessing
measures in advance to alleviate this problem.

5.6 Conclusion
In this chapter, we described the submission of the joint team of Tohoku, AIP, and NTT to
the WMT’20 news translation task. We participated in the En↔De and En↔Ja translation.
In preliminary experiments, we attempted new techniques such as synthetic data filtering,
forward-translation, and sophisticated reranking. However, none of them was effective. In
the submission, we used several standard techniques such as back-translation and fine-tuning.
As a result, we achieved the best BLEU score on De→En and strong results in other direc-
tions.

74

Chapter 6

Shifted Absolute Position
Embedding for Transformers

6.1 Introduction
Position representation plays a critical role in self-attention-based encoder-decoder models
(Transformers) (Vaswani et al., 2017), enabling the self-attention to recognize the order of
input sequences. Position representations have two categories (Dufter et al., 2021): absolute
position embedding (APE) (Gehring et al., 2017; Vaswani et al., 2017) and relative position
embedding (RPE) (Shaw et al., 2018). With APE, each position is represented by a unique
embedding, which is added to inputs. RPE represents the position based on the relative
distance between two tokens in the self-attention mechanism.

RPE outperforms APE on sequence-to-sequence tasks Narang et al. (2021); Neishi and
Yoshinaga (2019) due to extrapolation, i.e., the ability to generalize to sequences that are
longer than those observed during training (Newman et al., 2020). Wang et al. (2021) re-
ported that one of the key properties contributing to RPE’s superior performance is shift
invariance1, the property of a function to not change its output even if its input is shifted.
However, unlike APE, RPE’s formulation strongly depends on the self-attention mechanism.
This motivated us to explore a way to incorporate the benefit of shift invariance in APE.

A promising approach to achieving shift invariance while using absolute positions is to
randomly shift positions during training. A similar idea can be seen in several contexts,
e.g., computer vision (Goodfellow et al., 2016) and question-answering in NLP (Geva et al.,
2020). APE is no exception; a random shift should force Transformer to capture the relative

1Shift invariance is also known as translation invariance.

75

6.2 Position Representations

Multi-Head

Attention

Add & Norm

Feed

Forward

Add & Norm

Input

Embedding

+

John yelled at Kevin
Position 0 1 2 3 4 k-1 k k+1 k+2 k+3

Absolute Position
Embedding (APE)(a) Shifted APE (SHAPE)(c)

Transformer Relative Position Embedding (RPE)(b)

Relative
Distance

John yelled at Kevin

!!"#{%&',)*+,&} !."#{%&',)*+,&}

-2 -1 0 1 2

Key
Value

Shifted by random offset k

Figure 6.1 Overview of position representations. (a) APE and (c) SHAPE consider absolute
positions in the input layer, whereas (b) RPE considers the relative position of a given token
pair in the self-attention mechanism.

positional information from absolute positions. However, the effectiveness of a random shift
for incorporating shift invariance in APE is yet to be demonstrated. Thus, we formulate
APE with a random shift as a variant of position representation, namely, Shifted Absolute
Position Embedding (SHAPE; Figure 6.1c), and conduct a thorough investigation. In our
experiments, we first confirm that Transformer with SHAPE learns to be shift-invariant.
We then demonstrate that SHAPE achieves a performance comparable to RPE in machine
translation. Finally, we reveal that Transformer equipped with shift invariance shows not
only better extrapolation ability but also better interpolation ability, i.e., it can better predict
rare words at positions observed during the training.

6.2 Position Representations
Figure 6.1 gives an overview of the position representations compared in this chapter. We
denote a source sequence X as a sequence of I tokens, namely, X = (x1, … , xI). Similarly,
let Y represent a target sequence of J tokens Y = (y1, … , yJ).

76

6.2 Position Representations

6.2.1 Absolute Position Embedding (APE)
APE provides each position with a unique embedding (Figure 6.1a). Transformer with APE
computes the input representation as the sum of the word embedding and the position em-
bedding for each token xi ∈ X and yj ∈ Y.

Sinusoidal positional encoding (Vaswani et al., 2017) is a deterministic function of the
position and the de facto standard APE for Transformer2. Specifically, for the i-th token, the
m-th element of position embedding PE(i, m) is defined as

PE(i, m)=
⎧
⎪
⎨
⎪
⎩

sin (
i

10000
2m
D) m is even

cos (
i

10000
2m
D) m is odd

, (6.1)

where D denotes the model dimension.

6.2.2 Relative Position Embedding (RPE)
RPE (Shaw et al., 2018) incorporates position information by considering the relative dis-
tance between two tokens in the self-attention mechanism (Figure 6.1b). For example, Shaw
et al. (2018) represent the relative distance between the i-th and j-th tokens with relative
position embeddings aKey

i–j , aValuei–j ∈ ℝD. These embeddings are then added to key and value
representations, respectively.

RPE outperforms APE on out-of-distribution data in terms of sequence length owing
to its innate shift invariance (Narang et al., 2021; Neishi and Yoshinaga, 2019; Rosendahl
et al., 2019; Wang et al., 2021). However, the self-attention mechanism of RPE involves
more computation than that of APE3. In addition, more importantly, RPE requires the mod-
ification of the architecture, while APE does not. Specifically, RPE strongly depends on
the self-attention mechanism; thus, it is not necessarily compatible with studies that attempt
to replace the self-attention with a more lightweight alternative (Choromanski et al., 2021;
Kitaev et al., 2020; Tay et al., 2020).

RPE, which was originally proposed by Shaw et al. (2018), has many variants in the
literature (Dai et al., 2019; Huang et al., 2020; Raffel et al., 2020;Wang et al., 2021;Wu et al.,
2021). They aim to improve the empirical performance or the computational speed compared
with the original RPE. However, the original RPE is still a strong method in terms of the

2Learned position embedding (Gehring et al., 2017) is yet another variant of APE; however, we exclusively
focus on sinusoidal positional encoding as its performance is comparable (Vaswani et al., 2017).

3Narang et al. (2021) reported that Transformer with RPE is up to 25% slower than that with APE.

77

6.3 Experiments

performance. Narang et al. (2021) conducted a thorough comparison on multiple sequence-
to-sequence tasks and reported that the performance of the original RPE is comparable to
or sometimes better than its variants. Thus, we exclusively use the original RPE in our
experiments.

6.2.3 Shifted Absolute Position Embedding (SHAPE)
Given the drawbacks of RPE, we investigate SHAPE (Figure 6.1c) as a way to equip Trans-
former with shift invariance without any architecture modification or computational over-
head on APE. During training, SHAPE shifts every position index of APE by a random
offset. This prevents the model from using absolute positions to learn the task and instead
encourages the use of relative positions, which we expect to eventually lead to the learning
of shift invariance.

Let k represent an offset drawn from a discrete uniform distribution 𝒰{0, K} for each
sequence and for every iteration during training, whereK ∈ ℕ is themaximum shift. SHAPE
only replaces PE(i, m) of APE in Equation 6.1 with

PE(i + k, m). (6.2)

We independently sample k for the source and target sequence. SHAPE can thus be incor-
porated into any model using APE with virtually no computational overhead since only the
input is modified. Note that SHAPE is equivalent to the original APE if we set K = 0; in
fact, we set K = 0 during inference. Thus, SHAPE can be seen as a natural extension to
incorporate shift invariance in APE.

SHAPE can be interpreted in multiple viewpoints. For example, SHAPE can be seen
as a regularizer that prevents Transformer from overfitting to the absolute position; such
overfitting is undesirable not only for extrapolation (Neishi and Yoshinaga, 2019) but also
for APE with length constraints (Oka et al., 2020, 2021; Takase and Okazaki, 2019). In
addition, SHAPE can be seen as a data augmentation method because the randomly sampled
k shifts each instance into different subspaces during training.

6.3 Experiments
Using machine translation benchmark data, we first confirmed that Transformer trained with
SHAPE learns shift invariance (Section 6.3.2). Then, we compared SHAPE with APE and
RPE to investigate its effectiveness (Section 6.3.3).

78

6.3 Experiments

6.3.1 Experimental Configuration
Dataset We used the WMT 2016 English-German dataset for training and followed Ott
et al. (2018) for tokenization and subword segmentation (Sennrich et al., 2016c). We used
newstest2010-2013 and newstest2014-2016 as the validation and test sets, respectively.

Our experiments consist of the following three distinct dataset settings:
(i) Vanilla: Identical to previous studies (Ott et al., 2018; Vaswani et al., 2017).
(ii) Extrapolate: Shift-invariant models are typically evaluated in terms of extrapolation
ability (Newman et al., 2020; Wang et al., 2021). We replicated the settings of Neishi and
Yoshinaga (2019); the training set excludes pairs whose source or target sequence exceeds
50 subwords, while the validation and test sets are identical to VANILLA.
(iii) Interpolate: We also evaluate the models from the viewpoint of interpolation, which
we define as the ability to generate tokens whose lengths are seen during training. Specif-
ically, we evaluate interpolation using long sequences since, first, the generation of long
sequences is an important research topic in NLP (Maruf et al., 2021; Zaheer et al., 2020)
and second, in datasets with long sequences, the position distribution of each token becomes
increasingly sparse. In other words, tokens in the validation and test sets become unlikely to
be observed in the training set at corresponding positions; we expect that shift invariance is
crucial for addressing such position sparsity.

