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Abstract 
The advances made in ubiquitous mental states inference and the preva-

lence of child mental disorders push the need for seamless integration of 

child mental health prediction, monitoring, and awareness in daily life. 

Motivated by the use of toy blocks as a kind of classic toy that contains rich 

information to decompose, and the development of affective computing, 

this thesis establishes a novel method to address the above need by using 

data captured from playing with toy blocks, as one of children’s favorite 
activities, to predict their behavior and mental health. 

This thesis contains in-depth and in-breadth investigations to establish a 

method of using data captured from toy block play to predict a range of child 

mental health measurements. The initial step established the connection 

between child mental health and block play by assessing the short-term 

stress, measured in-situ, after the 2011 Tohoku Earthquake and Tsunami, 

using computed actions and video-coded behaviors extracted from play 

sessions with sensor-embedded toy blocks. The data analysis results indi-
cate that play passively expressed stress. It next investigated the approach 

of predicting a range of child behavioral problems from automatically ex-

tracted block play features and sequential patterns. Internalizing problems, 

total problems and aggressive behavior were predicted, and the positive 

predictors were interpreted as inactive, indecisive, or drastic styles of play. 

In addition, this thesis discusses the lessons learned toward improving 

daily mental state prediction and support. It proposes the next steps needed 

to increase the method’s robustness using motion and structure features 

of block play, design guidelines toward real world applications, and future 

work that could extend and generalize the proposed method. 

Keywords: Human-computer interaction, tangible user interface, stress, behavior 

problems, assessment, prediction, feature extraction, machine learning, feld study, 

free play, well-being 
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Chapter 1 

Introduction and Motivation 

This thesis proposes a novel concept to predict child mental health in daily 
life using data captured from toy block play. It investigates an interdis-
ciplinary feld encompassing human-computer interaction (HCI), mental 
health, and data science. It is an exploration of research opportunities that 
lie at the interdisciplinary interface between developing a tangible user 
interface (TUI)1, specifcally, smart daily objects, and investigating new 
possibilities of bringing child mental health awareness closer to daily life, 
inspired by affective computing2. This thesis is inspired from, and aims to 
contribute to, both computer science and psychology. 

Chapter 1 Overview 

This thesis begins in Section 1.1 with a discussion of several key concepts 
that both motivate and contextualize the research objectives. More specif-
cally, Section 1.1.1 introduces blocks in two aspects - (1) blocks as visual-
spatial constructive play objects, as well as their affordance and (2) their 
applications in analyzing child behavior. It highlights why block play is 
worthy of investigation. Affective computing is introduced in Section 1.1.2 

1At a high-level, TUI is a sub-discipline within human-computer interaction in which 
everyday physical objects play a central role as both physical representations and controls 
for digital information. 

2At a high-level, affective computing is an interdisciplinary feld spanning computer 
science, psychology, and cognitive science. It is the study and development of systems and 
devices that can recognize, interpret, process, and simulate human affects. 
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to outline its status as a crucial trend in healthcare, its development, and 
how it calls attention to the unaddressed needs of children. With this back-
ground information, a thesis overview is provided in Section 1.2. My specifc 
contributions to the work presented are stated in Section 1.3. 

1.1 Thesis Motivation 

1.1.1 Blocks: Visual-Spatial Constructive Play Objects 

Toy blocks (also building blocks) are wooden, plastic, or foam three-dimensional 
objects with various geometric shapes (cube, cuboid, cylinder, triangular 
prism, bridge, arch, etc.) and colors (red, green, blue, yellow, natural wood 
color, etc.) Often holding a place in the game corner of kindergartens and 
households, they are classic and popular visual-spatial constructive play ob-
jects because they provide a set of unique affordance that is not comparable 
with other toys and daily objects in terms of creativity, self-expression and 
self-refection. 

VCPOs and Affordance 

The term visual-spatial constructive objects (VCPOs), purposed by Ness et al. 
[1], specifcally denotes constructive objects that require spatial cognition. 
According to them, VCPOs include blocks (e.g. standard wood blocks, plastic 
blocks and foam blocks), bricks (e.g. LEGO bricks and Mega Bloks), and 
planks (1 × 3 × 15cm thin rectangular wooden cuboids) that either contact 
each other or snap together and remain positioned by force of gravity. 
Interacting with VCPOs “involves the use of smaller objects as a means of 
building larger and often more elaborate structures” [1]. VCPOs are often 
used by individuals to model something they imagine and may actually 
construct in the real world. 

To investigate the unique characteristics of VCPOs, the role of affordance 
needs to be considered. As Ness et al. introduced it, “affordance alludes to 
the qualities of an object that defne its possible use or make clear how it can 
or should be used” [1]. High affordance refers to the specifc affordance of 
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an object in which one can easily perceive the object’s operational properties 
and presume how others might interact with it. Low and diverse affordance 
refers to the qualities of an object with ambiguous constraints and unspecifc 
usage. According to Ness et al., “affordance is essential in characterizing 
and analyzing VCPOs”, because it “refers to the meaning of an object in 
terms of what it provides users that allows them to maximize their potential 
in constructions and related spatial behaviors” [1]. 

Blocks and bricks, targeting chilren above 1 and 1.5 years old, respec-
tively, have a wider tolerance for age, compared to planks, which target 
children who are older than 5 years. Thus blocks and bricks are often seen 
around young children. Even though a common understanding is that they 
are interchangeable constructive toys, in fact they offer different sets of 
affordances and consequently should serve different purposes. Blocks have 
a lower and more diverse affordance due to their ambiguous constraints. 
The smooth surfaces do not allow blocks to lock into place. This charac-
teristic offers a variety of ways to place a block. While each placement 
provides the foundation for the next one, some placements and actions 
may cause structural imbalance and affects the stability of inertia. As a 
result, for blocks, the diverse ways of potential use are recognized after 
their physical manipulations. Through contemplation, the play behavior 
becomes “refective abstraction”, which affect the conceptual knowledge 
and next move. This process “may enhance their self-regulation during 
constructive play and may be more likely to engage in creative tasks that 
involve synthesis and higher-order thinking” [2, 3]. On the contrary, the 
pips of bricks provide clear constraints that the blocks have to be locked to 
construct a structure. It provides ease of use (less sensitive to inertia, mass 
and balance) but less space for empirical manipulations, contemplations 
and refections. Another specifc affordance is that bricks are most often 
sold with themes and instruct the user to follow scripts for recommended 
constructions. Due to the clear and specifc purposes they serve, to some 
extent they fail to provide children “the opportunities for creative play” [1]. 

According to a body of literature [1, 2, 3, 4, 5, 6], high and specifc 
affordance impedes creative processes, problem-solving, spatial thinking, 
and cognitive development in general, and it may lower the level of interest, 
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enjoyment, and satisfaction in completing the activity. Thus, the low and 
diverse affordance of blocks allows for creativity, self-regulation, and higher-
order thinking. 

Analyzing Behavior 

Two forms of play activities, structured play and free play, are often con-
structed in therapies and assessments to analyze play behavior. 

Structured, thematic, formulaic or scripted play are those play activities 
with specifed narratives or plots that are often accompanied by detailed 
directions. According to Ness et al., such play “possesses a prescribed 
outcome evident in a set of specifc instructions that must be followed to 
obtain a desired result” and “necessitates repetitive actions with no latitude 
for variation in the activity and no freedom for a child to express his or 
her imagination” [1]. Due to this trait, structured play is often designed 
to assess a child’s abilities. For example, structured block play is used in 
screening for developmental disorders in the routine health check-up for 
3-year-olds in Japan [7]. A child is asked to mimic a prepared truck structure 
following the scripts. Being able to follow the instructions by the assessor 
and build the complex structure autonomously is one of the factors of normal 
development they assess. In the domains of human-computer interaction 
and ubiquitous computing, novel approaches are proposed to computerize 
assessments of abilities in clinical diagnosis with three-dimensional shaped 
user interfaces, and these approaches are proved to be effective. Sharlin 
et al. made use of Active Cube [8], a brick-type tangible user interface, 
to build a system for constructional assessment [9]. Through a series 
of tasks with and without step-by-step instructions, the system provides 
the target structure and computationally compares the similarity between 
the participant’s structure and the target structure, as well as the time 
taken. Their results show that the data obtained from this structured 
play could assess the constructional ability and Alzheimer’s disease (AD), 
a neurodegenerative impairment. A similar system was later adopted to 
assess the constructional ability in children and proved to be effective [10]. 
Recently, Jiang et al. proposed a “Shape-color conficting” game with blocks 
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to test the ability of a child to place the blocks following a rule of "same 
color, same shape or both." This instructed play is a tangible version of the 
cognitive state detection paradigm Stroop Effect and Wisconsin Card Sorting 
Test [11]. It demonstrated the power to assess inattention and impulsivity 
symptoms of ADHD. The above approaches illustrated that structured play 
that augments or resembles the existing clinical diagnosis was effective in 
automating the assessment. Structured play serves as an effective method 
to test the abilities in children. 

Meanwhile, research suggests free play provides opportunities to observe 
an intrinsically motivated action [2, 3, 4]. It allows for variation in behavior 
and the freedom to express one’s own imagination and thoughts. Free 
play helps the child act out unconscious material; thus it is used to aid 
diagnostic understanding. In play therapy, free-play sessions are frequently 
constructed for healing through explorations and creativity. The free play 
also helps to relieve the accompanying tension and provides a medium for 
working through defenses and handling anxieties [12]. Axline summarized 
that free-play is needed because in an effective therapy, “the therapist is 
nondirective and the therapy is client-centered; the clients are the source of 
living power that directed the growth from within themselves” [13]. 

In play therapies for children, due to mental disorders often lying along 
a spectrum [14], the observations of characteristics are more crucial than 
the ability to perform the tasks. As an example, free block play has ap-
plications to two childhood disorders: social withdrawal and Attention-
Defcit/Hyperactivity Disorder (ADHD) [15]. Co-constructivist theory sug-
gests that children who have a good understanding of how to act during a 
specifc play situation are more successful in their social interactions than 
children without a clear understanding of the play situation [16]. The char-
acteristic of social withdrawal observed in block play includes the inability 
to negotiate play interactions. ADHD can also be refected in free play. The 
therapeutic goal for children with ADHD is to teach them to be refective, 
that is, to stop, think, plan ahead and weigh alternatives and consequences 
before acting. Thus, a therapist usually asks questions such as “What would 
you like to build” or “what could we do to keep the tower from falling” and 
encourages a longer attention span in order to nudge an ADHD child to 
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practice being refective and less impulsive. These examples demonstrate 
that free play can help a child be expressive, self-regulated, and intrinsically 
motivated. The above examples also demonstrate the observation of free 
play can be used to fnd intrinsic characteristics. Meanwhile, the main criti-
cism of play interventions has been that this feld in general lacks rigorous 
research design and data analytic methods [17, 18]. The observations and 
interactions are manually processed, which suffers from low generalizability. 
Thus, although challenging, it is valuable to automatically, computationally, 
and quantitatively extract free block play behavior and transform it into 
structured data. 

1.1.2 Affective Computing: Ubiquitous Mental State 

Recognition 

Affective computing is the study and development of computational sys-
tems that possess the ability to recognize, understand, and even to have 
and express emotions [19]. It is a modern branch of computer science, 
proposed by Picard in 1995, as “computing that relates to, arises from or 
infuences emotions” [20]. Nowadays, it has become an interdisciplinary 
feld spanning computer science, psychology and cognitive science [21], and 
its approaches have been expanded “from fnding new ways to forecast and 
prevent depression; to inventing new solutions to help exceptional people 
who face communication, motivation, and emotion regulation challenges; 
to enabling robots and computers to respond intelligently to natural human 
emotional feedback; to enabling people to have better awareness of their 
own health and well-being; to giving people better control and protection 
over their most sensitive, private, personal data” [22]. 

The computational recognition, prediction, or inference of mental states 
and mental health is the backbone of seamless and interactive applications 
in affective computing. Its development alleviates the severe problems of the 
current diagnosis-based mental health approach: “the shortage of mental 
health specialists, the limited resources available, arduous close monitoring 
of symptoms, delaying optimal treatment, and potentially prolonging suf-
fering” [23]. It accelerates the effcacious provision of healthcare, which is 
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expanding from treatment to prevention and from clinics to daily life. 
In affective computing, data are collected through various resources 

with different forms. They are processed, embedded, and encoded into 
higher-level knowledge, such as behavioral models and affect predictions, 
for monitoring mental health, preventing deterioration, and supporting 
well-being. As an example, passive recording of behavioral data (gathering 
information without an individual’s direct input) has been identifed as a 
potentially feasible method for long-term monitoring of depression [23]. 
The combination of sensor technology and machine learning enables detailed 
measurement in real time to capture a range of behaviors for predicting 
variations of depression. 

Affective computing also provides possibilities of gathering the new data 
necessary for advancing research and applications [20], and novel interfaces 
have been developed to serve this purpose. Wrist-worn biosensors have 
been proposed to collect daily physiological signals [24, 25], and some have 
developed into market-available products [26, 27, 28]. SPRING, the Smart 
Platform for Research, Intervention, and Neurodevelopmental Growth, is a 
hardware and software system that integrates the tangible Shape Sorter and 
other games and multiple sensing methods [29]. It aims to “(1) automate 
quantitative data acquisition, (2) optimize learning progressions through 
customized, motivating stimuli, and (3) encourage social, cognitive, and 
motor development in a personalized, child-led play environment”. This play 
system can also be paired with wearable sensors to probe the physiological 
underpinnings of motivation, engagement, and cognition. Inspired by these 
novel interfaces, this thesis investigates methods to develop free block play 
into a novel interface for extracting play behavior data that can probe a 
child’s mental health and well-being. 

Accuracy and Interpretability 

Since affective computing closely involves different felds, such as novel 
sensing, analytics and enabling techniques, there is no standard or unifed 
evaluation metric for an affective computing system. For systems that 
perform prediction or inference, the effectiveness of the system should 
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not be evaluated soley by accuracy in light of two key considerations: 
(1) high accuracy is diffcult to achieve due to the challenges of sample 
acquisition, data processing, and the lack of absolutely unbiased ground 
truth; and (2) since such work usually involves sensitive, vulnerable, and 
at-risk groups, building trust is a crucial part of using these systems in 
real-world settings. Explanations and justifcations based on empirical 
knowledge from psychological and cognitive domains are needed to develop 
trust in such novel systems. Thus, for most affective computing systems, 
not only accuracy but also interpretability are crucial evaluation metrics to 
consider. 

A body of literature has provided rich interpretations of their results. 
These interpretations not only provide foundations for further improving 
accuracy but also generalize knowledge and build trust. For example, In-
tarasirisawat et al. explored using touch and motion features extracted 
in mobile games (Fruit Ninja, Tetris and Candy Crush) to assess cognitive 
functions (Attention, Memory, Visuospatial ability, etc.) [30]. Although 
this work did not predict cognitive functions from game-play features, their 
correlation analysis and in-depth interpretations provide strong evidence 
that game-related metrics have potential use as proxies for conventional 
cognitive measures. Their investigations show promise in predictions and 
provide generalizable knowledge to other game-based assessment systems. 
Moving closer to real-world applications, Nosakhare et al. proposed methods 
to predict health and well-being from a range of behaviors collected from 
college students’ daily activities and, moreover, to recommend behavior 
change for better health conditions and well-being [31]. Their models using 
sLDA (supervised Latent Dirichlet Allocation) and LASSO (Least Absolute 
Shrinkage and Selection Operator) predicted Stressed-Calm (57.0-58.4% 
accuracy, and 0.41-0.66 F1 score), Sad-Happy (56.3-56.7% accuracy, and 
0.42-0.68 F1 score) and Sick-Healthy (49.4-54.6% accuracy, and 0.24-0.68 
F1 score). They also provided interpretations of LASSO model coeffcients 
and patterns found in sDLA models, as well as evidence-based insights in 
two case studies to illustrate that the model results can be used to recognize 
unhealthy behaviors and recommend behavior change. Wampfer et al. 
proposed a Semi-Supervised Learning method to predict affective states 
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from smartphone touch data [32]. It predicted three principal dimensions of 
affective states, Valence (56-67% accuracy, 0.75-0.84 AUC micro), Arousal 
(53-63% accuracy, 0.73-0.82 AUC micro) and Dominance (61-65% accuracy, 
0.78-0.82 AUC micro). Their methods used three feature sets separately 
extracted from the texting heat map: Pressure, Down-down, and Up-down, 
as well as a combination of the three feature sets. In addition to predic-
tion models, they provided interpretation of features extracted from heat 
maps and demonstrated that performance was improved when predicting 
a sequence of constant affective states. Their interpretations demonstrate 
that more accurate predictions can be made when the affective states do not 
alternate within a short time. 

One approach that should not be confused with predictions based on 
affective computing using data captured from seamless and undirected 
events is diagnostic assessments. Diagnostic assessments augment the well-
established assessment paradigms with data and tangible user interfaces. 
For example, Jiang et al. proposed, WeDA, a wearable diagnostic assess-
ment system for children with ADHD [11]. Ten fun tasks such as Catching 
Grasshoppers, Shape-color Conficting and Keeping Balance were proposed 
to capture behavioral data for assessing ADHD in children. The tasks are 
based on a range of cognitive state assessment paradigms used as auxiliary 
diagnosis methods for ADHD. As a result, the tasks predicted ADHD with 
high accuracies (0.88-0.98 F-score for individual tasks and 1.0 combining 
all tasks). 

Compared to Nosakhare and Wampfer’s affective computing approaches, 
WeDa provided remarkably high accuracy. However, the system should be 
considered a diagnostic tool rather than predictions using behavioral data 
gathered and extracted passively and seamlessly. Because it mainly tests 
ability, the potential for discovering and interpreting behavior is low. Thus, it 
could not provide rich generalizable knowledge in the manner of Nosakhare 
and Wampfer’s systems. Since the goal of this thesis is to explore the 
possibilities of developing a novel mental health prediction interface rather 
than augmenting existing diagnostic methods, it examines both accuracy 
and interpretability toward developing a robust prediction system. 
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1.2 Thesis Overview 

This thesis was born out of an initial demand to connect smart daily objects 
and mental health. As explicated in Section 1.1, the block is a suitable 
entry point for such investigation. Considering the limited knowledge of 
this methodology in affective computing, my in-depth and in-breadth inves-
tigation serves as a solid way to establish such a method. For the high-level 
target, mental health, my specifc targets from specifc to general; it spanned 
from short-term, post-disaster PTSD-related stress to long-term behavioral 
problems used in screening at clinics. In terms of the methods used to 
decompose and quantify block play, I investigated quantitative actions, 
video-coded play behavior, and play patterns extracted from sequential ac-
tions. While the methods moved from manual to automated, the modalities 
and complexity increased in the investigations of ways to achieve higher 
robustness. To predict child mental health with toy blocks, two approaches 
were proposed in sequence: establishing the association, and exploring the 
predictions. 

In Chapter 2, I present the initial step of building the connection between 
child mental health and block play. It assessed the short-term stress in-situ 
measured after the 2011 Tohoku Earthquake and Tsunami, with actions 
computed and behaviors video-coded from data of children playing with 
sensor-embedded toy blocks. Moving a step forward toward the real-world 
applications, the investigation of predicting a range of child behavioral 
problems from automatically extracted block play features is presented in 
Chapter 3. Finally, Chapter 4 discusses in depth the lessons learned toward 
designing TUIs for daily mental state inference and support, from the next 
steps in improving robustness to future works that further develop the 
approach or apply the knowledge to other approaches. 

1.3 Collaborations & Contributions Statement 

A large portion of the work reported in this thesis derives from papers 
that are products of my collaborations. During my PhD studies, I have 
had the honor to collaborate with human-computer interaction experts and 
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psychologists. These individuals have broadened my horizon, and helped me 
to grow as a researcher. Their support and our discussions, especially around 
the target mental health measurements, have been invaluable. Thanks to 
their help and support, this thesis approaches its challenges within the 
interdisciplinary feld of computer science and psychology. The thesis also 
largely benefted from the explorations of previous students. Their sensor-
embedded block design and data collection had laid the groundwork of my 
own exploration. At the mean time, I have done the majority of the work 
associated with the aforementioned papers. Furthermore, it is my research 
narrative and journey that connects the papers together into the step-by-step 
investigations that establish the method of predicting child mental health 
with block play. 

