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Abstract

In this dissertation, we propose efficient algorithms based on the dueling technique for vari-

ous pattern matching problems. We propose serial and parallel duel-and-sweep algorithms

that are generalized for substring consistent equivalence relations (SCER). SCER is a gen-

eralization of different matchings, that include exact, parameterized, order-preserving,

palindrome and cartesian-tree matching. Also, we propose instance-specific algorithms

that solve the pattern searching problem　for the above matchings.

For SCER, we have proposed new serial and parallel algorithms for SCER pattern

matching problems. Given a text of length n and a pattern of length m, we assume

that encodings of the text and the pattern can be encoded in O(τn + τm) time in serial,

respectively. Assuming that the encoding has been computed, we assume that re-encoding

the element at position k can be re-encoded, with respect to a substring of length n, using

ξm time. Our serial algorithm for one-dimensional SCER runs in O(n · ξm +m logm · ξm)

time. We also give serial algorithms for parameterized, cartesian-tree, palindrome and

order-preserving matchings that run in O(n) time. For cartesian-tree and palindrome

matchings, we give a preprocessing algorithm that runs in O(m) time. For parameterized

matching the preprocessing runs in O(m log |Π|) time. Here, |Π| is the size of the variable

alphabet. For order-preserving matching, the preprocessing runs in O(m logm) time.

Also, for order-preserving matching, assuming that a text is a two-dimensional string of

size n × n and a pattern is a two-dimensional string of size m ×m, our serial algorithm

that solves the 2d matching problem in O(n2m+m3) time.
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For our parallel algorithms we use Priority Concurrent Read Concurrent Write Par-

allel Random-Access Machines (P-CRCW PRAM). Our parallel algorithms are the first

algorithms to solve various SCER pattern matching problems in parallel. Our parallel al-

gorithm for SCER run in O(log3m ·ξtm) time using O(n log2m ·ξwm) work on the P-CRCW

PRAM, with O(log2m · ξtm) time and O(m log2m · ξwm) work preprocessing. For parame-

terized, palindrome and order-preserving matchings, we give parallel algorithms that run

in O(log3m) time using O(n log2m) work on the P-CRCW PRAM, with O(logm) time

and O(m logm) work preprocessing. For cartesian-tree matching, the preprocessing takes

O(log2m) time and O(m log2m) work. We also describe how to compute encodings for

these matching for order-preserving matching in O(log n) time and O(n log n) work in

parallel, where n is the length of the string to be encoded.
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Chapter 1

Introduction

1.1 Background

The string matching problem is a fundamental and a widely studied problem in com-

puter science. Given a text and a pattern, the string matching problem searches for all

substrings of the text that match the pattern. String matching algorithms find practical

use for solving problems in information retrieval, such as text mining, natural language

processing, image processing, speech processing. Recent trend of information retrieval

focuses on detecting and retrieving text in images, video, documents and social media.

Natural language processing is an integral part of multimedia information retrieval. After

retrieval methods recognize text using an optical character recognizer, they use string

matching algorithms to search for relevant words in the database. For digitized texts,

such as annotated data of images or videos, the methods use string matching to define

context for extracting relevant words at a high level from multimedia databases. There

are methods in [24], where string matching is used to index and retrieve information from

multimedia databases at a high level.

Bioinformatics is another field where the string matching algorithms are widely used.

Molecular biology information, for the purpose of this paper, consists of sequences of

DNA/RNA or sequences of amino acids called proteins. DNA/RNA sequences can be
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1.1 Background

regarded as strings consisting of 4 different symbols, and protein sequences can be regarded

as strings consisting of 20 different symbols. String matching algorithms are used for

finding query sequences (the pattern) from the large sequence datasets (the text). One of

the central problems in bioinformatics that continues to draw attention from researchers

for the past few decades is the protein structure prediction problem. That is, given an

amino-acid sequence of a protein, our task is to predict its spatial structure. Some methods

that are proven to be comparatively successful in solving the protein structure prediction

problem extensively use string matching algorithms. First, the spatial information for

short protein sequences is experimentally established and stored in a database. Generally,

proteins that have similar amino-acid sequence tend to have similar spatial structure.

Given a new amino-acid sequence, which is much longer than those in the dataset, the

algorithm finds fragments in the input sequence that match with some sequence in the

dataset. Finally, the algorithm predicts the overall structure of the protein by combining

the spatial information of the fragments.

Many exact pattern matching algorithms have been proposed such as the well-known

Knuth-Morris-Pratt algorithm [36], Boyer-Moore algorithm [9], and Horspool algorithm [31].

These algorithms preprocess the pattern first and then match the pattern from its prefix

or suffix when comparing it with the text. Vishkin proposed two algorithms for pat-

tern matching, pattern matching by duel-and-sweep [44] and pattern matching by sam-

pling [45]. Both algorithms match the pattern to a substring of the text from some

positions which are determined by the property of the pattern, instead of its prefix or

suffix. These algorithms are developed also for parallel processing.

Over the years, the classic exact pattern matching problem has been modified and

extended to meet various needs that arise from different real world problems. One natural

extension of the exact pattern matching is two-dimensional pattern matching. Another

direction for extensions is to modify the matching function. Perhaps, the most natural

modification of the matching function is approximate matching. Given a text and a
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1.1 Background

pattern, the task of the approximate matching is to find all the occurrences of pattern in

the text whose edit distance to the pattern is at most k. The edit distance between two

strings is defined as minimum number of character insertion, deletion and replacements

needed to make them equal.

In parameterized matching, introduced by Baker [5, 6], two strings of equal length

match, if there exists an one-one mapping of their characters. Two strings X and Y of

equal length parameterize match, or p-match for short, if there is a bijection π from the

alphabet of X to the alphabet of Y such that Y [i] = π(X[i]) for every 1 ≤ i ≤ |X|. In

the parameterized matching problem, given an input composing a text T and a pattern

P , the goal is to find all the substrings of T of length |P | that p-match P . Parameterized

matching was introduced for applications that arise in software tools for analyzing source

code. Specifically, the application is to identify duplicate code in large software systems

for reuse. Here it is desirable to find not only exact matches between program fragments

but also parameterized matches, namely, where the two program fragments are equal

but possibly use interchangeable identifiers (representing variable, constant, or function

names). Amir et al. [2] presented tight bounds for parameterized matching in the presence

of an unbounded size alphabet.

Order-preserving matching [35, 37] considers the relative order of elements, rather

than their real values. In order-preserving matching, two strings of equal length match,

if the relative of the elements are the same. For instance, for exact matching (12, 35, 5) 6=

(25, 30, 21). However, for OPPM, (12, 35, 5) matches (25, 30, 21), since the relative order

of the elements is same. Namely, the first element is the second smallest, the second

element is the largest and the third element is the smallest among (12, 35, 5), (25, 30, 21),

respectively. One of motivations is given by the following scenario. Consider a sequence

of numbers that models a time series which is known to repeat the same shape every fixed

period of time. For example, this could be certain stock market data or statistics data

from a social network that is strongly dependent on the day of the week, i.e., repeats the
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1.1 Background

same shape every consecutive week. Order-preserving matching has gained much interest

in recent years, due to its applicability in problems where the relative order matters, such

as share prices in stock markets, weather data or musical notes.

Kubica et al. [37] and Kim et al. [35] proposed the solution for the order-preserving

pattern matching problem based on the KMP algorithm. Their KMP-based algorithm

runs in O(n+m logm) time. Cho et al. [16] brought forward another algorithm based on

the Horspool algorithm that uses q-grams, which was proven to be experimentally fast.

Crochemore et al. [23] proposed useful data structures for OPPM. On the other hand,

Chhabra and Tarhio [15], Faro and Külekci [25] proposed filtration methods which are

practically fast. Moreover, faster filtration algorithms using SIMD (Single Instruction

Multiple Data) instructions were proposed by Cantone et al. [13], Chhabra et al. [14] and

Ueki et al. [43]. They showed that SIMD instructions are effective in speeding up their

algorithms.

An equivalence relation that is closely related to the order-preserving matching is

cartesian-tree matching [41]. Cartesian-tree matching also concerns the relative order of

elements within a string. The difference between order-preserving matching and cartesian-

tree matching is that order-preserving matching considers global relative order, while

cartesian-tree matching considers local relative order. For instance, (10, 5, 7) and (13, 10, 17)

does not match for order-preserving matching, but they match for cartesian-tree matching.

Park et al. [41] proposed a linear time algorithm to solve cartesian-tree matching.

Another interesting matching that is worth considering is palindrome matching [42].

Palindrome is a symmetric string that reads same from left-to-right and right-to-left.

Two strings of same length are said to be pal-equivalent iff the length of the maximal

palindrome at every center in the strings is equal. Palindrome matching is useful for

bioinformatics when finding patterns in DNA or RNA sequences.

The difficulty of non-classical matchings mainly comes from the fact that we cannot

determine the isomorphism by comparing the symbols in the text and the pattern on each
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1.1 Background

position independently; instead, we have to consider their respective relative orders in the

pattern and in the text. For instance, consider strings X1, X2, Y1, Y2 of equal length.

Suppose that X1 matches Y1 and X2 matches Y2. In exact matching, the concatenation

of X1 and X2 will match that of Y1 and Y2. However, in parameterized matching or

order-preserving matching, the two concatenations will not necessarily match each other.

Many matching functions that are used in different string matching problems, includ-

ing exact, parameterized, order-preserving, cartesian-tree and palindrome matchings, fall

under the class of subsequence consistent equivalence relations (SCER). An equivalence

relation on strings is called a substring consistent equivalence relation, if for any two

strings X, Y of equal length, the equivalence relation satisfies the following: X matching

Y under SCER implies that any substrings of X and Y match. That is, if we denote the

substring of X and Y that starts at position i and ends at position j, as X[i : j] and

Y [i : j], respectively, then X[i : j] matches Y [i : j], for all 1 ≤ i ≤ j < |X|. SCER

was introduced by [39], and it is the first attempt to analyze different pattern matching

problems under the same general theory.

The first efficient parallel string matching was by Galil [27], where a framework bene-

fiting from periodicity properties in strings was introduced. Similar properties were used

in later parallel string matching algorithms. The algorithm in Galil’s original paper runs

in logarithmic time and is optimal for an alphabet whose size is fixed. Vishkin [44] pro-

posed a new idea that led to an optimal speed up algorithm regardless of the alphabet

size. Breslauer and Galil [11] added that the dueling technique implies that the string

matching problem is not more difficult, from the parallel algorithmic point of view, than

the problem of finding the maximum among n elements. This enabled a O(log log n) time

parallel algorithm for the problem. In [45], the dueling idea was further extended the idea

of deterministic sampling. In the dueling technique a single location is used to disqualify

either of two candidate positions in the text. The deterministic sampling idea implies

that there is a way for drastically disqualifying at once several candidate positions. As
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1.1 Background

the name suggests, the algorithm deterministically samples logm locations, where m is

the length of the pattern, to disqualify candidate positions.

The dueling technique is proved to be useful not only in parallel pattern matching,

but also in two-dimensional pattern matchings. The duel-and-sweep algorithm appeared

in Amir et al. [2], where it was named “consistency and verification” and was used for

two-dimensional exact matching; it is based on the dueling technique [44]. Cole et al. [19]

extended it to two-dimensional parameterized matching.

It continues to be the case that there are only few parallel algorithms which are

optimal, in spite of the interest in them. We list algorithms that introduced important

techniques that are often used in parallel algorithms. See Cole and Vishkin [21] (among

many others) for computation of prefix sums of n variables. In fact, it can be shown

that replacing the summing operation with any other associative binary operation gives

the same computational complexity. Cole and Vishkin [20] gives an optimal list ranking

algorithm, that uses a technique called deterministic coin tossing. Deterministic coin

tossing was used to eliminate randomness from the randomized list ranking algorithm.

A tree contraction method that is used to efficiently evaluate expression trees in parallel

was first proposed by [40]. The technique is easily generalized to arbitrary trees and

used in graph-theoretic algorithms, such as maximum matching, minimum vertex cover

and maximum independent set [30]. Borodin and Hopcroft [8] gave an estimation on

the upper and lower bounds on the time of merging two sequences of length n using 2n

processors, on the parallel comparison model. Cole [18] improves on the simple merging

approach to sort array of n elements. In Cole’s algorithm each node in the merging tree

is associated with a list, which, at the end of the algorithm, should hold all elements,

that it is responsible of, in the sorted order. His algorithm works on multiple levels of the

tree at once, creating successively more refined approximations to the sorted lists that the

nodes must eventually produce. For each node, the approximation to the final list can be

obtained from the preceding approximation in constant time.
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1.2 Contributions

Table 1.1: Summary of proposed algorithms on each problems. The results on the parallel
algorithms are obtained on P-CRCW PRAM. (For the parallel algorithms the value before
comma indicates the time complexity, the value after the comma indicates the work
complexity.)

Serial Parallel
Prep. Search Prep. Search

SCER O(τn + ξmm) O(ξmn)
O(τ tn + ξtm log2m),
O(τwn + ξwmm log2m)

O(ξtm log3m)
O(ξwmn log2m)

Cartes. tree
O(m)

O(n)

O(log2m),
O(m log2m)

O(log3m),
O(n log2m)

Palindrome
O(logm),
O(m logm)

Order-preser. O(m logm)
Parameter. O(m log |Π|)

The family of models of computation used in this dissertation is the parallel random-

access-machines (PRAMs). The PRAM model assumes that (1) the memory is uniformly

shared among all processors; (2) there is no limit on the amount of shared memory;

(3) issues such as synchronization and communication between processors are neglected.

Our work focuses on the priority concurrent-read concurrent-write (P-CRCW) PRAM

[32]. This model allows simultaneous reading from the same memory location as well as

simultaneous writing. In case of multiple writes to the same memory cell, the P-CRCW

PRAM grants access to the memory cell to the processor with the smallest index. When

estimating the computational complexity of a parallel algorithm, it is custom to consider

the parallel running time and the overall number of operations, which is referred to as

work.

1.2 Contributions

In this dissertation, we propose efficient algorithms based on the dueling technique [44]

for various pattern matching problems. We propose serial and parallel duel-and-sweep

algorithms that are generalized for substring consistent equivalence relations (SCER) and

consider specific instances of SCER that include parameterized matching, order-preserving
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matching, palindrome matching and cartesian tree matching. For our parallel algorithms

we use Priority Concurrent Read Concurrent Write Parallel Random-Access Machines (P-

CRCW PRAM) [32]. Our algorithm is theoretically as fast as the KMP-based algorithm

for SCER [39]. Our parallel algorithms are the first algorithms to solve SCER in parallel.

The details of our algorithms are as follows:

1. For SCER, we have proposed new serial and parallel algorithms for pattern matching

problem. When considering SCER algorithms we make the following assumptions.

For a string X, suppose that its encoding can be computed in τ|X| time in serial

and τ t|X| time and τw|X| work in parallel on P-CRCW PRAM. Assuming that the

encoding has been computed, we assume that re-encoding the element at position

k with respect to suffix X[i :], where i ≤ k, takes ξ|X[i:]| time in serial and ξt|X| time

and ξw|X| work in parallel on P-CRCW PRAM.

Given a text of length n and a pattern of length m, for every algorithm in this

paragraph, we assume that the encodings of the text and the pattern are computed

using O(τn+τm) time. Our serial algorithm for SCER runs in O(n·ξm+m logm·ξm)

time.

Our parallel algorithm run in O(log3m · ξtm) time using O(n log2m · ξwm) work on the

P-CRCW PRAM, with O(log2m ·ξtm) time and O(m log2m ·ξwm) work preprocessing.

If the pattern is aperiodic, we show that the pattern matching problem can be solved

in O(logm·ξtm) time using O(n·ξwm) work on the P-CRCW PRAM, with O(logm·ξtm)

time and O(m ·ξwm) work preprocessing. Our parallel algorithm is the first algorithm

that solves the pattern matching problem for SCER in parallel.

2. For parameterized matching, we have proposed efficient serial and parallel algo-

rithms. For the parallel preprocessing, we have shown that it can be solved in

O(logm) time and O(m logm) preprocessing time on P-CRCW PRAM. Also, we

have proposed a parallel algorithm to compute the prev-encoding for parameterized

8
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matching in O(logm) time using O(m logm) work on P-CRCW PRAM.

3. For cartesian-tree matching, we have proposed efficient serial and parallel algo-

rithms. Our serial algorithm for parallel preprocessing, we have shown that it can be

solved in O(n) time. Our parallel algorithm runs in O(log3m) time and O(n log2m)

work on P-CRCW PRAM.

4. For palindrome matching, we have proposed efficient serial preprocessing algorithm

runs in O(n) time. The serial pattern searching algorithm is also linear. Also, we

have proposed a parallel algorithm runs in O(log3m) time and O(n log2m) work on

P-CRCW PRAM with O(logm) time and O(m logm) work preprocessing.

5. For order-preserving matching, we have proposed serial and parallel algorithms that

does not encode the text. Our serial algorithm for order-preserving matching solves

the pattern matching problem in O(n) time with O(m logm) time preprocessing.

We show that our algorithm is theoretically as fast as the KMP algorithm for order-

preserving pattern matching and faster than it in practice. Assuming that a text

is a two-dimensional string of size n × n and a pattern is a two-dimensional string

of size m ×m, our serial algorithm for two-dimensional order-preserving matching

solves the 2d matching problem in O(n2m + m3) time. Our parallel algorithm for

order-preserving matching solves the pattern matching problem in O(log3m) time

using O(n log2m) work on P-CRCW PRAM with O(logm) time and O(m logm)

preprocessing time on P-CRCW PRAM. Also, we have proposed a parallel compu-

tation of the nearest neighbor encoding for order-preserving matching that runs in

O(logm) time using O(m logm) work on P-CRCW PRAM.

The rest of this dissertation is organized as follows. In Chapter 2, we describe the

notations, the idea of duel-and-sweep algorithm and give definitions that we will use for

SCER algorithms. Also, we describe the basics of the parallel computation models. In

Chapter 3, we discuss our serial algorithms and consider serial algorithms for parameter-
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1.2 Contributions

ized, cartesian-tree,palindrome and order-preserving matchings. In Chapter 4, we propose

parallel algorithms for one-dimensional SCER. Also, we describe parallel algorithms for

computing the encodings and give optimizations for the pattern preprocessing for the

matchings mentioned above. Lastly, we conclude our work in Chapter 5 and discuss

future work that we might undertake.
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Chapter 2

Preliminaries

2.1 Notations

We use Σ to denote an alphabet of integer symbols such that the comparison of any two

symbols can be done in constant time. Σ∗ denotes the set of strings over the alphabet Σ.

For a string X ∈ Σ∗, the length of X is denoted by |X|. The empty string, denoted by ε,

is a string of length 0. For a string X ∈ Σ∗ of length n, X[i] denotes the i-th symbol of

X, X[i : j] = X[i]X[i+ 1] . . . X[j] denotes a substring of X that begins at position i and

ends at position j for 1 ≤ i ≤ j ≤ n. For convenience, we abbreviate X[1 : i] to X[: i]

and X[i : n] to X[i :], which are called prefix and suffix of X, respectively. Moreover, let

X[i : j] = ε if i > j. We denote the reverse of X as XR.

Suppose that we are given a text T of length n and a pattern P of length m. For an

integer x with 1 ≤ x ≤ n−m+ 1, a candidate Tx is the substring of T starting from x of

length m, i.e., Tx = T [x :x+m−1]. In the remainder of this paper, we fix text T to be of

length n and pattern P to be of length m. We also assume that n = 2m− 1. Larger texts

can be cut into overlapping pieces of length 2m and processed independently. That is, for

each T [1 : 2m−1], T [m+ 1 : 3m−1], . . . , T [n−2m+ 1 :n], we process them independently.

11



2.2 Substring consistent equivalence relations

2.2 Substring consistent equivalence relations

Over the past decades, different variations of the exact matching were studied, such as

parameterized matching and order-preserving matching. Matsuoka et al. [39] generalized

these matchings and defined a class of equivalence relations, called substring consistent

equivalence relations (SCER).

Definition 2.1 (Substring consistent equivalence relation (SCER) [39]). An equivalence

relation ≈ ⊆ Σ∗ × Σ∗ is a substring consistent equivalence relation (SCER) if for two

string X and Y , X ≈ Y implies |X| = |Y | and X[i : j] ≈ Y [i : j] for all 1 ≤ i ≤ j ≤ |X|.

We say X ≈-matches Y iff X ≈ Y . For instance, while the parameterized matching [5],

order-preserving matching [37, 35] are SCERs, the permutation matching [12, 17] and

function matching [1] are not. Matsuoka et al. [39] defined ≈-occurrence of a pattern P

in a text T under an SCER ≈ as follows. Given a text T and a pattern P , a position i in

T , 1 ≤ i ≤ n−m+ 1, is an ≈-occurrence of P in T iff P ≈ T [i : i+m− 1].