In this study, we artificially generate a long sequence by simply concatenating indepen-
dent sentences in parallel corpus. Specifically, given ten neighboring sentences of VANILLA,
i.e., X1, … , X10 and Y1, … , Y10, we concatenate each sentence with a unique token ⟨sep⟩.
We also apply the same operation to the validation and test sets.
Evaluation We evaluate the performance with sacreBLEU (Post, 2018). Throughout the
experiment, we apply the moses detokenizer to the system output and then compute the
detokenized BLEU. We summarized the statistics, preprocessing, and evaluation metrics of
datasets used in our experiment in Table 6.1. The length statistics are in Figure 6.2.

79

6.3 Experiments

Ta
bl
e6

.1
Su

m
m
ar
y
of

sta
tis

tic
s,

pr
ep

ro
ce

ss
in
g,

an
d
ev

alu
ati

on
m
etr

ic
of

da
tas

ets
us

ed
in

ou
re

xp
er
im

en
t.

Da
ta
se
tN

am
e

Tr
ai
ni
ng

Da
ta

#
of

Se
nt
.

Pa
irs

in
Tr

ai
ni
ng

Da
ta

Va
lid

at
io
n

Te
st

Ev
al
ua

tio
n

M
et
-

ric

VA
NI

LL
A

W
M

T
20

16
En

gl
ish

-
Ge

rm
an

4.
5M

ne
ws

tes
t2
01

0-
20

13
ne

ws
ets

t2
01

4-
20

16
de

to
ke

ni
ze

d
BL

EU
vi
a

sa
cr
e-

BL
EU

EX
TR

AP
OL

AT
E

W
M

T
20

16
En

gl
ish

-
Ge

rm
an

.
W
e
re
m
ov

ed
se
qu

en
ce

pa
irs

if
th
e

len
gt
h
of

th
e
so

ur
ce

or
tar

ge
ts

en
ten

ce
ex

ce
ed

s
50

su
bw

or
ds

.

3.
9M

ne
ws

tes
t2
01

0-
20

13
ne

ws
ets

t2
01

4-
20

16
de

to
ke

ni
ze

d
BL

EU
vi
a

sa
cr
e-

BL
EU

IN
TE

RP
OL

AT
E

W
M

T
20

16
En

gl
ish

-
Ge

rm
an

.
Gi

ve
n

ne
ig
hb

or
in
g

ten
se
n-

ten
ce

of
VA

NI
LL

A,
i.e

.,
X

1,
…

,X
10

an
d

Y
1,

…
,Y

10
,

we
co

n-
ca

ten
ate

ea
ch

se
nt
en

ce
wi

th
a

sp
ec

ial
to
ke

n
⟨s
ep

⟩.

45
0K

ne
ws

tes
t2
01

0-
20

13
.

W
e

co
nc

ate
na

ted
se
nt
en

ce
s

as
in

tra
in
in
g

da
ta.

ne
ws

tes
t2
01

4-
20

16
.

W
e

co
nc

ate
na

ted
se
nt
en

ce
s

as
in

tra
in
in
g

da
ta.

de
to
ke

ni
ze

d
BL

EU
vi
a

sa
cr
e-

BL
EU

80

6.3 Experiments

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-
Source Sequence Length (tokens)

0

5

10

15

20

25

30

Pe
rc

en
t

Train
Valid
Test

(a) VANILLA dataset

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-
Source Sequence Length (tokens)

0

5

10

15

20

25

30

Pe
rc

en
t

Train
Valid
Test

(b) EXTRAPOLATE dataset

0-99 100-199 200-299 300-399 400-499 500-599 600-
Source Sequence Length (tokens)

0

10

20

30

40

50

60

Pe
rc

en
t

Train
Valid
Test

(c) INTERPOLATE dataset

Figure 6.2 Distribution of source sequence length of each dataset.

Models We adopt transformer-base (Vaswani et al., 2017) with APE, SHAPE, or RPE,
respectively. Our implementations are based on OpenNMT-py (Klein et al., 2017). Unless
otherwise stated, we use a fixed value (K = 500) for the maximum shift of SHAPE to
demonstrate that SHAPE is robust against the choice of K. We set the relative distance limit
in RPE to 16 following Shaw et al. (2018) and Neishi and Yoshinaga (2019).

We present the list of hyperparameters used in our experiments in Table 6.2. Hyperpa-
rameters for training Transformer follow the recipe available in the official documentation
page of OpenNMT-py4.

4https://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model

81

https://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model

6.3 Experiments

Ta
bl
e6

.2
Li

st
of

hy
pe

rp
ar
am

ete
rs.

†:
th
is

co
rre

sp
on

ds
to

“le
ar
ni
ng

ra
te”

va
ria

bl
ed

efi
ne

d
in

Op
en

NM
T-

py
fra

m
ew

or
k.

Co
nfi

gu
ra
tio

ns
Se

lec
te
d
Va

lu
e

En
co

de
r-D

ec
od

er
Ar

ch
ite

ctu
re

tra
ns
fo
rm

er
-b
as
e
(V

as
wa

ni
et

al.
,2

01
7)

Op
tim

ize
r

Ad
am

(𝛽
1

=
0.

9,
𝛽 2

=
0.

98
,𝜖

=
1×

10
–8
)

Le
ar
ni
ng

Ra
te

Sc
he

du
le

“N
oa

m
”s

ch
ed

ul
er

de
sc
rib

ed
in

(V
as
wa

ni
et

al.
,2

01
7)

W
ar
m
up

St
ep

s
8,
00

0
Le

ar
ni
ng

Ra
te

Sc
ali

ng
Fa

cto
r†

2
Dr

op
ou

t
0.
1

Gr
ad

ien
tC

lip
pi
ng

No
ne

Be
am

Se
ar
ch

W
id
th

4
La

be
lS

m
oo

th
in
g

𝜖 ls
=

0.
1(

Sz
eg

ed
y
et

al.
,2

01
6)

M
in
i-b

atc
h
Si
ze

11
2k

to
ke

ns
Nu

m
be

ro
fG

ra
di
en

tS
tep

s
20

0,
00

0
Av

er
ag

in
g

Sa
ve

ch
ec
kp

oi
nt

fo
re

ve
ry

5,
00

0
ste

ps
an

d
tak

ea
n
av

er
ag

eo
fl
as
t

10
ch

ec
kp

oi
nt
s

M
ax

im
um

Off
se
tK

(fo
rS

HA
PE

)
W
e
se
tK

=
50

0
fo
rt

he
m
os
to

ft
he

ex
pe

rim
en

ts.
W
e
m
an

ua
lly

tu
ne

d
K

on
va

lid
ati

on
BL

EU
fo
rE

XT
RA

PO
LA

TE
fro

m
fo
llo

wi
ng

ra
ng

e:
{1

0,
20

,3
0,

40
,1

00
,5

00
},

an
d
re
po

rt
th
es

co
re

of
K

=
40

in
ad

di
tio

n
to

K
=

50
0.

W
e
us

ed
a
sin

gl
e
ra
nd

om
se
ed

fo
rt

he
tu
ni
ng

.
Re

lat
iv
eD

ist
an

ce
Li

m
it
(fo

rR
PE

)
16

fo
llo

wi
ng

(N
eis

hi
an

d
Yo

sh
in
ag

a,
20

19
)

GP
U

Ha
rd
wa

re
Us

ed
DG

X-
1
an

d
DG

X-
2

82

6.3 Experiments

Table 6.3 BLEU score on the sub-sampled training data of INTERPOLATE (10,000 pairs).
In Original and Swapped, the order of input sequence is X1, … , X10 and X2, … , X10, X1,
respectively.

Original Swapped Performance Drop
APE 28.81 20.74 8.07
SHAPE 28.51 27.06 1.45

6.3.2 Experiment 1: Shift Invariance
We confirmed that SHAPE learns shift invariance by comparing APE and SHAPE trained
on INTERPOLATE.
Quantitative Evaluation: BLEU on Training Data We first evaluated if the model is ro-
bust to the order of sentences in each sequence. We used the sub-sampled training data (10k
pairs) of INTERPOLATE to eliminate the effect of unseen sentences; in this way, we can isolate
the effect of sentence order. Given a sequence in the original order (Original), X1, … , X10,
we generated a swapped sequence (Swapped) by moving the first sentence to the end, i.e.,
X2, … , X10, X1. The model then generates two sequences Y′

1, … , Y′
10 and Y′

2, … , Y′
10, Y′

1.
Finally, we evaluated the BLEU score of Y′

1. The result is shown in Table 6.3. Here, SHAPE
has a much smaller performance drop than APE when evaluated on different sentence order-
ing. This result indicates the shift invariance property of SHAPE.
Qualitative Evaluation: Similarities of Representations We also qualitatively con-
firmed the shift invariance as shown in Figure 6.3. The figure illustrates how the offset
k changes the encoder representations of trained models APE and SHAPE. Given the two
models and an input sequence X, we computed the encoder hidden states of the given in-
put sequence for each k ∈ {0, 100, 250, 500}. For each position i, we computed the cosine
similarity (sim) of the hidden states from two offsets, i.e., hk1

i , hk2
i ∈ ℝD, and computed its

average across the positions as

1
I

I

∑
i=1

sim(hk1
i , hk2

i). (6.3)

As shown in Figure 6.3, SHAPE builds a shift-invariant representation; regardless of the
offset k, the cosine similarity is almost always 1.0. Such invariance is nontrivial because the
similarity of APE does not show similar characteristics.

