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Abstract

Srinivasa Ramanujan recorded many remarkable formulae for the solutions to gen-

eralized modular equations without proofs. Inspired by the work of Ramanujan,

many people have studied generalized modular equations and numerous formulae

found by Ramanujan. Many decades later, proofs of those formulae were provided

by making use of highly nontrivial identities for theta series and hypergeometric

functions. These formulae known as modular equations can be transformed into

polynomial equations. There is an intimate relation between Hecke groups and

generalized modular equations. Based on the relation, we offer a geometric ap-

proach to the proof of those formulae. We emphasize that our approach does not

need any knowledge about the identities for Jacobi’s theta functions and hyper-

geometric functions. Without prior knowledge about Ramanujan’s formulae, one

can derive those formulae through our approach. We prove that the solutions to

generalized modular equations satisfy polynomial equations. There is no devel-

oped theory about how to find the degrees of those polynomials explicitly. We

determine the degrees of those polynomials explicitly in terms of the indices of

Hecke subgroups. In this thesis, we also study the relation between Hecke groups

and modular equations in Ramanujan’s theories of signatures 2, 3, and 4. Fur-

thermore, we present some applications of our results by deriving geometrically

some known modular equations.
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Chapter 1

Introduction

For a given integer p ≥ 2 and t ∈ (0, 1
2
], Srinivasa Ramanujan, an Indian mathe-

matical genius, extensively studied the equation

2F1(t, 1− t; 1; 1− β)

2F1(t, 1− t; 1; β)
= p

2F1(t, 1− t; 1; 1− α)

2F1(t, 1− t; 1;α)
, (1.1)

which is known as the generalized modular equation of degree p and signature 1
t
.

Here, 2F1(a, b; c; z) denotes the Gaussian hypergeometric function whose definition

will be given in Chapter 2. Ramanujan left many remarkable formulae known as

modular equations describing relations between α and β in his unpublished note-

books but he did not record any proof of those formulae (see [16] and [63]). There

were no developed theories related to Ramanujan’s modular equations before the

1980s. Some mathematicians, for example, B. C. Berndt, S. Bhargava, J. M. Bor-

wein, P. B. Borwein, F. G. Garvan developed and organized the theories and tried

to give the proofs of many identities recorded by S. Ramanujan (see [15], [16], [17],

[19], [21], [23], [75]). Also, G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen

and others have investigated the theory of Ramanujan’s modular equations from

different perspective (see, e.g., [7] and [10]).

The case when 1
t

= 2 corresponds to the classical modular equation. Indeed,

the complete elliptic integral of the first kind is described by

K(r) =

∫ 1

0

dx√
(1− x2)(1− r2x2)

=
π

2
2F1(1

2
, 1

2
; 1; r2)

1



Chapter 1 : Introduction

and the function

µ(r) =
π

2
· K(
√

1− r2)

K(r)
=
π

2
· 2F1(1

2
, 1

2
; 1; 1− r2)

2F1(1
2
, 1

2
; 1; r2)

is known to be the modulus of the Grötzsch ring

{z ∈ C : |z| < 1} \ [0, r]

for 0 < r < 1. The function µ(r) plays an important role in the theory of plane

quasiconformal mappings (see, for instance, [10] or [49]). The generalized modular

equation (1.1) for 1
t

= 2 now takes the form µ(s) = pµ(r) with α = r2 and β = s2.

When p = 2, the solution to this modular equation is given by

s =
1−
√

1− r2

1 +
√

1− r2
=

(
1−
√

1− r2

r

)2

(1.2)

(see [49, (2.4) on p. 60] or [10, (5.4)]). Mathematicians of nineteenth century

studied the classical case deeply. For example, R. Russell studied the classical

case systematically and obtained many modular equations which are known as

Russel-type modular equations (see [65], [66]). Jacobi also studied this case and

found modular equations for p = 3 and 5. The following equation is Jacobi’s

modular equation of degree p = 3:

y4 + 2x3y3 − 2xy − x4 = 0, (1.3)

where x = α
1
8 and y = β

1
8 . Influenced by Jacobi, Sohnke found modular equations

of degrees p = 7, 11, 13, 17, 19. Those modular equations are known as Jacobi-

Sohnke equations (see [35, p. 495], [61]). Schläfli tried to find simpler forms of

modular equations using the modular functions

g(τ) =
( 24

α(1− α)

) 1
24

(1.4)

and

g(pτ) =
( 24

β(1− β)

) 1
24
. (1.5)

For instance, the following equation is modular equation of degree p = 3(x
y

)6

+
(y
x

)6

= x3y3 − 8

x3y3
, (1.6)

2



Chapter 1 : Introduction

where x = g(τ) and y = g(3τ). Schläfli found modular equations of prime de-

grees p = 3, 5, 7, 11, 13, 17, 19, and of composite degree p = 9. Those equations

are known as Schläfli modular equations (see [68]). In the classical case, Weber also

found modular equations of prime degrees p = 3, 5, 7, 11, 13, 17, 19, 23, 31, 47, 71,

and of composite degree p = 15. He developed function-theoretic technique to find

those modular equations (see [77]).

Ramanujan mainly considered the cases when the signature 1
t
∈ {3, 4, 6}. See

[14], [15], [16], [18], [21] and [62] for his work in relation with the modular equa-

tions. Berndt, Bhargava and Garvan [19] derived the modular equations obtained

by Ramanujan (see also [7]). Their derivations make use of highly nontrivial iden-

tities for Jacobi’s theta functions and hypergeometric functions in addition to a

number of ingenious ideas. For example, they gave rigorous proofs for the following

results.

Theorem 1.1 ([19, Theorem 7.1]). When p = 2 and 1
t

= 3, the solutions α and

β to the equation (1.1) are related by

(αβ)1/3 +
{

(1− α)(1− β)
}1/3

= 1. (1.7)

Theorem 1.2 ([19, Lemma 7.4]). When p = 3 and 1
t

= 3, the solutions α and β

to the equation (1.1) are related by

(1− α)1/3 =
1− β1/3

1 + 2β1/3
. (1.8)

We note that the above relations can be transformed to polynomial equations.

For instance, (1.7) may be transformed to

(2α− 1)3β3 − 3α(4α2 − 13α + 10)β2 + 3α(2α2 − 10α + 9)β − α3 = 0. (1.9)

In particular, we observe that there are at most three values of β satisfying the

modular equation (1.7) for each α. We can say that α and β satisfy a polyno-

mial equation of degree 3 in this case. It is rather surprising that α and β are

related algebraically, because the hypergeometric function is transcendental for

the corresponding parameters. For instance, we do not have a complete answer

to the question for which p and t the solutions to the generalized modular equa-

tion (1.1) are algebraic. In this thesis, we propose a geometric approach to this

problem. In particular, the geometric observation suggests that it is more natural

to look at q = 1
1−2t

rather than the signature 1
t
. We will call q the order of the

3



Chapter 1 : Introduction

modular equation (1.1). For instance, the signatures 1
t

= 2, 3, 4, 6 correspond

to q = ∞, 3, 2, 3/2, respectively. Though our approach does not cover the case
1
t

= 6, it may allow us to approach other cases when q are integers > 3.

In Chapter 2, we introduce the background materials on the group SL(2,R),

Fuchsian groups, quotient spaces, Hecke groups, hypergeometric functions and

modular equations. For a subgroup K of the Hecke group Hk of finite index,

we discuss the construction of the fundamental domain for K and the geometric

invariants of K. We present some well-known results, which will be used in other

chapters, without proofs.

In Chapter 3, we investigate some known results on automorphic functions and

on the space of automorphic forms. We show that

α(τ) = πq(τ) and β(τ) = πq(Mpτ) = α(pτ)

are automorphic functions on Gq and M−1
p GqMp, respectively, where Gq is the

covering group of the canonical projection πq : H → Gq\H, Mp =

(
p 0

0 1

)
and

τ ∈ H. We reprove two results of Y. Yang [79, Theorems 4, 9].

Chapter 4 is devoted to prove that the solutions (α, β) to the generalized mod-

ular equation (1.1) in the quotient Riemann surface Gq\H satisfy the polynomial

equation P (α, β) = 0 (see Theorem 4.1). First, we construct the covering group Gq

of the canonical projection πq : H→ Gq\H. The polynomial P (α, β) is irreducible

of degree n in each of α and β, where n is the index of the subgroup

K = Gq ∩ (M−1
p GqMp)

in Gq. The quotient Riemann surface Z = K\H will be used as a parameter space

of the solutions (α, β) to (1.1). If ϕ, ψ : Z → X = Gq\H satisfy the relations

ϕ(ρ(τ)) = πq(τ) and ψ(ρ(τ)) = πq(pτ),

where ρ is the canonical projection H → Z = K\H, then the solutions are given

by

α = ϕ(z) and β = ψ(z)

for z ∈ Z. The maps ϕ and ψ extend to the compactifications Ẑ to X̂ = Ĉ as

n-sheeted branched (analytic) covering maps. This discussion can also be found

in [4].

4



Chapter 1 : Introduction

In Chapter 5, we study the relation between Hecke groups and the modular

equations in Ramanujan’s theories of signatures 2, 3, and 4. As far as we know that

there is no developed theory about how to determine the degree of the polynomial

P (α, β) when the modulus β has degree p over the modulus α in the theory of

signature 1
t
. We determine the degree in each of α and β of the polynomial P (α, β)

explicitly in terms of the indices of Hecke subgroups. We establish some mutually

equivalent statements related to Hecke subgroups and modular equations, and

prove that (1 − β, 1 − α) is also a solution to the generalized modular equation

(1.1) and P (1−β, 1−α) = 0. The contents of this chapter were already discussed

in [3].

Chapter 6 deals with the modular equations in the theory of signature 2. Parts

of this chapter were presented in [4]. In the case of signature 1
t

= 2, the covering

group G∞ is the principal congruence subgroup Γ(2). We consider the cases p = 2

and p = 3. We construct the fundamental domains for the subgroups

G∞ ∩ (M−1
2 G∞M2) and G∞ ∩ (M−1

3 G∞M3).

We find the side-pairing transformations as the generators of the subgroup

K = G∞ ∩ (M−1
p G∞Mp)

so that MpKM
−1
p ∈ G∞. Applying the results of the preceding chapters, we derive

geometrically the following modular equations

β =

(
1−
√

1− α
1 +
√

1− α

)2

(1.10)

and

(αβ)1/4 +
{

(1− α)(1− β)
}1/4

= 1 (1.11)

corresponding to the cases p = 2 and p = 3, respectively. Equations (1.10) and

(1.11) can be transformed into the following polynomial equations

P (x, y) = x2y2 − 2(x2 − 8x+ 8)y + x2

and

P (x, y) = y4 + 2x3y3 − 2xy − x4,

respectively.

5



Chapter 1 : Introduction

In Chapter 7, we consider the modular equations in the theory of signature
1
t

= 3. For the case of signature 3, the covering group G3 of the canonical map

π3 : H→ G3\H is generated by(
1
√

3

0 1

)
and

(
2 −

√
3

√
3 −1

)
.

We construct the fundamental domains for the subgroups

K = G3 ∩ (M−1
p G3Mp),

where p = 2, 3, 5 and find the generators of the subgroup K so that MpKM
−1
p ∈

G3. In this chapter, we geometrically deduce the modular equations (1.7) and

(1.8), which correspond to the cases p = 2 and p = 3, respectively. Parts of this

chapter can also be found in [4]. Since the quotient Riemann surface K\H, where

K = G3 ∩ (M−1
5 G3M5),

is a genus one surface, we are not able to apply our approach to derive the corre-

sponding modular equation.

In this thesis, we treat only the case when the Riemann surface Z = K\H,

where K = Gq ∩ (M−1
p GqMp), is planar. When Z is non-planar, it is techni-

cally difficult to find an explicit form of the polynomial P (x, y). Let Ẑ be the

compactification of Z. Since the parametrizations

ϕ, ψ : Ẑ → Ĉ

are n-sheeted covering maps with critical values contained in {0, 1,∞} if

|Gq : K| = n,

Bely̆ı’s theorem implies that the compact Riemann surface Ẑ is an algebraic curve

defined over Q (see [40]). Therefore, in principle, we could determine the surface

Z and maps ϕ, ψ by the combinatorial information about the coverings. We hope

to give further examples when Z is non-planar in the future work.

6



Chapter 2

Preliminaries

This chapter presents some basic notions related to the group SL(2,R), Fuchsian

groups, quotient spaces, Hecke groups, hypergeometric functions and modular

equations. The construction of fundamental domains for Hecke subgroups and

their geometric invariants are also discussed in this chapter. We state some well-

known results, which are relevant in subsequent chapters, without proofs.

2.1 The Group SL(2,R)

Let H denote the upper half-plane {τ ∈ C : Im τ > 0}. The group SL(2,R) is

defined by

SL(2,R) =

{(
a b

c d

)
: a, b, c, d ∈ R, ad− bc = 1

}
and it is the group of orientation-preserving isometries of the upper half-plane H.

Let I2 denote the 2×2 identity matrix, then PSL(2,R) = SL(2,R)/{±I2} (see [71,

Chapter VII]). The group PSL(2,R) acts on the upper half-plane H as follows:

τ 7→ γ · τ =
aτ + b

cτ + d
, for γ =

(
a b

c d

)
∈ PSL(2,R), τ ∈ H.

All transformations of PSL(2,R) are conformal. The group of automorphisms of

the upper half-plane H is isomorphic to PSL(2,R) and is given by

Aut(H) =

{
τ 7→ aτ + b

cτ + d
: a, b, c, d ∈ R and ad− bc 6= 0

}
.

7



Chapter 2 : Preliminaries

Let D denote the open unit disc {z ∈ C : |z| < 1}. The group of automorphisms

of the unit disc D is given as follows:

Aut(D) =

{
τ 7→ eiθ

τ − ω
1− ωτ

: θ ∈ R and ω ∈ D

}
,

which is also isomorphic to PSL(2,R).

The boundary of the upper half-plane H is R∪∞. Semicircles orthogonal to the

real axis and vertical lines are called geodesics. Let γ =

(
a b

c d

)
∈ SL(2,R) and

let tr(γ) denote the trace of γ, then the element γ is said to be elliptic, parabolic

and hyperbolic when | tr(γ)| < 2, | tr(γ)| = 2 and | tr(γ)| > 2, respectively. If

γ ∈ SL(2,R) and γ 6= ±I2, then

(i) γ has only one fixed point on ∂H = R ∪ {∞} if and only if γ is parabolic,

(ii) γ has only one fixed point τ in H (and the other fixed point is τ) if and only

if γ is elliptic,

(iii) γ has two fixed points on ∂H = R ∪ {∞} if and only if γ is hyperbolic,

see [72, Proposition 1.13].

For D ⊆ H and z = x+ iy ∈ H, let Area(D) denote the hyperbolic area given

by

Area(D) =

∫
D

dx dy

y2
,

provided the integral exists. Then, Area(γ(D)) = Area(D) for all γ ∈ PSL(2,R),

that is, Area(D) is invariant under PSL(2,R). If ∆ is a hyperbolic triangle, then

Area(∆) depends on the angles of ∆ by the following theorem (see [42, p. 13]).

Theorem 2.1 (Gauss-Bonnet). For a hyperbolic triangle ∆ with angles θ1, θ2 and

θ3,

Area(∆) = π − (θ1 + θ2 + θ3).

2.1.1 The Modular Group SL(2,Z)

The modular group SL(2,Z) is defined by

SL(2,Z) =

{(
a b

c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}

8
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and PSL(2,Z) = SL(2,Z)/{±I2}. The generators of SL(2,Z) is given by(
0 −1

1 0

)
and

(
1 1

0 1

)
.

If m is a positive integer, then the principal congruence subgroup Γ(m) is defined

as

Γ(m) =

{(
a b

c d

)
∈ PSL(2,Z) : a ≡ d ≡ 1(mod m) and b ≡ c ≡ 0(mod m)

}
,

and the congruence subgroup Γ0(m) is defined as

Γ0(m) =

{(
a b

c d

)
∈ PSL(2,Z) : c ≡ 0(mod m)

}
,

see [30, Chapter 1] and [71, Chapter VII] for more details on modular group.

2.2 Fuchsian Groups

A Fuchsian group is a discrete subgroup of PSL(2,R), i.e., it is a group of orientation-

preserving isometries of the upper half-plane H.

The upper half-plane H or the unit disc D is invariant under a Fuchsian group

Γ. The group Γ acts properly discontinuously on H or D. The definition of prop-

erly discontinuous action will be given in Section 2.3. Note that Γ acts properly

discontinuously on any conformal image of D (see [13, p. 121]). For any Fuchsian

group Γ, let Λ(Γ) denote the limit set of Γ. Then, Λ(Γ) ⊆ R∪ {∞} for the upper

half-plane model or Λ(Γ) ⊆ ∂D for the unit disc model. Let D be any conformal

image of the unit disc D and let ∂D denote the boundary of D. Then, a Fuchsian

group Γ is of

(i) the first kind if Λ(Γ) = ∂D,

(ii) the second kind if Λ(Γ) is a proper subset of ∂D,

see [13, p. 188] or [42, p. 67] for details.

Let us consider a Fuchsian group Γ, then a point τ ∈ H is called an elliptic

point of Γ if γ(τ) = τ for an elliptic element γ ∈ Γ. The set of elliptic points of a

9



Chapter 2 : Preliminaries

Fuchsian group Γ does not have a limit point in H. For an elliptic point τ of Γ,

Γτ := {γ ∈ Γ : γ(τ) = τ}

is called the isotropy subgroup or stabilizer subgroup of Γ with respect to τ . The

subgroup Γτ is a cyclic group of finite order. Also, we call a point x of R∪ {∞} a

cusp of Γ if σ(x) = x for a parabolic element σ ∈ Γ. One can prove the following

result (see, e.g., [42, Theorem 2.2.3]).

Theorem 2.2. Let Γ be a subgroup of PSL(2,R). Then, the following statements

hold:

(i) when Γ is parabolic or hyperbolic cyclic, it is a Fuchsian group,

(ii) when Γ is elliptic cyclic, then Γ is a Fuchsian group if and only if it is finite.

If a Fuchsian group Γ has cusps, then the quotient Riemann surface Γ\H is not

compact. Let H∗ denote the union of the upper half-plane and the set of cusps of

Γ. Since Γ acts on H∗, the quotient surface Γ\H∗ is a compact Riemann surface

if Γ has finite number of cusps. If Γ has no cusps, then H∗ = H and the quotient

surface Γ\H is compact (see [72, Section 1.3]).

For a Fuchsian group Γ, consider a subset F of H. The subset F is called a

fundamental domain for Γ if the following conditions (see [72, p. 15]) are satisfied:

(i) F is open and connected,

(ii) all points of F are Γ-inequivalent,

(iii) each point of H is Γ-equivalent to a point of the closure of F .

There is a fundamental domain for every Fuchsian group Γ. Fundamental

domain for a given Fuchsian group can be constructed in different ways. If the

area of a fundamental domain for Γ is finite, then it is invariant under Γ.