My specifc contributions are as follows. My main contributions are in 
target defnition, data processing, association or predicting, and encapsulat-
ing insights. These contributions constituted the major part of Chapter 2, 
Chapter 3, and Chapter 4. I partially contributed to system development and 
raw data collection. The system and raw data presented in Chapter 2 and 
Chapter 3 contain the implementation and feld work of students who were 
previously working on this project. I have conducted system design and 
data collection, and these works and refections upon them are presented in 
Chapter 4. I will specify my specifc contributions when I come to a Chapter 
containing content from the aforementioned papers. 
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Chapter 2 

Assessing Stress with Play 
Actions from Sensor-embedded 
Toy Blocks 

Preface: This Chapter contains modifed content from one of my previously 
published papers [Xiyue Wang, Kazuki Takashima, Tomoaki Adachi, Patrick 
Finn, Ehud Sharlin, Yoshifumi Kitamura. AssessBlocks: Exploring Toy Block 
Play Features for Assessing Stress in Young Children after Natural Disasters. 
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 1, Article 
30 (March 2020), 29 pages.] ©2020 ACM. I adapted the cited paper 
and reorganized its content to integrate it into the thesis. I performed 
the majority of the work associated with the aforementioned paper. I 
contributed to: 1) establishing the presented story, 2) selecting the method 
for the analysis and conducting the analysis, 3) encapsulating the result and 
discussion, and 4) writing the paper in general. 

2.1 Introduction 

Natural disasters are occurring frequently [33, 34], and take a terrible 
toll: disasters such as the 2004 Indian Ocean Earthquake and Tsunami 
(228,000 casualties), 2008 Sichuan Earthquake (88,287 casualties), 2010 
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Figure 2.1: Post-disaster children’s toy blocks play patterns, from left to 
right: (a) construction (b) fence building (c) playing fat (e) destruction 

(e) unstable structures 

Haiti Earthquake (222,570 casualties), and the 2011 Tohoku Earthquake 
and Tsunami (22,626 casualties) left behind a complex array of problems, 
many of which are extremely diffcult to solve [35]. Some of the most 
serious long-term challenges for survivors are mental health problems such 
as Post-Traumatic Stress Disorder, (or PTSD), conditions which can be 
particularly serious among young children [36]. Children’s mental health 
problems are reported to be accentuated after signifcant natural disasters 
[36], and are often not healed by time [37, 38]. Children are also harder to 
treat than adults when using traditional, talk-based methods [39]. Young 
children’s linguistic expression and cognitive development are not fully-
fedged, compared to adults, so the understanding of children’s internal 
psychological state and related mental health issues requires more delicate 
observation, and often calls for a different approach. 

Researchers have developed computer-based interactive tools for address-
ing complex issues in children’s mental health. In areas such as cognitive 
impairment, autism, and dyslexia interventions with Tangible User Inter-
faces (TUIs) have proven particularly effective [40, 41, 42]. While this 
work makes an important contribution to the study and treatment of mental 
health in children, less has been done on user interface research that could 
help those suffering from trauma caused by natural disasters. Given the 
number of people impacted by these events, and that such events are increas-
ingly common, we propose a novel method to assess children’s stress with a 
TUI approach. TUIs, especially in their simplest form, physical toy blocks, 
can potentially support play activities that captures some of the physicality 
of natural disasters - e.g. the physical destruction of real structures. Physical 
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construction and destruction actions are inherent to playing with toy blocks, 
providing a non-verbal actions that can be mapped directly to the child’s 
inner responses to the traumatic experience. 

This paper presents our initial design and evaluation work towards a 
long-term goal of developing quantitative play feature-characterizing toy 
blocks for automatically assessing children’s mental health. The long-term 
research question we pursue is: 

Can sensor-enabled toy blocks assess post-disaster stress in chil-
dren? 

Our research questions began to form after observing new patterns in PTSD-
affected children playing with toy blocks in kindergarten after 2011 Tohoku 
Earthquake and Tsunami (see for example [43, 44]). The new patterns in-
cluded cycles of building block construction followed by intense destructive 
actions. Six months later, both PTSD symptoms and destructive behavior 
seemed to diminish. Based on frequent but anecdotal observations, we 
wondered if the building, destruction, and rebuilding process refected chil-
dren’s mental and psychological states and might be helping them come to 
terms with the destruction they witnessed. We consider whether the physi-
cality of the blocks, and the freedom to create structures became a simple 
medium capturing the children’s stress and allowing them to express their 
anxiety and fears. These observations led us to investigate the connection 
between children’s toy block play patterns and mental state, especially in 
post-disaster stress. If block-play contained relevant information, perhaps 
we could automate the block play assessment approach for children’s mental 
healthcare. Automated, computer-based assessment promises to reduce 
the need for professional assessors’ time, improving access by lowering 
training requirements for assessors, eliminating some forms of bias, and 
improving the reliability of testing (as demonstrated in [9, 30]). Children’s 
post-disaster automated stress assessment helps extend the quality, afford-
ability, and access to critical health care necessary for many children in a 
world facing increased exposure to natural disasters. 

To realize this vision, we designed and prototyped sturdy, simple, au-
tomated blocks with IMU capable of capturing basic play actions (see an 
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example of play and sensor raw data in Figure 2.2). From 2013 to 2015, two 
years after the 2011 megathrust in the Tohoku region of Japan, the blocks 
were deployed in a set of studies with 52 pre-school children, aged 2.7 to 6.9 
(see snapshots of studies in Figure 2.1). Among the participants, 15 (aged 
5.9 − 6.5) experienced the most damaging impacts of the tsunami frsthand, 
when they were between the ages of 3.0 and 4.0. The unprecedented and 
devastating tsunami placed this group at a higher risk than the other partici-
pants for stress-related illness. We sampled approximately 20 minutes of 
play activity with our blocks, and manually evaluated each child’s behavior 
during the session, noting areas such as concentration or for children who 
felt lost and required support. We measured each child’s stress before and 
after play, using bio-marker sAA (Salivary Alpha-amylase Activitity), and 
evaluation form OSBD (Observation Scale of Behavioral Distress) and VAS 
(Visual Analogue Scale of Anxiety). 

Our analysis showed that some of our block features, play behavior 
evaluations, as well as traumatic experience, related to children’s stress 
measurements. Our fndings indicate that the block-play features approach 
is promising for automatically predicting stress in children. 

Figure 2.2: Children’s play and snapshots of data from IMU embedded 
in our blocks 

Our contributions are summarized as follows. 

• The design of AssessBlocks, a computer-augmented toy using sensors-
embedded toy blocks that document children’s block-play features; 
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• A protocol and procedure for using AssessBlocks to study block play 
features, behavior evaluations, and children’s stress measurements; 

• Bivariate analysis of the data we collected with AssessBlocks, revealing 
correlations between block features, play behavior, trauma experience 
and stress measurements; 

• Discussion of the potential and limitations of AssessBlocks and our 
toy block assessment approach; a roadmap for further iterations and 
future research. 

2.2 Related Work 

Our research is directly motivated by the record-setting Great East Japan 
Earthquake and its’ psychological and social impact on children. The work 
is built on pediatric, psychological, and social studies of children’s mental 
health after experiencing large-scale traumatic events, HCI research on 
playful and interactive user interfaces for assisting, treating, and assessing 
the health of children, and on knowledge of children’s activity sensing and 
characterizing techniques. 

2.2.1 Natural Disasters and Their Impact on Children 

On March 11, 2011, a record-setting earthquake and tsunami hit the Tohoku 
(northeast) region of Japan. The Great-East Japan Earthquake is the fourth 
largest in modern record. At 14:46 JST, a magnitude 9 to 9.1 earthquake 
struck the coast. Tsunami waves of up to 40.5 meters followed the quake 
and gave people less than an hour to evacuate. 

Japanese buildings are designed to be resilient during earthquakes, and 
citizens are well-trained for emergency evacuation; however, the scale of 
this event was a shock to the system. At least 22,626 people lost their 
lives. Witnesses confrm that children, even those in pre-planned shelters 
saw people die [45]. The impact of the disaster continues: the children 
affected by the natural disaster are now teenagers many of whom still 
suffer from latent PTSD and its long-term symptoms, often exacerbated by 
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repeated exposure to elements of the trauma since major earthquakes are 
not uncommon in the region. 

Surviving a major natural disaster can cause stress and illness in most 
people but is particularly hard on children [37]. After the 2008 Sichuan 
earthquake, PTSD and depression rates among children aged 8 to 16 years 
were 12.4% and 13.9% respectively when measured 15 months after the 
event [38]. Over 50% of school-aged children in Haiti were reported to 
have severe post-traumatic stress one year after the 2010 earthquake [37]. 
Becker’s research on trauma in children who experienced the Asian Tsunami 
on December 26, 2004 showed a tendency towards regressive behaviors 
[46]. In the study, children between 4 and 7 exhibited typical regressive 
behaviors such as clinging, bedwetting, fearfulness, sleep disorders, and 
elevated reactions to stimuli. 

Recently, more research attention is focused on needs that arise after 
survival requirements for food, clothing and shelter are met. In particular, 
mental health care is receiving increased focus [46, 36, 47, 48, 49]. Coping 
with disaster-induced mental health conditions is not easy, but timely access 
to appropriate mental health care is crucial to reduce the risk of devel-
oping PTSD [38]. Unfortunately, mental health interventions are usually 
short-term, and even these are hard to provide and hard to access. They 
require considerable time, professional expertise, and resources [47]. Many 
factors further complicate practitioners’ ability to target and monitor the 
appropriate mental health care for children. Natural disasters cause simulta-
neous systemic shocks, and research shows that cumulative and conjoined 
traumatic events can amplify behavioral problems [50, 51]. After the 2010 
earthquake in Haiti, Blanc relocated children to a center where psychosocial 
supports were in place. Yet, even with a systematic intervention Blanc’s 
team were unable to show signifcant reductions in either PTSD or depres-
sion when compared to a control group [37]. Pynoos’s analysis of PTSD 
in children following the 1988 Armenian earthquake suggests that girls 
sustained more serious and long-lasting suffering than boys [52]. While 
our work focused on helping children who survived the Tohoku earthquake 
and tsunami, its overarching goal is to promote research that can help all 
children who experience trauma following natural disasters. 
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2.2.2 Playful, Interactive Health Assessment and 

Treatment 

Playful or play-based therapies are a well-established means for treating 
mental health. Creative play approaches such as Sand-Play and Painting 
Therapy are commonly used to treat chronic stress and PTSD [53, 12]. 
Block play has shown therapeutic results for social withdrawal and ADHD 
in children [15, 54]. Pullman has stated that with maturation, young 
children transition from transporting blocks to stacking them, and then 
move to three-dimensional composition [55]. As a result, blocks have been 
used in three-year old children’s cognitive development checkups in Japan 
[7]. Traditionally, play therapy and assessment is conducted by an on-site 
therapist using observation, followed by question-and-answer interviews 
with the child, and sometimes involving the analysis of video recordings 
of their gameplay. These approaches are effective, but are profoundly 
time-consuming, require advanced therapeutic or psychological assessor 
expertise, and are often incapable of capturing nuanced differences in play 
actions. 

Computer-assisted health assessment and therapy is increasingly com-
mon. Automated or computer-aided assessment can potentially reduce 
on-site professional time required, and reduce training requirements for 
caregivers or assessors. For example, "Cognitive Cubes" [9] proposes a 
method to measure spatial cognitive ability using a tangible interface called 
"Active- Cube" [8]. The Active-Cube researchers assessed construction ability 
and dementia by automatically presenting target shapes, then supporting 
the shape-building process using a 3D construction TUI, and automatically 
analyzing participants’ shape similarity outcomes over time. Intarasirisawat 
et al. show that touch and motion features collected from three popular 
mobile games, Tetris, Fruit Ninja and Candy Crush, have potential to be 
used as proxies for conventional cognitive assessment of such elements as 
attention and memory[30]. An overview of PTSD diagnoses and treatment 
suggest that computational technologies can support information gathering 
and provide more objective PTSD assessments when compared to traditional 
paper and talk-based methods [56] Exposure therapy using computer simu-
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lations shows promising results for prevention and therapy in trauma-related 
disorders. Botella and Rizzo show the potential of adaptive displays and 
Virtual Reality Games (VRG) when treating combat-related PTSD [57, 58]. 
Several systems where caregivers manually track patients have shown that 
data-driven approaches improve quality of life for those suffering from PTSD 
and depression [59, 60]. 

The potential use of TUIs in children’s healthcare is being explored in 
a growing number of projects. In one example, Fan et al. showed that 
working with tangible letters helped children with dyslexia learn to read 
and spell [40]. Westeyn et al. created augmented toys called, "Child’sPlay," 
using Inertial Measurement Units (IMU) and other sensors to support auto-
mated recording, recognition, and quantifcation children’s play behaviors 
for subsequent analysis [61]. While adults use language and various abstrac-
tions and representations as their primary means of communicating with 
the world, TUIs create a unique space for children to express themselves 
since they are "easier to learn and use", as well as "draw upon physical 
affordances" and "support cognition through physical representation and 
manipulation" [62]. 

Blocks are the most widely accessible play object in early childhood 
classrooms [63, 55],and a popular form for creating playful interactions 
among children. Various TUIs were designed to assess and treat children 
using gameplay with automated blocks. For example, Vonach et al designed 
"MediCubes" that measure children’s physiological parameters during play 
[64]. Jacoby proposed PlayCubes that assessed children’s construction abil-
ity using a TUI [10]. StackBlock is a block-shaped interface that detects 
fexible stacking by embedding a matrix of infrared LEDs and phototransis-
tors [65]. Our approach builds on these past projects and works towards 
providing young children at-risk of mental health problems after natural 
disasters a non-verbal TUI-based medium that would allow them to relate to 
and directly communicate physical elements of their traumatic experience. 
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2.2.3 Activity Sensing and Detection Techniques 

Nowadays, one of the mainstream techniques used in action detection in 
children is image processing with cameras. Wang, Liu and Yang have pre-
sented various techniques for children’s activity analysis using distributed 
cameras and Machine Learning algorithms [66, 67, 68]. While generally 
effective, there are some common diffculties when retrieving activity infor-
mation using camera-based methods. First, in the preparation stage, the 
location of the cameras needs to be well-designed to establish camera views 
that capture quality information. Second, during data collection, children’s 
actions are highly fexible and unpredictable, which makes occlusions by 
objects in the space and on children’s bodies diffcult to avoid. 

Another trend in activity-detection is embedded sensors inside tangibles 
using Machine Learning methods to model data acquired by the sensors. 
“Child’sPlay” by Westeyn et al. uses a SVM (support vector machine) to 
enable the automatic recording, recognition, and quantifcation of play 
behaviors in children [61]. Hosoi et al. created IMU-embedded toy blocks, 
and modeled the raw acceleration data into actions with SVM, to recognize 
and assess building processes during play with toy blocks [69]. 

A common problem among all the above Machine Learning-based action-
characterization methods happens after data acquisition. It takes consider-
able time to annotate and label the raw data [61, 68], and the acquired data 
is often imbalanced since it is extremely hard to ask children to perform 
the certain tasks [66, 67, 68, 61]. The result is an approach that does not 
generalize well among all children. 

To avoid the above problems, we use sensor-embedded blocks with a 
state-machine algorithm to characterize different actions. The are several 
benefts to this approach. Technically, the time and expertise needed for 
site-specifc setup are low, individual blocks are easily identifed, and the 
blocks are durable. The state machine structure frees us from acquiring and 
labeling the balanced actions. Using simple, durable structures allowed our 
feld studies to progress without excessive preparation and interruptions. 
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2.3 AssessBlock Design and Implementation 

In order to enable the investigation of a possible connection between chil-
dren’s toy block play pattern and mental states we used an approach to 
capture data directly from the play activity as unfolded. We needed to design 
toy blocks that would retain the familiarity of commonly used wooden toy 
blocks, but at the same time provide intrinsic tracking of movements and 
information on the overall playing activity state. The goal was to design a 
set of simple, sturdy toy blocks that could be quickly deployed in real-world 
settings, such as kindergartens and used by caregivers, without the need 
to set up trackers or cameras. We propose a set of specifc design guide-
lines focused on three aspects: appearance, tactile properties, and data 
acquisition. 

2.3.1 Design Criteria 

Appearance: the blocks must retain the size and appearance of traditional 
wooden building blocks to preserve the familiarity of the block play experi-
ence. Design should follow the traditional toy blocks’ color scheme: using 
primary colors (red, blue and yellow) frst, then secondary colors (green, 
orange, and violet). Blocks also need to be hollow and large enough to 
embed sensors. Embedding sensors must be completely hidden, including 
lights and sounds, to avoid causing children to become curious about the 
inside of the blocks. 

Tactile properties: the blocks need to be affordable and sturdy enough 
to endure shaking, dropping and throwing. To preserve the tactility of 
wooden blocks, the build material should not only look like, but also provide 
sensory properties, such as hardness, sensory warmth, and thermal behavior 
of wooden blocks as characterized by Sadoh el al. [70]. The interactive 
blocks should also match the weight of well-designed commercial products. 

Data acquisition: the system needs to allow quick and simple deploy-
ment in daycares, clinics, or evacuation centers. The sensor embedded in 
the blocks needs to unobtrusively and robustly capture and transmit human 
activity data. A good battery charge needs to be maintained during each 
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Figure 2.3: Toy blocks with the embedded Bluetooth-IMU-sensors 

play session. Even it is not absolutely necessary, we suggest real-time data 
transmission and monitoring during play sessions. Since the available num-
ber of children for study is limited, ensuing optimal sensor operation, and 
accurate data gathering is crucial. 

Our design goals and operational constraints led us to a relatively simple 
approach: we implemented a set of sturdy Bluetooth IMU-embedded toy 
blocks (Figure 2.3), retaining the appearance of familiar wooden toy blocks, 
allowing for real-time capture of basic play behaviors. 

2.3.2 Physical Specifcation 

Our block prototypes are made with PVC Foam Board providing a warm, 
hard tactile feel. Each wall of a block is sturdily glued. We prototyped two 
basic shapes: a big block, measuring 100mm × 50mm × 25mm and 90g ; and, 
a small block measuring 50mm × 50mm × 25mm, and weighing 45g . We 
used paper clay flling to achieve traditional wooden block’s weight. The 
dimensions and the mass (including internal sensor) followed Nichigan 
Original’s Wooden Tsumiki [71], one of the widely available toy block sets 
on the Japanese market. 

2.3.3 Sensor 

A wireless IMU sensor is fxed inside each block using Velcro. That, combined 
with the pressure from the lid, ensures the sensor will not move when 

23 



Figure 2.4: Software interface on the host computer 

shaken or thrown (Figure 2.3). The wireless IMU sensors (TSND121, ATR-
Promotions [72]) hidden in each block have the following specifcations: 

• Triple axis accelerometer and gyroscope with 3 working axes (X, Y, Z) 
providing a maximum sampling rate of 1000 Hz; 

• Triple axis magnetometers with 3 working axes (X, Y, Z) and maximum 
sampling rate of 100Hz; 

• Maximum acceleration detection range per axis of ±16G 

• Binary format data output; 

• Bluetooth communication; 

• Built-in battery. 

The raw sensor data included x, y, z-axis accelerometer and gyroscope 
values, which were sent in real-time to a host computer via Bluetooth using 
a 50Hz frequency, providing data transmission as well as monitoring and 
inspection capabilities during play sessions. The interface used for data 
collection is shown in Fig 2.4. 
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(a) Move (b) Hold (c) Stand (d) Lay 

Figure 2.5: Block play actions characterized from pilot study 

2.3.4 Block Play Features 

We then calculated the numerical activity data from the raw data. To better 
understand the fundamental play activities that characterize behavior, we 
conducted a pilot study and observed free block play of 30 kindergarten 
children. From this study, we derived the following 7 fundamental activity 
features representing how active and constructive a play session is: 

Time: total time between the start and stop of the program; 
HoldTime: total time at least one block is held in hand but not moving. 

An example of holding a block can be found in Figure 2.5b; 
MoveTime: total time at least one of the blocks is moving. An example 

of moving a block can be found in Figure 2.5a; 
Movement: A sum of the magnitude of all three-axis acceleration values 

within a play session. This value is not equal to velocity since the sensor 
introduces accumulated error over time, however, it provides data indicating 
speed variations which are suffcient for comparison between subjects. 

We further defne two states during which a block is placed. When the 
largest face of a block contacts the ground, we call it “laying” (see Figure 
2.5d), while “standing” refers to the state when any other face contacts the 
ground (see Figure 2.5c). 