Definition 2.2 (≈-pattern matching).

Input: A text T ∈ Σ∗ of length n and a pattern P ∈ Σ∗ of length m ≤ n.

Output: All ≈-occurrences of P inside T .

For non-classical matchings, such as parameterized matching and order-preserving

matching, often it is convenient to encode the strings. These encodings are generalized

for SCERs as follows.

Definition 2.3 (≈-encoding). Let Σ and Π be alphabets. We say a function f : Σ∗ → Π∗

is an ≈-encoding if (1) for any string X ∈ Σ∗, |X| = |f(X)|, (2) f(X[1 : i]) = f(X)[1 : i],

(3) for two strings X and Y of equal length, f(X)[i] = f(Y )[i] implies f(X[j+1 :])[i−j] =

f(Y [j + 1 :])[i− j] for any j < i ≤ |X| = |Y |, and (4) f(X) = f(Y ) iff X ≈ Y .
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2.2 Substring consistent equivalence relations

Examples of a ≈-encoding are the prev-encoding [5] for parameterized matching and

parent-distance encoding [41] for cartesian-tree matching. The nearest neighbor encod-

ing [35] for order-preserving matching is not a ≈-encoding, because the nearest neighbor

encoding violates the third condition. However, by considering pairs of locations, instead

of a single location, Jargalsaikhan et al. [33, 34] proposed duel-and-sweep algorithms that

solve the order-preserving pattern matching problem using the nearest neighbor encoding.

Matsuoka et al. [39] defined ≈-prefix encoding, which is ≈-encoding without Condition

(3) of Definition 2.3. We will use ≈-prefix encoding for our serial SCER algorithm and

use ≈-encoding for our parallel algorithm.

Amir and Kondratovsky [3] showed that there exists a ≈-encoding for any SCER 1.

By using a ≈-encoding, if X[: i] ≈ Y [: i] we can check whether X[: i+ 1] ≈ Y [: i+ 1] just

by checking whether f(X)[i+ 1] = f(Y )[i+ 1]. For a string X and ≈-encoding f , let we

denote f(X) by X̃ for simplicity. For convenience, we denote the encoding of element at

position k with respect to X[i :], as X̃i[k]. If i = 1, we omit 1 and |X| in the notation

and denote the encoding at position k as X̃[k].

Hereafter we fix an arbitrary SCER ≈. We say that a position i is a tight mismatch

position if X[1 : i− 1] ≈ Y [1 : i− 1] and X[1 : i] 6≈ Y [1 : i]. For two strings X and Y , let

LCP(X, Y ) be the length l of the longest prefixes of X and Y match. That is, l is the

greatest integer such that X[1 : l] ≈ Y [1 : l]. Obviously, if i is the tight mismatch position

for X 6≈ Y , then LCP(X, Y ) = i− 1. The converse holds if i ≤ min{|X|, |Y |}. Similarly,

for a string X and an integer 0 ≤ a < |X|, we define LCPX(a) = LCP(X,X[a + 1 :

|X|]). In other words, LCPX(a) is the length of the longest common prefix, when X is

superimposed on itself with offset a.

Next, we review some periodicity properties for SCER. Matsuoka et al. [39] defined

three types of periods: block-based, sliding-window-based and border-based periods. We

will focus on the block-based and the border-based periods. Informally, an integer p is a

1Lemma 12 in [3] does not explicitly mention the third property, but their proof entails it.
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2.2 Substring consistent equivalence relations

block-based period of a string X if all blocks match each other, when X is partitioned

into blocks of length p. An integer p is a border-based period of X, if the overlapping

regions match each other, when X is copied and superimposed on itself with an offset p.

Definition 2.4 (Block-based period). Given a string X of length n, positive integer p is

called a block-based period of X, if

X[1 : p] ≈ X[kp+ 1 : kp+ p] for k ∈ {1, . . . , bn/pc − 1} and,

X[1 : r] ≈ X[n− r + 1 : n] for r = n mod p.

String X of length n is block-periodic, if there exists a block-based period p ≥ 2 of X

such that n ≥ 2p. Otherwise, it is block-aperiodic.

Definition 2.5 (Border-based period). Given a string X of length n, positive integer p

is called a border-based period of X if X[1 : n− p] ≈ X[p+ 1 : n].

For exact matching, if p is a border-based period of a string X, all block-based pe-

riods are also border-based periods. However, the reverse does not necessarily hold true

for SCER [39]. For instance, in order-preserving matching X = (13, 7, 10, 21, 14, 18,

20, 11, 15, 28, 22, 25) has a block-based period 3, since X[1 : 3] ≈ X[4 : 6] ≈ X[7 : 9] ≈

X[10 : 12]. However, X does not have a border-based period 3, since X[1 : 9] 6≈ X[4 : 12].

X has a border-based period 6, since X[1 : 6] ≈ X[7 : 12].

Matsuoka et al. [39] proved analogous lemma to the periodicity lemma [26] for block-

based periods. The periodicity lemma states that if a string X has two block-based

periods p, q and p+ q − gcd(p, q) ≤ |X|, then gcd(p, q) is also a block-based period of X.

Lemma 2.6 ([39]). Let P be any non-empty set of positive integers with gcd(P) 6∈ P,

and Σ be any alphabet of size at least 2. If a string x ∈ Σ∗ has block-based periods p for

all p ∈ P and |x| ≥ bopt(P), then x has also a block-based period gcd(P).

For exact matching, if P = {p, q}, then bopt(P) = p + q − gcd(p, q). For order-

preserving matching, Matsuoka et al. [39] have also shown that bopt(P) = p+q−gcd(p, q).
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2.3 The model of parallel computation
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Figure 2.1: Suppose that a and b are periods of X. If a+ b < |X|, then (b+a) is a period
of X. If a < b, then (b− a) is a period of X[1 : |X| − a].

Unfortunately, the analogous to the periodicity lemma does not hold for SCER border-

periods. For instance, consider string X = abacadaeafad in parameterized matching,

it has a border-based periods 6, 8, but does not have a border-based period of 2. The

following lemma implies that if p is a period of X, then so is qp for every positive integer

q ≤ b(|X| − 1)/pc.

Lemma 2.7. Suppose that a and b are periods of X. If a + b < |X|, then (b + a) is a

period of X. If a < b, then (b− a) is a period of X[1 : |X| − a].

Proof: Let n = |X|. Since a is a period of X, by the definition X[1 :n−a] ≈ X[1 +a :n].

Thus, X[1 + b : n − a] ≈ X[a + b + 1 : n]. Similarly, since b is a period of X, by the

definition X[1 : n − b] ≈ X[1 + b : n]. Thus, X[1 : n − b − a] ≈ X[1 + b : n − a]. Thus,

X[1 + b : n− a] ≈ X[a+ b+ 1 : n] ≈ X[1 : n− b− a], which means that (b+ a) is a period

of X.

Since a and b are period of X, X[1+b−a:n−a] ≈ X[1+b:n] and X[1:n−b] ≈ X[1+b:n].

Thus, by the transitivity property, (b− a) is a period of X[1 : n− a].

2.3 The model of parallel computation

In this thesis we will use Parallel Random Access Machine (PRAM) to model our algo-

rithms. PRAM is a shared memory model, which neglects any hardware constraints. The

processors work synchronously and communicates through the common random-access

memory. The overhead of synchronizing the processors is also neglected. The cost of
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2.3 The model of parallel computation

arithmetic procedures such as addition, subtraction or check for an equality is considered

to take a constant time. Parallel programs quickly become complicated, as we start to

impose restrictions on the hardware. From the theoretical point of view, the simplicity

and the universality of PRAM makes it convenient to assess efficiency of algorithms. It

has been shown that PRAM can be simulated on more realizable parallel models with a

polylogarithmic time cost [22].

The processors are indexed using natural numbers and execute the same program. Al-

though they are executing the same program, each processors might be accessing different

portions of the data. In one operation each processor can access one memory location.

Depending on the allowance of simultaneous reads from or writes into the same memory

location, PRAMs are divided into the four categories: Exclusive/Concurrent Read and

Exclusive/Concurrent Write PRAMs. In this thesis, we will use the Concurrent Read

Concurrent Write PRAM (CRCW-PRAM), which allows simultaneous reads and writes

into the same memory location.

There are different policies for resolving conflicts during simultaneous writes. To avoid

overcomplicating our algorithm with technical details we choose the Priority CRCW-

PRAM. In the Priority CRCW-PRAM, When multiples processors try to write into the

same memory location, the processor with the smallest index succeeds. It can be shown

that Priority CRCW-PRAM can be simulated on the Common CRCW-PRAM, which is

the weakest model among CRCW-PRAM, with a logarithmic overhead. In the Common

CRCW-PRAM, the memory location is updated only if all processors that attempt to

write the same value.

Algorithms modeled using the PRAM are assessed on two scales: time and work. Time

is the time complexity of the algorithm, while work is the total number of elementary

operations. There is a general theorem, called Brent’s theorem, that relates the number

of processors to the time and the work. The proof of Brent’s theorem can be found in

many literatures, but we present it as it is stated in [20].

16



2.3 The model of parallel computation

Theorem 2.8 (Brent’s theorem [10]). Any synchronous parallel algorithm taking time t

that consists of a total of x elementary operations can be implemented by p processors

within a time of bx/pc+ t.

Designers of parallel algorithm strive for an algorithm, whose work complexity is same

as the time complexity of the fastest know serial algorithm that solves the same problem.

17



Chapter 3

Serial duel-and-sweep algorithms for

SCER

In this chapter we describe our serial duel-and-sweep pattern matching algorithm for

SCER. At the end of the chapter, we discuss these algorithms on the instances of pa-

rameterized and order-preserving matchings. For our serial algorithm, it suffices to use

≈-prefix encoding. In this chapter, X̃ means an ≈-prefix encoding for a string X, unless

otherwise stated. For a string X of length n, we assume that X̃ can be computed in τ|X|

time in serial. Assuming that X̃ has been computed, we assume that re-encoding the

element at position k with respect to some suffix X[i :] takes ξ|X[i:]| time in serial.

3.1 Pattern matching for SCER

3.2 Overview of duel-and-sweep algorithm

We give an overview of the duel-and-sweep algorithm [2, 44], which is applicable to all

our algorithms. The duel-and-sweep algorithm preprocesses the pattern first to find oc-

currences of the pattern inside the text efficiently. The pattern is first preprocessed to

obtain a witness table, which is later used to prune candidates during the pattern search-
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3.2 Overview of duel-and-sweep algorithm

ing. As the name suggests, in the duel-and-sweep algorithm, the pattern searching is

divided into two stages: the dueling stage and the sweeping stage. The pattern search-

ing algorithm prunes candidates that cannot be pattern occurrences, first, by performing

“duels” between, then by “sweeping” through the remaining candidates to obtain pattern

occurrences.

First, we explain the idea of dueling. Suppose P is superimposed on itself with an

offset a < m and the two overlapped regions of P does not match. Then it is impossible

for two candidates with offset a to match P . The dueling stage lets each pair of candidates

with such offset a “duel” and eliminates one based on this observation, so that if candidate

Tx gets eliminated during the dueling stage, then Tx 6≈ P . However, the opposite does

not necessarily hold true: Tx surviving the dueling stage does not mean that Tx 6≈ P . On

the other hand, it is guaranteed that if distinct candidates that survive the dueling stage

overlap, their prefixes of certain length match. The sweeping stage takes the advantage

of this property when checking whether some surviving candidate and the pattern match,

so that this stage can be done also quickly.

Prior to the dueling stage, the pattern is preprocessed to construct a witness table

based on which the dueling stage decides which pair of overlapping candidates should

duel and how they should duel. For each offset 0 < a < m, when the overlapped regions

obtained by superimposing P on itself with offset a do not match, we need only one

position i to say that the overlapping regions do not match. Given an offset a, w is a

witness for the offset a for that offset if P̃a+1[w] 6= P̃ [w] (Figure 3.1). We denote by

WP (a) the set of all witnesses for offset a. Obviously,WP (a) = ∅ for a = 0,m−1,m. The

witness table W [0 :m− 1] is an array, such that W [a] is a witness for offset a. When the

overlap regions match for offset a, which implies that no witness exists for a, we express

it as W [a] = 0.

More formally, in the dueling stage, we “duel” positions x and x+a such thatWP (a) 6=

∅ (see Figure 3.2). If w ∈ WP (a), then it holds that
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3.2 Overview of duel-and-sweep algorithm
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Figure 3.1: Illustration of a witness w for an offset a.
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Figure 3.2: Candidate positions x and x+ a are performing a duel using a witness w for
offset a.

• if T̃x+a[w] = P̃ [w], then Tx 6≈ P ,

• if T̃x+a[w] 6= P̃ [w], then Tx+a 6≈ P .

Based on this observation, we can safely eliminate either candidate Tx or Tx+a without

looking into other positions. This process is called dueling (Algorithm 1).

On the other hand, if the offset a has no witness pair, i.e. P [1 :m− a] ≈ P [a+ 1 :m],

no dueling is performed on them. We say that a position x is consistent with x + a if

WP (a) = ∅. The following lemma shows that the consistency property is transitive.

Lemma 3.1. For any a, b, c such that 0 < a ≤ b ≤ c < m, if a is consistent with b and b

is consistent with c, then a is consistent with c.

Algorithm 1: Dueling with respect to S. There is one survivor assuming x is
not consistent with y.

1 Function Dueling(S̃, x, y)
2 w ← W [y − x];

3 if S̃y[w] = P̃ [w] then return y ;
4 return x;
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3.2 Overview of duel-and-sweep algorithm

Proof: Recall that a being consistent with b means that b− a is a period of P . Then the

fact that b− a and c− b are periods implies c− a is a period by Lemma 2.7.

After the dueling stage, all surviving candidate positions are pairwise consistent. The

dueling stage algorithm makes sure that no occurrence gets eliminated during the dueling

stage. Taking advantage of the fact that surviving candidates from the dueling stage are

pairwise consistent, the sweeping stage prunes them until all remaining candidates match

the pattern. By ensuring pairwise consistency of the surviving candidates, the pattern

searching algorithm reduces the number of times a position in the text is referenced during

the sweeping stage.

3.2.1 Pattern preprocessing

The goal of the preprocessing stage is to compute a witness table W [0:m], where W [a] = 0

iff WP (a) = ∅, otherwise W [a] = w ∈ WP (a). First, we compute LCPP (a) for all

0 ≤ a < m1. The procedure is described in Algorithm 2. Algorithm 2 has the following

invariant.

• Variable a holds the leftmost offset i > 0 such that the value of i + LCP [i] is the

greatest.

• For all i ∈ {0, . . . ,m− 1}, P [i+ 1 : i+ LCP [i]] ≈ P [1 : LCP [i]].

We discuss the correctness of Algorithm 2. The algorithm maintains variable a such

that P [a+ 1 : a+ LCP [a]] ≈ P [1 : LCP [a]] such that (a+ LCP [a]) is as large as possible.

For each 1 ≤ i < m, the algorithm checks whether i+1 ≤ a+LCP [a] and if so, since P [1+

a : a+LCP(a)] ≈ P [1 : LCP(a)], we can say that LCP [i] ≥ min(a+LCP [a]−i,LCP [i−a])

(Figure 3.3); otherwise LCP [i] is set to 0. At this point, the actual LCPP (i) may be larger.

Thus, in the while loop, LCP [i] is incremented until P [1 : LCP [i]] ≈ P [i+1 : i+ZP [i]] and

P [1 : LCP [i] + 1] 6≈ P [i+ 1 : i+ LCP [i] + 1]. Now, by the condition (4) of Defintion 2.3,

1Algorithm for the construction of LCPP (a) for all 0 ≤ a < m is similar to Z-algorithm [28].
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3.2 Overview of duel-and-sweep algorithm

Algorithm 2: Serial algorithm for computing LCPP (i) for all 0 ≤ i < m

1 Function ComputeLCP(P̃)
2 Create array LCP [0 : m− 1] and initialize all elements to 0;
3 LCP [0]← m;
4 a← 1;
5 for i = 1 to m− 1 do
6 if i < a+ LCP [a] then
7 LCP [i]← min(a+ LCP [a]− i,LCP [i− a]);

8 while i+ LCP [i] ≤ m and P̃i+1[LCP [i]] = P̃ [LCP [i]] do
9 LCP [i]← LCP [i] + 1;

10 if i+ LCP [i] > a+ LCP [a] then
11 a← i;

12 return LCP ;
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Figure 3.3: By Algorithm 2 invariant, P [a + 1 : a + LCPP (a)] ≈ P [1 : LCPP (a)] and
P [i − a + 1 : i − a + LCPP (i − a)] ≈ P [1 : LCPP (i − a)]. Thus, LCPP (i) ≥ min(a +
LCPP (a)− i,LCPP (i− a)).

X1 6≈ Y1 =⇒ X1X2 6≈ Y1Y2, where X1, X2, Y1, Y2 ∈ Σ∗ and X1X2 is a concatenation of

X1 and X2 (similarly, Y1Y2 is a concatenation of Y1 and Y2). As a consequence of this, we

have the following. If P [i+ 1 : i+ LCP [i] + 1] 6≈ P [1 : LCP [i] + 1], then for all the values

j > LCP [i], P [i+ 1 : j] 6≈ P [1 : j].

Lemma 3.2. Given P̃ , Algorithm 2 correctly computes LCPP (i) for all 0 ≤ i < m in

O(ξm ·m) time.

Proof: The condition in the while loop is checked in O(ξm) time. The number of iterations

of the outer loop is O(m). Thus, the overall time complexity is O(ξm ·m).

Using the value of LCPP (a), we can easily verify whether WP (a) is empty or not. If
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3.2 Overview of duel-and-sweep algorithm

Algorithm 3: Serial algorithm for the pattern preprocessing

1 Function PreprocessingSerial(P̃)
2 create array of integers W [0 : m− 1];

3 LCP ← ComputeLCP(P̃);
4 for a = 0 to m− 1 do
5 if LCP [a] = m− a then W [a]← 0;
6 else
7 W [a]← LCP [a] + 1;

8 return W ;

LCPP (a) = m−a, that is, if P is overlapped on itself with the offset a and the overlapping

regions match, then WP (a) = ∅. If LCPP [a] < m − a, then LCPP (a) + 1 is the tight

mismatch position, i.e., (LCPP (a) + 1) ∈ WP (a).

Lemma 3.3. For a pattern P of length m, Algorithm 3 constructs a witness table WP in

O(ξm ·m) time, assuming that P̃ is already computed.

3.2.2 Pattern searching

Recall that the pattern searching consists of the dueling and the sweeping stages. The

process of the dueling stage is shown in Algorithm 4. This stage eliminates candidates

until all surviving candidate positions are pairwise consistent. The serial algorithm uses

a stack to maintain candidates which are consistent with each other. A new candidate y

will be pushed to the stack if the stack is empty. Otherwise y is checked by comparing it

to the topmost element x of the stack. By the consistency transitivity, if x is consistent

with y, all the other elements in the stack are consistent with y, too. Thus we can push

y to the stack. On the other hand, if x is not consistent with y, we should exclude one of

the candidates by dueling them. If x wins the duel, we put x back to the stack, discard

y, and get a new candidate. If y wins the duel, we exclude x and continue comparison of

y with the top element of the stack unless the stack is empty.

Lemma 3.4 ([2]). The dueling stage can be done in O(ξm · n) time by using a witness
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3.2 Overview of duel-and-sweep algorithm

Algorithm 4: Serial algorithm for the dueling stage

1 Function DuelingStageSerial(T̃ , P̃ ,W)

2 create stack ;
3 for y = 1 to n−m+ 1 do
4 while stack is not empty do
5 pop x from stack ;
6 if W [y − x] = 0 then
7 push x and y to stack ;
8 break;

9 else
10 surv ← Dueling(x, y − x);
11 if surv = x then
12 push x to stack ;
13 break;

14 else
15 push y to stack ;
16 break;

17 if stack is empty then
18 push y to stack ;

19 return stack ;

table W .

A naive implementation of sweeping requires O(ξm · n2) time. Algorithm 5 takes

advantage of the fact that all the remaining candidates are pairwise consistent, so that we

can reduce the time complexity to O(ξm · n) time. Suppose there is a tight mismatch at

position j when comparing P with Tx, that is, Tx[1:j−1] ≈ P [1:j−1] and Tx[1:j] 6≈ P [1:j].

If the next candidate is Tx+a with a < j, since P [1 : j − a − 1] ≈ P [a + 1 : j − 1] ≈

Tx[a + 1 : j − 1] ≈ Tx+a[1 : j − a − 1], we can start comparison of P and Tx+a from the

position where the mismatch with Tx occurred. If P ≈ Tx, the above discussion holds for

j = m + 1. Therefore, the total number of comparison is bounded by O(n), by applying

the same argument on the complexity of the KMP algorithm for exact matching.