83

6.3 Experiments

0
100
250
500

A
PE

EmbeddingLayer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
0

10
0

25
0

50
0

0
100
250
500SH

A
PE

k 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0.8

0.9

1.0

(a) Sequence ID: #1

0
100
250
500

A
PE

EmbeddingLayer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

0
10

0
25

0
50

0

0
100
250
500SH

A
PE

k 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0.8

0.9

1.0

(b) Sequence ID: #2
0

100
250
500

A
PE

EmbeddingLayer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

0
10

0
25

0
50

0

0
100
250
500SH

A
PE

k 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0.8

0.9

1.0

(c) Sequence ID: #3

0
100
250
500

A
PE

EmbeddingLayer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

0
10

0
25

0
50

0

0
100
250
500SH

A
PE

k 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0.8

0.9

1.0

(d) Sequence ID: #4
0

100
250
500

A
PE

EmbeddingLayer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

0
10

0
25

0
50

0

0
100
250
500SH

A
PE

k 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0.8

0.9

1.0

(e) Sequence ID: #5

0
100
250
500

A
PE

EmbeddingLayer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

0
10

0
25

0
50

0

0
100
250
500SH

A
PE

k 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0.8

0.9

1.0

(f) Sequence ID: #6
0

100
250
500

A
PE

EmbeddingLayer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

0
10

0
25

0
50

0

0
100
250
500SH

A
PE

k 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0.8

0.9

1.0

(g) Sequence ID: #7

0
100
250
500

A
PE

EmbeddingLayer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

0
10

0
25

0
50

0

0
100
250
500SH

A
PE

k 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0.8

0.9

1.0

(h) Sequence ID: #8
0

100
250
500

A
PE

EmbeddingLayer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

0
10

0
25

0
50

0

0
100
250
500SH

A
PE

k 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0.8

0.9

1.0

(i) Sequence ID: #9

0
100
250
500

A
PE

EmbeddingLayer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

0
10

0
25

0
50

0

0
100
250
500SH

A
PE

k 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0
10

0
25

0
50

0 0.8

0.9

1.0

(j) Sequence ID: #10

Figure 6.3 Cosine similarities of encoder hidden states with different offsets k ∈
{0, 100, 250, 500}. Only the representation of SHAPE is invariant with k.

6.3.3 Experiment 2: Performance Comparison
We compared the overall performance of position representations on the validation and test
sets as shown in Table 6.4. Figure 6.4 shows the BLEU improvement of RPE and SHAPE
from APE with respect to the source sequence length.

On Vanilla, the three models show comparable results. APE being comparable to RPE
is inconsistent with the result reported by Shaw et al. (2018); we assume that this is due
to a difference in implementation. In fact, Narang et al. (2021) have recently reported that
improvements in Transformer often do not transfer across implementations.

84

6.3 Experiments

Table 6.4 BLEU scores on newstest2010-2016. Valid is the average of newstest2010-2013.
Test is the average of newstest2014-2016. †: the values are averages of five distinct trials
with five different random seeds. ∗: not available as the implementation was very slow.
Speed is the relative speed to APE (larger is faster).

Dataset Model Valid Test Speed
VANILLA APE† 23.61 30.46 x1.00

RPE† 23.67 30.54 x0.91
SHAPE† 23.63 30.49 x1.01

EXTRAPOLATE APE 22.18 29.22 x1.00
RPE 22.97 29.86 x0.91
SHAPE 22.96 29.80 x0.99

INTERPOLATE APE 31.40 38.23 x1.00
RPE∗ - - -
SHAPE 32.50 39.09 x0.99

On Extrapolate, RPE (29.86) outperforms APE (29.22) by approximately 0.6 BLEU
points on the test set; this is consistent with the result reported by Neishi and Yoshinaga
(2019). Moreover, SHAPE achieves comparable test performance to RPE (29.80). Accord-
ing to Figure 6.4a, both RPE and SHAPE have improved extrapolation ability, i.e., better
BLEU scores on sequences longer than those observed during training. In addition, Fig-
ure 6.4a shows the performance of SHAPE with the maximum shift K = 40 that was chosen
on the basis of the BLEU score for the validation set. This model outperforms RPE, achiev-
ing BLEU scores of 23.12 and 29.86 on the validation and test sets, respectively. These
results indicate that SHAPE can be a better alternative to RPE.

On Interpolate, we were unable to train RPE because its training was prohibitively
slow5. Similarly to EXTRAPOLATE, SHAPE (39.09) outperforms APE (38.23) on the test set.
Figure 6.4b shows that SHAPE consistently outperformed APE for every sequence length.
From this result, we find that the shift invariance also improves the interpolation ability of
Transformer.

5A single gradient step of RPE took about 5 seconds, which was 20 times longer than that of APE and
SHAPE. We assume that the RPE implementation available in OpenNMT-py has difficulty in dealing with
long sequences.

85

6.4 Analysis

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-
Source Sequence Length (tokens)

0

5

B
L

E
U

im
pr

ov
em

en
t (a) EXTRAPOLATE dataset

APE
RPE
SHAPE (K = 40)
SHAPE (K = 500)

0-99 100-199 200-299 300-399 400-499 500-599 600-
Source Sequence Length (tokens)

0

1

2

B
L

E
U

im
pr

ov
em

en
t (b) INTERPOLATE dataset

APE
SHAPE (K = 500)

Figure 6.4 BLEU score improvement from APE on validation and test sets with respect to
the source sequence length. The gray color means no training data.

6.4 Analysis
This section provides a deeper analysis of how the model with translation invariance im-
proves the performance. We hereinafter exclusively focus on APE and SHAPE because
SHAPE achieves comparable performance to RPE, and we were unable to train RPE on the
INTERPOLATE dataset as explained in footnote 5.

As discussed in Section 6.3.3, Figure 6.4 demonstrated that SHAPE outperformed APE
in terms of BLEU score. However, BLEU evaluates two concepts simultaneously, that is,
the token precision via n-gram matching and the output length via the brevity penalty (Pa-
pineni et al., 2002). Thus, the actual source of improvement remains unclear. We hereby
exclusively analyzed the precision of token prediction. Specifically, we computed tokenwise
scores assigned for gold references, and we then compared them across the models; given a
sequence pair (X, Y) and a trained model, we computed a score (i.e., log probability) sj for

86

6.4 Analysis

1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-
Decoding Position

1-5000

5001-15000

15001-25000

25001-

Vo
ca

b.
 F

re
qu

en
cy

 R
an

k:

 1
 is

 th
e

m
os

t f
re

qu
en

t

0.52 0.53 0.53 0.53 0.58 0.76 0.84 0.79

0.51 0.51 0.51 0.52 0.53 0.73 0.85 0.85

0.50 0.50 0.52 0.51 0.57 0.75 0.84 0.81

0.49 0.46 0.44 0.51 0.59 0.70 1.00 0.86
0.0
0.2
0.4
0.6
0.8
1.0

(a) EXTRAPOLATE dataset

1-100 101-200 201-300 301-400 401-500 501-
Decoding Position

1-5000

5001-15000

15001-25000

25001-

Vo
ca

b.
 F

re
qu

en
cy

 R
an

k:

 1
 is

 th
e

m
os

t f
re

qu
en

t

0.52 0.53 0.53 0.53 0.52 0.52

0.51 0.51 0.51 0.51 0.53 0.50

0.51 0.53 0.52 0.51 0.50 0.51

0.53 0.53 0.63 0.69 0.73 n/a
0.0
0.2
0.4
0.6
0.8
1.0

(b) INTERPOLATE dataset

Figure 6.5 Tokenwise analysis on gold references: the value in each cell represents the ratio
that SHAPE assigns a higher score to a gold token than APE.

each token yj in a teacher-forcing manner. Here, a higher score to gold token means better
model performance. We used the validation set for comparison.

Figure 6.5 shows the ratio that SHAPE assigns a higher score to a gold token than APE,
compared across for each position of the decoder.
Better extrapolation means better token precision Figure 6.5a shows that SHAPE out-
performs APE, especially in the right part of the heat map. This area corresponds to se-
quences longer than those observed during training. This result indicates that better extrap-
olation in terms of BLEU score means better token precision.
Interpolation is particularly effective for rare tokens As shown in Figure 6.5b, SHAPE
consistently outperforms APE and the performance gap is especially significant in the low-
frequency region (bottom part). This indicates that SHAPE predicts rare words better than
APE. One plausible explanation for this observation is that SHAPE carries out data augmen-
tation in the sense that in each epoch, the same sequence pair is assigned a different position

87

6.5 Conclusion

depending on the offset k. Rare words typically have sparse position distributions in training
data and thus benefit from the extra position assignment during training.