StandTime: the total time when a block is in a “standing” state; 
StandCount: the number of events when the placing is classifed as 

“standing"; 
LayCount: the number of events when the placing is classifed as 

"laying". 
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2.3.5 Preprocessing and Play Features Detection 

As illustrated in Figure 2.6, we implemented a threshold-based state machine 
algorithm to extract total counts and total time for the actions described 
above. 

Figure 2.6: A threshold-based state-machine structure that recognizes 
different actions 

We frst processed raw data to extract difference (Diff) and "Bottom 
Side". We applied a moving-average flter to the raw accelerometer data 
using the unweighted mean of 5 data points to flter out high-frequency 
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background noises. We then extracted Diff by (1) applying a sliding window 
of 20 data points with 50% overlap with the previous window; and, (2) 
computing Diff as the differences of the average of two adjacent sliding 
windows. This approach has proven effective as a motion data processing 
methods [73, 74]. We pre-assigned an ID to each face of a block and used 
the term Bottom Side to refer to the side facing the ground when a block is 
placed. Since the raw acceleration data includes gravity, determining the 
axis gravity was pointing toward allowed us to identify the ID of the Bottom 
Side for each placement. We then extracted the numerical counts and time 
of each action using the structure shown in Fig 2.6. 

We next evaluated the accuracy of each action. Time and Movement 
were not evaluated since data were captured by the sensors and system 
directly. For count-related actions (StandCount, LanCount), we performed 
the action 100 times and recorded the count of detected actions. The 
accuracy is calculated as follows: 

countdetect accur ac y = (2.1)
counttot al 

The accuracy is 98.0% for StandCount and 96.0% for LayCount. For time-
related action features, we performed the action 10 times, for 10 seconds 
each time. We compared seconds detected with the ground truth in each 
trial to establish the error rate for each trial. Accuracy is calculated as 
follows (n = 10): ¯̄̄̄

 

¯̄̄̄
 

t i medetect (2.2)er r or r ate = 
t i metot al 

Xn 

er r or r atei 
n i =1 

1 
accur ac y = 1 − (2.3) 

The accuracy is 98.4% for StandTime, 80.0% for MoveTime, and 66.2% 
for HoldTime. Play feature detection achieves a high degree of accuracy 
in Stand and Lay related features, and satisfactory accuracy in MoveTime 
detection. Accuracy is notably low for Hold Time, for which we suggest the 
following reasons: HoldTime is hard to detect precisely using acceleration 
data, with thresholds between movement and stasis. From our observations, 
a Hold tends to be classifed as static, especially during the latter half of 
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a 10-second hold when the holding arm leans against the table making 
movement minimal. However, since all participants suffer from this offset 
and children generally do not hold blocks statically for long periods, we 
consider these anomalies manageable during initial investigations and will 
investigate methods for improvement. 

2.4 Area-based Field-Study Design 

Based on our research question - can sensor-enabled toy blocks assess post-
disaster stress in children? we designed a play study that collected children’s 
block play features (from AssessBlocks), children’s play-related behavior 
(through video-coding), and stress measurements measured (on-site and 
through video-coding) from each play session. 

2.4.1 Stress Measurements 

Currently, the best method for collecting stress measurements is self-reporting 
[75, 76, 77]. However, this method is ineffective with young children who 
are in the early stages of cognitive and communicative development. As 
a result, evaluations by professionals and caregivers, combined with bio-
markers that can be captured and measured by instruments are often used 
together to indirectly capture stress in children [78, 79, 80, 81]. 

In our studies, we captured data using 3 established measurements and 
biomarkers related to stress: 

• Salivary Alpha-amylase activities (sAA); 

• Observation Scale of Behavioral Distress (OSBD); 

• Visual Analogue Scale of Anxiety (VAS). 

Salivary Alpha-amylase Activities (sAA) is recognized as a sensitive, 
but non-invasive biomarker for stress-induced changes in the body con-
nected to activity in the sympathetic nervous system [82]. Alpha-amylase 
production in the salivary glands increases in response to psychological and 
physical stress, and has been shown to be an accurate marker of activity 
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(a) Instrument for measuring sAA (b) A child is getting sAA measured 

Figure 2.7: sAA measurments 

(a) OSBD form (b) VAS for Anxiety form 

Figure 2.8: Forms for evaluating children’s stress level 
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in the autonomic nervous system. This approach is commonly used for 
PTSD-related assessments [83, 84]. In our study, we measured sAA before 
and after the experiment by asking participants to hold the measurement 
paper in their mouths for 10 seconds (see Figure 2.7). 

Observation Scale of Behavioral Distress (OBSD) is a scale developed 
to measure children’s behavioral responses to events that impact health and 
wellbeing. OSBD scores can be correlated with ratings of pain, anxiety, and 
physiological measures before, during, and after such events, and have been 
effective for evaluating children [85]. We use OSBD for stress evaluation 
because of its ability to capture subtle changes in a short time [85] since 
we cannot subject children to long study periods yet need to capture data 
effciently. The OSBD measurement is presented as a form as shown in 
Figure 2.8a. It takes 13 measurements to capture severe stress responses 
such as physical resistance, mild stress responses such as asking for help 
or support, as well as calm play states. The sum of these measurements 
indicate behavioral stress in a moment of play. During the experiment, the 
OSBD was measured by an on-site psychologist three times; once at the 
beginning, once in the middle (approximately 10 minutes later), and then 
at the end of the play session. 

Visual Analogue Scale of Anxiety (VAS) measures a characteristic or 
attitude ranging across a continuum of values. As shown in Figure 2.8b, 
VAS captures measurements by asking the observer to draw a vertical line 
across a horizontal scale indicating the value. The left side of the horizontal 
scale indicates the minimum value and the right the maximum. VAS is often 
used in epidemiological and clinical research to measure the intensity or 
frequency of various symptoms [86]. Its measurement has been used to 
collect adult’s self-evaluation of mood, stress and health across different 
times of a day [77] as well as parent and staff reports on children’s fear, 
pain and stress [87, 78]. In our study, we asked the child’s caregiver to 
measure the child’s anxiety before and after the experiment session. 

Our selection of stress measurements was inspired by previous work 
using these three measurements in combination when evaluating stress in 
children undergoing medical procedures [78]. The combination of sAA and 
VAS has also been studied for measuring pain perception in children [79]. 
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Together with sAA, Salivary Cortisol is also commonly used to capture stress 
bio-markers in children [88, 81, 89, 90], however, we preferred sAA because: 
(1) it is less invasive, more comfortable, and uses simpler equipment helping 
us maintain an orderly environment and avoiding a more medical setting 
which might increase stress in the children [90, 81]; and, (2) Cortisol and 
sAA are often not correlated [88, 81, 89] while sAA has been shown to 
be related to other stress measurements such as HR [81], and negative 
behavior measurements[90]; and, (3) sAA is well-suited for measuring mild 
to moderate stress responses [81, 80]. 

Following on previous work [78, 81, 89, 88], we were able to docu-
ment time-based measurements at before (sAA, OSBD, VAS), during (OSBD 
only without interrupting the study) and after play (sAA, OSBD, VAS) to 
collect comprehensive measurements for each session without introducing 
interruptions. 

2.4.2 Play Behavior Measurement 

Based on the anecdotal evidence of a change in play behavior in children af-
ter the earthquake and tsunami, and on our observations from AssessBlock’s 
pilot study, we designed 4 behavior measurements we speculated would 
correlate with a child’s stress: 

• Concentrated Time; 

• Lost Time; 

• Stacking Time; 

• Flat Time. 

Concentrated Time is calculated by accumulating the time a child is 
concentrated while playing with blocks, instead of running around, talking, 
or performing actions that are not block-play related. 

Lost Time is calculated by accumulating the time a child does not know 
what to do, seeks help, or looks for encouragement. 
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Stacking Time is the accumulated time that a child is concentrated in 
stacking and building 3-dimensional structures. Examples are found in 
Figure 2.1a and Figure 2.1b. 

Flat Time denotes time that a child is merely placing blocks fat down, 
with the largest side contacting the table. An example is showing in Figure 
2.1c. This behavior was reported as happening with greater frequency 
immediately following the 2011 event. 

The frst two categories, Concentrated Time and Lost Time, are often 
used when examining behavioral conditions such as ADHD in children 
[15, 54]. The ability to build is commonly used in cognitive development 
checkups for three-year-olds in Japan [7]. We could not be certain whether 
we could use these features to assess stress but the approach seemed promis-
ing. We worried our approach might over-complicate the implementation 
of AssessBlock to detect these features, so to account for this we asked 
psychologists to video-code when measuring OSBD while watching videos 
of the play session. If proved to be signifcant identifers of stress, it would 
be possible to use AssessBlock to capture data in the future, but we needed 
to ensure accuracy in the short term. 

2.4.3 Participants and Timeline 

Six months after the 2011 Earthquake and Tsunami, we started to contact 
the kindergartens to gather evidence of altered block play behavior, while 
the development phase of AssessBlock began. Working with childcare and 
community workers, we designed an area-based feld study in one of the 
most affected areas - Sendai city, Japan. After getting Ethics agreements 
approved by affliated organizations and formal agreements with the parents 
of each participant, our experiments took place between September 2013 
and November 2015. 

The participants we recruited were preschoolers aged 2.1 to 6.9 years old, 
among whom toy blocks are known to be particularly popular [63, 91, 92]. 
The participants were recruited from the following three locations. 

Coastal kindergarten. From Oct 2013 to Feb 2014, the play study was 
conducted with 15 children (aged 5.9 to 6.5) at a kindergarten located in a 
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coastal town. Participants were 3.0 to 4.0 years old on the day of the disaster,. 
This kindergarten was the one most damaged by the tsunami in the area. 
On that day, shortly after evacuating to a hill, the frst foor of the school 
building fooded. While waiting for rescue, children watched the tsunami 
approaching, carrying debris and washing away almost everything in its 
path. After the event, the kindergarten was closed for two months. Among 
children lived in the coastal area, many families lost their houses and jobs, 
and children and their families had to live in temporary shelters for periods 
of several months to 5 years. The children from this kindergarten were 
noticeably nervous, passive, and commonly had diffculty concentrating. 

Inland kindergarten. From Jan 2014 to April 2014, 17 children (aged 
5.1 to 6.9) from an inland kindergarten participated in the study. These 
children were aged 2.3 to 4.0 on the day of disaster. Children in this group 
experienced the earthquake, but not the tsunami. Signifcantly, the building 
housing their kindergarten was not damaged or interrupted by the 2011 
natural disaster. 

Inland children’s center. From Sep 2013 to Nov 2015, 20 children 
(aged 2.1 to 3.8) were recruited from a children’s play center, where children 
came with their parents for group play and socialization. These children 
were 0 - 1.3 old at the time of disaster and were out the reach of tsunami, 
and thus less impacted by the combined effects of the earthquake and 
tsunami experienced by those from coastal areas. 

Whatever the specifc experience on that day, all experienced contin-
ued aftershocks. As of 16 March 2016 there were 869 aftershocks of over 
magnitude 5.0; 118 over magnitude 6.0; and, 9 over magnitude 7.0 [93]. 
The number of aftershocks experienced was shown to be associated with 
decreased health across Japan [49]. Studies have suggested that the earth-
quake itself might not as traumatic for the Japanese residents who are 
resilient to earthquakes, while the unexpected and record-setting tsunami 
that caused so much death and destruction triggered greater stress and 
sorrow [45]. Given that direct exposure to traumatic events is a predictor 
for higher levels of post-traumatic stress, we felt an area-based approach 
was a good starting point for our research. 
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Figure 2.9: Kindergarten rooms for children’s study 

2.4.4 Environment, On-site Procedure and Data 

Collection 

All experiments were conducted in the children’s familiar environment. 
Inside the room where the children usually play, a child’s desk and chair 
were prepared and a set of 12 blocks was placed on the desk (see Figure 
9). Studies with younger children included a parent, and those in the 
kindergarten included the students’ regular teacher. We kept rooms quiet 
and well-lit to reduce potential for stress. A pediatric psychologist, and a 
psychology student were in the room for on-site support and observation. 
Two HD cameras aimed in different directions captured an audiovisual 
record of the children playing. 

Each child was invited to the desk to play with the AssessBlock toys 
for a free play session of approximately 20 minutes. Children were free to 
stop early or continue longer if they wished. Before playing, a parent or a 
teacher completed consent forms, and flled in a VAS of Anxiety form. The 
pediatric psychologist completed the OSBD form, and conducted the sAA 
measurement which includes instructing a child to hold a small paper test 
strip above the tongue for 10 seconds (Figure 2.7). The play session then 
started, and a student research assistant started the AssessBlock program 
remotely to document the child’s block play features. OSBD was evaluated 
again by the psychologist 10 minutes into the session. After a child stopped, 
the AssessBlock program was wirelessly stopped, and sAA, OSBD, and VAS 
were again measured and evaluated. 

When the on-site experiments were complete, four more professionals 
rated each child’s OSBD before, during, and after a session by observing the 
recorded video while video-coding play behaviors for each child. Data from 
the on-site psychologist, and the four external evaluators were averaged to 
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arrive at a fnal score. 

2.5 Results 

In this section, we frst present a profle of the data we collected, including 
demographic factors of the sample, and an examination within each group 
of data. We then explore the relationships between demographic factors and 
stress measurements, as well as the association between block-play related 
features and stress measurements. Spearman’s Rank Correlation is used to 
assess the relationship between a pair of variables since most are either on 
a ratio or ordinal scale. 

2.5.1 Data Profle 

Participants Profle and Trauma Events 

We conducted our experiment with 52 preschoolers (24 male, 28 female), 
aged 2.1 to 6.9 years old (mean = 5.0, SD = 1.74), from three locations in 
the Tohoku region of Japan. 15 children (9 male, 6 female) aged 5.9 to 6.6 
(mean = 6.4, SD = 0.30) came from the coastal kindergarten. They were 
aged 3.0 to 4.0 (mean = 3.54, SD = 0.32) when the 2011 events took place. 
17 children (6 male, 11 female) aged 5.1 to 6.9 (mean = 6.3 SD = 0.52) 
were from the inland kindergarten inside the city. They were aged 2.3 to 
4.0 (mean = 3.36, SD = 0.52) at the time. Another 20 children (9 male, 
11 female), aged 2.1 to 4.4 (mean = 3.0, SD = 0.73) were from an inland 
children’s center and were aged 0 to 1.3 (mean = 0.51, SD = 0.59) at the 
time of the event. There is a differences in age scale since children from 
the frst two locations are all above 5 years old, while those from the third 
group are all under 5 years of age (Figure 2.10a). 

At the time of the study, 5 to 6 year olds were the youngest pre-school 
tsunami victims we could recruit, because those that were older at the time 
of the tragedy were now in elementary school and were no longer used to 
playing with blocks. 

Studies have shown that traumatic events emerge as a signifcant con-
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(b) Age (below 5/above 5) of (c) Gender of children (a) Age (below 5/above 5) of children with and without tsunami with and without tsunami male and female children experience experience 

Figure 2.10: Demographic characteristics and trauma experience of the 
participants. Bars show counts of participants under different 

demographic characteristics. Statistically signifcant differences between 
the counts of different subgroups is denoted by asterisks (** indicates p 

< 0.01, *** indicates p < 0.001) 

tributor to PTSD [50, 51, 83, 94]. In this study, we emphasize the tsunami 
experience as a traumatic event for participants. Those from our frst feld 
study location directly experienced the tsunami. On March 11, 2011, these 
children were rushed out of their classrooms and evacuated to a hill behind 
their school to fnd safety. Children from the other two locations might had 
experienced the 2011 earthquake but were out the reach of the tsunami. 

In the sample, the traumatic event - tsunami experience, is associated 
with age when age is classifed into Above 5 and Below 5 years old (χ2(1) = 

10.99, p < 0.001). The trauma experience varied signifcantly among children 
below 5 years old (χ2(1) = 20.0, p < 0.001) (see Figure 2.10b) due to none of 
those under 5 having witnessed the tsunami. 

Among 24 boys (9 with tsunami experience) and 28 girls (6 with tsunami 
experience), we did not observe a signifcant association between tsunami 
experience and gender; however, the traumatic experience varied signif-
cantly within the girls’ cohort (χ2(1) = 9.14, p = 0.002) (see Figure 2.10c) 

Stress Measurements 

The stress biomarker sAA is measured at the beginning and end of each 
session, resulting in two features - sAA Before and sAA After. VAS from a 
caregiver or a kindergarten teacher is collected at the beginning and end, 
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Table 2.1: Descriptive profle of stress measurements 

Feature Average Standard deviation Range 

sAA Before 
sAA After 
sAA Ave 
sAA Diff 

67.09 
69.92 
68.51 
33.50 

55.93 
57.44 
48.33 

109.13 

4.00 - 240.00 
3.00 - 267.00 
5.50 - 237.00 

-96.00 - 563.64 

OSBD Before 
OSBD Middle 
OSBD After 
OSBD Ave 
OSBD Diff 

0.85 
0.65 
0.45 
0.65 
-0.48 

1.05 
0.93 
0.67 
0.69 
1.19 

0.00 - 4.00 
0.00 - 4.00 
0.00 - 4.00 
0.00 - 2.67 
-3.50 - 4.00 

VAS Before 
VAS After 
VAS Ave 
VAS Diff 

4.32 
2.10 
3.21 
-2.22 

2.83 
2.24 
2.13 
2.81 

0.00 - 9.60 
0.00 - 8.20 
0.30 - 8.60 
-7.90 - 7.30 

Table 2.2: Correlations among stress measurements 

sAA sAA sAA sAA OSBD OSBD OSBD OSBD OSBD VAS VAS VAS VAS 
Before After Ave Diff Before Middle After Ave Diff Before After Ave Diff 

sAA 0.520*** 
After 

sAA 0.824*** 0.889*** 
Ave 

sAA -0.348* 0.536*** .157Diff 

OSBD 0.026 0.009 0.051 0.085Before 

OSBD -0.263 -0.131 -0.216 0.095Middle 

OSBD -0.348* 0.010 -0.148 0.309* 
After 

OSBD -0.174 -0.057 -0.114 0.160Ave 

OSBD -0.274* -0.097 -0.208 0.027Diff 

0.527*** 

0.457*** 0.819*** 

0.784*** 0.889***0.813*** 

-0.700***-0.207 0.107 -0.396** 

VAS -0.205 -0.131 -0.139 -.009Before 

VAS -0.107 0.166 0.078 0.248After 

VAS -0.199 -0.019 -0.076 0.109Ave 

VAS 0.183 0.243 0.212 0.140Diff 

0.314* 0.167 0.216 0.229 -0.136 

0.150 0.380** 0.396** 0.278* -0.001 

0.275* 0.346* 0.368** 0.333* -0.100 

-0.143 0.098 0.036 -0.001 0.059 

0.479*** 

0.878***0.802*** 

-0.756***0.057 -0.475*** 

Note: *: p <0.05, **: p<0.01, ***: p<0.001, bold values indicate signifcant correlations. 
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resulting in two features - VAS Before and VAS After. OSBD is evaluated at 
the beginning, middle, and end, both on-site and using the video coding, 
resulting in three features OSBD Before, OSBD Middle and OSBD After. 

We then average the features of each stress measurements, to obtain 
a stress indicator for the entire session - sAA Ave, OSBD Ave, VAS Ave 
(Ave: an abbreviation for Average). We also calculated the changes of each 
measurement over the play session for each individual. For OSBD and VAS, 
we defne the differences as after-values minus before-values, resulting in 
OSBD Diff and VAS Diff (Diff: an abbreviation for Differences). For sAA, 
we calculated the percentage change by taking the difference between post-
and pre-play and dividing by the post value, resulting in sAA Diff. In general, 
a positive Diff indicates an increased stress measurement, while a negative 
Diff shows a decrease. The average, standard deviation and range values of 
the 13 stress measurements across 52 participants are presented in Table 
2.1. 

To briefy investigate the association between three stress measurements, 
which includes 4 sAA features, 5 OSBD features, and 4 VAS features, Spear-
man’s rank correlation coeffcients are computed between pairs of variables, 
as shown in Table 2.2. 