Lemma 3.5. The sweeping stage can be completed in O(ξm · n) time.

By Lemmas 3.3, 3.4, and 3.5, we summarize this section as follows.
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3.3 Parameterized matching

Algorithm 5: Serial algorithm for the sweeping stage

1 Function SweepingStageSerial(P̃ , T̃)
2 while there are unchecked candidates to the right of Tx do
3 let Tx be the leftmost unchecked candidate;
4 if there are no candidates overlapping with Tx then
5 if Tx 6≈ P then eliminate Tx;
6 else
7 let Tx+a be the leftmost candidate that overlaps with Tx;
8 if Tx ≈ P then start checking Tx+a from the position m− a+ 1 ;
9 else

10 let j be the mismatch position;
11 eliminate Tx;
12 start checking Tx+a from the position j − a;

Theorem 3.6. Given a text T of length n and a pattern P of length m, the duel-and-

sweep algorithm solves the pattern matching problem for a SCER ≈ in O(τn + ξm · n)

time.

In the following sections we discuss specific instances of SCER. Since prev-encoding

for parameterized matching and parent-distance encoding for cartesian-tree matching are

≈-encodings, algorithms for solving the pattern matching problem for these matchings di-

rectly from the SCER algorithm. Nearest-neighbor encoding for order-preserving match-

ing and encoding for parameterized matching are not ≈-encodings. Despite this fact, we

show that there exists a duel-and-sweep algorithm similar to the SCER algorithm that

solves the pattern matching problem for these SCER. For order-preserving matching, we

further extend the algorithm to solve the 2D pattern matching.

3.3 Parameterized matching

We fix two alphabets Σ and Π. We call elements of Σ constant symbols and those of Π

parameter symbols. An element of Σ∗ is called a constant string and that of (Σ ∪ Π)∗ is

called a parameterized string, or p-string for short. We assume that the size of Σ and Π
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3.3 Parameterized matching

are constant. Two strings X and Y of the same length parameterized match, if X can be

transformed into Y by applying a bijection g between the characters of X and Y .

Definition 3.7 (Parameterized equivalence [5]). Given two p-strings X and Y of length

n, X ≈ Y , iff there is a bijection f on Σ ∪ Π such that f(a) = a for any a ∈ Σ and

f(X[i]) = Y [i] for all 1 ≤ i ≤ n [5].

We can determine whether X ≈ Y or not by using a ≈-encoding called prev-encoding

defined as follows.

Definition 3.8 (Prev-encoding [5]). For a string X of length n over Σ ∪ Π, the prev-

encoding for X, denoted by prev(X), is defined to be a string over Σ∪N of length n such

that for each 1 ≤ i ≤ n,

prev(X)[i] =


X[i] if X[i] ∈ Σ,

∞ if X[i] ∈ Π and X[i] 6= X[j] for 1 ≤ j < i,

i− k if X[i] ∈ Π and k = max{j | X[j] = X[i] and 1 ≤ j < i}.

(3.1)

For any strings X and Y , X ≈ Y if and only if prev(X) = prev(Y ) [5]. For example,

given Σ = {a, b} and Π = {u, v, x, y}, X = uvvvauuvb and Y = xyyyaxxyb are p-matches

by f such that f(u) = x and f(v) = y, where prev(X) = prev(Y ) = 0011a514b. It is easy

to see that prev-encoding is a ≈-encoding. We denote the prev-encoding of suffix X[k :]

as prev(X)k. For instance, for X = uvvvauuvb, prev(X)3 = 01a014b.

Lemma 3.9. ([5]) Given a string X, prev(X) can be constructed in O(|X| log |Π|) time

in serial.
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Given prev(X)[i], prev(X)k[i] can be computed in the following manner in O(1) time.

prev(X[x : n])[i] =


∞ if X[x+ i− 1] ∈ Π and prev(X)[x+ i− 1] ≥ i,

prev(X)[x+ i− 1] otherwise.

(3.2)

From the discussions above, for parameterized matching τn = O(n log |Π|) and ξm =

O(1). By simple extension of the SCER algorithm described in the previous section, we

obtain the following the result.

Theorem 3.10. Parameterized pattern matching problem can be solved in O(n log |Π|+n)

time in serial, where |Π| is size of the variable alphabet.

3.4 Cartesian-tree matching

A string X can be associated with its corresponding Cartesian tree CTX according to the

following rules [41]:

• If X is an empty string, CTX is an empty tree.

• If X[1 : n] is not empty and X[i] is the minimum value, CTX is the tree with X[i]

as the root, CTX[1:i−1] as the left subtree, and CT S[i+1..n] as the right subtree. If

there are two or more minimum values, we choose the leftmost one as the root.

Two strings X and Y cartesian-tree match iff CTX = CT Y . For a string X, its

parent-distance encoding [41] for cartesian-tree matching PDX is defined as follows.

PDX [i] =


i−max1≤j<i{j | X[j] ≤ X[i]} if such j exists,

0 otherwise.
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3.5 Palindrome matching

Given PDX , PDX[x:n][i] can be computed in the following manner in O(1) time.

PDX[x:n][i] =


0 if PDX [x+ i− 1] ≥ i,

PDX [x+ i− 1] otherwise.

Lemma 3.11. ([41]) Given a string X of length n, PDX can be computed in O(n) time

in serial.

Parent-distance encoding is an ≈-prefix encoding, thus, by simple extension of the

SCER algorithm we have the following.

Theorem 3.12. Cartesian-tree pattern matching problem can be solved in O(n) time in

serial.

3.5 Palindrome matching

Palindrome is a string that reads same both in forward and backward direction. Let Σ

be a finite alphabet. For a string X ∈ Σ∗, let XR be the reverse of X. A string X is a

palindrome iff X = XR. If |X| is even, then X = Y Y for some Y ∈ Σ∗. If |X| is odd,

then X = Y yY for some Y ∈ Σ∗ and y ∈ Σ. The radius of a palindrome X is equal to

|X|/2.

Given a string X, a palindromic center of a substring X[i : j] is (i + j)/2. A palin-

dromic substring X[i : j] is called the maximal palindrome at center (i + j)/2 if no

other palindrome at center (i + j)/2 has a radius larger than X[i : j]. Let Pals(X)

be an ordered set of pairs (c, r) where r is the radius of the maximal palindrome at

centers c = 1, 1.15, 2, . . . , |X|. Formally, PalsX = {(c, r) | X[c − r + 0.5 : c + r −

0.5] is a maximal palindrome at center c = 1, 1.5, 2, . . . , |X|}. For the rest of the thesis,

we assume that PalsX is sorted in increasing order of centers and we denote the radius of

the maximal palindrome at center c as PalsX(c). Also, the we denote the left and right

28



3.5 Palindrome matching

ends of the maximal palindrome of X centered at c as LX(c) and RX(c), respectively.

That is, LX(c) = c−PalsX(c) + 0.5 and RX(c) = c+ PalsX(c)− 0.5. Given two p-strings

X and Y of length n, X and Y palindrome match (pal-match), if PalsX = PalsY [42].

Lemma 3.13. ([38]) Given a string X, PalsX can be constructed in O(|X|) time in serial.

Given PalsX , PalsX[x:y](c) such that x ≤ c ≤ y can be computed in the following

manner in O(1) time. Let c′ = c+ x− 1.

PalsX[x:y](c) =


PalsX(c′) if x ≤ LX(c′) and RX(c′) ≤ y,

min(c′ − x+ 0.5, y − c′ + 0.5) otherwise.

(3.3)

For a string X, to efficiently compute LCPX(i) for all 0 ≤ i < |X|, we define array

LpalX [42]. The value of LpalX [i] is the length of the longest palindrome that ends at

position i of X. Formally, for a string X of length n, LpalX is an integer array of length

n such that LpalX [i] = max{i− k + 1 | X[k : i] = X[k : i]R, 1 ≤ k ≤ i}.

Lemma 3.14. ([42]) For two strings of same length X and Y , PalsX = PalsY iff

LpalX = LpalY .

Tomohiro et al. [42] showed that, given PalsX , LpalX can be constructed in O(|X|)

time in online fashion. PalsX is not an ≈-prefix encoding, however LpalX is an ≈-

prefix encoding. Given PalsP and LpalP , computing LpalP [s:i][i − s + 1] for random s

and i takes O(m) time. First, we show that there exists an O(m) time algorithm that

computes LCPP (i) for all 0 ≤ i < m, given LpalP . On Line 8 of Algorithm 2, the SCER

algorithm checks if P̃i+1[LCP [i]] = P̃ [LCP [i]]. This, this is equivalent to checking for

P [1 + i : i + LCP [i]] ≈ P [1 : LCP [i]] or not, assuming that P [1 + i : i + LCP [i] − 1] ≈

P [1 : LCP [i]− 1]. Thus, we need to know the value of LpalP [s:i][i− s+ 1] for some s and

i.

We define active center for LpalP [s:i]. By the definition LpalP [s:i][i−s+1] = 2(i−c)+1

where (c, r) is the maximal palindrome in PalsP such that c is the smallest center satisfying
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3.5 Palindrome matching

Algorithm 6: Serial algorithm for computing LCPP (i) for all 0 ≤ i < m (palin-
drome matching)

1 create global variable c;
2 c← 0;
3 Function GetLpal(i, x)
4 Let (c− i, r) ∈ PalsP [i+1:i+x];
5 while c− i+ r < x do
6 c← c+ 0.5;
7 Let (c− i, r) ∈ PalsP [i+1:i+x];

// p = LpalP [i+1:i+x][x]

8 lpal ← 2(x− (c− i)) + 1;
9 return lpal ;

10 Function ComputeLCP(PalsP ,LpalP)
11 Create array LCP [0 : m− 1] and initialize all elements to 0;
12 LCP [0]← m;
13 a← 1;
14 for i = 1 to m− 1 do
15 if i < a+ LCP [a] then
16 LCP [i]← min(a+ LCP [a]− i,LCP [i− a]);

17 while i+ LCP [i] ≤ m and GetLpal(i,LCP [i]) = LpalP [LCP [i]] do
18 LCP [i]← LCP [i] + 1;

19 if i+ LCP [i] > a+ LCP [a] then
20 a← i;

21 return LCP ;

c ≥ (s+i)/2 and c+r ≥ i. We call such center c the active center and denote is AC P (s, i).

Thus, LpalP [s:i][i−s+1] = 2(i−AC P (s, i))+1. Tomohiro et al. [42]showed that if s and i

monotonically increase from 1 to m, then the total cost for computing LpalP [s:i][i− s+ 1]

for all s and i never exceeds the number of the centers in P , which is 2m− 1.

Lemma 3.15. ([42]) Given a string X be any string of length n, for any integers s, i, s′, i′

such that 1 ≤ s ≤ i ≤ n and 1 ≤ s′ ≤ i′ ≤ m, if s ≤ s′ and i ≤ i′, then ACX(s, i) ≤

ACX(s′, i′).

The algorithm for computing LCPP (i) for all 0 ≤ i < m is shown in Algorithm 6.

ComputeLCP of Algorithm 6 is similar to Algorithm 2, except for the while-loop condition

check. GetLpal(i, x) returns the value of LpalP [i+1:i+x][x]. Algorithm 6 has the following
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3.5 Palindrome matching

invariant in addition to the invariants of the SCER algorithm (Algorithm 2).

• At the end of each iteration of the outer for loop, the global variable c holds the

value of AC P (i+ 1, i+ LCPP [i]).

We discuss the correctness of Algorithm 6. Suppose that Algorithm 6 correctly computed

LCPP (j) for all 0 < j < i and LCP [i−1] is equal to LCPP (i−1), we have the prove that

the algorithm correctly computes LCPP (i− 1). On Line 15, the value of LCP [i] is set to

min(a+ LCP [a]− i,LCP [i− a]). Since, for a, P [a+ 1 : a+ LCP [a]] ≈ P [1 : LCP [a]] such

that (a+LCP [a]) is as large as possible, i+LCP [i] ≥ j+LCP [j] for any 0 < j < i. Using

Lemma 3.15, AC P (i+ 1, i+ LCP [i]) ≥ AC P (j + 1, j + LCP [j]) for any 0 < j < i. Thus,

AC P (i + 1, i + LCP [j]) ≥ c, and GetLpal naively searches for AC P (i + 1, i + LCP [j])

starting from center c. Now, given integers i a, let us consider finding LpalP [i+1:i+x][x].

By Lemma 3.15, AC P (i + 1, i + x − 1) ≤ AC P (i + 1, i + x). Before the algorithm calls

GetLpal for i and x, the value of c is set to AC P (i+ 1, i+ x− 1) and algorithm searches

for AC P (i+ 1, i+ x) starting from center c.

Lemma 3.16. Given PalsP and LpalP , Algorithm 6 correctly computes LCPP (i) for all

0 ≤ i < m in O(m) time.

Proof: By Lemma 3.15, to compute LCPP (i) for all 0 < i < m, each center is considered

O(1) times and there are O(m) centers. Since, for i and x, (c − i, r) ∈ PalsP [i+1:i+x] can

be computed in O(1), the overall time complexity is O(m).

Since LpalP is an ≈-prefix encoding, by simple extension of the SCER algorithm, we

obtain a O(n) pattern searching algorithm.

Theorem 3.17. Palindrome pattern matching problem can be solved in O(m + n) time

in serial.

31



3.6 Order-preserving matching

3.6 Order-preserving matching

3.6.1 One-dimensional matching

We say that two strings X and Y of equal length n are order-isomorphic, written X ≈ Y ,

if

X[i] ≤ X[j]⇐⇒ Y [i] ≤ Y [j] for all 1 ≤ i, j ≤ n.

For instance, (12, 35, 5) ≈ (25, 30, 21) 6≈ (11, 13, 20). If X 6≈ Y , then, there must exist a

pair 〈i, j〉 of positions (i < j) such that the condition above does not hold. We will call

such 〈i, j〉 a mismatch position pair for X and Y . We say that a mismatch position pair

〈i, j〉 is tight if X[1 : j − 1] ≈ Y [1 : j − 1] and X[1 : j] 6≈ Y [1 : j].

In order to check the order-isomorphism of a string X with another string, Ku-

bica et al. [37] defined useful arrays LmaxX and LminX by

LmaxX [i] = j if X[j] = max
k<i
{X[k] | X[k] ≤ X[i]},

LminX [i] = j if X[j] = min
k<i
{X[k] | X[k] ≥ X[i]}.

We use the rightmost (largest) j if there exist more than one such j < i. If there is no

such j then we define LminX [i] = 0 and LmaxX [i] = 0. We will refer to LmaxX and

LminX as a nearest neighbor encoding for order-preserving matching. It is easy to verify

that the nearest neighbor encoding is a ≈-prefix encoding.

Lemma 3.18 ([37]). For a string X, LmaxX and LminX can be computed in O(|X| log |X|)

time.

From the definition, we can easily observe the following properties. For a position
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3.6 Order-preserving matching

i ∈ {1, . . . , |X|} such that LmaxX [i] 6= 0 and LminX [i] 6= 0,

X[LmaxX [i]] = X[i] ⇐⇒ X[i] = X[LminX [i]], (3.4)

X[LmaxX [i]] < X[i] ⇐⇒ X[i] < X[LminX [i]]. (3.5)

Using LmaxX and LminX , the order-isomorphism of two strings can be decided as follows.

Assuming that LmaxX and LminX are computed, for two strings X and Y of same length,

we define

F (X, Y, i) =


imin if imin 6= 0 and Y [imin] < Y [i],

imax if imax 6= 0 and Y [imax] > Y [i],

0 otherwise,

(3.6)

where imin = LminX [i] and imax = LmaxX [i]. If both conditions in Equation 3.6 hols,

either imin or imax can be taken. For a = F (X, Y, i), if a 6= 0, then 〈a, i〉 is a mismatch

position pair for X 6≈ Y . When checking order-isomorphism of two strings using the

nearest neighbor encoding, it suffices to encode only one of them.

Lemma 3.19 ([16]). For two strings X and Y of length n, assume that X[1 : i − 1] ≈

Y [1 : i− 1] for some 0 < i < n. Then X[1 : i] ≈ Y [1 : i] iff F (X, Y, i) = 0.

Corollary 3.20. Given Two strings X and Y of length n, if for some position i, F (X, Y, i) 6=

0, then X 6≈ Y .

For a string S, LmaxX and LminX arrays can be computed in O(sort(X) + |X|) time.

Lemma 3.21 ([37]). For a string X, let sort(X) be the time required to sort the elements

of S. LmaxX and LminX can be computed in O(sort(X) + |X|) time.

The nearest neighbor encoding is convenient for checking the order-isomorphism, but

it is expensive to re-encode a suffix of a string. Thus, for our pattern matching algorithm
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for order-preserving pattern matching (OPPM), we encode only the pattern, once, at the

beginning, and work with the “raw” pattern and text. LmaxP and LmaxP will be used

only for the following two situations.

• checking order-isomorphism of candidates with the pattern in the sweeping stage,

and

• checking order-isomorphism of prefixes of P with their corresponding suffixes of P ,

when constructing a witness table.

Next, we modify the definition of witnesses for OPPM. For each offset 0 < a < m, the

SCER algorithm saves a single position i such that P̃a+1[i] 6= P̃ [i+a]. Such position i was

called a witness for the offset a. Let us consider a case when P is not encoded. In OPPM,

we need two positions as a witness to say that the two strings are not order-isomorphic.

Therefore, when the overlapped regions obtained by superimposing P on itself with offset

a are not order-isomorphic, we use a mismatch position pair 〈i, j〉 called a witness pair

for offset a if either of the following holds:

• P [i] = P [j] and P [i+ a] 6= P [j + a],

• P [i] > P [j] and P [i+ a] ≤ P [j + a],

• P [i] < P [j] and P [i+ a] ≥ P [j + a].

Thus, W [a] contains a witness pair, if WP (a) 6= ∅. When the overlap regions are order-

isomorphic for offset WP (a) = ∅, W [a] = 〈0, 0〉. Hereinafter, we will refer to 〈0, 0〉 as a

zero. Table 3.1 shows an example of a witness table. We denote a pair of elements P [i]

and P [j] in P as P [i, j]. If for P [i, j] and P [i + a, j + a] either of the above conditions

hold, we write it as P [i, j] 6≈ P [i+ a, j + a].
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Table 3.1: Witness table W for a string P = (18, 22, 12, 50, 10, 17). For instance, the
witness pair W [2] for offset 2 is 〈2, 4〉, because P [2] = 22 < 50 = P [4] and P [2 + 2] =
50 > 17 = P [4 + 2]. On the other hand, W [4] = 〈0, 0〉, since P [1 : 2] ≈ P [5 : 6].

0 1 2 3 4 5 6
P 18 22 12 50 10 17
W 〈0, 0〉 〈1, 2〉 〈2, 4〉 〈1, 2〉 〈0, 0〉 〈0, 0〉 〈0, 0〉

Table 3.2: The Z-array of P = (18, 22, 12, 50, 10, 17). For instance, ZP [3] = 3 because P [1:
3] = (18, 22, 12) ≈ (12, 50, 10) = P [3 : 5] and P [1 : 4] = (18, 22, 12, 50) 6≈ (12, 50, 10, 17) =
P [3 : 6]. LmaxP and LminP are also shown.

1 2 3 4 5 6
P 18 22 12 50 10 17
ZP 6 1 3 1 2 1

LmaxP 0 1 0 2 0 3
LminP 0 0 1 0 3 1

Pattern preprocessing

Recall that the goal of the preprocessing stage is to compute the witness table W [0 :

m], where W [a] = 〈0, 0〉 iff WP (a) = ∅, otherwise W [a] = 〈w1, w2〉 ∈ WP (a). The

preprocessing of our serial algorithm is described in Algorithm 3. First, we construct the

LmaxP and LminP arrays for P . Hasan et al. [29] gave an algorithm to compute Z-array

for OPPM. Recall that, for P , the Z-array of P for OP matching is defined by

ZP [i] = max
1≤j≤m−i+1

{j | P [1 : j] ≈ P [i : i+ j − 1]} for each 1 ≤ i ≤ m.

An example of the Z-array is illustrated in Table 3.2.

Lemma 3.22. ([29]) For a string X, the Z-array ZX can be computed in O(|X|) time,

assuming that LmaxX and LminX are already computed.

