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THE TEMPORAL AND FREQUENT PATTERN MINING ANALYSIS 

AND MACHINE LEARNING FORECASTING ON MOBILE SOURCED 

URBAN AIR POLLUTANTS  

By  

Jianbang Du, Ph.D. 

Texas Southern University, 2021 

Professor Fengxiang Qiao, Advisor 

 Ground-level ozone and atmospheric fine particles (PM2.5) have been recognized 

as critical air pollutants that act as important contributors to the toxicity of anthropogenic 

air pollution in urban areas. To limit the adverse impacts on public health and ecosystems 

of ground-level ozone and PM2.5, it is necessary and imperative to identify a practical and 

effective way to predict the upcoming pollution concentration levels accurately. Under this 

need, various research was conducted aiming to perform the forecasting of ground-level 

ozone and PM2.5 that mainly utilized the time-series and neural network analysis. In the 

meantime, machine learning is also adopted in analysis and forecasting in existing research, 

which is, however, associated with some limitations that are not easily overcome. (1) The 

majority of existing forecasting models are highly dependent on time-series inputs without 

considering the influencing factors of the air pollutants. While a relatively accurate 

prediction may be provided, the influencing factors of the air pollution level caused by 

real-world complexity are neglected. (2) The existing forecasting models are mainly 

focused on the short-term estimation, while some of them need to use the previous 
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prediction as a part of the input, which increased the system complexity and decreased the 

computational efficiency and accuracy. (3) The accurate annual hourly air pollution level 

forecasting ability is seldomly achieved. The objective of this research is to propose a 

systematical methodology to forecast the long-term hourly future air pollution 

concentration levels through historical data considering the concentration influencing 

factors. To achieve this research goal, a series of methodologies to analyze the historical 

air pollution concentration by temporal characteristics and frequent pattern data mining 

algorithms are introduced. The association rules of air pollution concentration levels and 

the influencing factors are revealed. A systematical air pollution level forecasting approach 

based on supervised machine learning algorithms with the ability to predict the annual 

hourly value is proposed and evaluated. To quantify and validate the results, a case study 

was conducted in the Houston region with the collection and analysis of ten years of 

historical environmental, meteorological, and transportation-related data. From the results 

of this research, (1) the complex correlations between the influencing factors and air 

pollution concentration levels are quantified and presented. (2) The association rules 

between each dependant and independent parameters are calculated. (3) The supervised 

machine learning algorithm pool is created and evaluated. And (4), an accurate long-term 

hourly air pollution level machine learning forecasting procedure is proposed. The 

innovative methodology of this research is advanced in computation complexity with high 

accuracy when compared with the existing models, which could be easily applied to similar 

regions for various types of air pollution concentration level forecasting.
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

 With the rapid growth of the global population and technologies that depend on 

fossil fuels and petrochemicals, various critical environmental dilemmas have emerged. 

One of the most harmful environmental issues that human being has encountered is air 

pollution, which is a significant inducing factor of a series of life-shortening diseases such 

as Cardio Vascular Disease, Stroke, Chronic Obstruction Pulmonary Disease, Lung 

Cancer, and even death (Zumla et al., 2015). The World Health Organization (WHO) 

indicated that 2.4 million human death per year is attributed to air pollution-related diseases 

(Xing, Xu, Shi, & Lian, 2016). Furthermore, air pollution also plays an important role in 

adversely affecting the ecosystems, as well as flora and fauna species. 

 Many chemicals have been identified as air pollutants, which include the six criteria 

pollutants (carbon monoxide (CO), lead (Pb), nitrogen oxides (NOx), ground-level ozone 

(O3), particulate matter (PM), and sulfur oxides (SOx)) defined by the United States 

Environmental Protection Agency (US. EPA) and other air pollutants such as asbestos and 

total petroleum hydrocarbons (CDC, 2021). Some of these air pollutants are emitted into 

the atmosphere directly, which are called primary pollutants, such as CO, Pb, NOx, and 

SOx. On the contrary, the ground-level ozone is formed in the atmosphere from other 

chemicals include NOx and volatile organic compounds (VOC) rather than emitted from 

the sources directly, which is called the secondary air pollutant (Du, Li, Qiao, & Yu, 2018; 

Shao et al., 2009). PMs in the air can be either the primary PM from wind transport, 
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combustion, and human activities, or the secondary PM by a series of complex chemical 

reactions by, for example, SO2, NOx, ammonia (NH3), and VOC (Breysse et al., 2013). 

 Some of the air pollutants can be naturally sourced. For instance, ozone can be 

formed naturally in the upper atmosphere that protects the earth from the harmful 

ultraviolet rays from the sun. The PM can also be naturally formed by volcanic emissions, 

dust storms, forest wildfires, and ocean salt spray (Omidvarborna, Kumar, & Kim, 2015) 

However, the majority of these air pollutants are anthropogenic, in another word, human-

sourced. For example, fossil fuel combustions such as vehicle exhausts, power plants 

emitters, and oil refineries are the primary sources of ground-level ozone precursor 

chemicals (Cardelino & Chameides, 1995). Similarly, anthropogenic PMs that are sourced 

from human activities such as coal and petroleum production burning, construction sites, 

and unpaved roads account for around ten percent of the total atmospheric PM mass 

(Hardin & Kahn, 1999). 

 

1.2 Motivation 

Among various types of air pollutants, ground-level ozone and PM, especially 

PM2.5 that has an aerodynamic diameter smaller than 2.5 micrometers, are the most critical 

and hazardous (ATSDR, 2021). A high concentration of ground-level ozone is known to 

have severe adverse health effects on the high-risk population by inducing asthma, 

respiratory system irritation, lung function decline, and lung lining damages (Lippmann, 

1989). It is reported that ninety US urban communities, which count for approximately 

40% of the US total population, are suffering from ground-level ozone pollution hazards 
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(Bell, McDermott, Zeger, Samet, & Dominici, 2004). Ground-level ozone pollution can 

also induce economic loss by ozone cracking (Lake, 1970), and several ecosystem 

consequences including greenhouse effects (Shindell, Rind, & Lonergan, 1998) as ground-

level ozone is a greenhouse gas, of which the radiative forcing effect is 1,000 times stronger 

than that of carbon dioxide (CO2) (Curran, 2012). Because ozone is a strong oxidant, it is 

able to influence the growth rate and seed production of plants (Manes et al., 2012). 

Previous studies revealed that several flora species including kinds of crops are particularly 

sensitive to ground-level ozone (Reich, 1987). Given so many hazards are triggered, 

strategies to decrease the ground-level ozone concentration have been established by 

different authorities (Ryerson et al., 2001).  

In the meantime, due to its extremely small in size, PM2.5 is able to penetrate deep 

into the lungs and even access the bloodstream, and further impair lung function (Xing et 

al., 2016). Epidemiological studies have been extensively conducted to provide scientific 

evidence of PM2.5’s public health risks and revealed the relationship between ambient 

PM2.5 concentration and cardiopulmonary mortality (EPA, 2010; Pope III, 2000; 

SCHWARTZ, 1991, 2004). What’s more, PM2.5 can be transported for long periods in an 

airborne manner and travel hundreds of miles. To regulate the harmful effects, the WHO 

has firstly published the Air Quality Guidelines (AQG) in 1987, which recommends 

thresholds of 25 µg/m3 average daily concentration (ADC) and 10 µg/m3 average annual 

concentration (AAC) for PM2.5 (Pope III et al., 2002; WHO, 2006). The highly toxic nature 

of ground-level ozone and PM2.5 is threatening the environment and public health. Thus, 

the forecasting of these air pollution concentration levels in a predetermined future period 

is in urgent need. 
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1.3 Research Gaps and Objectives 

 A large number of studies have been conducted focusing on the air pollution 

concentration variation pattern in order to forecast the future concentration level. Most of 

the studies utilized the classic time-series approach to analyze the historical air pollution 

concentration data and make the forecasting. This approach can be accurate, which, 

however, lacks the ability to predict the air pollution level for special events, such as the 

pandemic throughout the year 2020 that influenced the transportation activities and the 

vehicles’ emission along with the altered traffic pattern. Special weather events such as 

hurricanes and flooding can also reduce the accuracy of the prediction based on the time-

series approach. Thus, the time-series approach is usually solely accurate in several special 

cases. Some recent research employed neural network algorithms to perform air pollution 

level forecasting, which may yield a more accurate prediction and relatively higher 

computation efficiency. However, there are still issues when using neural network 

algorithms. (1) Most existing neural network research is highly dependent on the time-

series inputs. (2) The complexity of the algorithm requires more tuning of the parameters 

of the model. Machine learning is a state-of-the-art analytical tool that is utilized to forecast 

the air pollution concentration level in recent years. The existing research is limited and 

mainly has the following limitations: (1) the inputs for the models are solely air pollution 

data, which are still time-series data inherently, (2) most research does not employ the 

influencing factors of air pollutants, which restricts the accuracy and robustness of the 

models, and (3) the existing machine learning forecasting models were mainly designed to 

perform a short period air pollution forecasting. 
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 To fill these research gaps, the objectives of this research are: (1) to analyze the 

temporal characteristics of ground-level ozone and its precursor NOx/NO2 and PM2.5 

concentration patterns within the target coastal industrial urban area; (2) to find the inherent 

pattern between air pollution concentration levels and their influencing factors that include 

several meteorological parameters and traffic situations through data mining technology; 

and (3) to perform the hourly air pollution concentration forecasting over a year by different 

supervised machine learning algorithms with the suitable assessment of accuracy. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview of Pollution 

 Environmental pollution has been widely recognized as the substance that 

adversely affects the global climate, flora and fauna species, and public health of human 

beings (Haines, Kovats, Campbell-Lendrum, & Corvalán, 2006). There are several types 

and forms of pollution, which mainly include water pollution, soil pollution, and air 

pollution (Brunekreef & Holgate, 2002). Other types of pollution have also been 

recognized such as light, noise, thermal, electromagnetic and radiation pollutions 

(Stansfeld & Matheson, 2003).  

Among these pollutions, water pollution that includes surface water and 

groundwater pollution is the contamination of water bodies such as lakes, rivers, oceans, 

aquifers, and groundwater by mainly human activities, which is one of the leading causes 

of some human diseases, especially water-borne diseases (Moe & Rheingans, 2006). 

Organic and inorganic chemicals and pathogens may occur in polluted water (Parry, 1998). 

There are two kinds of sources of water pollution, which are point sources such as plant 

and refinery discharge, and non-point sources such as boating and atmospheric fallout 

(Moss, 2008). The primary federal law in the USA to regulate water pollution is the Clean 

Water Act that is implemented by the EPA. Soil pollution is also called soil contamination 

that alters the natural environment of soil by industrial, agricultural, improper waste 

disposal, and other human activities (Means, 1989). The main chemicals that appear in soil 

contamination include heavy metals, hydrocarbons, pesticides, herbicides, and solvents 

(Cunningham, Berti, & Huang, 1995), which may show the health effects such as pollution-
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related diseases include cancer and congenital disorders, and ecosystem effects (Merry, 

Tiller, & Alston, 1986). Light pollution that may influence animal behavior and ecology 

usually appear during the night by artificial lights, which is one of the major side effects of 

urbanization (Longcore & Rich, 2004). Unlike the water pollution that is severer in 

developing countries, light pollution in developed countries is generally severer. The 

sources of light pollution include but are not limited to the direct glare, sky glow that is the 

light reflected from the sky, buildings and street lights, etc. (Longcore & Rich, 2004). 

Based on previous research, approximately only 40% of Americans live in areas that the 

night is dark sufficiently, and 18.7% of the earth’s land surface is polluted by artificial light 

(Cinzano, Falchi, & Elvidge, 2001). Current practices to reduce light pollution are to 

control the light from the sources by technologies (Falchi, Cinzano, Elvidge, Keith, & 

Haim, 2011). Noise pollution that is also called sound pollution is mainly coming from 

transportation and industry activities, which may be disturbing and influence social 

behaviors, human development, and mental health such as hypertension (Stansfeld & 

Matheson, 2003). Noise pollution is also harmful to the ecosystem, especially the 

invertebrates that use antennae or hairs on particle motion detection (Nedelec, Campbell, 

Radford, Simpson, & Merchant, 2016). Furthermore, research indicated that noise 

pollution is closely related to human’s increased catecholamine secretion and possibly high 

blood pressure in children (Stansfeld & Matheson, 2003). In the USA, the noise pollution 

in low-income and racial minority communities is relatively higher (Casey et al., 2017). 

To solve this issue, the Noise Control Act was established in 1972 by EPA, and the 

Recommended Exposure Limit (REL) was published by the National Institute for 

Occupational Safety and Health (NIOSH) at the Centers for Disease Control and 
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Prevention (CDC) (Kirchner et al., 2012). Thermal pollution is a type of water pollution 

that changes water temperature by the coolant water use of manufacturers and power plants 

(Davidson & Bradshaw, 1967). In the USA, 75 to 82% of thermal pollution is sourced from 

power plants (Laws, 2017). Thermal pollution may impact aquatic organisms such as fish 

and amphibians by decreasing the level of dissolved oxygen and increasing the organisms’ 

metabolic rates (Goel, 2006). More severe consequences induced by thermal pollution 

appear including global warming (Nordell, 2003). Electromagnetic and radiation is a type 

of pollution that is developed with the spread of some of the technologies such as 

microwave and RF technologies (Dhami, 2012). The source of electromagnetic and 

radiation pollution include electric power, electronic surveillance system, and wireless 

communications (Ahlbom & Feychting, 2003). The electromagnetic and radiation 

pollution may induce acute symptoms such as burns, sleep disturbance, depression, 

headache, nausea, visual disorders, respiratory problems, nervousness, and agitation 

(Santini, Santini, Danze, Le Ruz, & Seigne, 2002), and other chronic symptoms such as 

the possible cardiovascular disease, brain tumors, leukemia, and breast cancer (Caplan, 

Schoenfeld, O'Leary, & Leske, 2000; Sastre, Cook, & Graham, 1998). Due to the potential 

hazards of electromagnetic and radiation pollution, it is categorized as Group 2B by the 

WHO and the International Agency for Research on Cancer (IARC) (Baan et al., 2011). In 

the USA, the Occupational Safety and Health Act that was published in 1970 and the 

Radiation Control for Health and Safety Act that was published in 1968 are the regulations 

of the nonionizing radiation. 

Environmental pollution has become a global problem and costs a lot. A report by 

the Lancet Commission on Pollution and Health revealed that in 2015, nine million death 
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globally are caused by air, water, and soil pollution, which counts for 16% of all death. 

This number is more than the death caused by smoking, hunger, natural disasters, war, 

malaria, or AIDS, 97% happens in the less developed countries (Landrigan et al., 2018).  

As stated in the report, 6.2% of global economic output is lost because of pollution, which 

is $4.6 trillion per year. In the meantime, the benefits of pollution control significantly 

outweighed the pollution costs. The cost and benefit ratio of air pollution control reaches 

1:30 in the USA. $65 billion were invested by the USA to air pollution control and received 

around $1.5 trillion benefits. In another word, every dollar spent on air pollution control 

will receive 30 dollars benefit (Landrigan et al., 2018).  

Among these hazardous pollutions, air pollution is one of the most critical issues 

that adversely influence the environment and human health and caused large costs 

worldwide every year. 

 

2.2 Air Pollution and Pollutants 

 Air pollution is the harmful substances that are present in the air in the forms of 

liquid droplets, solid and gaseous states, which may induce diseases, allergy, and death of 

humankind, sickness of animals, crops, and livestock, and further threaten the ecosystem 

(Organization, 2014). For human beings, air pollution may induce respiratory diseases, 

heart diseases, chronic obstructive pulmonary disease (COPD), stroke, or even cancer 

(Sunyer et al., 2015). The World Health Organization (WHO) pointed out that 2.4 million 

human mortality is caused by air pollution per year. Furthermore, based on various 

research, air pollution is related to around 9% of the total death worldwide (Page, 2019), 



10 

 

 

 

and 100 thousand in the US each year (Neuhauser, 2019). Based on the property of the air 

pollutants, they can be categorized as gases, particulates, and biological molecules (Stern, 

1977). Based on the type of pollution sources, air pollutants can be categorized as 

stationary sourced pollutants that are emitted from settled sources such as power plants, 

manufacturers, and oil refineries, and mobile sourced pollutants that are emitted from 

moving sources such as vehicles, ships, and air crafts (Colvile, Hutchinson, Mindell, & 

Warren, 2001). Based on the chemical formation type of air pollutions, they can be 

categorized as the primary air pollutants that are emitted from the sources directly, and the 

secondary air pollutants that are formatted in the atmosphere by the emitted chemicals from 

the sources (Stern, 1977). 

Air pollution sourced from human activities also called anthropogenic air pollution 

is considered the most critical environmental issue nowadays (Vitousek, Mooney, 

Lubchenco, & Melillo, 1997). Mobile sourced air pollution especially on-road vehicle 

emission occupies greater than 50% of total air pollution in the USA (EPA, 2019) due to 

fossil fuel combustion, which counts for 50% to 90% of total urban air pollutions (Shinar, 

2017). 

 

2.2.1 Ground-level Ozone 

One of the most notorious air pollutions that threaten human health is ground level 

O3 (Ozone). Ozone is a gas composed of triple oxygen atoms and distributed on both the 

upper atmosphere level and ground level of the earth. This carries out two types of ozone 

in the atmosphere: stratospheric ozone and tropospheric ozone (Benedick, 1998). 
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Stratospheric ozone is naturally formed and beneficial to the earth’s environment by 

blocking out most of the ultraviolet rays from the sun. On the contrary, tropospheric ozone 

or ground-level ozone is a type of harmful air pollution (Guttorp, Meiring, & Sampson, 

1994) that causes various deleterious consequences. While there is a small amount of 

nature-sourced ground-level ozone, fossil fuel combustion such as vehicle exhaust, power 

plants, and oil refineries are the primary source of ground-level ozone precursor chemicals 

(Cardelino & Chameides, 1995).  

Unlike most other air pollutions, the major amount of ground-level ozone pollution 

is a type of secondary air pollution, which is formed in the atmosphere by several chemicals 

rather than emitted directly from the source (Guttorp et al., 1994). Those chemicals that are 

related to the formation of ground-level ozone include nitrogen oxide (NOx) and volatile 

organic compounds (VOC) mainly hydrocarbon (HC) (Shao et al., 2009) are also called 

ozone precursors (Du, Qiao, & Yu, 2019). There are three levels of adverse effects of 

ground-level ozone: (1) climate effects, (2) health effects, and (3) ecosystem effects. 

Ground-level ozone is a kind of greenhouse gas that could drastically affect the earth’s 

climate by absorbing radiation and producing heatwaves. Based on a study by Curran et, 

al. (2012), the radiative forcing effect from ground-level ozone is 1,000 times stronger than 

from carbon dioxide (CO2), which is another kind of greenhouse gas that attracts the most 

attention from the public (Curran, 2012). When being exposed to the ground-level ozone, 

human’ health will be adversely and significantly affected, especially for the elders, 

children, and those who are with asthma (Lippmann, 1989). Acute exposure under ozone 

could induce shortness of breath, wheezing, coughing, asthma, and other pulmonary and 

lung diseases (Gent et al., 2003). Chronic exposure under ozone could induce 
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cardiovascular effects, COPD, and even death (Bell et al., 2004). As ozone is a strong 

oxidant, ground-level ozone has the ability to damage the ecosystem by impacting the 

growth rate and seed production of plants (Manes et al., 2012). Previous studies revealed 

that several flora species are particularly sensitive to ozone, including some agricultural 

crops (Reich, 1987). 

Ozone can be measured by remote sensing technology due to its UV spectrum 

absorption property (Marenco et al., 1998). The concentration of ground-level ozone is 

regulated by the EPA, which for the eight-hour average mole fraction concentrations, 116- 

404 nmol/mol is very unhealthy, 96- 115 nmol/mol is unhealthy, and 76- 95 nmol/mol is 

unhealthy to sensitive groups (Warneck, 1999). Based on the previous research, 95 US 

urban communities, of which approximately 40% of the US population are facing ground-

level ozone pollution hazards (Bell et al., 2004). Given the hazards triggered by ground-

level ozone, several strategies to decrease the ground-level ozone concentration have been 

established (Ryerson et al., 2001). Ground-level ozone is been identified as one of the six 

common air pollutants by the Clear Air Act, which is also been called criteria air pollutants 

by the EPA (EPA, 2020).  

 

2.1.2 PM2.5 

 Particulate matter (PM) is also called particulates, is a class of air pollutants that is 

composed of a mixture of solid and aqueous suspended substances, which includes both 

organic and inorganic particles such as fine dust, soot, smoke, and liquid droplets. The 

sizes of the PM are critical to their property due to there are impacts on their aerodynamic 
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properties by the size. The aerodynamic properties are also associated with the particles’ 

chemical composition and sources, they could influence the transport and removal of 

particles in the air and the deposition of the particles in human and animals’ respiratory 

systems. The aerodynamic properties of particles are summarized by the term aerodynamic 

diameter which is the size of a unit-density sphere with the same aerodynamic 

characteristics. The particles’ aerodynamic diameter is usually called particle size (Xing et 

al., 2016). The aerodynamic sizes of PM may range from 0.1 micrometers (µm) to 10 µm, 

for instance, PM10, PM2.5, PM1, and PM0.1 are referred to the fraction of particles with the 

diameter smaller than or equal to 10 µm, 2.5 µm, 1 µm and 0.1 µm (Querol et al., 2004). 