Theorem 2.3 ([42, Theorem 3.1.1]). For a given Fuchsian group Γ, assume that

F1 and F2 are two fundamental domains for Γ with Area(F1) < ∞. If the hyper-

bolic areas of the boundaries ∂F1 and ∂F2 are zero, then Area(F1) = Area(F2).

10
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2.3 Quotient Spaces

Assume that M is a topological space and Γ is a topological group. For x ∈ M
and γ ∈ Γ, the mapping x 7→ γ · x is a homeomorphism of M onto itself. For

every x ∈M, the Γ-orbit of x is given by

Γx =
{
γ · x : γ ∈ Γ

}
.

If E is a compact subset ofM, then Γ acts properly discontinuously onM if and

only if

γ(E) ∩ E 6= ∅

for finitely many γ ∈ Γ (see [13, p. 94]). The set of all Γ-orbits of points on

M is denoted by Γ\M. Suppose π : M → Γ\M is the canonical projection

defined by π(x) = Γx. If Y ⊂ Γ\M, then Y is called open if π−1(Y ) is open in

M. It is well-known that π defines a topology on Γ\M. This topology is called

the quotient topology (see [72, Chapter 1]). The following theorem is a very useful

tool to construct Riemann surfaces by making the quotient space through properly

discontinuous group action.

Theorem 2.4 ([13, Theorem 6.2.1]). Suppose C is a subdomain of the Riemann

sphere Ĉ and C is invariant under a group Γ of Möbius transformations. If Γ acts

properly discontinuously on C, then Γ\C is a Riemann surface.

Let a Fuchsian group Γ act properly discontinuously on the upper half-plane

H. We call Γ geometrically finite if the fundamental domain F for Γ has finitely

many sides. The vertices of F are isolated (see [42, Chapter 4]).

Theorem 2.5 (Siegel’s Theorem). Let Area(Γ\H) denote the hyperbolic area of

the quotient surface Γ\H. If Area(Γ\H) <∞, then Γ is geometrically finite.

Consider the canonical projection π : H → Γ\H. The map π is open and

continuous. Let πF denote the restriction of the map π to the fundamental domain

F for Γ, then the congruent points, i.e., the Γ-equivalent points of F are identified

by the map

πF : F → Γ\F.

Note that, for τ ∈ H, the orbits Γτ and the sets F ∩ Γτ are the elements of Γ\H
and Γ\F , respectively. Thus,

πF (τ) = F ∩ Γτ.

11
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Let us consider the maps

g : F → H and h : F ∩ Γτ → Γτ

such that

h ◦ πF = π ◦ g.

Thus, we have the following commutative diagram:

F H

Γ\F Γ\H

g

πF π

h

(see [13, Chapter 9]).

Theorem 2.6 ([13, Proposition 9.2.2]). Consider the maps πF , g, and h defined

above. Then,

(i) the map πF is surjective and continuous,

(ii) the map g is injective and continuous,

(iii) the map h is bijective and continuous.

The fundamental domain F for Γ is called locally finite if and only if the set

E ∩ Γ\F

is finite for each compact subset E of H.

By the definition of fundamental domain, the Γ-equivalent points of F are

located at the boundary ∂F . Thus, the sides of F are identified by the action of

Γ on F and we obtain an oriented surface Γ\F . The surface Γ\F has (possibly)

some marked points, which are the elliptic points of finite orders and cusps. By

the following theorem, the quotient surface Γ\H is homeomorphic to Γ\F .

Theorem 2.7 ([13, Theorem 9.2.4]). Let F be the fundamental domain for a

Fuchsian group Γ. Then, F is locally finite if and only if the map h : Γ\F → Γ\H
is a homeomorphism.

The quotient surface Γ\H is known as an orbifold. The hyperbolic area,

Area(Γ\H), of the quotient surface Γ\H is equal to the hyperbolic area, Area(Γ\F ),

12
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of Γ\F. Let m1, . . . ,ms be the orders of the vertices of the fundamental domain F

for Γ. For each ν = 1, . . . , s, the order, mν , is finite if the corresponding vertex is

an elliptic point and mν =∞ if the corresponding vertex is a cusp. The number of

cusps and genus determine the topological configuration of the surface. If g is the

genus of the quotient surface Γ\H, then (g;m1, . . . ,ms) is known as the signature

of Γ.

Theorem 2.8 ([42, Theorem 4.3.1]). If (g;m1, . . . ,ms) is the signature of a Fuch-

sian group Γ, then

Area(Γ\H) = 2π

(
(2g − 2) +

s∑
ν=1

(
1− 1

mν

))
.

Assume that for ν = 1, . . . ,m, Aν are the generators of the elliptic isotropy

subgroups of orders mν , and for µ = 1, . . . , n, Bµ are the generators of the cuspidal

isotropy subgroups of the Fuchsian group Γ. If the compact Riemann surface

X = Γ\H∗ has genus zero, then the Fuchsian group Γ can be expressed by the

following form:

Γ = 〈A1, . . . , Am, B1, . . . , Bn : Amνν = 1 for ν = 1, . . . ,m and A1 · · ·AmB1 · · ·Bn = 1〉.

The Fuchsian group Γ can be expressed as the free product of Aν , i.e., its elliptic

isotropy subgroups if Γ has a unique cusp. These facts are well-known (see, e.g.,

[13], [42] and [74]).

2.4 Hecke Groups

For an integer k ≥ 3, the Hecke group Hk, introduced by E. Hecke [36], is defined

as the discrete subgroup of PSL(2,R) generated by the two elements ±S and ±Tk,
where

S =

(
0 −1

1 0

)
, Tk =

(
1 λk

0 1

)
and λk = 2 cos

π

k
.

See [26] for details about the Hecke groups. Here and in what follows, we often

identify a matrix A =

(
a b

c d

)
with the Möbius transformation

τ 7→ Aτ =
aτ + b

cτ + d

13
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so that S and Tk are regarded as elements of Aut(H) = PSL(2,R).

Let Hk = H(λk), then H3 = H(1) is the classical modular group PSL(2,Z),

H4 = H(
√

2), H5 = H
(

1+
√

5
2

)
and H6 = H(

√
3). For k > 3, the set of cusps of

Hk is a subset of Q[λk] ∪ {∞}. If we put

Uk = TkS =

(
λk −1

1 0

)
,

then Uk is an elliptic element of order k with fixed point at eπi/k. Let the set Fk

be defined by

Fk =
{
τ ∈ H : |Re τ | ≤ cos

π

k
, |τ | ≥ 1

}
.

Then Fk is a fundamental domain for Hk with side pairing transformations S and

Tk. Note that S is an elliptic element of order 2 with fixed point at τ = i. In

particular, we see that Hk is a triangle group of signature (2, k,∞) for 3 ≤ k ≤ ∞
(see [13, p. 293]).

Let us restrict ourselves on the case when k = 2q is an even number with q ≥ 2.

Then

F̂q = F2q ∪ S(F2q)

is a fundamental domain for the (normal) subgroup G of H2q of index 2 generated

by

T2q =

(
1 λ2q

0 1

)
and W2q = S−1T−1

2q S =

(
1 0

λ2q 1

)
(see Figure 2.1).

Figure 2.1: Fundamental domains for H2q = 〈T2q, S〉 and G = 〈T2q,W2q〉

14
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Let H∗ denote the union of the upper half-plane H and the set of cusps of Hk.

Let ∆ be the hyperbolic triangle (2, k, ∞) with vertices at i, ei
π
k and ∞. If H∗k

is the group generated by the reflections across the sides of the triangle ∆, then

Hk / H
∗
k , |H∗k : Hk| = 2 and all transformations of Hk is orientation preserving.

Now, let

Vk = ST−1
k =

(
0 −1

1 −λk

)
.

Then, we can consider S and Vk as the independent generators of Hk. In this case,

one can show that the interior of Fk defined by

Fk =
{
τ ∈ H : 0 ≤ Re τ ≤ cos

π

k
, |2τ cos

π

k
− 1| ≥ 1

}
(2.1)

is a fundamental domain for Hk = 〈S, Vk〉. Note that Vk is a rotation about ei
π
k

of an angle 2π
k

and S is a rotation about i of an angle π (see Figure 2.2).

Figure 2.2: Fundamental domain for the Hecke group Hk = 〈S, Vk〉

There are k-tiles (Hk-translates of Fk) which are joined at the elliptic point

ei
π
k . There are three tiles S(Fk), Uk(Fk), and Vk(Fk) adjacent to the tile Fk. In

general, if A ∈ Hk, then the tiles AS(Fk), AUk(Fk), and AVk(Fk) are adjacent to

the tile A(Fk) (see [38]).

15



Chapter 2 : Preliminaries

2.5 Construction of Fundamental Domain for a

Hecke Subgroup

In this section, we mainly discuss some useful results related to the construction of

fundamental domains for a subgroup of the Hecke group Hk of finite index. These

results and related discussions can be found in [44], [45], and [46].

There are the following two main methods:

(1) Dirichlet’s polygon construction (see [48]),

(2) Ford’s isometric circle method (see [33])

to construct fundamental domain for a discrete subgroup of SL(2,R). To construct

a hyperbolically convex fundamental domain by these two methods, one needs to

know almost all elements of the group considered. The most useful and convenient

method to construct fundamental domain for a discrete subgroup of SL(2,R) is to

use the right coset decomposition (see [82], [83]). R. S. Kulkarni [44] considered

the modular group PSL(2,Z) which corresponds to the case k = 3 and M. L. Lang

[46] considered the Hecke group Hk for prime k > 3 to show that each subgroup

of Hk of finite index has a fundamental domain which is a special polygon.

Suppose that K is a Hecke subgroup which has index n <∞ in Hk, i.e.,

|Hk : K| = n.

Then, we can express Hk as a disjoint union of n cosets of K as follows

Hk =
n⋃
j=1

γjK,

where γj ∈ Hk. Let F be the fundamental domain for the subgroup K. Then, we

have

F =
n⋃
j=1

γ−1
j Fk,

where Fk is the fundamental domain for Hk. For any τ ∈ H, there exists an

element γ ∈ Hk such that γ(τ) ∈ Fk. We can find an element δ ∈ K so that

γ = γjδ =⇒ δ = γ−1
j γ,

16
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for some j. Thus,

δ(τ) = γ−1
j γ(τ) ∈ γ−1

j Fk.

As γ−1
j Fk ⊂ F , we deduce that δ(τ) ∈ F . One can easily show that all interior

points of F are K-inequivalents which implies that F is a fundamental domain for

the subgroup K. Note that there are many options to choose γj ∈ Hk. We choose

γj so that F is simply connected.

Recall that H∗k is the group generated by the reflections across the sides of the

triangle ∆, where ∆ is the hyperbolic triangle (2, k, ∞) with vertices at i, ei
π
k and

∞. Let T denote the tessellation or tiling of H constructed by the H∗k -translates

of ∆. We call the H∗k -translates of ei
π
k , i and ∞, respectively, odd vertices, even

vertices, and cusps of T . We denote by (τ1, τ2) the geodesic joining τ1 to τ2. The

H∗k -translates of the geodesic joining ei
π
k to∞ (resp. joining i to∞) are known as

odd edges (resp. even edges) of T . The H∗k -translates of the geodesics joining i to

ei
π
k are known as f -edges of T . The geodesic joining 0 to∞, i.e., (0,∞) comprises

two even edges and the even lines of T are the H∗k -translates of (0,∞) (see [44],

[45], [46]). The even lines of T always intersect at the boundary of H and we

obtain a tessellation, which we denote by T ∗, of H into ideal k-gons by the even

lines. Consider the canonical projection π : H → K\H and the even line (0,∞).

Let us denote the tile by T whose boundary contains the projection of the even

line (0,∞) by π, i.e., π(0,∞). The tile T is developed to H such that π(0,∞) is

developed to (0,∞). Next, the tiles adjacent to T are developed. In this manner,

all tiles of K\H are developed one by one. For K < Hk, if s is a cusp of K\H, then

the number of even lines in K\H meeting at s determines the width of the cusp

s. If a finite number of k-gons form a convex hyperbolic polygon which belongs to

the tessellation T ∗, then the polygon is called an ideal polygon. If the set of odd

vertices is regarded as the set of vertices of a tree, then the f -edges construct a

k-regular tree. A unique vertex, say vF , of the k-regular tree is contained in every

k-gon F . The distance between the vertex at i and vF is known as the depth of F

denoted by d(F ). Note that the distance of the vertices adjacent to the vertex at

i is 1.

For λk = 2 cos π
k
, the set of cusps of the Hecke group Hk is a subset of Q[λk]∪

{∞}. A cusp s = a
c

is said to be in reduced form if

(i)

(
a b

c d

)
∈ Hk for some b

d
,

(ii) c ≥ 0.

17
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Lemma 2.9 ([45, Lemma 3.2]). Let {x1, x2, . . . , xk}, where x1 < · · · < xk, be

the set of cusps of an ideal k-gon F (if ∞ is a cusp, then xk = ∞ = 1
0

or

x1 = −∞ = −1
0

depending on F lies in the right half-plane or in the left half-

plane). If xj =
aj
cj

is in reduced form and a0
c0

= −ak
−ck

, then

aj = λkaj−1 − aj−2

and

cj = λkcj−1 − cj−2

for 2 ≤ j ≤ k − 1.

If the both end points of a geodesic belong to the boundary of H, i.e., R∪{∞},
then the geodesic is called a complete geodesic. We regard ∞ as 1

0
, and a whole

number m as m
1

.

Consider the fundamental domain Fk for the Hecke group Hk, where Fk is the

hyperbolic triangle with vertices at ∞, 0 and ei
π
k . Then, a special triangle is the

Hk-translate of Fk. For 1 ≤ l < k and l|k, let

Dl = Fk ∪ Vk(Fk) ∪ V 2
k (Fk) ∪ · · · ∪ V l−1

k (Fk).

Then, l copies of the special triangle Fk (all of them meet at ei
π
k ) form Dl. We

call the Hk-translates of Dl the l-clusters. Each l-cluster has one odd vertex and

l + 1 cusps known as free vertices. The boundary ∂Dl consists of l even lines and

two odd edges. The two odd edges make an angle 2lπ
k

at the odd vertex. If the set

of cusps of the depth 1 k-gon in the right half-plane is given by

{s1 = 0 =
0

1
, s2, . . . , sk−1, sk =∞ =

1

0
}, (2.2)

then the set of free vertices of the l-cluster Dl is given by

{s1 = 0 =
0

1
, s2, . . . , sl, sk =∞ =

1

0
}, (2.3)

where sj’s are arranged in ascending order (see [45]).

Let F0 be an ideal polygon and let F be a convex hyperbolic polygon. Assume

that F is the union of F0 and a particular number of special triangles attached

externally to F0. Let us denote by FK = (F,AK) a convex hyperbolic polygon F

along with a set of side-pairing transformations AK . We call FK a special polygon

if the following rules are satisfied.

18
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(A) We consider 0 and ∞ as two of the vertices of the polygon F .

(B) Two odd edges are always paired with each other. If e1 and e2 are two odd

edges which are paired, then the internal angle between them is 2π
k

and they

are considered as sides of F . In this case, e1 and e2 are known as odd sides.

(C) If e1 and e2 are two even edges in ∂F which form an even line, then either

(i) e1 and e2 make a free side of F ; a different free side of F is paired with

this free side, or

(ii) the edges e1 and e2 are paired, in that case the both edges are regarded

as sides of F ; they are known as even sides of F .

For a special polygon FK = (F,AK), a cusp in F is known as free vertex of

FK . Consider a finite sequence

{−∞ =
−1

0
= x−1, x0, x1, . . . , xm, xm+1 =∞ =

1

0
} (2.4)

of numbers in ascending order such that

(i) for 0 ≤ j ≤ m, xj ∈ Q[λk] and xj = 0 for some j,

(ii) each xj =
aj
cj

is in reduced form,

(iii) if aj+1cj−ajcj+1 6= 1, there exists γ ∈ Hk and an l-cluster Dl, where 1 < l < k

and l|k, so that γ(sl) = xj, γ(sk) = xj+1, where sl and sk are given in (2.3),

(iv) if aj+1cj − ajcj+1 = 1, then {xj, xj+1} is known as ordinary interval and the

geodesic (xj, xj+1) is an even line.

The sequence in (2.4) is called Hecke-Farey sequence. If a Hecke-Farey sequence

is equipped with an additional structure of side-pairings between adjacent points

xj’s, then it is called a Hecke-Farey symbol. For details on Hecke-Farey symbol

and side-pairings, see [45] and [46].

Proposition 2.10 ([45, Proposition 4.4]). The set of Hecke-Farey symbols and

the set of special polygons are related by a one to one correspondence.

Suppose F1 and F2 are two special polygons. We call F1 and F2 are equivalent

if one can be constructed from other using elementary cut operations (see [46,

p. 588]) and we write F1 ∼ F2.
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Theorem 2.11 ([46, Theorem 11]). Consider a subgroup K of the Hecke group Hk

and two special polygons F1 and F2. Then, F1 and F2 generate the same subgroup

K if and only if F1 ∼ F2.

The following theorem is related to the fundamental domain for the subgroup

K of Hk.

Theorem 2.12 ([45, Theorem 5.1]). Let FK = (F,AK) be a special polygon.

Then, there exists a subgroup K of Hk generated independently by the set AK
of side-pairing transformations so that the hyperbolic polygon F is a fundamental

domain for K.

The special polygon FK = (F,AK) is known as the admissible fundamental

domain for the subgroup K of Hk.

Theorem 2.13 ([45, Theorem 5.2]). Every subgroup K of the Hecke group Hk of

finite index has an admissible fundamental domain FK = (F,AK).

In [38], B. Ibrahimou and O. Yayenie extended the results of Kulkarni [44] and

Lang [46] to show that for any k ≥ 3 every subgroup of finite index of the Hecke

modular group Hk has fundamental domain which is a special polygon and they

call it convex standard fundamental domain for a Hecke subgroup K.

Proposition 2.14 ([38, Proposition 2.2]). Let K < Hk and |Hk : K| = n < ∞.

Let the set S contain a finite number of inequivalent elements of Hk modulo K. If

F =
⋃
A∈S

A(Fk)

is connected and if any tile adjacent to F is equivalent to a tile A(Fk) ⊂ F modulo

K, then |S| = n, i.e.,

Hk = K · S.

The following theorem is proved in [38] using algorithmic approach.

Theorem 2.15 ([38, Theorem 3.1]). Let the index of the subgroup K be n < ∞
in the Hecke group Hk. Then, there exist r < ∞ elements A1, A2, . . . , Ar ∈ Hk

and r disjoint sets

Sj :=
{
Aj, AjVk, . . . , Aj(Vk)

mj−1
}

for j = 1, 2, . . . , r so that
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1. n = m1 +m2 + · · ·+mr, where each mj|k,

2. Hk = K · Σ, where Σ =
r⋃
j=1

Sj,

3. F =
⋃
A∈Σ

A(Fk) is a convex standard fundamental domain for K.