Using the value of ZP [i], we can verify whether WP (i− 1) is empty or not. If ZP [i] =

m− i+ 1, that is, if P is overlapped on itself with the offset (i− 1) and the overlapping

regions are order-isomorphic, then WP (i − 1) = ∅. If ZP [i] = j < m − i + 1, then

WP (i − 1) 6= ∅ and there must exist a position pair 〈j′, j〉 ∈ WP (i − 1), where j′ < j.
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Algorithm 7: Dueling for OPPM

1 Function Dueling(x, a)
2 〈i, j〉 ← W [a];
3 surv ← x+ a;
4 if (P [i], P [j]) 6≈ (T [x+ a+ i− 1], T [x+ a+ j − 1]) then
5 surv ← x;

6 return surv;

Specifically, for an offset a, let i = ZP [a + 1] + 1. Suppose that imin = LminP [i] and

imax = LmaxP [i].

• If imax 6= 0 and (P [imax], P [i]) 6≈ (P [imax + a], P [i+ a]), then 〈imax, i〉 ∈ WP (a).

• If imin 6= 0 and (P [imin], P [i]) 6≈ (P [imin + a], P [i+ a]), then 〈imin, i〉 ∈ W(a).

Lemma 3.23. For a pattern P of length m, Algorithm 3 constructs a witness table W in

O(m) time assuming that ZP is already computed.

Pattern searching

In the dueling stage, witness pairs are used in the following manner. Suppose that W [a] =

〈i, j〉, where P [i] < P [j] and P [i+ a] ≥ P [j + a], for example. Then, it holds that

• if T [x+ a+ i− 1] ≥ T [x+ a+ j − 1], then Tx+a 6≈ P ,

• if T [x+ a+ i− 1] < T [x+ a+ j − 1], then Tx 6≈ P .

We can perform this processes similarly for other equality/inequality cases. Dueling for

OPPM is described in Algorithm 7. Fig. 3.4 gives an example run of the dueling stage.

Lemma 3.24 ([2]). The dueling stage can be done in O(n) time by using W .

Now, we discuss the sweeping stage for OPPM. Suppose that we need to check whether

some surviving candidate Tx is order-isomorphic to P . It suffices to successively compute

F (P, Tx, i) in Equation 3.6, starting from the leftmost position in Tx. If F (P, Tx, i) = 0
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Figure 3.4: An example run of the dueling stage for T = (8, 13, 5, 21, 14, 18, 20, 25, 15, 22),
P = (12, 50, 10, 17), and W = (〈0, 0〉, 〈1, 2〉, 〈0, 0〉, 〈0, 0〉, 〈0, 0〉). First, the position 1 is
pushed to the stack. Next, T2 duels with T1 and then T2 loses because P [1] < P [2] and
T2[1] > T2[2]. The next position 3 is pushed to the stack by W [3− 1] = 〈0, 0〉. Similarly,
T4 loses against T3, and 5 is accepted to the stack. For y = 6, T5 is removed and T6 is
added to the stack because P [1] < P [2], T6[1] < T6[2], and 3 is consistent with 6. Finally
T7 is defeats T6 and the contents of the stack become 1, 3, and 7.

for all positions i in Tx, then Tx ≈ P . Otherwise, Tx 6≈ P , and obtain a mismatch position

j, such that F (P, Tx, j) 6= 0.

Suppose there is a mismatch at position j when comparing P with Tx, that is, Tx[1 :

j − 1] ≈ P [1 : j − 1] and Tx[1 : j] 6≈ P [1 : j]. If the next candidate is Tx+a with a < j,

since P [1 : j − a − 1] ≈ P [a + 1 : j − 1] ≈ Tx[a + 1 : j − 1] = Tx+a[1 : j − a − 1], we can

start comparison of P and Tx+a from the position where the mismatch with Tx occurred.

If P ≈ Tx, the above discussion holds for j = m + 1. Therefore, the total number of

comparison is bounded by O(n). The analysis is same as that for the SCER algorithm.

Lemma 3.25. The sweeping stage can be completed in O(n) time.

By Lemmas 3.3, 3.4, and 3.5, we summarize this section as follows.

Theorem 3.26. Given a text T of length n and a pattern P of length m, the serial duel-

and-sweep algorithm solves the OPPM problem in O(n + m logm) time. Moreover, the
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Figure 3.5: Running time of the algorithms with respect to (a) text length, and (b) pattern
length.
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Figure 3.6: Number of comparisons in the algorithms with respect to (a) text length, and
(b) pattern length.

running time is O(n + m) under the natural assumption that the characters of P can be

sorted in O(m) time.

Experiments

In order to compare the performance of proposed algorithm with the KMP-based algo-

rithm [37, 35] on solving the OPPM problem, we performed two sets of experiments. In

the first experiment set, the pattern size m is fixed to 10, while the text size n is changed

from 100000 to 1000000. In the second experiment set, the text size n is fixed to 1000000

while the pattern size m is changed from 5 to 100. We measured the average of running

time and the number of comparisons for 50 repetitions on each experiment. We used
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randomly generated texts and patterns with alphabet size |Σ| = 1000. Experiments are

executed on a machine with Intel Xeon CPU E5-2609 8 cores 2.40 GHz, 256 GB memory,

and Debian Wheezy operating system.

The results of our experiments are shown in Figs. 3.5 and 3.6. We can see that our

algorithm is better than the KMP-based algorithm in running time and the number of

comparisons when the pattern size and text size are large. However, our algorithm was

slower when the pattern is very short, namely m = 5. The reason why the proposed

algorithm makes fewer comparisons than the KMP-based algorithm may be explained

as follows. The KMP-based algorithm relies on Lemma 3.19, which compares symbols

at three positions to check the order-isomorphism between a prefix of the pattern and a

substring of the text when the prefix is extended by one. On the other hand, the dueling

stage of our algorithm compares only two positions determined by the witness table. By

pruning candidates in the dueling phase, the number of precise tests of order-isomorphism

in the sweeping stage is reduced.

3.6.2 Two-dimensional matching

In this section, we will discuss how to perform two-dimensional order preserving pattern

matching (2d-OPPM). Array indexing is used for two-dimensional strings, the horizontal

coordinate x increases from left to right and the vertical coordinate y increases from top

to bottom. S[x, y] denotes an element of S at position (x, y) and S[x :x+w−1, y :y+h−1]

denotes a substring of S of size w × h with top-left corner at the position (x, y).

We say that two dimensional strings S and T are order-isomorphic, written S ≈ T, if

S[ix, iy] ≤ S[jx, jy] ⇐⇒ T[ix, iy] ≤ T[jx, jy] for all 1 ≤ ix, jx ≤ w and 1 ≤ iy, jy ≤ h. For

a simple presentation, we assume that both text and pattern are squares (w = h) in this

paper, but we can generalize it straightforwardly.

Definition 3.27 (2d-OPPM problem). The two-dimensional order-preserving matching

problem is defined as follows,
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3.6 Order-preserving matching

Input: A text T of size n× n and a pattern P of size m×m,

Output: All occurrences of substrings of T that are order-isomorphic to P.

Our approach is to reduce 2d-OPPM problem into 1d-OPPM problem, based on the

following observation. For two-dimensional string S, let serial(S) be a (one-dimensional)

string which serializes S by traversing it in the left-to-right/top-to-bottom order. We can

easily verify the following lemma.

Lemma 3.28. S ≈ T if and only if serial(S) ≈ serial(T) for any S and T.

Theorem 3.29. 2d-OPPM problem can be solved in O(n2m+m2 logm).

Proof:For a fixed 1 ≤ x ≤ n−m+ 1, consider the substring T[x :x+m− 1, 1:n] and let

Sx = serial(T[x :x + m− 1, 1 :n]). By Lemma 3.28, P occurs in T at position (x, y), i.e.

P ≈ T[x :x+m−1, y :y+m−1] if and only if serial(P) ≈ Sx[m(y−1)+1:m(y−1)+m2].

The positions m(y−1)+1 satisfying the latter condition can be found in O(nm+m2 logm)

time by 1d-OPPM algorithms, which we showed in the previous sections or KMP-based

ones [37, 35], because |Sx| = nm and |serial(P)| = m2. Because we need the preprocess

for the pattern serial(P) only once, and execute the search in Sx for each x, the result

follows.

In the rest of this paper, we try a direct approach to two-dimensional strings based

on the duel-and-sweep paradigm, inspired by the work [2, 19]. A substring of T of size

m×m will be referred as a candidate. Tx,y denotes a candidate with the top-left corner

at (x, y).

Pattern preprocessing

For 0 ≤ a < m and −m < b < m, we say that a pair 〈(ix, iy), (jx, jy)〉 of locations is a

witness pair for the offset (a, b) if either of the following holds:

• P[ix, iy] = P[jx, jy] and P[ix + a, iy + b] 6= P[jx, jy],
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3.6 Order-preserving matching

• P[ix, iy] > P[jx, jy] and P[ix + a, iy + b] ≤ P[jx, jy],

• P[ix, iy] < P[jx, jy] and P[ix + a, iy + b] ≥ P[jx, jy].

The witness table W for pattern P is a two-dimensional array of size m× (2m−1), where

W [a, b] is a witness pair for the offset (a, b). If the overlap regions are order-isomorphic

when P is superimposed with offset (a, b), then no witness pair exists. We denote it as

W [a, b] = 〈(m+ 1,m+ 1), (m+ 1,m+ 1)〉.

We show how to efficiently construct the witness table W . For P and each 0 ≤ a < m,

we define the Z-array ZP,a by

ZP,a[i] = max
1≤j≤|P1|−i+1

{j | P1[1 : j] ≈ P2[i : i+ j − 1]} for each 1 ≤ i ≤ |P1|,

where P1 = serial(P[1 :m − a, 1 :m]), P2 = serial(P[a + 1 :m, 1 :m]), and |P1| = |P2| =

m(m− a).

Lemma 3.30. For arbitrarily fixed a ≥ 0, we can compute the value of W [a, b] in O(1)

time and for each b, assuming that ZP,a is already computed.

Proof: For an offset (a, b) with b ≥ 0, let us consider za,b = ZP,a[b · (m− a) + 1].

Case 1 za,b = (m− a)·(m− b): Note that the value is equal to the number of elements

in the overlap region. Then P[1 : m− a, 1 : m− b] ≈ P[a+ 1 : m, b+ 1 : m], so that

no witness pair exists for the offset (a, b).

Case 2 za,b < (m−a)·(m−b): There exists a witness pair 〈(ix, iy), (jx, jy)〉, where (jx, jy)

is the location of the element in P, that corresponds to the (za,b + 1)-th element

of P1 = serial(P[1 : m − a, 1 : m]). By a simple calculation, we can obtain the

values (jx, jy) in O(1) time. We can also compute (ix, iy) from (jx, jy) in O(1) time,

similarly to the proof of Lemma 3.3, with the help of auxiliary arrays LmaxP,a and

LminP,a. (Details are omitted.)

Symmetrically, we can compute it for b < 0.
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36 47 20 9 49

42 44 31 8 11

17 39 28 12 23

22 12 16 15 27

24 29 11 42 49

36 47 20 9 49

42 44 31 8 11

17 39 28 12 23

22 12 16 15 27

24 29 11 42 49

36 47 20 9 49

42 44 31 8 11

17 39 28 12 23

22 12 16 15 27

24 29 11 42 49

Figure 3.7: An example of witness pair. The pattern P is shown on the left and the
alignment of P with itself with offset (3, 2) is shown on the right. The pair 〈(2, 1), (2, 2)〉
is a witness pair for offset (3, 2), since P[2, 1] = 47 > 44 = P[2, 2], but P[5, 3] = 23 <
27 = P[5, 4].

Table 3.3: Computation of ZP,3. For P in Fig. 3.7, the overlap regions for offset (3, 0) are
traversed in left-to-right/top-to-bottom order to obtain P1 and P2.

1 2 3 4 5 6 7 8 9 10
P1 36 47 42 44 17 39 22 12 24 29
P2 9 49 8 11 12 23 15 27 42 49

ZP,3 2 1 2 2 3 1 2 2 2 1

Lemma 3.31. We can construct the witness table W in O(m3) time.

Proof: Assume that we sorted all elements of P. For an arbitrarily fixed a, calculation

of LmaxP,a and LminP,a takes O(m2) time by using sorted P. ZP,a can be constructed in

O(m2) time by Lemma 3.22. Furthermore, finding witness pairs for all offsets (a, b) takes

O(m) time by Lemma 3.30. Since there are m such a’s to consider, W can be constructed

in O(m3) time.

Dueling stage

We can show the transitivity as follows.

Lemma 3.32. For any a, b, a′, b′ ≥ 0, let us consider three candidates T1 = Tx,y, T2 =

Tx+a,y+b, and T3 = Tx+a′,y+b′. If T1 is consistent with T2 and T2 is consistent with T3,

then T1 is consistent with T3.

Lemma 3.33. ([2]) The dueling stage can be done in O(n2) time by using W .
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3.6 Order-preserving matching

Table 3.4: Witness pairs for offsets (3, 0), (3, 1), (3, 2), (3, 3), (3, 3) for P in Fig. 3.7.
(a, b) (3, 0) (3, 1) (3, 2) (3, 3) (3, 4)
za,b 2 2 3 2 2

W [a, b] 〈(1, 1), (2, 1)〉 〈(1, 2), (2, 1)〉 〈(2, 1), (2, 2)〉 〈(1, 2), (2, 1)〉 〈(5, 5), (5, 5)〉

Figure 3.8: Example of traversing directions that we use for sweeping algorithm.

Sweeping stage

We first consider two surviving candidates Tx,y1 and Tx,y2 in some column x, with y1 < y2.

If we traverse T[x :x+m−1, 1:n] from top-to-bottom/left-to-right manner we can reduce

the problem to one-dimensional order-preserving problem. Thus performing the sweeping

stage for some column x will take O(nm) time. Since there are n−m− 1 such columns,

the sweeping stage will take O(n2m) time.

Next, we propose a method that takes advantage of consistency relation in both hor-

izontal and vertical directions. First, we construct m strings Pi = serial(P[1 : m − i, 1 :

m])serial(P[m− i+1 : m, 1 : m]) for 0 ≤ i < m by serializing P in different way. We then

compute LmaxPi
and LminPi

for 0 ≤ i < m, thus we can compare the order-isomorphism

of the pattern with the text in several different ways. LmaxPi
and LminPi

for 0 ≤ i < m

can be computed in O(n3) time by sorting serial(P) once and then calculated LmaxPi

and LminPi
by using the sorted serial(P). Fig. 3.8 shows Pi for 0 ≤ i < m where m = 5.

We also do the same computation for bottom-to-top/left-to-right traversing direction.

Let us consider two overlapping candidates Tx1,y1 and Tx2,y2 , where x1 < x2 and

y1 < y2. Suppose that Tx1,y1 is order-isomorphic to the pattern and we need to check

Tx2,y2 . Since Tx1,y1 is consistent with Tx2,y2 , we need to check the order-isomorphishm

of the region of Tx2,y2 that is not an overlap region. We do this by using Pj, where

j = x2 − x1, without checking the overlap region. This idea is illustrated in Figure 3.9

(a). The procedure for y1 > y2 is symmetrical.

Next, consider three overlapping candidates T1 = Tx1,y1 , T2 = Tx2,y2 and T3 = Tx3,y3 ,
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3.6 Order-preserving matching

(a) (b)

Figure 3.9: (a) Elements in the overlap region is checked only once. (b) Elements in the
blue region must be checked twice.

such that x1 ≤ x2 ≤ x3 and y2 ≤ y3. We assume that T1 and T2 are both order-isomorphic

to the pattern. If y1 ≤ y2, we can use the method for two overlapping candidates that we

described before to perform sweeping efficiently. However, if y1 ≥ y2, as showed in Fig. 3.9

(b), we need to check the blue region twice since we do not know the order-isomorphism

relation between the blue region with the overlap region of T2 and T3.

By using the above method, we can reduce the number of comparisons for sweep stage.

However, the time complexity remains the same.

Lemma 3.34. The sweeping stage can be completed in O(n2m) time.

By Lemmas 3.31, 3.33, and 3.34, we conclude this section as follows.

Theorem 3.35. The duel-and-sweep algorithm solves 2d-OPPM Problem in O(n2m+m3)

time.
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Chapter 4

Parallel duel-and-sweep algorithms

for SCER

In this chapter, we show a parallel version of the duel-and-sweep algorithm for SCER. To

efficiently solve the SCER problem in parallel, we enrich ideas used in the serial algorithm

with new ones. To ensure the generality, our parallel algorithm uses ≈-encoding. In this

chapter, X̃ means an ≈-encoding of string X, unless otherwise stated. For a string X,

we suppose that X̃ can be computed in τ t|X| time and τw|X| work on P-CRCW PRAM.

Assuming that X̃ has been computed, we suppose that X̃k[i] can be computed in ξt|X[i:]|

time and ξw|X[i:]| work on P-CRCW RPAM.

Hereinafter, in our pseudo-codes we will use “←” to note assignment operation without

conflict (only one processor writes into the memory location). In case of the assignment

with possible conflicts (multiple processors attempt to access the same memory location),

we will note it as “⇐”. In case of the conflict, the processor with the smallest index

succeeds in writing into the memory.

Lemma 4.1. For strings X and Y of equal length n, given X̃ and Ỹ , Algorithm 24

computes a tight mismatch position pair in O(1) time and O(n) work on the P-CRCW

PRAM.
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4.1 Aperiodic pattern case for SCER

Algorithm 8: Check in parallel whether X and Y match, given X̃ and Ỹ

1 Function CheckParallel(X̃, Ỹ )
2 w ← 0;
3 for each i ∈ {1, . . . , |X|} do in parallel

4 if X̃[i] 6= Ỹ [i] then
5 w ⇐ i;

6 return w;

Proof: In Algorithm 8, for each element of X, we “attach” a processor at position of X.

If X̃[i] 6= Ỹ [i] for some i, the corresponding processor tries to update the shared variable

w. Recall that in P-CRCW PRAM, the processor with the lowest index will succeed in

writing into w. Thus, at the end of the algorithm w contains the tight mismatch position.

4.1 Aperiodic pattern case for SCER

In this section, we consider the case, when the pattern is aperiodic. That is, the length of

the smallest block-based period p > 1 is at least the half of the length of P . It is useful to

consider a fast algorithm for an aperiodic pattern, because the probability for a random

generated string being aperiodic is very close to 1. The algorithm for the aperiodic pattern

case is simpler than that of the periodic case. The work complexity of the SCER algorithm

in the aperiodic pattern case is less than that of the general case by a factor of logm. The

algorithm for the aperiodic case only computes the first half of a witness table. Actually,

using only the first half of the witness table does not affect the computational complexity

of the pattern searching algorithm. Since the pattern is aperiodic, for i ∈ {1, . . . , bm/2c},

WP (i) 6= ∅. After the construction of a witness table, the pattern searching algorithm

performs O(logm) rounds of parallel duels, until there is at most one surviving candidate,

for each 2blogmc−1-block of the text. Checking the surviving candidates naively gives an

O(ξtm logm) time and O(ξwmm) work pattern searching algorithm on P-CRCW PRAM.
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4.1 Aperiodic pattern case for SCER

Pattern preprocessing

Recall that the goal of the preprocessing stage is to compute the witness table W , where

W [a] = 0 if WP (a) = ∅, and W [a] ∈ WP (a) otherwise. Since the pattern is aperiodic,

for i ∈ {0, . . . , bm/2c}, W 6= ∅. Using this, the pattern preprocessing construct the first

half of a witness table W , that is W [0 : bm/2c]. It can be shown that using the first half

of a witness table does not affect the computational complexity of the pattern searching.

The preprocessing algorithm when the pattern is aperiodic is described in Algorithm 11.

Initially, all entries of W are set to zero, and at any point of the algorithm execution all

positions i of W satisfy the following,

W [i] 6= 0 implies W [i] ∈ WP (i).

Following Vishkin’s algorithm, we consider partitioning W into blocks of size 2k. We

will call each block a 2k-block, with the last 2k-block possibly being shorter than 2k. That

is, the 2k-blocks are W [i·2k :(i+1)·2k−1] for i = 0, . . . , bm/2kc−1 and W [bm/2kc·2k :m].

The value k will be incremented with each iteration of the while-loop in Algorithm 14.

Using the value of k, we refer to each iteration as the round k. If for some W [0 : i], each

2k-block of W [0 :i] contains one zero entry, we will say that W [0 :i] satisfies the 2k-sparsity

property. (For the first 2k-block, since W [0] = 0, W [1 :2k−1] does not contain any zeros.)

At the beginning of round k, the following properties hold.

• W satisfies the 2k-sparsity.

• For 1 ≤ i ≤ bm/2c, W [i] ≤ 2k+2.

Consider round k. For each round, the position pk of the unique zero in the second 2k-

block becomes a suspected period. Since the pattern is aperiodic, WP (pk) 6= ∅. Using the

information in the first 2k-block of W , the 2k-sparsity property is satisfied by performing

(bm/2c)/2k parallel duels with respect to the pattern. The duel w.r.t. to the pattern is
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Figure 4.1: Dueling with respect to the pattern for offsets i and i+ a.

same to the one described in the dueling stage of the serial algorithm, except that instead

of superimposing two copies of the pattern on the text, we superimpose them on the

pattern (Figure 4.1).