The boundary between the coarse particles and fine particles usually lies between 1 µm 

and 2.5 µm, it used to be set as 2.5 µm in the convention. The components of coarse 

particles and fine particles vary from earth crust materials, road and architecture fugitive 

dust to combustion particles and metal vapors from vehicles and industries. Through coarse 

acid droplets can present in fog, fine particles contain most of the acidity and mutagenic 

activity of PM. The fine particles (particles between 100 nm and 2.5 µm) count for most 

of the mass and the largest number of particles are found in extremely small sizes even less 

than 100 nm (Zumla et al., 2015). Exposure to high concentration PM has the potential to 

induce various chronic diseases and may lead to life expectancy reduction. 

When compared to coarse particles, fine particles especially PM2.5 are extremely 

harmful to human health due to their small diameters and large surface areas that can mix 

with various toxic chemicals and pass through the human respiratory system deeply 

without being filtered by the nose hair (Xing et al., 2016). As a result, the lower respiratory 

system includes the pulmonary alveoli can be easily reached, penetrated, and accumulated 
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by PM2.5. Various previous studies showed the adverse effects of PM2.5 on human health, 

which are summarized in TABLE 1. 

TABLE 1. STUDIES ON THE ADVERSE EFFECTS OF PM2.5 

Study  Author Results 

Six cities Study, 
USA 

Schwartz et al. 
(1997) 

Around 190,000 deaths were observed over 
years in six towns in the United States of 
America. In this study, PM2.5 was associated 
with mortality.  

Santiago, Chile Cifuentes et al. 
(2000) 

Both PM2.5 and PM10 were associated with 
mortality. 

Philadelphia, 
USA 

Lipfert et al. 
(2000) 

Both PM2.5 and PM10 were associated with 
mortality but the association with coarse 
PM10 was mostly not significant. 

Eight cities, 
Canada 

Burnett et al. 
(2000; 2003) 

Both PM2.5 and PM10 are associated with 
mortality, the correlation of PM2.5 is much 
higher than coarse PM10. 

Santa Clara, 
California, USA 

Fairley et al. 
(1999; 2003) 

Found mortality to be associated with PM2.5 
but not PM10.  

West Midlands 
Conurbation, UK 

Anderson et al. 
(2001) 

Found no association between mortality and 
PM2.5 and PM10. However, in season-
specific analyses, there was a significant 
association with PM2.5 but not coarse PM10 

in the warm season.  

Mexico City, 
Mexico 

Castillejos et 
al. (2000)  

Both PM2.5 and PM10 were associated with 
mortality, but in a two-pollutant model, 
coarse mass was clearly dominant. The 
authors speculated that there was much 
biogenic contamination in the coarse mass 
fraction. 

Wayne County, 
Michigan, USA 

Lippmann et al. 
(2000) 

This research found PM2.5 and PM10 were 
both not significantly associated with 
mortality. The effect estimate for PM10 was 
somewhat larger than for PM2.5. 
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Coachella 
Valley, 
California, USA 

Ostro et al. 
(2000, 2003) 

Found the cardiovascular mortality was 
significantly associated with PM10 but not 
PM2.5 although the effect estimate for fine 
particles was still much larger than for 
coarse PM.  

Phoenix, 
Arizona, USA 

Mar et al. 
(2000, 2003) 

Both PM2.5 and PM10 were found to be 
associated with cardiovascular mortality 

 

Due to the mortality and pathogenicity of PM2.5, it is regulated strictly by regions 

and countries worldwide as shown in TABLE 2. 

TABLE 2. PM2.5 REGULATIONS  

Country/Region  Type PM2.5 Concentration 

Australia Yearly average 8 µg/m3 

Daily average 25 µg/m3 

Mainland China Yearly average 35 µg/m3 

Daily average 75 µg/m3 

European Union Yearly average 25 µg/ m3 

Daily average N/A 

Hong Kong Yearly average 35 µg/m3 

Daily average 75 µg/m3 

Japan Yearly average 15 µg/m3 

Daily average 35 µg/m3 

South Korea Yearly average 15 µg/m3 

Daily average 35 µg/m3 

Taiwan Yearly average 15 µg/m3 

Daily average 35 µg/m3 

United States Yearly average 12 µg/m3 

Daily average 35 µg/m3 
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2.1.3 Nitrogen Dioxide/ Oxides of Nitrogen 

 Oxides of Nitrogen (NOx) is a group of poisonous and highly reactive gases 

that are mainly generated by fossil fuel combustion (EPA, 2021a) through on-road 

transportation such as automobiles and trucks, and industrial sources such as power plants, 

refineries, and turbines. The predominant chemicals of NOx are nitrogen monoxide (NO), 

which is a colorless gas, and nitrogen dioxide (NO2), which is a reddish-brown gas that has 

acid and pungent odor. NOx can be nature sourced mainly by the extreme heat of lightning 

of thunderstorms and wildfires (Tagle, 2021). It can also be generated by agricultural 

fertilization and nitrogen-fixing plants. Based on previous research, on-road transportation 

counts for 40% of urban NOx, commercial institutional and households count for 14%, 

energy production and use in industry count for 34% (EPA, 2021a).  

NOx may interact with water, oxygen, and other chemicals to form acid rain that 

damage the waterbody as well as the organisms (EPA, 2021a) by negatively affecting the 

vegetation and making them more susceptible to disease and frost. It may also react with 

ammonia and other compounds to form smog and acid vapor and cause damage to lung 

tissues. While NO is not normally considered hazardous to human health at a typical 

ambient condition, it may still induce several adverse effects such as respiratory, metabolic, 

and blood pressure disorders and diseases (Tagle, 2021). Inflammation of the upper 

airways and other respiratory problems such as wheezing, coughing, and bronchitis may 

be triggered by the acute contact of a high concentration of NO2, especially for the 

population with asthma. Chronic contact with NO2 at a high level may cause irreversible 

damages to the respiratory system (Amr & Hadidi, 2001). Furthermore, as introduced 

previously, NOx/NO2 is responsible for the formation of ground-level ozone, which is a 
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secondary air pollutant. An oxide ion is formed by gaseous NO2 in the presence of sunlight, 

and the oxide ion further combines with the oxygen molecule (O2) to form ozone (Tagle, 

2021). When ozone is present, NO can be converted to NO2 in the atmosphere.  

Due to the adverse effects of NOx, it is regulated by the current national ambient 

air quality standards (NAAQS) published on April 6th, 2018, that 1-hour standard level at 

100 ppb, and annual standard level at 53 ppb, which could protect the public health, 

especially for the high-risk individuals include elders, children, and people with asthma 

(EPA, 2021b). 

 

2.3 Influencing Factors of Air pollution 

 Air pollution concentration levels of an area are not constant values, which vary by 

time and can be influenced by different factors. In this research, the influencing factors of 

the air pollution concentration are categorized into two classes, which include the nature 

influencing factors that are meteorological situations such as solar radiation, outdoor 

temperature, pressure, precipitation, relative humidity, wind speed and direction, and 

human activity factor that is mainly on-road transportation. 

 

2.3.1 Meteorological Measurements 

 Ground-level ozone is formed by the presence of sunlight. Thus, meteorological 

conditions influence ozone formation largely. The meteorological influencing factors of 

ozone concentration have been extensively studied. Ding et al., 2013 and Gao et al., 2005 
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indicated that the formation of ground-level ozone is highly related to the tropical cyclones 

and continental anticyclones (Ding, Wang, Zhao, Wang, & Li, 2004; Gao, Wang, Ding, & 

Liu, 2005). The tropical cyclones are low pressure, closed low-level atmospheric 

circulation, and strong wind rapid rotating storm system that accompanied with 

thunderstorms and heavy rains (Emanuel, 2003). On the contrary, the anticyclones are 

associated with the large circulation of winds around a high-pressure core that bring clear 

skies and cooler and drier air (Rodwell & Hoskins, 2001). Based on Ding’s research, the 

sunny and low-wind weather created by anticyclones provides a favorable situation for 

ozone formation. The peripheral of the tropical cyclones in the Western Pacific region 

produces a low-pressure system that brings high temperature and sunlight as well as light 

wind, which also contribute to the formation of ozone (Ding et al., 2004). It is also revealed 

that the ground-level ozone can be influenced by several local meteorological situations.  

 Ding et al., 2004 conducted research on the formation of ground-level ozone within 

an economic region. The results showed that the days with strong sunlight and low winds 

are beneficial to the formation and accumulation of ozone along with its precursors, which 

is correlated with higher ozone concentration (Ding et al., 2004). Research also indicated 

that the wind direction could affect the ozone concentration by influenced pollution 

transportation (Duan, Tan, Yang, Wu, & Hao, 2008). However, different effects of wind 

directions occur based on the specific location. For instance, the upslope wind in a valley 

area may transport ozone from the bottom upward to the peak (Gao et al., 2005). In research 

conducted in Beijing, which is one of the most ozone-polluted cities, the ozone was 

transported up to the surrounding mountains in afternoons during summer and was 

transported back in the evening (T. Wang, Ding, Gao, & Wu, 2006). The seashore and 
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offshore winds may impact ozone accumulation, especially the cycling wind pattern that 

traps the ozone pollution in the city areas (Tie, Geng, Peng, Gao, & Zhao, 2009). 

Based on previous research, meteorological conditions show significant effects on 

PM2.5 concentration, especially in urban areas. A study conducted in Japan showed that the 

outdoor temperature is positively correlated with local PM2.5 pollution concentration, while 

it is negatively correlated with wind speed and relative humidity (J. Wang & Ogawa, 2015). 

As stated in the research, among the meteorological factors, wind speed and relative 

humidity play a more important role in influencing PM2.5 concentration than temperature. 

There was a threshold for the correlation coefficients between wind speed, relative 

humidity, and PM2.5 concentration because of the geography profile of Japan, which is 

location-specific. A study conducted by Xiao et al., 2001 analyzed the correlations between 

PM2.5 concentration level and several selected meteorological parameters that include wind 

speed, temperature. The correlation coefficient is 0.32 and 0.36, which means these three 

factors are correlated (Z.-m. Xiao et al., 2011). 

 The chemical transport models (CTMs) driven by general circulation models 

(GCMs) developed by Climate Research Community are commonly used to simulate the 

PM2.5 concentration variation trends that are influenced by weather factors (Liao et al., 

2006; Racherla & Adams, 2008). While the CTMs and GCMs models aim at different 

targets when they were designed, both are capable of performing global atmospheric 

chemistry modeling in a complementary manner (Jeuken, 2000). Amos et al., 2010, 

conducted research based on CTMs and GCMs models that analyzed the relationship 

between PM2.5 concentration and climate conditions (Tai, Mickley, & Jacob, 2010). In the 

research, it was revealed that variant chemical components in PM2.5 pollution are 
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influenced by temperature, relative humidity, and wind with different correlation 

coefficients. To be more specific, the outdoor temperature is positively correlated with 

sulfate, organic carbon, elemental carbon, and negatively correlated with nitrate; while the 

relative humidity is positively correlated with sulfate, nitrate, and negatively correlated 

with organic carbon, elemental carbon; and as other research indicated, the wind effects on 

PM2.5 concentration vary by locations. 

 Atmospheric NOx concentration is related to the meteorological status as well. A 

study targeting a valley area in Nepal that is conducted by Pudasainee et al., 2006, indicates 

that the NO and NO2 concentration met their peak value following the presence of sunlight, 

and the mid-day peak of NOx occurred with lower nocturnal concentration (Pudasainee et 

al., 2006). In the meantime, the NOx concentration level is slightly lower in the monsoon 

season. Ocak et al., 2008 proposed a statistical model analyzing the relationship between 

air pollutants and meteorological factors (Ocak & Turalioglu, 2008). In the research, it is 

indicated that the daily CO, NOx, and O3 air pollution levels are influenced not only by the 

meteorological parameters that include wind speed, temperature, and relative humidity but 

also by the level of the previous day. The historical meteorological measurements are 

analyzed by the multiple linear regression algorithm. Based on the analysis, the level of 

NOx shows a negative relationship with wind speed and temperature. Several previous 

research utilized the hourly and seasonal factors to analyze the NOx concentration variance. 

David et al., 2011, analyzed the association between NOx concentration and the mesoscale 

synoptic meteorological measurements by temporal variances in a tropical coastal area 

(David & Nair, 2011). It is found that the diurnal NOx concentration pattern is closely 

related to the mesoscale circulation that includes mainly the wind. 
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2.3.2 Transportation 

On-road vehicle emissions are responsible for lots of air pollutions such as CO, 

PM, and ozone precursor chemicals. Among all the on-road transportations, highway 

transportation is playing an important role in vehicle emissions. As of 2016, one-fourth of 

all vehicle miles traveled in the USA are on the highway system (FHWA, 2017). Based on 

a recent report by EPA, transportation is responsible for over 55% of total NOx emissions, 

around 10% of VOCs emissions, and around 10% of PM emissions in the USA. By proper 

transportation emission management, it is expected to reduce 40,000 premature death, 

34,000 hospitalization visits, and 4.8 million workdays lost by the year 2030 (EPA, 2019, 

2021c). In the meantime, on-road transportation accounts for 18.4% of total PM emissions 

worldwide (Xia et al., 2015). It is revealed that long-term exposure to traffic-related air 

pollution may reduce life expectancy (Zhang, Khlystov, Norford, Tan, & 

Balasubramanian, 2017).  

The pandemic caused by the novel coronavirus, which is abbreviated as COVID-

19, has been outbroken since the end of the year 2019 worldwide that became a global 

medical problem. Other than the pathogenicity of the pandemic, it also impacts human 

activities. Most regions have issued the so-called Stay-at-Home or quarantine orders to 

limit the spread of the COVID-19 pandemic. Some major cities and urban areas even 

practiced the lockdown policy that only essential businesses remain in operation (Gray, 

2020). The living styles along with the traffic pattern were altered due to those situations. 

The main impacts of the pandemic outbreak on on-road transportation include the travel 
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demand, the transportation mode, and the land use or even urban planning (Du, Wang, & 

Qiao, 2020).  

Based on a United Nations Educational, Scientific and Cultural Organization 

(UNESCO) report, due to the work from home order, the work-related traffics has been 

significantly reduced (UNESCO, 2020). On the contrary, it is reported that the non-work-

related travels are increasing such as shopping and delivering (Wu, Chen, & Chan, 2020). 

It is further observed that the total trips in 2020 were 2.8 billion fewer than that of the year 

2019 (Du et al., 2020), especially, the trips longer than three miles are reduced from 

December 2019 to April 2020, however, it was slightly increased after that till August 2020 

(Chinazzi et al., 2020). This phenomenon was also true for other major cities worldwide. 

For instance, the travel demands of the first half of the year 2020 have reduced by 40% in 

Taipei, 80% in London, and 90% in Milan (Gössling, Scott, & Hall, 2020). Freight 

transportation that including the railway volume has been decreased by 20% due to 

business inactivity. However, the enhanced e-commerce or online shopping mode has 

resulted in 30% more freight traffic volumes in the US (Newport, 2020). The concentration 

levels of air pollutants that come from fossil fuel combustion were extensively impacted 

by the pandemic given the on-road transportation is one of the most significant contributors 

to them. Thus, considering the transportation factor for air pollution analysis is meaningful, 

especially during a pandemic situation.  
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2.4 Air Pollution Forecasting Technologies 

 Due to the non-linear and complex nature of air pollution levels, forecasting them 

became a tough task and usually only within a short target time period. However, various 

approaches are utilized to perform the air pollution concentration level forecasting and 

estimation. One of the most widely used algorithms is the neural network (NN) model. 

Based on a previous review work conducted by Cabaneros et, al., 2019, the majority of air 

pollutants that NN models are used to predict are PM10, PM2.5, NOx, and ozone. Some of 

them utilized the meteorological and source emission predictors as part of the inputs of the 

multilayer perceptron and ensembled models (Cabaneros, Calautit, & Hughes, 2019). The 

time-series data as inputs is usually associated with the NN models that are utilized to 

predict the air pollution concentration level.  

The research conducted by Niska et, al., 2004 designed a NN model to forecast 

hourly NOx concentration in Helsinki (Niska, Hiltunen, Karppinen, Ruuskanen, & 

Kolehmainen, 2004). In this research, a parallel genetic algorithm (GA) was built for NN 

input selection and high-level architecture of a multi-layer perceptron model. However, it 

is shown that the evaluation process was computationally expensive and limited the search 

technique. A predictive model based on NN targeting SO2, PM10, and CO levels in the 

Greater Istanbul area was built by Kurt et, al., 2008 (Kurt, Gulbagci, Karaca, & Alagha, 

2008). The results showed that relatively accurate predictions could be provided by NN 

that using the historical 3-15 days’ value as the training set to forecast the future three days. 

However, the forecasting period of this research is only three days, which is relatively 

short. In the meantime, the forecasting of the second and the third day requires the previous 

day’s value, which limited the accuracy and practicability. Other than that, this research 
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involved the day of week data as an input parameter, which improved the forecasting 

accuracy. A case study conducted by Azid et, al., 2014, focused on the air quality of 

Malaysia analyzed eight air pollutants in ten years (Azid et al., 2014). An artificial NN was 

developed with the principal component analysis (PCA) that requires only a few variables.  

Many researchers have considered integrating meteorological measures in 

forecasting to improve accuracy. Wen et al., 2019, exhibited a spatiotemporal 

convolutional long short-term memory (C-LSTME) NN extended model to perform the air 

pollution prediction (Wen et al., 2019). The historical air pollution data were utilized in the 

model as well as the k-nearest neighboring stations and the integrated meteorological data. 

It was claimed that the model was well performed for different time predictions at different 

region scales. Maleki et, al., 2019, conducted research to evaluate the hourly air pollution 

(ozone, NO2, PM10, PM2.5, SO2, and CO) concentration prediction ability of an artificial 

NN algorithm in Ahvaz, Iran, over a year (Maleki et al., 2019). The inputs of the 30-

neurons model include five meteorological parameters, time, date, and three hours and six 

hours previous pollution concentrations. The results demonstrated the correlation 

coefficient and root-mean-square error values of the prediction. However, there is no 

intercomparison to show the advantage or disadvantages of the artificial NN algorithm. 

Elangasingle et, al., 2014, proposed a protocol to extract the key information from 

meteorological parameters and the emission patterns of a year to build an artificial NN 

model (Elangasinghe, Singhal, Dirks, & Salmond, 2014). A case study was conducted in 

Auckland, New Zealand targeting NO2 pollution with eight input variables: meteorological 

parameters such as wind speed, wind direction, solar radiation, temperature, relative 

humidity, and time factors such as the hour of the day, day of the week and month of the 
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year. A simplified model was also created that will not significantly decrease the 

performance, which outperformed the linear regression model with the same inputs. 

 As a cutting-edge technology, machine learning has shown its abilities in air 

pollution forecasting for a predefined future period, which could voluntarily learn from the 

input data to improve the analysis. When compared to other forecasting methods, the 

advantages of the machine learning technique are significant to perform more accurate 

forecasting: the data precession speed is accelerated, automatic forecasting updates, more 

data capacity, hidden pattern identification of the data, and increased adaptability 

(Taranenko, 2019). In the research conducted by Shaban et al., 2016, univariate and 

multivariate machine learning algorithms that include support vector machines and M5P 

model trees were adopted to build one-step and multi-step ahead forecasting models 

targeting ozone, NO2, and SO2 (Shaban, Kadri, & Rezk, 2016). Results showed that the 

M5P algorithm yielded more accurate predictions when using different features. A study 

conducted in China compared different machine learning classification algorithms for 74 

cities (Xi et al., 2015). It is revealed in the research that the accuracy is positively related 

to the number of features selected to use, and the combined model is usually better than a 

unique model. Srivastava et al., 2018, implemented various classification and regression 

models that include linear regression, SDG regression, random forest regression, decision 

tree regression, support vector regression, artificial NN, gradient boosting regression and 

adaptive boosting regression to forecast the air pollution concentration such as PM2.5, 

PM10, CO, NO2, SO2, and ozone (Srivastava, Singh, & Singh, 2018). After a case study of 

New Delhi and evaluation, the support vector regression and artificial NN outperformed 

other algorithms in the forecasting. 
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 Besides air pollution level forecasting, machine learning technology can often be 

used in other air pollution-related analyses. For instance, Bellinger et al., 2017 reviewed 

the utilization of machine learning and data mining on air pollution epidemiology 

(Bellinger, Mohomed Jabbar, Zaïane, & Osornio-Vargas, 2017). In this research, the air 

pollutants, public health, and environmental factors were merged and imported to find the 

patterns, extract information and make predictions. It is concluded that the early studies are 

more focused on artificial NN, and the decision trees, support vector machines, k-means 

clustering, and the Apriori algorithm are extensively used in more recent works. From the 

literature review of previous research, the meteorological parameters and transportation 

data can be used to perform the air pollution forecasting, however, the year-round or other 

long-term forecasting is always underperformed with relatively lower accuracy. On the 

other hand, new technologies such as machine learning and data mining were usually 

conducted based on time-series analysis, the meteorological parameters were occasionally 

considered as improving factors. Thus, the use of data mining and machine learning to 

analyze the air pollution concentration pattern and further forecast the pollution level in the 

long-term future is meaningful and practical. 
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CHAPTER 3 

DESIGN OF THE STUDY 

 This research involves using ten years of historical air pollution concentration 

records and the air pollution influencing factors, including meteorological measurements 

and travel activity status data for temporal statistical analysis and frequent pattern mining 

analysis. Based on the inherent relationships between the air pollution concentration and 

influencing factors, a pool of supervised machine learning models will be developed, 

compared, and evaluated, and the most fitted models for each pollutant will be selected to 

perform the air pollution concentration level prediction for the year 2020. The main 

analytical tools used in this research include by not limited to Python 3.7, Pandas 1.2.4, 

Scikit-Learn 0.24.1, Mlxtend 0.18.0, Scipy 1.6.2, Matplotlib 3.3.4, and Microsoft Excel 

VBA.  