2.6 Geometric Invariants of a Hecke Subgroup

Let K be a subgroup of the Hecke group Hk of index n <∞. Let FK = (F,AK)

be an admissible fundamental domain for K, that is, FK = (F,AK) is a special

polygon related to K. One can determine the geometric invariants of the quo-

tient Riemann surface by studying the special polygon FK = (F,AK). From the

subgroup relation K < Hk, we have the following commutative diagram:

H

K\H Hk\H.

The following invariants are the geometric invariants (see [44, Section 7] and [45,

Section 6]) of the subgroup K:

(i) the number, say ν2, of elliptic or branch points of order 2 of H→ K\H,

(ii) the number, say νk, of elliptic or branch points of order k of H→ K\H,

(iii) the degree, n = |Hk : K|, of the branched or ramified covering

K\H→ Hk\H,

which is the number of special triangles in the special polygon FK = (F,AK),

(iv) the number, say νl, of inequivalent classes of order l elliptic elements which

are conjugates of V
k
l
k , where 1 < l < k and l|k,

(v) the number, say ν∞, of inequivalent cusps of K, that is, the number of

punctures of the quotient Riemann surface K\H,

(vi) the width of the j-th inequivalent cusp, say w(sj), j = 1, 2, . . . , ν∞,
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(vii) the genus, g, of the quotient Riemann surface K\H,

(viii) the rank, say r, of the fundamental group of K\H, i.e., π1(K\H).

One can describe (i), (ii), (iii), and (viii) in the context of group theory as

follows:

• ν2 = the number of inequivalent classes of order 2 elements which are con-

jugates of S =

(
0 −1

1 0

)
, or the number of conjugacy classes of order 2

elements in the independent set of generators of K,

• νk = the number of inequivalent classes of order k elements which are con-

jugates of Vk =

(
0 −1

1 −λk

)
, or the number of conjugacy classes of order k

elements in the independent set of generators of K,

• n = the index of the subgroup K in the Hecke group Hk,

• r = the number of cycles of the permutation representation of Tk on the

set of cosets Hk/K, or the rank of the free factors of K, or the number of

infinite order generators in the independent set of generators of K.

Note that one can obtain r from the side-pairing transformations of the special

polygon FK = (F,AK). If 2 ≤ lj ≤ k and lj|k, then the genus of the quotient

Riemann surface K\H is given by the Riemann Hurwitz formula as follows:

2g − 2 = n

(
k − 2

2k

)
− ν2

2
−
∑
lj |k

2≤lj≤k

νlj

(
1− 1

lj

)
− ν∞. (2.5)

Also, g, r and ν∞ are related by

2g = r − ν∞ + 1. (2.6)

2.7 Hypergeometric Functions

For complex numbers a, b, c with c 6= 0, −1, −2, . . . , and nonnegative integer n,

the Gaussian hypergeometric function, 2F1(a, b; c; z), is defined as

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)nn!

zn, z ∈ D,
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where (a)n is the Pochhammer symbol or shifted factorial function given by

(a)n =

1, if n = 0

a(a+ 1) · · · (a+ n− 1), if n ≥ 1.

By Euler’s integral representation formula, we know that 2F1(a, b; c; z) analytically

extends to the slit domain C \ [1,+∞). For more details, see Chapter II of [11]

and Chapter XIV of [78]. In many branches of Mathematics and Physics, the

hypergeometric function 2F1(a, b; c; z) has various applications and many special

functions can be derived as limiting values of 2F1(a, b; c; z) (see [10], [53], [70],

[84]).

Let us denote the complete elliptic integral of the first and the second kind,

respectively, by K(z) and E(z). Then K(z) and E(z) are defined by

K(z) =

∫ 1

0

du√
(1− u2)(1− zu2)

(2.7)

and

E(z) =

∫ 1

0

√
1− zu2

1− u2
du, (2.8)

respectively. For t ∈ (0, 1), let Kt(z) and Et(z) denote the generalized complete

elliptic integrals of the first and the second kind, respectively. Then Kt(z) and

Et(z) are defined, respectively, by

Kt(z) = sin(πt)

∫ 1

0

u1−2t

(1− u2)1−t(1− zu2)t
du (2.9)

and

Et(z) = sin(πt)

∫ 1

0

(
1− zu2

1− u2

)1−t

u1−2tdu. (2.10)

Also, K(z) and E(z) can be defined in terms of the Gaussian hypergeometric

function, 2F1(a, b; c; z), respectively, by

K(z) =
π

2
2F1

(1

2
,
1

2
; 1; z

)
(2.11)

and

E(z) =
π

2
2F1

(
− 1

2
,
1

2
; 1; z

)
. (2.12)

In terms of the Gaussian hypergeometric function, 2F1(a, b; c; z), Kt(z) and Et(z)
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are defined , respectively, by

Kt(z) =
π

2
2F1(t, 1− t; 1; z) (2.13)

and

Et(z) =
π

2
2F1(t− 1, 1− t; 1; z). (2.14)

For z ∈ C \ [1,+∞), Kt(z) and Et(z) are (single-valued) analytic functions. For

details, see [7], [8], [19], and [21].

If we set c = a+b, then the hypergeometric function 2F1(a, b; a+b; z) is known

to be zero-balanced. The above discussed complete elliptic integral of first kind is a

special case of zero-balanced hypergeometric function. The zero-balanced hyper-

geometric function 2F1(a, b; a+ b; z) has many important and nice transformation

identities. These identities and the inequalities involving zero-balanced hypergeo-

metric functions are intensely studied by many mathematicians (see [6], [55], [56],

[57], [76], [80], [81]). For example, the following identities are known as Landen

transformations

2F1

(
1

2
,
1

2
; 1;

4x

(1 + x)2

)
= (1 + x) 2F1

(
1

2
,
1

2
; 1;x2

)
, (2.15)

2F1

(
1

2
,
1

2
; 1;
(1− x

1 + x

)2
)

=
(1 + x)

2
2F1

(
1

2
,
1

2
; 1; 1− x2

)
, (2.16)

for x ∈ (0, 1) (see [5], [47]) and the Ramanujan’s beautiful cubic transformation

identities are given by

2F1

(
1

3
,
2

3
; 1; 1−

( 1− x
1 + 2x

)3
)

= (1 + 2x) 2F1

(
1

3
,
2

3
; 1;x3

)
, (2.17)

2F1

(
1

3
,
2

3
; 1;
( 1− x

1 + 2x

)3
)

=
1 + 2x

3
2F1

(
1

3
,
2

3
; 1; 1− x3

)
, (2.18)

for x ∈ (0, 1) (see [19], [22], [23]). For more transformations of hypergeometric

functions, see [1], [11], and [78].

We now construct a connection between the Schwarz triangle function and the

Gaussian hypergeometric function, 2F1(a, b; c; z). Since

w1 = 2F1(a, b; c; z)
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and

w2 = 2F1(a, b; a+ b+ 1− c; 1− z)

are two linearly independent solutions of the following hypergeometric differential

equation

z(1− z)
d2w

dz2
+ {c− (a+ b+ 1)z}dw

dz
− abw = 0, (2.19)

it is a well-known fact that the Schwarz triangle function defined by

S(z) = i
2F1(a, b; a+ b+ 1− c; 1− z)

2F1(a, b; c; z)

maps the upper half-plane H conformally onto a curvilinear triangle ∆t, which has

interior angles (1 − c)π, (c − a − b)π and (b − a)π at the vertices S(0), S(1) and

S(∞), respectively. For details, we recommend the readers to go through Chapter

V, Section 7 of [52]. For t ∈ (0, 1
2
], let a = t, b = 1 − a = 1 − t and c = 1, then

S(z) can be expressed as

S(z) = ft(z) = i
2F1(t, 1− t; 1; 1− z)

2F1(t, 1− t; 1; z)
. (2.20)

Figure 2.3: Mapping of the upper half-plane H onto ∆t by ft

If θ1 = π
m1
, θ2 = π

m2
and θ3 = π

m3
, then a curvilinear triangle with angles θj

(for j = 1, 2, 3) can be continued as a single-valued function across the sides of

the triangle if and only if mj is an integer greater than 1 including ∞ (see [67,

p. 416]). Therefore,
1

m1

+
1

m2

+
1

m3

< 1. (2.21)

The following lemma is related to the above facts.

25



Chapter 2 : Preliminaries

Lemma 2.16 ([8], Lemma 4.1). For t ∈ (0, 1
2
], if

ft(z) = i
2F1(t, 1− t; 1; 1− z)

2F1(t, 1− t; 1; z)
,

then the upper half-plane H is mapped by ft onto the hyperbolic triangle ∆t given

by

∆t =

{
τ ∈ H : 0 < Re τ < cos

θ

2
,
∣∣∣2τ cos

θ

2
− 1
∣∣∣ > 1

}
,

where θ = (1− 2t)π. The interior angles of ∆t are 0, 0 and θ = (1− 2t)π at the

vertices ft(0) =∞, ft(1) = 0 and ft(∞) = ei
θ
2 , respectively.

2.8 Modular Equations

Let Γ be a finite index subgroup of the modular group PSL(2,Z). If f(τ) is an

automorphic function on Γ, i.e.,

f(γ · τ) = f
(aτ + b

cτ + d

)
= f(τ), for γ =

(
a b

c d

)
∈ Γ, τ ∈ H,

then f(pτ) is an automorphic function on M−1
p ΓMp, where p > 1 is an integer

and Mp =

(
p 0

0 1

)
(see Chapter 3). The functions f(τ) and f(pτ) are related by

an algebraic equation, which is called a modular equation for f(τ) of degree p (see

[61]).

For t ∈ (0, 1
2
], r ∈ (0, 1) and an integer p > 1, the generalized modular equation

is given by
2F1(t, 1− t; 1; 1− s2)

2F1(t, 1− t; 1; s2)
= p

2F1(t, 1− t; 1; 1− r2)

2F1(t, 1− t; 1; r2)
, (2.22)

where 1
t

is called the signature of the modular equation. Let α = r2 and β = s2,

then the modulus β has degree p over the modulus α. The multiplier m is given

by

m =
2F1(t, 1− t; 1;α)

2F1(t, 1− t; 1; β)
.

A modular equation of degree p in the theory of signature 1
t

is an explicit relation

between α and β induced by (2.22), where α = r2 and β = s2 (see [19]). Let us
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define µt by

µt(r) ≡
π

2 sin (tπ)
2F1(t, 1− t; 1; 1− r2)

2F1(t, 1− t; 1; r2)
,

then µt : (0, 1)→ (0,∞) is a decreasing homeomorphism. Thus, (2.22) becomes

µt(s) = pµt(r),

and for p = 1
L

, its solution is

s = ϕt,L(r) ≡ µ−1
t

( 1

L
µt(r)

)
.

Here, ϕt,L(r) is called the modular function of degree p = 1
L

in the Ramanujan’s

theory of signature 1
t
. For t = 1

2
, in the context of quasiconformal theory, µt

and ϕt,L(r) are known as Grötzsch ring function and Hersch-Pfluger distortion

function, respectively (see [7], [9], [58], [59], [60]).

In the theory of signature 1
t

= 2, when p = 3, 5, 7 and 11, α and β are related

by the following modular equations:

(αβ)
1
4 + {(1− α)(1− β)}

1
4 = 1,

(αβ)
1
2 + {(1− α)(1− β)}

1
2 + 2{16αβ(1− α)(1− β)}

1
6 = 1,

(αβ)
1
8 + {(1− α)(1− β)}

1
8 = 1,

and

(αβ)
1
4 + {(1− α)(1− β)}

1
4 + 2{16αβ(1− α)(1− β)}

1
12 = 1,

respectively (see Entries 5(ii), 13(i), 19(i) of Chapter 19 and Entry 7(i) of Chapter

20 in [16]).

In the theory of signature 1
t

= 3, when p = 2, 5, and 11, α and β are related

by the following modular equations:

(αβ)
1
3 + {(1− α)(1− β)}

1
3 = 1,

(αβ)
1
3 + {(1− α)(1− β)}

1
3 + 3{αβ(1− α)(1− β)}

1
6 = 1,
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and

(αβ)
1
3 +{(1− α)(1− β)}

1
3 + 6{αβ(1− α)(1− β)}

1
6

+ 3
√

3{αβ(1− α)(1− β)}
1
12

{
(αβ)

1
6 + {(1− α)(1− β)}

1
6

}
= 1,

respectively (see Theorems 7.1, 7.6, and 7.8 in [19]).

In the theory of signature 1
t

= 4, when β has degree 3, 5, 7, and 11, the

corresponding modular equations are

(αβ)
1
2 + {(1− α)(1− β)}

1
2 + 4{αβ(1− α)(1− β)}

1
4 = 1,

(αβ)
1
2 +{(1−α)(1−β)}

1
2 +8{αβ(1−α)(1−β)}

1
6

{
(αβ)

1
6 +{(1−α)(1−β)}

1
6

}
= 1,

(αβ)
1
2 + {(1− α)(1− β)}

1
2 + 20{αβ(1− α)(1− β)}

1
4

+ 8
√

2{αβ(1− α)(1− β)}
1
8

{
(αβ)

1
4 + {(1− α)(1− β)}

1
4

}
= 1,

and

(αβ)
1
2 + {(1− α)(1− β)}

1
2 + 68{αβ(1− α)(1− β)}

1
4

+ 16{αβ(1− α)(1− β)}
1
12

{
(αβ)

1
3 + {(1− α)(1− β)}

1
3

}
+ 48{αβ(1− α)(1− β)}

1
6

{
(αβ)

1
6 + {(1− α)(1− β)}

1
6

}
= 1,

respectively (see Theorems 10.1, 10.2, 10.3, and 10.4 in [19]).

We observe that in the theory of signature 3, we have the symmetric modular

equation in α and β if p is prime and p ≡ 2 (mod 3) (see [29, p. 43]). In the

theories of signatures 2 and 4, we have symmetric modular equations in α and β

when p is an odd prime.
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Automorphic Functions and

Space of Automorphic Forms

In this chapter, we mainly investigate some known results on automorphic func-

tions and on the space of automorphic forms.

3.1 Automorphic Functions

Let Γ be a Fuchsian group of the first kind which leaves the upper half-plane H or

the unit disc D invariant. Suppose

(
a b

c d

)
∈ Γ and τ ∈ H, then a holomorphic

function f : H→ C is said to be an automorphic form of weight k if

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ).

If k = 0, then

f

(
aτ + b

cτ + d

)
= f(τ)

and the meromorphic function f : H → Γ\H∗ is called an automorphic function.

When the genus of the quotient Riemann surface Γ\H∗ is zero, an automorphic

function is called a Hauptmodul. If an automorphic function has no poles, then

it is constant according to the consequence of maximum modulus principle. For

details, we refer the reader to [24], [30], [39], and [51].

Assume that z(τ) is the Hauptmodul of the quotient space Γ\H∗ which has

genus 0. Let τ1, τ2 and τ3 be the elliptic points of orders m1, m2 and m3, respec-
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tively, of Γ\H∗ such that

z(τ1) = 0, z(τ2) = 1, z(τ3) =∞.

Since z(τ) takes on values 0, 1 and ∞ at the elliptic points, z(τ) satisfies the

following hypergeometric differential equation

z(1− z)
d2w

dz2
+ {c− (a+ b+ 1)z}dw

dz
− abw = 0. (3.1)

If w1 and w2 are two linearly independent solutions of (3.1), then the quotient

τ = S(z) =
w2(z)

w1(z)
satisfies the following Schwarzian equation

{S, z} =
1− p2

1

2z2
+

1− p2
2

2(1− z)2
+

1− p2
1 − p2

2 + p2
3

2z(1− z)
, (3.2)

where p1 = 1
m1
, p2 = 1

m2
, p3 = 1

m3
are called the accessory parameters and {S, z}

is the Schwarzian derivative of S(z) defined by

{S, z} =
(S ′′(z)

S ′(z)

)′
− 1

2

(S ′′(z)

S ′(z)

)2

.

For details, we recommend the readers to go through Chapter 5, Section 7 of [52].

The following theorem is related to these facts.

Theorem 3.1 ([12, Theorem 6.2]). If c 6= 1, then the functions

2F1(a, b; c; z) and z1−c
2F1(a− c+ 1, b− c+ 1; 2− c; z)

are two linearly independent solutions of the hypergeometric differential equation

z(1− z)
d2w

dz2
+ {c− (a+ b+ 1)z}dw

dz
− abw = 0.

The function

τ = S(z) =
z1−c

2F1(a− c+ 1, b− c+ 1; 2− c; z)

2F1(a, b; c; z)

maps the upper half z-plane H conformally onto the interior of the curvilinear

triangle [P,Q,R] in the τ -plane and establishes a homeomorphism between the

boundary of H, i.e., R ∪ ∞ and the boundary of [P,Q,R]. The vertices of the
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triangle are given in terms of Euler’s gamma function as

P = S(0) = 0,

Q = S(1) =
Γ(2− c)Γ(c− a)Γ(c− b)

Γ(c)Γ(1− a)Γ(1− b)
,

R = S(∞) = eπi(1−c)
Γ(a)Γ(c− b)Γ(2− b)

Γ(c)Γ(a− c+ 1)Γ(1− b)
.

The interior angles at the vertices P, Q and R are (1 − c)π, (c − a − b)π and

(b− a)π, respectively.

Let Gq denote the group generated by

T2q =

(
1 λ2q

0 1

)
and W2q =

(
1 0

λ2q 1

)
,

where λ2q = 2 cos π
2q

. The following lemma shows that α(τ) = πq(τ) and β(τ) =

πq(Mpτ) = α(pτ) are automorphic functions on Gq and M−1
p GqMp, respectively,

for the canonical projection πq : H→ Gq\H, Mp =

(
p 0

0 1

)
and τ ∈ H.

Lemma 3.2. Let p be an integer > 1 and Mp =

(
p 0

0 1

)
. Let πq : H → Gq\H.

If α(τ) = πq(τ) and β(τ) = πq(Mpτ) = α(pτ) for τ ∈ H, then α(τ) and β(τ) are

automorphic functions on Gq and G
Mp
q = M−1

p GqMp, respectively.

Proof. If T ′2q and W ′
2q are the generators of G

Mp
q , then

T ′2q = M−1
p T2qMp =

(
1 λ2q

p

0 1

)

and

W ′
2q = M−1

p W2qMp =

(
1 0

pλ2q 1

)
.

Assume that

τ(α) = i
2F1(t, 1− t; 1; 1− α)

2F1(t, 1− t; 1;α)
,

then

τ(1− α) = i
2F1(t, 1− t; 1;α)

2F1(t, 1− t; 1; 1− α)
= − 1

τ(α)
.
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Thus, we have

α(−1

τ
) = 1− α(τ).

Let q(τ) = exp
(

2π
λ2q
iτ
)

, then

q(τ + λ2q) = exp
( 2π

λ2q

i(τ + λ2q)
)

= q(τ).

Hence, we deduce that

α
(
T2qτ

)
= α(τ + λ2q) = α(τ).

Also,

α
(
W2qτ

)
= α

(
τ

λ2qτ + 1

)

= α

(
1

λ2q + 1/τ

)
= 1− α

(
− (λ2q + 1/τ)

)
= 1− α

(
− 1

τ

)
= α(τ).