Lemma 4.2. Suppose w ∈ WP (a), j ≤ m− w and j − i = a. Then,

1. if the offset j survives the duel, i.e., P̃j+1[w] = P̃ [w], then w + a ∈ WP (i);

2. if the offset i survives the duel, i.e., P̃j+1[w] 6= P̃ [w], then w ∈ WP (j).

Proof: If P̃j+1[w] 6= P̃1[w], then w ∈ WP (j) by definition. Suppose P̃j+1[w] = P̃1[w].

The fact w ∈ WP (a) means P̃1[w] 6= P̃a+1[w] and thus P̃j+1[w] 6= P̃a+1[w]. By Property

(3) of the ≈-encoding (Definition 2.3), we have P̃i+1[w + a] 6= P̃1[w + a], which means

w + a ∈ WP (i).

At this point, W [pk] 6= 0. Recall that 2k ≤ pk < 2k+1. Now, let us consider any 2k+1-

block B that is not the first 2k+1-block. Since B satisfies the 2k-sparsity, there are at most

two zeros in B. If B has less than two zero entries, B already satisfies the 2k-sparsity.

Otherwise, let i and i+ a be their positions. Since a < 2k+1, W [a] 6= 0. Using the dueling

w.r.t. the pattern, we can update one of W [i] and W [i + a]. Thus, after this procedure

to all 2k+1-blocks, W satisfies the 2k-sparsity. The procedure for satisfying the 2k+1-

sparsity is described in Algorithm 10. We prepare a technical function GetZeros(l, r, k)

in Algorithm 9, which returns positions i ∈ {l, . . . , r} such that W [i] = 0, assuming that

W [0 : r] satisfies the 2k-sparsity. Algorithm 9 runs in O(1) time and O(r) work on the

P-CRCW PRAM.
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Algorithm 9: Assuming that W [0 : r] is 2k-sparse, returns positions of zeros in
W [l : r].

1 Function GetZeros(l, r, k)
2 create array A[0 : br/2kc − bl/2kc] and initialize elements to −1;
3 for each i ∈ {l, . . . , r} do in parallel
4 if W [i] = 0 then A[bi/2kc − bl/2kc]⇐ i;

5 return A;

Algorithm 10: Satisfy 2k+1-sparsity of W [0 : x].

1 Function SatisfySparsity(x, k)
2 A← GetZeros(2k+1, x, k);
3 for each i ∈ {0, 1, . . . , b|A|/2− 1c} do in parallel
4 j1 ← A[2i], j2 ← A[2i+ 1];
5 if j1 6= −1 and j2 6= −1 then

6 surv ← Dueling(P̃ , j1, j2);
7 a← j2 − j1;
8 if surv = j1 then
9 W [j2]⇐ W [a];

10 if surv = j2 then
11 W [j1]⇐ W [a] + a;

Now, to ensure the second invariant property, we take advantage of the following

block-based periodicity properties. Suppose that p is the smallest block-based period of

some prefix of P , say P [1 : x].

1. For offset i ∈ {1, . . . , x} such that i ≡ 0 (mod p), there are no witnesses. This fact

can be derived from Lemma 2.7.

2. For offset i ∈ {1, . . . , x− p} such that i 6≡ 0 (mod p), WP (i) 6= ∅. This fact can be

derived using the well-known periodicity lemma for exact matching period [26]. The

periodicity lemma states that if a string X has periods p and q such that p+ q ≤ m,

then gcd(p, q) is also a period of X.

3. For offset i ∈ {1, . . . , x − p} such that i 6≡ 0 (mod p), if w is a witness for offset

(i mod p) such that w ≤ p, then w is also a witness for offset i. For offset i ∈

{1, . . . , p− 1}, there always exists a witness w such that w ≤ p.
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Algorithm 11: Algorithm for the pattern preprocessing (aperiodic pattern)

1 Function PreprocessingParallelAperiodic(P̃)
2 Initialize W [0 : bm/2c] to 0;
3 k ← 0;
4 while 2k+2 ≤ m do
5 p← GetZeros(2k, 2k+1 − 1, k)[0];
6 c← CertaintySatisfiedUntil(p, k);
7 for k′ = k + 1 to c− 1 do
8 SatisfySparsity(m′, k′);

9 k ← c− 1;

10 Z ← GetZeros(0, bm/2c, k);
11 for i = 0 to |Z| − 1 do
12 z ← Z[i];
13 if z 6= −1 then

14 W [z]⇐ CheckParallel(P̃ [1 : m− z], P̃z+1[1 : m− z]);

Suppose that pk is a block-based period of P [1 : 2c], but not of P [1 : 2c+1] for some

c > k + 1. Let w be the tight witness for offset pk. By the block-based periodicity, we

have the following. Since pk is the smallest non-zero block-based period of P [1 : 2c], we

can used the observations in the previous paragraph to fill in witness for W [0 : 2c − 1].

The procedure is described in Algorithm 12.

For the sake of convenience, we absorb the case when c = k + 1 into Algorithm 12.

If c = k + 1, Algorithm 12 only updates W [pk]. If c > k + 1, Algorithm 12 copies the

contents of W [0 : pk − 1] periodically into W [0 : 2c − pk]. That is, for each i ≤ 2c − p such

that i mod pk 6= 0, the value of W [i mod pk] is copied into W [i]. For i ≤ 2c − p such that

i mod pk = 0, (W [pk]− (i− p)) ∈ WP (i). This is illustrated in Figure 4.2.

Lemma 4.3. Suppose c is an integer such that pk is a block-based period of P [1 : 2c],

but not of P [1 : 2c+1]. Let w be a witness for offset pk, such that 2c < w ≤ 2c+1. For
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i ∈ {pk, . . . , 2c − 2blog pkc+2},

WP (i) 3


W [pk]− (i− pk), if i mod pk = 0,

W [i mod pk], otherwise.

Proof: Let iw = max i | 1 ≤ iw < w and iw mod p = 0. Since pk is a block-based period

of P [1:2c], but not of P [1:2c+1], P [iw +1:iw +pk] 6≈ P [1:pk]. Thus, for i ∈ {pk, . . . , iw−1}

such that i mod pk = 0, w− (i− pk) is a mismatch position for P [i+ 1w + pk] 6≈ P [1 :w−

(i− pk)]. Since iw > 2c− pk and 2blog pkc ≤ pk < 2blog pkc+1, for i ∈ {pk, . . . , 2c− 2blog pkc+2}

w − (i− pk) ∈ WP (i).

Now, let us consider j ∈ {pk, . . . , 2c − 2blog pkc+2} such that i mod p 6= 0. Let k =

blogmc + 1. By the algorithm invariant, for positions i 6= 0 of the first 2k-block, W [i] ≤

2k+1. Let i = max i | i < j and i mod p = 0. Thus, duels between offsets i and j using

witness W [i] are in range with respect to P [1 : 2c]. By the discussions in the previous

paragraph, P [i+ 1 : i+ pk] ≈ P [1 : pk]. Since w+ pk > 2c, offset i will always win the duel.

Thus, W [j mod p] ∈ WP (j).

For i ∈ {2c − p + 1, . . . , 2c − 1}, the algorithm naively verifies every zero position,

whether i is a block-based period of P [1 : 2c+1]. At this points W [0 : 2c − 1] satisfies

the 2k-sparsity and 2k ≤ pk ≤ 2k+1. Thus, there are at most three zero positions in

W [2c − p + 1 : 2c − 1]. Furthermore, by the periodicity lemma, at most one of such i is

a block-based period of P [1 : 2c+1]. After the termination of Algorithm 12, W [0 : 2c − 1]

satisfies the 2c−1-sparsity and, for i ∈ {0, . . . , 2c − 1}, W [i] ∈ WP (i). At this point, the

control goes back to Algorithm 11. Algorithm 11 incrementally satisfies 2k′-sparsity for

k + 1 ≤ k′ ≤ c and the next round starts at k = c− 1. We prove the second invariant of

Algorithm 11.

Lemma 4.4. At the beginning of round k, for all i ∈ {0, . . . , bm/2c}, it holds W [i] ≤ 2k+2.

Proof: We show the lemma by induction on k. At the beginning of round 0, every
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Algorithm 12: Simultaneously satisfies certainty property for across multiple
rounds
1 Function CertaintySatisfiedUntil(p, k)
2 c← k + 1;
3 while 2c ≤ bm/2c and W [p] = 0 do
4 for each i ∈ {2c + 1, . . . , 2c+1} do in parallel

5 if P̃p+1[i− p] 6= P̃ [i mod p+ 1] then
6 W [p]⇐ i− p;

7 c← c+ 1;

8 c← c− 1;
9 for each i ∈ {p, . . . , 2c − p} s.t. W [i] = 0 do in parallel

10 if i mod p = 0 then
11 W [i]⇐W [p]− (i− p);
12 else
13 W [i]⇐W [i mod p];

14 Z ← GetZeros(2c − p+ 1, 2c − 1, k);
15 for i = 0 to |Z| − 1 do
16 z ← Z[i];
17 if z 6= −1 then

18 W [z]⇐ CheckParallel(P̃ [1 : 2c+1 − z], P̃z+1[1 : 2c+1 − z]);

19 return c;
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Figure 4.2: Illustration to Lemma 4.3. w is a witness for offset pk. (a) Case when
i mod p = 0. For i ∈ {pk, . . . , 2c − 2blog pc+2}, w − (i − pk) ∈ WP (i). (b) Case when
i mod p = 0. For i ∈ {pk, . . . , 2c − 2blog pc+2}, W [i mod pk] ∈ WP (i).

element of W is zero, thus, the claim holds. We will show that the lemma holds for k

assuming that it is the case for k − 1.

For round k, suppose that pk is a block-based period of P [1 : 2c], but not of P [1 : 2c+1]

where c ≥ k + 1. For i ∈ {0, . . . , 2c − pk}, W [i] ≤ 2c+1. For i ∈ {2c − pk + 1, . . . , 2c − 1}

such that W [i] = 0, the algorithm naively checks if i is a block-based period of P [1 : 2c+1]

or not. Thus, for i ∈ {2c − pk + 1, . . . , 2c − 1}, W [i] ≤ 2c+1.

Now let us consider duels between offsets i and j such that 0 < j − i < 2k+1. Let

a = j − i. Suppose a mod pk 6= 0. If W [a] was updated during the previous rounds,

then by the algorithm invariant, W [a] ≤ 2k. If W [a] is updated during round k, then

W [a] = W [a mod pk] ≤ 2k. If i wins the duel, then W [j] = W [a] ≤ 2k. If j wins the duel,

then W [i] = W [a] + a ≤ 2k + 2k+1.

If a mod pk = 0, W [a] = W [pk] − (a − pk) < 2c+1. If i wins the duel, then W [j] =

W [a] ≤ 2c+1. If j wins the duel, then W [i] = W [a] + a = W [pk] + pk. Since W [pk] =

2c + x − pk for some 0 < x ≤ 2c, W [pk] + pk = 2c + x ≤ 2c+1. Since the next starts at

k = c− 1, we have shown that before round k = c− 1 for all i, W [i] ≤ 2k+2.
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4.1 Aperiodic pattern case for SCER

By the invariant property, before the round k, for all positions 0 ≤ i ≤ bm/2c,

W [i] ≤ 2k+2. When 2k+2 > m, the while loop halts. At this point, the pattern W satisfies

the 2k-sparsity. Thus, there are at most four zeros left in the witness table. The algorithm

checks them naively.

Theorem 4.5. Given P̃ , a witness table can be computed in O(ξtm · logm) time and

O(ξwm ·m) work on the P-CRCW PRAM when the pattern is aperiodic.

Proof: Let us consider round k. Satisfying 2k-sparsity takesm/2k processors andO(ξ(m))

time. Finding the tight witness w for offset pk takes O(ξtm) time and O(ξwm · 2c+1) work,

where 2c < w ≤ 2c+1. Then, 2c−1-sparsity is satisfied incrementally, which increases k

to c. Since there are O(logm) rounds and
∑logm

k=0 2k = O(m),
∑logm

k=0 m/2k = O(m), the

total complexity is O(ξtm · logm) time and O(ξwm ·m) work.

Text processing

Now, we describe our parallel algorithm for the text processing when the pattern is ape-

riodic. We define array C of length m+ 1 and initialize every entry of C to True. (Recall

that n = 2m − 1.) The pattern preprocessing updates C until C [i] = True iff there is

a pattern occurrence at i, that is Ti ≈ P . We define the k-sparsity property for C as

follows. Each k-block of C contains at most one location i such that C [i] = True.

Since the pattern is aperiodic, a witness table does not contain zero positions, except

W [0]. After blogmc − 1 rounds of parallel duels, C satisfies the (blogmc − 1)-sparsity

property. Hence, there are at most four positions in C, whose value is True. The algorithm

checks these locations naively for an occurrence. The pattern searching is described in

Algorithm 13.

Theorem 4.6. Given a witness table, P̃ , and T̃ , the pattern searching solves the pattern

searching problem under SCER in O(ξtm · logm) time and O(ξwm ·n) work on the P-CRCW

PRAM.
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Algorithm 13: Pattern searching (aperiodic pattern)

1 Initialize array C of length m to True;
2 Round k ≤ 0;
3 while 2k < bm/2c do
4 for each 2k-block B of C do in parallel
5 Let j1 be the position of zero the first half of B;
6 Let j2 be the position of zero the second half of B;
7 a← j2 − j1;
8 if W [a] 6= 0 and a < bm/2c then

9 surv ← Duel(T̃j2+1, j1, j2);
10 if surv 6= j1 then
11 C [j1] = False;
12 else if surv 6= j2 then
13 C [j2] = False;

14 k ← k + 1;

15 for each i ∈ {1, . . . ,m} do
16 if C [i] = True then

17 w ⇐ CheckParallel(T̃i, P̃);
18 if w 6= 0 then
19 C [i]← False;
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4.2 General case for SCER

4.2 General case for SCER

4.2.1 Pattern preprocessing

Let us consider how to construct the witness table for the exact matching problem. Sup-

pose that P is periodic, that is, the smallest period p > 0 of P satisfies 2p ≤ m. The

algorithm is based on the following facts, that can be derived using the well-known peri-

odicity lemma, which states that if a string X has periods p and q such that p + q ≤ m,

then gcd(p, q) is also a period of X.

1. For offset i ∈ {1, . . . , dm/2e} such that i ≡ 0 (mod p), there are no witnesses.

2. For offset i ∈ {1, . . . , dm/2e} such that i 6≡ 0 (mod p), if w is a witness for offset

(i mod p), then w is also a witness for offset i.

Vishkin’s algorithm [44] finds the smallest period p, while locating witnesses for offsets

less than p. Once the smallest period p is found and W [i] is updated for each 1 ≤ i < p,

the rest of the work is simply to copy the contents for W [i] periodically for each i > p.

On the other hand, if P does not have any period, the problem is even simpler; in the

above process to find the smallest period p, all W [i] for 1 ≤ i < dm/2e are updated to be

non-zero witnesses, and we are done.

The periodicity lemma generally does not hold for a SCER [39]. This might result

in a situation, where for an offset i ∈ {1, . . . , dm/2e}, satisfying i 6≡ 0 (mod p) does not

imply that WP (i) 6= ∅.

Lemma 4.7. The distance between two neighboring zeros decreases monotonically towards

the end of W .

Proof: Let a, b, c, d be positions of zeros in the witness table such that a < b < c < d, a

neighbors b, and c neighbors d. For the sake of contradiction, suppose that b− a < d− c.

Since both a and b are periods of P , (b − a) is a period of P ′ = P [1 : m − a]. By
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4.2 General case for SCER

Lemma 2.7, all multiples of (b − a) are also periods of P ′ and, by this extension, of P .

Thus, d− c ≤ b− a, leading to a contradiction.

Our preprocessing algorithm is described in Algorithm 14. To describe our algorithm

rigorously, we define the following properties for a position i in the witness table.

• witness certainty property (WCP) for position i: W [i] 6= 0 implies W [i] ∈ WP (i).

• zero certainty property (ZCP) for position i: W [i] = 0 implies WP (i) = ∅.

We say that position i is finalized if i satisfies the ZCP and the WCP. If for some l, r, all

positions i ∈ {l, . . . , r} are finalized, then we say that W [l : r] is finalized. Initially, all

entries of the witness table are set to zero. During the entire preprocessing algorithm, each

element of W is updated at most once. At any point of the execution of the preprocessing

algorithm, all positions in W satisfy the WCP. The goal of the preprocessing algorithm

is to update W in such way that all positions satisfy the ZCP.

Until the algorithm finds the smallest period pmin, it selects the smallest zero position

pk > 0. We will show that at the beginning of the round k, the second 2k-block contains

an unique zero position and that unique zero position is pk. Then, the witness table table

is partitioned into head and tail, the lengths of which depend on the value of LCP(pk). To

increase the efficiency, the algorithm tries to decrease the number of possible suspected

periods by filling in as many witnesses as possible in the head. For the tail, the algorithm

determines the positions of all zeros, while finding witnesses for the non-zero positions.

Initially the entire table is the head and the size of the tail is zero: Head0 = W

and Tail0 = ε. The head is shrunk and the tail is extended by the following rule. Let

the suspected period pk at round k be the first zero position after the index 0, i.e., pk is

the unique position in the second 2k-block such that W [pk] = 0. Then, Headk+1 = W [0 :

m−x−1] and Tailk+1 = W [m−x : m−1] for x = |Tailk+1| = max(|Tailk|+2k, LCPP (pk)).

This is illustrated in Figure 4.3. When |Headk| < 2k, the 2k-sparsity means that all the

positions in the witness table are finalized. So, Algorithm 14 exits the while loop and
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Figure 4.3: Illustration of the preprocessing invariant. W is partitioned into to parts, the
duelable head and the non-duelable tail. Headk−1 and Headk satisfies the 2k−1-sparsity
and 2k-sparsity properties, respectively, while Tailk−1 and Tailk satisfy the WCP and
the ZCP. The length of Tailk is determined by the value of LCP (pk), where pk is the
suspected period for the round k. However, Tailk should longer than Tailk−1 by at least
2k−1.

halts. Formally, Algorithm 14 maintains W so that it satisfies the following invariant

properties. At the beginning of round k,

• Headk is 2k-sparse.

• For all positions i of Headk satisfy the ZCP.

• Tailk is finalized.

First, let us consider how the algorithm satisfies the 2k-sparsity of Headk. The proce-

dure is described in Algorithm 10. At the beginning of round k, Headk already satisfies the

2k-sparsity. The first 2k-block of W is zero-free, except for W [0], and the second 2k-block

contains an unique zero location pk. In the case where the suspected period pk is the small-

est period of P , i.e., WP (pk) = ∅, we have tail = m− LCPP (pk) = pk < 2k+1 when Algo-

rithm 14 calls SatisfySparsity(tail−1, k). Then the array A obtained at Line 2 is empty

and SatisfySparsity(tail − 1, k) does nothing. After finalizing Tailk+1, the algorithm

will halt without going into the next loop, since |Headk+1| ≤ m−LCPP (pk) = pk < 2k+1.

At that moment all positions of W are finalized.

Suppose that pk is not a period of P . Let w be the tight mismatch position for offset

pk. After the algorithm sets W [pk] = w, the first 2k+1-block becomes zero-free, except for
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4.2 General case for SCER

Algorithm 14: Parallel algorithm for the pattern preprocessing

1 Function PreprocessingParallel()

2 tail ← m, k ← 0; /* tail is the starting position of Tailk */

3 while 2k ≤ tail do
4 p← GetZeros(2k, 2k+1 − 1, k)[0];

5 W [p]← CheckParallel(P̃ [1 : m− p], P̃p+1[1 : m− p]);
6 if W [p] = 0 then lcp ← m− p;
7 else lcp ← W [p]− 1;
8 old tail ← tail ;
9 tail ← min(old tail − 2k,m− lcp);

10 SatisfySparsity(tail − 1, k);
11 FinalizeTail(tail , old tail , p, k);
12 k ← k + 1;

W [0]. We can update Headk so that it will satisfy the 2k-sparsity by performing a duel

between two offsets within the same 2k-block.

Lemma 4.8. For round k, suppose the preprocessing invariant holds true and WP (pk) 6=

∅. Then, when SatisfySparsity is about to be called at Line 10 of Algorithm 14, for

any two positions i, j of Headk+1 such that 0 < j − i < 2k+1, j ≤ m−W [j − i].