To achieve the research objectives, various datasets are collected and utilized and 

analytical analyses are conducted as shown in Figure 1. Figure 1 is the flow chart of this 

research, in which, the magnetic disk objects are datasets, the block arrow objects are 

processes, and the rectangle objects are analysis. As shown in the flow chart, there are 

mainly four modules that include: (1) data processing that is shown in the blue block, (2) 

temporal analysis that is shown in the red block, (3) frequent pattern mining analysis that 

is shown in the gray block, and (4) machine learning forecasting that is shown in the green 

block.  
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Figure 1. Flow Chart of This Research 

As Figure 1 indicates, data collection and processing are fundamentals of this 

research, while all calculations and analyses are based on the data collected. Three parts of 

data from the year 2011 to 2020 are utilized in this research, which includes air pollution 

concentration data, meteorological measurements data, and travel activity data. All three 

parts of data are preprocessed and transformed into datasets of the same format that can be 
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analyzed. The statistical and temporal analyses are performed by a series of statistical tests 

such as the ANOVA test and correlation test, and temporal characteristics analysis. The 

datasets are then integrated into a uniform dataset that each air pollution record is 

associated with a series of meteorological and traffic attributes. The frequent pattern 

mining is performed on the binned integrated dataset by Frequent Pattern (FP)-Growth and 

Apriori algorithms, which yields the frequent pattern rules with corresponding support 

values. The machine learning forecasting process is conducted on the split integrated 

dataset. The proper machine learning models are selected through a model selection 

process, and the selected models are trained to perform air pollution forecasting. The 

forecasting results are validated and evaluated by the real data from the dataset. The details 

of the processes, algorithms, modeling, and analysis are shown in the rest of this chapter.  

 

3.1 Data Collection 

 

3.1.1 Air Pollution Concentration Data Collection 

The air pollution and meteorology data are collected from the Texas Commission 

on Environmental Quality. The TCEQ is the fourth largest environmental agency in the 

US, which has sixteen regional offices and the headquarter is located in Austin. The TCEQ 

is currently operating more than 200 air monitoring stations serving over 25 million 

statewide areas in Texas including industrial and large population regions. There are 

different types of air toxins The TCEQ online database is called the Texas Air Monitoring 

Information System (TAMIS). The air quality data values for parameters include criteria 

pollutants, hazardous air pollutants (HAPs), volatile organic compounds (VOCs), and 
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meteorological data. Different air pollutants are monitored by different networks in TCEQ. 

The networks include: (1) a Community Air Toxics Monitoring Network that collects every 

six days from urban and industrial areas and analyzed by a gas chromatograph-mass 

spectrometer, (2) Automated Gas Chromatography (AutoGC) Samplers that are located in 

major cities collect 40 minutes of data per hour and analyzed automatically on-site, (3) 

Carbonyl samplers that collect carbonyl compounds by high-performance liquid 

chromatography every six days in major cities, and (4) Air toxic metal monitors collect 

twenty-four metallic PM2.5 and PM10 samples every six or three days. For this research, the 

main air pollutant data are collected by the AutoGC samplers. 

The target air pollutants in this research include ground-level ozone, PM2.5, NO2, 

and NOx. The meteorological measurements include solar radiation, temperature, pressure, 

precipitation, relative humidity, resultant wind speed, and resultant wind direction. The 

time span of the historical data should be ten continuous years from 2011 to 2020. 

Currently, there are more than 20 air monitoring sites operated by TCEQ in the Houston-

Galveston area. However, during the data collection process, most of the sites failed to 

provide qualified raw data from the year 2011 to 2020. Most of the sites have one of the 

following issues that cannot be selected as the data collection site by this research: (1) too 

much null data from the monitoring sites that significantly influence the data quality, (2) 

too much invalid data such as negative measurements for some parameters, (3) 

discontinues measurements that most of the monitoring sites are involving, some of them 

may be inactivated for more than two years, (4) located in the areas that cannot represent 

the Houston metropolitan area. Based on the above criteria, air monitoring site 403 (TCEQ 

site name: Clinton C403/C304/AH113, which is located at 9,525 ½ Clinton Dr. nearby 
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Highway 610 and the ship channel was selected to perform the data collection as shown in 

Figure 2. 

 

Figure 2. Air Monitoring Sites in Houston-Galveston Area and Site 403 

TABLE 3. AIR POLLUTANTS CONCENTRATION COLLECTED FROM TCEQ 

DATABASE 

Air pollutants  Unite 

Ground-level ozone O3 Parts per billion (ppb) 

Fine Particulate Matter PM2.5 Micrograms per Cubic Meter (ug/m3) 

Nitrogen Dioxide NO2 Parts per billion (ppb) 

Nitrogen Oxides NOx Parts per billion (ppb) 

 

 The PM2.5 data is measured near real-time for particulates less or equal to 2.5 micros 

in size from the surrounding air, which is made at local conditions and not corrected for 

temperature or pressure. For NOx measurement, all higher oxides of nitrogen are grouped. 

The hourly air pollution concentration raw data that is collected as shown in TABLE 3 was 

calculated by the average of the testing equipment reading by every five minutes. 
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3.1.2 Meteorological Measurements Data Collection 

 Different technologies are utilized to perform the monitoring for different 

meteorological measurements. All hourly meteorological measurements are collected from 

the same TCEQ monitoring site (site 403) as the air pollution concentration.  

TABLE 4. METEOROLOGICAL MEASUREMENTS COLLECTED FROM 

TCEQ DATABASE 

Meteorological Measurements Unit 

Solar Radiation langleys per minute (Langleys/min) 

(Outdoor) Temperature degrees Fahrenheit (oF) 

(Barometric) Pressure millibars 

Precipitation inches 

Relative Humidity Percent (%) 

Resultant Wind Speed miles per hour (mph) 

Resultant Wind Direction degrees compass (o) 

 

TABLE 4 shows the meteorological measurements collected from the TCEQ online 

database. Solar radiation is measured by the total electromagnetic radiation emitted by the 

sun and received by the monitoring site. The temperature is measured outside the 

monitoring site. Precipitation is the rainfall from the cloud to the ground in liquid or solid 

form. The relative humidity is the percentage measurement of the moisture in the air that 

ranges from 0% that means no humidity to 100% that means totally saturated air. The 

resultant wind speed and direction is a single vector that is measured by converting the five 

minutes wind speeds and directions. The resultant wind direction shows where the wind is 
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blowing, which is measured to the nearest degree on a 360degree compass that the 0° 

(360°) means the north, and 180° means the south. The details about the resultant wind 

direction are shown in TABLE 5. 

TABLE 5. RESULTANT WIND DIRECTIONS SHOWN ON COMPASS 

Cardinal Direction Degree Direction  

N 348.75 - 11.25 

 

NNE 11.25 - 33.75 
NE 33.75 - 56.25 
ENE 56.25 - 78.75 
E 78.75 - 101.25 
ESE 101.25 - 123.75 
SE 123.75 - 146.25 
SSE 146.25 - 168.75 
S 168.75 - 191.25 
SSW 191.25 - 213.75 
SW 213.75 - 236.25 
WSW 236.25 - 258.75 
W 258.75 - 281.25 
WNW 281.25 - 303.75 
NW 303.75 - 326.25 
NNW 326.25 - 348.75 

 

 

3.1.3 Traffic Situation Data Collection 

The ten years traffic situation data from the year 2011 to 2020 is collected in form 

of annual speed averages from the online database that is operated by Houston TranStar: 

http://traffic.houstontranstar.org/hist/histmain.aspx. The data is recorded and collected in 

15 minutes intervals from 5:00 to 19:00 during full years' worth of weekdays. Various 

technologies are used to measure the average speeds of on-road vehicles, which are also 

utilized by the Houston Transtar speed maps, roadside travel time message signs, and radio 

and television media traffic condition broadcasting, etc. The main technology for average 
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on-road vehicle speed detecting is the Anonymous Wireless Address Matching (AWAM) 

which is supported by BluetoothTM.  

Currently, more than 20 highway segments’ annual average speed can be achieved 

from the Houston TranStar database. In this research, the traffic situation of the highway 

that is nearest to the air monitoring site 403 is critical, which is Highway 610 East Loop. 

There are two series of annual average speeds include the Southbound from Wayside Drive 

to Broadway Street (4.9 miles) and the Northbound from SH-225 to Gellhorn Drive (4.9 

miles). From the traffic speed data collection, ten years of historical data with each year 

containing 56 15-minutes time interval records for each direction are collected.  

   

3.2 Raw Data Preprocessing and Statistical Analysis 

3.2.1 Data Preprocessing 

 The raw data collected from the TCEQ contains some invalid measurements. Those 

invalid measurements may impact further analysis. During the data preprocessing step, the 

main job is to eliminate invalid measurements. There are six error types in the raw data as 

in TABLE 6. 

TABLE 6. INVALID MEASUREMENTS OF RAW DATA 

Error Codes Detailed Information 

NA 

The average cannot be computed until all the measurements are 
received. This average will not be available until enough data has 
been received for the current or past hour. 

AQI 
Data rejected by TCEQ validators. The TCEQ validators have 
reviewed the data and determined that it is not valid. 
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FEW 

Not enough five-minute measurements available to create an 
hourly average. There must be 45 minutes of data available each 
hour for a valid hourly average to be created. 

LIM 

Data exceeds automatic criteria for rejection. For meteorological 
parameters, this indicates that the measurements fall outside the 
EPA guidelines for meteorological collection of data. For pollution 
parameters, this indicates that the instrument failed a scheduled 
automatic calibration or span check. 

LST 

Lost data. Usually indicates that data was never collected. This 
may also be triggered by delays or breakdowns in data 
communications. Try retrieving the data later. 

QAS 
Quality Control audit in progress. TCEQ conducts periodic 
Quality Control audits on each monitoring site. 

 

 The calculation and analysis of the data in this research require numerical records 

or float and integer data types, thus, the above invalid data types need to be eliminated. 

There are several techniques to remove or convert the invalid data such as using the moving 

average, replacing it with the nearest valid data, and replacing it with a certain value. In 

this research, the data will be processed by frequent pattern mining and machine learning 

analysis, it is essential to keep the original data trends untouched and to avoid the subjective 

factors of the conductor. To meet this objective, the invalid records in the raw data are 

dropped through all parameters. To unify the data sets, if a record x of a parameter is 

invalid, the record x of all parameters will be dropped respectively. The raw data collected 

from the TCEQ database contains 87,360 hourly records originally. 14,124 invalid records 

are removed from the data preprocessing and the remaining 73,236 valid records are 

processed to the following analysis. 

 There is no invalid data in the annual average traffic speeds collected from the 

Houston TranStar, however, preprocessing is necessary to convert the data into the same 
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format as the air pollution concentration and meteorological measurements records. As 

introduced in the data collection section, the original average traffic speeds are recorded 

annually in the 15-minutes time interval from 5:00 to 19:00 that includes both traffic 

directions of eastbound and southbound. There are generally three steps in traffic speed 

data preprocessing. (1) For each 15-minutes time interval data, calculate the mathematical 

average between the northbound and southbound speed to get the on-road speed for the 

selected road segment. (2) The hourly average traffic speeds are calculated by the 

mathematical average of the four 15-minutes time intervals on-road speed from the 

previous step. (3) Assume the on-road speeds from 0:00 to 5:00 and 20:00 to 24:00 equal 

to the designed free-flow speed of the selected road segment, which is 60 mph. By the steps 

above, the traffic speed data are converted to hourly records.  

 

3.2.2 Statistical Analysis 

To ensure the data of each parameter are comparable and significantly different 

between the ten years, the one-way ANOVA test is performed with the significance level 

of 0.05. The temporal analysis is then performed on the preprocessed data collected from 

each agency’s database are analyzed. Four types of temporal characteristics are analyzed 

for historical air pollution concentration levels and meteorological measurements from the 

year 2011 to 2020, which include the annual, monthly, day-of-week, and hourly 

characteristics. For details, the analysis of the annual characteristics provides the yearly 

variation trends of the air pollution concentration and meteorological measurements; the 

analysis of the monthly characteristics provides the monthly and seasonal variation trends 

of the air pollution concentration and meteorological measurements; due to the day of 
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weeks is an artificial definition that is not related to the earth movements and only related 

to the human activities, only air pollution concentration day-of-week characteristics are 

analyzed to provide the daily variation trends in a week; the analysis of the hourly 

characteristics provide the variation trends of air pollution concentration and 

meteorological measurements through a day. The temporal characteristics of the average 

traffic speeds are analyzed to provide the yearly and hourly traffic variation trends. 

To measure and analyze the linear correlation between the parameters, Pearson’s 

correlation coefficients r are calculated, which can be expressed by Equation 1. 

Pearson’s r = ∑ (xi-x�)(yi-y�)ni=1 �∑ (xi-x�)2ni=1 �∑ (yi-y�)2ni=1�   (1) 
where: 

� = the sample size of the data collected, 

��, ��= the single sample indexed with �, 
�̅, �� = the sample mean of the data collected. 

The Pearson’s r values range from -1 to +1 for negative and positive correlations, 

respectively. The r values that are closer to the -1 and +1 values present the stronger 

correlation between the entries, and closer to 0 present a lower correlation.  

 

3.3 Frequent Pattern Mining 

According to the theory of data mining, the concept of “pattern” is a set of items, 

subsequences, or substructures that occur frequently together (or strongly correlated) in a 
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data set. Patterns can represent intrinsic and important properties of datasets. To perform 

the frequent pattern mining analysis, the format of the input data needs to be converted. 

 

3.3.1 Input Datasets Integrating and Data Fitting 

The original data are in continuous data types. However, frequent pattern analysis 

is better performed on discrete data types such as inters and labels. In this research, the first 

step of frequent pattern mining analysis is to categorize the air pollution concentrations, 

meteorological measurements, and average traffic speeds into bins that can be represented 

as integers. The bins for each parameter are determined by their minimum, maximum, and 

quartile values.  

After binning each parameter, four air pollutants datasets, seven meteorological 

factors’ datasets, and one average traffic speed dataset are integrated into one dataset of 

records that contains four classes, eight attributes, and 73,236 records. The example of one 

record in the integrated dataset is shown in TABLE 7.  

TABLE 7. EXAMPLE OF A RECORD IN THE INTEGRATED DATASET 

Class Attributes 

Ground-
level 
ozone PM2.5 NO2 NOx Solar Temperature Pressure Precipitation 

Relative 
Humidity 

Wind 
Speed 

Wind 
Direction 

Traffic 
Speed 

27.0 5.2 6.1 5.7 0.0 59.4 1009.0 0.0 53.6 4.1 130.0 60.0 

 

As stated above, there are 73,236 records in the integrated dataset. To perform 

frequent pattern mining on the input data, the values in the integrated dataset need to be 

converted into binary format. The process is to list all bin values of parameters and set 
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them as new attributes, and the parameters bin array will be transformed into a sparse array. 

The transformed dataset is also called a fitted dataset. For example, in the record shown in 

TABLE 7, the ground-level ozone and solar integer entries are transformed into binary 

entries in TABLE 8.  

TABLE 8. EXAMPLE ENTRIES IN THE TRANSFORMED DATASET 

Integrate
d Dataset 
Entries 

Ground-level ozone Solar 

3 4 

Fitted 
Dataset 
Entries 

Ground-
level 
ozone_bin_
1 

Ground-
level 
ozone_bin_
2 

Ground-
level 
ozone_bin_
3 

Ground-
level 
ozone_bin_
4 

Solar_bin_
1 

Solar_bin_
2 

Solar_bin_
3 

Solar_bin_
4 

0 0 1 0 0 0 0 1 

 

As shown in TABLE 8, within the fitted data, each air pollutant concentration level 

record contains a series of binary information of all related factors. If a factor is related to 

an air pollutant concentration level record, the corresponding input is one. Otherwise, the 

input is zero. In this research, different air pollutants are analyzed separately.  

 

3.3.2 Understanding Frequent Pattern Mining 

The process of pattern discovery is to find the inherent regularities in an air 

pollutant concentration level record, in which the influencing factors are considered as 

items. In this research, the term ‘Item’ is the listed attributes on each record (e.g., solar, 

temperature, pressure, precipitation…), and the term “Itemset” is a set of one or more 

items. A k-itemset can be represented as � = (��, � , … , �"). The absolute Support or count 

of X is the frequency or the number of occurrences of itemset X. The relative Support s is 
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the percentage of transactions that contain X, which is also the probability an air pollutant 

concentration level record contains X. An itemset X is frequent if the Support of X is no 

less than a minimum support (minsup) threshold (#). 

The Support, Confidence, and interestingness measurement LIFT can be calculated 

using Equations 2- 4 (Lin, Wang, & Sadek, 2015). 

 $(%, &) =  $(% ∪ &) = (()∪*)((+)       (2) 

 ,(%, &) =  -()∪*)-())         (3) 

 .(%, &) =  /()∪*)-(*) =  -()∪*)-())∗-(*)       (4) 

where, 

s(C, D): the Support for air pollutant concentration C  and influencing factor value D 

occurring together, ranging (0, 1), 

n(C, D): the number of events when C and D occur together, 

n(T):  the number of total events, 

c(C, D): the Confidence for event D to occur when event C occurs, ranging (0, 1), 

l(C, D): the interestingness measurement LIFT (ranging (0, ∞)) for event D to occur when 

event C occurs, which tells how C and D are correlated, 

if l(C, D) = 1, events C and D are independent, 

if l(C, D) in (1, ∞), events C and D are positively correlated, and 

if l(C, D) in (0, 1), events C and D are negatively correlated. 

The Support s(C, D) can provide the scale of an air pollutant concentration record 

occurring on a set of influencing items. The Confidence c(C, D) is the likelihood of an item 
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occurring if another item happened. The LIFT illustrates the increase in an air pollutant 

concentration record when another item happened. 

 

3.3.3 Frequent Pattern Mining Algorithms 

 Two typical frequent pattern mining algorithms are widely used: the Apriori 

algorithm and the Frequent Pattern (FP)-Growth algorithm(Aggarwal, Bhuiyan, & Al 

Hasan, 2014). Figure 3 shows the flow chart of the Apriori algorithm. 

 

Figure 3. Flow Chart of The Apriori Algorithm (Han, Pei, & Kamber, 2011) 
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The Apriori algorithm scans all possible itemsets and conducts all calculations. As 

shown in Figure 3, the itemset candidates of air pollution factors are generated from the 

fitted dataset as inputs, which are compared with the Support that is set by the minsup. If 

the Support of the candidate itemset is greater than the minsup, the frequent items are 

recorded and the process goes through the null test. The output is then generated after 

passing null tests. The pseudo-code of the Apriori algorithm is shown as follows (Han, Pei, 

Yin, & Mao, 2004).  

 

 Unlike the Apriori algorithm, the FP-Growth algorithm does not consider all 

possible itemsets. There are generally two parts of the FP-Growth algorithm, which are 

creating the FP-Tree and applying the FP-Growth algorithm. The FP-tree is created by: (1) 

scanning the database once and collecting the dataset F along with its Support and sorting 

the dataset by descending sequence and saving it as a list of datasets; (2) creating the root 

Pseudo-code of the Apriori algorithm 
%": %2�3�3245 �456$54 78 $�95 :; 
<": <=5>?5�4 �456$54 78 $�95 :; 
: ≔ 1; 
<" ≔ {8=5>?5�4 �456$}; // frequent 1 − �456$54 

Iℎ�.5 (<"! = ∅)// when <" is nonempty 

           37 { %"Q� ≔ ,2�3�3245$ R5�5=2453 8=76 <"; // candidate generation 

                     &5=�V5 <"Q� W� ,7?�4��R ,2�3�3245$ �� %"Q� X�4ℎ =5$Y5,4 47 Z&[   
                     24 6��_$?YY7=4;  : ≔ : + 1} 

=54?=� ∪" <"  // return <" generated at each level 
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r of the FP-tree and note it as null; for each transaction in the database Z�, selecting frequent 

items and sorting the list, and calling insert_tree(Z� , r); and (3) creating the function 

insert_tree(Z�, r) by checking if node r has successive nodes N that N.item-name=p. item-

name, N increase by 1 if true, or creating a new node N that links to its parent node and set 

its value to 1. Figure 4 shows the flow chart of the FP-Growth algorithm. 