6.5 Conclusion
We investigated SHAPE, a simple variant of APE with shift invariance. We demonstrated
that SHAPE is empirically comparable to RPE yet imposes almost no computational over-
head on APE. Our analysis revealed that SHAPE is effective at extrapolation to unseen
lengths and interpolating rare words. SHAPE can be incorporated into the existing code-
base with a few lines of code and no risk of a performance drop from APE; thus, we expect
SHAPE to be used as a drop-in replacement for APE and RPE.

88

Chapter 7

Conclusion

In this thesis, we investigated the scalable task-oriented semi-supervised learning method
for deep neural networks. Specifically, we have addressed the following research issues:

What makes task-oriented SSL scalable?: Findings on the performance scalability of
task-oriented SSL are mixed in the research field. Thus, the properties that make the under-
lying method scalable (or unscalable) are unclear.

Scalable task-oriented SSL method applicable for arbitrary tasks: The task-oriented
SSL method often makes the assumption on the target task. Thus, it is unclear if a finding
on certain task can transfer to other tasks. In other words, the task-oriented SSL method
applicable for arbitrary tasks is demanded.

What are the limits of task-oriented SSL methods?: Suppose that we have a scalable
SSLmethod at hand; is incorporating more unlabeled data all we need for improving model
performance? What are limitations or remaining challenges of scalable task-oriented SSL?

The key contributions of this thesis are summarized as follows:

Building a scalable task-oriented SSL method: We proposed a novel task-oriented SSL
method. We demonstrated that our method scales to the amount of unlabeled data using the
text classification benchmark data. Through the analysis, we investigated the requirements
for a scalable task-oriented SSL method. Finally, we demonstrated that our method can be
combined with the state-of-the-art generic SSL method to improve the performance.

Expanding the applicability of scalable task-oriented SSL method: We expanded the
applicability of scalable task-oriented SSL by tackling one of sequence-to-sequence prob-
lems, namely, grammatical error correction (GEC). We conducted a controlled empirical

89

comparison of existing task-oriented SSL methods on GEC. We identified the best scalable
method through the experiment and achieved the state-of-the-art performance on multiple
GEC benchmark datasets.

Exploring the limits of task-oriented SSL methods: For MT and GEC, we analyzed the
models trained on a massive amount of unlabeled data. We revealed the limitations of the
current best SSL methods for each task through the analysis.

Minimal architecture modification as a means of compensating the lack of data with
desired property: We enhanced the state-of-the-art Transformer model to address the lim-
itations of current SSL methods. Using the issue of length extrapolation, we demonstrated
that an enhancement in Transformers’ position representation can improve the model’s gen-
eralization to the sequences that are longer than those observed during the training.

90

References
Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., Casper,

J., Catanzaro, B., Cheng, Q., Chen, G., et al. (2016). Deep Speech 2: End-to-End Speech
Recognition in English and Mandarin. In Proceedings of the 33th International Confer-
ence on Machine Learning (ICML 2016), pages 173–182.

Arora, S., Liang, Y., and Ma, T. (2017). A Simple but Tough-to-Beat Baseline for Sentence
Embeddings. In Proceedings of the 5th International Conference on Learning Represen-
tations (ICLR 2017).

Ba, J. and Caruana, R. (2014). Do Deep Nets Really Need to be Deep? In Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K. Q., editors, Advances in
Neural Information Processing Systems (NIPS 2014), volume 27. Curran Associates, Inc.

Baevski, A. and Auli, M. (2019). Adaptive Input Representations for Neural Language Mod-
eling. In Proceedings of the 7th International Conference on Learning Representations
(ICLR 2019).

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural Machine Translation by Jointly
Learning to Align and Translate. In Proceedings of the 3rd International Conference on
Learning Representations (ICLR 2015).

Barrault, L., Biesialska, M., Bojar, O., Costa-jussà, M. R., Federmann, C., Graham, Y.,
Grundkiewicz, R., Haddow, B., Huck, M., Joanis, E., Kocmi, T., Koehn, P., Lo, C.-k.,
Ljubešić, N., Monz, C., Morishita, M., Nagata, M., Nakazawa, T., Pal, S., Post, M., and
Zampieri, M. (2020). Findings of the 2020Conference onMachine Translation (WMT20).
In Proceedings of the Fifth Conference on Machine Translation (WMT 2020), pages 1–55.

Barrault, L., Bojar, O., Costa-jussà, M. R., Federmann, C., Fishel, M., Graham, Y., Had-
dow, B., Huck, M., Koehn, P., Malmasi, S., Monz, C., Müller, M., Pal, S., Post, M., and
Zampieri, M. (2019). Findings of the 2019Conference onMachine Translation (WMT19).
In Proceedings of the Fourth Conference on Machine Translation (WMT 2019), pages 1–
61.

Bawden, R., Bogoychev, N., Germann, U., Grundkiewicz, R., Kirefu, F., Miceli Barone,
A. V., and Birch, A. (2019). The University of Edinburgh’s Submissions to the WMT19
News Translation Task. In Proceedings of the Fourth Conference on Machine Translation
(WMT 2019), pages 103–115.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A Neural Probabilistic Lan-
guage Model. Journal of Machine Learning Research (JMLR), 3(Feb):1137–1155.

91

References

Bennett, K. and Demiriz, A. (1999). Semi-Supervised Support Vector Machines. In Kearns,
M., Solla, S., and Cohn, D., editors, Advances in Neural Information Processing Systems
(NIPS 1999), volume 11, pages 368–374. MIT Press.

Bogoychev, N., Heafield, K., Aji, A. F., and Junczys-Dowmunt, M. (2018). Accelerat-
ing Asynchronous Stochastic Gradient Descent for Neural Machine Translation. In Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2018), pages 2991–2996.

Bogoychev, N. and Sennrich, R. (2019). Domain, Translationese and Noise in Synthetic
Data for Neural Machine Translation. arXiv preprint arXiv:1911.03362.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching Word Vectors
with Subword Information. Transactions of the Association for Computational Linguistics
(TACL 2017), 5:135–146.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein,
M. S., Bohg, J., Bosselut, A., Brunskill, E., et al. (2021). On the Opportunities and Risks
of Foundation Models. arXiv preprint arXiv:2108.07258.

Bonial, C., Babko-Malaya, O., Choi, J. D., and Hwang, J. D. (2010). PropBank Annotation
Guidelines.

Bouthillier, X., Laurent, C., and Vincent, P. (2019). Unreproducible Research is Repro-
ducible. InProceedings of the 36th International Conference onMachine Learning (ICML
2019), pages 725–734.

Bradbury, J., Merity, S., Xiong, C., and Socher, R. (2017). Quasi-Recurrent Neural Net-
works. In Proceedings of the 5th International Conference on Learning Representations
(ICLR 2017).

Brockett, C., Dolan, W. B., and Gamon, M. (2006). Correcting ESL Errors Using Phrasal
SMT Techniques. In Proceedings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Computational Linguistics
(ACL 2006), pages 249–256.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, I., and Amodei, D. (2020). Language Models are Few-Shot Learners. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., editors, Advances in
Neural Information Processing Systems (NeurIPS 2020), volume 33, pages 1877–1901.
Curran Associates, Inc.

Bryant, C., Felice, M., Andersen, Ø. E., and Briscoe, T. (2019). The BEA-2019 Shared
Task on Grammatical Error Correction. In Proceedings of the Fourteenth Workshop on
Innovative Use of NLP for Building Educational Applications (BEA 2019), pages 52–75.

Bryant, C., Felice,M., andBriscoe, T. (2017). AutomaticAnnotation and Evaluation of Error
Types for Grammatical Error Correction. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (ACL 2017), pages 793–805.

92

References

Burlot, F. and Yvon, F. (2018). Using Monolingual Data in Neural Machine Translation: a
Systematic Study. In Proceedings of the Third Conference on Machine Translation (WMT
2018), pages 144–155.

Cahill, A., Madnani, N., Tetreault, J., andNapolitano, D. (2013). Robust Systems for Preposi-
tion Error Correction UsingWikipedia Revisions. In Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL 2013), pages 507–517.

Caswell, I., Chelba, C., and Grangier, D. (2019). Tagged Back-Translation. In Proceedings
of the Fourth Conference on Machine Translation (WMT 2019), pages 53–63.

Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., St. John, R., Constant, N., Guajardo-
Cespedes, M., Yuan, S., Tar, C., Strope, B., and Kurzweil, R. (2018). Universal Sentence
Encoder for English. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pages 169–174.

Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., and Robinson, T.
(2014). One Billion Word Benchmark for Measuring Progress in Statistical Language
Modeling. In INTERSPEECH 2014, 15th Annual Conference of the International Speech
Communication Association, pages 2635–2639.

Chen, J., Yang, Z., and Yang, D. (2020a). MixText: Linguistically-Informed Interpolation of
Hidden Space for Semi-Supervised Text Classification. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics (ACL 2020), pages 2147–2157.

Chen, L., Garcia, F., Kumar, V., Xie, H., and Lu, J. (2021). Industry Scale Semi-Supervised
Learning for Natural Language Understanding. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies: Industry Papers, pages 311–318.