Hence, α(τ) is an automorphic function on Gq.

Next, we have

β
(
T ′2qτ

)
= β

(
τ +

λ2q

p

)
= α

(
p
(
τ +

λ2q

p

))
= α(pτ) = β(τ)

and

β
(
W ′

2qτ
)

= β

(
τ

pλ2qτ + 1

)

= α

(
p
( τ

pλ2qτ + 1

))

= α

(
1

λ2q + 1
pτ

)
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= 1− α

(
−
(
− λ2q +

1

pτ

))
= 1− α

(
− 1

pτ

)
= α(pτ) = β(τ).

Thus, β(τ) is an automorphic function on G
Mp
q .

3.2 Space of Automorphic Forms

Let F be the fundamental domain for the Fuchsian group Γ. If F is compact,

then it has finitely many vertices. Let P1, . . . , Pn be the vertices whose orders are

m1,m2, . . . ,mn, respectively. If the number of elliptic elements and cusps of Γ are

r and l, respectively, then for definiteness we suppose that

2 ≤ m1 ≤ m2 ≤ . . . ≤ mr <∞

and

mr+1 = . . . = mn =∞,

where r + l = n.

Let X denote the quotient Riemann surface Γ\H and let X̂ denote its compact-

ification with cusps, i.e., X̂ = Γ\H∗, where H∗ is the union of the upper half-plane

H and the set of cusps of the Fuchsian group Γ. Let the genus of X̂ be g and let π

be the canonical mapping of H∗ onto Γ\H∗. If f is a conformal mapping of Γ\H∗

onto X̂ \ {Pr+1, . . . , Pn} such that τ ∈ H is not a fixed point of an elliptic element

of Γ when

f ◦ π(τ) 6= Pj, j = 1, . . . , r

and is a fixed point of an elliptic element of order mj when

f ◦ π(τ) = Pj, j = 1, . . . , r,

then we say that Γ has signature (g;m1, . . . ,mn). For more detailed discussion,

reader may consult Section 2.1 of [20], Chapter 4 of [42], and Section 2 of [73].

Let us denote by Sk the space of automorphic forms of weight k with respect to

Γ. The following theorem determines the dimension of the space of automorphic

forms Sk.
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Theorem 3.3 ([72, Theorem 2.23]). Let (g;m1, . . . ,mr) be the signature of a

Fuchsian group Γ and let dimSk denote the dimension of the space of automorphic

forms Sk. Then, for an even integer k,

dimSk =



0, if k < 0,

1, if k = 0,

g, if k = 2,

(k − 1)(g − 1) +
r∑
i=1

⌊
k

2

(
1− 1

mi

)⌋
, if k ≥ 4.

Now, we present the following two theorems from [79] related to the basis for

the space of automorphic forms Sk.

Theorem 3.4 ([79, Theorem 4]). Let X = Γ\H be a quotient Riemann surface

for the Fuchsian group Γ with signature (0;m1, . . . ,mr). Assume that z(τ) is a

Hauptmodul of X and τ1, . . . , τr are elliptic points of orders m1, . . . ,mr, respec-

tively. For an even integer k ≥ 4, let

ei =
⌊k

2

(
1− 1

mi

)⌋
and n = dimSk = 1 +

r∑
i=1

ei − k.

If z(τi) = zi for i = 1, . . . , r and

w(τ) =

(
z′(τ)

)k/2
r∏

i=1,zi 6=∞

(
z(τ)− zi

)ei ,

then the set {
w(τ)

(
z(τ)

)ν
: ν = 0, . . . , n− 1

}

is a basis for the space of automorphic forms of weight k on X.

Theorem 3.5 ([79, Theorem 9]). Suppose that Γ is a triangle group with signa-

ture (0;m1,m2,m3). Let the Hauptmodul of the quotient space X = Γ\H be z(τ)

which takes on values 0, 1 and ∞ at the elliptic points of orders m1, m2 and m3,

respectively. For an even integer k ≥ 4, let

q1 =
k

2

(
1− 1

m1

)
−
⌊k

2

(
1− 1

m1

)⌋
, q2 =

k

2

(
1− 1

m2

)
−
⌊k

2

(
1− 1

m2

)⌋
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and

l =
⌊k

2

(
1− 1

m1

)⌋
+
⌊k

2

(
1− 1

m2

)⌋
+
⌊k

2

(
1− 1

m3

)⌋
− k.

Then, the following set is a basis for the space of automorphic forms of weight k

on X:{
zq1(1− z)q2

(
z(τ)

)ν(
2F1(a, b; c; z) + Cz

1
m1 2F1(a′, b′; c′; z)

)k
: ν = 0, . . . , l

}
,

where C ∈ C \ {0}; a, b, c and a′, b′, c′ are given by

a =
1

2

(
1− 1

m1

− 1

m2

+
1

m3

)
, b =

1

2

(
1− 1

m1

− 1

m2

− 1

m3

)
, c = 1− 1

m1

(3.3)

and

a′ =
1

2

(
1+

1

m1

− 1

m2

+
1

m3

)
, b′ =

1

2

(
1+

1

m1

− 1

m2

− 1

m3

)
, c′ = 1+

1

m1

. (3.4)

3.2.1 Proof of Theorem 3.4

For ν = 0, . . . , n− 1 and ei =
⌊
k
2

(
1− 1

mi

)⌋
, let

gν(τ) = w(τ)
(
z(τ)

)ν
=

(
z′(τ)

)k/2(
z(τ)

)ν
r∏

i=1,zi 6=∞

(
z(τ)− zi

)ei . (3.5)

Then,

gν

(aτ + b

cτ + d

)
=

(
z′
(aτ + b

cτ + d

))k/2(
z
(aτ + b

cτ + d

))ν
r∏

i=1,zi 6=∞

(
z
(aτ + b

cτ + d

)
− zi

)ei
=

(cτ + d)k
(
z′(τ)

)k/2(
z(τ)

)ν
r∏

i=1,zi 6=∞

(
z(τ)− zi

)ei
= (cτ + d)kgν(τ).

Thus, gν is an automorphic form of weight k, i.e., gν(τ) = w(τ)
(
z(τ)

)ν ∈ Sk.
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Assume that the Hauptmodul z(τ) does not have any pole at the elliptic points

τi, i.e., zi 6= ∞ for i = 1, . . . , r. Since τi is an elliptic point of order mi, we have,

in a neighbourhood of τ = τi,

z(τ)− zi = ai(τ − τi)mi +O
(
(τ − τi)mi+1

)
= (τ − τi)miz∗(τ),

where ai ∈ C \ {0}, z∗(τi) 6= 0 and z∗(τ) is analytic in a neighbourhood of τ = τi.

Therefore, a single-valued analytic mi-th root can be defined in a neighbourhood

of τ = τi. This can be done at all points equivalent to τi. Since (z−zi) is non-zero

and analytic on the other part of the upper half-plane H, its mi-th root is analytic

at each point of the remainder of H. As (z − zi)mi is locally single-valued (locally

analytic) at each point of the upper half-plane H, which is simply connected, so

it follows from monodromy theorem that a single-valued and analytic mi-th root

of (z − zi) can be defined on the whole upper half-plane H.

The Hauptmodul
(
z(τ)−zi

)
has a zero of order mi at τ = τi. Hence

(
z′(τ)

)k/2
has a zero of order

k

2
(mi−1) and

r∏
i=1,zi 6=∞

(
z(τ)−zi

)ei has a zero of order mi

⌊k
2

(
1−

1

mi

)⌋
at τ = τi. Therefore, from (3.5) we observe that gν has a simple zero at

τ = τi and is holomorphic on the upper half-plane H.

Now, let us assume that the Hauptmodul z(τ) has a pole at one of the elliptic

points τi for i = 1, . . . , r. Without loss of generality, we choose τ1 such that

z(τ1) = z1 = ∞. Since z(τ) is a Hauptmodul and τ1 is an elliptic point of order

m1, it follows that

z(τ) =
b1

(τ − τ1)m1
+O

(
(τ − τ1)1−m1

)
, b1 ∈ C \ {0}

and

z′(τ) = − b1m1

(τ − τ1)m1+1
+O

(
(τ − τ1)−m1

)
.

In this case, from (3.5) we have

gν(τ) =

(
z′(τ)

)k/2(
z(τ)

)ν
r∏

i=2,zi 6=∞

(
z(τ)− zi

)ei . (3.6)
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The Hauptmodul z(τ) has a pole of order m1 at τ = τ1. Thus,
(
z′(τ)

)k/2
has a pole of order

k

2
(m1 + 1) and

r∏
i=2,zi 6=∞

(
z(τ) − zi

)ei has a pole of order

m1

r∑
i=2

⌊k
2

(
1− 1

mi

)⌋
at τ = τ1. Since ν = 0, . . . ,

r∑
i=1

ei − k, so
(
z(τ)

)ν
has a

pole of order at most m1

( r∑
i=1

⌊k
2

(
1 − 1

mi

)⌋
− k

)
at τ = τ1. As a result, if

ord(gν , τ) denote the order of the function gν in (3.6), then for τ = τ1, we have

−ord(gν , τ1) ≤ k

2
(m1 + 1)−m1

r∑
i=2

⌊k
2

(
1− 1

mi

)⌋
+m1

( r∑
i=1

⌊k
2

(
1− 1

mi

)⌋
− k
)

= −k
2

(
m1 − 1

)
+m1

⌊k
2

(
1− 1

m1

)⌋
≤ 0.

Consequently, ord(gν , τ1) ≥ 0 and gν is holomorphic on the upper half-plane H.

Finally, assume that zi 6= ∞ for i = 1, . . . , r. Let the Hauptmodul z(τ) have

the value ∞ at the point τ = τ0. It follows that z(τ) has a simple pole at τ0.

Therefore, we have

z(τ) =
a0

(τ − τ0)
+O(1), a0 ∈ C \ {0}

and

z′(τ) = − a0

(τ − τ0)2
+O(1).

At the point τ = τ0,
(
z′(τ)

)k/2
has a pole of order k,

r∏
i=1,zi 6=∞

(
z(τ)−zi

)ei has a pole

of order
r∑
i=1

⌊k
2

(
1− 1

mi

)⌋
and zν has a pole of order at most

r∑
i=1

⌊k
2

(
1− 1

mi

)⌋
−k.

From (3.5), it follows easily that

ord(gν , τ0) ≥ 0.

Thus, gν is holomorphic on H in this case also. This completes the proof.
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3.2.2 Proof of Theorem 3.5

If, for 0 < c < 1,

w1 = 2F1(a, b; c; z)

and

w2 = z1−c
2F1(a′, b′; c′; z)

are two linearly independent solutions of the hypergeometric differential equation

(3.1), then

a′ = a− c+ 1, b′ = b− c+ 1, c′ = 2− c. (3.7)

The relations between a, b, c and the accessory parameters are given as follows

p1 = 1− c, p2 = c− b− a, p3 = a− b

or,

a =
1

2
(1− p1 − p2 + p3), b =

1

2
(1− p1 − p2 − p3), c = 1− p1. (3.8)

The relations (3.3) and (3.4) follow easily from (3.7) and (3.8).

The quotient τ = S(z) =
w2(z)

w1(z)
provides conformal representation of the upper

half z-plane H onto the interior of a triangle with vertices corresponding to τ1, τ2

and τ3 in τ -plane and forms a homeomorphism between R∪∞ and the boundary

of the triangle. Since m1, m2, m3 are positive integers greater than 1 and

1

m1

+
1

m2

+
1

m3

< 1,

the inverse z(τ) of S(z) is single-valued. For z : Γ\H ∼−→ P1, up to a Möbius

transformation, by the quotient S(z) =
w2(z)

w1(z)
of two hypergeometric functions in

z, each z ∈ P1 can be associated to a representative of its corresponding Γ-orbit

in H.

Now let us choose a representative τ1 ∈ H of elliptic points of order m1. If

A ∈ Γ is the generator of the stabilizer subgroup for the elliptic point τ1, then we

have

Aτ − τ1

Aτ − τ 1

= e
2πi
m1
τ − τ1

τ − τ 1

. (3.9)
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Also, for

(
α β

γ δ

)
∈ Γ we have

τ =
αw2 + βw1

γw2 + δw1

. (3.10)

The Möbius transformation

τ → τ − τ1

τ − τ 1

maps the two sides (hyperbolic lines) of the triangle through τ1 to straight lines

through the origin. For |z| < 1, the point on Γ\H is the Γ-orbit of τ near the

elliptic point τ1 such that
τ − τ1

τ − τ 1

= k0
w2

w1

(3.11)

for a nonzero constant k0. Also, as z(τ2) = 1, the value of k0 can be determined

from (3.11) when τ → τ2 using the following formula of Gauss

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

.

From (3.11) we have

τ =
τ1w1 − k0τ 1w2

w1 −Kw2

. (3.12)

Differentiating both sides of (3.12) with respect to z, it follows immediately

dτ

dz
= k0(τ1 − τ 1)

w1w
′
2 − w′1w2

(w1 −Kw2)2
= k0(τ1 − τ 1)

W

(w1 − k0w2)2
, (3.13)

where w′1 =
dw1

dz
, w′2 =

dw2

dz
and W is the Wronskian of w1 and w2 given by

W = w1w
′
2 − w′1w2.

The hypergeometric differential equation (3.1) can be written as

d2w

dz2
+ P (z)

dw

dz
+Q(z)w = 0, (3.14)

where

P (z) =
c− (a+ b+ 1)z

z(1− z)

and

Q(z) =
ab

z(z − 1)
.

39



Chapter 3 : Automorphic Functions and Space of Automorphic Forms

Since w1 and w2 are two linearly independent solutions of (3.14), we have

W (z) = W (z0) exp
(
−

z∫
z0

P (z)dz
)
, (3.15)

where w1 and w2 are regular at the point z = z0 and W (z0) 6= 0. From (3.15), it

can be shown immediately that

W (z) = C0z
−c(1− z)c−a−b−1 (3.16)

for some constant C0 ∈ C \ {0} depending on the point z0. Consequently, from

(3.13) and (3.16) we have

dτ

dz
= C0k0(τ1 − τ 1)

z−c(1− z)c−a−b−1

(w1 − k0w2)2
. (3.17)

Thus,

z′(τ) = κz
(1− 1

m1
)
(1− z)

(1− 1
m2

)
(

2F1(a, b; c; z) + Cz
1
m1 2F1(a′, b′; c′; z)

)2

, (3.18)

where z′(τ) =
dz(τ)

dτ
, C = −k0 and κ =

1

C0k0(τ1 − τ 1)
.

Since z(τ) is a Hauptmodul on Γ\H, z′(τ) is an automorphic form of weight 2

on Γ\H. Therefore,
(
z′(τ)

)k/2
is an automorphic form of weight k on Γ\H. Thus,

Theorem 3.5 follows from Theorem 3.4.

Lemma 3.6 ([43, Lemma 4.2]). The constant k0 in (3.11) can be expressed in

terms of Euler’s gamma function as

k0 =

(
Γ(1− a)Γ(1− b)Γ(a− c+ 1)Γ(b− c+ 1)

Γ(a)Γ(b)Γ(c− a)Γ(c− b)

) 1
2 Γ(c)

Γ(2− c)
.

Proof. Since z(τ2) = 1, and

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

,

2F1(a− c+ 1, b− c+ 1; 2− c; 1) =
Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b)
,

so, when τ → τ2, from (3.11) we have

k0 =
τ2 − τ1

τ2 − τ 1

Γ(c)Γ(1− a)Γ(1− b)
Γ(2− c)Γ(c− a)Γ(c− b)

. (3.19)
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If d(τ1, τ2) denote the hyperbolic distance between τ1 and τ2, then using (75.1) of

[28], we have

tanh2 d(τ1, τ2)

2
=

cos
{

1
2

(
1
m1

+ 1
m2

+ 1
m3

)
π
}

cos
{

1
2

(
1
m1

+ 1
m2
− 1

m3

)
π
}

cos
{

1
2

(
1
m1
− 1

m2
+ 1

m3

)
π
}

cos
{

1
2

(
− 1

m1
+ 1

m2
+ 1

m3

)
π
} .

From (3.3), it follows

tanh2 d(τ1, τ2)

2
=

sin πa sin πb

sin π(c− a) sinπ(c− b)
.

For a ∈ Z, we have Γ(a)Γ(1− a) =
π

sin πa
, which implies

tanh2 d(τ1, τ2)

2
=

Γ(c− a)Γ(a− c+ 1)Γ(c− b)Γ(b− c+ 1)

Γ(a)Γ(1− a)Γ(b)Γ(1− b)
. (3.20)

Also, from (85.3) of [28], we have

tanh2 d(τ1, τ2)

2
=
( τ2 − τ1

τ2 − τ 1

)2

. (3.21)

Thus, from (3.19), (3.20) and (3.21), we have the required expression for k0.
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Generalized Modular Equations

We first recall that the generalized modular equation of degree p and signature 1
t

is given by
2F1(t, 1− t; 1; 1− β)

2F1(t, 1− t; 1; β)
= p

2F1(t, 1− t; 1; 1− α)

2F1(t, 1− t; 1;α)
, (4.1)

where t ∈ (0, 1
2
] and p > 1 is an integer. Let Gq = 〈T,W 〉 be the Fuchsian group

generated by

Tτ = τ + λ and Wτ =
τ

1 + λτ
,

where λ = 2 cos π
2q

and let Mp be the Möbius transformation defined by Mpτ = pτ.

To speak about the solutions to (4.1), we have to clarify the range of the solutions.

Originally, the range of α and β was the interval [0, 1]. However, in our setting, it

is natural to choose the quotient Riemann surface X = Gq\H as the range of the

solutions (α, β) to the equation (4.1). Here, we take X = Ĉ\{0, 1} for finite q and

X = Ĉ \ {0, 1,∞} for q = ∞. For the above assumptions, we have the following

result.

Theorem 4.1. Let n, p and q be integers with n, p, q ≥ 2 (possibly q = ∞) and

set

t =
q − 1

2q
.

Then, the solutions (α, β) to the equation (4.1) in X = Gq\H satisfy the equation

P (α, β) = 0 for an irreducible polynomial P (x, y) of degree n if and only if Gq∩GMp
q

is a subgroup of Gq of index n, where G
Mp
q = M−1

p GqMp.

As we will see in the proof, the solutions α and β are parametrized as α = ϕ(z)

and β = ψ(z) on the Riemann surface Z = (Gq ∩ GMp
q )\H and they satisfy the
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polynomial equation P (α, β) = 0 of degree n. More precisely, P (x, y) has the forms

P (x, y) = a0(x)yn + a1(x)yn−1 + · · ·+ an−1(x)y + an(x)

= b0(y)xn + b1(y)xn−1 + · · ·+ bn−1(y)x+ bn(y),

where

aj(x) ∈ C[x], bj(y) ∈ C[y] (j = 0, 1, . . . , n),

such that P (x, y) is irreducible as an element of C(x)[y] and C(y)[x], respectively.