 

Figure 4. Flow Chart of The FP-Growth Algorithm (H. Li, Wang, Zhang, Zhang, & 

Chang, 2008) 

As shown in Figure 4, the right part shows the construction of the FP-Tree and the 

left part shows the application of the FP-Growth algorithm. The pseudo-code of the FP-

Growth algorithm is shown as follows (Han et al., 2004). 
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Pseudo-code of FP-Tree Z:  `�$4 78 4=2�$2,4�7�$; 6��_$?Y: 6���6?6 $?YY7=4 V2.?5;   358��5 <[] = ∅; 87= 52,ℎ 4=2�$2,4�7� Z�  �� Z         87= 52,ℎ �456 2c  �� Z�                   37{ <[2�] + +} $7=4 <[]; 358��5 �?.. =774 =; 87= 52,ℎ 4=2�$2,4�7� Z�  �� Z       37{ Z�  7=35=53 W� <               call insert_tree(Z� , =)}; 87= 52,ℎ 4=2�$2,4�7� Z�  �� Z end for // insert_tree(Te, r) �8 = ,7�42��$ �745 f & f. �456_�265= Z. �456_�265 ; 
    4ℎ5� f. ,7?�4 + +; 
    5.$5  ,=524 �5X �735 f;                f. �456 − �265 = Y. �456 − �265;                f. ,7?�4 + +;                Z. Y2=5�4 = =;                Y7��4 f. �735i  �� : 47 4ℎ5 �735                X�4ℎ 4ℎ5 $265 �265   5�3 �8 

 �8 Z! = ∅; 
      4ℎ5� f. ,7?�4 + +; 
      ,2.. ��$5=4_4=55(Z� , =);  5�3 �8 

Pseudo-code of FP-Growth // (FP-Tree, ∅ ) k8 4=55 ,7�42��$ $��R.5 Y24ℎ l 4ℎ5� 87= �735$ ,76W��24�7� 78 Y24ℎ l �7453         2$ m         37{ ,=5245 Y2445=� m ∪ n,                 $?YY7=4 = 6��_$?Y 78 �735$ �� m} 5.$5 87= 52,ℎ n�  �� 4=55                  37{ ,=5245 Y2445=� m = n ∪ n�                           $?YY7=4 = n�. $?YY7=4                          ,7�$4=?,4 m ,7�3�4�7�2.                           3242W2$5                          ,7�$4=?,4 m ,7�3�4�7�2.                           Z=55o                            �8 Z=55o! = ∅                                4ℎ5� ,2.. <l− p=7X4ℎqZ=55o , mr                           5�3 �8 }             5�3 87= 5�3 �8 
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 To apply the FP-tree and perform the FP-Growth mining, the steps include (1) 

checking if the tree has a single pass P, if true, then creating pattern m ∪ n and setting its 

Support counts as the minsup count of β; (2) if false, for each 2�, creating a pattern m =
2� ∪ n  with support = 2� .support; (3) constructing β conditional tree as 4=55o  and 

checking if it is not null, if true, then calling function FP-Growth(4=55o , m). The FP-

Growth algorithm only scans the dataset twice when creating the FP-tree for being utilized 

to store the information(Koh & Shieh, 2004), which avoids repeated scans in the Apriori 

algorithm for larger datasets. The inputs of the FP-Growth algorithm include all relevant 

air pollutant concentration records and the preset minsup to be finalized through multiple 

test runs.  

While the mining results of the Apriori and FP-Growth algorithms are the 

same(Xin, Han, Yan, & Cheng, 2005), the FP-growth algorithm runs faster than the Apriori 

algorithm when the settled minsup is under a specific range. If the minsup is relatively 

small, it would be more efficient to use the Apriori algorithm. In this research, both 

algorithms are utilized in the analysis depending on the minsup threshold. 

 

3.4 Machine Learning and Forecasting 

 Machine learning is capable to process a large amount of data including multiple 

attributes and making accurate predictions through a robust model. In this research, the 

meteorological measurements and the average traffic speed will be utilized as attributes to 

predict the corresponding air pollution concentration levels. Seven most representative 

machine learning algorithms are considered to build the forecasting models, and two 

models are selected for each air pollutant. The historical data from the year 2011 to 2019 
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will be imported to train the selected models that perform the 2020 air pollution prediction. 

The actual air pollution measurements from the year 2020 will be used to evaluate the 

prediction. As an innovation of this research, the temporal variances of each influencing 

parameter are considered to further improve the forecasting accuracy. 

 

3.4.1 Machine Learning Forecasting Concepts 

 The concept of air pollution forecasting using machine learning models involves 

using meteorological measurements and traffic situations to predict the real-time air 

pollutants’ concentration through a certain time frame. In this research, eight attributes are 

considered, which include the hourly solar radiation, temperature, pressure, precipitation, 

relative humidity, resultant wind speed, wind direction, and annual average traffic speeds 

on the nearby highway from the year 2011 to the year 2020. Four classes are expected that 

includes the hourly ground-level ozone concentration, PM2.5 concentration, NO2 

concentration, and NOx concentration.   

 Machine learning models are able to learn automatically and perform self-

improvement by using the data. With this ability, the more data that is fed to the machine 

learning models, the more accurate the forecasting results because it will enable the models 

to find even subtle patterns in the data and to use the patterns it identified to make better 

decisions. The machine learning prediction flow chart can be briefly described in Figure 5. 

 



47 

 

 

 

 

Figure 5. Forecasting by Machine Learning 

 As shown in Figure 5, the datasets that are preprocessed are separated into two 

subsets, the first one is the historical dataset that contains the data from the year 2011 to 

2019, the second one is the target dataset that contains the data from the year 2020. The 

historical dataset is used to perform the model selection and model training, the target 

dataset is used to perform the forecasting. In addition, the historical dataset is further 

divided into the training dataset and validation dataset that both include attributes and 

classes. The candidate machine learning algorithms are trained by the training dataset, and 

the accuracy of the models that are built are evaluated by the validation dataset. If the 

accuracy is not accepted, then the parameters of the models will be adjusted or the 

algorithm will be rejected. If the accuracy is accepted, then the target dataset will be fed to 

the forecasting model, and the prediction results will be provided.  
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3.4.2 Machine Learning Models 

 The prediction using these inputs to achieve the outputs can be fulfilled by 

supervised machine learning. Due to the input data being continuous data types rather than 

discrete values, regressions algorithms are used in this research. Seven most representative 

supervised machine learning regression algorithms are utilized in this research, which 

includes Polynomial Regression (PR) algorithm, Multilayer Perceptron (MLP) algorithm, 

XGBoost (XGB) algorithm, Support Vector Machine (SVM) algorithm, Random Forest 

(RF) algorithm, Linear Regression (LR) algorithm, and K-Nearest Neighbors (KNN) 

algorithm. 

 

3.4.2.1 Linear Regression Algorithm 

The model selection process starts from one of the most widely used predictive 

models and is usually the first type of regression model to be analyzed, which is linear 

regression. LR model analyzes the linear relationship between the dependent and 

independent variables. When there is only a single independent variable to be considered, 

the model is called simple linear regression. On the contrary, when multiple independent 

variables are considered, that is multiple linear regression. The number of independent 

variables in this research is eight, thus, multiple linear regression should be used, which 

can usually be demonstrated by the function shown in Equation 5 (Pedregosa et al., 2011). 

�� =  ms  +  m� ∗ ��,�  +  m ∗ ��,  + . . . +m( ∗ ��,(  + t�   (5) 

where, 
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n: numbers of the independent variables, 8 in this research, 

i: numbers of records, 73,236 in this research, 

��,(: independent variables/ attributes, 

��: dependent variable/ classes, 

ms: intercept, 

m(: coefficient of x, 

t�: error. 

 The objective of LR is to fit the line to the value of y by a given value of x by finding 

the best m values that the line fits the data best. Equation 5 can be further transformed into 

matrix form as shown in Equation 6. 

� = � ∙ m + t          (6) 

where, 

� = v��� ⋮��
x , � =

yz
{��+� +⋮��+|}

~ = �1 ⋮1 
��,� ⋯ ��,(⋮ ⋱ ⋮��,� ⋯ ��,( � , m = vmsm�⋮m(

x , t = vt�t ⋮t�
x. 

One of the well-developed algorithms to solve linear regression problems is called 

the least-squares estimation algorithm, which aims to minimize the sum of the mean 

squared loss. The least-squares estimation algorithm can be calculated by Equation (7, 8). 

Find m that 6�� ∑ (m ∙ �� − ��) �  
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          = ‖� ∙ m − �‖ = (� ∙ m − �)+(� ∙ m − �) 

              = �+ ∙ � − �+ ∙ � ∙ m − m+ ∙ �+ ∙ � + m+ ∙ �+ ∙ � ∙ m (7) 

Thus, when 

 �(�+ ∙ � − �+ ∙ � ∙ m − m+ ∙ �+ ∙ � + m+ ∙ �+ ∙ � ∙ m)�(m)  

= −2�+ ∙ � + 2�+ ∙ � ∙ m = 0      (8) 

And can be achieved by: 

m = (�+ ∙ �)�� ∙ �+ ∙ � 

 

3.4.2.2 Polynomial Regression Algorithm 

 Polynomial regression analyzes the relationship between the independent variable 

and the dependent variable to a certain degree. The polynomial regression can be 

considered as a special case of linear regression that the data are fitted on a curve. The 

polynomial regression model can be built as Equation (9, 10) (Pedregosa et al., 2011).  

�� =  ms  +  m� ∗ ��  +  m ∗ ��  +  m� ∗ ��� +. . . + m( ∗ ��(  + t�  (9) 

And in matrix form: 

 �����⋮��
� =

���
���
1 �� �� 1 � �  1 �� �� 

⋯ ��(� (��(⋮ ⋱ ⋮1 �� �� ⋯ ��(���
��� ∙

���
��msm�m ⋮m(���

�� + ���
��t�t t�⋮t� ���

��
     (10) 

Then, vector m can be calculated by:  
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�� =
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zz{���

���
1 �� �� 1 � �  1 �� �� 

⋯ ��(� (��(⋮ ⋱ ⋮1 �� �� ⋯ ��(���
���

+
∙

���
���
1 �� �� 1 � �  1 �� �� 

⋯ ��(� (��(⋮ ⋱ ⋮1 �� �� ⋯ ��(���
���
|
}}~

��
 

∙
���
���
1 �� �� 1 � �  1 �� �� 

⋯ ��(� (��(⋮ ⋱ ⋮1 �� �� ⋯ ��(���
���

+
∙ �����⋮��

�    (11)  

where, 

��: the dependent variable/ classes, 

��: the explanatory or independent variable/ attributes, 

�: degree of the polynomial regression, 

m(: weight parameters of the equation, 

t: random error. 

In the analysis, the degree of the polynomial regression is determined by test runs 

to avoid overfitting. 

 

3.4.2.3 Multilayer Perceptron Algorithm 

 The multilayer perceptron (MLP) algorithm is a kind of supervised learning that 

can learn nonlinear function approximators through a training dataset. It can be inferred 
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from the name, there can be one or more nonlinear layers that are called hidden layers 

between the input and the output layer. 

 

Figure 6. Layers and Structures of MLP 

 As shown in Figure 6, the left layer is the input layer, the right layer is the output 

layer, and the layers in between are the hidden layers. x1, x2, x3,…, xn represent the input 

attributes, and n = 8 in this research. The neurons in the hidden layers are transformed from 

the values of previous layers by a weighted linear summation and a nonlinear activation 

function as shown in Equation (12) (Pedregosa et al., 2011). 

 ∅(X��� + X � +. . . +X(�()       (12) 

where w1, w2, …, wn are the weights of each attribute, and ∅ is the nonlinear activation 

function that is widely used as: 
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ℎ�Y5=W7.�, 42�R5�4 ∅ = 42�ℎ(2),      (13) 

.7R�$4�, $�R67�3 ∅ = 1 (1 + 5�Y(−2))�      (14) 

The hyperbolic tangent and logistic sigmoid activation functions have the relationship as: 

 
(42�ℎ(2) + 1) 2� = 1 (1 + 5�Y(−2))�      (15) 

 The learning process of the MLP algorithm is performed in the perceptron 

involving changing connection weights based on the error. The degree of error is the 

difference between the target value d and the perceptron generated value y in an output 

node j in the nth data point, which can be represented by (Pedregosa et al., 2011): 

 5c(�) = 3c(�) − �c(�)       (16) 

The objective is to minimize the error in the entire outputs: 

 6�� t(�) = 1 2(∑ 5c (�)c )�        (17) 

By gradient descent, 

 △ Xc�(�) = −� ��(()���(() ��(�) = −�(5c(�)∅� �Vc(�)�)��(�) 

= −�(∅� �Vc(�)� ∑ (− ��(()���(() X"c(�)))��(�)"   (18) 

where, 

��: output of the previous neuron, 

�: learning rate that is predetermined, 
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Vc: induced local field, 

∅�: derivative of the activation function. 

 

3.4.2.4 XGBoost Algorithm 

 The XGBoost means the Extreme Gradient Boosting, which is developed based on 

the gradient boosting library that is higher in efficiency and flexibility. The boosting is a 

term in learning technique that is capable to build a strong classifier and regressor and 

controls both bias and variance. Various boosting algorithms are developed such as 

adaptive boosting (AdaBoost), which was the first boosting algorithm aiming to perform 

binary classification; gradient boosting, which is one of the most powerful predictive 

models technique that minimizes the loss function by adding weak learners; and 

XGBoosting (Sreekanth, 2020). 

The training of the XGBoost algorithm is to optimize the objective function like all 

supervised learning algorithms. The objective function of the XGBoost for each x in the 

dataset can be written as (J. Li, 2017): 

�`(�, 8���(�) + 8�(�)) �8�(�)� = 0     (19) 

After the Taylor expansion around the current estimate 8���(�): 

 `q�, 8���(�) + 8�(�)r 

                         ≈ `(�, 8���(�)) + R�(�)8�(�) + ℎ�(�)8�(�) 2�    (20) 

where,  



55 

 

 

 

R�(�): the gradient as the gradient boosting algorithm, 

ℎ�(�) = � `(¡, 8(�)) �8(�) � , 8(�) = 8���(�)    (21) 

while the loss function is: 

 `(8�) ≈ ∑ [R�(��)8�(��) + ℎ�(�)8�(�) 2� ] + ,7�$42�4(�¢�  

  ∝ ∑ ∑ [R�(��)Xc� + ℎ�(�)Xc� 2� ]�∈¥�¦+¦c¢�     (22) 

 `(8�) ∝ ∑ [pc�Xc� + §c�Xc� 2� ]+¦c¢�      (23) 

 `(8�) ∝ − � ∑ [pc� §c�� ]+¦c¢�        (24) 

which is the structure of the tree that the smaller, the better, where, 

pc�: sum of R�(�) in region j, 

§c�: sum of ℎ�(�) in region j, and 

 Xc� = − ¨pc� §c�� © , ª = 1, . . . , Z�      (25) 

When splitting a leaf into two, the score it gains is calculated by ("Introduction to Boosted 

Trees," 2020):  

 p2�� = � «pc�¬ §c�¬� + pc�¥ §c�¥� − pc� §c��  

            = � «pc�¬ §c�¬� + pc�¥ §c�¥� − (pc�¬ + pc�¥) (§c�¬ + §c�¥)�  (26) 
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When considering the regularization, the loss function can be written as: 

 `(8�) ∝ ∑ [pc�Xc� + §c�Xc� 2� ]+¦c¢� + ®Z� + � ¯ ∑ Xc� +¦c¢� + n ∑ °Xc�°+¦c¢�  

  = ∑ [pc�Xc� + §c�Xc� 2� + n°Xc�°]+¦c¢� + ®Z�   (27) 

where, 

®: penalization term on the number of terminal nodes, 

n: regularization of L1, 

¯: regularization of L2. When the optimal weight for region j is defined as: 

 Xc� =
±²³
²́− ¨(pc� + n) (§c� + ¯)� © , pc�µ�¶

− ¨(pc� − n) (§c� + ¯)� © , pc�·¶0, 5.$5
    (28) 

The gain of each split is then calculated as: 

 p2�� = � [Z¶(pc�¬) (§c�¬ + ¯)� + Z¶(pc�¥) (§c�¥ + ¯)� −
                             Z¶(pc�) (§c� + ¯)� ] − ®      (29) 

where, 

 Z¶(p) = ¸p + n, p < np − n, p > n0, 5.$5        (30) 

After the boosting tree is constructed by the equations above, the XGBoost 

algorithm is fully developed. 
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3.4.2.5 Support Vector Machine Algorithm 

 The Support Vector Machine (SVM) is a type of supervised machine learning 

algorithm that is capable of both classification and regression (Cortes & Vapnik, 1995). 

The SVM was developed based on statistical learning frameworks and robust in prediction 

by linear and nonlinear models. The advantages of SVM include high effectiveness on high 

dimensional spaces and when the number of dimensions is greater than that of samples, 

memory efficient and versatile and customizable Kernel functions. However, some 

disadvantages of SVM such as over-fitting may present (Pedregosa et al., 2011). In this 

research, the SVM regressor (SVR) is utilized to perform the air pollution prediction in the 

model selection section, in which the primal problem is presented in Equation (31, 32) 

(Pedregosa et al., 2011). 

 6��»,¼,½½∗ �� X+X + % ∑ (¾� + ¾�∗)(�¢� �     (31) 

 $?Wª5,4 47: �� − X+¿(��) − W ≤ t + ¾� ,     (32) 

                       X+¿(��)  + W − �� ≤ t + ¾�∗, 
           ¾� , ¾�∗ ≥ 0, � = 1, . . . , � 

And for Linear SVR, the primal problem can be formulated as: 

 6��»,¼ �� X+X + % ∑ 62�(0, |�� − (X+¿(��) + W)| − t)�¢� �  (33) 

where (Shalev-Shwartz, Singer, Srebro, & Cotter, 2011), 

i=1,…,n, 
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w: normal vector to the hyperplane X+¿(�)  + W, 

b: intercept, 

¿: identity function, 

¾� = 62�(0,1 − ��(X+�� − W)): the smallest nonnegative number satisfying the equation, 

C: penalty term that controls the strength of the penalty. 

The predictions that are at least t away from the true target value will be penalized by ¾� , ¾�∗ 

depending on the predictions lie above or below the t range (Pedregosa et al., 2011). 

 The dual problem can be written as: 

 6��¶,¶∗ �� (n − n∗)+Ã(n − n∗) + t5+(n + n∗) − �+(n − n∗)�  (34) 

 $?Wª5,4 47: 5+(n + n∗) = 0,       (35) 

                       0 ≤ n� , n�∗ ≤ %, � = 1, . . . � 

where, 

e: all ones vector, 

Q: n by n semidefinite matrix that by the kernel Ã�c ≡ Å(��, �c) = ¿(��)+¿(�c), 

n�: dual coefficients that are bounded by zero and C, 

And the prediction can be calculated by: 

 ∑ (n − n∗)Å(��, �) + W�∈ÆÇ        (36) 
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3.4.2.6 Random Forest Algorithm 

 The Random Forest (RF) algorithm is a type of ensemble method that combines the 

prediction of several base estimators, which have several improvements in generalizability 

and robustness (Pedregosa et al., 2011). RF is one of the most used algorithms that’s 

capable of classification and regression (Donges, 2020). Numbers of decision trees are built 

when constructing the RF algorithm, and the disadvantages of decision trees such as 

overfitting can be avoided by increasing the number of trees (Friedman, Hastie, & 

Tibshirani, 2001; "Random Forest Algorithm," 2020). 

 Two phases are involved in creating the RF algorithm, which include the decision 

tree creation phase and the tree prediction phase. By implementing these two phases, a 

number of random data points from the training set need to be selected to build the decision 

trees and repeat, find the predictions of each decision tree and assign the new data points 

to the category that have the majority votes ("Random Forest Algorithm," 2020). The node 

importance of each decision tress is calculated by Gini importance (Ronaghan, 2018): 

 �c = Xc%c − XiÈÉÊ(c)%iÈÉÊ(c) − XË�ÌÍÊ(c)%Ë�ÌÍÊ(c)    (37) 

where, 

�c: the importance of node j, 

Xc: weight of samples reaching node j, 

%c : the impurity value of node j, which is calculated by Mean Square Error variance 

reduction, 

.584(ª)/=�Rℎ4(ª): child node from left/right split on node j. 
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 The importance for each feature on a decision tree is calculated as (Ronaghan, 

2018): 

 8�� = ∑ �cc: (ÎÏÈ c -Ði�Ê- Î( ÉÈÑÊÒËÈ � ∑ �""∈Ñii (ÎÏÈ-�     (38) 

where, 

8��: the importance of feature i. 

�c: the importance of node j. 

 The feature importance values are then be normalized to values between 0 and 1 by 

Equation (39): 

 �7=6 8�� = 8�� ∑ 8��c∈Ñii ÉÈÑÊÒËÈ-�       (39) 

 The final feature importance of the random forest is the average of all trees: 

 Ó< 8�� = ∑ �7=6 8��cc∈Ñii ÊËÈÈ- Z�       (40) 

where, 

Ó< 8��: the importance of feature i of all trees in the model, 

8��c: normalized importance for feature i in tree j, 

Z: total number of trees. 