Chen, L., Ruan, W., Liu, X., and Lu, J. (2020b). SeqVAT: Virtual Adversarial Training for
Semi-Supervised Sequence Labeling. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 8801–8811.

Chen, T. and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD’16, pages 785–794. ACM.

Choe, Y. J., Ham, J., Park, K., and Yoon, Y. (2019). A Neural Grammatical Error Correction
System Built On Better Pre-training and Sequential Transfer Learning. In Proceedings of
the FourteenthWorkshop on Innovative Use of NLP for Building Educational Applications
(BEA 2019), pages 213–227.

Chollampatt, S. and Ng, H. T. (2018). A Multilayer Convolutional Encoder-Decoder Neural
Network for Grammatical Error Correction. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI 2018), pages 5755–5762.

Chollampatt, S., Wang, W., and Ng, H. T. (2019). Cross-Sentence Grammatical Error Cor-
rection. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics (ACL 2019), pages 435–445.

93

References

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P.,
Davis, J., Mohiuddin, A., Kaiser, Ł., et al. (2021). Rethinking Attention with Performers.
In Proceedings of the 9th International Conference on Learning Representations (ICLR
2021).

Clark, K., Luong, M.-T., Manning, C. D., and Le, Q. (2018). Semi-Supervised Sequence
Modeling with Cross-View Training. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP 2018), pages 1914–1925.

Dahlmeier, D. and Ng, H. T. (2012). Better Evaluation for Grammatical Error Correction.
In Proceedings of the 2012 Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL 2012), pages 568–572.

Dahlmeier, D., Ng, H. T., and Wu, S. M. (2013). Building a Large Annotated Corpus of
Learner English: The NUS Corpus of Learner English. In Proceedings of the 8th Work-
shop on Building Educational Applications Using NLP (BEA 2013), pages 22–31.

Dai, A. M. and Le, Q. V. (2015). Semi-supervised Sequence Learning. In Cortes, C.,
Lawrence, N., Lee, D., Sugiyama, M., and Garnett, R., editors, Advances in Neural In-
formation Processing Systems (NIPS 2015), volume 28, pages 3079–3087. Curran Asso-
ciates, Inc.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., and Salakhutdinov, R. (2019). Transformer-
XL: Attentive Language Models beyond a Fixed-Length Context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics (ACL 2019), pages
2978–2988.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A Large-
Scale Hierarchical Image Database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2009), pages 248–255.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL 2019), pages 4171–4186.

Dua, D., Wang, Y., Dasigi, P., Stanovsky, G., Singh, S., and Gardner, M. (2019). DROP: A
Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 2368–2378, Minneapolis, Minnesota. Association for Computational Lin-
guistics.

Dufter, P., Schmitt, M., and Schütze, H. (2021). Position Information in Transformers: An
Overview. arXiv preprint arXiv:2102.11090.

Edunov, S., Ott, M., Auli, M., and Grangier, D. (2018). Understanding Back-Translation at
Scale. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2018), pages 489–500.

94

References

Felice, M., Bryant, C., and Briscoe, T. (2016). Automatic Extraction of Learner Errors in
ESL Sentences Using Linguistically Enhanced Alignments. In Proceedings of COLING
2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 825–835.

Felice, M. and Yuan, Z. (2014). Generating artificial errors for grammatical error correction.
In Proceedings of the Student Research Workshop at the 14th Conference of the European
Chapter of the Association for Computational Linguistics (EACL-SRW 2014), pages 116–
126.

Foster, J. and Andersen, O. (2009). GenERRate: Generating Errors for Use in Grammatical
Error Detection. In Proceedings of the Fourth Workshop on Innovative Use of NLP for
Building Educational Applications (BEA 2009), pages 82–90.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H.,
Thite, A., Nabeshima, N., et al. (2021). The Pile: An 800GB Dataset of Diverse Text for
Language Modeling. arXiv preprint arXiv:2101.00027.

Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, N. F., Peters, M., Schmitz,
M., and Zettlemoyer, L. (2018). AllenNLP: A Deep Semantic Natural Language Process-
ing Platform. In Proceedings of Workshop for NLP Open Source Software (NLP-OSS),
pages 1–6.

Ge, T., Wei, F., and Zhou, M. (2018). Fluency Boost Learning and Inference for Neural
Grammatical Error Correction. In Proceedings of the 56th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL 2018), pages 1055–1065.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Convolutional
Sequence to Sequence Learning. In Proceedings of the 34th International Conference on
Machine Learning (ICML 2017), pages 1243–1252.

Geva, M., Gupta, A., and Berant, J. (2020). Injecting Numerical Reasoning Skills into Lan-
guage Models. In Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2020), pages 946–958.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks. In
Gordon, G., Dunson, D., and DudÃk, M., editors, Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of
Machine Learning Research, pages 315–323, Fort Lauderdale, FL, USA. PMLR.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning, chapter 7.4, pages
233–234. MIT Press. http://www.deeplearningbook.org.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and Harnessing Adversarial
Examples. In Proceedings of the 3rd International Conference on Learning Representa-
tions (ICLR 2015).

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A.,
Jia, Y., and He, K. (2017). Accurate, LargeMinibatch SGD: Training ImageNet in 1 Hour.
arXiv preprint arXiv:1706.02677.

95

http://www.deeplearningbook.org

References

Granger, S. (1998). The computer learner corpus: A versatile new source of data for SLA
research. In Granger, S., editor, Learner English on Computer, pages 3–18. Addison
Wesley Longman, London and New York.

Grundkiewicz, R. and Junczys-Dowmunt, M. (2018). Near Human-Level Performance in
Grammatical Error Correction with Hybrid Machine Translation. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL 2018), pages 284–290.

Grundkiewicz, R., Junczys-Dowmunt, M., and Heafield, K. (2019). Neural Grammatical Er-
ror Correction Systems with Unsupervised Pre-training on Synthetic Data. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applica-
tions (BEA 2019), pages 252–263.

Haddow, B., Bogoychev, N., Emelin, D., Germann, U., Grundkiewicz, R., Heafield, K.,
Miceli Barone, A. V., and Sennrich, R. (2018). The University of Edinburgh’s Submis-
sions to the WMT18 News Translation Task. In Proceedings of the Third Conference on
Machine Translation (WMT 2018), pages 399–409.

Hassan, H., Aue, A., Chen, C., Chowdhary, V., Clark, J., Federmann, C., Huang, X., Junczys-
Dowmunt, M., Lewis, W., Li, M., et al. (2018). Achieving Human Parity on Automatic
Chinese to English News Translation. arXiv preprint arXiv:1803.05567.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2016), pages 770–778.

He, P., Liu, X., Gao, J., and Chen, W. (2020). DeBERTa: Decoding-enhanced BERT with
Disentangled Attention. arXiv preprint arXiv:2006.03654.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the Knowledge in a Neural Network.
In NIPS Deep Learning and Representation Learning Workshop.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-TermMemory. Neural Computation,
9(8):1735–1780.

Huang, Z., Liang, D., Xu, P., and Xiang, B. (2020). Improve Transformer Models with
Better Relative Position Embeddings. In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 3327–3335.

Izumi, E., Uchimoto, K., Saiga, T., Supnithi, T., and Isahara, H. (2003). Automatic Error
Detection in the Japanese Learners’ English Spoken Data. In The Companion Volume to
the Proceedings of 41st Annual Meeting of the Association for Computational Linguistics
(ACL 2003), pages 145–148.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive Mixtures of
Local Experts. Neural Computation, 3(1):79–87.

Ji, J., Wang, Q., Toutanova, K., Gong, Y., Truong, S., and Gao, J. (2017). A Nested At-
tention Neural Hybrid Model for Grammatical Error Correction. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (ACL 2017), pages
753–762.

96

References

Johnson, R. and Zhang, T. (2015). Semi-supervised Convolutional Neural Networks for Text
Categorization via Region Embedding. In Cortes, C., Lawrence, N., Lee, D., Sugiyama,
M., and Garnett, R., editors, Advances in Neural Information Processing Systems (NIPS
2015), volume 28. Curran Associates, Inc.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bha-
tia, S., Boden, N., Borchers, A., Boyle, R., Cantin, P.-l., Chao, C., Clark, C., Coriell, J.,
Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami, T. V., Gottipati, R., Gulland,
W., Hagmann, R., Ho, C. R., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey,
A., Jaworski, A., Kaplan, A., Khaitan, H., Killebrew, D., Koch, A., Kumar, N., Lacy, S.,
Laudon, J., Law, J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Mag-
giore, A., Mahony, M., Miller, K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K.,
Norrie, T., Omernick, M., Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek, A., Sama-
diani, E., Severn, C., Sizikov, G., Snelham, M., Souter, J., Steinberg, D., Swing, A., Tan,
M., Thorson, G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter, R., Wang, W.,
Wilcox, E., and Yoon, D. H. (2017). In-Datacenter Performance Analysis of a Tensor Pro-
cessing Unit. In Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, pages 1–12, New York, NY, USA. Association for Computing
Machinery.

Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu, Y. (2016). Exploring the
Limits of Language Modeling. arXiv preprint arXiv:1602.02410.