The measurements within each stress category are highly correlated. 
Before and After measurements are positively correlated in sAA (r = 0.52, p < 

0.001), OSBD (r = 0.46, p < 0.001) and VAS (r = 0.48p < 0.001). The results 
indicate that a child with a relatively high stress measurement before a 
session tended to have a relatively high stress measurement after a session. 
Averages of all three stress measurements are positively correlated to their 
Before and After measurements, which matches expectation since Ave is a 
combination of Before and After and these two are shown to be correlated. 
Diff is negatively correlated to Before value in sAA (r = −0.35, p < 0.05), 
OSBD (r =−0.70, p < 0.001) and VAS (r =−0.756, p < 0.001), indicating that 
those with a high stress value before the session reduce more stress during 
the session. Diff is positively correlated to After value in sAA (r = 0.54, p < 

0.001), indicating that those who have a low sAA value after the session 
show greater reductions during the session. Meanwhile, Diff is negatively 
correlated to Ave value in OSBD (r =−0.40, p < 0.01) and VAS (r =−0.48, p < 
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0.001), indicating that those with greater OSBD and VAS reductions in the 
session tend to have a low average value. 

We then notice that OSBD and VAS are positively correlated in Before 
(r = 0.31, p < 0.05), After (r = 0.40, p < 0.001), and Ave (r = 0.33, p < 0.05), 
while similar correlations are not found in the other two pairs - OSBD and 
sAA, VAS and sAA. None of VAS measurement is correlated to sAA, while 
some OSBD measurements are correlated to sAA indirectly: OSBD After is 
correlated to sAA Before (r =−0.35, p < 0.05) and sAA Diff (r = 0.30, p < 0.05), 
and OSBD Diff is correlated to sAA Before (r =−0.28, p < 0.05). 

Fundamentally, sAA measures physiological and psychological stress 
while OSBD and VAS measures observable behavioral stress. Based on the 
above observations, two behavioral stress measurements OSBD and VAS 
agree in Before, After, and Ave, while the same pattern is not observed 
between stress biomarker sAA and behavioral stress measurements. 

OSBD is evaluated in a more objective and unbiased manner in compari-
son with to VAS. To simplify the dimension of our targets, in the following 
analysis we use OSBD measurements to indicate behavioral stress, and we 
use sAA to indicate physiological and psychological, or inner stress. To 
further reduce dimensions, we also omit OSBD Mid value since it is highly 
correlated to OSBD Before (r = 0.53, p < 0.001), After (r = 0.82, p < 0.001), 
Ave (r = 0.89, p < 0.001), and is included in the calculation of Ave. A total of 
8 measurements, including stress biomarker, sAA Before, After, Ave, Diff, and 
behavioral stress, OSBD Before, After, Ave, Diff, are used in the following 
analysis. 

Block Features and Video-Coded Play Behavior 

Block features, in time and count, and play behavior, in time, are computed 
across a play session. Since the total length of a session differs between 
individuals, we further divide each feature, excepting the total time, by the 
total time in minutes, to obtain features per minute. The average, standard 
deviation and range values of the 7 block play features and 4 play behaviors 
across 52 participants are presented in Table 2.3. 

The association among play behaviors, among block play features, and 
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Table 2.3: Descriptive profle of block and play behavior features. Time 
feature is documented in mi n, and other features are documented in 

/mi n 

Feature Average Standard deviation Range 

P.Conca 0.93 0.16 0.26 - 1 
P.Lost 0.30 0.28 0 - 1 
P.Stack 0.82 0.21 0 - 1 
P.Flat 0.35 0.27 0 - 0.95 

B.Timeb 19.97 3.26 8.18 - 26.54 
B.MoveTime 0.79 0.20 0.30 - 1 
B.HoldTime 0.17 0.13 0.01 - 0.55 
B.StandTime 0.58 0.27 0.05 - 1 
B.StandCount 12.87 5.51 3.88 - 27.92 
B.LayCount 11.59 4.23 2.41 - 22.96 
B.Movement 23.22 8.63 6.61 - 48.98 

aP. = Play behavior. Conc = Concentration Time 
bB. = Block feature 

Table 2.4: Correlations among play behavior, block features, and between 
them 

P. 
Conc 

P. 
Lost 

P. 
Stack 

P. 
Flat 

B. 
Time 

B. 
MoveTime 

B. 
HoldTime 

B. 
StandTime 

B. 
StandCount 

B. 
LayCount 

B. 
Movement 

P. 
Lost 

P. 
Stack 

P. 
Flat 

0.022 

0.248 

0.169 

0.156 

0.147 -0.642*** 

B. 
Time 

B. 
MoveTime 

B. 
HoldTime 

B. 
StandTime 

B. 
StandCount 

B. 
LayCount 

B. 
Movement 

0.065 

-0.185 

-0.046 

0.086 

0.068 

0.077 

0.071 

0.024 

-0.116 

-0.168 

0.204 

0.298* 

0.107 

0.190 

0.247 -0.197 

-0.197 0.109 -0.173 

0.221 -0.248 0.348* 

0.142 -0.107 -0.140 

0.423** -0.277* 0.113 

0.450***-0.402** 0.255 

0.557***-0.270 0.314* 

0.076 

-0.541*** 

-0.389** 

-0.157 

-0.129 

-0.241 

0.368** 

0.701*** 

0.649*** 

0.481*** 

0.048 

0.061 

0.794*** 

0.654*** 0.745*** 

Note: *: p <0.05, **: p<0.01, ***: p<0.001, bold values indicate signifcant correlations. 
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between them are investigated using Spearman’s rank correlation. Their 
bivariate coeffcients are shown in Table 2.4. 

The 4 play behaviors are relatively independent, except that Stack is 
negatively correlated with Flat (r =−0.64, p < 0.001). This indicates that a 
child who dedicates more time to stacking spend relatively less time playing 
fat and vice versa. 

In 7 block features, several correlations were found. First, StandCount 
is positively correlated to LayCount (r = 0.79, p < 0.001). Contrary to cor-
relations of play behaviors Stack and Flat, counts of standing and laying 
blocks are highly correlated in the same direction. StandCount is positively 
correlated to Movement (r = 0.65, p < 0.001) while negatively correlated 
to MoveTime (r =−0.39, p < 0.01). This indicates that children who stand 
blocks more also moving them faster though not more frequently. Stand-
Count is also positively correlated to StandTime (r = 0.48, p < 0.001) and 
HoldTime (r = 0.37, p < 0.01). HoldTime is positively correlated to Lay-
Count (r = 0.70, p < 0.001), Movement (r = 0.65, p < 0.001), and Time (r = 

0.35, p < 0.05). Additionally, LayCount and Movement (r = 0.75, p < 0.001), 
StandTime and MoveTime (r =−0.54, p < 0.001), and Time and Movement 
(r = 0.31, p < 0.05) are shown to be correlated. 

Between block features and play behavior features, we observe that 
among 4 play features, Stack and Flat are correlated to some block features. 
The play behavior Stack is positively correlated to LayCount (r = 0.45, p < 

0.001) and StandCount (r = 0.42, p < 0.01), while Flat is negatively correlated 
to both LayCount (r =−0.40, p < 0.01) and StandCount (r =−0.28, p < 0.05). 
Movement is positively correlated to Stack (r = 0.56, p < 0.001), indicating 
that children who moves faster tend to do more stacking. Besides Stack and 
Flat, StandCount is found positively correlated with Lost (r = 0.30, p < 0.05). 

In general, many block features are correlated. Those showing the most 
correlation with others include StandCount and HoldTime. We also found 
that block features are commonly related to the play behaviors stacking and 
playing fat, but not with concentrated time. 
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Table 2.5: Correlations between demographic factor, trauma event, and 
stress measurements 

sAA sAA sAA sAA OSBD OSBD OSBD OSBD 
Before After Ave Diff Before After Ave Diff 

Tsunami 
Exp -0.356** -0.235 -0.306* 0.211 0.313* 0.190 0.209 -0.104 

Age 
Above5 -0.259 -0.257 -0.252 -0.016 -0.057 0.119 -0.031 0.119 

Age -0.216 -0.227 -0.244 0.004 -0.080 -0.028 -0.127 0.087 

Note: *: p <0.05, **: p<0.01, ***: p<0.001, bold values indicate signifcant correlations. 
Tsunami Exp = tsunamp experience (0 = No, 1 = Yes) 

2.5.2 Correlations with Stress Measurements 

Demographic Factors, Trauma Events and Stress 

Previous studies show that socio-demographic factors, such as age and gen-
der operate as signifcant mediators of PTSD [52, 95, 96], and trauma events 
emerge as a signifcant contributor to PTSD [50, 51, 83, 94]. Therefore, we 
investigated whether or not correlations exist between socio-demographic 
factors and stress measurements. 

We did not observe any signifcant differences in stress measurements 
between male and female children using a one-way ANOVA test. From 
our participant profle, we note that in the data set, those with tsunami 
experience are concentrated among children over 5 years of age. Thus, we 
speculate that if a stress measurement is found to correlate with tsunami ex-
perience, there is a chance that the correlation is infuenced by to the stress 
measurement’s correlation with age, notably, with differences in stress below 
and above the age of 5. As a result, we added an additional ordinal demo-
graphic variable, Age Above 5, to account for this condition. To investigate 
the relationship between age, tsunami experience, and stress measurements, 
Spearman’s rank correlation coeffcients are computed between Tsunami 
Exp, Age, Age Above 5, and the 8 stress measurements. 

As shown in Table 2.5, Tsunami Exp is negatively correlated to sAA 
Before (r =−0.36, p < 0.01) and sAA Ave (r =−0.306, p < 0.05), and positively 

42 



correlated to OSBD Before (r = 0.313, p < 0.05). No correlations are found 
between age and stress measurements, and between Age Above 5 and stress 
measurements, indicating that the correlation between traumatic event, 
tsunami experience, and stress measurement are not due to the correlation 
between age and stress measurements. Notably, Tsunami Exp contribute 
differently to sAA and OSBD - where correlations indicate that those with 
the tsunami experience have a lower sAA Before and sAA Ave, and a higher 
OSBD Before value. 

Block Features, Play Behavior, Demographic Factors and Traumatic 
Events 

Previous research suggests that block playing behavior differs across age 
and gender [55, 7], and boys and girls have different block playing behavior 
[97, 98]. Since demographic factors and traumatic events may work as 
mediators for stress, we briefy investigate the correlation between block 
features, play behavior and those factors. 

We frst test whether there are signifcant differences in block features 
and play behaviors between genders using one-way ANOVA. We do not ob-
serve signifcant differences between genders in any play behaviors. Among 
block features, HoldTime (F(1,50) = 7.822, p < .001), Movement (F(1,50) 
= 7.088, p < .01), and LayCount (F(1,50) = 4.575, p < .05) are signifcant 
different between genders. 

As shown in Table 2.6, among play behaviors, Age is positively cor-
related to Conc (r = 0.318, p < 0.05), Lost (r = 0.443, p < 0.01) and Stack 
(r = 0.410, p < 0.01). Among block features, Age is positively correlated to 
StandCount(r = 0.302, p < 0.05) and Movement (r = 0.371, p < 0.01). Pre-
dictably, StandCount, which indicates the 3-dimensional construction, and 
Movement, which indicates moving speed, increases with the maturation of 
a child. 

Among play behaviors, Tsunami Exp is positively correlated to Conc (r = 

0.283, p < 0.05), Lost (r = 0.350, p < 0.01). Among block features, Tsunami 
Exp is only positively correlated to Movement (r = 0.321, p < 0.05). 
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Table 2.6: Correlations between demographic factor, trauma event, and 
block features, play behavior 

P. 
Conc 

P. 
Lost 

P. 
Stack 

P. 
Flat 

B. 
Time 

B. 
MoveTime 

B. 
HoldTime 

B. 
StandTime 

B. 
StandCount 

B. 
LayCount 

B. 
Movement 

Tsunami 
Exp 

Age 

0.283* 

0.318* 

0.350* 0.117 0.208 

0.443** 0.410** 0.026 

-0.075 

-0.107 

0.061 

-0.152 

0.021 

-0.183 

0.027 

0.232 

0.177 

0.302* 

0.115 

0.164 

0.321* 

0.371** 

**: *: **: ***:Note: p <0.05, p<0.01, p<0.001, bold values indicate signifcant 
correlations.. 

Block Features, Play Behaviors and Stress 

Spearman’s rank-order correlation coeffcients between 7 block features, 4 
play behavior, and stress measurements are presented in Table 2.7. Between 
behavior features and physiological stress measurements, Flat is positively 
correlated to sAA Diff (r = 0.28, p < 0.05). Notable correlations exist be-
tween Conc and sAA Before (r =−0.27p = 0.053), and Flat and sAA Before 
(r =−0.26p = 0.06) though they are not statistically signifcant since the p-
values are slightly greater than 0.05. Interestingly, the negative correlations 
between Flat and sAA Before, and positive correlation between Flat and sAA 
Diff indicate that a child who has more time playing without construction 
tends to have a lower sAA starting value, and greater increase of sAA or less 
of a reduction after the session. 

Among block features, sAA is negatively correlated to StandTime (r = 

−0.303, p < 0.05), and StandCount (r =−0.345, p < 0.05). While StandCount 
and StandTime both point to active construction, above fnding indicates 
that sAA After are lower among those who construct; however, the same 
observation is not found in other sAA measurements. 

For the behavioral stress measurement OSBD, there were on correlations 
with play behaviors. OSBD After is negatively correlated to the block features 
Time (r =−0.44, p < 0.001) and MoveTime (r =−0.28, p < 0.001). OSBD Ave 
is negatively correlated to Time (r = −0.32, p < 0.05). Surprisingly, none 
of the construction-related block features are correlated to the behavioral 
stress measurement OSBD. 

In general, 2 out of 7 block features, and 2 out of 4 play behaviors show 
correlation with the physiological and psychological stress sAA. Only 2 from 
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Table 2.7: Correlations between block features, play behavior, and stress 
measurements 

sAA 
Before 

sAA 
After 

sAA 
Ave 

sAA 
Diff 

OSBD 
Before 

OSBD 
After 

OSBD 
Ave 

OSBD 
Diff 

P. 
Conc 

P. 
Lost 

P. 
Stack 

P. 
Flat 

-0.269! 

-0.089 

0.078 

-0.259! 

-0.221 

-0.092 

-0.133 

0.010 

-0.243 

-0.055 

-0.003 

-0.125 

-0.011 

-0.017 

-0.248 

0.280* 

0.102 

0.101 

0.009 

0.002 

-0.066 

0.153 

-0.222 

0.168 

-0.114 

0.080 

-0.229 

0.110 

-0.039 

-0.022 

0.003 

0.071 

B. 
Time 

B. 
MoveTime 

B. 
HoldTime 

B. 
StandTime 

B. 
StandCount 

B. 
LayCount 

B. 
Movement 

0.219 

-0.095 

0.094 

-0.082 

-0.013 

-0.050 

0.076 

0.160 

0.107 

-0.056 

-0.303* 

-0.345* 

-0.254 

-0.132 

0.226 

0.014 

-0.017 

-0.255 

-0.220 

-0.190 

-0.039 

0.014 

0.118 

-0.073 

-0.151 

-0.163 

-0.103 

-0.087 

-0.060 

0.068 

-0.095 

0.113 

0.010 

-0.075 

-0.066 

-0.444***-0.317* 

-0.281***0.245 

-0.208 -0.251 

-0.010 0.099 

-0.190 -0.138 

-0.185 -0.220 

-0.235 -0.247 

-0.242 

0.076 

0.089 

-0.137 

-0.035 

0.042 

-0.021 

Note: *: p <0.05, **: p<0.01, ***: p<0.001, !: p<0.1,bold values indicate signifcant 
correlations. 
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block features, show signifcant correlation with behavioral stress OSBD. 
Though not optimal, the results indicate the potential for assessing stress, 
and particularly internal stress as captured by sAA using toy block play 
features. 

2.6 Discussion 

Our study explores a novel approach using sensor-embedded blocks to as-
sess children’s stress two years after a large-scale earthquake and tsunami. 
Our fndings provide an encouraging refection on the potential of the ap-
proach and help us form and propose guidelines for further research into 
the assessment of children’s mental health using sensor-embedded block 
approaches. Here we discuss the potential and challenges of this work, the 
lessons learned, and provide guidelines for future exploration of this area of 
research. 

2.6.1 Potentials 

Addressing the long-term RQ: can sensor-enabled toy blocks assess 
post-disaster stress in children? 

This exploratory study and correlation analysis show the potentials of block 
play features for assessing physiological and behavioral stress in children. 

Focusing on block features, we fnd the 3D construction-related features, 
StandTime and StandCount, are negatively correlated to sAA After, indicat-
ing that fewer standing-related actions are associated with a higher sAA 
After, and vice versa. In play behavior features, Flat is negatively correlated 
to sAA Before and positively correlated to sAA Diff, indicating that more 
"playing fat" is associated with a relatively lower sAA Before value and an 
increased sAA during the play session. Simultaneously, from our block and 
play behavior feature correlations, we fnd Flat is negatively associated with 
Stack and StandCount. These combined fndings indicate that relatively 
passive play - with more playing on a fat surface, and less 3D construction 
actions such as standing blocks up, tends to indicate a lower sAA Before, 
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and a higher sAA After. In such cases, children’s physiological stress sAA 
tends to increase. 

Our fndings also indicate that children who were directly exposed to 
the tsunami also exhibit lower sAA Before and Ave. In previous studies, 
Feldman et al. found that children exposed to war who were diagnosed with 
PTSD exhibited a low-level of stress biomarker sAA, at baseline, following 
a challenge, and during recovery [83]. Their results though focused on 
children exposed to a different kind of traumatic event, seem to align with 
our fndings of sAA value among those with direct tsunami exposure, which 
indicate those who directly experienced the tsunami as a trauma event might 
be at greater risk for PTSD. Feldman et al. also discovered that children 
without PTSD employ comfort-seeking strategies while children with PTSD 
withdraw [83]. Their fndings with regard to withdrawal in children with 
PTSD also seems to align with the "passive play" behavior we observed, and 
the low sAA Before value associated with "passive play". This result could 
indicate that "passive play" might be an indicator for children suffering from 
latent PTSD. 

We also observe that the play behavior Concentrated Time is negatively 
correlated to sAA Before, similar to Flat. Meanwhile, Concentrated Time 
does not exhibit a positive correlation to sAA Diff as "playing fat" does. 
Without correlation to Flat, Concentrated Time may not relate to the "pas-
sive play" behavior mentioned above. Thus, the length of time a child is 
concentrated during play may work as a general indicator of physiological 
and psychological stress, but not as an indicator of "passive play" and the 
corresponding bio-marker tendencies. 

For behavioral stress - OSBD, correlations between its measurements 
and play behavior features were not found. The only correlations found 
were between OSBD and computed block features. While most construction-
related features do not exhibit a correlation with OSBD, Time and MoveTime 
are both negatively correlated to OSDB After. Since block features Time 
and MoveTime are not signifcantly correlated, their negative correlations 
with OSBD measurements should be examined independently. We set up 
our play sessions to run for 20 minutes, but left fexibility for children 
to choose how long they engaged in order to be as gentle with them as 
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possible. Predictably, some left early and others played longer with total 
experiment time varing from 8.18 minutes to 26.54 minutes. The negative 
correlation between OSBD After and Time indicates that those who ended 
early, probably due to losing interest, tended to have a higher OSBD after 
play and a higher average OSBD, while the opposite was true for those still 
immersed in play after 20 minutes. Additionally we noted that those who 
had longer periods during which at least one block was moving indicated 
a lower OSBD measure at the end, and vice versa, revealing a negative 
relationship between active play and a high level of behavioral stress OSBD. 

While in the early stages, our exploratory fndings suggest a connection 
between block play actions and stress in children. There seems to be 
signifcant evidences to support the possibility of an automated block system 
that support assessment and maybe even predictions of children’s stress in 
children after natural disasters. 

Stress Measuring Method 

In this early exploration related to children’s mental health, and in particular 
to PTSD related health issues in children, we used three stress measurements. 
Distinct from questionnaire and self-evaluation method usually used in 
studies with adults [77], we used biomarker measurement and behavior 
evaluation by a third party to approximate stress levels in child. We felt 
that these were appropriate and relatively unobtrusive methods for working 
with children and believe they induces less stress fuctuations as a result of 
running the experiment itself. 

We found no convergence between three measurements; however, OSBD 
and VAS seemed to agree in Before and After values, which validates the 
credibility of our behavioral measurements. We also found a negative 
correlation between the Before value of physiological stress sAA and Before 
value of behavioral stress OSBD. With that, it is hard to simply say the best 
ground truth for stress is OSBD. 