 The features’ importance is then calculated and decision trees are built, and the 

results of all trees are collected by the random forest algorithm to make the final prediction 

decision. 
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3.4.2.7 K-Nearest Neighbors Algorithm 

 The K-Nearest Neighbors algorithm (KNN) was first introduced in 1951 and 

developed since then (Altman, 1992; Fix, 1985) that can be used in both classification and 

regression problems, which processes the input of k closest training examples and output 

the property value of the project that is the average of the k nearest neighbors values. The 

algorithm finds and predicts the label of a predefined number of training samples that the 

distance to the new point is closest. Several distance measurements can be used include 

Euclidean distance, Manhattan distance, and Hamming distance. The standard Euclidean 

distance is the most common choice (Jaskowiak & Campello, 2011), which can be 

calculated by Equation (41) (Pandey, 2021): 

 3�$4((��, ��), (� , � )) = �(�� − � ) + (�� − � )    (41) 

where, 

(��, ��), (� , � ): the coordinates of two points that the distance is calculated. 

Or, for more data points, the Euclidean distance can be calculated as (Zakka, 2016): 

 3�$4(�, �) = �∑ (�� − ��) ��¢�       (42) 

While the Manhattan distance can be calculated as: 

 3�$4(�, �) = ∑ |�� − ��|��¢�        (43) 

The seven machine learning algorithms will be tested and evaluated based on ten-

fold cross-validation, which splits the dataset into ten parts with nine for training and one 

for the test, repeating for all combinations (Brownlee, 2019). The ten-fold cross-validation 

is a representative k-fold cross-validation that the k value is preset as 10, which is normally 
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used to evaluate the performance of a machine learning model on unseen data. The k-fold 

cross-validation technique is able to predict how the model fit. A random seed was given 

to the dataset to ensure that each algorithm is evaluated on the same dataset splits. 

 

3.4.3 Machine Learning Model Evaluation 

 There are several parameters that can be used for machine learning model 

evaluation. For classification models that are used on discrete data types, the confusion 

matrix and its associated scores are commonly used to evaluate the models. 

TABLE 9. CONFUSION MATRIX FOR CLASSIFICATION MODELS 

  Actual 

  Positive Negative 

Predicted 
Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 

 TABLE 9 shows the confusion matrix for classification models. For actual 

measurement and predicted values, there are positive and negative categories. When the 

prediction belongs to the same class as the actual measurement, it is the true positive (TP). 

When the prediction does not belong to the class and the actual measurement does not 

belong to the class either, it is the true negative (TN). When the prediction belongs to a 

class but the actual measurement does not, it is the false positive (FP). When the prediction 

does not belong to a class but the actual measurement does, it is the false negative (FN) 

(Muskan, 2020). From the confusion matrix, the accuracy score that provides the 
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percentage of right predictions can be calculated as the number of correct predictions 

divided by the total number of predictions. 

Ô,,?=2,� = +ÕQ+Ö+ÕQ×ÕQ×ÖQ+Ö       (44) 

Other commonly used classification model evaluation matrices include recall that 

shows the percentage of correctly predicted positive out of all positives; precision that 

shows the percentage of correctly predicted positive out of all predicted positives; F1 score 

that is the harmonic mean of the model’s precision and recall (Olson & Delen, 2008). 

Ó5,2.. = +Õ+ÕQ×Ö        (45) 

l=5,�$�7� = +Õ+ÕQ×Õ        (46) 

<1 Ø,7=5 = 2 ∗ ÕËÈ/�-�Î(∗¥È/ÑiiÕËÈ/�-�Î(Q¥È/Ñii      (47) 

Several plots can also be used to evaluate the performances of classification models 

such as the receiver operating characteristic (ROC) curve and the area under the curve 

(AUC) that plots the relationship between the false positive rate and the true positive rate.  

Unlike the classification model evaluation, different metrics are used for regression 

model evaluation. One of the most common metrics for regression evaluation is the mean 

squared error (MSE) that is the average of the squared difference between the prediction 

and actual measurement, and the root means squared error (RMSE) is the square root of 

MSE. 

ÙØÚ = �( ∑ (�Û� − ��) (�¢�        (48) 
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ÓÙØÚ = Ü�( ∑ (�Û� − ��) (�¢�        (49) 

The mean absolute error (MAE) is also used for regression model evaluation, which 

is the average of the absolute difference between the prediction and actual measurements. 

ÙÔÚ = �( ∑ |�Û� − ��|(�¢�        (50) 

In this research, the concentration records of different air pollutants are using 

different units and scales, for example, PM2.5 concentrations are measured in ug/m3 and 

ground-level ozone concentrations are measured in ppb. As one of the results, the 

prediction accuracy of one air pollutant cannot be compared with other air pollutants 

prediction accuracies by the RMSE and MAE values. To present the relative error 

percentage that can be used for inter-comparison instead of the error value, the normalized 

root means squared error is commonly used on regression model evaluation, which can be 

compared between datasets and models with different scales (Nash & Sutcliffe, 1970; Ris, 

Holthuijsen, & Booij, 1999; Willmott et al., 1985). 

fÓÙØÚ = ¥ÝÆÞ�¦ßà��¦�á        (51) 

There are no consistent means of normalization when computing NRMSE, it can 

be different for different research. For example, the tidal range is normally used to 

normalize water levels, and offshore wave height can be used to normalize wave heights. 

The range for normalization in this research utilizes the maximum and minimum values 

that are collected, in which the outliers are not counted (CIRP, 2020).  

Other than the NRMSE, the prediction vs. actual (PVA) plot is utilized to analyze 

the regression predictions, which is a type of scatter plot that is one of the richest forms of 
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data visualization (Piñeiro, Perelman, Guerschman, & Paruelo, 2008). For a good 

prediction, the model should be aiming to have prediction = actual, thus, the line y=x will 

be drawn in the PVA plot to show how much the predictions deviated from actual 

measurements. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Temporal Characteristics 

With the hourly air pollution concentration and meteorological data collected, the 

annual, monthly, daily, and hourly temporal characteristics are analyzed. The temporal 

characteristics of the transportation situation in terms of annual average traffic speeds are 

analyzed separately. Before the analysis of the temporal characteristics, a one-way 

ANOVA test is performed for air pollution and meteorological parameters between ten 

years.  

TABLE 10. ONEWAY ANOVA TEST RESULTS THROUGH TEN YEARS 

Parameters P-value 

Ground-level Ozone 7.24E-121 

PM2.5 0.00 

NO2 0.00 

NOx 1.60E-172 

Temperature 1.87E-139 

Solar 1.32E-17 

Pressure 1.91E-208 

Precipitation 4.81E-08 

Relative Humidity 2.24E-291 

Resultant Wind Speed 7.83E-182 

Wind Direction 7.94E-67 

  

 TABLE 10 shows the p-values from the ANOVA test. From the table, the p-values 

for all parameters are smaller than the significance level of 0.05, which means the 

measurements for these parameters of each year are statistically significantly different and 
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comparable. For PM2.5 and NO2, the p-values are shown as 0.00 in the calculation, which 

means they are so small and extremely close to zero. 

 

4.1.1 Annual Characteristics of Air Pollution and Meteorological Measurements  
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Figure 7. Annual Characteristics 

The annual air pollution concentration and meteorological measurements are 

shown in Figure 7 as box-whisker plots. In the plots, the x-axis shows the year from 2011 

to 2020; the y-axis shows the measurements of each category; the boxes show the 

interquartile ranges (IQR); the upper and lower edges of the boxes show the upper and 

lower quartiles (Q3 and Q1); the upper and lower short bars show the maximum (Ã3 +
1.5 ∗ kÃÓ) and minimum (Ã1 −  1.5 ∗ kÃÓ); the short green bars in the boxes show the 

median; the black spots show the outliers. For the precipitation plot, the boxes are in 

extremely small ranges close to zero, which is a result of the climate nature in Houston 

area that for most of the days, there is no rain or only drizzle, and when the heavier rains 

occur, they are shown as the outliers in the plot. 
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For the annual air pollution concentrations, there is no decreasing or increasing 

trend between the ten years for ground-level ozone. For all years, the minimums of the 

concentration are around 0 ppb, the maximums of the concentration are around 60 ppb, the 

outliers are below 140 ppb. The year 2017 has the highest concentration range, the years 

2014, 2015, and 2018 have the lowest concentration ranges. There is no annual decreasing 

or increasing trend found for PM2.5 concentration from the data. For all years, the 

minimums of the concentration are around 0 ug/m3 and the maximums are around 25 

ug/m3. The outliers are below 100 ug/m3 except for the years 2018 and 2012. The year 2015 

has the highest PM2.5 concentration ranges and the year 2017 has the lowest. The NO2 

concentration is decreased significantly from the year 2016. The pre-2016 NO2 

concentrations have minimums around 0 ppb and maximums around 30 ppb, which are 

overall higher than the post-2016 (including 2016) concentrations that have minimums 

around 0 ppb and maximums around 23 ppb. The outliers of pre-2016 NO2 concentration 

are also higher than the post-2016 concentration. The annual NOx concentrations show 

similar trends with the NO2 that the pre-2016 concentrations are higher than post-2016 

concentrations. However, the outlier ranges for NOx concentrations are much higher than 

NO2 concentrations. 

For the annual meteorological measurements, the highest maximum temperature 

appeared in the year 2011, which is around 110 F, and the lowest minimum temperature 

appeared in the year 2018, which is around 32 F and some outliers are even below 20 F. 

The solar radiation for the year 2020 was relatively higher with a maximum of 1.2 

langleys/min, and that for the year 2018 was relatively lower with a maximum of 1.9 

langleys/min. The annual outdoor pressures are all in the range of 1000 to 1030 millibars. 
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From the precipitation and relative humidity measurements, the years 2015 and 2018 are 

relatively wetter and the year 2011 is relatively dryer. From the resultant wind speed and 

plots, the year 2011 has the stronger winds and the year 2016 has the weaker winds. From 

the wind direction plot, the medians of the wind direction of the monitoring site are all 

around 160-degree compass, which is SSE wind. Most of the wind directions are in the 

range of 60 to 220-degree compass, which means ENE to SW wind. 

 

4.1.2 Monthly Characteristics of Air Pollution and Meteorological Measurements 
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Figure 8. Monthly Characteristics 

The monthly characteristics of air pollution concentrations and meteorological 

measurements are shown in Figure 8 as box-whisker plots. The x-axis shows the month of 

the years, and the y-axis shows the measurements of each category. For the air pollution 

concentrations, ground-level ozone concentration shows two significant peaks during a 

year with a maximum of around 70 ppb, which are April and September. In the meantime, 

the concentration meets its bottom values with the maximums around 50 ppb during July 

and December. In another word, for the monitoring site, the ground-level ozone 

concentration is higher in the spring and fall seasons and lower is lower in the summer and 

winter seasons. The monthly trend of PM2.5 shows that the concentration is higher in June 

with a maximum of around 30 ug/m3, and lower in January with a maximum of around 20 

ug/m3. Thus, PM2.5 is higher in summer seasons and lower in winter seasons. On the 
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contrary, NO2 concentration is higher in winter seasons and meets its peak during January 

with the maximum of 43 ppb, and lower in summer seasons and meets its lowest during 

June with the maximum of 25 ppb. The NOx concentration shows a similar trend with NO2. 

The peak value is found during January with a maximum of 65 ppb, and the lower value is 

found during June and august with the maximums of around 45 ppb. 

From the temperature monthly plot, the hottest month is August with the 

temperature in a range of 70 F to 100 F, the coolest month is January with the temperature 

in a range of 23 F to 80 F. From the solar radiation plot, June and July have the highest 

solar radiation with maximums of around 1.6 langleys/min, December has the lowest solar 

radiation with a maximum of 0.5 langleys/min. This shows that temperature and solar 

radiation have some relationship, but do not have the same trend. The outdoor pressure 

varies in a large range of 1,002 to 1,040 millibars in January, and in a small range of 1008 

to 1,022 millibars in July. This means the outdoor pressure is more stable in summer and 

relatively unstable in winter. The precipitation is higher from April to October, and lower 

from November to March. However, the relative humidity is lower from April to august 

and higher from September to March. This means the relative humidity may be more 

related to temperature when compared to precipitation. The resultant wind plot shows that 

the wind season in the Houston area is from March to May, and the wind speed is lower in 

September. In December and January, the wind direction varies in a larger range, and in 

June and July, the wind direction varies in a smaller range. 
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4.1.3 Day-of-Week Characteristics of Air Pollution 

 

Figure 9. Day of Week Characteristics 

Figure 9 shows the box plots of the air pollution concentrations of each day of the 

week. The x-axis shows the days of weeks, and the y-axis shows the measurements of each 

category. In addition to the previous box plots, the green solid triangles in the box show 

the mean values of each category. The PM2.5, NO2, and NOx show similar trends in that the 

concentrations are lower during weekends and higher during weekdays, which meet their 

lowest value during Saturday. The PM2.5 concentration reaches its peak value on Thursday 

with an average concentration of 9.9 ug/m3 and decreases after that until Saturday, the level 

then increases on Sunday. The NO2 concentration reaches its peak value on Monday with 

an average concentration of 11 ppb and decreases on Tuesday. A minor increase of NO2 

concentration level appears on Wednesday and decreases substantially from Friday and 
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returns to a relatively high level on Sunday. The NOx concentration level reaches its peak 

value on Monday with an average level of 15 ppb and decreases start from Tuesday, which 

decreases substantially from Friday and returns to a relatively high level on Sunday. 

On the contrary, ground-level ozone concentration shows a different trend, which 

is higher during Friday and Saturday with average concentrations of 22 ppb, and lower 

from Sunday to Thursday. The ground-level ozone concentration is maintained at a low 

level on Monday and Tuesday. All these trends show that the concentrations of these air 

pollutants are related to human activities positively such as PM2.5, NO2, and NOx, and 

negatively such as ground-level ozone. 

 

4.1.4 Hourly Characteristics of Air Pollution and Meteorological Measurements 
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Figure 10. Hourly Characteristics 

 Figure 10 shows the hourly characteristics of the air pollution concentration and 

meteorological measurements. The x-axis shows the time of days, and the y-axis shows the 

measurements of each category. The gray areas show the variances of the average values 

of each category, and the black solid lines of each plot show the mean values of the 

variances.  

 For air pollution, ground-level ozone concentration during a day is lowest at around 

7:00 and increases until it reaches its peak at around 14:00, then decreases. The variance 

in ground-level ozone throughout a day may range from 18 to 30 ppb. There are two peaks 

for PM2.5 concentration in a day, which are the higher peak at around 6:30 and the lower 

peak at around 19:00. The PM2.5 concentration reaches its lowest values at around 2:00 and 

12:00. The variance in PM2.5 concentration throughout a day may range from 1 to 9 ug/m3. 

The NO2 concentrations also have two peaks in a day, which are higher peak at around 

7:00 and lower peak at around 19:00. This character is similar to the PM2.5 concentration. 
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The lowest value of NO2 concentration is reached from 11:00 to 16:00. The variance in 

NO2 concentration throughout a day may range from 2 to 17 ppb. The NOx concentrations 

in a day have a peak value at around 7:00 and the lowest value is reached between 15:00 

to 17:00. The overall NOx concentrations from 12:00 to the following day 3:00 are 

relatively stable. The variance in NOx concentration throughout a day may range from 10 

to 33 ppb. 

 For meteorological measurements, the temperature reaches its highest at around 

14:00 and lowest around 6:00. The variance of temperature throughout a day may range 

from 6 to 15 F. The solar radiation rises from 5:00 and arrives at its peak at 12:30, which 

then decreases through 19:00 and reaches its lowest value. The outdoor pressure has two 

peaks, which are the higher peak at around 9:00 and the lower peak at around 21:30. The 

lowest pressure measure appears at around 16:00 during the day. The variance of outdoor 

pressure may range from 0.5 to 4.5 millibars. The precipitation during a day has no obvious 

trends. However, the average precipitations from 10:00 to 17:00 and 22:00 are higher based 

on the plot. The relative humidity is highest at 6:00 and lowest at 14:00, which is negatively 

related to temperature. The variance of humidity may range from 15 to 36 percent.  The 

resultant wind speed is highest at 16:00 and lowest at 5:30, which is positively related to 

temperature. The variance of resultant wind speed may range from 1.7 to 4.4 mph. The 

wind direction plot shows that at around 12:00 and 24:00 the wind directions are closer to 

170-degree compass, which means the wind comes from the south (S). At around 6:00 and 

18:00, the wind directions are closer to 150 to 165-degree compass, which means SSW 

wind. 
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4.1.5 Temporal Characteristics of Traffic Speed 

 To consider the influences from human activities on the air pollution level, the 

annual average traffic speed of the nearby freeway is analyzed. 

 

Figure 11. Annual Average Traffic Speed Profile 

 In Figure 11, the x-axis shows the time of the day and the y-axis shows the annual 

average traffic speed in mph. The traffic speed of each year is presented as colored lines in 

the plot as noted in the legend on the upper left corner. As shown in the figure, the average 

traffic speed of each year shows a similar trend. For all years, the traffic speeds have two 

significant low points, which are directly related to the rush hours of Houston. The first 

one is the morning rush hours around 6:00 to 9:00, the second one is the afternoon rush 

hours around 16:00 to 19:00. There is a peak value before the morning rush hours when 

the average traffic speed is even more than the speed limit. For the year 2014, there is 

another peak value before the afternoon rush hours that is higher than the speed limit. From 

Figure 11, the years 2019 and 2018 have the lowest average traffic speeds, which the speeds 

may be lower than 40 mph during rush hours. The years 2013 and 2020 have the relatively 
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highest average traffic speeds, which the morning rush hour speeds can be higher than 55 

mph, and the afternoon rush hour speeds can be higher than 45 mph. 

 From the above temporal analysis, the relationship between air pollution 

concentration levels and their influencing factors can be inferred.  

(1) The ground-level ozone and PM2.5 concentration levels are not influenced by 

different years, however, the NO2 and NOx levels are lower since the year 2016, which 

may be related to changing human activity patterns or pollution reduction technologies due 

to the weather conditions do not have significant changing trends.  

(2) The monthly/seasonal temporal patterns for all air pollutants show that ground-

level ozone concentration is higher in spring and fall, PM2.5 concentration is higher in 

summer, NO2 and NOx concentrations are higher in winter, which is a sign that these air 

pollutants are influenced by meteorology situations throughout a year.  

(3) The day-of-week air pollution concentration patterns are almost the same for 

PM2.5, NO2, and NOx, which are opposite to the ground-level ozone concentration pattern. 

This means that increased human activities such as working and commuting on weekdays 

may result in higher PM2.5, NO2, and NOx concentration levels, however, ground-level 

ozone concentration levels may be negatively impacted by the intensity of human activities.  

(4) The hourly temporal characteristics imply that the ground-level ozone 

concentration may be positively related to outdoor temperature and solar radiation and may 

be negatively related to the pressure. However, the PM2.5, NO2, and NOx concentrations 

show limited relationships with the meteorology status while they are significantly 

influenced by the time of the day.  
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(5) When considering the monitoring site’s nearby traffic situation, it can be 

implied that the ground-level ozone concentration has only a limited relationship with the 

transportation activities. While the PM2.5, NO2, and NOx concentrations are negatively 

related to the average traffic speeds on the nearby highway and reach their peak values 

during the traffic rush hours.  

 To further discover the relationship between and inter air pollution concentration, 

meteorology measurements, and traffic speed, a correlation analysis is conducted.  

 

4.2 Correlation Analysis 

 To determine the relationships between the total 12 parameters that are considered 

in this research, an interrelationship and distribution chart is created. 
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Figure 12. Interrelationship Matrix and Distribution Chart for All Parameters 

 Figure 12 shows the interrelationship scatter plot matrix between each parameter 

and the distribution of the values. In this figure, both the x-axis and y-axis show the 

parameters in the same sequence and the axis ticks show the values of each parameter. The 

diagonal of the matrix shows the histogram of each parameter. From the diagonal of Figure 

12, air pollution concentrations include ground-level ozone that is denoted as ‘oz’, PM2.5 

that is denoted as ‘pm’, NO2 and NOx, and meteorological measurements include solar that 
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is denoted as ‘sol’, precipitation that is denoted as ‘pc’, relative humidity that is denoted as 

‘hm’ and resultant wind speed that is denoted as ‘wd’ are following the Poisson distribution, 

and the large portion of measurements of these parameters is in lower value bins. In the 

meantime, meteorological measurements such as temperature that is denoted as ‘te’, 

outdoor pressure that is denoted as ‘ps’, and average traffic speed that is denoted as ‘tr’ are 

following the Normal distribution. The difference behind the distribution is that for the 

concentration of ground-level ozone, PM2.5, NO2, and NOx, there is a lower bound of the 

measurements that are zero. While large portions of the measurements are close to the 

lower bound, none of them is smaller than zero because the air pollution concentration 

measurements cannot be negative. This is also true for solar radiation, precipitation, and 

resultant wind speed. The values of these meteorological measurements are close to zero 

but cannot be negative. On the contrary, the relative humidity values are following the 

Poisson distribution because the values have an upper bound that is 100 percent, and the 

measurements are close the that bound but cannot be more than that. 