Proof: Let a = j − i and w = W [a]. Recall that a belongs to the first 2k+1-block and

W [a] is updated only if a = pk. Suppose a 6= pk. At the beginning of round k, by the

invariant property, we have w ≤ |Tailk| + 2k. Since j < |Headk+1| = m − |Tailk+1|,

j + w ≤ j + |Tailk| + 2k < m − |Tailk+1| + |Tailk| + 2k. Since |Tailk+1| − |Tailk| ≥ 2k,

m− |Tailk+1|+ |Tailk|+ 2k < m. Thus, j + w ≤ m.

If a = pk, w = W [pk] is the tight witness for offset pk, i.e., w = LCPP (pk) + 1. Since

|Tailk+1| ≥ LCPP (pk), j+w ≤ j+ |Tailk+1|+ 1. Since j < |Headk+1|, j+ |Tailk+1|+ 1 ≤

|Headk+1|+ |Tailk+1| ≤ m. We have proved that j + w ≤ m.

Taking into account the fact that Headk is 2k-sparse, the 2k+1-sparsity of Headk

can be satisfied in O(1) time on O(m/2k+1) processors. Since Headk is 2k-sparse, every

2k+1-block of Headk contains at most two zeros. If we perform a duel between the zero

positions, one of them will be updated. The procedure is described in Algorithm 10.
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Next, we prove the second invariant property.

Lemma 4.9. At the beginning of round k, for all i ∈ {0, . . . , 2k − 1}, it holds W [i] ≤

|Tailk|+ 1 and for all i ∈ {2k, . . . , |Headk| − 1}, it holds W [i] ≤ |Tailk|+ 2k.

Proof:We show the lemma by induction on k. At the beginning of round 0, every element

of W is zero and |Tail0| = 0, thus, the claim holds. We will show that the lemma holds

for k + 1 assuming that it is the case for k.

Suppose i < 2k+1 and i 6= pk. Then W [i] is not updated. By induction hypothesis,

W [i] ≤ |Tailk|+ 2k ≤ |Tailk+1| holds. Suppose i = pk. If WP (pk) = ∅, the algorithm sets

W [pk] = 0 and thus the claim holds. IfWP (pk) 6= ∅, the algorithm sets W [pk] to the tight

witness LCPP (pk) + 1. Thus, W [pk] = LCPP (pk) + 1 ≤ |Tailk+1|+ 1.

Suppose 2k+1 ≤ i < |Headk+1|. If Algorithm 10 does not update W [i], by the induction

hypothesis, W [i] ≤ |Tailk| + 2k < |Tailk+1| + 2k+1 holds. Suppose Algorithm 10 updates

W [i] or W [j] by a duel between i and j, where 2k+1 ≤ i < j < |Headk+1| and a =

j − i < 2k+1. We have shown above that W [a] ≤ |Tailk+1| + 1. If i wins the duel, then

W [j] = W [a] ≤ |Tailk+1|+1 ≤ |Tailk+1|+2k+1. If j wins the duel, then W [i] = W [a]+a ≤

|Tailk+1|+ 1 + a ≤ |Tailk+1|+ 2k+1.

Lemma 4.10. headcomplexity In the round k of the while loop, Algorithm 10 updates the

witness table so that Headk+1 is 2k+1-sparse in O(ξtm) time and O(ξwm · m/2k) work on

P-CRCW PRAM.

Proof: Before the execution of Algorithm 10, since the preprocessing invariant is satisfied

and W [pk] holds the tight witness for offset pk, W [0 : 2k − 1] contains one zero. Now, let

us consider a 2k-block B of Headk that is not the first 2k-block. Since Headk satisfies the

2k−1-sparsity, there are at most two zero positions in B. Suppose that B has two distinct

zero positions i and i+ a. Since a < 2k, W [a] 6= 0. By Lemma 4.8, for offsets i and i+ a,

i + a ≤ m −W [a]. Thus, by Lemma 4.2, at least one of W [i] and W [i + a] is updated
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as the result of the duel. Thus, after performing duels for all 2k-blocks of Headk, Headk

satisfies the 2k-sparsity.

Since each duel takes O(ξtm) time and O(ξwm) work and there are O(m/2k) duels in

total, the overall time and work complexities are O(ξtm) and O(ξwm ·m/2k), respectively.

Next, we discuss how Algorithm 15 finalizes Tailk+1 for the round k. For the sake

of convenience, we denote by Tk the set of positions of Tailk. Since Tailk has already

been finalized, it is enough to update W [i] for i ∈ Tk+1 \ Tk. Let us consider the case

|Tailk+1| = |Tailk| + 2k. Since by the invariant Headk satisfies the 2k-sparsity, there are

at most two zero positions in Tk+1\Tk. It suffices to check the zero positions naively.

Now, let us consider the case when |Tailk+1| = LCP (pk) > |Tailk|+ 2k.

Lemma 4.11. Suppose m−LCPP (p) ≤ b < m. If w ∈ WP (b), then (w+ b−a) ∈ WP (a)

for any offset a such that 0 ≤ a ≤ b and a ≡ b (mod p).

Proof: Figure 4.7 may help understanding the proof. Suppose w ∈ WP (b), i.e., P̃b+1[w] 6=

P̃ [w]. Since p is a period of P [1 : LCPP (p)] and a ≡ b (mod p), by Lemma 2.7, (b− a) is

also a period of P [1 : LCPP (p)], i.e., P [1 + b− a : LCPP (p)] ≈ P [1 : LCPP (p)− (b− a)].

Particularly for the position w ≤ m − b ≤ m − a, we have P̃b−a+1[w] = P̃ [w]. Then,

P̃b−a+1[w] 6= P̃b+1[w] by the assumption (Figure 4.7). By Property (3) of the ≈-encoding

(Definition 2.3), P̃1[b− a+ w] 6= P̃a+1[b− a+ w]. That is, (w + b− a) ∈ WP (a). Let

us partition Tk+1 \ Tk into pk subsets S0, . . . ,Spk−1 where Srem = { i ∈ Tk+1 \ Tk | i ≡ rem

(mod pk) }, some of which can be empty. Lemma 4.11 implies that for each rem ∈

{0, . . . , pk−1}, there exists a boundary offset brem such that, for every i ∈ Srem ,WP (i) = ∅

iff i > brem , unless WP (i) = ∅. Fortunately for many rem, one can find the boundary

brem very easily, unless Srem = ∅. Let qrem = max(Srem) for non-empty Srem . Due to the

2k-sparsity and the fact pk < 2k+1, it holds W [qrem ] 6= 0 for all but at most three rem. If

W [qrem ] 6= 0, then qrem is the boundary. By Lemma 4.11, W [W [qrem ] + qrem − i] ∈ WP (i)

for all i ∈ Srem . Accordingly, Algorithm 15 updates those values W [i] in parallel in

Lines 9–11.
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Algorithm 15: Finalize Tailk+1.

1 Function FinalizeTail(tail , old tail , p, k)
2 if old tail − tail = 2k then
3 Z ← GetZeros(tail , old tail − 1, k); /* |Z| ≤ 2 */

4 for i = 0 to |Z| − 1 do
5 z ← Z[i];
6 if z 6= −1 then

7 W [z]← CheckParallel(P̃ [1 :m− z], P̃z+1[1 :m− z])

8 else
9 for each i ∈ {tail , . . . , old tail − 1} do in parallel

10 q ← j where j ∈ {old tail − p, . . . , old tail − 1} and j ≡ i (mod p);
11 if W [i] = 0 and W [q] 6= 0 then W [i]⇐ W [q] + q − i;
12 Z ← GetZeros(old tail − p, old tail − 1, k); /* |Z| ≤ 3 */

13 for i = 0 to |Z| − 1 do
14 z ← Z[i];
15 if z 6= −1 then Finalize(tail , old tail , p, z mod p);

On the other hand, for rem such that W [qrem ] = 0, Algorithm 16 uses binary search

to find brem and a witness w ∈ WP (brem) if it exists. Then, following Lemma 4.11,

Algorithm 16 sets in parallel W [i] to w+ (brem − i) where w ∈ WP (brem) for i ∈ Srem such

that i ≤ brem (Line 10). If there is no boundary brem , then WP (i) = ∅ for all i ∈ Srem .

We do nothing in that case.

In Algorithm 16, the invariant is as follows. For i ∈ Srem , WP (i) 6= ∅ if i ≤ l · pk +

rem. For i ∈ Srem , WP (i) = ∅ if i ≥ r · pk + rem. Each condition check of the binary

Algorithm 16: Finalize i ∈ Tk+1\Tk s.t. i ≡ rem (mod pk).

1 Function Finalize(tail , old tail , p, rem)

2 l← d(tail − rem)/pe − 1, r ← b(old tail − 1− rem)/pc+ 1;
3 while r − l > 1 do
4 i← b(l + r)/2c, j ← i · p+ rem;

5 if CheckParallel(P̃ [1 :m− j], P̃j+1[1 :m− j]) = 0 then r ← i ;
6 else l← i;

7 brem ← l · p+ rem;

8 w ← CheckParallel(P̃ [1 :m− brem], P̃brem+1[1 :m− brem]);
9 for each i ∈ {tail , . . . , brem} do in parallel

10 if W [i] = 0 and i ≡ brem (mod p) then W [i]⇐ w + brem − i;
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search (Line 5) takes O(ξtm) time and O(ξwm · m) work. Thus, the overall complexity of

Algorithm 16 is O(ξtm logm) time and O(ξwm ·m logm) work.

Lemma 4.12. In round k, Algorithm 15 finalizes Tailk+1 in O(ξtm logm) time and O(ξwm ·

m logm) work on P-CRCW PRAM.

Proof: First, if |Tailk+1| = |Tailk|+ 2k, Algorithm 15 finalizes all positions i ∈ Tk+1 \ Tk

in O(1) time and O(m) work. Next, let us consider the case when |Tailk+1| = LCPP (pk).

Algorithm 15 finalizes all positions i ∈ Srem such that W [qrem ] 6= 0 in O(1) time and

O(m) work. Considering i ∈ Srem such that W [qrem ] = 0, since Headk is 2k-sparse and

2k ≤ pk < 2k+1, there are at most three zero positions in the suffix of length pk of Headk.

Therefore, there are at most three rem where W [qrem ] = 0. Algorithm 15 updates all

positions of Srem in parallel in O(ξtm logm) time and O(ξwm ·m logm) work. Thus, overall

Algorithm 15 runs in O(ξtm logm) time and O(ξwm ·m logm) work.

Theorem 4.13. Given P̃ , the pattern preprocessing Algorithm 14 computes a witness

table in O(ξtm · log2m) time and O(ξwm ·m log2m) work on the P-CRCW PRAM.

Proof: When the algorithm halts, by 2k ≤ tail , the head size is at most 2k. Therefore, the

head is zero-free except for W [0] = 0 by the 2k-sparsity. By the invariant, W [i] ∈ WP (i)

for all the positions of the head. On the other hand, every position of the tail is finalized

and has a correct value in the witness table.

In Algorithm 14, the while loop runs O(logm) times, and each loop takes O(ξtm logm)

time and O(ξtm ·m logm) work, by Lemmas 4.10 and 4.12. Thus, the overall complexity

of Algorithm 14 is O(ξtm · log2m) time and O(ξtm ·m log2m) work.

4.2.2 Pattern searching

Pattern searching algorithm prunes candidates in two stages: dueling and sweeping stages.

During the dueling stage, candidate positions duel with each other, until the surviving

candidate positions are pairwise consistent and no pattern occurrence is eliminated during
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the dueling stage. Recall that x is consistent with x+a if either 0 ≤ a < m and W [a] = 0

or a ≥ m. A set of positions is consistent if all elements in the set are pairwise consistent.

During the sweeping stage, the surviving candidates from the dueling stage are further

pruned so that only pattern occurrences survive. To keep track of the surviving candidates,

we define a Boolean array C[1:m+1] and initialize every entry of C to True. If a candidate

Ti gets eliminated, we set C[i] = False. The pattern searching algorithm updates C in

such way that C[i] = True iff i is a pattern occurrence. Entries of C are updated at most

once during the dueling and sweeping stages.

Let us review Vishkin’s pattern searching algorithm [44]. Let us suppose w.l.o.g. that

m is a power of 2. If the pattern is aperiodic, then Vishkin’s algorithm performs logm

rounds of parallel duels w.r.t. the text. Recall that P is aperiodic, if the smallest period

p > 0 of P satisfies 2p > m. Vishkin’s preprocessing algorithm is based on the following

facts. After the parallel duels, every block of C of length 2logm contains at most one

candidate left to check. If the pattern is periodic, let p > 0 the smallest period of P . First,

Vishkin’s algorithm find all occurrences of P ′ = P [1 : p] in T , using the procedure for

aperiodic pattern. Then, for each position i such that i is an occurrence of P ′, Vishkin’s

algorithm counts how many times P ′ consecutively appears in T staring from position

i. If P ′ appears at least d|P |/pe times, then i is an occurrence. This algorithm works

for the exact matching, because, for the exact matching all block-based periods are also

border-based periods. However, for SCER, this property does not hold.

Dueling stage

The dueling stage is described in Algorithm 17. A set of positions is consistent if all

elements in the set are pairwise consistent. During the round k, the algorithm partitions

C into blocks of size 2k. Let Ck,j ⊆ {(j − 1)2k + 1, . . . , j · 2k} be the set of candidate

positions in the j-th 2k-block which have survived after the round k. The invariant of

Algorithm 17 is as follows.
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4.2 General case for SCER

Algorithm 17: Parallel algorithm for the dueling stage

1 Function DuelingStageParallel()

2 for each j ∈ {1, . . . ,m} do in parallel
3 C0,j[1]⇐ j;

4 k ← 1;
5 while k ≤ dlogme do
6 for each j ∈ {1, . . . , dm/2ke} do in parallel
7 A ← Ck−1,2j−1, B ← Ck−1,2j;
8 〈a, b〉 ← Merge(A,B);
9 Let Ck,j be array of length (a+ |B| − b+ 1);

10 for each i ∈ {1, . . . , a} do in parallel
11 Ck,j[i]⇐ A[i];

12 for each i ∈ {b, . . . , |B|} do in parallel
13 Ck,j[a+ i− b+ 1]⇐ B[i];

14 k ← k + 1;

15 Initialize all elements of C to False;
16 for each i ∈ {1, . . . , |Cdlogme,1|} do in parallel
17 C[Cdlogme,1[i]]⇐ True;

• At any point of execution of Algorithm 17, all pattern occurrences survive.

• For round k, each Ck,j is consistent.

Set Ck,j is obtained by “merging” Ck−1,2j−1 and Ck−1,2j. That is, Ck,j shall be a consistent

subset of Ck−1,2j−1∪Ck−1,2j which contains all the occurrence positions in Ck−1,2j−1∪Ck−1,2j.

After the dueling stage, Cdlogme,1 is a consistent set including all the occurrence positions.

We then let C[i] = True iff i ∈ Cdlogme,1. In our algorithm, each set Ck,j is represented as

an integer array, where elements are sorted in increasing order.

Let us consider merging two consistent sets A and B where A precedes B. For two

sets of positions A and B, we say that A precedes B, iff maxA < minB. Sets A and

B should be merged in such way that the resulting set is consistent and all occurrences

in A, B remain in the resulting set. Let us represent elements of A and B on a 2D grid

G, as shown in Figure 4.4. In Figure 4.4, elements of A and B are presented along the

directions of rows and columns, respectively. An intersection point of row i and column
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Figure 4.4: Grid G given two consistent sets A and B.

j is denoted as (i, j), where i ∈ A and j ∈ B, and an element at point (i, j) is denoted

as G[i][j]. Grid G consists of only −1, 0 and 1. The value of G[i][j] is determined by the

value of W [j − i]. If W [j − i] = 0, then G[i][j] = 0. If W [j − i] 6= 0 and i wins the duel

between i and j, then G[i][j] = −1. Else if, j wins the duel G[i][j] = 1. We will see that,

regardless of the given pattern and witness table, grid G can be divided into two regions:

the upper-right region that consists of only 0 and the rest that consist of a mixture of −1

and 1. Throughout this section, a, a′, i ∈ A and b, b′, j ∈ B, unless stated otherwise. By

the consistency property in Lemma 3.1, we can confirm that the following lemma holds.

Lemma 4.14. Suppose that we are given two position sets A and B, each of which is

consistent and A precedes B. If a ∈ A and b ∈ B are consistent, then {i ∈ A | i ≤

a} ∪ {j ∈ B | j ≥ b} is also consistent.

Proof: Since candidate positions i and a, a and b, b and j are consistent, respectively,

by Lemma 3.1, i is consistent with j.
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4.2 General case for SCER

From Lemma 4.14, we can see that the region, that consists of only 0, can be separated

from the non-zero region with a line that looks like a step function (Figure 4.4). That is,

for each row i, there exists some b, such that G[i][j] = 0 iff j ≥ b. Moreover, for two rows

i and i′, if i < i′, then b ≤ b′ where b′ is equivalent of b for row i′.

Let, imax = max{i ∈ A | Ti ≈ P} and jmin = min{j ∈ B | Tj ≈ P}. Visually, given

the grid G, whose elements are initially hidden from us, merging A and B is equivalent to

finding a rectangle in the upper-right corner that consists of 0 and covers all points (i, j)

such that i ≤ imax and j ≥ jmin. In Figure 4.4, the bottom left corner of the green shaded

region is located at the point (imax, jmin). By Lemma 4.14, the green region consists of

only zeros. Lemma 4.15 shows that the non-zero region to the left of the green region

consists of only −1 and the non-zero region under the green region consists of only 1.

Lemma 4.15. If a is an occurrence and i ≤ a, then row i consists only of non-positive

elements. Similarly, if b is an occurrence and j ≥ b, then column j consists only of

non-negative elements.

Proof: We prove the first half of the lemma. The second half can be proven in similar

manner. Let us consider i = a. Since a is a pattern occurrence, for any j that a is not

consistent with, a always wins the duel. Thus, if G[a][j] 6= 0, then G[a][j] = −1. Now,

let us consider i < a. For any j, i < a < j. Since A is a consistent set and a is a

pattern occurrence, i is not consistent with j and i always wins any duel against j. Thus,

if G[i][j] 6= 0, then G[i][j] = −1.

We define limA ∈ A to be the greatest integer such that for any i ≤ limA, row i

consists only of non-positive elements. Similarly, we define limB ∈ B to be the smallest

integer such that for any j ≥ limB, column j consists only of non-negative elements. We

have the following corollary from Lemma 4.15.

Corollary 4.16. If a is an occurrence, then a ≤ limA. Similarly, if b is an occurrence,

then b ≥ limB.
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4.2 General case for SCER

Lemma 4.17. If, for a ∈ A, b ∈ B, row (a + 1) contains a positive element and column

(b− 1) contains a negative element, then a ≥ limA and b ≤ limB.

Proof: Recall that limA is defined to be the greatest integer such that for i ≤ limA row

i consists only of non-positive elements. Also, limB is defined to be the smallest integer

such that for j ≥ limB column j consists only of non-negative elements. Since row (a+ 1)

contains a positive element, (a + 1) must be greater than limA. Since column (b − 1)

contains a negative element, (b−1) must be less than limB. Thus, a ≥ limA and b ≤ limB.

Using Corollary 4.16, we can rephrase the goal of our merging algorithm. The goal of

the merging algorithm is to find a and b such that a ≥ limA, b ≤ limB and G[a][b] = 0.

ThenA≤a∪B≥b satisfies the desired property for mergingA and B. Our merging algorithm

is described in Algorithm 18. Given two consistent sets A and B such that A precedes B,

let l = max(|A|, |B|). Naively merging A and B will take O(l2) time on a single processor

or O(1) time on O(l2) processors. By using the properties above, we merge A and B

in O(log2 l) time on a single processor. We achieve this complexity by modifying the

2D binary search serial algorithm. In Algorithm 18, A and B are represented as integer

arrays, where the elements are sorted in increasing order. For the sake of convenience, we

pad grid G with −1s along the leftmost column, with 1s along the bottom row and with 0s

along the upper row and rightmost column. Specifically, for i ∈ {0, . . . , |A|}, G[i][0] = −1,

for j ∈ {0, . . . , |B|}, G[|A| + 1][j] = 1 and for i ∈ {1, . . . , |A| + 1}, G[i][|B| + 1] = 0 and

for j ∈ {1, . . . , |B|+ 1}, G[0][j] = 0. Padding in this manner does not affect the outcome

of the Algorithm 18.