Recall that C[x] and C(x) stand for the C-algebra of polynomials in x and the

field of rational functions of x with coefficients in C, respectively.

4.1 Construction of Covering Group

Let 0 < t ≤ 1/2. Then it is classically known [27] that the function

τ = ft(z) = i · 2F1(t, 1− t; 1; 1− z)

2F1(t, 1− t; 1; z)

maps the upper half-plane H = {z ∈ C : Im z > 0} onto the domain

∆t =
{
τ ∈ H : 0 < Re τ < sinπt, |2τ sin πt− 1| > 1

}
and that ∆t is the hyperbolic triangle with vertices at 0, ∞ and ie−πti of interior

angles 0, 0 and (1 − 2t)π, respectively (see also [8, Lemma 4.1]). Note also that

ft extends homeomorphically to the boundary and

ft(0) =∞, ft(1) = 0, ft(∞) = ie−πti = ei
(1−2t)π

2 . (4.2)

Suppose now that q = 1
1−2t

is an integer or ∞. Let

πq : ∆t → H

be the inverse map, f−1
t (τ), of τ = ft(z). Then, by repeated applications of the

Schwarz reflection principle, πq extends to a holomorphic map from H into Ĉ \
{0, 1}. Here, we note that πq is locally q to 1 at the point ie−πti. By construction,

the covering group

Gq =
{
γ ∈ Aut(H) : πq ◦ γ = πq

}
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is the triangle group of signature (q,∞,∞) arising from the hyperbolic triangle

∆t, q = 1/(1 − 2t). Here, the group Aut(H) of analytic automorphisms of H is

identified with

PSL(2,R) = SL(2,R)/{±I}.

By its form, the function ft satisfies the relation

ft(1− z) = − 1

ft(z)
.

Since πq = f−1
t on ∆t, the following result follows.

Lemma 4.2. The covering map πq satisfies the functional equation

πq(τ) + πq(−
1

τ
) = 1, τ ∈ H.

Recall that F̂q = F2q ∪ S(F2q) is a fundamental domain for the (normal) sub-

group G of H2q of index 2 generated by

T2q =

(
1 λ2q

0 1

)
and W2q =

(
1 0

λ2q 1

)
.

To adapt with our aim, we modify the fundamental domain as follows. For t =

(q − 1)/(2q), let

F̃q = ∆t ∪∆′t,

where ∆′t is the reflection of ∆t across the line Re τ = sinπt. Then, F̃q serves as

a fundamental domain for G, which is the same as Gq, the above-defined covering

group of πq. (This appears in Example 1.3 of [26].) Note that the element

Vq := T2qW
−1
2q = U2

2q =

(
λ2

2q − 1 −λ2q

λ2q −1

)
=

(
λq + 1 −λ2q

λ2q −1

)

is elliptic of order q and that Gq is generated by T2q and Vq (see Figure 4.1).

Here, we note the following property.

Lemma 4.3. Let p, q be integers with p, q ≥ 2 (where q may be ∞) and let

K = Gq ∩GMp
q ,

where Mpτ = pτ. Then,

|Gq : K| = |GMp
q : K|.
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Figure 4.1: Fundamental domain for Gq = 〈T2q, Vq〉

Proof. If both of the indices are infinite, there is nothing to show. Assume that

n = |Gq : K| <∞.

Then the hyperbolic area Area(Z) of the Riemann orbifold Z = K\H is computed

as (see [13, p. 150] or [42, p. 13])

Area(Z) = nArea(Gq\H)

= nArea(F̃q)

= 2n(π − π/q).

Since G
Mp
q \H has the same hyperbolic area as Gq\H, we have

|GMp
q : K| = Area(K\H)

Area(G
Mp
q \H)

=
Area(Z)

Area(Gq\H)

= n

as required. When |GMp
q : K| <∞, the same argument works for the proof.

Remark 4.1. In view of the proof, one can also show that the formula

|G : G ∩GM | = |GM : G ∩GM |

holds for a cofinite Fuchsian group G; namely, if the surface G\H has finite hyper-
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bolic area. However, this formula is not true in general. For instance, Jørgensen,

Marden and Pommerenke [41] constructed a Fuchsian group Γ and its subgroup G

of index 2 such that GM = M−1GM is a proper subgroup of G for some M ∈ Γ

so that G ∩GM = GM . In particular,

|G : G ∩GM | > |GM : G ∩GM | = 1.

The index |Gq : K| can be computed explicitly when q = 2, 3, and ∞ (see

Chapter 5).

4.2 Criteria for Finiteness

Let Γ be a Fuchsian group acting on the upper half-plane H and X be the quotient

Riemann surface Γ\H. We denote by π the canonical projection π : H→ X. When

γ ∈ Γ is a parabolic element with fixed point at τ0 ∈ ∂H, it is known that π(τ)

tends to a puncture, say P, of X as τ → τ0 nontangentially. As a convention,

we will write π(τ0) = P in the sequel. A point τ0 ∈ H is called a fixed point

of an element γ of PSL(2,R) if γτ0 = τ0 and the set of fixed points of γ in H
is denoted by Fix(γ). A non-identity element γ is called elliptic if Fix(γ) 6= ∅.
Let M ∈ PSL(2,R) = Aut(H) such that M /∈ Γ. Then we consider the number

(possibly ∞) defined by

NX0(M,Γ) = sup
x∈X0

#{π(Mτ) : τ ∈ π−1(x)} (4.3)

for X0 ⊂ X.

The next result is our main lemma and it gives a criterion for finiteness of

NX0(M,Γ).

Lemma 4.4. Let Γ be a Fuchsian group and M ∈ PSL(2,R) \Γ. Suppose that X0

is an uncountable subset of the quotient Riemann surface X = Γ\H. Then

NX0(M,Γ) <∞

if and only if

ΓM := M−1ΓM

is commensurable with Γ in the sense that |Γ : G| <∞ for G = Γ∩ΓM . Moreover,
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in this case,

NX0(M,Γ) = |Γ : G|.

Proof. The “if ” part is almost trivial. Let

N := |Γ : G| <∞.

Then we take

γ1, . . . , γN ∈ Γ

so that

Γ = Gγ1 ∪ · · · ∪GγN .

For x ∈ X and τ0 ∈ π−1(x), we observe

M(π−1(x)) = MΓτ0

=
N⋃
j=1

MGγjτ0

=
N⋃
j=1

MGM−1 ·Mγjτ0.

Since MGM−1 ⊂ Γ, the set MGM−1 ·Mγjτ0 is projected to the point π(Mγjτ0)

by π. Therefore,

#(π(M(π−1(x)))) ≤ N.

Hence, we conclude that

NX0(M,Γ) ≤ |Γ : G|. (4.4)

To show the “only if ” part, we assume that N := NX0(M,Γ) is finite. Let

E1 =
⋃
γ,δ

Fix(γ−1δ),

where γ and δ range over γ ∈ Γ and δ ∈ ΓM with γ 6= δ. Since each Fix(γ−1δ)

contains at most one point, the set E1 is at most countable. Moreover, the set

E = Γ · E1 = {γτ : γ ∈ Γ, τ ∈ E1}

is also at most countable. Take a point τ0 from the uncountable subset π−1(X0)\E
of H and fix it. We regard G\Γ as the set of right cosets {Gγ : γ ∈ Γ}. As we

saw above, each set Gγ · τ0 projects to one point π(Mγτ0) under the mapping
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π ◦M : H→ X. We now show that the mapping

φ : G\Γ→ X

defined by

φ(Gγ) = π(Mγτ0)

is injective. To this end, we suppose that

φ(Gγ1) = φ(Gγ2)

for some γ1, γ2 ∈ Γ. Then

Mγ2τ0 = γMγ1τ0

for some γ ∈ Γ. It says that γ1τ0 is a fixed point of (γ2γ
−1
1 )−1δ, where

δ = M−1γM ∈ ΓM .

Since γ1τ0 /∈ E, the element (γ2γ
−1
1 )−1δ must be the identity, which implies

γ2γ
−1
1 = δ ∈ Γ ∩ ΓM = G.

Hence Gγ1 = Gγ2.

We have seen that

φ : G\Γ→ X

is injective. On the other hand, the image

φ(G\Γ) = π(MΓτ0)

consists of at most N points. Therefore, we obtain

|Γ : G| = #(G\Γ) ≤ N.

Combining with (4.4), we obtain

|Γ : G| = NX0(M,Γ)

as required.

In particular, we see that NX0(M,Γ) does not depend on the uncountable set
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X0 ⊂ X. Thus we denote by N(M,Γ) the common number NX0(M,Γ).

4.3 Proof of Theorem 4.1

Recall that

t =
q − 1

2q
and Mpτ = pτ.

In this proof, we will use the notation introduced in Section 4.1. The generalized

modular equation (4.1) may be expressed by

ft(β) = pft(α),

where

ft(z) = i · 2F1(t, 1− t; 1; 1− z)

2F1(t, 1− t; 1; z)
.

Therefore, α and β in Ĉ \ {0, 1} satisfy (4.1) if and only if

α = πq(τ) and β = πq(pτ)

for some τ ∈ H.

Proof of Theorem 4.1. First we assume that α and β in (4.1) satisfy the algebraic

equation P (α, β) = 0, where

P (x, y) =
n∑
j=0

aj(x)yj, aj(x) ∈ C[x] (j = 0, 1, . . . , n),

is an irreducible polynomial of degree n in C(x)[y]. Let X0 be the set of those

points x ∈ X for which ak(x) 6= 0 for some k. Then for a fixed x0 ∈ X0, the

algebraic equation P (x0, y) = 0 in y has at most n solutions. Thus we conclude

that

NX0(Mp, Gq) ≤ n.

Lemma 4.4 now implies that

|Gq : Gq ∩GMp
q | ≤ n.

By the irreducibility of P (x, y), we see that the equality holds.
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Conversely, we assume that the equality |Gq : K| = n holds, where

K = Gq ∩GMp
q .

Note that |GMp
q : K| = n by Lemma 4.3. We denote by Z the quotient Riemann

surface K\H. Let ρ : H→ Z be the canonical projection and let

ϕ : Z → X and ψ : Z → X

be the induced mappings satisfying the relations

πq = ϕ ◦ ρ and πq ◦Mp = ψ ◦ ρ,

respectively. Thus we have the following commutative diagram:

H H

X Z X.

Mp

ρ
πq πq

ψϕ

Note that the solution (α, β) to the modular equation (4.1) is now parametrized

by

α = ϕ(z) and β = ψ(z)

for z ∈ Z. We denote by X̂ and Ẑ the compact Riemann surfaces obtained by

filling in the punctures of X and Z, respectively. Note that Ĉ can be taken as X̂.

Then ϕ and ψ extend to n-sheeted branched covering maps of Ẑ onto X̂ = Ĉ. In

particular, ψ may be regarded as a meromorphic function on Ẑ.

Let X0 denote X minus the set of critical values of

ϕ : Z → X;

indeed X0 = Ĉ \ {0, 1,∞} in this case. Similarly, X1 is defined for

ψ : Z → X.

For a point x0 ∈ X0, we choose a small disk U = U(x0) with x0 ∈ U ⊂ X0. Let sj

be the elementary symmetric functions of

ψ ◦ η1, . . . , ψ ◦ ηn
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of degree j, where η1, . . . , ηn are local inverses of ϕ of U. Then for each j =

1, 2, . . . , n, all

sj : U(x0)→ X

piece together to one function and it extends meromorphically to X̂ = Ĉ and ψ

satisfies the equation

ψn − s1 ◦ ϕ · ψn−1 + · · ·+ (−1)n−1sn−1 ◦ ϕ · ψ + (−1)nsn ◦ ϕ = 0

(see [34, Theorem 8.3] for details). Note that each sj : Ĉ → Ĉ is a rational

function. By writing

(−1)jsj(x) =
aj(x)

a0(x)

for polynomials

a0(x), . . . , an(x) ∈ C[x]

without non-trivial common factor, we define

P (x, y) = a0(x)yn + a1(x)yn−1 + · · ·+ an−1(x)y + an(x).

Then,

P (α, β) = P
(
ϕ(z), ψ(z)

)
= 0

for z ∈ Z.

Conversely, suppose that x0 ∈ X0 with a0(x0) 6= 0 and y0 ∈ X1 satisfy

P (x0, y0) = 0.

Let

ϕ−1(x0) = {z1, . . . , zn}

and let σ1, . . . , σn be the elementary symmetric functions of ψ(z1), . . . , ψ(zn). Note

that σj = sj(x0) for j = 1, . . . , n. Then,

a0(x0)
(
y0 − ψ(z1)

)
· · ·
(
y0 − ψ(zn)

)
= a0(x0)

(
yn0 − σ1y

n−1
0 + · · ·+ (−1)nσn

)
=

n∑
j=0

aj(x0)yn−j0

= P (x0, y0)

= 0.
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Hence, y0 = ψ(zk) for some k. Since

x0 = ϕ(zk) and y0 = ψ(zk),

we have shown that the converse is true. We next show that the polynomial

P (x, y) is irreducible in y with coefficients in C[x]. Suppose, on the contrary, that

P (x, y) reduces to the product P1(x, y)P2(x, y) of nonconstant polynomials P1 and

P2. Let

Yl = {(x, y) ∈ X0 ×X1 : Pl(x, y) = 0}

for l = 1, 2. We claim that Y1 ∩ Y2 = ∅. Indeed, if (x0, y0) ∈ Y1 ∩ Y2, then the

polynomial

P (x0, y) = P1(x0, y)P2(x0, y)

has a multiple zero at y = y0, which is impossible because the set ψ−1(y0) consists

of n points for y0 ∈ X1. Since

ϕ× ψ : Z0 → X0 ×X1

is continuous, where

Z0 = ϕ−1(X0) ∩ ψ−1(X1)

and Z0 is connected, the image (ϕ × ψ)(Z0) is contained in either Y1 or Y2. But,

this is impossible. Thus, the claim has been shown.

Finally, consider the polynomial P (x, y) in C(y)[x]. Then, P (x, y) is a polyno-

mial in x with coefficients in C[y] and we may write

P (x, y) = b0(y)xm + b1(y)xm−1 + · · ·+ bm−1(y)x+ bm(y), bj[y] ∈ C[y],

where

m = max
0≤j≤n

deg aj(x).

Note that b0 6= 0. Since ψ : Z → X is n-sheeted, as in the case of ϕ : Z → X, we

can see that m = n and P (x, y) is irreducible in C(y)[x].

Let us summarize the above observations for later use. Suppose that

K = Gq ∩GMp
q

is a subgroup of Gq of finite index n. The intermediate Riemann surface Z = K\H
may be used as a parameter space of the solutions (α, β) to the generalized modular
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equation (4.1). Indeed, the solutions are given by

α = ϕ(z) and β = ψ(z)

for z ∈ Z, where

ϕ, ψ : Z → X = Gq\H

are (possibly branched) covering maps satisfying the relations

ϕ
(
ρ(τ)

)
= πq(τ) and ψ

(
ρ(τ)

)
= πq(pτ)

for τ ∈ H. Note that ϕ and ψ extend to the compactifications Ẑ to X̂ = Ĉ as

n-sheeted branched (analytic) covering maps. The polynomial P (x, y) whose zero

set describes the solutions (α, β) can be computed as in the above proof.

4.4 Fricke Involution

Recall that the Möbius transformations S and Mp are given by

S =

(
0 −1

1 0

)
and Mp =

(
p 0

0 1

)
,

where p > 1 is an integer. The Fricke involution is defined by

SMp : τ → − 1

pτ
,

which is also known as Atkin-Lehner involution. The involution SMp swaps the

cusps 0 and∞ (see Figure 4.2). The following lemma helps us to compute ψ when

we know about ϕ.

Lemma 4.5. Under the assumption of Theorem 4.1, the Möbius transformation

SMp : τ → − 1

pτ

induces an analytic involution ω : Z → Z which satisfies the relation

ρ ◦ SMp = ω ◦ ρ

and the functional equation

ψ = 1− ϕ ◦ ω.
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Figure 4.2: Fricke involution SMp on the fundamental domain F̂q for G = 〈T2q,W2q〉

Proof. Let

K = Gq ∩GMp
q .

We first note that the Möbius transformations S and Mp satisfy the relation

SMp = M−1
p S

and thus

MpSMp = S.

Recall that S normalizes Gq; namely,

GS
q := S−1GqS = Gq.

Therefore,

KSMp = GSMp
q ∩ (GMp

q )SMp

= GMp
q ∩GMpSMp

q

= GMp
q ∩GS

q

= K,

which means that SMp : H → H descends to an automorphism ω : Z → Z such

that

ρ ◦ SMp = ω ◦ ρ.
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Since (SMp)
2 = I, we see that ω ◦ ω = id. We recall Lemma 4.2 which says that

πq ◦ S = 1− πq.

Then we compute

ψ ◦ ω ◦ ρ = ψ ◦ ρ ◦ SMp

= (πq ◦Mp) ◦ SMp

= πq ◦ S

= 1− πq
= 1− ϕ ◦ ρ

and therefore we have

ψ ◦ ω = 1− ϕ.

Since ω is an involution, we obtain the required relation.

Remark 4.2. Since ω comes from the normalizer of K, ω is indeed an automor-

phism of the Riemann orbifold K\H. In particular, ω maps a cone point of angle

2π/m to another (possibly the same) cone point of the same angle for an integer

m ≥ 2.
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Hecke Groups and Ramanujan’s

Modular Equations

There is an intimate relation between the modular equations in Ramanujan’s

theories of signatures 1
t

= 2, 3, 4 and the Hecke groups. In this chapter, we

study the relation between Hecke groups and the modular equations. There are

different forms of modular equations for the same degree of β over α in the theory

of signature 1
t
. For example,

(αβ)1/3 +
{

(1− α)(1− β)
}1/3

= 1, (5.1)

{(1− β)2

1− α

} 1
3 −

(β2

α

) 1
3

= m,

and (α2

β

) 1
3

+
{(1− α)2

1− β

} 1
3

=
4

m4

are the modular equations when the modulus β has degree 2 over the modulus

α in the theory of signature 3 (see [19, Theorem 7.1]). Note that (5.1) can be

transformed to the polynomial equation

(2α− 1)3β3 − 3α(4α2 − 13α + 10)β2 + 3α(2α2 − 10α + 9)β − α3 = 0.

In Chapter 4, we offered a geometric approach to the proof of Ramanujan’s

identities for the solutions (α, β) to the generalized modular equation

2F1(t, 1− t; 1; 1− β)

2F1(t, 1− t; 1; β)
= p

2F1(t, 1− t; 1; 1− α)

2F1(t, 1− t; 1;α)
. (5.2)
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By Theorem 4.1, the solution (α, β) satisfies a polynomial equation P (α, β) = 0. In

this chapter, we compute the degree in each of α and β of the polynomial P (α, β)

explicitly based on the relation between the Hecke groups and modular equations.

We establish some mutually equivalent statements related to Hecke subgroups and

modular equations in Theorem 5.4, which is given based on Theorem 4.1, but the

proof is different. We prove that if (α, β) is a solution to the generalized modular

equation (5.2), then (1−β, 1−α) is also a solution to (5.2) and P (1−β, 1−α) = 0.