 For the outdoor temperature, pressure, and average traffic speed, the measurements 

are clustered at median bins. For example, most temperature measurements are in the range 

of 70 to 90 F; most of the pressure measurements are in the range of 1,010 to 1,020 millibars; 

most of the average traffic speed measurements are in the range of 55 to 60 mph. As the 

values are higher or lower, the densities become smaller, thus, they are following the 

Normal distribution. One exception is the wind direction that is denoted as ‘wdir’ in the 

figure, due to the measurements of the directions being values from 0 to 360-degree 

compass, which are not accumulable and distributed dispersive in bins. Thus, the wind 

direction value is not following the Poisson distribution, nor the Normal distribution. 
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 From the scatter plots of Figure 12, some air pollutants have relatively clearer 

relationships with several other parameters. For instance, (1) Ground-level ozone shows a 

positive relationship with solar radiation, a negative relationship with relative humidity, a 

positive relationship with resultant wind speed, and no clear relationship with other 

parameters. (2) PM2.5 shows positive relationships with NO2 and NOx, and no clear 

relationship between other parameters. (3) NO2 shows position relationships with PM2.5 

and NOx, positive relationships with outdoor pressure and humidity, and negative 

relationships with temperature and resultant wind speed. (4) NOx shows position 

relationships with PM2.5 and NO2. (5) Other than air pollutants, solar radiation is positively 

related to temperature and negatively related to relative humidity. (6) Other than previous 

relationships, the temperature is negatively related to the pressure and relative humidity, 

and positively related to resultant wind speed. (7) No other parameter is obviously related 

to the pressure other than previous relationships. (8) Precipitation level remains in a low 

range and hard to find relationships with other parameters. (9) The relative humidity may 

be positively related to the resultant wind speed. (10) The resultant wind speed is positively 

related to wind direction when it’s less than around 170-degree compass (N-E-SSE wind), 

and negatively related to wind direction when it’s more than 170 degree compass (SSE-S-

W-N wind), which means wind direction ranges from SSE to S is stronger.  

 To further analyze and quantify the relationships between each parameter, a 

Pearson's r correlation test is performed. 
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Figure 13. Pearson’s r Correlation Test Matrix 

 Figure 13 shows the matrix plot of Pearson’s r test results for each parameter. In 

the matrix table, colors are self-comparable, which means the colors can be only compared 

between the same column. The green hue (toward yellow color) means the positive 

correlation, and the yellower color the stronger the correlation, which means the r-value is 

closer to +1; the blue hue (toward purple color) means the negative correlation, and the 

deeper the color the stronger the correlation, which means the r-value closer to −1. The 

details of the color are shown in the color bar under the matrix plot. The numbers in the 

matrix show Pearson’s r values between every two parameters. The diagonal numbers of 
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the matrix are all equal to +1, which are the correlations between each parameter to 

themselves.  

 From the figure, the correlations can be described as follows. 

(1) Ground-level ozone has relatively weaker negative correlations [−0.1, 0) with 

pressure, precipitation, wind direction, and relatively strong negative correlations 

(−0.1, −1) with PM2.5, NO2, NOx, relative humidity, and average traffic speed.  

(2) Ground-level ozone has relatively strong positive correlations (0.1, 1)  with 

solar radiation, temperature, and resultant wind speed.  

(3) PM2.5 has relatively weaker negative correlations with precipitation, relative 

humidity, resultant wind speed, average traffic speed, and a relatively strong negative 

correlation with pressure.  

(4) PM2.5 has relatively stronger positive correlations with NO2, NOx, and 

temperature, and relatively weak position correlations with solar radiation and wind 

direction.  

(5) NO2 has relatively weaker negative correlations with precipitation and relative 

humidity and relatively strong negative correlations with solar radiation, temperature, and 

resultant wind speed.  

(6) NO2 has relatively weaker positive correlations with wind direction and average 

traffic speed and relatively strong correlations with NOx and pressure.  
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(7) NOx has relatively weaker negative correlations with solar radiation and 

precipitation and relatively strong negative correlations with temperature, and resultant 

wind speed.  

(8) NOx has relatively weaker positive correlations with relative humidity, wind 

direction, and average traffic speed, and a relatively strong correlation with pressure. 

(9) Solar radiation has relatively weaker negative correlations with pressure and 

average traffic speed and a relatively strong negative correlation with relative humidity. 

(10) Solar radiation has relatively weaker positive correlations with precipitation 

and wind direction and relatively strong negative correlations with temperature and 

resultant wind speed. 

(11) Outdoor temperature has relatively weaker negative correlations with 

precipitation and average traffic speed and relatively strong negative correlations with 

pressure and relative humidity. 

(12) Outdoor temperature has relatively stronger positive correlations with resultant 

wind speed and wind direction. 

(13) Pressure has a relatively weaker negative correlation with precipitation, 

relatively strong negative correlations with relative humidity, resultant wind speed, wind 

direction, and a relatively weak correlation with average traffic speed. 

(14) Precipitation has relatively weaker negative correlations with resultant wind 

speed, wind direction, average traffic speed, and a relatively weak positive correlation with 

relative humidity.  
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(15) Relative humidity has a weaker negative correlation with wind direction, a 

relatively strong negative correlation with resultant wind speed, and a relatively strong 

positive correlation with average traffic speed. 

(16) Resultant wind speed has a relatively weaker negative correlation with average 

traffic speed and a relatively strong positive correlation with wind direction. 

(17) Wind direction has a relatively weaker position correlation with average traffic 

speed. 

 From the analysis above, some essential correlations between air pollutants and 

meteorological measurements and transportation situations can be summarized. Such as 

ground-level ozone is more related to solar radiation, temperature, relative humidity, 

resultant wind speed, and average traffic speed; PM2.5 is more related to temperature and 

pressure; NO2 is more related to solar radiation, temperature, pressure, and resultant wind 

speed; NOx is more related to temperature, pressure, and resultant wind speed. Based on 

the counts of influencing factors and respective correlation levels of each air pollutant, it 

may be anticipated that ground-level ozone, NO2, and NOx concentration prediction might 

be more accurate than that for PM2.5. However, further analysis is performed and the 

frequent patterns are revealed. 

 

4.3 Frequent Pattern Mining Analysis 

4.3.1 Data Preprocessing and Binning 

The first step to perform the frequent pattern mining analysis is to transfer the raw 

data into different bins based on the distribution of the data. As introduced in the Design 
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of the Study section, the four bins for each parameter are determined by quartiles. As 

introduced in Section 3, the first quartile is labeled as 1; the second quartile is labeled as 

2; the third quartile is labeled as 3, and the last quartile is labeled as 4. For precipitation 

bins, any positive values are labeled as 1 and the value zero is labeled as 0. 

TABLE 11. BINS AND LABELS FOR PARAMETERS 

Measurements Bins Labels 

Ground-level Ozone (ppb) (0, 11] 1 

(11, 20] 2 

(20, 31] 3 

(31, +∞) 4 

PM2.5 (ug/m3) (0, 6.4] 1 

(6.4, 29.5] 2 

(9.5, 13.5] 3 

(13.5, +∞) 4 

NO2 (ppb) (0, 6.1] 1 

(6.1, 9.6] 2 

(9.6, 15.1] 3 

(15.1, +∞) 4 

NOx (ppb) (0, 7.6] 1 

(7.6, 12.6] 2 

(12.6, 21.4] 3 

(21.4, +∞) 4 

Solar (Langleys/min) [0, 0.01] 1 

(0.01, 0.25] 2 

(0.25, 0.414] 3 

(0.414, +∞) 4 

Temperature (F) (-∞, 62.5] 1 

(62.5, 73.8] 2 

(73.8, 81.4] 3 

(81.4, +∞) 4 

Pressure (millibars) (-∞, 1013.1] 1 

(1013.1, 1015.9] 2 

(1015.9, 1019.6] 3 

(1019.6, +∞) 4 

Precipitation (inches) [0] 0 

(0, +∞] 1 
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Relative Humidity (%) (0, 57.9] 1 

(57.9, 73.8] 2 

(73.8, 83.8] 3 

(83.8, 100] 4 

Resultant Wind (mph) (0, 3.4] 1 

(3.4, 5.6] 2 

(5.6, 8.3] 3 

(8.3, +∞) 4 

Wind Direction (Degree Compass) [0, 70] 1 

(70, 165] 2 

(165, 222] 3 

(222, 360) 4 

Traffic Speed (mph) (0, 50] 1 

(50, 55] 2 

(55, 60] 3 

(60, +∞) 4 

 

 TABLE 11 shows the bins and labels of all parameters. As shown in the table, there 

are four bins for all parameters except precipitation, in which, Bin 1 is the first quarter that 

ranges from negative infinity to the first quartile; Bin 2 is the second quarter that ranges 

from the first quartile to the second quartile; Bin 3 is the third quarter that ranges from the 

second quartile to the third quartile; Bin 4 is the fourth quarter that ranges from the third 

quartile to the positive infinity. The binning for traffic speed utilizes 5 mph as ranges for 

each bin from 50 to 60 mph because most of the speeds are within this range, which is 

different from other parameters that use quartiles as boundaries. Only two bins are used to 

categorize the precipitation due to the large scale of its value is zero, which means as long 

as it is raining, no matter drizzling or storming, it belongs to precipitation Bin 1. At the 

same time, if there is no rain, it belongs to precipitation Bin 0. The frequent pattern mining 

processes in the following sessions are conducted based on the bins that are shown above. 

 



89 

 

 

 

4.3.2 Ground-level Ozone Frequent Pattern Mining 

Figure 14 shows the bin distribution of each meteorological measurement and 

traffic speed of ground-level ozone. The trends can be found by comparing each column 

of the figure vertically. For ground-level ozone concentration level categories from bin 1 

to bin 4, (1) the number of solar radiation bin 1 decreased and the number of solar radiation 

bin 4 increased, (2) the number of temperature bin 1 and bin 4 decreased significantly and 

the number of bin 3 decreased, (3) the number of humidity bin 1 increased and bin 4 

decreased significantly, and (4) the resultant wind speed bin 1 decreased and bin 4 

increased. These results are consistent with the previous correlation analysis. 
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Figure 14. Distributions of Influencing Factors of Ground-level ozone 

 TABLE 12 shows the frequent pattern mining rules with the highest support for 

ground-level ozone. This table can be interpreted as follows. 

TABLE 12. FREQUENT PATTERNS WITH THE HIGHEST SUPPORT FOR 

GROUND-LEVEL OZONE 

Parameters  
Ground-level Ozone Level 1 2 3 4 

Solar 1 1 1 4 

Temperature 1 4 3 4 

Pressure 4 2 1 1 

Precipitation 0 0 0 0 

Humidity 4 2 3 1 

Wind Speed 1 4 4 4 

Wind Direction 1 3 3 3 

Traffic Speed 3 3 3 3 

Support 0.00265 0.0024 0.00213 0.00132 
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  (1) when the solar radiation level under bin 1 ([0, 0.01] Langleys/min), the 

temperature level under bin 1 ((-∞, 62.5] F), the pressure level under bin 4 ((-∞, 1013.1] 

millibars), the precipitation level under bin 0 (no precipitation), the relative humidity level 

under bin 4 ((83.8, 100] percentage), the resultant wind speed level under bin 1 ((0, 3.4] 

mph), the wind direction under bin 3 ([0, 70] degree compass), and the traffic speed level 

under bin 3 ((55, 60] mph), the ground-level ozone concentration level tend to be under bin 

1 ((0, 11] ppb) with the support of 0.265%.  

(2) When the solar radiation level under bin 1 ([0, 0.01] Langleys/min), the 

temperature level under bin 4 ((81.4, +∞) F), the pressure level under bin 2 ((1013.1, 1015.9) 

millibars), the precipitation level under bin 0 (no precipitation), the relative humidity level 

under bin 2 ((57.9, 73.8] percentage), the resultant wind speed level under bin 4 ((8.3, +∞) 

mph), the wind direction under bin 3 ((165, 222] degree compass), and the traffic speed 

level under bin 3 ((55, 60] mph), the ground-level ozone concentration level tend to be 

under bin 2 ((11, 20] ppb) with the support of 0.24%. 

(3) When the solar radiation level under bin 1 ([0, 0.01] Langleys/min), the 

temperature level under bin 3 ((73.8, 81.4] F), the pressure level under bin 1 ((-∞, 1013.1] 

millibars), the precipitation level under bin 0 (no precipitation), the relative humidity level 

under bin 3 ((73.8, 83.8] percentage), the resultant wind speed level under bin 4 ((8.3, +∞) 

mph), the wind direction under bin 3 ((165, 222] degree compass), and the traffic speed 

level under bin 3 ((55, 60] mph), the ground-level ozone concentration level tend to be 

under bin 3 ((20, 31] ppb) with the support of 0.24%. 

(4) When the solar radiation level under bin 4 ((0.414, +∞) Langleys/min), the 

temperature level under bin 4 ((81.4, +∞) F), the pressure level under bin 1 ((-∞, 1013.1] 
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millibars), the precipitation level under bin 0 (no precipitation), the relative humidity level 

under bin 1 ((0, 57.9] percentage), the resultant wind speed level under bin 4 ((8.3, +∞) 

mph), the wind direction under bin 3 ((165, 222] degree compass), and the traffic speed 

level under bin 3 ((55, 60] mph), the ground-level ozone concentration level tend to be 

under bin 4 ((31, +∞) ppb) with the support of 0.132%. 

 

4.3.3 PM2.5 Frequent Pattern Mining 

Figure 15 shows the bin distribution of each meteorological measurement and 

traffic speed of PM2.5. For PM2.5 concentration level categories from bin 1 to bin 4, (1) the 

numbers of higher temperature bins increased, and the numbers of lower temperature bins 

decreased. (2) The numbers of lower pressure bins increased and the numbers of higher 

pressure bins decreased. (3) The number of relative humidity bin 4 decreased. (4) The 

numbers of higher wind direction bins increased, and the numbers of lower wind direction 

bins decreased. These results are consistent with the previous correlation analysis. 
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Figure 15. Distributions of Influencing Factors of PM2.5 

TABLE 13. FREQUENT PATTERNS WITH HIGHEST SUPPORT FOR PM2.5 

Parameters  
PM2.5 Level 1 2 3 4 
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Solar 1 4 1 1 

Temperature 3 1 4 3 

Pressure 2 4 1 1 

Precipitation 0 0 0 0 

Humidity 4 4 2 3 

Wind Speed 1 1 4 4 

Wind Direction 1 1 3 3 

Traffic Speed 3 3 3 3 

Support 0.00141 0.00124 0.00137 0.00259 

 

 TABLE 13 shows the frequent pattern mining rules with the highest support for 

PM2.5. The table can be interpreted as follows: (1) when the solar radiation level under bin 

1 ([0, 0.01] Langleys/min), the temperature level under bin 3 ((73.8, 81.4] F), the pressure 

level under bin 2 ((-∞, 1013.1] millibars), the precipitation level under bin 0 (no 

precipitation), the relative humidity level under bin 4 ((83.8, 100] percentage), the resultant 

wind speed level under bin 1 ((0, 3.4] mph), the wind direction under bin 1 ([0, 70] degree 

compass), and the traffic speed level under bin 3 ((55, 60] mph), the ground-level ozone 

concentration level tend to be under bin 1 ((0, 6.4] ug/m3) with the support of 0.141%.  

(2) When the solar radiation level under bin 4 ((0.414, +∞) Langleys/min), the 

temperature level under bin 1 ((-∞, 62.5] F), the pressure level under bin 4 ((1019.6, +∞) 

millibars), the precipitation level under bin 0 (no precipitation), the relative humidity level 

under bin 4 ((83.8, 100] percentage), the resultant wind speed level under bin 1 ((0, 3.4] 

mph), the wind direction under bin 1 ([0, 70] degree compass), and the traffic speed level 

under bin 3 ((55, 60] mph), the ground-level ozone concentration level tend to be under bin 

2 ((6.4, 29.5] ug/m3) with the support of 0.124%. 
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(3) When the solar radiation level under bin 1 ([0, 0.01] Langleys/min), the 

temperature level under bin 4 ((81.4, +∞) F), the pressure level under bin 1 ((-∞, 1013.1] 

millibars), the precipitation level under bin 0 (no precipitation), the relative humidity level 

under bin 2 ((57.9, 73.8] percentage), the resultant wind speed level under bin 4 ((8.3, +∞) 

mph), the wind direction under bin 3 ((165, 222] degree compass), and the traffic speed 

level under bin 3 ((55, 60] mph), the ground-level ozone concentration level tend to be 

under bin 3 ((9.5, 13.5] ug/m3) with the support of 0.137%. 

(4) When the solar radiation level under bin 1 ([0, 0.01] Langleys/min), the 

temperature level under bin 3 ((73.8, 81.4] F), the pressure level under bin 1 ((-∞, 1013.1] 

millibars), the precipitation level under bin 0 (no precipitation), the relative humidity level 

under bin 3 ((73.8, 83.8] percentage), the resultant wind speed level under bin 4 ((8.3, +∞) 

mph), the wind direction under bin 3 ((165, 222] degree compass), and the traffic speed 

level under bin 3 ((55, 60] mph), the ground-level ozone concentration level tend to be 

under bin 4 ((13.5, +∞) ug/m3) with the support of 0.259%. 

 

4.4.4 NO2 Frequent Pattern Mining 

 Figure 16 shows the bin distribution of each meteorological measurement and traffic speed 

of NO2. For NO2 concentration level categories from bin 1 to bin 4, (1) the numbers of 

higher temperature bins decreased and the numbers of lower temperature bins increased. 

(2) The numbers of lower higher pressure bins decreased and the numbers of higher 

pressure bins increased. (3) The number of relative humidity bin 4 decreased. (4) The 

numbers of higher resultant wind speed bins decreased and the numbers of lower resultant 
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wind speed bins increased. (5) The numbers of wind direction bins 2 and 3 decreased, and 

the numbers of wind direction bins 1 and 4 increased. These results are consistent with the 

previous correlation analysis. 

 

Figure 16. Distributions of Influencing Factors of NO2 
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TABLE 14 shows the frequent pattern mining rules with the highest support for 

NO2. TABLE 14 can be interpreted as follows. 

TABLE 14. FREQUENT PATTERNS WITH HIGHEST SUPPORT FOR NO2 

Parameters  
NO2 Level 1 2 3 4 

Solar 1 1 1 1 

Temperature 3 3 3 1 

Pressure 1 1 2 4 

Precipitation 0 0 0 0 

Humidity 3 3 4 1 

Wind Speed 4 4 1 1 

Wind Direction 3 3 1 4 

Traffic Speed 3 3 3 3 

Support 0.00289 0.00161 0.00128 0.00285 

 

  (1) when the solar radiation level under bin 1 ([0, 0.01] Langleys/min), the 

temperature level under bin 3 ((73.8, 81.4] F), the pressure level under bin 1 ((-∞, 1013.1] 

millibars), the precipitation level under bin 0 (no precipitation), the relative humidity level 

under bin 3 ((73.8, 83.8] percentage), the resultant wind speed level under bin 4 ((8.3, +∞) 

mph), the wind direction under bin 3 ((165, 222] degree compass), and the traffic speed 

level under bin 3 ((55, 60] mph), the ground-level ozone concentration level tend to be 

under bin 1 ((0, 6.1] ppb) with the support of 0.289%.  

(2) When the solar radiation level under bin 1 ([0, 0.01] Langleys/min), the 

temperature level under bin 3 ((73.8, 81.4] F), the pressure level under bin 1 ((-∞, 1013.1] 

millibars), the precipitation level under bin 0 (no precipitation), the relative humidity level 

under bin 3 ((73.8, 83.8] percentage), the resultant wind speed level under bin 4 ((8.3, +∞) 
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mph), the wind direction under bin 3 ((165, 222] degree compass), and the traffic speed 

level under bin 3 ((55, 60] mph), the ground-level ozone concentration level tend to be 

under bin 2 ((6.1, 9.6] ppb) with the support of 0.161%. 

(3) When the solar radiation level under bin 1 ([0, 0.01] Langleys/min), the 

temperature level under bin 3 ((73.8, 81.4] F), the pressure level under bin 2 ((1013.1, 

1015.9] millibars), the precipitation level under bin 0 (no precipitation), the relative 

humidity level under bin 4 ((83.8, 100] percentage), the resultant wind speed level under 

bin 1 ((0, 3.4] mph), the wind direction under bin 1 ([0, 70] degree compass), and the traffic 

speed level under bin 3 ((55, 60] mph), the ground-level ozone concentration level tend to 

be under bin 3 ((9.6, 15.1] ppb) with the support of 0.128%. 

(4) When the solar radiation level under bin 1 ([0, 0.01] Langleys/min), the 

temperature level under bin 1 ((-∞, 62.5] F), the pressure level under bin 4 ((1019.6, +∞) 

millibars), the precipitation level under bin 0 (no precipitation), the relative humidity level 

under bin 1 ((0, 57.9] percentage), the resultant wind speed level under bin 1 ((0, 3.4] mph), 

the wind direction under bin 4 ((222, 360) degree compass), and the traffic speed level 

under bin 3 ((55, 60] mph), the ground-level ozone concentration level tend to be under bin 

4 ((15.1, +∞) ppb) with the support of 0.285%. 

 

4.4.5 NOx Frequent Pattern Mining 

Figure 17 shows the bin distribution of each meteorological measurement and 

traffic speed of NOx. 
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Figure 17. Distributions of Influencing Factors of NOx 

 For NOx concentration level categories from bin 1 to bin 4, (1) numbers of lower 

temperature bins decreased. (2) The numbers of higher pressure level bins decreased and 

then increased. (3) The numbers of lower resultant wind direction bins increased and then 
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decreased, the numbers of higher resultant wind speed bins decreased and then increased. 

(4) The numbers of wind direction bins 2 and 3 decreased and then increased. These results 

are consistent with the previous correlation analysis. 

TABLE 15 shows the frequent pattern mining rules with the highest support for 

NOx. 