At the beginning of each iteration of the outer loop, Algorithm 18 considers row

m1 = b(l1 + r1)/2c. Given row m1, the inner loop of Algorithm 18 finds the minimum

position m2 such that G[m1][m2] = 0 using serial binary search. If 1 is observed in row

m1, Algorithm 18 updates r1 to m1. Otherwise, the value of l1 is set to m1. Note that the

algorithm does not look into every element of row m1, thus, it is possible that 1 actually
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4.2 General case for SCER

Algorithm 18: Merge two consistent sets A and B
1 Function Merge(A,B)
2 l1 ← 0, r1 ← |A|+ 1;
3 while r1 − l1 > 1 do
4 m1 ← b(l1 + r1)/2c, observedOne← False;
5 l2 ← 0, r2 ← |B|+ 1;
6 while r2 − l2 > 1 do
7 m2 ← b(l2 + r2)/2c;
8 if W [B[m2]−A[m1]] = 0 then r2 ← m2;
9 else

10 if Dueling(T̃ ,A[m1],B[m2]) = A[m1] then l2 ← m2 ;
11 else
12 observedOne← True;
13 break;

14 if observedOne then r1 ← m1;
15 else l1 ← m1;

16 Find b = min{0 < b ≤ |B|+ 1 | G[l1][b] = 0} using serial binary search;
17 return 〈l1, b〉

existed in row m1, but the algorithm did not observe it. The inner loop terminates as

soon as the algorithm observes 1 in row m1. At any point of Algorithm 18 execution, the

following invariant properties hold.

Lemma 4.18. At any point of Algorithm 18 execution, G[m1][l2] = −1 and G[m1][r2] = 0.

Proof: Let b = min{0 < b ≤ |B| + 1 | G[l1][b] = 0}. From Lemma 4.14, for i ∈

{0, . . . , |B| + 1}, G[m1][i] 6= 0 iff i ≥ b. The inner loop of Algorithm 18 chooses column

m2 = b(l2 + m2)/2c. If m1 is consistent with m2, which means that G[m1][m2] = 0, r2 is

updated to m2. If m1 is not consistent with m2 and m1 survives the duel, which means

that G[m1][m2] = −1, then l2 is updated to m2. Otherwise, the inner loop immediately

terminates.

Lemma 4.19. At any point of Algorithm 18 execution, (1) G[l1][b − 1] = −1 where

b = min{0 < b ≤ |B|+ 1 | G[l1][b] = 0} and (2) there exists 1 in row r1.

Proof: (1) When l = 0 and b = 1, since the row 0 is the padding row with G[0][0] = −1
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4.2 General case for SCER

and the rest 0, the statement holds. Suppose that the statement is true for the previous

iteration of the outer loop. We prove that the statement also holds for the current iteration

of the outer loop. If the inner loop of Algorithm 18 observes 1, then the value of l1 stays

unaltered. Now, suppose the inner loop terminates without observing 1. The inner loop

terminates when r2 = l2 + 1. By the invariant of the inner loop, G[m1][l2] = −1 and

G[m1][r2] = 0. Since the inner loop did not observe 1, the value of l1 is updated to m2.

Thus, the statement of the lemma holds, after the current iteration of the outer loop.

(2) At the beginning of Algorithm 18, r1 = |A|+ 1. Since row (|A|+ 1) consists of 1s

and a 0 at position (|A|+ 1, |B|+ 1), there exists 1 in row (|A|+ 1). As soon as the inner

loop of Algorithm 18 observes 1 in row m1, the inner loop terminates and the value of r1

is set to m1. Otherwise, l1 ← m1. The outer loop terminates when r1 ← l1 + 1. Thus,

the invariant conditions hold for l1 and r1 at any point of the execution.

Let us consider what happens when Algorithm 18 terminates, where r1 = l1 + 1. Let

a = l1 and b = min{0 < b ≤ |B|+ 1 | G[a][b] = 0}. By Lemma 4.19, row (a+ 1) contains

1 and G[a][b] = 0 and G[a][b− 1] = −1. Thus, a ≥ limA and b ≤ limB and we have found

our answer.

Lemma 4.20. Given a witness table, P̃ , and T̃ , the dueling stage runs in O(ξtm log3m)

time and O(ξwmm log2m) work on P-CRCW-PRAM.

Proof: First, let us consider Algorithm 18. The inner while loop of Algorithm 18 runs

in O(logm) time on a single processor. The outer while loop of Algorithm 18 runs

O(logm) times. Since a duel takes O(ξwm) work, the overall complexity of Algorithm 18

is O(ξwm log2m) work on a single processor. Since the outer loop runs O(logm) times and

each loop takes O(ξm log2m) time, the overall time complexity is O(ξm log3m). Now, let

us look at the work complexity. Since Algorithm 17 takes O(ξwm log2m) work on a single

processor, round k takes O(ξwmm) + m
2k
· O(ξwm log2m) work. Since k ∈ {0, . . . , dlogme},

the overall work complexity is O(ξtm ·m log2m).
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Algorithm 19: Parallel algorithm for the sweeping stage

1 Function SweepingStageParallel()

2 create R[1 :m] and initialize elements of R to 0;
3 k ← dlogme;
4 while k ≥ 0 do
5 create Cand [0 : bm/2kc] and initialize its elements to −1;
6 for each i ∈ {1, . . . ,m} do in parallel
7 if C[i] = True and (i mod 2k) > 2k−1 then Cand [bi/2kc]⇐ i ;

8 for each b ∈ {0, . . . , bm/2kc} do in parallel
9 x← Cand [b];

10 if x 6= −1 then

11 w ← CheckParallel(P̃ [R[x] + 1 : m], T̃x[R[x] + 1 : m]);
12 if w = 0 then R[x]⇐ m;
13 else R[x]⇐ R[x] + w − 1;

14 for each i ∈ {1, . . . ,m} do in parallel
15 x← Cand [bi/2kc];
16 if i ≤ x and R[x] ≤ m− (x− i)− 1 then C[i]⇐ False ;
17 if i ≥ x and C[i] = True then R[i]⇐ R[x]− (i− x) ;

18 k ← k − 1;

Sweeping stage

The sweeping stage is described in Algorithm 19. The sweeping stage updates C until

C[i] = True iff i is a pattern occurrence. All entries in C are updated at most once. Recall

that all candidates that survived from the dueling stage are pairwise consistent. At any

point of the execution, if C[i] = False, then i is not a pattern occurrence. In addition to

C, we will create a new integer array R[1 : m]. Throughout the sweeping stage, we have

the following invariant properties:

• if C[x] = False, then Tx 6≈ P ,

• if C[x] = True, then LCP(Tx, P ) ≥ R[x].

The purpose of bookkeeping this information in R is to ensure that the sweeping stage

algorithm uses O(n) processors in each round. Throughout this section, we assume that

a processor is attached to each position of C and T .
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For each stage k, C is divided into 2k-blocks. Unlike the preprocessing algorithm, k

starts from dlogme and decreases with each round until k = 0. Let us look at each round

in more detail. For the b-th 2k-block of C, let xb,k be the smallest index in the second

half of the 2k-block such that C[xb,k] = True. The algorithm finds a position xb,k such

that C[xb,k] = True and, by the end of round k, surviving candidates i such that i < xb,k

belong to the first half of the 2k-block in consideration and surviving candidates i such that

i ≥ xb,k belong to the second half of the block in consideration. Algorithm 19 stores the

index xb,k in Cand [b]. such that xb,k is the smallest index in the second half of the 2k-block

such that C[xb,k] = True. In Algorithm 19, we introduce array Cand [0 : bm/2kc] where

Cand [b] = xb,k. For each xb,k, the algorithm computes LCP(Txb,k
, P ) exactly and store

the value in R[xb,k] on Lines 11–13. Suppose that LCP(Txb,k
, P ) < m, i.e., Txb,k

6≈ P and

w is a mismatch position. Since all surviving candidate positions are pairwise consistent,

if Txb,k
6≈ P , then, any candidate Txb,k−a that “covers” w cannot match the pattern.

Generally, we have the following.

Lemma 4.21. For two consistent candidate positions x and (x− a) such that a > 0 and

LCP (Tx, P ) ≤ m−a−1, if x is not an occurrence, then (x−a) is also not an occurrence.

Proof: Let w be the tight mismatch position for Tx 6≈ P , i.e., w = LCP (Tx, P )+1. Since

x is consistent with (x− a), (w + a) is a mismatch position for Tx−a 6≈ P . Thus, (x− a)

cannot be a pattern occurrence.

Using Lemma 4.21, the algorithm updates C in Lines 15–16. For xb,k, after calling

CheckParallel, R[xb,k] contains the length l of the longest prefixes such that Tx,k[1 : l] ≈

P [1 : l]. Then using Lemma 4.21, Algorithm 19 updates C. On Line 17, the algorithm

updates the values of R[i] for indices i in the second half of the block if C[i] = True.

Since the surviving candidates are pairwise consistent, for candidate positions (xb,k + a)

such that a > 0, Txb,k+a[1 : r] ≈ P [1 : r] where r = R[xb,k]− a. In this way, the algorithm

maintains the invariant properties. When k = 0, all the 2k-blocks contain just one position

and R[x] is set to be exactly LCP(Tx, P ) by Lines 11–13, unless C[x] = False at that
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Figure 4.5: Illustration to sweeping stage. The shaded regions of the text are referenced
during round k and the referenced regions of T do not overlap.

time. Then, if R[x] < m, then C[x] will be False on Line 16. That is, when the algorithm

halts, C[x] = True iff Tx ≈ P .

It remains to show the efficiency of the algorithm. We can prove that each position

of T is referenced at most once during each round. Then we obtain the following lemma.

Lemma 4.22 shows that each position of T is referenced at most once during each round.

Lemma 4.22 shows that each position of T is referenced at most once during each round.

Lemma 4.22. After the round k, for two surviving candidate positions i and j with i < j

that do not belong to the same 2k−1-block of C, i+m ≤ j +R[j].

Proof: After the round k = dlogme + 1, which is before round k = dlogme, since all

candidate positions belong to the same 2dlogme-block, the statement holds (base case).

Assuming that the statement holds after the round (k + 1), we prove that it also holds

after the round k. Let Rk+1 and Rk be the states of the array R after the rounds (k + 1)

and k, respectively. First, let us consider the case when surviving candidate positions i

and j do not belong to the same 2k-block of C. Obviously, i and j cannot belong to the

same 2k−1-block. By the induction hypothesis, i+m ≤ j+Rk+1[j]. Since Rk[j] ≥ Rk+1[j],

i+m ≤ j +Rk[j].

Now, let us consider the case when candidate positions i and j belong to the same
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Figure 4.6: Before round k, for two surviving candidates Ti and Tj such that j − i ≥ 2k,
i+m− 1 < j +Rk[j].

2k-block of C. During round k, for each 2k-block of C, Algorithm 19 chooses as surviving

candidate position xb,k which is the smallest index in the second half of the 2k-block.

Thus, two surviving candidates positions i and j of the b-th 2k-block belong to different

2k−1-blocks iff i < xb,k ≤ j. For Ti to be a surviving candidate after round k, it must

be the case that m + i ≤ LCP(Txb,k
, P ) + xb,k. For Tj, Algorithm 19 updates Rk[j] to

LCP(Txb,k
, P ) − (j − xb,k). Substituting it into the previous inequality, we get m + i ≤

Rk[j] + (j − xb,k) + xb,k = Rk[j] + j.

Lemma 4.23. Given P̃ and T̃ , the sweeping stage algorithm finds all pattern occurrences

in O(ξtm logm) time and O(ξwm ·m logm) work on the P-CRCW PRAM.

Proof: The outer loop of Algorithm 19 runs O(logm) times. Since the processors that

are attached to T are used at most once by Lemma 4.22, each loop runs in O(ξtm) time

and O(ξwm ·m) processors. Thus, the total time is O(ξtm · logm) and total work is O(ξwm ·

m logm).

By Theorem 4.13 and Lemmas 4.20, and 4.23, we obtain the main theorem. When

n ≥ 2m, T is cut into overlapping pieces of length (2m − 1) and each piece is processed

independently.

Theorem 4.24. Given a witness table, P̃ , and T̃ , the pattern searching solves the pattern

searching problem under SCER in O(ξtm · log3m) time and O(ξwm · n log2m) work on the

P-CRCW PRAM.
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Algorithm 20: Returns a tight/suffix-tight witness for offset a

1 Function TightWitness(a)

2 w ← CheckParallel(P [1 :m− a], P [a+ 1 :m], P̃);
3 return w;

4 Function SuffixTightWitness(a)

5 w ← CheckParallel(PR[1 :m− a], PR[a+ 1 :m], P̃R);
6 w ← m− w − a+ 1;
7 return w;

4.3 Reversible SCER

In this section, we will consider SCERs that are reversible. That is, given two strings X

and Y , X ≈ Y iff XR ≈ Y R. Recall that XR is the reverse of string X. For such SCER,

a witness table construction can be performed in O(ξtm · logm) time and O(ξwm ·m logm)

work on the P-CRCW PRAM, which improves the preprocessing algorithm for the general

SCER by a factor of logm. This improvement comes from the fact that, for each round,

tail finalization for the witness table can be performed in O(ξtm · 1) time and O(ξwm ·m)

work. The algorithm for pattern searching is same as the algorithm for the general SCER.

We define LCSX(a) to be the length of the longest common suffix, when X is super-

imposed on itself with offset a. Formally, given an integer 0 ≤ a < |X|, LCSX(a) = l

is the greatest integer such that X[m − l + 1 : m] ≈ X[m − a − l + 1 : m − a] and

X[m− l :m] 6≈ X[m−a− l :m−a]. Since, for two strings X and Y , X ≈ Y ⇔ XR ≈ Y R,

LCSP (a) = LCPPR(a) for any offset a.

Recall that for a witness w for offset a, if w = LCPP (a) + 1, then we called w a tight

witness for offset a. Analogously, we define suffix-tight witness for offset a. A witness w

is a suffix-tight witness, if w = m− a− LCSP (a).

Given encoding of PR, LCPPR(a) can be computed in O(1) time on O(m) processors

using CheckParallel. Let w the value returned by CheckParallel, which is the tight

mismatch position for PR[1 : m − a] 6≈ PR[a + 1 : m]. Since LCSP (a) = LCPPR(a),

we have the following. If w = 0, then LCPPR(a) = LCSP (a) = m − a. If w 6= 0,
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4.3 Reversible SCER

Algorithm 21: Finalize i ∈ Tk+1\Tk s.t. i ≡ rem (mod pk) (reversible SCER).

1 Function Finalize(tail , old tail , p, rem)

2 rmin ← min{r | tail ≤ r < old tail and r ≡ R[i] (mod p)};
3 w ← SuffixTightWitness(rmin);
4 LCS ← m− rmin − w − 1;
5 for each i ∈ {tail , . . . , old tail − 1} do in parallel
6 if i ≡ rmin (mod pk) and m− i > LCS then
7 W [i]← w − (i− rmin);
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Figure 4.7: For a, b ∈ Tailk such that a < b and a ≡ b (mod pk), P [b− a + 1 : m− a] ≈
P [1 :m− b]

then LCPPR(a) = LCSP (a) = w − 1. Since w is the tight mismatch position pair for

PR[a+ 1 :m] 6≈ PR[1 :m− a], after reversing the indices for P [a+ 1 :m] and P [1 :m− a],

(m − w − a + 1) is the suffix-tight witness for offset a. The procedure is described in

Algorithm 20.

Next, we discuss how the algorithm finalizes Tailk+1 for the round k. This procedure

is described in Algorithm 21. Recall that we have the following property for positions of

Tailk. For round k, given positions a, b ∈ Tailk+1 such that a < b and a ≡ b (mod pk),

P [b − a + 1 : m − a] ≈ P [1 : m − b] (Figure 4.7). This stays same as the SCER general

case algorithm.

For i ∈ {Tailk+1\Tailk}, let rmax = max{r ∈ Tailk+1\Tailk | i ≡ r (mod pk)}.

Depending on whether the algorithm found a witness for offset rmax in prior rounds,

Algorithm 15 takes different approach to finalize W [i] (Figure 4.9). If W [rmax] 6= 0,

then from Lemma 4.11 we see that W [rmax] + (rmax − i) ∈ WP (i). Now, let us consider

i ∈ {Tailk+1\Tailk} such that W [rmax] = 0. This case is more involved than the previous
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Figure 4.8: Illustration to Lemma 4.25.

case, but the algorithm uses the following lemma to finalize such W [i] efficiently.

Lemma 4.25. For round k, given offsets a, b ∈ Tailk+1 such that a < b, WP (b) = ∅, iff

m − b ≤ LCSP (a) (Figure 4.8). If WP (b) 6= ∅, then w − (b − a) ∈ WP (b) where w is a

suffix-tight witness for offset a.

Proof: First, we prove the first half of the lemma. WP (b) = ∅ means that P [1 :m− b] ≈

P [b+ 1 :m]. Furthermore, by Lemma 4.11, P [1 :m− b] ≈ P [b− a+ 1 :m− a]. It means

that LCSP (a) must be greater than or equal to m− b. Now, we will prove the converse.

By the definition of LCSP (a), P [m−a−LCSP (a) + 1 :m−a] ≈ P [m−LCSP (a) + 1 :m].

Since, m− b ≤ LCSP (a), WP (b) = ∅.

Now, we prove the second half of the lemma. Recall that w is a suffix-tight witness for

offset a, if w = m−a−LCSP (a). Sincem−b > LCPP (a) and P [1:m−b] ≈ P [b−a+1:m−a]

by Lemma 4.11, w − (b− a) ∈ WP (b).

For i ∈ {Tailk+1\Tailk} such that W [rmax] = 0, Algorithm 21 finalizes such positions.

For such i, let rmin = min{r ∈ Tailk\Tailk−1 | i ≡ r (mod pk)}. Algorithm 21 first com-

putes LCSP (rmin) and a suffix-tight witness w for offset rmin. Then, using Lemma 4.25,

for i ∈ {Tailk+1\Tailk} such that m − i > LCSP (rmin), the algorithm updates W [i] to

w − (i− rmin).

Lemma 4.26. For the round k, Algorithm 21 finalizes Tailk in O(ξtm) time and O(ξwm ·m)

work on P-CRCW PRAM.

Proof: First, Algorithm 15 finalizes all positions i ∈ {Tailk+1\Tailk} such thatW [rmax] 6=

0 in O(1) time and O(m) work. Next, let us consider i ∈ {Tailk+1\Tailk} such that
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Figure 4.9: Illustration to Algorithm 21 for round k.

W [rmax] 6= 0. Since W [0 : |Headk−1| − 1] is 2k−1-sparse and 2k−1 ≤ pk < 2k, there are

at most three zero positions in W [m − |Tailk| − pk : m − |Tailk| − 1]. Therefore, there

are at most three such rmax. For each such rmax, the algorithm computes LCSP (rmin)

in O(1) time and O(m) work. Then, it finalizes positions i ∈ {Tailk+1\Tailk} such that

W [rmax] = 0 in O(1) time and O(m) work. Thus, overall Algorithm 15 runs in O(1) time

and O(m) work.

Theorem 4.27. The pattern preprocessing for reversible SCER can be performed in O(ξtm·
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logm) time and O(ξwm ·m logm) work on the P-CRCW PRAM.

4.4 Parameterized matching

First, we discuss how to compute prev(X) in parallel for a string X. In order to compute

prev(X) we will use all nearest smaller value problem. All nearest smaller value problem

is defined as follows. Let X be an array of elements from a totally ordered domain. For

each 1 ≤ i ≤ |X|, all nearest smaller value problem finds the maximal 1 ≤ j < i and the

minimal i < k ≤ |X| such that X[j] < X[i] and X[k] < X[i].

Without loss of generality, we assume that Π forms a totally ordered domain. Recall

that Π is an alphabet of parameter symbols and Σ is an alphabet of constant symbols.

We will construct the following string X ′ from X. We define a new symbol, say ∞,

such that, for any element π ∈ Π, π is less than ∞. For 1 ≤ i ≤ |X|, X ′[i] = X[i] if

X[i] ∈ Π and X ′[i] =∞ if X[i] ∈ Σ. For X ′, we construct LmaxX′ , which was also used

in order-preserving matching.

LmaxX′ [i] = j if X ′[j] = max
k<i
{X ′[k] | X ′[k] ≤ X ′[i]}.

We use the rightmost (largest) j if there exist more than one such j < i. If there is no

such j, then we define LmaxX′ [i] = 0. Suppose that X[i] ∈ Π for 1 ≤ i ≤ |X|. After

computing LmaxX′ , prev(X)[i] = i−LmaxX′ [i] if X[i] = X[LmaxX′ [i]]. If LmaxX′ [i] = 0

or X[i] 6= X[LmaxX′ [i]], then X[i] is the first occurrence of this letter. For example, given

Σ = {a, b} and Π = {u, v}, X = uvuvauuvb let us compute prev(X). Suppose that u < v.

First, we obtain X ′ = uvuv∞uuv∞. Then, LmaxX′ = (0, 1, 2, 1, 0, 3, 6, 4, 5). Computing

prev(X) from LmaxX′ , we obtain prev(X) = 0013a314b.

Lemma 4.28. Given a string X of length n, LmaxX can be computed in O(log n) time

and O(n log n) work on the P-CRCW PRAM.