Note that by the degree n of the polynomial P (α, β), we mean that P (α, β) is a

polynomial of degree n in each of α and β.

5.1 The Covering Group Gq and Even Hecke Sub-

groups

Recall that for an integer k ≥ 3, the Hecke group Hk is defined as the discrete

subgroup of PSL(2,R) generated by the two elements ±S and ±Tk, where

S =

(
0 −1

1 0

)
, Tk =

(
1 λk

0 1

)
and λk = 2 cos

π

k
.

If k = 2q is an even number with q ≥ 2, then the Hecke group H2q is isomorphic

to Z ∗ Z/qZ and G = 〈T2q,W2q〉 is a (normal) subgroup of H2q of index 2, where

T2q :=

(
1 λ2q

0 1

)
and W2q := S−1T−1

2q S =

(
1 0

λ2q 1

)
.

For q = 2 and q = 3, we have two important and interesting Hecke subgroups H4

and H6, respectively. The elements of H4 and H6 are completely known (see [54]).

For these two cases, the Hecke group H2q consists of the following two types of

elements:

1.

(
aλ2q b

c dλ2q

)
, where a, b, c, d ∈ Z and adλ2

2q − bc = 1,

2.

(
a bλ2q

cλ2q d

)
, where a, b, c, d ∈ Z and ad− bcλ2

2q = 1,

which are known as the odd type and the even type, respectively (see [25] and

[26]).
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In Section 4.1, we have seen that the covering group Gq of πq is generated by

T2q :=

(
1 λ2q

0 1

)
and Vq := T2qW

−1
2q =

(
λq + 1 −λ2q

λ2q −1

)
.

The group Gq is same as the group G = 〈T2q,W2q〉. Thus, we may conclude that

the covering group Gq is the even type subgroup of the Hecke group H2q and it

can be represented by

Gq =

{(
a bλ2q

cλ2q d

)
: a, b, c, d ∈ Z and ad− bcλ2

2q = 1

}
.

Note that in [26], the group Gq is considered as even type for q = 2 and q = 3,

i.e., for λ4 =
√

2 and λ6 =
√

3. We will consider Gq also for the case q =∞, i.e.,

for the case λ∞ = 2. Since q = 1
1−2t

, the cases q = 2, 3, and ∞ correspond to

Ramanujan’s theories of signatures 1
t

= 4, 3, and 2, respectively.

Though we have discussed the construction of the covering group Gq in Section

4.1, we give the following lemma, which provides the reason for considering only

the theories of signatures 1
t

= 2, 3, and 4.

Lemma 5.1. If πq : ∆t → H is the inverse map of ft, then πq can be extended

analytically to a single-valued function on H only for the theories of signatures

2, 3, and 4, i.e., for q ∈
{

2, 3, ∞
}

and the covering group of πq is the even type

subgroup of the Hecke group H2q.

Proof. Since

τ = ft(z) = i
2F1(t, 1− t; 1; 1− z)

2F1(t, 1− t; 1; z)

maps the upper half z-plane to the curvilinear triangle ∆t in the upper half τ -plane

with internal angles 0, 0 and θ = (1 − 2t)π = π
q
, by Lemma 2.16, the condition

(2.21) becomes
1

q
< 1,

i.e., it depends only on the third fixed point ft(∞) = ei
θ
2 . As θ = (1 − 2t)π,

i.e., q = 1
1−2t

, we conclude that q ∈ N ∪ {∞} \ {1} only for t = 1
2
, 1

3
, and 1

4
. As

πq : ∆t → H is the inverse map of ft, we have

πq(∞) = 0, πq(0) = 1 and πq(e
i θ
2 ) =∞.

The Riemann Mapping Theorem confirms the existence and uniqueness of the
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map πq. By applying the Schwarz reflection principle repeatedly, we can extend

πq(τ) analytically to a single-valued function on H with the real axis as its natural

boundary. The map πq constructs an infinite cover of Ĉ \ {0, 1,∞} and πq has

branch points at 0, 1, and ∞. At the point ei
θ
2 , πq is locally q to 1. The covering

group of πq is

{σ ∈ PSL(2,R) : πq ◦ σ = πq}.

By the above construction, ∆t is the fundamental half-domain for the covering

group of πq. Hence, we deduce that the covering group of πq is the even type

subgroup of the Hecke group H2q.

Remark 5.1. In fact, the quotient Riemann surface Gq\H is a modular surface

only for the Ramanujan’s theories of signatures 1
t

= 2, 3, and 4. The surface

corresponding to the theory of signature 6 is not a modular surface since q =
1

1−2t
/∈ N ∪ {∞} \ {1} for 1

t
= 6 (see [50, Section 10]).

For α ∈ (0, 1) and t ∈ (0, 1
2
], let

x =
2F1(t, 1− t; 1; 1− α)

2F1(t, 1− t; 1;α)

and

qt(α) := exp

(
− πx

sin πt

)
.

Then,

exp

(
− πx

sin πt

)
=α exp

(
ψ(t) + ψ(1− t) + 2γ

)
×
(

1 + (2t2 − 2t+ 1)α

+
(

1− 7

2
(t− t2) +

13

4
(t− t2)2

)
α2 + · · ·

)
,

where ψ is the Euler digamma function (logarithmic derivative of the Gamma

function), i.e., ψ(α) = d(ln Γ(α))
dα

. For t = 1
2
, 1

3
, 1

4
and 1

6
, we have, respectively,

exp
(

2ψ
(1

2

)
+ 2γ

)
=

1

16
,

exp
(
ψ
(1

3

)
+ ψ

(2

3

)
+ 2γ

)
=

1

27
,

exp
(
ψ
(1

4

)
+ ψ

(3

4

)
+ 2γ

)
=

1

64
,
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and

exp
(
ψ
(1

6

)
+ ψ

(5

6

)
+ 2γ

)
=

1

432
,

that is, only for t = 1
2
, 1

3
, 1

4
and 1

6
, the expression exp

(
ψ(t)+ψ(1−t)+2γ

)
takes on

rational values. For other values of t, exp
(
ψ(t) +ψ(1− t) + 2γ

)
is transcendental.

For example, if t = 1
5
, then

exp
(
ψ
(1

5

)
+ ψ

(4

5

)
+ 2γ

)
= (
√

5)−5
(1 +

√
5

2

)−√5

.

For this reason, the signature, 1
t
, takes on one of the values 2, 3, 4, and 6. For

details, see Section 12 of [19]. Note that we will not use further ψ to denote the

Euler digamma function.

The subgroup Gq has two cusps and one elliptic point for t ∈
{

1
3
, 1

4

}
and

has three cusps for t = 1
2
. Thus, the quotient Riemann surface Gq\H is the two

punctured Riemann sphere Ĉ \ {0, 1} for t ∈
{

1
3
, 1

4

}
and the thrice punctured

Riemann sphere Ĉ \ {0, 1,∞} for t = 1
2
. The set of cusps of the Hecke group

H2q is Q[λ2q] ∪ {∞}. To compactify the quotient Riemann surface Gq\H, let

H∗ = H ∪ Q[λ2q] ∪ {∞}. Then, Gq\H∗ is a compact Riemann surface. For all(
a b

c d

)
∈ H2q and τ ∈ H, the meromorphic function g : H→ H2q\H∗ is called an

automorphic function if g

(
aτ + b

cτ + d

)
= g(τ) (see [24]).

5.2 Degree of the Polynomial P (x, y)

Let Ψ(N) denote the Dedekind psi function given by

Ψ(N) = N
∏
q|N

q prime

(
1 +

1

q

)
, N ∈ N (5.3)

(see [31, p. 123]). By the following theorem, one can determine the degree in

each of α and β of the polynomial P (α, β) explicitly in Ramanujan’s theories of

signatures 1
t

= 2, 3, and 4.

Theorem 5.2. For an integer p > 1, suppose β has degree p over α in the theories

of signatures 1
t

= 2, 3, and 4. Let n
(
p, 1

t

)
be the degree in each of α and β of the
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polynomial P (α, β) in Theorem 4.1, then

n(p, 2) = n(p, 4) =
1

3
Ψ(2p) and n(p, 3) =

1

4
Ψ(3p).

Remark 5.2. If p is an odd prime, then n(p, 2) = n(p, 4) = p + 1. If p 6= 3 is a

prime, then n(p, 3) = p+ 1.

H. H. Chan and W.-C. Liaw [29] studied modular equations in the theory of

signature 3 based on the modular equations studied by R. Russell [65].

Theorem A ([29, Theorems 2.1, 3.1]). If p > 2 is a prime, u = (αβ)l/8 and

v = {(1 − α)(1 − β)}l/8, where (p + 1)/8 = m/l in lowest terms, then (u, v)

satisfies a polynomial equation Q(u, v) = 0, where Q(x, y) is of degree m in each

of x and y in the theory of signature 2. If p > 3 is a prime, u = (αβ)l/6 and

v = {(1 − α)(1 − β)}l/6, where (p + 1)/3 = m/l in lowest terms, then (u, v)

satisfies a polynomial equation Q(u, v) = 0, where Q(x, y) is of degree m in each

of x and y in the theory of signature 3.

Remark 5.3. In the theory of signature 3, the degree n of the polynomial P (α, β)

in Theorem 4.1 and the degree m of the polynomial Q(u, v) in Theorem A are

related as follows:

(i) n = 3m when p ≡ 2 (mod 3),

(ii) n = m when p ≡ 1 (mod 3).

We compute the degree n
(
p, 1

t

)
for some small values of p and 1

t
∈
{

2, 3, 4
}

in

Table 5.1, which can also be used to calculate the index of the subgroup Gq ∩GMp
q

in Gq, i.e., |Gq : Gq ∩GMp
q |.

5.2.1 Proof of Theorem 5.2

Let Γ = PSL(2,Z). For an integer p > 1, let Mp =

(
p 0

0 1

)
, then the transforma-

tion group of order p (see Chapter VI of [69]), ΓMp , is given by

ΓMp := Γ ∩
(
M−1

p ΓMp

)
,

which can be written as the group of Möbius transformations

ΓMp =
{
γ ∈ Γ : MpγM

−1
p ∈ Γ

}
.
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p n(p, 2) and n(p, 4) n(p, 3)

2 2 3
3 4 3
4 4 6
5 6 6
6 8 9
7 8 8
8 8 12
9 12 9
10 12 18
11 12 12
12 16 18
13 14 14
14 16 24
15 24 18
16 16 24
17 18 18
18 24 27
19 20 20
20 24 36

Table 5.1: Values of n
(
p, 1

t

)
for some small values of p and 1

t ∈
{

2, 3, 4
}

If γ =

(
a b

c d

)
∈ Γ, then MpγM

−1
p =

(
a pb
c
p

d

)
. Hence MpγM

−1
p ∈ Γ only when

c ≡ 0 (mod p) and we have

ΓMp = Γ0(p),

where

Γ0(p) =

{(
a b

c d

)
∈ Γ : c ≡ 0(mod p)

}
.

The following lemma is a well-known result, e.g., see [69, p. 79] or Proposition

1.43 in [72].

Lemma 5.3. For any positive integer N ,

∣∣Γ : Γ0(N)
∣∣ = Ψ(N) = N

∏
q|N

q prime

(
1 +

1

q

)
.

62



Chapter 5 : Hecke Groups and Ramanujan’s Modular Equations

Proof of Theorem 5.2. For t ∈
{

1
2
, 1

3
, 1

4

}
and λ2q = 2 cos π

2q
, let

K =
{
γ ∈ Gq : MpγM

−1
p ∈ Gq

}
,

where p > 1 is an integer, q = 1/(1− 2t) and Mp =

(
p 0

0 1

)
.

If

γ =

(
a bλ2q

cλ2q d

)
∈ Gq,

then

MpγM
−1
p =

(
a pbλ2q

c
p
λ2q d

)
.

Therefore, MpγM
−1
p ∈ Gq only when c ≡ 0 (mod p) and we have

K =

{(
a bλ2q

cλ2q d

)
∈ Gq : c ≡ 0 (mod p)

}
. (5.4)

Consequently,

Gq ∩
(
M−1

p GqMp

)
= K (5.5)

and

K < Gq < H2q.

Let πq and ρ denote the canonical projections H → Gq\H and H → K\H, re-

spectively. From the subgroup relation K < Gq, we have the branched covering

map

ϕ : K\H→ Gq\H

and the following commutative diagram:

H

K\H Gq\H.

ρ
πq

ϕ

The degree of the branched covering K\H → Gq\H is
∣∣Gq : K

∣∣, which is the

degree n
(
p, 1

t

)
in each of α and β of the polynomial P (α, β) by Theorem 4.1.

Also, for Γ = PSL(2,Z), we have

Γ ∩
(
M−1

p ΓMp

)
= Γ0(p),

63



Chapter 5 : Hecke Groups and Ramanujan’s Modular Equations

and

Γ0(λ2
2qp) < Γ0(λ2

2q) < Γ.

Let us consider the mapping

Θ : Gq → Γ0(λ2
2q)

defined by

Θ(A) = M−1
λ2q
AMλ2q ,

where A =

(
a bλ2q

cλ2q d

)
∈ Gq and Mλ2q =

(
λ2q 0

0 1

)
. Then, we have

Θ(Gq) = Γ0(λ2
2q) and Θ(K) = Γ0(λ2

2qp).

Therefore, Gq
∼= Γ0(λ2

2q), K
∼= Γ0(λ2

2qp) and we have

∣∣Gq : K
∣∣ =

∣∣Γ0(λ2
2q) : Γ0(λ2

2qp)
∣∣

=

∣∣Γ : Γ0(λ2
2qp)

∣∣∣∣Γ : Γ0(λ2
2q)
∣∣ .

By Lemma 5.3,

∣∣Γ : Γ0(λ2
2qp)

∣∣ = Ψ(λ2
2qp) and

∣∣Γ : Γ0(λ2
2q)
∣∣ = Ψ(λ2

2q).

Hence

n
(
p,

1

t

)
=
∣∣Gq : K

∣∣ =
Ψ(λ2

2qp)

Ψ(λ2
2q)

,

which implies

n(p, 2) =
1

6
Ψ(4p), n(p, 3) =

1

4
Ψ(3p) and n(p, 4) =

1

3
Ψ(2p).

By (5.3), it is easy to show that

Ψ(4p) = 2Ψ(2p).

Thus, n(p, 2) = n(p, 4) as required. �
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5.3 The Modular Equation P (α, β) = 0 and Hecke

Subgroups

In this section, we first prove the following theorem, which is given based on

Theorem 4.1 and is related to Hecke subgroups and the modular equations in

Ramanujan’s theories of signatures 2, 3, and 4.

Theorem 5.4. For a given integer p > 1, suppose that β has degree p over α in

the theories of signatures
1

t
= 2, 3, and 4. If Mp =

(
p 0

0 1

)
, then

(i) there exists a Hecke subgroup, say Γ1, of finite index in H2q,

(ii)
(
M−1

p Γ1Mp

)
∩ Γ1 has finite index in H2q,

(iii) the degree of the branched covering

Γ2\H→ Γ1\H

is finite, where Γ2 =
(
M−1

p Γ1Mp

)
∩ Γ1,

(iv) there is a polynomial equation P (α, β) = 0, where the polynomial P (α, β)

has degree n =
∣∣Γ1 : Γ2

∣∣ in each of α and β.

Remark 5.4. In fact, the statements in Theorem 5.4 are mutually equivalent.

We now recall some relevant facts from Chapter 4. If ft(z) = i
2F1(t, 1− t; 1; 1− z)

2F1(t, 1− t; 1; z)
,

then ft maps conformally the upper half-plane H onto

∆t =

{
τ ∈ H : 0 < Re τ < cos

θ

2
,
∣∣∣2τ cos

θ

2
− 1
∣∣∣ > 1

}
,

and the fundamental half-domain for Gq is ∆t, where t ∈ {1
2
, 1

3
, 1

4
}. The gener-

alized modular equation (5.2) can be expressed as ft(β) = pft(α), where p is an

integer > 1. Thus, α and β in Ĉ \ {0, 1} satisfy (5.2) if and only if α = πq(τ) and

β(τ) = πq(pτ) for τ ∈ H. Let X = Gq\H and Z = K\H, where K = Gq ∩ GMp
q .

For the canonical projections πq : H→ X and ρ : H→ Z, consider the mappings

ϕ : Z → X and ψ : Z → X such that πq = ϕ ◦ ρ and πq ◦Mp = ψ ◦ ρ, i.e., the
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following diagrams commute:

H

Z X

ρ
πq

ϕ

H H

Z X.

Mp

ρ πq

ψ

Thus, for z ∈ Z, the solution (α, β) to the generalized modular equation (5.2) is

parametrized by α = ϕ(z) and β = ψ(z). By the following theorem, (1−β, 1−α)

is also a solution to (5.2).

Theorem 5.5. If the solution (α, β) to the generalized modular equation (5.2)

satisfies the equation P (x, y) = 0, then (1 − β, 1 − α) is also a solution to (5.2)

and satisfies the equation P (x, y) = 0, where P (x, y) is the polynomial in Theorem

4.1.

If the moduli α and β are replaced by 1 − β and 1 − α, respectively and the

multiplier m, defined by

m =
2F1(t, 1− t; 1;α)

2F1(t, 1− t; 1; β)
, (5.6)

is replaced by p
m

, where p is the degree of β over α, then we have

p

m
=

2F1(t, 1− t; 1; 1− β)

2F1(t, 1− t; 1; 1− α)
. (5.7)

From the equations (5.6) and (5.7), we have

p
2F1(t, 1− t; 1; 1− α)

2F1(t, 1− t; 1;α)
=

2F1(t, 1− t; 1; 1− β)

2F1(t, 1− t; 1; β)
.

Thus, the obtained modular equation has the same degree p (see [16, Entry 24(v),

p. 216]).

5.3.1 Proofs of Theorem 5.4 and Theorem 5.5

Proof of Theorem 5.4. First, recall that the covering group of the map πq is given

by

Gq =

{(
a bλ2q

cλ2q d

)
: a, b, c, d ∈ Z and ad− bcλ2

2q = 1

}
,

which is the even type subgroup of the Hecke group H2q. It is well-known that

the index of Gq in H2q is 2 (see [26, p. 61]). Thus, Γ1 = Gq and (i) follows easily
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from this fact.

From (5.5), we have

Γ2 = Γ1 ∩
(
M−1

p Γ1Mp

)
= K.

By virtue of the proof of Theorem 5.2, we have Γ2
∼= Γ0(λ2

2qp) and hence Γ2 is

isomorphic to Γ0(4p), Γ0(3p) and Γ0(2p) for t = 1
2
, 1

3
and 1

4
, respectively. Each of

Γ0(4p), Γ0(3p) and Γ0(2p) has finite index in Γ = PSL(2,Z). Therefore, Γ2 has

finite index in H2q, which implies (ii).