TABLE 15. FREQUENT PATTERNS WITH HIGHEST SUPPORT FOR NOX 

Parameters  
NOx Level 1 2 3 4 

Solar 1 1 4 1 

Temperature 3 3 4 1 

Pressure 1 1 1 4 

Precipitation 0 0 0 0 

Humidity 3 3 1 1 

Wind Speed 4 4 4 1 

Wind Direction 3 3 3 4 

Traffic Speed 3 3 3 3 

Support 0.00279 0.00158 0.00167 0.0024 

 

 TABLE 15 can be interpreted as follows: (1) when the solar radiation level under 

bin 1 ([0, 0.01] Langleys/min), the temperature level under bin 3 ((73.8, 81.4] F), the 

pressure level under bin 1 ((-∞, 1013.1] millibars), the precipitation level under bin 0 (no 

precipitation), the relative humidity level under bin 3 ((73.8, 83.8] percentage), the 

resultant wind speed level under bin 4 ((8.3, +∞) mph), the wind direction under bin 3 

((165, 222] degree compass), and the traffic speed level under bin 3 ((55, 60] mph), the 

ground-level ozone concentration level tend to be under bin 1 ((0, 7.6] ppb) with the 

support of 0.279%.  
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(2) When the solar radiation level under bin 1 ([0, 0.01] Langleys/min), the 

temperature level under bin 3 ((73.8, 81.4] F), the pressure level under bin 1 ((-∞, 1013.1] 

millibars), the precipitation level under bin 0 (no precipitation), the relative humidity level 

under bin 3 ((73.8, 83.8] percentage), the resultant wind speed level under bin 4 ((8.3, +∞) 

mph), the wind direction under bin 3 ((165, 222] degree compass), and the traffic speed 

level under bin 3 ((55, 60] mph), the ground-level ozone concentration level tend to be 

under bin 2 ((7.6, 12.6] ppb) with the support of 0.158%. 

(3) When the solar radiation level under bin 4 ((0.414, +∞) Langleys/min), the 

temperature level under bin 4 ((81.4, +∞) F), the pressure level under bin 1 ((-∞, 1013.1] 

millibars), the precipitation level under bin 0 (no precipitation), the relative humidity level 

under bin 1 ((0, 57.9] percentage), the resultant wind speed level under bin 4 ((8.3, +∞) 

mph), the wind direction under bin 3 ((165, 222] degree compass), and the traffic speed 

level under bin 3 ((55, 60] mph), the ground-level ozone concentration level tend to be 

under bin 3 ((12.6, 21.4] ppb) with the support of 0.167%. 

(4) When the solar radiation level under bin 1 ([0, 0.01] Langleys/min), the 

temperature level under bin 1 ((-∞, 62.5] F), the pressure level under bin 4 ((1019.6, +∞) 

millibars), the precipitation level under bin 0 (no p13recipitation), the relative humidity 

level under bin 1 ((0, 57.9] percentage), the resultant wind speed level under bin 1 ((0, 3.4] 

mph), the wind direction under bin 4 ((222, 360) degree compass), and the traffic speed 

level under bin 3 ((55, 60] mph), the ground-level ozone concentration level tend to be 

under bin 4 ((21.4, +∞) ppb) with the support of 0.024%. 

 Based on the frequent pattern analysis above, each air pollutant concentration level 

can be roughly predicted and anticipated through meteorological measurements and 
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average traffic speeds. However, several issues rises from the analysis results and cannot 

be neglected. The first one is that for the rules of meteorological measurements and average 

traffic speeds, the corresponding frequent pattern mined air pollutant levels have support 

values lower than 3%, which is a result of the weak interrelationship between each 

parameter, and that may result in lower prediction accuracy. During the analysis, the higher 

support values mostly appeared in several certain single parameter rules. This shows that 

certain single parameters may be more related to the air pollution levels when compared to 

the full sets of parameters. The second one is that the bin values of some parameters in all 

rules are relatively constant. This is true for bin 3 ((55, 60] mph) of average traffic speed, 

and bin 0 (no precipitation) of precipitation. This phenomenon is a result of less variation 

of the input data for these parameters. Bin 3 of average traffic speed input data occupies 

more than 55% of all air pollutants bins, and bin 0 of precipitation input data occupies more 

than 94% of all air pollutants bins. In another word, the average traffic speeds on the 

monitoring site nearby highway are between 55 mph and 60mph for more than 55% of the 

time, and there is no rain near the monitoring site for 94% of the time, which can be resulted 

in for all air pollutants bins, the bins of these two parameters remain unchanged in the 

highest support value rules.   

 The frequent pattern analysis revealed the in-depth relationships between each air 

pollutant and parameters include the meteorological measurements and traffic status. Thus, 

air pollution concentration predictions using these parameters can be achieved in the 

following section. 
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4.4 Machine Learning Prediction Models for Air Pollution 

 As there is no machine learning algorithm that fits all kinds of data sets, it is 

essential to select the proper algorithms for the air pollutants predictions, respectively. 

Thus, the machine learning models are trained, compared, and analyzed for each air 

pollutant. As stated in Chapter 3 on Design of the Study, the loaded dataset includes 2011 

to 2019 historical air pollution concentration, meteorological measurements, and average 

traffic speed hourly data. 80% of the dataset are randomly selected to train the models, and 

the rest 20% of the dataset are used as validation to test the model accuracy. The stratified 

10-fold cross-validation is used and the best result of each model is used for comparison 

between models.   

 

4.4.1 Machine Learning Model Selection and Training 

4.4.1.1 Model Selection for Ground-level Ozone 

TABLE 16 shows the selected two models for ground-level ozone concentration 

prediction. The full table for all seven candidate models is provided in Appendix A. 

TABLE 16. MODEL SELECTED FOR GROUND-LEVEL OZONE 

 

NRMSE Ground-level Ozone 

MLP 4.81% 
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XGB 5.07% 
  

 

 In TABLE 16, the first column shows the name of the machine learning model and 

the second column shows the NRMSE value. Two types of plots are demonstrated that are 

line plots and scatter plots. The line plot shows the distribution of the ground-level ozone 

concentration. In which the model training set is shown in the black line, the model 

validation set is shown in the red line, and the model prediction set is shown in the blue 

line. Since the model training set is randomly selected 80% of the database and the model 

validation set is the rest 20%, the distribution of the validation should be close to the 

training set, which means the black line and the red line should be close to each other. In 

the meantime, the more accurate the model prediction, the blue line and the red line are 

closer. The distribution line plot only shows the distribution differences between the sets, 

but it doesn’t show the degree of the error like the NRMSE value. Thus, even the gap 

between the blue line and the red line is relatively big, the NRMSE value may still be 

relatively small. The scatter plot shows the comparison between the model prediction set 

and the model validation set. In which the red line is a 45-degree line that shows the 100% 

accuracy match, the blue line is the trend line of the prediction scatters. The more accurate 

the model prediction, the smaller the prediction error angle between the red line and the 

blue line. 
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 From the comparison, all models have NRMSE values lower than 7%, and the 

prediction error angles are smaller than 9°. The blue trend lines in the scatter plots are all 

below the red 45-degree lines, which means the concentrations predicted tend to be lower 

than the validation values. Among the models, the KNN and SVM models show relatively 

poorer fits for the dataset with the NRMSE value of 6.74% and 6.72%, and the prediction 

error angles are 3.44° and 8.87°. The PR, RF, and LR models are more accurate than the 

KNN and SVM models, while still not good enough. In the meantime, the MLP model 

prediction of ground-level ozone concentration has the lowest NRMSE of 4.81%. From the 

distribution plot, the prediction of the air pollution concentration over 30 ppb is very 

accurate, the prediction between 0 to 10 ppb has a lower density than the validation set and 

the prediction between 10 to 30 ppb has a higher density than the validation set. This trend 

is also true for all models except the SVM model, which has a higher density for predictions 

between 10 to 35 ppb, and a lower density for other predictions. The prediction error angle 

of the MLP model is 3.24° in the scatter plot, which means the prediction is very close to 

the validation, and this model fits the prediction needs for ground-level ozone. Another 

model XGB is also selected as a candidate model that has a good NRMSE value of 5.07%, 

and a small prediction error angle of 1.96°. Thus, the XGB and MLP models are selected 

to perform the ground-level ozone prediction. 

 

4.4.1.2 Model Selection for PM2.5 

TABLE 17 shows the model comparison for PM2.5 concentration, which includes 

the models’ names, the NRMSE values, the distribution plots, and the prediction scatter 

plots. The format and the meaning of the lines, angles, and colors used in this table are 
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the same as in TABLE 16. The full table for all seven candidate models is provided in 

Appendix B. 

TABLE 17. MODEL SELECTED FOR PM2.5 

 

NRMSE PM2.5 

XGB 5.62% 
  

RF 5.46% 
  

 

 As shown in TABLE 17, all models have NRMSE values lower than 7%, and the 

prediction error angles are smaller than 10°, which means the predictions of PM2.5 are not 

as accurate as ground-level ozone. The blue trend lines in the scatter plots are all below the 

red 45-degree lines, which means the concentrations predicted tend to be lower than the 

validation values. Among them, the PR, SVM, and LR models show relatively poorer fits 

for the dataset with the NRMSE value of 6.58%, 6.91%, and 6.58% and the prediction error 

angles are 6.21°, 9.18°, and 6.21°. The MLP and KNN models are more accurate than the 

PR, SVM, and LP models but less accurate than the XGB and RF models. 
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The RF model prediction of PM2.5 concentration has the lowest NRMSE value of 

5.46%. From the distribution plot, the prediction of the air pollution concentration between 

7 to 19 ug/m3 has a higher density than the validation set, and other predictions have lower 

densities than the validation set. The XGB model shows almost the same trend as the RF 

model with the NRMSE value of 5.62%. Other models with lower NRMSE also have this 

trend, which is a sign that the predicted PM2.5 concentration values tend to be more 

concentrated in a certain range while the validation values tend to be more dispersed. The 

prediction error angle of the RF model is 4.02° in the scatter plot, which means the 

prediction is very close to the validation, and this model fits the prediction needs for PM2.5. 

The prediction error angle of the XGB model is 4.5°, which is competitive when compared 

with other models. Thus, the XGB and RF models are selected to perform the PM2.5 

prediction. However, based on the model validations, the PM2.5 concentration prediction is 

less accurate than the ground-level ozone concentration. This may be a result of the 

complex sources of the local PM2.5 that are not highly influenced by the meteorological 

measurements.  

 

4.4.1.3 Model Selection for NO2 

TABLE 18 shows the model comparison for NO2 concentration, which includes 

the models’ names, the NRMSE values, the distribution plots, and the prediction scatter 

plots in columns from left to right. The format and the meaning of the lines, angles, and 

colors used in this table are the same as in TABLE 16 and 8. The full table for all seven 

candidate models is provided in Appendix C. 
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TABLE 18. MODEL SELECTED FOR NO2 

 

NRMSE NO2 

XGB 2.95% 
  

RF 2.97% 
  

 

As shown in TABLE 18, all models have NRMSE values lower than 5%, and the 

prediction error angles are smaller than 3.8°, which indicates that the NO2 predictions may 

be more accurate than the PM2.5 and ground-level ozone predictions. The blue trend lines 

in the scatter plots are all below the red 45-degree lines, which means the NO2 

concentrations predicted tend to be lower than the validation values even some models 

have extremely accurate predictions. Among the models, the PR, SVM, LR, and KNN 

models show relatively poorer fits for the dataset and the prediction accuracy. When 

compared to these models, the MLP, XGB, and RF models are more accurate. 

The XGB model prediction of NO2 concentration has the lowest NRMSE value of 

2.95% based on the validation set. From the distribution plot, the predictions of the air 

pollution concentration are almost perfectly overlapping with the validation set and the 
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model training set. The prediction error angle of the RF model is 0.851° in the scatter plot, 

which means the prediction is very close to the validation, and this model fits the prediction 

needs for NO2. The RF model is also a good fitting model with an NRMSE value of 2.97% 

and the prediction error angle is 0.959°. This result is slightly lower than the XGB model 

but still relatively accurate. Another good fitting model in the selection process is the MLP 

model that has an NRMSE value of 3.12%, and the prediction error angle is 1.51°. 

However, due to the superior prediction ability of the XGB and RF models, they are 

selected to perform the NO2 prediction. From the above analysis and comparison, the 

machine learning models have a more accurate prediction potential for NO2 than for PM2.5 

and ground-level ozone. 

 

4.4.1.4 Model Selection for NOx 

TABLE 19 shows the model comparison for NOx concentration, which includes 

the models’ names, the NRMSE values, the distribution plots, and the prediction scatter 

plots in columns from left to right. The format and the meaning of the lines, angles, and 

colors used in this table are the same as in TABLE 16, 8, and 9. The full table for all 

seven candidate models is provided in Appendix D. 
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TABLE 19. MODEL SELECTED FOR NOx 

 

NRMSE NOx 

XGB 1.79% 
  

RF 1.81% 
  

 

As shown in TABLE 19, all models except the SVM have NRMSE values lower 

than 4%, and the prediction error angles are smaller than 6°, which indicates that the NOx 

predictions may be more accurate than the PM2.5 and ground-level ozone predictions but 

less accuracy than the NO2 prediction. The blue trend lines in the scatter plots are all below 

the red 45-degree lines, which means the NO2 concentrations predicted tend to be lower 

than the validation values. Among the models, the PR, MLP, LR, and KNN models show 

relatively poorer fits for the dataset and the prediction accuracy. The SVM model has a 

huge error in the prediction performance with an NRMSE value of 5.02%, and a prediction 

error angle of 19.7°. When comparing these models, the XGB and RF models are more 

accurate. 
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The XGB model prediction of NOx concentration has the lowest NRMSE value of 

1.79% based on the validation set. From the distribution plot, the predictions of the air 

pollution concentration are almost perfectly overlapping with the validation set and the 

model training set. The prediction error angle of the RF model is 1.41° in the scatter plot, 

which means the prediction is very close to the validation, and this model fits the prediction 

needs for NOx. The RF model is also a good fitting model with an NRMSE value of 1.81% 

and the prediction error angle is 1.49°. This result is slightly lower than the XGB model 

but still relatively accurate. As a result, the XGB and RF models are selected to perform 

the NOx prediction. From the above analysis and comparison, the XGB and RF models 

have the ability to predict NOx more accurate than NO2, however, the SVM model performs 

the poorest for NOx prediction among all models and datasets, which is a sign that the NOx 

prediction is more model-specific than other air pollutants. 

From the model selection process for all air pollutants, the outperformed models 

are selected and listed in TABLE 20. 

TABLE 20. THE MODELS SELECTED FOR EACH AIR POLLUTANT 

Air Pollutants Ground-level ozone PM2.5 NO2 NOx 

Models Selected MLP, XGB XGB, RF XGB, RF XGB, RF 

 

 As shown in TABLE 20, two models for each air pollutant are selected to perform 

the prediction. As shown in the table, the XGB model fits all the air pollutant datasets 

accurately, while the MLP and RF models are also good air pollution concentration 

prediction candidates. Based on the validation data set, the NO2 concentration prediction 

can be relatively more accurate, the PM2.5 concentration prediction has relatively lower 
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accuracy, and the NOx concentration prediction is more models specific, which can be very 

accurate when using the XGB and RF models, and inaccurate when using the SVM model. 

The following prediction processes are performed based on the models selected. 

 

4.4.2 Air Pollution Forecasting Based on the Models Selected 

 As introduced in the Design of the Study section, the selected models are utilized 

to predict the air pollution concentration level of the year 2020 based on the historical data 

from 2011 to 2019. For which, the historical data is used to train the models, and the 2020 

data is used as the prediction validation. 

 TABLE 21, TABLE 22,  TABLE 23, and TABLE 24 show the air pollution 

concentration level predictions for the year 2020 and their validation. The first row shows 

the NRMSE values for the two selected models. The distribution plots show the distribution 

comparison between the prediction and the actual measurements, in which the black line 

shows the nigh years train data, the red line shows the actual measurements from the year 

2020, and the blue line shows the model prediction. Unlike the model selection process, 

the black lines and the red lines do not overlap with each other on a large scale. The reason 

is that for the preprocess, the validation data set is randomly selected, thus, has the same 

distribution as the training data. The x-axis of the distribution plots means the air pollution 

concentration bins in ppb, and the y-axis means the distribution density of each bin. The 

PVA plots show the comparison between the prediction and the real data in scatters. The 

red line is a 45° line that shows the trend of the actual measurements, the blue lines show 

the linear trend of the prediction values, and the blue scatters show the prediction for each 
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actual data. In the PVA plots, the angles between the blue line and the red line are the 

prediction error angles that are negatively related to the prediction accuracy. The 

predictions are overall higher than the actual measurements if the blue line is above the red 

line, vice versa.  The last two rows of tables show the real-time comparison plots between 

the prediction and the actual measurements in the hours of the year 2020. Due to the invalid 

and null records being dropped during the preprocess on the raw data, 6,912 hours of air 

pollution concentration levels are predicted for the year 2020 rather than the true total of 

8,784 hours. The blue scatters in the comparison plots show the prediction of the year 2020, 

the red scatters show the actual measurements, and the gray scatters show the error between 

the real data and the prediction. The blue, red, and gray lines show the polynomial trend 

lines of the scatters respectively. When the gray error line is smoother and closer to the y=0 

line, the more stable and accurate the model is. 

 

4.4.2.1 Ground-level Ozone Concentration Prediction 

Based on the analysis and comparison from TABLE 21, the NRMSE value of the 

XGB model is 6.50%, which is higher than 5.42% of the MLP value. This means the 

MLP model is more accurate than the XGB model for ground-level ozone prediction. 

TABLE 21. PREDICTION OF GROUND-LEVEL OZONE CONCENTRATION 

Ground-level Ozone Prediction 

Model MLP XGB 

NRMSE 5.42% 6.50% 
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 The NRMSEs of the 2020 air pollution predictions are lower than those of the 

model selection process, which means the annual predictions by the models perform better 

than the random selection prediction. From the distribution plots, for both of the models, 

the prediction densities of the lower concentration value bins are lower than the real data; 

the prediction densities of the medium concentration value bins are higher than the real 

data; the prediction densities of the higher value bins tend to be more accurate and fits the 

real data better. Therefore, as a result, for these two models, the counts of the prediction 

values range from around 0 to 20 ppb is less than that of the actual measurements, and the 

counts of the prediction values range from around 20 to 40 ppb are more than that of the 

actual measurements. 

 From the PVA plots, the error angle of the MLP model is 2.06°, which is smaller 

than that of the XGB model of 2.61°. This is another sign that the MLP model is more 

accurate than the XGB model for ground-level ozone concentration prediction for the year 

2020. The blue linear trend lines of both models are below the red lines, which means the 

prediction values of both models tend to be lower than the real data. 
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 From the comparison plots, two ground-level ozone concentration seasonal peaks 

can be predicted by both models. For both models, the predictions tend to be smoother than 

the real data, which is presented as the vertical differences of the blue lines are less. The 

concentration trending in terms of increasing and decreasing can be perfectly predicted by 

both models. For 0 to 700, 3000 to 4500, and after 5800 hours, the predictions tend to be 

higher than the real values; for other hours, the predictions tend to be lower than the real 

values. Especially for the fall season concentration peak, the real values are significantly 

higher than the prediction. The error lines are smoother around zero before 3000 hours 

point, which means the predictions for the first half-year are more accurate and stable. 

From this result, the annual prediction of ground-level ozone based on the meteorological 

measurements and average traffic speeds is accurate when compared to other research. 

 

4.4.2.2 PM2.5 Concentration Prediction 

TABLE 22 shows the PM2.5 concentration level prediction for the year 2020 and 

its validation. Based on the analysis and comparison, the NRMSE value of the RF model 

is 5.38%, which is lower than 5.48% of the XGB value. This means the RF model is 

more accurate than the XGB model for PM2.5 concentration level prediction. 

TABLE 22. PREDICTION OF PM2.5 CONCENTRATION 

PM2.5 Prediction 

Model XGB RF 

NRMSE 5.48% 5.38% 
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 The NRMSEs of the 2020 air pollution predictions are smaller than that of the 

model selection process, which means the annual predictions by the models perform better 

than the random selection prediction. From the distribution plots, for both of the models, 

the prediction densities of the lower concentration value bins are lower than the real data; 

the prediction densities of the medium concentration value bins are higher than the real 

data; the prediction densities of the higher value bins tend to be higher than the real data. 

Therefore, as a result, for these two models, the counts of the prediction values range from 

around 0 to 10 ug/m3 and above 20 ug/m3 are less than that of the actual measurements, 

and the counts of the prediction values range from around 10 to 15 ug/m3 are more than 

that of the actual measurements. 

 From the PVA plots, the error angle of the RF model is 4.87°, which is smaller 

than that of the XGB model of 4.90°. The angles of these two models do not have big 

differences. However, the RF model is more accurate than the XGB model for PM2.5 

concentration prediction for the year 2020. The blue linear trend lines of both models are 

below the red lines, which means the prediction values of both models tend to be lower 
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than the real data. From the scatters, the predictions tend to be lower than the real data for 

higher concentrations. Based on the comparison plots, the PM2.5 concentration levels 

throughout the year 2020 do not have significant high or low peaks. The overall predictions 

are very close to the real data along the hours of the year, which can also be proved by the 

gray error lines that are relatively smooth and close to the y=0 line. However, from the 

error lines, the predictions of PM2.5 for the first half of the year 2020 tend to be higher than 

the real data, and the second half is lower. In the meantime, the predictions of the second 

half of the year are more accurate with lower errors while both models failed to predict the 

decreasing concentration trend at the end of the year. 