Proof: Following the construction of LmaxX and LminX by [37], suppose that positions
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of X are sorted with respect to their contents. In case of equal contents the smaller

positions come first. Let X ′ be the resulting sequence of positions. For i ∈ {1, . . . , n},

let j be the position of i in X ′. Then LmaxX [i] is the nearest smaller value in X ′ to the

left of X ′[j]. If there is no such value, LmaxX [i] = 0. Using the merge sort algorithm by

Cole [18] and the all-smaller-nearest-values algorithm by Berkman et al. [7], LmaxX and

LminX are computed in O(log n) time and O(n log n) work on the P-CRCW PRAM.

Now, we discuss our parallel algorithm for pattern matching. Given a witness table,

dueling and sweeping stages can be used for parameterized matching by straightforward

substitution. Since, given prev(P )[i], prev(P )k[i] can be computed in O(1) time on a

single processor, we have the following. By Theorem 4.24, given a witness table, the

pattern searching runs in O(log3m) time and O(n log2m) work on the P-CRCW PRAM.

For the witness table construction, by Theorem 4.13, straightforward substitution will

result in an algorithm that runs in O(log2m) time and O(m log2m) work on the P-CRCW

PRAM. The witness table can be constructed in O(logm) time and O(m logm) work on

the P-CRCW PRAM.

4.5 Cartesian-tree matching

Recall that for a string X, its parent-distance encoding [41] for cartesian-tree matching

PDX is defined as follows.

PDX [i] =


i−max1≤j<i{j | X[j] ≤ X[i]} if such j exists,

0 otherwise.

Theorem 4.29. Given a string X of length n, PDX can be computed in O(log n) time and

O(n log n) work on P-CRCW PRAM. Moreover, given PDX , PDX[x:n][i] can be computed

in O(1) time and O(1) work.

Proof:For 1 ≤ i ≤ n, PDX [i] is the nearest smaller value to the left of X[i]. Since the
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all-smaller-nearest-value problem can be solved in O(log n) time and O(n log n) work on

P-CRCW PRAM by Berkman et al. [7], PDX can be computed in O(log n) time and

O(n log n) work on P-CRCW PRAM.

Given PDX , PDX[x:n][i] can be computed in the following manner in O(1) time and

O(1) work.

PDX[x:n][i] =


0 if PDX [x+ i− 1] ≥ i,

PDX [x+ i− 1] otherwise.

Parent-distance encoding is an ≈-encoding. Cartesian-tree is not a reversible SCER.

Thus, by simple extension of the SCER algorithm for the general case we obtain the

following.

Theorem 4.30. The pattern preprocessing A witness table for cartesian-tree matching

can be computed in O(log2m) time and O(m log2m) work on the P-CRCW PRAM.

Theorem 4.31. Given a witness table, the pattern searching for cartesian-tree matching

can be solved in O(log3m) time and O(n log2m) work on the P-CRCW PRAM.

4.6 Palindrome matching

In this section, we show a parallel version of the duel-and-sweep algorithm for palindrome

matching. Recall that given a string X, let PalsX = {(c, r) | X[c − r + 0.5 : c + r − 0.5]

is a maximal palindrome at center c = 1, 1.5, 2, . . . , |X|} Recall that given two strings X

and Y of same length, X ≈ Y if PalsX = PalsY . For string X, PalsX does not satisfy

Conditions (1) and (2), but it satisfies Conditions (3) and (4) of Definition 2.3.

Lemma 4.32. ([4]) Given a string X of length n, PalsX can be computed in O(log n)

time and O(n log n) work on the P-CRCW PRAM.
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Algorithm 22: Returns LCP(X, Y ) in parallel

1 Function LCPPalindromePar(X, Y,PalsX ,PalsY )

2 n← |X|;
3 create array of integers R[1, 1.5, 2, . . . , n];
4 Initialize all elements of R to n;
5 for each c ∈ {1, 1.5, 2, . . . , n} do in parallel
6 rX ← PalsX [c], rY ← PalsY [c];
7 if rX 6= rY then
8 R[c]⇐ c+ min(rX , rY )− 0.5;

9 Let j be the smallest element of R;
10 return j;

Algorithm 23: Returns a tight mismatch center if X 6≈ Y

1 Function CheckParallel(X, Y,PalsX ,PalsY )

2 w ← 0;
3 lcp ← LCPPalindromePar(X, Y,PalsX ,PalsY );
4 if lcp < n then
5 for each c ∈ {1, 1.5, 2, . . . , |X|} do in parallel
6 rX ← PalsX[1:lcp+1][c], rY ← PalsY [1:lcp+1][c];
7 if |rX − rY | = 1 then
8 w ⇐ c;

9 return w;

First, we define a witness for parallel parameterized pattern matching. For a center

c and an offset a, let (c, rpref ) ∈ PalsP [1:m] and (c, rsuff ) ∈ PalsP [a+1:m]. An integer c is a

witness for offset a, if rpref 6= rsuff . For two mismatching strings X and Y of same length, a

center c is called a tight mismatch center if |rX−rY | = 1 where (c, rX) ∈ PalsX[1:LCP(X,Y )+1]

and (c, rY ) ∈ PalsY [1:LCP(X,Y )+1]. A witness c is a tight witness if c is a tight mismatch

center for P [a+ 1 : m] 6≈ P [1 : m].

Next, we show how to compute LCP(X, Y ) of two strings X and Y in parallel. The

procedure is shown in Algorithm 23.

Lemma 4.33. For strings X and Y of equal length n, Algorithm 22 computes LCP(X, Y )

in O(1) time and O(n) work on the P-CRCW PRAM, assuming that PalsX and PalsY

are already computed.
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Proof: First, we prove the correctness of the algorithm. If X ≈ Y , then R[c] = n for all

centers c. Thus, the algorithm retuns n = LCP(X, Y ) where n = |X|. If x 6≈ Y , then

there must exist a center c such that rX 6= rY where (c, rX) ∈ PalsX and (c, rY ) ∈ PalsY .

R[c] contains the maximal position i for which PalsX[1:i](c) = PalsY [1:i](c). If j be the

minimum value in R at the end of the algorithm, then X[1 : j] is the maximal prefix such

that X[1 : j] ≈ Y [1 : j], i.e., LCP(X, Y ) = j.

Next, we prove the computational complexity of the algorithm. Since the minimum

element of R can be found in O(1) time and O(n) work on P-CRCW PRAM, the overall

complexity of the algorithm is O(1) time and O(n) work on P-CRCW PRAM.

For strings X and Y of same length n, Algorithm 23 finds a tight mismatch center in

O(1) time and O(n) work on P-CRCW PRAM. If X ≈ Y , then Algorithm 23 returns 0.

We discuss dueling w.r.t. the text. If w ∈ WP (a), then it holds that

• if PalsTx+a(w) = PalsP (w), then Tx 6≈ P ,

• if PalsTx+a(w) 6= PalsP (w), then Tx+a 6≈ P .

Next, we discuss dueling w.r.t. the pattern. For convenience, for a witness w for offset a,

we denote witness radius wr = min(PalsP [a+1:m](w),PalsP [1:m−a](w)) + 0.5. For a witness

w for offset a, w+wr − 0.5 > LCPP (a). If w is a tight mismatch center for offset a, then

w+wr− 0.5 = LCPP (a) + 1. Suppose w ∈ WP (a), j ≤ m− (w+wr− 0.5) and j− i = a.

Then,

1. if the offset j survives the duel, i.e., PalsP [j+1:m](a) = PalsP [1:m−j](a), then w + a ∈

WP (i);

2. if the offset i survives the duel, i.e., PalsP [j+1:m](a) = PalsP [a+1:m−i](a), then w ∈

WP (j).

Given a witness table, dueling w.r.t. T and P is performed in O(1) time and O(1)

work on P-CRCW PRAM. For round k, suppose the preprocessing invariant holds true and
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WP (pk) 6= ∅. Let us consider any two positions i, j of Headk+1 such that 0 < j− i < 2k+1.

In the discussions about the SCER algorithm, we have shown that j < m−LCPP (j− i).

Since for any w ∈ WP (j − i), w + wr − 0.5 > LCPP (j − i), j ≤ m − (w + wr − 0.5) <

m − LCPP (j − i). Thus, the 2k+1-sparsity of Headk+1 is satisfied in O(1) time and

O(m/2k) work on P-CRCW PRAM. Suppose m − LCPP (p) ≤ b < m. Since PalsP

satisfies Condition (3) of Definition 2.3, we have the following. If w ∈ WP (b), then

(w + b− a) ∈ WP (a) for any offset a such that 0 ≤ a ≤ b and a ≡ b (mod p).

Lemma 4.34. Given PalsP , a witness table for palindrome matching can be computed in

O(logm) time and O(m logm) work on P-CRCW PRAM.

As for the pattern searching, using the discussions above, we can extend the SCER

algorithm to obtain the following.

Theorem 4.35. There exists a parallel algorithm that solves the palindrome pattern

matching for in O(log3m) time and O(n log2m) work on the P-CRCW PRAM.

4.7 Order-preserving matching

In this section, we show a parallel version of the duel-and-sweep algorithm for OPPM.

First, we discuss how to compute LmaxX and LminX in parallel.

Lemma 4.36. Given a string X of length n, LmaxX and LminX can be computed in

O(log n) time and O(n log n) work on the P-CRCW PRAM.

Proof: Following the construction of LmaxX and LminX by [37], suppose that positions

of X are sorted with respect to their contents. In case of equal contents the smaller

positions come first. Let X ′ be the resulting sequence of positions. For i ∈ {1, . . . , n},

let j be the position of i in X ′. in other words, X ′[j] = X[i]. Then LmaxX [i] is the

nearest smaller value in X ′ to the left of X ′[j]. If there is no such value, LmaxX [i] = 0.
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Algorithm 24: Check order-isomorphism of X and Y in parallel

1 Function CheckParallel(X, Y,LmaxX ,LminX)

2 〈w1, w2〉 ← 〈0, 0〉;
3 for each i ∈ {1, . . . , |X|} do in parallel
4 imin ← LminX [i], imax ← LmaxX [i];
5 if imin 6= 0 and Y [imin] < Y [i] then
6 〈w1, w2〉 ⇐ 〈imin, i〉;
7 else if imax 6= 0 and Y [imax] > Y [i] then
8 〈w1, w2〉 ⇐ 〈imax, i〉;
9 return 〈w1, w2〉;

LminX is computed similarly. Using the merge sort algorithm by Cole [18] and the all-

smaller-nearest-values algorithm by Berkman et al. [7], LmaxX and LminX are computed

in O(log n) time and O(n log n) work on the P-CRCW PRAM.

Next, we show how to compute order-isomorphism of two strings in parallel. The

procedure is shown in Algorithm 24. Recall that in OPPM, the order-isomorphism of

two strings cannot be determined by comparing a symbol in one position. We need two

positions to say that the two strings are not order-isomorphic. We say that a mismatch

position pair 〈i, j〉 is tight if X[1 : j − 1] ≈ Y [1 : j − 1] and X[1 : j] 6≈ Y [1 : j].

Lemma 4.37. For strings X and Y of equal length n, Algorithm 24 computes a tight

mismatch position pair in O(1) time and O(n) work on the P-CRCW PRAM, assuming

that LmaxX and LminX are already computed.

Proof: In Algorithm 24, for each element of X, we “attach” a processor to compute

F (X, Y, i) defined in Equation 3.6, where i is the position of the element. It can be

done in O(1) time because LmaxX and LminX are given. If F (X, Y, i) 6= 0 for some i, the

corresponding processor tries to update the shared variable 〈w1, w2〉 to 〈imin, i〉 or 〈imax, i〉.

In P-CRCW PRAM, the processor with the lowest index will succeed in writing 〈w1, w2〉

properly. Thus, at the end of the algorithm 〈w1, w2〉 contains a tight mismatch position

pair.
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Algorithm 25: Returns a tight/suffix-tight witness for offset a

1 Function TightWitness(a)
2 〈w1, w2〉 ← CheckParallel(P [1 :m− a], P [a+ 1 :m],LmaxP ,LminP);
3 return 〈w1, w2〉;
4 Function SuffixTightWitness(a)
5 〈w1, w2〉 ← CheckParallel(PR[1 :m− a], PR[a+ 1 :m],LmaxPR ,LminPR);
6 〈w1, w2〉 ← 〈m− w1 − a+ 1,m− w2 − a+ 1〉;
7 return 〈w1, w2〉;

Pattern preprocessing

For the rest of this section, we assume that, for a witness pair 〈i, j〉, i < j. For a witness

pair 〈i, j〉 for offset a, if j = LCPP (a) + 1, then we call 〈i, j〉 a tight witness for offset a.

Analogously, we define suffix-tight witness for offset a. A witness pair 〈i, j〉 is a suffix-tight

witness, if i = m−a−LCSP (a). Given a tight witness 〈i, j〉 for offset a, LCPP (a) = j−1.

Given a suffix-tight witness 〈i, j〉 for offset a, LCSP (a) = m− a− i− 1.

We also define binary operations ⊕ and 	 for a position pair 〈i, j〉 and an integer k.

Specifically, 〈i, j〉 ⊕ k = 〈i + k, j + k〉 and 〈i, j〉 	 k = 〈i− k, j − k〉. Also, for an integer

pair 〈i, j〉, we denote max〈i, j〉 = max{i, j} and min〈i, j〉 = min{i, j}.

Next, we discuss how the algorithm finalizes Tailk for the round k. For the sake

completeness, we state the algorithm for finalizing Tailk for OPPM for round k in Algo-

rithm 15. For i ∈ {Tailk+1\Tailk}, let rmax = max{r ∈ Tailk+1\Tailk | i ≡ r (mod pk)}.

If W [rmax] 6= 〈0, 0〉, then, from Lemma 4.11 we see that W [rmax] ⊕ (rmax − i) ∈ WP (i).

Using similar reasoning as in Lemma 4.25 we have the following.

Lemma 4.38. If WP (b) 6= ∅, then 〈w1, w2〉 	 (b− a) ∈ WP (b) where 〈w1, w2〉 is a suffix-

tight witness for offset a.

Proof: Recall that 〈w1, w2〉 is a suffix-tight witness for offset a, if w1 = m−a−LCSP (a).

IfWP (a) 6= ∅, then by the definition of LCSP (a), there must exist a witness 〈w1, w2〉 such

that w1 = m−a−LCSP (a). Since m−b > LCPP (a) and P [1 :m−b] ≈ P [b−a+1:m−a]

by Lemma 4.11, 〈w1, w2〉 	 (b− a) ∈ WP (b).

86



4.7 Order-preserving matching

Theorem 4.39. A witness table for OPPM can be constructed in in O(logm) time and

O(m logm) work on the P-CRCW PRAM.

Pattern searching

Since the dueling can be performed in O(1) work om P-CRCW PRAM, given a witness

location pair, the dueling stage can be performed in O(log3m) time and O(n log2m) work

on the P-CRCW PRAM.

Now, let us consider the sweeping stage for OPPM. Suppose that Tx 6≈ P and let

〈w1, w2〉 be a tight mismatch position pair. For candidates Tx+a that are consistent with

Tx, if a+ 1 ≤ w1 and w2 ≤ a+m, then (x+ a) cannot be a pattern occurrence.

Recall that for each stage k, C is divided into 2k-blocks. For a 2k-block, the sweeping

stage algorithm (Algorithm 19) chooses x such that x is the smallest index in the second

half of the 2k-block such that C[x] = True. For the b-th 2k-block, we denoted such

position x as xb,k. In Algorithm 19, we have introduced arrays Cand [0 : bm/2kc] and

Mis [0 : bm/2kc], where Cand [b] = xb,k and Mis [b] stored a tight mismatch position pair if

xb,k is not a pattern occurrence. If xb,k is a pattern occurrence, Mis [b] = 〈0,m+ 1〉.

Next, we discuss how Algorithm 19 ensures that for each round it takes O(m) work.

Let Rk be the state of the array R at the beginning of round k. For the b-th 2k-block of C,

let us consider checking if xb,k is a pattern occurrence or not. If we suppose that 〈w1, w2〉

is a tight mismatch position pair for Txb,k
6≈ P , then Txb,k

[1 :w2− 1] ≈ P [1 :w2− 1]. Thus,

for a > 0, Txb,k+a[1 : w2 − 1− a] ≈ P [1 : w2 − 1− a]. Algorithm 19 updates R[xb,k + a] to

w2− 1− a. For the case when Txb,k
≈ P , the discussions above also hold, if we substitute

m+ 1 into w2.

Theorem 4.40. The pattern searching for OPPM runs in O(log3m) time and O(n log2m)

work on the P-CRCW PRAM.
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Chapter 5

Conclusion and Future Work

In this dissertation, we proposed new serial and parallel algorithms based on the dueling

technique [44] for various pattern matching problems. We propose serial and parallel duel-

and-sweep algorithms that are generalized for substring consistent equivalence relations

(SCER) and consider specific instances of SCER that include parameterized matching,

order-preserving matching, palindrome matching and cartesian tree matching.

In Chapter 3, we discuss our serial algorithms for SCER. For SCER, we have proposed

an algorithm that uses stack to keep account of the consistent candidates in the dueling

stage. In the sweeping stage, verifying surviving candidates from left to right, while taking

advantage of the fact that the remaining candidates are pairwise consistent, enabled us to

“sweep” through them efficiently. For the pattern preprocessing, we have given algorithm

for finding LCPP (i) for all 0 ≤ i < m. After obtaining this information, a witness table

can be easily built from it. It is of independent interest to investigate correlation between

border arrays and witness tables for SCER. We will leave it as our future work.

In the second half of Chapter 3, we have discussed specific instances of SCER serial

algorithm. We have shown that parameterized matching, cartesian-tree, palindrome and

order-preserving matchings can be solved in O(n) time. The preprocessing time for palin-

drome and cartesian-tree matching is O(m), while for palindrome and order-preserving

matchings the preprocessing takes O(m log |Π|) and O(m logm) time, respectively. These
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results are as fast as the existing KMP-based algorithms for these matchings. For the

order-preserving matching, instead of relying on the encoding, we focused on the pairs of

elements in the string and their relative orders in the pair. Our serial order-preserving

algorithm encodes only the pattern, once, and does not require re-encodings of substrings.

For our two-dimensional serial algorithm for order-preserving matching, we have reduced

the problem of two-dimensional pattern searching into the problem of one-dimensional pat-

tern searching by traversing substrings of the text and the pattern from left-to-right/top-

to-bottom fashion. Our algorithm improves the naive 2d algorithm by a factor of m for

both pattern preprocessing and pattern searching.

In Chapter 4, we have discussed our parallel algorithm for SCER. Parallelizing SCER

pattern matching algorithm revealed interesting properties regarding periodicity of SCER.

Vishkin’s parallel algorithm for exact matching [44] largely benefited from the fact that, for

the exact matching, the periodicity lemma holds and all block-based periods are border-

based periods. For SCER, neither of them hold. We have proposed a different approach to

solve the pattern matching problem for SCER. Our algorithm is the first parallel algorithm

to solve SCER pattern matching problem in parallel.

Given a witness table, P̃ , and T̃ , we have shown that pattern searching under any

SCER can be performed in O(ξtm log3m) time and O(ξwmn log2m) work on P-CRCW

PRAM. Given P̃ , a witness table can be constructed in O(ξtm log2m) time and O(ξwm ·

m log2m) work on P-CRCW PRAM. Also, for the case when the pattern is aperiodic,

we have shown that the SCER pattern matching can be solved in logarithmic time and

linear work complexities, if the re-encoding can be performed in constant time and work.

The third condition of ≈-encoding in Definition 2.3 ensures the generality of our duel-

and-sweep algorithm for SCERs. Although, some encoding methods like the nearest

neighbor encoding for order-preserving matching does not fulfill the third condition, Jar-

galsaikhan et al. [33, 34] showed that there exists an algorithm that is similar to the

SCER algorithm proposed in this paper, using the nearest neighbor encoding. In our
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future work, we would like to investigate into the relation between the encoding function

and the dueling technique and further generalize the definition of encoding so that it

becomes more inclusive.

In the second half of Chapter 4, we have discussed parallel algorithms for parame-

terized, cartesian-tree, palindrome and order-preserving matchings. We have given opti-

mizations for pattern preprocessing, which improves on the SCER extensions by a factor

of logm. These optimizations are based on the following fact. Given strings X and Y

of equal lengths, X ≈ Y ⇔ XR ≈ Y R. We call such SCER reversible SCER. Parame-

terized, palindrome and order-preserving matchings fall under reversible SCER. We also

show how to compute encodings for above matchings in parallel. Our algorithms are the

first algorithm to solve pattern matching problems for these matchings in parallel.
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approach to the order-preserving pattern matching problem. In PSC, pages 22–35,

2015.
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