If X = Γ1\H and Z = Γ2\H, then the degree of the branched covering Z → X

is equal to the index of Γ2 in Γ1. Since each of Γ1 and Γ2 has finite index in H2q,

the index of Γ2 in Γ1 is finite. Therefore, (iii) holds.

By Lemma 3.2, we deduce that α(τ) and β(τ) = α(pτ) are automorphic func-

tions on Γ1 and Γ′1 := M−1
p Γ1Mp, respectively. Recall that the quotient Riemann

surface X = Γ1\H is Ĉ \ {0, 1} for t ∈
{

1
3
, 1

4

}
and Ĉ \ {0, 1,∞} for t = 1

2
. If X̂

is the compactification of X, then X̂ is the Riemann sphere Ĉ. Thus, the field of

automorphic functions for Γ1 is C
(
α(τ)

)
. If X ′ = Γ′1\H and X̂ ′ is the compactifi-

cation of X ′, then X̂ ′ = Ĉ. The field of automorphic functions for Γ′1 is C
(
β(τ)

)
.

Since Γ2 < Γ1 and Γ2 < Γ′1, both C
(
α(τ)

)
and C

(
β(τ)

)
are subfields of the field of

automorphic functions for Γ2 = Γ1 ∩ Γ′1, i.e., C
(
α(τ), β(τ)

)
. If n =

∣∣Γ1 : Γ2

∣∣, then

ϕ : Z → X is a n-sheeted branched covering map. For any function g ∈ C
(
α(τ)

)
,

we have a function f ∈ C
(
α(τ), β(τ)

)
by virtue of the pullback

ϕ∗(g) = g ◦ ϕ = f,

where

ϕ∗ : C
(
α(τ)

)
→ C

(
α(τ), β(τ)

)
is an algebraic field extension of degree n (see [34, Theorem 8.3]). Similarly, if ψ

is the branched covering map Z → X ′, then ψ is also a n-sheeted covering map,

since |Γ′1 : Γ2| = n by Lemma 4.3. Hence,

ψ∗ : C
(
β(τ)

)
→ C

(
α(τ), β(τ)

)
is an algebraic field extension of degree n. Consequently, there is a polynomial

P
(
α(τ), β(τ)

)
which has degree n in each of α(τ) and β(τ). The polynomial
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P
(
α(τ), β(τ)

)
is determined up to a scalar factor so that

P
(
α(τ), β(τ)

)
= 0,

which implies (iv) and completes the proof. �

Proof of Theorem 5.5. Recall that the Hecke subgroup K is given by

K =

{(
a bλ2q

cλ2q d

)
∈ Gq : c ≡ 0 (mod p)

}
.

Let Wp =

(
0 −1

p 0

)
, then

W−1
p

(
a bλ2q

cλ2q d

)
Wp =

(
d − c

p
λ2q

−pbλ2q a

)
,

where

(
a bλ2q

cλ2q d

)
∈ K. Since c ≡ 0 (mod p), it follows that

W−1
p

(
a bλ2q

cλ2q d

)
Wp ∈ K.

Thus, K is normalized by Wp in PSL(2,R). The Möbius transformation

Wpτ = − 1

pτ

induces an automorphism ω on Z = K\H such that the following diagram com-

mutes:

H H

Z Z.

Wp

ρ ρ

ω

Moreover, by Lemma 4.5, ω : Z → Z satisfies the following functional equations:

ϕ ◦ ω = 1− ψ,

ψ ◦ ω = 1− ϕ.
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Hence, for z ∈ Z, we have

ϕ
(
ω(z)

)
= 1− ψ(z) = 1− β

and

ψ
(
ω(z)

)
= 1− ϕ(z) = 1− α,

that is, ω interchanges α and 1−β; β and 1−α. Thus, we deduce that (1−β, 1−α)

is also a solution to (5.2) and P (1− β, 1− α) = 0. �
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Modular Equations in the Theory

of Signature 2

In the theory of signature 1
t

= 2, the generalized modular equation is

2F1(1
2
, 1

2
; 1; 1− β)

2F1(1
2
, 1

2
; 1; β)

= p
2F1(1

2
, 1

2
; 1; 1− α)

2F1(1
2
, 1

2
; 1;α)

. (6.1)

Recall that the case of signature 1
t

= 2 corresponds to the classical modular

equation. In this chapter, we consider the modular equations corresponding to

the cases p = 2 and p = 3. Since q = 1
1−2t

, the case of signature 1
t

= 2 corresponds

to the case q =∞.

6.1 The Subgroup G∞

As q → ∞, the Hecke group H2q converges to the group H∞ = 〈S, T∞〉, which is

a subgroup of the modular group PSL(2,Z) of index 3, where

S =

(
0 −1

1 0

)
and T∞ =

(
1 2

0 1

)
.

At the same time, the subgroup Gq converges to the principal congruence subgroup

Γ(2) of level 2, which will be denoted by G∞ in this section. That is to say,

G∞ = {A ∈ SL(2,Z) : A ≡ I mod 2}/{±I}.
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The fundamental domain F̃∞ for G∞ is described by 0 ≤ Re τ ≤ 2, |τ − 1/2| ≥
1/2, |τ − 3/2| ≥ 1/2 for τ ∈ H (see Figure 6.1).

Figure 6.1: Fundamental domain for G∞ = 〈T, V 〉

A pair of generators of G∞ are given by

T = T∞ =

(
1 2

0 1

)
and V =

(
3 −2

2 −1

)
.

Note that V is a parabolic element with fixed point at τ = 1 and that V (0) = 2.

Also, let

W = −V −1T =

(
1 0

2 1

)
.

It is well-known that Γ(2) = G∞ is a Fuchsian group uniformizing the thrice

punctured sphere Ĉ\{0, 1,∞} (see §§3.4-5 in Chapter 7 of [2] and §§4.3 in Chapter

1 of [32], where the symbol λ is used for π∞). The canonical projection

π∞ : H→ X

may be considered to be

π∞ : H→ Ĉ \ {0, 1,∞} = C \ {0, 1}

with

π∞(0) = 1, π∞(∞) = 0 and π∞(1) =∞ (6.2)

by (4.2). Let ρ : H → Z, ϕ, ψ : Z → X be as in the proof of Theorem 4.1. Here
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is a simple but useful observation. The conjugation of a matrix by the Möbius

transformation Mpτ = pτ is computed by

M−1
p

(
a b

c d

)
Mp =

(
a b/p

pc d

)
.

Hence, an element A =

(
a b

c d

)
of G∞ is a member of G

Mp
∞ precisely if

c ≡ 0 ( mod 2p).

6.2 Case p = 2

In this section, we prove the following theorem corresponding to the case p = 2 in

the theory of signature 2 (see [16, (24.12) on p. 213 and (24.21) on p. 215]).

Theorem 6.1. In the theory of signature 2, suppose the modulus β has degree 2

over the modulus α. Then

α := ϕ(z) = 1− z2 and β := ψ(z) =
(z − 1)2

(z + 1)2

for z ∈ Ĉ \ {0,∞, 1,−1}. The modular equation is given by

β =

(
1−
√

1− α
1 +
√

1− α

)2

. (6.3)

Note that (6.3) is equivalent to (1.2) with α = r2 and β = s2. The polynomial

in Theorem 4.1 is given by

P (x, y) = x2y2 − 2(x2 − 8x+ 8)y + x2.

In this case, the polynomial is not symmetric in x and y.

6.2.1 Construction of Fundamental Domain for G∞ ∩GM2
∞

Let K = G∞ ∩ GM2
∞ . Then the index of K in G∞ is 2 (see Table 5.1). Let

FK = (F,AK) denote the admissible fundamental domain for K, where F is
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a convex hyperbolic polygon and AK is the set of side-pairing transformations

which generate K. Then we choose F so that

F = F̃∞ ∪ V −1(F̃∞).

If we identify the geodesic joining 0 to ∞ with the geodesic joining 2 to ∞
by A1, the geodesic joining 2

3
to 1 with the geodesic joining 2 to 1 by A2 and the

geodesic joining 2
3

to 1
2

with the geodesic joining 0 to 1
2

by A3, then

A1 := T =

(
1 2

0 1

)
,

A2 := V 2 =

(
5 −4

4 −3

)
,

A3 := V −1TV =

(
−3 2

−8 5

)

are side-paring transformations of the hyperbolic polygon F = F̃∞∪V −1(F̃∞) (see

Figure 6.2), that is, AK = {A1, A2, A3}. Figure 6.3 shows the hyperbolic polygon

Figure 6.2: Fundamental domain for K = G∞ ∩GM2
∞

F in the Poincaré disc model, where v1, v2, v3, and v4 represent the inequivalent

cusps. Therefore, the elements A1, A2, A3 generate a subgroup of G∞ of index 2.

In view of the forms of Aj, we see that Aj ∈ K for j = 1, 2, 3 and thus we have
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Figure 6.3: The hyperbolic polygon F for K = G∞ ∩GM2
∞ in the Poincaré disc model

K = 〈A1, A2, A3〉. Moreover, since

π∞(M2τ) = π∞(M2Ajτ)⇔M2τ ≡M2Ajτ (mod G∞)

⇔M2Ajτ = σ(M2τ) for σ ∈ G∞
⇔M2AjM

−1
2 = σ ∈ G∞,

we find the generators of the Fuchsian group K, i.e., A1, A2, A3, such that

M2AjM
−1
2 ∈ G∞

for j = 1, 2, 3 and M2 =

(
2 0

0 1

)
. It is easy to verify that

M2A1M
−1
2 =

(
1 4

0 1

)
= T 2 ∈ G∞,

M2A2M
−1
2 =

(
5 −8

2 −3

)
= −TV −1 ∈ G∞

and

M2A3M
−1
2 =

(
−3 4

−4 5

)
= V −1V −1 ∈ G∞.
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6.2.2 Proof of Theorem 6.1

It is easy to observe that the Fuchsian group K = G∞∩GM2
∞ has four inequivalent

cusps. Therefore, the quotient Riemann surface Z = K\H is conformally equiv-

alent to a four-times punctured sphere. Recall that ρ is the canonical projection

H→ Z. Thus we can assume that Z = Ĉ \ {0,∞, 1, b}, where

ρ(0) = 0, ρ(1) =∞, ρ(∞) = 1 and ρ
(1

2

)
= b.

In view of (6.2), we have the conditions

ϕ(0) = 1, ϕ(∞) =∞ and ϕ(1) = ϕ(b) = 0.

Here we used the fact that 1
2

is conjugate to ∞ under the action of G∞. We note

that the extension

ϕ : Ẑ = Ĉ→ X̂ = Ĉ

is a rational map of degree 2. The following figure shows the ramification data for

the map ϕ : Ẑ → X̂.

1 1

0

1 b

2

1

0

2

∞

∞

Here, the ramification indices are expressed by the numbers attached to the lines.

Since

ϕ−1(1) = {0} and ϕ−1(∞) = {∞},

we see that ϕ takes the values 0 and ∞ with multiplicity 2. Therefore, ϕ should

have the form

ϕ(z) = cz2 + 1

for a constant c 6= 0. Since ϕ(1) = 0, we conclude that c = −1 and b = −1. Hence,

ϕ(z) = 1− z2

under the above normalization.
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Next we determine the form of ψ : Z → X. By the relation

π∞(2τ) = ψ
(
ρ(τ)

)
,

we have the necessary conditions

ψ(0) = π∞(0) = 1,

ψ(∞) = π∞(2) = π∞(0) = 1,

ψ(1) = π∞(∞) = 0,

and

ψ(−1) = π∞(1) =∞.

As a result, we have the following ramification data:

2

0

1

1 1

1

0 ∞

2

∞.

−1

In particular,

ψ−1(0) = {1} and ψ−1(∞) = {−1}.

Since ψ : Ẑ = Ĉ→ X̂ = Ĉ is a rational map of degree 2, ψ has the form

ψ(z) =
c(z − 1)2

(z + 1)2

for a constant c 6= 0. Since ψ(0) = 1, we have c = 1. We note that ψ(∞) = 1 is

also satisfied. In this way, the solution (α, β) of the modular equation (4.1) with

t = 1/2, p = 2 is parametrized by

α = ϕ(z) = 1− z2 and β = ψ(z) =
(z − 1)2

(z + 1)2
.

Eliminating the variable z, we obtain the modular equation

β =

(
1−
√

1− α
1 +
√

1− α

)2

.
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6.3 Case p = 3

In this section, we prove the following theorem corresponding to the case p = 3 in

the theory of signature 2 (see [16, Entry 5(ii), Chapter 19]).

Theorem 6.2. In the theory of signature 2, suppose the modulus β has degree 3

over the modulus α. Then

α := ϕ(z) =
z(z + 2)3

(2z + 1)3

and

β := ψ(z) =
z3(z + 2)

2z + 1

for z ∈ Ĉ \ {0,∞, 1,−1
2
,−1,−2}. The modular equation is given by

(αβ)1/4 +
{

(1− α)(1− β)
}1/4

= 1. (6.4)

Note that (6.4) is known as Legendre’s modular equation (see (5.37) in [10] and

(4.1.16) in [21]). Formula (6.4) may be transformed to the polynomial equation

P (α, β) = 0 as in Theorem 4.1, where

P (x, y) = y4 + 2x3y3 − 2xy − x4.

This is known as the modular equation of third order in Jacobi’s form (see (3.42)

in [64]).

6.3.1 Construction of Fundamental Domain for G∞ ∩GM3
∞

In this case, let K = G∞ ∩GM3
∞ . Then the index of K in G∞ is 4 (see Table 5.1).

If FK = (F,AK) is the special polygon, i.e., the admissible fundamental domain

for K, then we choose the hyperbolic polygon F such that

F = F̃∞ ∪ V (F̃∞) ∪ V −1(F̃∞) ∪W (F̃∞).

As a result, we obtain F given by the hyperbolic 10-gon with vertices at

0,
1

3
,

2

5
,

1

2
,

2

3
, 1,

4

3
,

3

2
, 2, ∞

in the counterclockwise order.
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In this case, the elements

A1 := T,

A2 := V −1T 2V −1 =

(
5 −8

12 −19

)
,

A3 := V −1T−1V −1 =

(
−7 10

−12 17

)
,

A4 := V −3 =

(
−5 6

−6 7

)
,

A5 := V −1TV −1T−1V =

(
−5 2

−18 7

)

belong to the set, AK , of side-pairing transformations of F (see Figure 6.4). There-

Figure 6.4: Fundamental domain for K = G∞ ∩GM3
∞

fore, K = 〈A1, A2, A3, A4, A5〉 is a subgroup of G∞ for which FK = (F,AK) is the

admissible fundamental domain. Figure 6.5 illustrates the hyperbolic polygon F

in the Poincaré disc model, where v1, v2, v3, v4, v5, and v6 represent the inequiv-

alent cusps. In view of the forms of Aj, we observe that K ⊂ G∞ ∩ GM3
∞ . On

the other hand, the elements V, V −1, and W are not contained in GM3
∞ , therefore

K = G∞ ∩GM3
∞ .
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Figure 6.5: The hyperbolic polygon F for K = G∞ ∩GM3
∞ in the Poincaré disc model

Also, we have

M3A1M
−1
3 =

(
1 6

0 1

)
= T 3 ∈ G∞,

M3A2M
−1
3 =

(
5 −24

4 −19

)
= V V T−1T−1 ∈ G∞,

M3A3M
−1
3 =

(
−7 30

−4 17

)
= V T−1V T−1T−1 ∈ G∞,

M3A4M
−1
3 =

(
−5 18

−2 7

)
= TV −1T−1 ∈ G∞

and

M3A5M
−1
3 =

(
−5 6

−6 7

)
= V −1V −1V −1 ∈ G∞.

Therefore, the generators of K satisfy the condition

M3AjM
−1
3 ∈ G∞

for j = 1, . . . , 5 and M3 =

(
3 0

0 1

)
.
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6.3.2 Proof of Theorem 6.2

It is a simple task to see that the Fuchsian group K = G∞∩GM3
∞ has six inequiva-

lent cusps. Thus, the quotient Riemann surface Z = K\H is a six-times punctured

sphere. In this case, ϕ, ψ : Z → X extend to rational functions of degree 4. For

the canonical projection ρ : H→ Z, we may normalize the punctures so that

ρ(∞) = 0,

ρ(0) = ρ(2/5) = ρ(2) = 1,

ρ(1/3) =∞,

ρ(1/2) = ρ(3/2) = b,

ρ(1) = c,

ρ(2/3) = ρ(4/3) = d.

Thus, we have ϕ(0) = π∞(∞) = 0. Similarly, we obtain

ϕ(b) = 0, ϕ(1) = ϕ(d) = 1, ϕ(∞) = ϕ(c) =∞.

We have to compute multiplicities of these values. For instance, we have

ϕ−1(∞) = {∞, c}.

The part of the basic fundamental domain F̃∞ corresponding to ∞ under π∞ is

the cusp neighbourhood D = F̃∞∩{τ ∈ H : |τ − 1| < ε} for a small enough ε > 0.

Since V and V −1 fix 1 while W sends 1 to 1/3, the multiplicity of ϕ at ρ(1) = c

is 3 and that is 1 at ρ(1/3) =∞. We write

(ϕ)∞ = 3 · c+ 1 · ∞

as a divisor for short1. In the same way, we have

(ϕ)0 = 3 · b+ 1 · 0 and (ϕ)1 = 1 · d+ 3 · 1.

We can express the above observations by the following ramification data, where

the ramification indices are expressed by the numbers attached to the lines.

1When the equation ϕ(z) = w has solutions zj with multiplicities mj for j = 1, 2, . . . , N, we
write (ϕ)w = m1 · z1 + m2 · z2 + · · ·+ mN · zN as a divisor on Z.
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1 3

0

0 b

1 3

1

d 1

1 3

∞

∞ c

Consequently, ϕ may be expressed by

ϕ(z) = e
z(z − b)3

(z − c)3
and ϕ(z)− 1 = e′

(z − d)(z − 1)3

(z − c)3

for constants e and e′. Since b, c, d are different from 1, we have the unique solution

b = −2, c = −1

2
, d = −1 and e = e′ =

1

8
.

Hence,

α = ϕ(z) =
z(z + 2)3

(2z + 1)3
.

Next we determine the form of ω given in Lemma 4.5. Since SM3 swaps 0 and ∞
(respectively 1

3
and −1), ω swaps ρ(0) = 1 and ρ(∞) = 0 (respectively, ρ(1

3
) =∞

and ρ(−1) = ρ(1) = −1
2
). Therefore, the involution ω : Z → Z is given by

ω(z) =
1− z
1 + 2z

.

By Lemma 4.5, we obtain

β = ψ(z) = 1− ϕ
(
ω(z)

)
=
z3(z + 2)

2z + 1
.

We compute

αβ =
z4(z + 2)4

(2z + 1)4
and (1− α)(1− β) =

(1− z2)4

(2z + 1)4
.

Note that ϕ and ψ both map the interval [0, 1] onto itself homeomorphically.