Junczys-Dowmunt, M. (2019). Microsoft Translator at WMT 2019: Towards Large-Scale
Document-Level Neural Machine Translation. In Proceedings of the Fourth Conference
on Machine Translation (WMT 2019), pages 225–233.

Junczys-Dowmunt, M. and Grundkiewicz, R. (2016). Phrase-based Machine Translation
is State-of-the-Art for Automatic Grammatical Error Correction. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing (EMNLP 2016),
pages 1546–1556.

Junczys-Dowmunt, M., Grundkiewicz, R., Guha, S., and Heafield, K. (2018). Approaching
Neural Grammatical Error Correction as a Low-Resource Machine Translation Task. In
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL 2018), pages 595–606.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A Convolutional Neural Net-
work for Modelling Sentences. In Proceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pages 655–665.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S.,
Radford, A., Wu, J., and Amodei, D. (2020). Scaling Laws for Neural Language Models.
arXiv preprint arXiv:2001.08361.

Kasewa, S., Stenetorp, P., and Riedel, S. (2018). Wronging a Right: Generating Better Errors
to Improve Grammatical Error Detection. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing (EMNLP 2018), pages 4977–4983.

Kiela, D., Bartolo, M., Nie, Y., Kaushik, D., Geiger, A., Wu, Z., Vidgen, B., Prasad, G.,
Singh, A., Ringshia, P., Ma, Z., Thrush, T., Riedel, S., Waseem, Z., Stenetorp, P., Jia, R.,

97

References

Bansal, M., Potts, C., and Williams, A. (2021). Dynabench: Rethinking Benchmarking
in NLP. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 4110–
4124.

Kingma, D. and Ba, J. (2015). Adam: AMethod for Stochastic Optimization. InProceedings
of the 3rd International Conference on Learning Representations (ICLR 2015).

Kitaev, N., Kaiser, Ł., and Levskaya, A. (2020). Reformer: The Efficient Transformer.
In Proceedings of the 8th International Conference on Learning Representations (ICLR
2020).

Kiyono, S., Suzuki, J., and Inui, K. (2019). Mixture of Expert/Imitator Networks: Scalable
Semi-Supervised Learning Framework. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages
4073–4081. AAAI Press.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A. (2017). OpenNMT: Open-Source
Toolkit for Neural Machine Translation. In Proceedings of ACL 2017, System Demonstra-
tions, pages 67–72.

Kobayashi, H. (2018). Frustratingly Easy Model Ensemble for Abstractive Summarization.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP 2018), pages 4165–4176.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan,
B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E.
(2007). Moses: Open Source Toolkit for Statistical Machine Translation. In Proceedings
of the 45th Annual Meeting of the Association for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions, pages 177–180.

Koehn, P., Khayrallah, H., Heafield, K., and Forcada, M. L. (2018). Findings of the WMT
2018 Shared Task on Parallel Corpus Filtering. In Proceedings of the Third Conference
on Machine Translation (WMT 2018), pages 726–739.

Koehn, P. and Knowles, R. (2017). Six Challenges for Neural Machine Translation. In
Proceedings of the First Workshop on Neural Machine Translation, pages 28–39.

Kudo, T. and Richardson, J. (2018). SentencePiece: A simple and language independent sub-
word tokenizer and detokenizer for Neural Text Processing. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing: System Demonstra-
tions, pages 66–71.

Lau, J. H., Armendariz, C., Purver, M., Shu, C., and Lappin, S. (2020). How Furiously Can
Colourless Green Ideas Sleep? Sentence Acceptability in Context. Transactions of the
Association for Computational Linguistics, 8:296–310.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hellmann,
S., Morsey, M., Van Kleef, P., Auer, S., et al. (2015). DBpedia–A Large-scale, Multilin-
gual Knowledge Base Extracted from Wikipedia. Semantic Web, 6(2):167–195.

98

References

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004). RCV1: A New Benchmark Collection
for Text Categorization Research. Journal of Machine Learning Research (JMLR), 5:361–
397.

Lichtarge, J., Alberti, C., Kumar, S., Shazeer, N., Parmar, N., and Tong, S. (2019). Corpora
Generation for Grammatical Error Correction. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics (NAACL
2019).

Lin, Z., Feng, M., Santos, C. N. d., Yu, M., Xiang, B., Zhou, B., and Bengio, Y. (2017). A
Structured Self-attentive Sentence Embedding. In Proceedings of the 5th International
Conference on Learning Representations (ICLR 2017).

Little, D. (2006). The Common European Framework of Reference for Languages: Content,
purpose, origin, reception and impact. Language Teaching, 39(3):167–190.

Liu, L., Utiyama, M., Finch, A., and Sumita, E. (2016). Agreement on Target-bidirectional
Neural Machine Translation. In Proceedings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics (NAACL 2016), pages 411–
416.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,
and Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach.
arXiv preprint arXiv:1907.11692.

Luong, T., Pham, H., and Manning, C. D. (2015). Effective Approaches to Attention-based
Neural Machine Translation. In Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP 2015), pages 1412–1421.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C. (2011). Learning
Word Vectors for Sentiment Analysis. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, pages 142–
150.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier Nonlinearities Improve Neural
Network Acoustic Models. In ICML Workshop on Deep Learning for Audio, Speech, and
Language Processing.

Marie, B., Rubino, R., and Fujita, A. (2020). Tagged Back-translation Revisited: Why
Does It Really Work? In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics (ACL 2020), pages 5990–5997.

Maruf, S., Saleh, F., and Haffari, G. (2021). A Survey on Document-Level Neural Machine
Translation: Methods and Evaluation. ACM Computing Survey, 54(2).

McAuley, J. and Leskovec, J. (2013). Hidden Factors and Hidden Topics: Understanding
Rating Dimensions with Review Text. In Proceedings of the 7th ACM Conference on
Recommender Systems, pages 165–172, New York, NY, USA. Association for Computing
Machinery.

99

References

McCann, B., Bradbury, J., Xiong, C., and Socher, R. (2017). Learned in Translation: Contex-
tualized Word Vectors. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing
Systems (NIPS 2017), volume 30, pages 6294–6305. Curran Associates, Inc.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed Repre-
sentations of Words and Phrases and their Compositionality. In Burges, C. J. C., Bottou,
L., Welling, M., Ghahramani, Z., and Weinberger, K. Q., editors, Advances in Neural
Information Processing Systems (NIPS 2013), volume 26. Curran Associates, Inc.

Miyato, T., Dai, A. M., and Goodfellow, I. (2017). Adversarial Training Methods For Semi-
Supervised Text Classification. In Proceedings of the 5th International Conference on
Learning Representations (ICLR 2017).

Mizumoto, T., Komachi, M., Nagata, M., and Matsumoto, Y. (2011). Mining Revision Log
of Language Learning SNS for Automated Japanese Error Correction of Second Language
Learners. In Proceedings of the 5th International Joint Conference on Natural Language
Processing (IJCNLP 2011), pages 147–155.

Morishita, M., Suzuki, J., and Nagata, M. (2019). NTTNeural Machine Translation Systems
at WAT 2019. In Proceedings of the 6th Workshop on Asian Translation (WAT 2019),
pages 99–105.

Napoles, C., Sakaguchi, K., Post, M., and Tetreault, J. (2015). Ground Truth for Grammati-
cal Error Correction Metrics. In Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (ACL & IJCNLP 2015), pages 588–593.

Napoles, C., Sakaguchi, K., Post, M., and Tetreault, J. (2016). GLEUWithout Tuning. arXiv
preprint arXiv:1605.02592.

Napoles, C., Sakaguchi, K., and Tetreault, J. (2017). JFLEG: A Fluency Corpus and Bench-
mark for Grammatical Error Correction. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics (EACL 2017), pages
229–234.

Narang, S., Chung, H. W., Tay, Y., Fedus, W., Fevry, T., Matena, M., Malkan, K., Fiedel,
N., Shazeer, N., Lan, Z., et al. (2021). Do Transformer Modifications Transfer Across
Implementations and Applications? arXiv preprint arXiv:2102.11972.

Neishi, M. and Yoshinaga, N. (2019). On the Relation between Position Information and
Sentence Length in Neural Machine Translation. In Proceedings of the 23rd Conference
on Computational Natural Language Learning (CoNLL 2019), pages 328–338.

Newman, B., Hewitt, J., Liang, P., and Manning, C. D. (2020). The EOS Decision and
Length Extrapolation. In Proceedings of the Third BlackboxNLP Workshop on Analyzing
and Interpreting Neural Networks for NLP (BlackboxNLP 2020), pages 276–291.

Ng, H. T., Wu, S.M., Briscoe, T., Hadiwinoto, C., Susanto, R. H., and Bryant, C. (2014). The
CoNLL-2014 Shared Task on Grammatical Error Correction. In Proceedings of the Eigh-
teenth Conference on Computational Natural Language Learning: Shared Task, pages
1–14.

100

References

Ng, N., Yee, K., Baevski, A., Ott, M., Auli, M., and Edunov, S. (2019). Facebook FAIR’s
WMT19 News Translation Task Submission. In Proceedings of the Fourth Conference on
Machine Translation (WMT 2019), pages 314–319.