 Unlike the results from the model selection process, the prediction of PM2.5 is more 

accurate than the ground-level ozone. Based on the charts, the ground-level ozone 

concentration varies larger than the PM2.5 concentration, which may influence the 

prediction accuracy. The PM2.5 concentration levels are mainly gathered in a lower range, 

which can result in even there are more prediction errors, the degree of the errors can be 

relatively small. On the contrary, the ground-level ozone concentrations are distributed in 

a larger range, thus, a lower count of prediction errors can result in a relatively higher 

degree of error. 

 

4.4.2.3 NO2 Concentration Prediction 

TABLE 23 shows the NO2 concentration level prediction for the year 2020 and its 

validation. Based on the analysis and comparison, the NRMSE value of the XGB model 

is 4.08%, which is lower than 4.25% of the RF value, which is more accurate than 

ground-level ozone and PM2.5 prediction. 
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TABLE 23. PREDICTION OF NO2 CONCENTRATION 

PM2.5 Prediction 

Model XGB RF 

NRMSE 4.08% 4.25% 

Distributio
n Plot   

PVA Plot   
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 However, unlike the previous two air pollutants, the NRMSEs of the 2020 air 

pollution predictions are higher than that of the model selection process. One of the reasons 

is that the NO2 pollution is largely related to on-road transportation, which was 

significantly influenced by the COVID-19 pandemic during the year 2020. Thus, the 

random selection data predictions by the models perform better than the 2020 prediction. 

From the distribution plots, there are relatively large differences between the 2020 real data 

and the historical training data for concentration bins ranging from 0 to 15 ppb. The 

prediction line of the XGB model lies between the training and real data lines, and the 

prediction line of the RF model is closer to the training data line, which is one of the reasons 

that the RF model is less accurate than the XGB model. For these two models, the counts 

of the prediction values range above 15 ppb are more accurate and closer to that of the 

actual measurements. 

 From the PVA plots, the error angle of the XGB model is 2.37°, which is smaller 

than that of the RF model of 2.68°. The XGB model prediction trend of NO2 is closer to 

the real data than the RF model. The blue linear trend lines of both models are below the 



122 

 

 

 

red lines, which means the prediction values of both models tend to be lower than the real 

data. From the scatters, the predictions tend to be lower than the real data for higher 

concentrations. From the hourly comparison charts, the overall NO2 predictions are very 

close to the real data throughout the year. The gray error lines are almost straight lines that 

are close to the y=0 line. The spring and fall high peaks and the summer low values of NO2 

pollution can be accurately predicted. For the XGB model, the predictions from 0 to around 

4100 hours and after 6200 hours, which include the spring high peak and the summer low 

value are very accurate with limited errors, while the predictions from 4100 to around 6200 

hours, which include the fall peak are slightly higher than the real data. For the RF model, 

the predictions from around 0 to 100 hours, 1100 to 4000 hours, and after 6100 hours, 

which include the summer low value are relatively accurate, while the predictions from 

around 100 to 1100 hours and from 4000 to 6100 hours, which include the spring and fall 

peaks are lower than the real data. The error degree of the RF model is higher than the 

XGB model. This is consistent with the NRMSE values. Based on the analysis, the annual 

hourly NO2 concentration can be predicted by machine learning models more accurately 

than ground-level ozone and PM2.5. 

 

4.4.2.4 NOx Concentration Prediction 

TABLE 24 shows the NOx concentration level prediction for the year 2020 and its 

validation. Based on the analysis and comparison, the NRMSE value of the XGB model 

is 2.16%, which is lower than 2.19% of the RF value. 
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TABLE 24. PREDICTION OF NOx CONCENTRATION 

PM2.5 Prediction 

Model XGB RF 

NRMSE 2.16% 2.19% 

Distributio
n Plot   

PVA Plot   
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 The differences between the XGB and RF models' NRMSE values are limited, 

which is the most accurate air pollutant concentration prediction. From the distribution 

plots, both of the models’ predictions are extremely close to the training data, which are 

slightly higher than the real 2020 data at the medium concentration bins. From the PVA 

plots, the error angle of the XGB model is 0.108°, which is smaller than that of the RF 

model of 0.401°. The prediction lines of both models are very close to the 45° real data 

lines. From the plots, the error angles are smaller than that of the model selection process. 

However, the NRMSE values are higher. Based on the comparison plots, the hourly annual 

NOx concentration level predictions are extremely close to the real data, which include the 

peak values during spring and low values during winter. The low errors can also be 

supported by the gray error line that is smooth and close to the y=0 line.   

 Based on the analysis and comparison, the prediction of NOx concentration level 

throughout the year 2020 outperformed other air pollutants. In the meantime, ground-level 

ozone, PM2.5, and NO2 can also be predicted relatively accurately. 
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4.5 Discussion 

 The temporal characteristics that were analyzed in this dissertation are comparable 

with other previous studies. More specifically, part of the monthly characteristics of the 

target air pollutants is consistent with previous research. For instance, Logan, 1985, found 

a peak value of the ground-level ozone during Spring, and the minimum value in summer 

in the USA (Logan, 1985). Lal et al., 2000, found a higher level of ground-level ozone 

during Fall, in which the reason was claimed as the higher transportation activities (Lal, 

Naja, & Subbaraya, 2000). However, the PM2.5 concentration is higher in the winter season 

in China instead of in summer that was found in this research (Gehrig & Buchmann, 2003; 

Zheng et al., 2005). The differences occur due to the different sources in these two countries. 

The main source of PM2.5 in Houston is the on-road vehicle, which burns more fuel in 

Summer due to the extended operation of the air conditioner (Q. Li, Du, Qiao, & Yu, 2018). 

However, the main source of PM2.5 in China is the coal-burning for keeping warm in winter 

and the (Zheng et al., 2005). The monthly trends of NOx/NO2 are also consistent with 

previous research (Stevenson et al., 2004; Van Der A et al., 2008). The day of week 

characteristics is consistent with other previous research (Baan et al., 2011; Coman, 

Ionescu, & Candau, 2008; DeGaetano & Doherty, 2004), which show that the on-road 

transportation activities influence the pollution concentration on a large scale. The hourly 

ground-level ozone is found to be higher around the daytime (Pudasainee et al., 2006), and 

higher PM2.5, NOx/NO2 concentrations during daily traffic peaks (Sonntag, Baldauf, Yanca, 

& Fulper, 2014; Streets & Waldhoff, 2000; Q. Xiao, Chang, Geng, & Liu, 2018), which 

are consistent with the results from this research. However, some subtle variances of the 

temporal characteristics between this research and others occurred, which are mainly due 
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to different region that the studies were conducted may have different influencing factors 

such as wind. 

 The correlation analysis and frequent pattern mining between the target air 

pollutants’ concentration and the influencing factors showed some significant trends. The 

relationship between ground-level ozone and pressure and heavy rains that were found by 

the research conducted by Emanuel, 2003, in the west pacific area was not found in this 

research due to the different study locations (Emanuel, 2003). However, the strong 

correlation between ground-level ozone level and solar radiation and humidity was proved 

by this research. Wang et al., 2015, concluded PM2.5 concentration is positively correlated 

with temperature and negatively related with wind speed and relative humidity (J. Wang 

& Ogawa, 2015), which is consistent with the results from this research, while the 

correlation was found to be weak. The research conducted by Ocak et al., 2008, indicates 

the NOx level is negatively related to wind speed and temperature that was also found in 

this research (Ocak & Turalioglu, 2008). The relationship between the target air pollution 

and transportation is relatively weak because the transportation data is not detailed enough 

to show the hourly and daily trends. The relatively higher correlation between PM2.5 and 

NOx concentration that was found in this research was also found by previous studies. For 

instance, Song et al., 2019, Li et al., 2020, and Buccolieri et al., 2018 all found the same 

relationships between those two air pollutants (Buccolieri, Jeanjean, Gatto, & Leigh, 2018; 

L. Li et al., 2020; Song et al., 2019). Some previous research found a positive relationship 

between NOx and ground-level ozone relationship in contrast to this research (David & 

Nair, 2011; Duan et al., 2008). In the meantime, a negative relationship was also found by 

some (Varotsos, Efstathiou, & Kondratyev, 2003). For example, Pancholi et al., 2018, 
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discovered that the O3 and NOx during daytime exhibited an inverse relationship (Pancholi, 

Kumar, Bikundia, & Chourasiya, 2018). Yu et al., 2020, concluded that the correlation 

between ground-level ozone and NOx concentration can be both positive and negative due 

to the complexity of ozone precursors sensitivity (Yu et al., 2020). 

 The target air pollution forecasting based on machine learning outperformed most 

of the existing forecast models. Mallet et al., 2009, applied machine learning algorithms to 

perform ozone forecasting, in which the RMSE was relatively low (Mallet, Stoltz, & 

Mauricette, 2009). While the machine learning models utilized in that research require 

tuning on parameters that limit their efficiency. The forecasting model built by Tang et al., 

2011, is able to provide a relatively accurate prediction for ozone, which, however, requires 

the input of NOx and VOCs information (Tang, Zhu, Wang, & Gbaguidi, 2011). This 

research predicts the ground-level ozone by influencing factors, which eliminate the 

possible errors caused by other pollutants’ predictions. The annual hourly forecasting 

ability of the models built in this research is also superior to the majority of the previous 

studies. For instance, the ozone forecasting model based on the MLP algorithm by Dutot 

et al., 2007, utilized a 24-hour lead time, which is not able to forecast a further future. The 

forecasting accuracy of PM2.5 by the model built in this research is comparable if not more 

accurate than others. Zhou et al., 2018, utilized time-series input to develop an SVM model, 

in which the influencing factors were not considered (Zhou et al., 2019). This is a common 

practice for most models built by existing research (Mahajan, Chen, & Tsai, 2018; Perez, 

Menares, & Ramírez, 2020; Zhu et al., 2018). The lack of influencing factors in the 

forecasting may result in a less robust prediction. When comparing with the traditional 
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statistical forecasting method (Du, 2018), the accuracy of the models proposed in this 

research is more accurate, practical, and efficient, especially for special events.  
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CHAPTER 5 

SUMMARY AND RECOMMENDATIONS 

5.1 Summary 

Ground-level ozone and PM2.5 are known for their severe adverse effects on human 

health and the ecosystems as critical air pollutants. Unlike the primary air pollutants that 

are emitted to the atmosphere directly from the sources, ground-level ozone is a type of 

secondary air pollutant that is formed in the air by reactions of chemicals such as NOx that 

involves the presence of sunlight. When people are exposed to the high ground-level ozone 

or PM2.5 concentration levels, respiratory and cardio-pulmonary diseases, and lung cancer 

mortality might be triggered, or even death, especially for the high-risk population such as 

those who have asthma. Furthermore, flora and fauna species can be damaged by them. 

This research aims to analyze the ten years of ground-level ozone and PM2.5 historical 

concentration data along with the meteorological measurements and traffic situation and 

propose a practical forecasting approach.  

For these research purposes, an in-depth literature review was extensively 

conducted. Different types, sources, and consequences of pollutions were reviewed and 

summarized following by the emphatical introduction of the four critical air pollutants, 

which include ground-level ozone, PM2.5, and NOx/NO2 that are selected as the research 

targets. Previous research on the pathogenicity of these pollutants was concluded along 

with various regional regulations and laws, which gave information on how human health 

is threatened. The influencing factors of the air pollutants are reviewed and categorized 

into two classes, which include meteorological factors such as sunlight, temperature, wind, 

relative humidity, and the source factor that mainly on-road traffic situations. It is revealed 
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from previous research that these factors may impact the target air pollutants’ concentration 

level to a certain degree, albeit the specific effects need to be analyzed case by case. The 

different approaches of air pollution forecasting technologies and approaches were 

thoroughly reviewed. Based on the review, the mainstream forecasting approaches utilized 

the time-series analysis on the historical air pollution data. More advanced analytical tools 

such as NN and machine learning in the existing research tend to overdependence on the 

time-series input, which limits the applicability, accuracy, and efficiency of the proposed 

models. However, the literature review provided an insight into various analytical and 

forecasting approaches that can be used in this research. 

To achieve the research goals, four modules were purposed that include data 

collection and processing, temporal analysis, frequent pattern mining analysis, and 

machine learning forecasting. In the data collection and processing module, the ten years 

of air pollution concentration, meteorological, and traffic situation data were introduced 

along with the detailed data type and the information entries that were collected. The 

preprocessing of the raw data to eliminate the invalid records was also demonstrated. In 

the temporal analysis module, the statistical analysis that includes the ANOVA and 

correlation tests and the temporal analysis that includes the annual, monthly, day-of-week, 

and hourly characteristics were introduced. In the frequent pattern mining analysis, various 

datasets were integrated and transformed into a unified dataset. The dataset was then 

binned into binary entries only. The frequent pattern algorithms include the Apriori and 

FP-Growth were introduced in this module based on the detailed theory, parameters, and 

pseudo-code that were utilized in this research. In the machine learning forecasting module, 

the concepts of using it in data analysis were shown in a detailed flow chart. The seven 
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most representative machine learning algorithms including PR, MLP, XGB, SVM, RF, LR, 

and KNN were demonstrated with the detailed computation kernels. The evaluation 

methods that include the NRMSE and PVA plot of the forecasted values were provided in 

detailed calculation equations and concepts. 

As the analytical results of this research, the yearly, monthly, day-of-week, and 

hourly temporal characteristics were demonstrated for ground-level ozone, PM2.5, 

NOx/NO2, temperature, solar, pressure, precipitation, relative humidity, and resultant wind 

speed and direction. The yearly characteristics of the traffic situation in terms of average 

on-road speeds were analyzed. As shown in the intercorrelation matrix and the Pearson’s r 

matrix, ground-level ozone is relatively more correlated with relative humidity, average 

traffic speed, solar radiation, temperature, and resultant wind speed. PM2.5 is relatively 

more correlated with pressure and temperature. NO2 is relatively more correlated with solar 

radiation, temperature, resultant wind speed, and pressure. NOx is relatively more 

correlated with temperature, resultant wind speed, and pressure. The intercorrelation of the 

air pollutants and meteorological parameters was also calculated. Based on the frequent 

pattern mining analysis, the highest concentration level of ground-level ozone appeared 

when the solar radiation was higher than 0.414 Langleys/min, the temperature was higher 

than 81.4 F, the pressure below 1013.1 millibars, no precipitation, relative humidity below 

57.9%, resultant wind speed higher than 8.3 mph with the direction of 165 to 222-degree 

compass and the average traffic speed between 55 and 60 mph. The highest concentration 

level of PM2.5 appeared when the solar radiation was below 0.01 Langleys/min, the 

temperature between 73.8 and 81.4 F, the pressure below 1013.1 millibars, no precipitation, 

relative humidity between 73.8% and 83.8%, resultant wind speed higher than 8.3 mph 
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with the direction of 165 to 222-degree compass and the average traffic speed between 55 

and 60 mph. The highest concentration level of NO2 and NOx appeared when the solar 

radiation was below 0.01 Langleys/min, the temperature below 62.5 F, the pressure higher 

than 1019.6 millibars, no precipitation, relative humidity below 57.9%, resultant wind 

speed below 3.4 mph with the direction of 222 to 360-degree compass and the average 

traffic speed between 55 and 60 mph.  

Based on the algorithm selection for machine learning forecasting, MLP and XGB 

outperformed other algorithms with the lowest NRMSE and error angles in the PVA plots, 

and were selected as the candidate algorithm for ground-level ozone prediction, XGB and 

RF were selected to perform PM2.5 prediction, XGB and RF were selected to perform NO2 

and NOx prediction. From the prediction evaluation process that utilized the actual values 

from the year 2020, the MLP model provided accurate forecasting for annual hourly 

ground-level ozone forecasting with NRMSE of 5.42% and the error angle of 2.06°. The 

RF model provided relatively accurate forecasting for annual hourly PM2.5 concentration 

with NRMSE of 5.38% and the error angle of 4.87°. While the forecasting of PM2.5 

concentration was not as accurate as of the other target air pollutants in terms of values, 

however, the trends prediction is of high accuracy and outperformed most of the previous 

research. The XGB model provided relatively accurate forecasting for annual hourly NO2 

and NOx concentrations with NRMSE of 4.08% and 2.16% and the error angle of 0.16°, 

respectively. From the forecasting evaluation, the predictions of ground-level ozone and 

NOx/NO2 were very accurate in both values and trends.  

In conclusion, when comparing with the previous studies, the main advantages of 

the machine learning forecasting models that were proposed in this research include: (1) 
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the relatively long-term (annual) detailed (hourly) prediction ability; (2) the higher 

accuracy in the trends and values forecasting; (3) the air pollution influencing factors are 

fully considered and utilized; (4) less dependency on the time-series inputs; and (5) the 

high-efficiency forecasting procedure that can be easily used in other similar areas. 

 

5.2 Contributions 

 This research was conducted based on the cutting edge Frequent Pattern Data 

Mining and Machine Learning technologies to achieve the research goals. The 

methodologies and results of this research made contributions to the state of knowledge in 

air pollution characterization and forecasting in several aspects. Firstly, ten years’ historical 

data is analyzed, which is superior to most other research. Furthermore, the raw data 

contains a complementing range of variables that include seven meteorological 

measurements (solar radiation, outdoor temperature, barometric pressure, precipitation, 

relative humidity, resultant wind speed, and resultant wind direction) and traffic situation 

data for each air pollution. This provides fundamental databases for an accurate model.   

Secondly, the complex nature of the impacts of the influencing factors on air 

pollution concentration level determined that it is hard to be analyzed by a traditional 

statistic method. In this research, the binning method in the preprocessing transformed the 

float type raw data into discrete integer labels, and the relationships and trends between 

meteorological measurements, traffic situation, and the target air pollution concentration 

are revealed through the Frequent Pattern Data Mining algorithms.  
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Thirdly, a universal methodology to create and evaluate a pool of Machine Learning 

forecasting models for air pollution is proposed and tested. The input data is split and each 

forecasting model is self and cross-compared to boost the accuracy, which is high in 

efficiency and the computation complexity is greatly reduced. The forecasting models 

considered both anthropogenic and natural influencing factors of the air pollution 

concentration, thus, it will be more applicative and robust when compared with the 

forecasting models that only consider the air pollution data. As a result, the methodology 

proposed in this research can be used in other areas and other variables. 

 

5.3 Recommendations 

 This research collected and analyzed ten years of ground-level ozone, PM2.5, 

NOx/NO2 concentration, seven meteorological measurements, and traffic situation data 

from 2011 to 2020. The results revealed detailed pollution patterns associated with the 

influencing factors and their forecasting models based on machine learning algorithms. 

Albeit the achievements of this research met the objectives, there are several 

recommendations for future research.  

(1) The data collected were in diverse formats and quality, which lower the 

preprocessing efficiency and precision. A good way to improve efficiency is to create and 

maintain a database through, for instance, Amazon AWS or MySQL, so that all data 

formats could be integrated automatically.  
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(2) The traffic situation data collected lacks the hourly measurements, which were 

not detailed enough. In future research, it is recommended to access a more detailed traffic 

database that may further improve the forecasting accuracy.  

 (3) The target air pollutants in this research are mainly anthropogenic sourced, 

thus, human activities play an important role in influencing their concentration. However, 

this research solely considered the traffic situation, which is not adequate. In future 

research, other human activities should be considered. For example, economic activities 

should be considered by electricity consumption parameters in an area.  

(4) The forecasting of air pollution concentration based on machine learning models 

was evaluated on a large scale for the whole predicted dataset, the hour-by-hour accuracy 

is not measured. Thus, the single point accuracy may not be as good as the whole model. 

There are still rooms to improve the machine learning models, which may yield more 

accurate forecasting.  
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APPENDIX  

A. MACHINE LEARNING MODEL SELECTION FOR GROUND-LEVEL 

OZONE 

 

NRMSE Ground-level Ozone 

PR 5.68% 
 

 

MLP 4.81% 
 

 

XGB 5.07% 
 

 

SVM 6.72% 
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RF 5.24% 
 

 

LR 6.58% 
 

 

KNN 6.74% 
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B. MACHINE LEARNING MODEL SELECTION FOR PM2.5 

 

NRMSE PM2.5 

PR 6.58% 
 

 

MLP 6.31% 
 

 

XGB 5.62% 
 

 

SVM 6.91% 
 

 



139 

 

 

 

RF 5.46% 
 

 

LR 6.58% 
 

 

KNN 6.32% 
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C. MACHINE LEARNING MODEL SELECTION FOR NO2 

 

NRMSE NO2 

PR 4.72% 
 

 

MLP 3.12% 
 

 

XGB 2.95% 
 

 

SVM 4.71% 
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RF 2.97% 
 

 

LR 4.72% 
 

 

KNN 4.26% 
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D. MACHINE LEARNING MODEL SELECTION FOR NOx 

 

NRMSE NOx 

PR 2.19% 
 

 

MLP 2.18% 
 

 

XGB 1.79% 
 

 

SVM 5.02% 
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RF 1.81% 
 

 

LR 3.16% 
 

 

KNN 3.06% 
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