Hence, for α, β ∈ [0, 1], we obtain the relation

(αβ)1/4 +
{

(1− α)(1− β)
}1/4

= 1.
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Modular Equations in the Theory

of Signature 3

In Ramanujan’s theory of signature 1
t

= 3, the generalized modular equation of

degree p is given by

2F1(1
3
, 2

3
; 1; 1− β)

2F1(1
3
, 2

3
; 1; β)

= p
2F1(1

3
, 2

3
; 1; 1− α)

2F1(1
3
, 2

3
; 1;α)

, (7.1)

where p > 1 is an integer. In this chapter, we derive geometrically the modular

equations corresponding to the cases p = 2 and p = 3. Recall that q = 1
1−2t

.

Therefore, the case of signature 1
t

= 3 corresponds to the case q = 3.

7.1 The Subgroup G3

For t = 1
3
,

f 1
3
(z) = i

2F1(1
3
, 2

3
; 1; 1− z)

2F1(1
3
, 2

3
; 1; z)

maps the upper half-plane H conformally onto the curvilinear triangle ∆ 1
3

whose

interior angles are 0, 0 and π
3

at the vertices f 1
3
(0) =∞, f 1

3
(1) = 0 and f 1

3
(∞) =

ei
π
6 , respectively. Thus, we have

∆ 1
3

=

{
τ ∈ H : 0 < Re τ <

√
3

2
,
∣∣∣τ − 1√

3

∣∣∣ > 1√
3

}
.
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Let us denote the reflection of ∆ 1
3

across the geodesic joining f 1
3
(∞) = ei

π
6 to ∞,

i.e., the line Re z =
√

3
2

by ∆′1
3

. Let ∆ 1
3

denote the closure of ∆ 1
3
. Suppose

F̃3 = ∆ 1
3
∪∆

′
1
3
.

Then, we may choose F̃3 as the fundamental domain for G3 whose generators are

given by

T := T6 =

(
1
√

3

0 1

)
and V := V3 =

(
2 −

√
3

√
3 −1

)
.

Recall that V is an elliptic element of order 3 with fixed point at

τ0 := ei
π
6 =

√
3 + i

2
.

Figure 7.1: Fundamental domain for G3 = 〈T, V 〉

Recall also that the canonical projection π3 : H → X = G3\H = Ĉ \ {0, 1}
satisfies

π3(0) = 1, π3(∞) = 0 and π3(τ0) =∞ (7.2)

by (4.2). The following result is useful.

Lemma 7.1. A ∈ PSL(2,R) belongs to G3 precisely when A is represented by a
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matrix of the form(
a b

√
3

c
√

3 d

)
, a, b, c, d ∈ Z, ad− 3bc = 1. (7.3)

Proof. We denote by G the group of Möbius transformations represented by the

matrices in (7.3). Then it is well-known that G is a proper subgroup of H6 (see

[37]). On the other hand, it is obvious that G3 is contained in G. Since |H6 : G3| =
2, we have G = G3 as required.

7.2 Case p = 2

In this section, we prove the following theorem (see [19, (i) of Theorem 7.1]) by

applying the geometric approach described in Chapter 4.

Theorem 7.2. In the theory of signature 1
t

= 3, if p = 2, then the moduli α and

β are related parametrically as

α := ϕ(z) =
z(z + 3)2

2(z + 1)3
and β := ψ(z) =

z2(z + 3)

4
(7.4)

for z ∈ Ĉ \
{

0, 1,−2,−3
}

. The modular equation is given by

(αβ)1/3 +
{

(1− α)(1− β)
}1/3

= 1. (7.5)

We remark that the expressions of α and β in (7.4) are found in Ramanujan’s

notebook (see [19, Theorem 6.1]). In this case, we obtain the polynomial P (x, y)

in Theorem 4.1 as

P (x, y) = (2x− 1)3y3 − 3x(4x2 − 13x+ 10)y2 + 3x(2x2 − 10x+ 9)y − x3,

which is equivalent to (7.5).

7.2.1 The Subgroup G3 ∩GM2
3

For the case p = 2 in the theory of signature 3, we have to consider the Hecke

subgroup K = G3 ∩GM2
3 , which is a subgroup of G3 and |G3 : K| = 3 (see Table

5.1). Let FK = (F,AK) be the admissible fundamental domain for K, where F is

a hyperbolic polygon and AK is the set of side-pairing transformations of F . In
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this case, we need to take three copies of F̃3 to construct the hyperbolic polygon

F . Let

F = F̃3 ∪ V (F̃3) ∪ V 2(F̃3).

Then F is the hyperbolic polygon with six vertices at

0,
1√
3
,

√
3

2
,

2√
3
,
√

3, ∞

in the counterclockwise order. If the geodesic joining 0 to∞ is identified with the

geodesic joining
√

3 to ∞ by A1, the geodesic joining
√

3 to 2√
3

is identified with

the geodesic joining 0 to 1√
3

by A2, and the geodesic joining 2√
3

to
√

3
2

is identified

with the geodesic joining 1√
3

to
√

3
2

by A3, then we have

A1 = T,

A2 = V 2TV 2 =

(
1 −

√
3

2
√

3 −5

)
,

A3 = (SV )−1TSV =

(
−5 3

√
3

−4
√

3 7

)

as the side pairing transformations of F , i.e., AK = {A1, A2, A3} (see Figure 7.2).

Figure 7.3 illustrates the hyperbolic polygon F in the Poincaré disc model, where

Figure 7.2: Fundamental domain for K = G3 ∩GM2
3

v1, v2, v3, and v4 represent the inequivalent cusps.
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Figure 7.3: The hyperbolic polygon F for K = G3 ∩GM2
3 in the Poincaré disc model

Also, we verify that

M2A1M
−1
2 =

(
1 2
√

3

0 1

)
= T 2 ∈ G3,

M2A2M
−1
2 =

(
1 −2

√
3

√
3 −5

)
= −V −1T−1 ∈ G3,

and

M2A3M
−1
2 =

(
−5 6

√
3

−2
√

3 7

)
= V T−1V T−1 ∈ G3.

Therefore, A1, A2, and A3 generate the torsion-free group K = G3 ∩GM2
3 .

7.2.2 Proof of Theorem 7.2

In this case, we also see that the Hecke subgroup K = G3 ∩ GM2
3 has four in-

equivalent cusps. Thus, the quotient Riemann surface Z = K\H is a four-times

punctured sphere. We normalize the map ρ : H→ Z so that

ρ(∞) = 0,

ρ(0) = ρ
(√

3
)

= 1,
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ρ(τ0) = −1,

ρ
( 1√

3

)
= ρ
( 2√

3

)
= b,

ρ
(√3

2

)
= c

for some constants b and c. Since

π3(τ) = ϕ
(
ρ(τ)

)
has a branch point of order 3 at τ = τ0, the map ϕ(z) has a branch point of order

3 at z = −1, that is, ϕ−1(∞) = {−1}. Since

V (∞) =
2√
3

and V 2(∞) =
1√
3
,

we have

(ϕ)0 = 1 · 0 + 2 · b.

We get the following ramification data based on the above observations (the ram-

ification indices are expressed by the numbers attached to the lines).

1 2

0

0 b

2 1

1

1 c

3

∞

−1

Therefore, the rational map ϕ of degree 3 should have the form

ϕ(z) =
mz(z − b)2

(z + 1)3

for a constant m 6= 0. Observe that V (F̃3) and V 2(F̃3) share the cusps at
√

3 and

0, respectively, with F̃3. Hence, we see that (ϕ)1 = 2 · 1 + 1 · c and

ϕ(z)− 1 =
m′(z − c)(z − 1)2

(z + 1)3

for a constant m′ 6= 0. Then we have

b = −3, c = −2, m =
1

2
and m′ = −1

2
.
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Thus,

ϕ(z) =
z(z + 3)2

2(z + 1)3
.

Next we will determine ω in Lemma 4.5. Since SM2 swaps 0 and∞ (respectively,

1/
√

3 and −
√

3/2 ≡
√

3/2 modK), ω swaps 1 and 0 (respectively, b = −3 and

c = −2). Therefore, the involution ω is given by

ω(z) =
1− z
1 + z

.

Now Lemma 4.5 yields

ψ(z) = 1− ϕ
(
ω(z)

)
=

1

4
z2(z + 3).

We summarize the results as

α = ϕ(z) =
z(z + 3)2

2(z + 1)3
and β = ψ(z) =

z2(z + 3)

4
.

Since

αβ =
z3(z + 3)3

8(z + 1)3
and (1− α)(1− β) =

(1− z)3(z + 2)3

8(z + 1)3
,

it is now easy to obtain the modular equation (7.5) in Theorem 7.2.

7.3 Case p = 3

In this section, we consider the case when the modulus β has degree 3 over the

modulus α in the theory of signature 3. By applying the geometric approach

developed in Chapter 4, we prove the following theorem (see [19, Lemma 7.4]).

Theorem 7.3. If β has degree 3 over α in the theory of signature 1
t

= 3, then the

moduli α and β are related parametrically as follows:

α := ϕ(z) = 1− z3 and β := ψ(z) =
(1− z)3

(1 + 2z)3

for z ∈ Ĉ \
{

0, 1, 1
2
(−1 + i

√
3), 1

2
(−1− i

√
3)
}

. The modular equation is given by

(1− α)1/3 =
1− β1/3

1 + 2β1/3
. (7.6)

Note that, for p = 3 in the theory of signature 3, the polynomial P (x, y) in
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Theorem 4.1 can be computed as

P (x, y) = (8x− 9)3y3 + 3
(
64x3 + 504x2 − 1053x+ 486

)
y2

+ 3
(
8x3 − 171x2 + 405x− 243

)
y + x3.

7.3.1 Construction of Fundamental Domain for G3 ∩GM3
3

For the case p = 3 in the theory of signature 3, the Hecke subgroup G3 ∩GM3
3 has

index 3 in G3, i.e., |G3 : (G3 ∩GM3
3 )| = 3 (see Table 5.1). The hyperbolic polygon

F is the same as in the case for p = 2. We need to find the set

AK = {A1, A2, A3}

of side-pairing transformations of F for K = 〈A1, A2, A3〉. In this case, we choose

the side-pairing transformations A1, A2, A3 so that they satisfy the condition

M3AjM
−1
3 ∈ G3

for j = 1, 2, 3 and M3 =

(
3 0

0 1

)
. Let us identify the geodesic joining 0 to ∞

with the geodesic joining
√

3 to ∞ by A1, the geodesic joining
√

3 to 2√
3

with

the geodesic joining
√

3
2

to 2√
3

by A2, and the geodesic joining
√

3
2

to 1√
3

with the

geodesic joining 0 to 1√
3

by A3, then we have

A1 = T,

A2 = V TV −1 =

(
−5 4

√
3

−3
√

3 7

)
,

A3 = V −1TV =

(
−2

√
3

−3
√

3 4

)

as the side pairing transformations of F (see Figure 7.4). Figure 7.5 shows the

hyperbolic polygon F in the Poincaré disc model, where v1, v2, v3 and v4 represent

the inequivalent cusps. It is easy to see that K = G3 ∩ GM3
3 by Lemma 7.1 and

that K is torsion-free. For M3 =

(
3 0

0 1

)
, we have

M3A1M
−1
3 =

(
1 3
√

3

0 1

)
= T 3 ∈ G3,
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Figure 7.4: Fundamental domain for K = G3 ∩GM3
3

M3A2M
−1
3 =

(
−5 12

√
3

−
√

3 7

)
= TV T−1T−1 ∈ G3,

and

M3A3M
−1
3 =

(
−2 3

√
3

−
√

3 4

)
= −V T−1 ∈ G3.

Thus, the generators A1, A2, and A3 of the subgroup K also satisfy the condition

that

M3AjM
−1
3 ∈ G3

for j = 1, 2, 3.

7.3.2 Proof of Theorem 7.3

First, we observe that the Hecke subgroup K = 〈A1, A2, A3〉 has four inequivalent

cusps. Hence, the quotient Riemann surface Z = K\H is a four-times punctured

sphere. We may normalize ρ : H→ Z so that

ρ(0) = ρ
(√3

2

)
= ρ(
√

3) = 0,

ρ(∞) = 1,

ρ
( 1√

3

)
= a,
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Figure 7.5: The hyperbolic polygon F for K = G3 ∩GM3
3 in the Poincaré disc model

ρ
( 2√

3

)
= b,

ρ(τ0) =∞.

By the form of K, the element V normalizes K, that is, V −1KV = K. Thus

V induces an analytic automorphism v : Z → Z. We recall that V is a rotation

about τ0 of angle −2π
3
. It is clear that v(0) = 0 and v(∞) =∞. Since V satisfies

V (∞) =
2√
3
, V

( 2√
3

)
=

1√
3

and V
( 1√

3

)
=∞,

the map v should have the form

v(z) = e−i
2π
3 z.

Hence,

b = e−i
2π
3 =

1

2
(−1− i

√
3) and a = b =

1

2
(−1 + i

√
3).

We will determine the forms of rational maps

ϕ, ψ : Ẑ = Ĉ→ X̂ = Ĉ

of degree 3. Since ϕ has a branch point at ∞ of order 3, we have

ϕ−1(∞) = {∞}.
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In particular, ϕ is a polynomial of degree 3. We also have

ϕ−1(1) = {0}.

By the above observations, we obtain the following ramification data:

1 1 1

0

1 a b

3

1

0

3

∞.

∞

Here, the ramification indices are expressed by the numbers attached to the lines.

Therefore, ϕ should be of the form

ϕ(z) = 1 + cz3

for a nonzero constant c and z ∈ Ẑ. Since

ϕ(1) = π3(∞) = 0,

we obtain c = −1. Next we determine the involution ω in Lemma 4.5. Since SM3

swaps 0 and∞ (respectively, 1/
√

3 and −1/
√

3 ≡ 2/
√

3 ( modK)), ω swaps 1 and

0 (respectively, a and b). Hence, after some computations, we get the form of ω

as

ω(z) =
1− z
1 + 2z

.

We now apply Lemma 4.5 to obtain

ψ(z) = 1− ϕ
(
ω(z)

)
=
(
ω(z)

)3
=

(1− z)3

(1 + 2z)3
.

In summary, we have

α = ϕ(z) = 1− z3

and

β = ψ(z) =
(1− z)3

(1 + 2z)3
.

By eliminating z, we obtain the modular equation (7.6) easily.
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7.4 Case p = 5

In the theory of signature 1
t

= 3, if β has degree 5 over α, then α and β are related

by

(αβ)
1
3 + {(1− α)(1− β)}

1
3 + 3{αβ(1− α)(1− β)}

1
6 = 1 (7.7)

(see [19, Theorems 7.6]).

7.4.1 Construction of Fundamental Domain for G3 ∩GM5
3

For the case p = 5 in the theory of signature 3, the Hecke subgroup G3 ∩ GM5
3

has index 6 in G3, i.e., |G3 : (G3 ∩ GM5
3 )| = 6 (see Table 5.1). Consequently, we

suitably choose six copies of F̃3 to construct the fundamental domain for G3∩GM5
3 .

Let

F = F̃3 ∪ V (F̃3) ∪ V 2(F̃3) ∪W (F̃3) ∪WV (F̃3) ∪WV 2(F̃3),

where

W = −V −1T =

(
1 0
√

3 1

)
.

Then F is a hyperbolic 10-gon with vertices at

0,
1

2
√

3
,

√
3

5
,

2

3
√

3
,

√
3

4
,

1√
3
,

√
3

2
,

2√
3
,
√

3, ∞

in the counterclockwise order. Let FK = (F,AK) be the admissible fundamental

domain for K, where AK is the set of side-pairing transformations of F . Let us

identify the geodesic joining 0 to∞ with the geodesic joining
√

3 to∞ by A1, the

geodesic joining
√

3 to 2√
3

with the geodesic joining
√

3
4

to 1√
3

by A2, the geodesic

joining 2√
3

to
√

3
2

with the geodesic joining 2
3
√

3
to
√

3
4

by A3, the geodesic joining
√

3
2

to 1√
3

with the geodesic joining 0 to 1
2
√

3
by A4, and the geodesic joining 2

3
√

3

to
√

3
5

with the geodesic joining 1
2
√

3
to
√

3
5

by A5, then we have

A1 = T,

A2 = WTV −1 =

(
−4 3

√
3

−5
√

3 11

)
,

A3 = WV T−1V −1 =

(
7 −4

√
3

10
√

3 −17

)
,
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A4 = WV −1TV =

(
2 −

√
3

5
√

3 −7

)
,

A5 = WV −1T−1(WV )−1 =

(
14 −3

√
3

25
√

3 −16

)

as the side pairing transformations of F , i.e., AK = {A1, A2, A3, A4, A5} (see

Figure 7.6).

Figure 7.6: Fundamental domain for K = G3 ∩GM5
3

For M5 =

(
5 0

0 1

)
, we have

M5A1M
−1
5 =

(
1 5
√

3

0 1

)
= T 5 ∈ G3,

M5A2M
−1
5 =

(
−4 15

√
3

−
√

3 11

)
= TV −1T−1T−1T−1 ∈ G3,
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M5A3M
−1
5 =

(
7 −20

√
3

2
√

3 17

)
= TV −1TV −1T−1T−1 ∈ G3,

M5A4M
−1
5 =

(
2 −5

√
3

√
3 −7

)
= V T−1T−1 ∈ G3,

and

M5A5M
−1
5 =

(
14 −15

√
3

5
√

3 −16

)
= (V T−1)5 ∈ G3.

Thus, ifK is the group generated by the side pairing transformationsA1, A2, A3, A4

and A5, then the generators of K satisfy the condition that M5AjM
−1
5 ∈ G3 for

j = 1, . . . , 5. Therefore, we deduce that K = G3 ∩GM5
3 , which is torsion-free.

7.4.2 The Quotient Riemann Surface (G3 ∩GM5
3 )\H

It is not difficult to see that the Hecke subgroup

K = (G3 ∩GM5
3 ) = 〈A1, A2, A3, A4, A5〉

has four inequivalent cusps. Let us denote the inequivalent cusps ofK by v1, v2, v3,

and v4. Figure 7.7 shows the hyperbolic polygon F in the Poincaré disc model.

Figure 7.7: The hyperbolic polygon F for K = G3 ∩GM5
3 in the Poincaré disc model
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LetNv, Ne andNf denote the numbers of vertices, edges and faces, respectively,

of Z, then we have

Nv = 4, Ne = 5 and Nf = 1.

The quotient Riemann surface Z = K\H has four punctures. Let Ẑ be the

compactification of Z. The Euler characteristic χ(Ẑ) of the quotient surface Ẑ is

given by

χ(Ẑ) = Nv −Ne +Nf = 0.

Since the quotient Riemann surface Ẑ is compact, connected and orientable, the

Euler characteristic χ(Ẑ) and the genus g of Ẑ are related by (see [30, p. 66])

χ(Ẑ) = 2− 2g.

Thus, we obtain g = 1, that is, Ẑ is a genus one Riemann surface. When Z

is not a planar surface, it is technically difficult to find an explicit form of the

polynomial P (x, y) in Theorem 4.1. We hope to give further applications when Z

is a non-planar surface in the future work.
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