In this study, we consider that OSBD, and particularly OSBD After, cap-
tures a child’s external and observable stress in daily life, since OSBD Before 
values may be impacted by unavoidable environmental factors such as being 
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asked to step into an experimental setting. We believe sAA is a promising 
internal measurement, which might be highly relevant for to traumatic 
experiences leading to an increased risk of PTSD. sAA refects on the inter-
nal nervous system activity and was found to be related to the reactions 
to trauma experience and latent stress disorder [83]. In our study, sAA 
correlated to certain behaviors such as "passive play"; however, the dis-
sonance between sAA and OSBD, and the hidden relationships between 
external behavioral stress and internal physiological stress requires future 
investigation. 

Mediator and Moderator Effects 

A mediator is a bridge between a pair of variables while a moderator 
regulates the size and direction of the association between two variables 
[99]. In PTSD research, demographic factors and exposure to traumatic 
events are often shown to be mediators, moderators, or both [52, 95, 96, 
50, 51, 83, 94]. 

Our fndings show that tsunami exposure correlates to both sAA and 
OSBD, and to block features and play behavior, indicating that tsunami expe-
rience may operate as a mediator for stress. Some block and play behavior 
features also correlate to age and gender, but age and gender do not exhibit 
the mediation effect since no correlation with stress biomarker or behavioral 
stress was found; however, these features may work as moderators infuenc-
ing the correlation between play and stress differently (i.e., among different 
ages, or genders). Moreover, other mediator and moderator factors such as 
trauma history, family social status, parental socio-demographic factors, and 
other relevant demographic details may exist. 

Block Features and Play Behavior Features 

From our analysis, we fnd both block features and play behavior features 
are correlated to stress measurements; however, human-annotated play 
behaviors did not outperform block features as we expected. Nevertheless, 
play behavior features did uncover a "passive play" behavior, and indicated 
that stress may be possibly related to concentration. Thus, play behaviors 
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seem to perform an important role in stress assessment. Extracting these 
features automatically from AssessBlocks, either by investigating the com-
putational algorithm, or by incorporating new sensors will be necessary to 
continue this work. 

The Predictive Capability of Features 

Using the same set of data, previous work shows that block features are reli-
able for predicting age [100], confrming previous studies of differences in 
block play between age groups [55] and demonstrating the predictive power 
of automated blocks. With correlations shown between block features and 
stress measurement, we see potential for predicting stress and other mental 
health factors using block features. Even though correlations between block 
features and stress measurements are not strong, we believe the aggregation 
of several sets of features may provide the required predictive power. Stress 
might be predictable using block features and play behaviors, mediated and 
moderated by demographic factors and trauma experience. 

A practical obstacle to examining predictions, particularly with machine 
learning techniques, is the relatively small data size. Sampling psycholog-
ical measurements to attain the large datasets necessary for constructing 
advanced machine learning models is challenging by nature. One way to 
continue to explore the prediction of stress measurement is to maintain 
focus on simple and interpretable methods such as linear models and sim-
ple nonlinear approaches such as Decision Trees. Another possibility is to 
explore Multitask Learning, where multiple correlated learning tasks can be 
solved simultaneously [77]. Since our stress measurement targets are highly 
correlated, particularly on Before, After and Ave, we are able to multitask 
targets to obtain a model for prediction. 

Block Assessment Approach 

All of the children showed interest in playing with our block prototypes, 
and none tried to open or break them indicating that our design approach 
achieved its goals. No child demonstrably rejected our study method indicat-
ing a level of comfort with our approach to feld studies. These small signs 
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seem to validate our toy block-based data collection and assessment ap-
proach as non-invasive and child-friendly which are crucial for both ethical 
and methodological reasons. 

2.6.2 Limitations and Challenges 

While our results are promising, more work is needed in order to use 
AssessBlocks as a tool to support mental health assessment. A number of 
limitations need to be addressed in further iterations. 

Data Sampling 

In this work, the data size is relatively small, and is unbalanced with regard 
to exposure to the traumatic event. The traumatic event in our study is 
particularly important, since Tsunami Experience is signifcantly correlated 
to both physiological stress and behavioral stress. In our data set, 15 among 
52 had a tsunami experience. As the result of several constraints, all those 
with tsunami experience came from one location, and all were above the 
age of 5. This group is the youngest tsunami victim pre-schoolers we could 
access under the conditions we faced. The coastal kindergarten group 
was unique, as the only one in Sendai area damaged by the tsunami, and 
comparable collaborators with similar circumstances would be diffcult to 
fnd and engage. While we cannot reasonably access comparative data sets, 
we believe collecting the data from a representative place affected by the 
natural disaster was crucial. With the data we had, we observed that tsunami 
experience is signifcantly associated with stress and age is not. Balanced 
data, with more children who experienced the tsunami from a wide range 
of locations would further validate our fndings of correlations between 
tsunami experience and stress, and would help evaluate the predictive 
capability of our approach. At the same time, given the sensitivity of the 
topic and those affected, broadening the sampling size presents unique 
challenges. 
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Block Features and Play Behavior Features 

Some block features, such as HoldTime, demonstrated relatively low accu-
racy (66.2%) which needs to be addressed. We believe this rate exposes a 
weakness in threshold-based motion extraction. One of the potential solu-
tions could be introducing sensing modalities to the surfaces of the blocks. 
As previously illustrated, many block parameters are correlated, with sig-
nifcant Spearman’s Rank Order coeffcients from 0.31 to 0.79. While it is 
natural that some actions are related, such highly correlated parameters 
are usually considered detrimental to statistical analysis and could falsely 
increase the ft if used in linear models. Thus, a feature selection process 
is needed for stress prediction with our current set of features. In order to 
capture play events from different angles, we can explore combining IMU 
and other sensing modalities, to obtain multi-modal features that are not 
highly correlated. 

2.6.3 Other Observations 

Blocks and Therapeutic Effects 

From the correlation analysis, we found Diff of both biomarker and be-
havioral stress are negatively correlated to Before value for children over 
20 minutes of play. Does this indicate block play’s effect on stress reduc-
tion? More long-term follow-up studies and rigorous analysis are needed 
to answer this question as well as to verify block play’s potential therapeu-
tic benefts. For now, we feel our results are suffcient to warrant further 
research. 

Behavior Pattern 

From our on-site and video-based observations, some unusual patterns were 
observed among children who had tsunami exposure and an increased sAA. 
One such pattern was a behavior of stacking followed by destroying followed 
by play restricted to a fat surface ("playing fat") (Coastal group P1). This 
pattern can be related to the “passive play” observed from block features 
which seemed to indicate a high risk for PTSD. We also discovered that some 
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children who witnessed the tsunami and increased their sAA showed fence 
building behaviors (Coastal group P14) (Figure 2.1b). Some aggressive 
and destructive behaviors such as ficking the blocks was also observed 
(Figure 2.1d) among children who did not witness the tsunami (Inland 
group P5). Among children who increased sAA, many were observed to 
lack concentration, confrming the negative correlation between the human-
annotated play behavior Concentrated Time and sAA Before measurement. 
Non-concentrated behaviors, including leaving the blocks aside to explore 
the room, getting attracted by others nearby, as well as tense or passive body 
movement were observed. In contrast, concentrated children had many 
trial-and-error sessions and became more engaged with construction if their 
structures collapsed. 

While the above play patterns, such as fence-building, stack-collapse–fat 
play, stack–collapse-stack play cannot be formally analyzed using our current 
play features, they could be captured using sequences of block actions, 
and the relationship between stress and these patterns should be further 
examined. 

2.6.4 Next Steps 

Blocks Design 

Based on our preliminary study results and our observation of specifc 
and unique patterns, we propose a new block design framework to capture 
several categories of data (Table 2.8). The frst type is individual block states. 
This type captures the block side that a child puts down, such as stand up 
(small side on bottom) or lay down (big side on bottom). The second is 
hand-to-block interactions, including holding, moving, and shaking. The 
third is the interaction between blocks in a group, in categories such as 
stacking, play fat, and start a new location. The fnal category is the manner 
of disassembly, including normal, free fall, and aggressive destruction. It is 
necessary to output these data in counts, time, and sequences. In order to 
accurately detect actions refecting block surface connections and involving 
subtle movement, we propose enhanced sensing methods deployed on the 
surface of the blocks. Utilizing IMU and the screen of a Smartwatch as 
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Table 2.8: Activities need to be captured by blocks 

Categories Play Actions 

Individual State 
stand up 
lay down 

hold 
Hand-to-block Interaction move 

shake 
stack 

Block-to-block Interaction fat 
new location 
disassemble 

Disassembly free fall 
destroy 

described in [101], motion data and surface connection can be integrated 
to detect surface contact-related actions such as Hold, Stack, Flat and 
Disassemble. 

Experiment Design and New Assessments 

We also propose investigating other mental health targets such as aggressive 
behavior, depression, and attention, with AssessBlocks. With enhanced block 
features and more data, we are eager to explore different kinds of predictive 
methods to improve reliability and the power of assessment. 
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Chapter 3 

Predicting Behavior Problems 
with Play Actions and Pattern 
Engineering 

Preface: This Chapter contains modifed content from one of my previously 
published papers [Xiyue Wang, Kazuki Takashima, Tomoaki Adachi, Yoshi-
fumi Kitamura. Can Playing with Toy Blocks Refect Behavior Problems in 
Children? In Proceedings of the 2021 CHI Conference on Human Factors 
in Computing Systems (CHI ’21). Association for Computing Machinery, 
New York, NY, USA, Article 540, 1–14. ] ©2021 ACM. I adapted the cited 
paper and reorganized its content to integrate it into the thesis. I performed 
the majority of the work associated with the aforementioned paper. I con-
tributed to: 1) establishing the presented story, 2) prepossessing data, 3) 
developing the feature engineer techniques and the prediction models, 4) 
propose and performed the qualitatively analysis on the model coeffcients, 
5) encapsulating the result and discussion, and 6) writing the paper. 

3.1 Introduction 

The last decade has seen a growing trend of behavioral and mental prob-
lems in young children, including ASD, ADHD, and PTSD. Such increased 
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challenges in the mental health of children are largely affected by multi-
dimensional external factors and such traumatic events as wars and natural 
disasters [102, 103], family relationships [104], and the infuence of media 
[105]. Behavior problems in children became prevalent with many under-
defned latent cases [106], however, assessing and diagnosing children’s 
mental health and behavior problems remain challenging. Since young 
children’s linguistic expressions and cognitive development have not com-
pletely matured, traditional self-check and questionnaire-based assessments 
do not apply to them. Investigating young minds is time-consuming and 
requires empirical knowledge, subtle observations, and persistent support 
from caregivers. Daily monitoring and the assessment of children’s mental 
health remain to be less explored. 

Among standardized methods assessing children, Child Behavior Check-
list (CBCL) [107] appears to be widely-used, affordable, and reliable. It is a 
multi-axial empirically-based set of measurements that contain three broad 
groups of behavior problems: Internalizing, Externalizing, and Total Prob-
lems. It also carries eight specifc syndromes, including Anxiety/Depression 
and Aggressive Behavior. Within each measurement, three ranges are de-
fned based on age and gender: normal, borderline, and clinical. CBCL 
creates a profle that gives clinicians an overall picture of the variety and 
the degree of the behavior problem of children. However, as one of the frst 
step screening tools in the clinical settings to create a behavioral and mental 
health profle, CBCL is not normally accessible to children and their care-
giver in daily settings such as preschools and households. It also requires 
a caregiver’s elaborate knowledge of a child’s behavior over the past six 
months. Therefore, implementing CBCL as a daily assessment tool for every 
child is impractical. 

As a preventive method to support wellness, attaining awareness of 
personal health and affects in a non-clinical setting is gaining attention in 
HCI research. Previous work predicted affective states with smartphone 
touch data [32], and mental well-being with a set of daily activity data 
including phone calls, sleep-wake patterns, and social activities [31]. Nev-
ertheless, such adult activity data are neither applicable for children nor 
highly relevant to their high-level health status. For young children, the most 
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basic element of their daily activities is playing. Free play with toy blocks, 
which is fundamental among preschoolers, is available in most preschools 
and households [108, 109]. With simple forms and minimal instructions, 
blocks provide children a space for exploration and expression. Thus, blocks 
has been used in children’s cognitive development checkups and therapies 
[7, 15, 54]. Certain block-play actions captured by sensors, such as more 
of laying blocks fat and less of stacking blocks, are found to be correlated 
to high levels of physiological stress in a child before and after free-play 
sessions [110]. These prior literature demonstrated a connection between 
children’s mental health and behaviors in a free-block-play session, and 
indicated that data automatically captured from block-play might be able to 
replace the observations to infer health status. 

Motivated by prior work, we propose a TUI (Tangible User Interface) 
approach that deeply explores the relationship between free-play with toy 
blocks and prolonged behavior problems beyond stress. We explore whether 
and to what extent the quantitative data captured from a block-play session 
refects and predicts a range of clinical behavior issues, including Internal-
izing, Externalizing, and Total behavior problems, as well as such specifc 
syndromes as Aggressive Behavior, all of which can be measured by CBCL. If 
block-play predicts clinical behavior problems, it can be a powerful support-
ive tool for monitoring the daily health of children. Our proposed system can 
be useful in non-clinical and clinical scenarios where (1) CBCL or the knowl-
edge required for assessing child behavior is inaccessible and/or (2) child 
behavior problems need to be further validated or frequently monitored. 

We embedded IMU (Inertial Measurement Unit) sensors into toy blocks 
to collect children’s play data and classifed the following basic play actions: 
static (including stand and lay), hold, move, shake, and fall. From 2016 to 
2017, our study took place in the area that was devastated by the 2011 Great 
East Japan Earthquake and Tsunami. This area has a higher prevalence 
of behavior problems among children due to its devastation that persisted 
for several years [102, 111]. As a preliminary investigation, we used a 
population-based approach and examined children from three preschools. 
We collected the quantitative data of a roughly 20-minute toy-block free-play 
session from 78 children as well as their CBCL measurements. The results 
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found children with and without clinical behavior problems differed in play 
actions hold, fall, shake, lay, and in total play time, and suggested our block 
approach’s potentials in predicting Total Problems, Internalizing Problems 
and Aggressive Behavior. 

The following are our paper’s specifc contributions: 

• We proposed a sensor-augmented free-block-play approach to predict 
a child’s behavior problems in a controlled setting which can be easily 
constructed in daily lives. 

• We quantifed and classifed play actions with real-world data (50%-
88% accuracy) and leveraged sequential play patterns to predict be-
havior problems (82%-90% accuracy). 

• We interpreted the prediction model features and presented insight 
into three styles of play discovered from the features among children 
with behavior problems. 

Our results suggest initial promise for refecting clinical behavior in children 
from a short play session with toy blocks. Currently, insights can be used to 
support observations and assessments, especially who and what play styles 
need further attention. Our approach and analysis methods may beneft 
future researches toward an ultimate goal of predicting, monitoring, and 
assessing the behavior problems of children in their daily lives. 

3.2 Related Work 

3.2.1 Children’s Mental Health, Behavior Problems and 

Assessment 

Over the past decades, mental disorders are signifcantly affecting children 
and adolescents. In 2001, the worldwide prevalence of child and adolescent 
mental disorders was approximately 10-20% [112], and in 2015 it was 
13.4% among 6-18 years old [113]. Among a wide range of mental disor-
ders, the prevalence of anxiety disorders, depressive disorders, attention-
defcit hyperactivity disorders (ADHD), and disruptive disorders were the 
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highest, ranged from 2.6% to 6.5% [113]. These mental and behavior 
disorders are often a comorbidity of such more severe psychiatric disorders 
as Autism Spectrum Disorders (ASD) [114], Bipolar Spectrum Disorder 
(BSD) [115], and Post-traumatic Stress Distress (PTSD) [116, 117, 118]. 
Childhood mental and behavior problems are affected by an aggregation 
of environmental factors such as negative, inconsistent parental behavior 
and parental disorder [119], high levels of family adversity [104], stressful 
social circumstances [120, 121], media usage [122, 105] and trauma events 
[102]. Findings also suggested that environmental factors indirectly affect 
children’s mental health. The traumatic events, such as earthquake and 
war, may cause anxiety disorders and PTSD in parents and induce children’s 
behavior problems [111, 103]. 

Scientifc evidence argues that childhood mental and behavior disorders 
tend to persist into adolescence and adulthood [123, 124, 106], and some 
deteriorate into much more disabling disorders [112, 125] due to such 
complex reasons as lack of knowledge about childhood mental disorders, 
relatively weak advocacy, and insuffcient training and resources [106]. 
When the health problems of children evolve into a global crisis, signifcant 
attention must focus on preventive methods, especially since the prevalence 
is often higher than estimates [126] and include a large number of under-
diagnosed cases [116, 127]. Many needs remain unmet in many parts of 
the world [128, 127]. 

Although early detection and intervention prevent children’s mental 
and behavior problems, the diagnosis of children is complicated. The stan-
dard clinical diagnosis, the Diagnostic and Statistical Manual of mental 
disorders (DSM), requires physician administration, structured clinical in-
terviews, and consultations with external psychiatrists [129, 130, 131]. As 
an empirical and questionnaire-based screening method, CBCL and its dif-
ferent translations’ reliability have been verifed in a large body of literature 
[112, 132, 133, 134, 135]. CBCL is a pencil and paper test completed by 
caregivers. It asks about a child’s behavior over the past six months and 
aggregates these data into behavior problem T-scores [107]. The long-term 
stability of CBCL clinical abnormal behavior was also found in a 4-year 
follow-up study [136]. Other research has shown that CBCL is predictive 
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and supportive for the diagnosis of DSM symptoms, such as ADHD, bipolar 
disorder, and anxiety disorder [130, 137, 131, 129, 134]. CBCL has also 
been extensively used in epidemiological and longitudinal studies as an eff-
cient screening method that creates a behavior and mental disorder profle 
of the children of a population, such as post-natural disasters [102, 111], 
post-war crises [103], and life in foster care [138]. Despite CBCL’s effciency, 
it is not generally used outside of clinical and research situations. 

3.2.2 Playful, Interactive Healthcare for Children 

Playful or play-based methods are well-established means for supporting 
children’s mental health and well-being. Creative play approaches such as 
Sand-Play and Painting Therapy are commonly used to treat chronic stress 
and PTSD [53, 12]. Playing with toy blocks has shown therapeutic results 
for social withdrawal and ADHD in children [15, 54]. 

The potential use of TUIs to automate and advance children’s healthcare 
has been explored. Spiel et al. reviewed a body of tangible and playful 
systems for autistic children that targeted behavior analysis, including di-
agnosis, monitoring, and therapeutic reviews [139]. Examples include 
motion-based interactive systems [140], emotional robots [141] and par-
ticipatory design of smart tangible objects [142]. Playful systems have 
also effectively supported ADHD children. Quantitative evaluations have 
used gestures to detect behavior patterns to distinguish ADHD children 
[143, 144]. WeDA combined touchscreens, tangible objects, and a wearable-
based system to diagnostically assess children with ADHD [11]. Besides 
ASD and ADHD, Fan et al. showed that working with tangible letters helped 
dyslexic children learn to read and write [40]. Westeyn et al. developed a 
Child’sPlay system with Inertial Measurement Units (IMU) and other sensor-
embedded augmented toys, including puppies, blocks, and rings to support 
the automated recording, recognition, and quantifcation of children’s play 
behaviors for development analysis [61]. Although adults use language 
as their primary means of communicating with the world, TUIs create a 
unique space for children to express themselves since they are "easier to 
learn and use", "draw upon physical affordances" and "support cognition 
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through physical representation and manipulation" [62]. 
Blocks, which are the most widely accessible play object in toddler class-

rooms [63, 55, 109], are popular forms for creating playful interactions 
among children. Pullman argued that with maturation, young children tran-
sition from transporting blocks to stacking them and then three-dimensional 
composition [55]. As a result, blocks are used in the cognitive development 
checkups of three-year olds in Japan [7], and block-shaped interfaces were 
proposed for health assessments. Vonach et al. embedded sensors in 
MediCubes to non-invasively measure such children’s physiological parame-
ters as pulse, temperature, and blood oxygen saturation during interactions 
[64]. Jacoby et al. proposed PlayCubes, a children’s instruction-based con-
struction ability assessment [10], using a cube-shaped tangible interface 
called Active-Cube [8]. Hosoi et al. implemented IMU-embedded smart 
building blocks and demonstrated their ability to classify play actions using 
lab-collected data [69]. Our approach builds on the designs and imple-
mentations of these block-shaped interfaces. Specifcally, we aim to provide 
young children who are at-risk of mental health problems a non-verbal 
TUI-based medium that allows them to directly communicate the physical 
elements of their behavior. 