Och, F. J. (2003). Minimum Error Rate Training in Statistical Machine Translation. In
Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics
(ACL 2003), pages 160–167.

Oka, Y., Chousa, K., Sudoh, K., and Nakamura, S. (2020). Incorporating Noisy Length
Constraints into Transformer with Length-aware Positional Encodings. In Proceedings of
the 28th International Conference on Computational Linguistics (COLING 2020), pages
3580–3585.

Oka, Y., Sudoh, K., and Nakamura, S. (2021). Using Perturbed Length-aware Posi-
tional Encoding for Non-autoregressive Neural Machine Translation. arXiv preprint
arXiv:2107.13689.

Oliver, A., Odena, A., Raffel, C. A., Cubuk, E. D., and Goodfellow, I. (2018). Realistic
Evaluation of Deep Semi-Supervised Learning Algorithms. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in
Neural Information Processing Systems (NeurIPS 2018), volume 31. Curran Associates,
Inc.

Ortiz Suárez, P. J., Sagot, B., and Romary, L. (2019). Asynchronous Pipelines for Processing
Huge Corpora onMedium to LowResource Infrastructures. Proceedings of theWorkshop
on Challenges in the Management of Large Corpora (CMLC-7) 2019. Cardiff, 22nd July
2019, pages 9–16, Mannheim. Leibniz-Institut für Deutsche Sprache.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grangier, D., and Auli, M.
(2019). fairseq: A Fast, Extensible Toolkit for Sequence Modeling. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics (Demonstrations), pages 48–53.

Ott, M., Edunov, S., Grangier, D., and Auli, M. (2018). Scaling Neural Machine Translation.
In Proceedings of the Third Conference on Machine Translation (WMT 2018), pages 1–9.

Pang, B. and Lee, L. (2005). Seeing Stars: Exploiting Class Relationships for Sentiment
Categorization with Respect to Rating Scales. In Proceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics (ACL 2005), pages 115–124.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: a Method for Automatic
Evaluation of Machine translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (ACL 2002), pages 311–318.

Pauls, A. and Klein, D. (2012). Large-Scale Syntactic Language Modeling with Treelets. In
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics
(ACL 2012), pages 959–968.

Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global Vectors for Word Rep-
resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014), pages 1532–1543.

101

References

Peters, M. E., Ammar,W., Bhagavatula, C., and Power, R. (2017). Semi-supervised sequence
tagging with bidirectional language models. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1756–
1765.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer,
L. (2018). Deep Contextualized Word Representations. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237.

Popel, M. and Bojar, O. (2018). Training Tips for the Transformer Model. The Prague
Bulletin of Mathematical Linguistics, 110(1):43–70.

Popović, M. (2015). chrF: character n-gram F-score for automatic MT evaluation. In Pro-
ceedings of the Tenth Workshop on Statistical Machine Translation, pages 392–395.

Post, M. (2018). A Call for Clarity in Reporting BLEU Scores. In Proceedings of the Third
Conference on Machine Translation: Research Papers (WMT 2018), pages 186–191.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language
Models are Unsupervised Multitask Learners. OpenAI blog, 1(8):9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and
Liu, P. J. (2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. Journal of Machine Learning Research (JMLR), 21(140):1–67.

Rei, M., Felice, M., Yuan, Z., and Briscoe, T. (2017). Artificial Error Generation with
Machine Translation and Syntactic Patterns. In Proceedings of the 12th Workshop on
Innovative Use of NLP for Building Educational Applications (BEA 2017), pages 287–
292.

Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP 2019), pages 3982–3992.

Rosendahl, J., Tran, V. A. K., Wang, W., and Ney, H. (2019). Analysis of Positional Encod-
ings for Neural Machine Translation. In Proceedings of 16th International Workshop on
Spoken Language Translation 2019 (IWSLT 2019).

Rozovskaya, A. and Roth, D. (2010a). Generating Confusion Sets for Context-Sensitive
Error Correction. InProceedings of the 2010Conference on EmpiricalMethods in Natural
Language Processing (EMNLP 2010), pages 961–970.

Rozovskaya, A. and Roth, D. (2010b). Training Paradigms for Correcting Errors in Grammar
and Usage. InHuman Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL 2010), pages
154–162.

Rozovskaya, A., Sammons, M., and Roth, D. (2012). The UI System in the HOO 2012
Shared Task on Error Correction. In Proceedings of the Seventh Workshop on Building
Educational Applications Using NLP (BEA 2012), pages 272–280.

102

References

Sato, M., Suzuki, J., and Kiyono, S. (2019). Effective Adversarial Regularization for Neural
Machine Translation. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics (ACL 2019), pages 204–210.

Sato, M., Suzuki, J., Shindo, H., and Matsumoto, Y. (2018). Interpretable Adversarial Per-
turbation in Input Embedding Space for Text. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI 2018), pages 4323–4330.

Saunshi, N., Malladi, S., and Arora, S. (2021). A Mathematical Exploration of Why Lan-
guage Models Help Solve Downstream Tasks. In Proceedings of the 9th International
Conference on Learning Representations (ICLR 2021).

Sennrich, R., Birch, A., Currey, A., Germann, U., Haddow, B., Heafield, K., Miceli Barone,
A. V., and Williams, P. (2017). The University of Edinburgh’s Neural MT Systems for
WMT17. In Proceedings of the Second Conference on Machine Translation (WMT 2017),
pages 389–399.

Sennrich, R., Haddow, B., and Birch, A. (2016a). Edinburgh Neural Machine Translation
Systems for WMT 16. In Proceedings of the First Conference on Machine Translation
(WMT 2016), pages 371–376.

Sennrich, R., Haddow, B., and Birch, A. (2016b). Improving Neural Machine Translation
Models with Monolingual Data. In Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2016), pages 86–96.

Sennrich, R., Haddow, B., and Birch, A. (2016c). NeuralMachine Translation of RareWords
with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (ACL 2016), pages 1715–1725.

Sennrich, R. and Zhang, B. (2019). Revisiting Low-Resource Neural Machine Translation:
A Case Study. In Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2019), pages 211–221.

Shaw, P., Uszkoreit, J., and Vaswani, A. (2018). Self-Attention with Relative Position Rep-
resentations. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume
2 (Short Papers) (NAACL 2018), pages 464–468.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean, J. (2017).
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer.
In Proceedings of the 5th International Conference on Learning Representations (ICLR
2017).

Shazeer, N. and Stern, M. (2018). Adafactor: Adaptive Learning Rates with Sublinear Mem-
ory Cost. In Proceedings of the 35th International Conference on Machine Learning
(ICML 2018), pages 4603–4611.

Song, K., Tan, X., Qin, T., Lu, J., and Liu, T.-Y. (2019). MASS: Masked sequence to
sequence pre-training for language generation. In Proceedings of the 36th International
Conference on Machine Learning (ICML 2019), pages 5926–5936.

103

References

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to Sequence Learning with Neural
Networks. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger,
K. Q., editors, Advances in Neural Information Processing Systems (NIPS 2014), vol-
ume 27, pages 3104–3112. Curran Associates, Inc.

Suzuki, J. and Isozaki, H. (2008). Semi-Supervised Sequential Labeling and Segmentation
Using Giga-Word Scale Unlabeled Data. In Proceedings of ACL-08: HLT, pages 665–
673.

Suzuki, J., Isozaki, H., Carreras, X., and Collins, M. (2009). An Empirical Study of Semi-
supervised Structured Conditional Models for Dependency Parsing. In Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing (EMNLP 2009),
pages 551–560.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the
Inception Architecture for Computer Vision. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2016), pages 2818–2826.

Tajiri, T., Komachi, M., and Matsumoto, Y. (2012). Tense and Aspect Error Correction for
ESL Learners Using Global Context. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (ACL 2012), pages 198–202.

Takase, S. and Kiyono, S. (2021). Rethinking Perturbations in Encoder-Decoders for Fast
Training. In Proceedings of the 2021 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies (NAACL 2021),
pages 5767–5780.

Takase, S. and Okazaki, N. (2019). Positional Encoding to Control Output Sequence Length.
In Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3999–4004.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. (2020). Efficient Transformers: A Survey.
arXiv preprint arXiv:2009.06732.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neu-
ral Information Processing Systems (NIPS 2017), volume 30, pages 5998–6008. Curran
Associates, Inc.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and Com-
posing Robust Features with Denoising Autoencoders. In Proceedings of the 25th Inter-
national Conference on Machine learning (ICML 2008), pages 1096–1103.

Wang, A. and Cho, K. (2019). BERT has a Mouth, and It Must Speak: BERT as a Markov
Random Field Language Model. In Proceedings of the Workshop on Methods for Opti-
mizing and Evaluating Neural Language Generation, pages 30–36.

104

References

Wang, A., Hula, J., Xia, P., Pappagari, R., McCoy, R. T., Patel, R., Kim, N., Tenney, I.,
Huang, Y., Yu, K., Jin, S., Chen, B., Van Durme, B., Grave, E., Pavlick, E., and Bowman,
S. R. (2019a). Can You Tell Me How to Get Past Sesame Street? Sentence-Level Pre-
training Beyond Language Modeling. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics (ACL 2019), pages 4465–4476.