3.2.3 Daily Activity Data and Non-intrusive Health 

Monitoring 

Leveraging quantitative daily activity data to imply meaningful health, be-
havior, and affect information has been getting increased attention. Previous 
literature forged a link between health and daily activity data from mostly 
mobile and wearable devices. Daily activity data include smartphone usage, 
for example calls and text messages [32, 31], as well a other meaningful 
activity information processed from sensors, for example how many steps 
a person has walked [145]. They can suggest a broad range of psychiatry 
phenotypes, such as depression, moods, social connectedness, self-reported 
health [146, 147, 31, 148]. However, the same scenario is generally not 
applicable to preschool children. 

A large body of work that monitors and predicts children’s health is 
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comprised of specifcally designed tasks and specifc assessment goals, e.g., 
cognitive ability [10] and ADHD [11]. They are effective with high 
sensitivity and precision; but the test-like tasks are too specifc to merge 
into daily lives. To integrate the data collection and assessment seamlessly 
into children’s daily settings, the system should balance the specifcity and 
ambiance for effciency and acceptance. One thread used video and audio 
recording to ambiently capture activity data in daily settings [149, 150, 144], 
although they might face such obstacles as occlusion and a vast amount 
of unspecifc information. Others put wearable devices on children as an 
activity-data collector [151, 152, 153]. Although such devices were effective 
for data collection, the tolerance of children (especially those at-risk) has 
been questioned [139]. 

Another promising method is to examine the data collected with the 
interfaces they normally interact. Intarasirisawat et al. described how the 
touch and motion features collected from three popular mobile games (Tetris, 
Fruit Ninja, and Candy Crush) have the potential to be used as proxies for 
the conventional cognitive assessment [30]. Mironcika et al. demonstrate 
that motion data captured from sensors-embedded tokens in the board 
game play is promising to assess fne motor skills [154]. By discovering 
the correlations between temporary stress during play and quantitative 
data captured from toy-block-play, Wang et al. showed the potential for 
evaluating children’s stress with block-play activity [110]. These sensors-
embedded interactive devices show promises for health-related uses. Our 
work further investigates the data collection and analysis methods that can 
be embedded in the daily lives of children, to infer their mental health and 
behavior. 

3.3 Approach 

3.3.1 Toy Blocks Design 

We implemented a set of sturdy Bluetooth IMU-embedded toy blocks, Assess-
Blocks (Fig. 2.3), resemble the dimensions, the mass (including the sensors’ 
paper clay flling), and frm, warm tactile feelings of Nichigan Original’s 
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Wooden Tsumiki [71], a widely available toy-block set on the Japanese mar-
ket. Our block prototypes were assembled with PVC form board in primary 
and secondary colors: red, blue, yellow, green, and white. We developed 
two types: big blocks, which measured 100 × 50 × 25mm3 and weighed 90g ; 
and small blocks, which measured 50×50 ×25mm3 and weighed 45g . Inside 
each block, we fxed in the center a Bluetooth IMU sensor (Fig. 2.3) that is 
resilient to shaking and throwing. Wireless IMU sensors (TSND121, ATR-
Promotions [72]) hidden in each block contain a three-axis accelerometer 
and gyroscope, a Bluetooth, and a built-in battery. The raw sensor data 
included x-, y-, and z-axis accelerometer and gyroscope values were sent in 
real-time to a host computer by Bluetooth using a 50-Hz frequency, which 
was suffcient to distinguish fundamental play actions, validated in our pre-
vious studies [69, 110]. During the study, 12 blocks were prepared for each 
child, and the data were received by two laptop computers on-site (each of 
which was connected to six blocks with Bluetooth) as the play unfolded. 

3.3.2 Experiments Design 

Participants 

As a preliminary investigation into the relationship between block-play and 
child’s behavior problems, instead of looking for test and control groups of 
a specifc disorder, we sampled children on a large scale, in an area with a 
high prevalence of behavior problems. 

From January 2016 to February 2017, we invited 88 children to join 
our play study after getting ethics agreement approved from the affliated 
organizations and formal agreements from the parents of each participant. 
The recruited participants were 4.11 to 6.11 years old preschoolers, an 
age cohort among whom toy blocks are particularly popular [63, 91, 92]. 
They were recruited from three preschools in Miyagi prefecture, which was 
devastated by the 2011 earthquake and under reconstruction for years [155]. 
A population-based report shows that after the disaster, the area’s children 
had a high prevalence of behavior problems [102], and the prevalence 
persisted even three years after the disaster [111]. 

After collecting all the data, ten participants were removed from the 
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Figure 3.1: Preschool rooms for children’s block play 

analysis due to incomplete CBCLs and accidental sensor failure in either 
the battery or Bluetooth connection. A total of 78 children (30 girls), 4.11 
to 6.11 years old (mean = 5.78, SD = 0.51), were included in the fnal 
dataset. 

Behavior Measurements 

The parents of each participant completed the Japanese version of CBCL 
for ages 4 to 18 years (CBCL/4-18), 1 which contains 122 items concerning 
behavior or emotional problems over the past six months. The responses 
are formatted into 0, not applicable; 1, somewhat or sometimes true; 2, 
very true or often true. Different items are combined into eight individual 
syndrome scales: Withdrawn, Somatic Complaints, Anxiety/Depression, So-
cial Problems, Thought Problems, Attention Problems, Delinquent Behavior, 
and Aggressive Behavior. All individual syndrome scales are summed into a 
Total Problems scale. Withdrawn, Somatic Complaints, Anxiety/Depression 
form an Internalizing Problems scale, while Delinquent Behavior and Ag-
gressive Behavior provide an Externalizing Problem scale. Raw scores are 
converted to gender and age-standardized T-scores to permit comparisons 
across gender, age, and scales. It takes about 25 to 30 minutes to complete 
the checklist. 
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Procedure 

The experiments were conducted during regular school hours inside the 
preschools. The room where the children usually play included a child’s 
chair and a desk on which a set of 12 blocks was placed (Fig. 3.1). We kept 
the room quiet and well-lit to reduce any potential stress. 

Each child was invited to play with AssessBlocks for approximately 20 
minutes, a time frame based on the children’s regular playtime. This length 
of time also refects a period during which most children can concentrate. 
In the study, the child could stop early or continue slightly longer if they 
wished. The child’s regular teacher was sitting nearby. The free-play session 
started when she encouraged the child to play with the blocks. A student 
research assistant remotely started the AssessBlock program to receive the 
IMU data. The teacher provided no instructions, tasks, or help. Minimum 
interactions happened when the child was actively searching for social-
emotional support such as attention or when the child was idle for a long 
time. A child development psychologist and a psychology student were in 
the room for on-site support and observation. Two HD cameras in different 
directions captured audiovisual records of the children’s play. After the child 
ended the play session, the AssessBlock program was wirelessly stopped. 

3.3.3 Quantitative Data Classifcation and Extraction 

Quantitative Action Defnition 

We defned actions to quantify the play sessions based on previous literature 
and a pilot study. A rich body of literature assessing children’s emotional 
and cognitive development has focused on observing, interpreting structure, 
and identifying atypical play behavior. Knocking down and shaking toys are 
the most common atypical emotional responses [156, 7, 110]. Movements, 
holds, pauses, and different ways to place a block also provide information 
such as motor skills, concentration levels and challenge levels [109, 108]. 
Although quantifying the structure remained diffcult, we broke down the 
play sessions into a sequence of actions to categorize the children’s behavior. 

1CBCL’s use, scoring, and pricing information are accessible at: http://www.aseba.org/. 
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(a) Lay (b) Stand 

(c) Hold (d) Move 

(e) Shake (f) Fall 

Figure 3.2: Block play actions characterized in pilot study. Note that lay 
and stand are both derived from static. 
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With the knowledge and experience of two psychologists who specialize 
in child development and play therapy, we conducted a pilot study that 
observed the free-block-play of 30 healthy preschool children. From the 
pilot study we derived the following nine play features, including two 
characteristics and seven fundamental actions: 

• Time: total amount of time between the start and stop of the play 
session. 

• Movement: a sum of the magnitude of all three-axis acceleration 
values within a play session for capturing personal differences of 
moving speed. 

The following refer to actions in the static state: 

• Static: the state after a block is placed on the table. It can be further 
classifed into lay and stand. 

• Lay: performed if the largest face of a block contacts the ground when 
being placed (Fig. 3.2a). 

• Stand: the state when any other face contacts the ground (Fig. 3.2b). 

The following are the actions in the dynamic state: 

• Hold: when the block is being held without substantial displacement 
(Fig. 3.2c). 

• Shake: moving or swaying a block with quick and irregular vibratory 
movements (Fig. 3.2e). 

• Move: performed when the amount of movement is in between hold 
and shake (Fig. 3.2d). 

• Fall: movement caused by gravity when a structure collapses or is 
knocked down (Fig. 3.2f). 
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Labeling and Preprocessing 

We classifed fve actions, static, hold, move, shake, and fall, from raw IMU 
data. Lay and stand were distinguished accurately from static by checking 
the axis to which the acceleration’s gravity portion is pointing. A previous 
approach built a rule-based, three-class classifer with adult data collected 
in the lab to classify the fundamental actions of static, hold, and move [110]. 
However, models built with adult data that classify complex actions may 
not generalize well to children. Westeyn et al. built binary classifers to 
categorize each of 34 actions for playing with toys and found the sensitivity 
(true positive rate) drops from 78.6 to 55.7% when switching the test dataset 
from adult’s to child’s. Shake and fall, which achieved a high sensitivity with 
adult data, performed poorly among children (50-75% sensitivity) [61]. 

To improve the generalization among children, we built an action classi-
fer from the children’s data collected during the experiment. Three graduate 
students acted as coders to exhaustively label portions of the data using 
ELAN software [157]. The data for the labeling were selected from nine 
participants (female = 5, fve had at least one clinical behavior problem). 
These nine participants (10% of the original 88) were chosen based on 
observations to ensure they represented almost all play styles, and both 
normal and clinical children. We found data collected in the feld were 
highly unbalanced in a large portion of static and move. Within each partici-
pant, we selected on average 4-minute play segments in which more hold, 
fall, and shake actions were performed to balance the corpus. In total, 38.5 
minutes were selected for coding. The coders were trained by a professional 
(the third coder) for 1.5 hours to recognize each action and to familiarize 
themselves with the software. They reported that it took roughly 1 hour 
to code 2.5-minute of data, and found almost no distinct new play actions. 
The labels provided by the frst two coders had a Cohen’s kappa of k = 0.774, 
which indicated a substantial agreement among them [158, 159]. The 
professional (third coder) checked their coded data thoroughly and found 
that the disagreements mostly were at the start and end of some actions. 
She compared the labeled data frst two coders agreed-upon with the videos, 
and fne-tuned the start and end of each action, to obtain a set of labeled 
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actions. 
We preprocessed the raw IMU data following the data processing pipeline 

proposed by previous work [73, 74, 61]. The feature space included a 3-axis 
accelerometer and 3-axis gyroscope values. We combined the magnitudes 
of each and produced eight features. A moving-average flter of three data 
points was then applied to each feature to remove any high-frequency noise. 
Next a half-second sliding window without overlapping was applied to each 
of the features. The mean, variation, and power spectral density were 
computed over each window. 

Classifcation 

Among the labeled data of the nine participants, six were used for training 
and three for testing. This participant-based testing was structured to 
validate the performance of unseen participants. By comparing a range of 
feature selections and classifcation models, we found that applying Logistic 
Regression with balanced class weights on the windows of the means of 
eight features best predicted the labels. The accuracy was maximized at 
85.5% in the testing data, and 50.0 to 88.2% for each classes (baseline 
25%). The classifcation result on the test data can be found in Fig. 3.3. 

The classifer linearly captured general rules from the data. Classifying 
the unstructured children data in the feld was harder than the adult struc-
tured data [61]. Most misclassifcations were in shake, which may due to 
the limited sample size in the corpus. However, further fne-tuning towards 
shake might degrade the performance of the other more common actions 
(especially fall) in this fve-class model. Since this is the frst step and the 
importance of each action is unknown, we believe our model overall is 
acceptable. 

Extract Timeline and Quantitative Features 

We next applied the classifer to all 78 participants. Each block’s entire 
play session can be presented by a time-series comprised of 0.5-second long 
actions. Next we computed an all timeline by aggregating every block’s 
timeline to represent an overview of the session regardless of the scale of 
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Figure 3.3: Confusion matrix for classifcation of fve actions on test 
data. 

the blocks. At each moment, the most representative action was chosen 
from all 12 blocks using an order of importance from drastic to static: fall, 
shake, move, hold, stand and lay. The visualization of the 12 timelines of 
each block and one all timeline of a 6-minute play session are found in Fig. 
3.4. We observed that in each timelines, small blocks were relatively inactive 
with long stand and lay periods. However, the combined all timeline was 
active throughout the session with a few short pauses. Although both types 
of timeline capture the play behavior during a session, the each and all 
timelines can exhibit quite different characteristics. 

Next, 23 quantitative features were computed from each play session. 
Play time and movement were accumulated from the raw data. We calculated 
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from the timelines the quantitative representations of seven actions in two 
forms, time and count. Unlike the time form, which sums up the occurrence 
of one action, the count increments only when an action performed is 
different from the previous one. To investigate which timeline manifests 
more critical information, we computed the time each and count metrics by 
processing and totaling each timeline of 12 blocks, and the time all metric 
by processing the all timeline. 

3.4 Result 

3.4.1 Data Profle 

CBCL 

Table 3.1: Descriptive characteristics of three broad range behavior 
problems and four selected individual syndromes among our participants 

(N = 78). 

Behavior Problem 
Normal Borderline Clinical 

n % 95% CI n % 95% CI n % 95% CI 

Total Problems 63 80.8 (72.0-89.5) 4 5.1 (0.2-10.0) 11 14.1 (6.4-21.8) 
Internalizing Problems 67 85.9 (78.2-93.6) 0 0 11 14.1 (6.4-21.8) 
Externalizing Problems 65 83.3 (75.1-91.6) 3 3.8 (0.0-8.1) 10 12.8 (5.4-20.2) 

Anxiety/Depression 74 94.9 (90.0-99.8) 1 1.3 (0.0-3.8) 3 3.8 (0.0-8.1) 
Social Problems 72 92.3 (86.4-98.2) 3 3.8 (0.0-8.1) 3 3.8 (0.0-8.1) 
Attention Problems 58 74.4 (64.7-84.0) 5 6.4 (1.0-11.8) 15 19.2 (10.5-28.0) 
Aggressive Behavior 72 92.3 (86.4-98.2) 2 2.6 (0.0-6.1) 4 5.1 (0.2-10.0) 

The prevalence of clinical and borderline children among the participants 
is found in Table 3.1. The percentage of children with clinical problems 
in our sample was lower than in a previous study of children’s behavior 
problems after the 2011 Earthquake in Japan (25.9%, 27.7%, and 21.2% 
for Total, Internalizing, and Externalizing Problems) [102]. Nevertheless, 
it exceeded the 2008 survey of mental problems among Japanese nursery 
school children (4.6%) and the prevalence of preschoolers in other parts 
of the world [160], indicating that children who are growing up in a post-
disaster area are experiencing a higher risk of behavior problems. 
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Among eight individual syndrome scales, we included Anxiety/Depression, 
Attention Problems, Social Problems, and Aggressive Behavior in our study 
because they (1) contributed more to the broad scales and (2) contained 
more clinical and borderline children. We found that among children with 
borderline and clinical Total Problem cases, an average of 30.6% (SD = 
14.2%) of the scores was comprised of the Attention Problems. The other 
leading contributing syndrome scales were Aggressive Behavior (27.8%, SD 
= 13.8%), Social Problems (12.7%, SD = 5.4%), and Anxiety/Depression 
(9.2%, SD = 8.4%). Aggressive Behavior (90.8%, SD = 6.6%) contributed 
the most to the Externalizing Problems, and Anxiety/Depression (68.3%, 
SD = 17.4%) contributed the most to the Internalizing Problems. 

In this preliminary investigation, we omitted the borderline children in 
the following analysis since (1) the group size was small, with 1 or 0 cases 
in some measurements; and (2) it enabled us to draw a clearer line between 
normal and those with a high risk of behavior problems. 

Play Action Features 

A descriptive profle of the play features is shown in Table 3.2. Two play 
session features and seven action features in three metrics comprised a total 
of 23 quantitative features. Since the complete length of a session differed 
among the children, we normalized the features by dividing each feature 
(except the time) by time (in minutes) to obtain feature values per minute. 
The average, standard deviation, and range values of the features across the 
participants are presented in Table 3. To investigate which action metric 
better refects behavior problems, we included all three (time each, time all 
and count) in the following analysis. 

3.4.2 Relationships Between Behavior Problems and 

Each of the Play Features 

To investigate whether each play action refects on children’s behavior 
problems, we frst looked into the differences of play features between 
normal and clinical children. A Mann-Whitney U test was conducted on 
each play feature factored by each behavior problem. 
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For children with and without clinical Total Problems, we found signif-
cant differences in terms of fall (time each) (U = 483, z = 2.074, p < .05), fall 
(time all) (U = 495, z = 2.256, p < .05), and fall (count) (U = 481, z = 2.044, 
p < .05) (Fig. 3.5a). For Internalizing Problems, signifcant differences 
were found in hold (time each) (U = 212.5, z =−2.240, p < .05), hold (count) 
(U = 216.5, z = −2.182, p < .05), and lay (count) (U = 229.5, z = −1.996, 
p < .05) (Fig. 3.5b). For Anxiety/Depression, signifcant differences were 
found in time (U = 33.0, z =−2.053, p < .05) (fgure 3.5c). For Aggressive Be-
havior, our results found signifcant differences in fall (time each) (U = 237.0, 
z = 2.163, p < .05), fall (time all) (U = 236.0, z = 2.140, p < .05), fall (count) 
(U = 237.0, z = 2.163, p < .05), as well as shake (time each) (U = 239.0, 
z = 2.210, p < .05), shake (time all) (U = 230.0, z = 2.001, p < .05), shake 
(count) (U = 239.0, z = 2.210, p < .05), and time) (U = 51.0, z = −2.163, 
p < .05) (Fig. 3.5d). No signifcant difference was found in any play features 
between normal and clinical children in Externalizing, Social, and Attention 
Problems. 

The result showed that among all the play features, fall, shake, hold, 
lay, and time are more representative phenotypes of different types of 
behavior problems. Children with Total Problems tend to perform more 
falls, and children with Aggressive Behavior tend to have more falls and 
shakes, indicating a more drastic style of playing. Children with Internalizing 
Problems tend to have shorter time holding the blocks and fewer hold and 
lay counts. Children with Anxiety/Depression and Aggressive Behavior 
tend to play for a shorter time, suggesting diffculties in concentrating or 
enjoying block-play. These results demonstrated that children with and 
without Total Problems, Internalizing Problems, Anxiety/Depression and 
Aggressive Behavior play with blocks differently. 

3.4.3 Exploratory Prediction 

With a fairly small dataset, we explored simple models to investigate the 
predictive power of block-play. First, we used quantitative features and 
play patterns extracted from the timeline to predict the behavior problems. 
We then examined the features that were selected as the best predictors. 
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Next, the characteristics of the best predictors of behavior problems were 
summarized and confrmed with observations. 

Feature Engineering and Model Selection 

In the previous session, several quantitative features exhibited differences 
between children with and without clinical behavior problems. Previous 
literature also observed that some sequential play patterns, which are diff-
cult to capture by time and count, might be relevant to the inner states of 
children, such as playing on a fat surface after the structure has collapsed 
[110]. Motivated by these fndings, we explore the possibilities of extracting 
useful sequential action patterns from the entire play sequence. 

Following the N-gram representation commonly used in sequence analy-
sis in linguistics and biology [161], we produced pattern features by gener-
ating N-gram actions after downsampling the play sequences. The timeline 
of all 12 blocks were used since we found they outperformed the aggregated 
all timeline in the prediction. Lay and stand were uniformed to static to 
simplify the sequence into the composition of fve actions: static, hold, move, 
shake, and fall. Downsampling creates non-overlapping windows of the 
sequence, and then selects the most frequent action within the window. 
Originally, each action in the timeline was 0.5-second long. As an example, 
the 1-gram resembles actions in the time each metric. The 2-grams creates 
many 1-second sequences of adjacent actions, which appeared to be too 
fne-grained. Thus, downsampling was conducted to fnd the length of 
action that best generated predictive pattern features. As the downsample 
rate increased, each action spanned a longer time and became coarser. 