Wang, B., Shang, L., Lioma, C., Jiang, X., Yang, H., Liu, Q., and Simonsen, J. G. (2021).
On Position Embeddings in BERT. In Proceedings of the 9th International Conference
on Learning Representations (ICLR 2021).

Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D. F., and Chao, L. S. (2019b). Learning
Deep Transformer Models for Machine Translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics (ACL 2019), pages 1810–1822.

Wang, R., Marie, B., Utiyama, M., and Sumita, E. (2018). NICT’s Corpus Filtering Systems
for the WMT18 Parallel Corpus Filtering Task. In Proceedings of the Third Conference
on Machine Translation (WMT 2018), pages 963–967.

Wu, C., Wu, F., and Huang, Y. (2021). DA-Transformer: Distance-aware Transformer. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL 2021), pages 2059–
2068.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y.,
Gao, Q., Macherey, K., et al. (2016). Google’s NeuralMachine Translation System: Bridg-
ing the Gap between Human and Machine Translation. arXiv preprint arXiv:1609.08144.

Xie, Z., Genthial, G., Xie, S., Ng, A., and Jurafsky, D. (2018). Noising and Denoising
Natural Language: Diverse Backtranslation for Grammar Correction. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL 2018), pages 619–628.

Yang, X., Song, Z., King, I., and Xu, Z. (2021). A Survey on Deep Semi-supervised Learn-
ing. arXiv preprint arXiv:2103.00550.

Yannakoudakis, H., Andersen, Ø. E., Geranpayeh, A., Briscoe, T., and Nicholls, D. (2018).
Developing an Automated Writing Placement system for ESL Learners. Applied Mea-
surement in Education, 31(3):251–267.

Yannakoudakis, H., Briscoe, T., and Medlock, B. (2011). A New Dataset and Method for
Automatically Grading ESOL Texts. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics (ACL 2011), pages 180–189.

Yee, K., Dauphin, Y., and Auli, M. (2019). Simple and Effective Noisy Channel Modeling
for Neural Machine Translation. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP 2019), pages 5696–5701.

Yokoi, S., Kobayashi, S., Fukumizu, K., Suzuki, J., and Inui, K. (2018). Pointwise HSIC: A
Linear-Time Kernelized Co-occurrence Norm for Sparse Linguistic Expressions. In Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2018), pages 1763–1775.

105

References

Yuan, Z. and Briscoe, T. (2016). Grammatical error correction using neural machine trans-
lation. In Proceedings of the 2016 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies (NAACL 2016),
pages 380–386.

Yuan, Z. and Felice, M. (2013). Constrained Grammatical Error Correction using Statistical
Machine Translation. In Proceedings of the Seventeenth Conference on Computational
Natural Language Learning: Shared Task (CoNLL 2013), pages 52–61.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti, C., Ontanon, S., Pham,
P., Ravula, A., Wang, Q., Yang, L., and Ahmed, A. (2020). Big Bird: Transformers for
Longer Sequences. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H.,
editors, Advances in Neural Information Processing Systems (NeurIPS 2020), volume 33.
Curran Associates, Inc.

Zhao, W., Wang, L., Shen, K., Jia, R., and Liu, J. (2019). Improving Grammatical Error
Correction via Pre-Training a Copy-Augmented Architecture with Unlabeled Data. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL 2019).

106

List of Publications

Journal Papers (Refereed)
1. Shun Kiyono, Jun Suzuki, Tomoya Mizumoto and Kentaro Inui. Massive Explo-

ration of Pseudo Data for Grammatical Error Correction. In IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 28, pp. 2134–2145, 2020, doi:
10.1109/TASLP.2020.3007753.

International Conference Papers (Refereed)
1. ShunKiyono, SosukeKobayashi, Jun Suzuki, Kentaro Inui. SHAPE: ShiftedAbsolute

Position Embeddings for Transformers. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing (EMNLP 2021), pp.3309–3321,
November 2021.

2. Shun Kiyono, Takumi Ito, Ryuto Konno, Makoto Morishita and Jun Suzuki. Tohoku-
AIP-NTT at WMT 2020 News Translation Task. In Proceedings of the Fifth Confer-
ence on Machine Translation (WMT 2020), pp.144–154, November 2020.

3. Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizumoto and Kentaro Inui. An
Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction. In
Proceedings of 2019 Conference on Empirical Methods in Natural Language Process-
ing and 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP 2019), pp. 1236–1242, November 2019.

4. Shun Kiyono, Jun Suzuki, Kentaro Inui. Mixture of Expert/Imitator Networks: Scal-
able Semi-supervised Learning Framework. In Proceedings of The Thirty-Third
AAAI Conference onArtificial Intelligence (AAAI-19), pp.4073–4081, January 2019.

107

5. Shun Kiyono, Sho Takase, Jun Suzuki, Naoaki Okazaki, Kentaro Inui and Masaaki
Nagata. Reducing Odd Generation from Neural Headline Generation. In Proceed-
ings of the 32nd Pacific Asia Conference on Language, Information and Computation
(PACLIC32), pp.290–303, December 2018.

6. Shun Kiyono, Sho Takase, Jun Suzuki, Naoaki Okazaki, Kentaro Inui and Masaaki
Nagata. Unsupervised Token-wise Alignment to Improve Interpretation of Encoder-
Decoder Models. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP, pp.74–81, October 2018.

108

Awards
1. Asia-Pacific Association for Machine Translation (AAMT)第 16回長尾賞

2. 言語処理学会第 26回年次大会 (NLP2020)優秀賞

3. 言語処理学会第 25回年次大会 (NLP2019)優秀賞

4. 言語処理学会第 24回年次大会 (NLP2018)優秀賞

109

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Research Issues
	1.2 Contributions
	1.3 Thesis Overview

	2 Semi-supervised Learning for NLP
	2.1 Task-oriented SSL
	2.2 Generic SSL
	2.3 Scalability of SSL

	3 Large-scale Task-oriented Semi-supervised Learning for Text Classification
	3.1 Introduction
	3.2 Related Work
	3.3 Task Description and Notation Rules
	3.4 Baseline Network: LSTM with MLP
	3.5 Proposed Model: Mixture of Expert/Imitator Networks (MEIN)
	3.5.1 Basic Idea
	3.5.2 Network Architecture
	3.5.3 Definition of IMNs
	3.5.4 Training Framework

	3.6 Experiments
	3.6.1 Datasets
	3.6.2 Baseline DNNs
	3.6.3 Network Configurations
	3.6.4 Results

	3.7 Analysis
	3.7.1 More Data, Better Performance Property
	3.7.2 Scalability with Amount of Unlabeled Data
	3.7.3 Effect of Window Size of the IMN

	3.8 Discussion
	3.8.1 Variations of the IMN
	3.8.2 Stronger Baseline DNN

	3.9 Conclusion

	4 Massive Exploration of Pseudo Data for Grammatical Error Correction
	4.1 Introduction
	4.2 Problem Formulation and Notation
	4.3 Methods for Generating Pseudo Data
	4.3.1 Noisy Back-translation: Backtrans (noisy)
	4.3.2 Direct Noizing: DirectNoise and DirectNoise (spell)

	4.4 Experiments
	4.4.1 Experimental Configurations
	4.4.2 Aspect (i): Pseudo Data Generation
	4.4.3 Aspect (ii): Seed Corpus T
	4.4.4 Aspect (iii): Optimization Setting
	4.4.5 Comparison with Current Top Models

	4.5 Analysis
	4.5.1 Effectiveness of Different Seed Corpora
	4.5.2 Strengths and Weaknesses of PretLarge

	4.6 Related Work
	4.6.1 Methods for Generating Pseudo Data
	4.6.2 Seed Corpus
	4.6.3 Optimization Settings

	4.7 Conclusions

	5 The Role of Semi-supervised Learning in the State-of-the-Art Machine Translation System
	5.1 Introduction
	5.2 Dataset and Preprocessing
	5.2.1 Bitext
	5.2.2 Monolingual Corpus

	5.3 System Overview
	5.3.1 Base Model and Hyperparameter
	5.3.2 Subword Size
	5.3.3 Large-scale Back-translation
	5.3.4 Fine-tuning
	5.3.5 Ensemble
	5.3.6 Right-to-Left Models
	5.3.7 Reranking
	5.3.8 Post-processing
	5.3.9 Post-ensemble

	5.4 Results
	5.5 Analysis
	5.5.1 Negative Results on Synthetic Data Filtering
	5.5.2 Effectiveness of Incorporating Forward-Translation
	5.5.3 Negative Result on Reranking
	5.5.4 Japanese Text and Brackets

	5.6 Conclusion

	6 Shifted Absolute Position Embedding for Transformers
	6.1 Introduction
	6.2 Position Representations
	6.2.1 Absolute Position Embedding (APE)
	6.2.2 Relative Position Embedding (RPE)
	6.2.3 Shifted Absolute Position Embedding (SHAPE)

	6.3 Experiments
	6.3.1 Experimental Configuration
	6.3.2 Experiment 1: Shift Invariance
	6.3.3 Experiment 2: Performance Comparison

	6.4 Analysis
	6.5 Conclusion

	7 Conclusion
	References
	List of Publications