The N-gram representation also permutes the actions and drastically 
increases the feature dimension, as 5-gram can reach 3125 (= 55) features. 
To select the most important features, we employed L1-regularization (or 
LASSO), which is widely used in the tasks with high-dimensional features 
that require feature selection and the interpretability [162]. When the 
feature space contains a group of correlated ones, LASSO retains only one 
feature and sets the others in the group to zero. Although this retains the 
model’s simplicity, the coeffcients can be interpreted as associations. 
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We trained a number of 3-fold cross-validation L1-regularized models 
(scikit-learn implementation with Logistic Regression, penalty = l1, solver 
= liblinear) by sweeping 120 downsampling rates from 1 action per sec. to 
1 action per 2 min., incremented 1 sec. each time. Each round, we went 
through a pipeline: (1) generating a downsampled sequence; (2) extracting 
1-gram to 5-gram features from it; and (3) building a LASSO model and 
comparing the performance. 

Prediction Performance 

We investigated the predictions using the fundamental quantitative features 
as a baseline, and added the N-gram patterns to explore whether play 
patterns improved the performance of the prediction. In Total Problems, 
Internalizing Problems and Aggressive Behavior, we were able to build 
models with a sensitivity (true positive rate) higher than 0.5. The models 
using features alone and features plus patterns are presented in Table 3.3. 
The predictions with the best accuracy are highlighted. 

We found the initial set of quantitative features exhibited diffculties 
predicting the behavior problems. With this highly unbalanced dataset, 
sensitivity was relatively low since the highest was 0.36 in the Internalizing 
Problems. Adding pattern representations of the play sequences increased 
the sensitivity and precision (positive predictive value) and maintained or 
slightly increased the specifcity (true negative rate). In this imbalanced 
dataset with a small amount of true positives, the current sensitivity indicates 
that the models can identify 50 to 64% of the clinical children with three 
behavior problems. The precision shows that among all the predicted 
positives, 22 to 55% are true. The specifcity shows that our predictions 
hold a relatively satisfactory true negative rate of 82 to 93%. Most normal 
children can be correctly identifed. 

Feature Coeffcients and Interpretations 

The non-zero coeffcients from the models that best predict Total Problems, 
Internalizing Problems, and Aggressive Behavior are presented in Fig. 3.6. 
In each model, we interpreted the tendencies of the dominant features, and 

78 



Table 3.3: Performance for prediction of Total Problems, Internalizing 
Problems, and Aggressive Behavior. AUC represents micro-averaged and 
macro-averaged AUC. Se, Sp, and Pr denote sensitivity, specifcity, and 

precision. 

Prediction 
Performance Metrics 

Features Accuracy AUC Se Sp Pr F1 Score 

Total 23 Features 0.70 0.45 0.10 0.81 0.08 0.08 

Problems 23 Features + Patterns 0.82 0.75 0.64 0.86 0.44 0.52 

Internalizing 23 Features 0.81 0.62 0.36 0.88 0.33 0.35 

Problems 23 Features + Patterns 0.87 0.74 0.55 0.93 0.55 0.55 

Aggressive 23 Features 0.89 0.59 0.25 0.93 0.17 0.20 

Behavior 23 Features + Patterns 0.90 0.71 0.50 0.92 0.25 0.33 

grouped them into distinct play styles. A mapped-out relationship of the 
target behavior problems, the main features, and the styles can be found in 
Table 3.4. 

Total Problems: The play pattern features that best predict Total Prob-
lems have a rate of seven seconds per action. We frst found the positive 
predictors involved with fall and move. On the contrary, negative predictors 
are mostly static and hold. This result indicates a more active, or even 
"drastic" style among clinical children, and a gentle style otherwise. Two 
features involving the hold move pattern were positive predictors of the Total 
Problems. The same pattern was not found in the negative predictors. This 
hold move style can be characterized into an "indecisive" play style, which 
holds the block for a while before deciding where to move it. Meanwhile, 
some features found to be hard to interpret. For example static related 
features appeared to be both positive and negative predictors. 

We next ran a quick observational analysis to look for the occurrence 
of "drastic" (Fig. 3.7b) and "indecisive" (Fig. 3.7c) style among children 
with high and low Total Problems T-scores. Among 11 children with clinical 
Total Problems, seven were "indecisive," six played "drastically", and two 
exhibited both. Many (P19, P44, P50, P76) seemed to grasp the block tightly 
during the "hold" phase. We examined the children with the lowest Total 
Problem t-scores and found that 3 of 10 were "indecisive" and none were 
"drastic." No child seemed to grab the blocks hard. 
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Internalizing Problems: In this model, the play pattern features have 
a rate of 20 seconds per action, which is considerable long. We found 
among the pattern features, positive predictors all contained a long, 80-
second static. It can be characterized into an "inactive" play style with 
long pauses. Other feature coeffcients were inconclusive because similar 
features appeared as both positive and negative predictors. Although time 
was signifcantly shorter among children with an Internalizing Problem 
evaluated by a Mann-Whitney U test, longer time was a positive predictor in 
the model. 

We examined the "inactive" (Fig. 3.7d) play styles from the recorded 
video. Among children with clinical Internalizing Problems (N = 11), seven 
were inactive with long pauses. Among children with the lowest Internal 
Problem t-scores (N = 10), six also showed long pauses. However, three of 
the six were excitedly explaining their structure during the pause (P31, P32, 
P56) after they fnished building it. 

Aggressive Behavior: The dominating positive predictors for Aggressive 
Behavior were fall (time each) and shake (time each), which indicated a 
"drastic" style. The rest of the positive features, static (time each), stand 
(time each), and hold (time each), slightly indicated an "inactive" style. The 
negative predictors were quite diverse, included move, hold, stand a block 
and static. A longer playtime was also associated with normal children, 
which we confrmed with a signifcant difference. 

By analyzing the video, we observed that all the children with clinical 
Aggressive Behavior (N = 4) exhibited the "drastic" play style and were 
impatient, violent, and noisy with many intentional falls. One had many 
observable shake actions (P62), two boys ficked the blocks, built high 
towers and then repeatedly knocked them down (P62, P65). Among them, 
two were also "inactive." Among the children with the lowest T-scores (N 
= 10), two were "inactive," but none exhibited the "drastic" style. Another 
observed difference was that when the children with Aggressive Behavior 
disassembled their structures, they knocked them down (P46, P49, P62, 
P65). On the contrary, children with low Aggressive Behavior scores would 
gently take their block structures apart block by block to avoid a collapse 
(P34, P56). 
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We also observed that two "inactive" children out of four with Aggressive 
Behavior (P62, P65) were highly distracted by their environment when they 
saw or heard others pass by. One had clinical Attention Problems, and the 
other had borderline Attention Problems. Such "distracted" behavior wasn’t 
found among children with low Aggressive Behavior t-scores. However, 
capturing such "distracted" behavior was complicated by the blocks since the 
children might or might not be holding a block when they were "distracted." 
Since the experiment did not include a designed distraction, the relationship 
between being distracted and Aggressive Behavior or Attention Problems 
cannot be verifed yet. 

Overall, the feature interpretations and validations demonstrated that 
the predictions provided insights, which confrmed a majority of the obser-
vations and further induced observational hypotheses and discussions. 

Table 3.4: Discovered mappings of target behavior problems, predictor 
features, and characterized play styles. 

Target Positive Predictors Style 

Total Problems 

fall (pattern) 
fall (time each) 

move (time each) 
drastic 

hold move (pattern) indecisive 

Internalizing 
Problems 

static (pattern) inactive 

Aggressive Behavior 

fall (time each), 
shake (time each), 

less time 

static (time each), 
stand (time each), 
hold (time each) 

drastic 

inactive 

81 



(a) Total Problems 
(action length = 7 sec.) 

(b) Internalizing Problems 
(action length = 20 sec.) 

(c) Aggressive Behavior 
(action length = 3 sec.) 

Figure 3.6: Non-zero coeffcient estimates for Total Problems, Internaliz-
ing Problems, and Aggressive Behavior. Positive coeffcients are positively 
correlated with clinical problem, and negative coeffcients are positively 

correlated with no problem. 
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(a) active construction, which is most common) 

(b) Drastic play, which is related to Total Problems and 
Aggressive Behavior 

(c) Indecisive play, which suggests Total Problems 

(d) Inactive play, which suggests Internalizing 

Figure 3.7: Toy-block-play styles 
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3.5 Discussion 

3.5.1 Potentials 

Addressing our crucial question: can playing with toy blocks refect 
behavior problems? 

Our multi-stage quantitative approach demonstrated that the individual free-
block-play captured in the feld refects some behavior problems identifed 
by CBCL. Signifcant differences were found in quantitative play features 
factored by Total Problems, Internalizing Problems, and specifc syndromes 
Anxiety/Depression and Aggressive Behavior, indicating that children with 
and without these behavioral problems play differently. Although the per-
formance isn’t optimal, our exploratory prediction models with features 
and patterns showed the promises to estimate Total Problems, Internalizing 
Problems, and Aggressive Behavior. 

By interpreting the features in the prediction models, we summarized 
three styles that indicate behavior problems: "drastic," "indecisive," and 
"inactive." We validated them as prevalent among more than half of children 
with three behavior problems. The same styles were not typically found in 
children without such a problem. Children with Total Problems and Aggres-
sive Behavior tended to exhibit "drastic" styles, involving active knocking, 
ficking, and other destructive behaviors. Those with Total Problems also 
tended to be "indecisive", holding a block with a strong force before moving 
it. Children with Aggressive Behavior demonstrated an "inactive" tendency 
with long pauses. One exception is that "inactive" style prevailed in both 
children with and without Internalizing Problems. However, our observation 
suggests that normal children might "pause" to engage - communicate with 
others and share verbal opinions about their structures. Children with clini-
cal behavior problems might "pause" due to disengagement and distractions. 
Furthermore, those with Aggressive Behavior and Attention Problems might 
be easily distracted. 

The insights related block-play to behavior problems demonstrated the 
potential of our methods. Although our ultimate goal is to replace observa-
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tions, the system’s current role is to provide quantitative measurements and 
predictions to assist the observations of psychologists and caregivers and 
to direct what play actions and styles to observe and to focus more care on. 
Although our system cannot currently be used in a messy environment, it 
can be available in a setting with one child who is willing to play, one care-
giver, no instructions, and minimal disruptions, all of which can be easily 
reconstructed in our daily life. Our system can also guide future works that 
deepen the connections between behavior problems and block-play with 
further quantitative and qualitative investigations. 

Predictive Power 

The behavior prediction with toy block play data was novel and challenging, 
especially with a highly imbalanced dataset whose positive rates were 
around 14.9, 14.1, and 5.2%, respectively, capturing the imbalanced nature 
of the behavior problems. Our exploratory predictions using quantitative 
features and N-gram patterns demonstrated the possibility of predicting Total 
Problems, Internalizing Problems, and Aggressive Behavior with 0.56-0.64 
sensitivity, 0.86-0.93 specifcity, and 0.25-0.55 precision. Even though the 
performance failed to reach the level of diagnosis, the current prediction is 
meaningful because (1) our F1 scores and AUCs are comparable to the state-
of-the-art works that predicted adult mental health and affects [31, 32]; (2) 
the results were justifed by professional observations, such as shake and 
fall are similar and indicate a “drastic” play style; and (3) the prediction 
does not largely cause unnecessary concerns since it predicts few false 
positives with relatively high specifcity. Thus, we reported the models, 
and invested the predictor coeffcients to provide insight. Although the 
current prediction utilized a simple linear model, the performance rose when 
sequential patterns were added to the quantitative features. It demonstrated 
the potential of building sequential models to predict behavior problems 
from block features. The different downsampling rates for three predictions 
also indicate that downsampling is necessary for performance. Our current 
prediction performance can be used as a benchmark for future explorations. 
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Actions, Timeline and Metrics 

We classifed fve actions from raw IMU data: static, hold, move, shake, and 
fall. Since the classifer was built from the children’s data gathered in the 
feld, the accuracy of the children was more reliable than the play action 
classifers built on adult data [61, 69]. 

Two timelines were transformed from raw data. Time each and count 
metrics were summarized from each block’s timeline and the time all metric 
was summarized from the all timeline. Our results indicated that time 
each and count are slightly more related to problem behaviors identifed 
by CBCL, since signifcant differences in hold action’s time each and count 
values can be found with and without Internalizing Problems but not time 
all. The L1-regularized prediction models also selected more coeffcients 
in time each and count, and our test showed that the predictions based on 
N-gram patterns generated from 12 timelines outperformed those from the 
all timeline. Thus, at the current stage each block’s timeline revealed more 
information related to behavior problems than the aggregated all timeline. 
However, we cannot conclude that the separate timelines are superior, since 
the current all timeline might also aggregate the errors of each block’s 
timelines. The current result demonstrated the requirement in developing a 
more informative all timeline and evaluating its predictive power. 

3.5.2 Limitations 

Sensitivity and Interpretability 

We noticed that playing was not sensitive to some behavior problems, such as 
Externalizing Problems, Anxiety/Depression, Attention Problems and Social 
Problems. Sensitivity to Externalizing Problems and Anxiety/Depression 
might contain room for improvement since the correlated ones, Aggressive 
Behavior and Internalizing Problems, were refected in the block-play. Their 
predictions might be improved by (1) examining more clinical children and 
(2) exploring longer study durations, such as conducting experiments over 
time to test whether more signifcant details can be captured. Meanwhile, 
the insensitivity to Attention Problems and Social Problems indicated that 
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the block approach might not be effective for them. In our experiment, a 
small number of children were distracted while playing. Since distraction 
was not part of our protocol, we were unable to infer a relationship between 
being "distracted" and the Attention Problems. For the Social Problems, 
which involves such problems as “cannot get along with others” [107], our 
current experiment design, which wasn’t constructed around social play, 
might not be able to capture any signs of them. 

Our current prediction showed that some features selected by the L1-
regularization were hard to interpret. Similar actions in different metrics 
were associated to behavior problems in opposite directions. This demon-
strated that not all of our feature coeffcients align with our observations or 
knowledge. Perhaps the limitations on the accuracy of the actions and the 
data size restricted their interpretability. These counter-intuitive fndings 
might be eliminated with an improved overall performance. 

Action Accuracy 

We built simple models to learn the linear rules from data collected in the 
feld. Current data processing remains unable to achieve high accuracy 
on each action, especially the separation between shake and fall. While 
realizing it harms the conclusiveness of the prediction models, it might not 
be extremely detrimental since the professional observations also found that 
fall and shake were similar, and these two actions demonstrated a converged 
trend towards the behavior problems. Although manually coding the entire 
dataset could provide a set of reliable action labels, it is beyond the scope of 
our current work due to time and labor constraints. Since we discovered that 
fall and shake were crucial actions, further investigations around software 
and hardware designs can be implemented to improve their accuracy. In 
the software part, classifers that are specialized in fall and shake. For the 
hardware part, other sensors and modalities, for example, a capacitive touch 
sensor, can be used to distinguish fall from other hand gripping actions. In 
the future, manually coding more such low accuracy actions can also be 
explored to improve the classifer’s accuracy. 
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Small and Imbalanced Data 

Since we collected data in the feld without controlling and testing groups, 
they are unbalanced toward a large number of negatives, or normal children. 
It shows the imbalanced nature of behavior problems, even though they 
were reported to be prevalent in the area [21, 27, 81]. Finding a signifcant 
number of clinical child participants for each of the 11 measures from CBCL 
was costly. Since excluding healthy children from our relatively small dataset 
was also risky, we leveraged it as is and provided various metrics (Table 3) 
to elaborate our system’s pros and cons. In the future, more clinical children 
or repeated measures from them are needed to balance the data. 

The current small dataset also made it diffcult to apply complex ML 
algorithms. Moreover, the study was comprised of participants in one area, 
thus the demographic and cultural similarity and differences couldn’t be ex-
amined. Although the cultural differences of block play were not mentioned 
in the previous literature, further bigger data from diverse participants are 
needed to validate, solidify, and generalize the approach. 

3.5.3 Future Work 

The current work described the potential of predicting children’s behavior 
problems with a simple and interpretable quantitative method that uses 
motion data captured during free-block-playing sessions. Based on this 
foundation, our future work is three-fold. The blocks design needs to 
integrate multi-modal sensing to capture a range of important data, such as 
gripping force, surface touch, and even facial and verbal expressions. The 
next step of the data collection needs to expand the scope and depth. We 
need to include more diverse participants, special groups of children with 
specifc clinical syndromes, and repeated experiments to deeply scrutinize 
their play behaviors. In terms of analysis, we can investigate more complex 
but less interpretable models, such as sequential ones, or use an end-to-end 
approach that does not involve several stages of data processing. 
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Chapter 4 

Toward Daily Mental State 
Prediction and Support with TUIs 

4.1 Connecting Two Studies: Post-analysis and 

Collective Findings 

In Chapter 2, correlation analysis is performed to establish the association 
between the play features and on-site short-term stress measurements. 
The play features comprise quantitative actions automatically extracted 
from IMU-embedded blocks and the play behavior manually video-coded 
from video documentations. The target stress measurements include the 
physiological stress bio-marker SAA and the behavioral stress evaluation 
OSBD. The results show that play done in a fat style with less standing 
actions is correlated to a high SAA After value with an increase in SAA, 
and having less time playing with blocks and moving the blocks indicates a 
higher OSBD after the play session. In general, play “passively” indicates 
stress. 

Moving beyond on-site stress, Chapter 3 explores the predictions of a 
range of prolonged behavior problems that are measured by CBCL. The 
limitations found in Chapter 2 include sequential patterns and some actions, 
which were observed in our participants but not captured in our dataset, 
along with unsatisfactory accuracies in some actions. These limitations 
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motivated me to further develop play feature extraction techniques. 
As a result, although both used blocks, Chapter 2 and Chapter 3 made 

use of separate sensing schemes, collected data from different groups, and 
aimed for distinct targets. Therefore, direct comparisons between the two 
studies would be diffcult. However, indirect comparisons can be made to 
examine collective fndings, consistencies and inconsistencies. Connections 
and limitations can be found through the following post-analysis. 

4.1.1 Correlations Between On-site Stress and Prolonged 

Behavior Problems 

The data presented in Chapter 3 not only collected participants’ behavior 
problems, which is measured by CBCL questionnaires, but also on-site mea-
sured SAA and OSBD, using the same protocol as that presented in Chapter 
2. Our approach to fnd the relationship between target mental health 
measurements is to analyze Spearman’s rank correlation coeffcients and 
partial correlations between pairs of variables (CBCL symptoms, SAA and 
OSBD measurements) from the dataset presented in Chapter 3. The correla-
tion analysis is for providing a general understanding of the relationship, 
while the partial correlations are used to measure the linear correlation 
between two variables with the effect of other variables removed. Some 
indirect correlations may arise between two variables in correlation analysis, 
but they are eliminated in partial correlation analysis so that only direct 
correlations remain. 

The variables included in the correlation analysis are Anxiety, Aggressive 
Behavior, Attention Problems and Social Problems (four behavioral symp-
toms used in Chapter 3), Before and After values of sAA, and Max and After 
values of OSBD (sAA and OSBD are on-site stress measurements). These 
variables are all measured directly, whereas Total Problems, Internalizing 
Problems and Externalizing Problems in CBCL, the average and percentage 
change of SAA and OSBD are excluded due to being compound variables 
calculated from those directly measured variables. These excluded variables 
exhibit multicollinearity with the direct variables, which makes partial cor-
relation analysis unstable. The signifcant Spearman’s rank correlations and 
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partial correlations are shown with a Correlation Network (CN) (Fig. 4.1) 
and a Partial Correlation Network (PCN) (Fig. 4.2) built using the qgraph 
package available in R [163].The edges in this network refect correlations 
with a signifcance level of p < 0.05. The width of the edge represents the 
strength of association between two correlated variables and the number on 
the edge denotes the coeffcient of correlation. As evident from the Mental 
Problem CN, among the four behavior problems, Aggressive Behavior, Atten-
tion Problems and Social Problems hold strong correlations between each 
pair of them. In PCN, however, Aggressive Behavior is no longer correlated 
with the other two. This indicates correlations between Aggressive Behavior 
and Attention Problems, Aggressive Behavior and Social Problems in CN 
are most likely caused by indirect associations. Similarly, PCN revealed that 
the correlation between Anxiety and Social Problem is indirect. Neither 
direct nor indirect correlation was found between Aggressive Behavior and 
Anxiety. 

The sAA and OSBD, two on-site measurements, also show signifcant 
correlations. In CN, SAA Before shows moderate correlation to OSBD Max 
and weak correlations to OSBD After. From the PCN, however, we can 
see the correlation between sAA Before and OSBD After is eliminated if 
OSBD Max and other variables hold constant, which likely indicates indirect 
associations between sAA Before and OSBD After. 

Between long-term behavior problems and on-site stress measures, Anxi-
ety shows weak direct correlations to OSBD Max and indirect correlations 
to OSBD After. No indirect correlation between Aggressive Behavior and 
sAA Before was found, but, they revealed weak direct correlations when 
other variables held constant. 

The above fndings indicate that Anxiety, one component of Internalizing 
Problems, and Aggressive Behavior, one component of Externalizing Prob-
lems, are not correlated. Meanwhile, there are direct correlations between 
Attention Problems and Social Problems. Anxiety has a weak positive correla-
tion to OSBD, especially OSBD Max value, while Aggressive Behavior might 
weakly associate with a high sAA Before value. The correlations between 
sAA and OSBD are also shown implicitly, similar to what we discovered in 
Chapter 2. 
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Figure 4.1: Mental Problem Correlation Network 

Figure 4.2: Mental Problem Partial Correlation Network 

4.1.2 Correlation Between Mental Problems and Block 

Play Features 

Spearman’s rank correlation analysis and partial correlation analysis were 
conducted to analyze both direct and indirect correlations between the 
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target health measurements and block features. 
The CN and PCN between each of six target behaviors analyzed in 

Chapter 2 and 3 (sAA , OSBD, Total Problems, Internalizing Problems, Exter-
nalizing Problems, Anxiety and Aggressive Behavior) and the corresponding 
block features we found important can be seen in Appendix A.1. 

In general, the comparisons between each pair of CN and PCN show 
that the direct correlations between targets and blocks are weak, and the 
partial correlations that hold other block parameters constant even weaken 
the association between them. This demonstrates that the block features 
are intrinsically correlated and hard to consider separately–a child that has 
more Fall actions generally has more Shake actions. On the other hand, it 
also reveals that the associations between features are stronger and more 
dominating than the associations between features and targets. This is not 
totally unexpected since all features are computed from IMU sensors and 
they all represent the same event-playing with the blocks. Meanwhile, the 
results of CN and PCN imply that to develop a robust system, we need more 
modalities that are not highly correlated, that is, ones refecting different 
angles of play. It is also necessary to be cautious of unstable results and 
overftting if there are highly correlated features. More samples are needed 
to validate and test how well the system fts all kinds of data. 

4.2 Refections 

Chapters 2, 3 and Section 4.1.2 fnd a set of promises and limitations in 
capturing and processing block play into structured and quantitative data. 
These promises and limitations form the guideline for data processing and 
automated feature extraction toward capturing the entire scope of play 
behavior. Section 4.2.1 to Section 4.2.3 discusses the specifc guidelines and 
how data preprocessing can address them. 

4.2.1 Feature Extraction Based on Findings 

The fndings of previous sections proposed several important styles that are 
interpreted from, but not directly related to block features: 
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• Passive play: play fatly with few stacking actions. 

• Indecisive play: cannot decide where to place the block. Holds a block 
before moving it. 

• Inactive play: mainly hold actions or no actions. 

• Drastic play: shakes the blocks. Builds tall structure intentionally 
hitting it or pushing it over. Knocks down the entire structure instead 
of taking the structure apart piece by piece. 

The fndings also present the need to address the limited sample size 
and to fnd more modalities. Thus, in order to capture the wide scope of 
play behavior from the diverse angles, both action features and structural 
features need to be further examined. 

So far, the exploration mainly uses action features, including quantitative 
actions and sequential patterns to correlate and predict mental health. The 
structural features were merely examined through stacking time and fat 
time, the two play behaviors that are manually coded, which could not be 
objectively extracted and generalized when it comes to a new dataset. 

To capture the multimodal data that refect the above play styles, it 
is necessary to increase the sample size based on the limited nature of 
psychological observations, and automate the feature extraction process. 
Further design of motional feature and structural feature extraction are 
proposed in Section 4.2.2 and Section 4.2.3, respectively, to address the 
above needs. 

4.2.2 Extract Motional Features 

Currently, the feature extractions mainly focus on processing the raw data 
from accelerometers and gyroscopes into action features. The action features 
provide direct association with psychological and clinical knowledge, and 
they are easily interpreted. However, the process of classifying low-level raw 
data into high-level knowledge of actions lose some important information 
such as the magnitude. The classifer may compress a range of magnitude 
into a single feature and the nuance is therefore lost. For example, some 
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children might hold a block frmly, while others might be involuntarily shaky 
due to anxiety and other inner fuctuations. Thus, the magnitude, shown 
in Figure 4.3, needs to be included in the analysis. The signal-processed 
magnitude, such as signal decomposition in frequency domains, may also 
be included as a features to capture actions’ frequencies. 

Figure 4.3: Raw data of acceleration magnitudes 

Figure 4.4: Filtered data of average acceleration magnitudes, and split 
points based on local minima 
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Other crucial information that can be extracted from the motion data 
includes the places to split the entire play session into smaller sub-sessions. 
In the studies presented in Chapter 2 and Chapter 3, one frequent observa-
tion is that a child plays for a short session of one to several minutes long, 
and then pauses before starting another short session. Our experiments are 
conducted with a rough time frame of 20 minutes for each child, but in 
reality, a child’s play is composed of such small sessions. Thus, splitting the 
data at the places when the child fnishes a small session might be the key 
to generating more data samples from the limited participant data. 

The session can be split at the places where the magnitude of action is 
minimal. A splitting algorithm is proposed by computationally looking for 
the local minimum of the magnitude. First, the magnitudes of all blocks’ 
accelerations are averaged. Next, forward and backward fltering with a 
Butterworth low-pass flter is performed on the average magnitude to flter 
out noise and smooth the motion. Then the local minima can be detected by 
calculating the relative extremes. Figure 4.4 shows an example of detected 
local maxima and minima with a distance longer than 45 seconds and 
the sessions can be split by the local minima (grey dashed lines.) In this 
fgure, we can see that a 15-minuite play session (from P62, boy, 6 years 
old, clinical Externalizing Problems and Aggressive Behavior) is split into 
10 sub-sessions, ranging from around 1 to 2 minutes. These split points are 
also confrmed in the video as places he stopped playing. 

4.2.3 Extract Structural Features 

Structural features have demonstrated importance in several styles we dis-
covered, such as passive play and drastic play. Structures are also often 
observed as the explicit results of play [7, 164]. Meanwhile, it is diffcult to 
extract from IMU solely without an external reference due to the problem 
of dead reckoning and drifting. Thus, external sensors are necessary to 
accurately detect the structure. In the current dataset, the video documen-
tations captured by an RGB camera can be used to extract the structural 
information. In future design and data collection, capturing videos with 
RGB cameras can be replaced by using depth cameras, Lidar sensors, or 
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Lighthouse tracking systems (used by VR systems like HTC Vive,) to obtain 
accurate structure or position information. 

Block Detection using Computer Vision 

A computer vision-based multi-object tracking algorithm is developed to 
extract the blocks from each frame of the video. The details of the object 
tracking pipeline are as follows: (1) the frame applies a temporal flter to 
reduce noise. The temporal flter is a simplifed version of the spatiotemporal 
fltering proposed by Richardt et al [165]. (2) The output is applied with 
fve HSV range flters to extract the area within a color used in the blocks. 
(3) The contour of the areas feeds into a shape detector to flter out non-
block-like shapes. (4) The centroid of each detected shape feeds into a 
Kalman flter for tracking. Figure 4.5 shows the results of the detection 
and tracking with metadata. The center and rectangular bounding box of 
each block can be distinguished in the frame. While the tracking algorithm 
loses the track occasionally due to occlusions and noises, it provides a stable 
result most of the time. 

The results of block color detection and tracking can be found in Figure 
4.6, and Figure 4.7 shows the same information on a black background. 
This simplifed frame can be used to extract the structural features. 

Figure 4.5: Results of block detection and tracking on the frame 
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Figure 4.6: Visualization of detected blocks in color 

Figure 4.7: Visualization of detected blocks in grayscale, hull area, and 
bounding box 

Feature Extraction 

Taking into account the structure-related play styles and knowledge based 
on observation, three type of features can be extracted: layer, complexity 
and aspect ratio. 

The layer feature refects how tall the structure is by calculating how 
many blocks are stacked. The layer data calculated from one session (P62, 
boy, 6 years old, clinical Externalizing Problems and Aggressive Behavior) 
can be found in Figure 4.8a. The raw data’s noise is reduced using forward 
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(a) Raw and noise-reduced layer sequence 

(b) Detected peaks, valleys, stacking time and disassembly time 

(c) Layer information with split points on the sequence 

Figure 4.8: Layer of a play session 

Figure 4.9: Complexity of a play session 

Figure 4.10: Aspect Ratio of a play session 

and backward fltering with a Butterworth low-pass flter. From this timeline, 
the peak is detected using the Find Peaks function provided by scipy.signal 
library, detecting the peaks with a width larger than 8 seconds. Next, the 
valley is calculated by detecting the frst minimum within two peaks. From 
the peaks and valleys, the times of the child’s stacking and disassembly of 
the structures can be detected, as refected in the timeline shown in Figure 

99 



4.8b. The split points extracted from the motional features can be applied 
to the sequence of layers, as shown in Figure 4.8c. 

Complexity depicts how complex the structure is. Learned from knowl-
edge and observations, a complex structure involves careful considerations 
and balancing. Thus, a complex structure usually has more space between 
the blocks. On the contrary, simple structures are those where one block is 
stacked exactly on top of another, or blocks line up to build ether a blob or 
a fat surface. Complexity can be calculated by dividing the Convex Hull 
area by the solid area. The Convex Hull of a shape is a tightly ftting convex 
boundary around the shape. An example of a Convex Hull area is shown 
with a polygon formed by bright gray lines in Figure 4.7, detected by fnding 
the Convex Hull of the largest connected area in the frame using OpenCV. 
The solid area is the area flled with white color shown in Figure 4.7. The 
extracted complexity of one participant is shown in Figure 4.9. The complex 
value of 1 represents a solid structure. The more hollow space between the 
blocks, the more complex the structure becomes. 

The aspect ratio refects the general height-width ratio of the structure. 
This is calculated by dividing a detected structure’s height by its width. 
The height and width are extracted from the bounding box of the biggest 
connected area. An example of a bounding box is shown with a rectangle 
formed by gray lines in Figure 4.7, which also encloses the polygon-shaped 
Convex Hull bounding box that is shown with a slightly lighter gray color. 
The aspect ratio of a play session can be found in Figure 4.10. An aspect 
ratio of 1 denotes a square structure, and an aspect ratio below 1 indicates 
a relatively fat structure while the ratio above 1 indicates a tall structure. 

Play styles can be found through these three structural features. For 
example, drastic play can be seen from the latter half of the layer sequence 
where cycles of stacking high and disassembling in a short time are per-
formed. In the earlier part, indecisive play might be refected from the layer 
and complexity sequence, where the stacking takes a long time but the 
complexity is low. However, determination of the indecisive style needs to 
take into account the motional features as well. The aspect ratio sequence 
shows that around 4 to 7 minutes, the participant is performing the “fat 
play” style. 
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By simply observing the structural features, we fnd that they share 
commonalities but they are not largely similar. Such extracted data are 
likely capturing different aspects of the structural information. 

4.3 Next Steps 

Learning from collective fndings and refections, the next step is to build a 
robust child behavior mental health detection system. Chapter 2 provides 
interpretations but no predictions; Chapter 3 predicts the child behavior 
problems and interprets the result, but the accuracy awaits improvement and 
validation. Next, more advanced analysis and machine learning algorithms 
need to be investigated with the aim of developing a prediction system that 
achieves both high accuracy and interpretability. 

4.3.1 Case Studies and Multimodal Learning 

This step aims to utilize data presented in Chapter 3 to further improve the 
accuracy of the prediction using the new set of features presented in Section 
4.2.1. While the above feature extraction techniques present stimulating 
possibilities, the optimized hyperparameters such as the distance to split the 
session and the objective way to defne layers need to be further explored. 
The accuracies of feature extraction also need to be validated in detail with 
the participants’ data. 

Before moving on to predictions, case studies need to be conducted 
to validate the feature extraction. Exploratory data analysis (EDA), and 
especially statistical analysis, can be performed to validate the relationship 
of variables in the data. Feature extraction is a major part of developing 
a robust prediction system. The case studies must ensure the validity and 
usability of (1) extracted features and (2) augmented data with sub-sessions. 

Next, machine learning methods will be investigated to predict the 
behavior problems measured by CBCL. Among diverse algorithms, special 
attention needs to be paid to Multimodal Learning [166], which is capable 
of inputting the multimodal signals such as video, audio, and text, and then 
creating the joint representations of different modalities for predictions. 
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A simplifed example of a multimodal learning structure can be seen in 
Figure 4.11. In our case, we may be able to use motional features and 
structural features together or separately to build LSTM sub-networks, while 
also inputting structural video (see example in Figure 4.6) to build a CNN 
sub-network. The encoded features will then be concatenated to predict the 
result. 

Figure 4.11: Example of multimodal deep learning that takes motional 
features, structural features, and structural images as input 

4.3.2 Modalities: Extract Meaningful Behavior 

This next step aims to revise and improve the block system to include more 
modalities in data collection, which may enhance the ability to extract 
meaningful behavior. The design of the system can be expanded to more 
shapes and objects, internal sensors, and environmental sensors. 

Besides big and small cuboid-shaped blocks, shapes such as columns, 
cylinders, and triangle primes can be embedded with sensors (see example 
in Figure 4.12.) Note that these new shapes may provide higher and more 
specifc affordance, which may encourage specifc actions such as house 
building and rolling. Thus, a suffcient number of low-affordance blocks, 
such as cuboids, needs to be maintained. Pilot studies on normal children 
and at-risk children need to be run under the conditions of with and without 
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new shapes, to analysis whether blocks with new shapes can extract more 
meaningful behaviors. 

Figure 4.12: Blocks with fve shapes embedded with sensors: big and 
small cuboid, column, cylinder, and triangle prime 

Sensors embedded in each block can be further extended to collect struc-
tural and physiological information. For example, a Lighthouse positioning 
system [167] can be used on top of IMU to acquire the accurate location 
information of each block. A Lighthouse deck can be embedded inside each 
of the blocks, and externally based stations can be installed in the room. 
Sensors can also be embedded on the surface, such as IR sensors [65] or 
capacitive sensors [101], to detect the hand grasp as well as to indicate the 
structure. However, before these novel sensing techniques are adopted, high 
accuracy needs to be ensured for collecting valid data. 

Environmental sensors, such as cameras, can be set up as a way to 
document the session, as well as a mean to extract structural information, 
interactions, and audio. From our observations, children in general are 
not as sensitive to cameras around them as adults. Most of them are not 
interested in the camera, and those whose attention is caught by the camera 
tend to forget its existence quickly once they start to play. Thus, the camera 
provides an objective means to capture a range of features, even though 
it suffers from occlusion and cannot capture various nuances. Instead of a 
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conventional RGB camera, a depth camera integrated with a Lidar sensor 
might provide richer information. The location of the camera also needs 
to be designed so that generalizability is maintained by the videos that are 
captured from similar positions and angles. 

4.4 Future Work 

The studies and insights in this thesis provides a wide space for future 
work and demonstrates the need to bring the system closer to daily life. 
Future investigations can go either deeper or wider, and a wide range of 
applications can be developed to support health and well-being. 

4.4.1 Future Directions in Depth and Breadth 

The future directions can be summarized in two ways: depth and breadth. 
In depth, the block play behavior detection can focus on specifc dis-

orders, such as Autism, ADHD, and PTSD. Our work provides promising 
signs for probing these disorders, while free play could be replaced by or 
combined with structured play that augments existing diagnosis methods to 
automate detection and observation with the aim of higher accuracy. Future 
work could also move from prediction to support, which could be used in 
play therapy, intervention and education. Our behavior-extraction struc-
ture provides the capability to replace existing therapies and intervention 
methods that require detailed observations and expertise. 

In breadth, by utilizing the obtained knowledge, future work could move 
beyond blocks to develop new toys and other types of TUIs for behavior 
extraction. The concept could be generalized to other vulnerable groups, 
such as people with accessibility needs and the elderly. Extracted behavior 
could be used to detect the user’s characteristics and thus to customize the 
designs and interfaces for each individual. Our behavior characterization 
could also be generalized to the majority of people. For example, an adult’s 
behavioral characteristics could be extracted from their hand-activity data, 
which could be used to monitor and predict their affects and mental states. 
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4.4.2 Applications: From Detection to Interaction 

Future work should not only focus on detection but also investigate the 
methods that use the detection results for interactions. Currently, our system 
mainly captures input from the user. A full loop of interaction could be 
achieved by designing output systems, or coordinating with existing output 
systems. 

Specifc examples such as augmenting play therapies could be developed. 
Nowadays, the play therapy for ADHD encourages the child to be less 
impulsive and more refective. The therapist mediates the play by asking 
questions before building, when the structure falls, and when involvement 
level is decreased [15]. The system might be able to assist the role of 
the therapist by (1) detecting when the play is impulsive and has low 
engagement and (2) outputting feedback, such as digital feedback on a 
screen or tabletop. Social robots could be used to ask the questions and 
foster interactions. 

The block system could also be used to augment existing play therapy 
for social withdrawal. A child with social withdrawal is known to be unable 
to negotiate play interactions with others. When playing socially, they 
cannot understand the language and actions of others or how to respond 
with appropriate language and actions in the context of the immediate 
play situation [15]. Such behavioral characteristics could be refected in 
our extracted behaviors if we distinguished the users, using video or other 
tracking tools. If we detected a child exhibiting diffculties in interacting 
with others, digital feedback, a social robot, or move-able blocks could 
be designed and integrated to instruct, model, prompt, and reinforce the 
appropriate actions, which was previously done by a therapist. 

Based on the scenario and context, other interactive applications could be 
developed to predict child behavior and thus support the healthier behavior. 
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Chapter 5 

Conclusion 

This thesis focused on establishing a novel method of predicting child 
behavior and mental health using data captured from toy block play. Step 
by step, the thesis delivered the following contributions: 

• It proposed a range of methods to decompose a child’s block play 
behavior into quantitative actions, sequential play patterns, structures 
and play styles. 

• It discovered the link between children’s post-disaster short-term stress, 
measured in-situ, and the fundamental toy block features, including 
actions and play behaviors. 

• It developed child behavior prediction methods. Total problems, inter-
nalizing problems, and aggressive behavior can be predicted based on 
quantitative and sequential play features. 

• Design and data-extraction guidelines were proposed for developing 
robust systems for mental health prediction and support through play 
behavior. 

These contributions are connected through the goal of achieving a robust 
mental health prediction system using toy blocks. They also lead to a range 
of opportunities for future work. In depth, they suggest detecting specifc 
disorders and building support systems. In breadth, they can be expanded 
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to other TUIs for inferring mental states through interactions with daily 
objects. 
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Appendix A 

Appendix 

A.1 Correlation Between Mental Problems and 

Block Play Features 

This appendix contains Correlation Networks (CN) and Partial Correlation 
Networks (PCN) built between each pairs of target mental health mea-
surements (SAA, OSBD, Total Problems, Internalizing Problems, Aggressive 
Behavior) and block features that we found to be important in Chapter 
2 and Chapter 3, based on Spearman’s rank correlation correlations and 
partial correlations. The data used to conduct this analysis is the same set 
data with what presented in Chapter 3 due to it captures variables that data 
presented in Chapter 2 do not contain. 

All networks are built using qgraph package available in R [163]. Due 
to the weak correlations found between target mental health measurements 
and block features, the edges in all networks refect correlations with a 
value greater than 0.1. The width of the edge represents the strength of 
association between two correlated variables and the number on the edge 
denotes to the value of correlation. 

A.1.1 Correlations and Partial Correlations 
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(a) CN (b) PCN 

Figure A.1: Correlations of sAA and Block Features 

(a) CN (b) PCN 

Figure A.2: Correlations of OSBD and Block Features 

(a) CN (b) PCN 

Figure A.3: Correlations of Aggressive Behavior and Block Features 
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(b) PCN(a) CN 

Figure A.4: Correlations of Internalizing Problems and Block Features 

(a) CN (b) PCN 

Figure A.5: Correlations of Total Problems and Block Features 
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