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Preface

Current numeric calculations of state-to-state resolved quantum reactive scat-
tering matrix elements are computationally limited to systems of three degrees of
freedom or less. The large grids or a large number of grids used in the computation
are inefficient. In an effort to improve the computation times in two— dimensional
calculations, the combination of the channel packet method together with absorb-
ing boundary conditions is explored for the collinear H + H, reaction and a simple
model of two collinear coupled Morse oscillators. For collinear H + Hj, results are ob-
tained which are in good agreement with previous calculations while simultaneously
providing a reduction in computation time. For the simple model of two coupled
collinear Morse oscillators, scattering matrix elements for some mass configurations
contain non-trivial errors introduced by absorbing boundary condition reflection.
For these mass configurations, the effects of absorbing boundary condition reflection
are explored and scattering matrix elements are presented for absorbing boundary
condition reflection for a simplified Morse potential. Good scattering matrix ele-
ments are presented for the light-heavy-light mass configuration of the two coupled
collinear Morse oscillators. The effects of kinetic coupling and potential well depth

on scattering matrix elements are also presented for this mass configuration.

A project like this is not done without the assistance and encouragement of
many others. I'd like to thank my advisor, Dr. David E. Weeks, for his tireless
encouragement and assistance during my stay. Dr. Weeks certainly deserves saint-
hood for tolerating my many questions and frustrations with the lack of adequate
computer support. I'd also like to thank Dr. Kirk Mathews for his many insightful
questions and providing me with a Sun SPARC2 workstation in an effort to alleviate
the lack of adequate computer support. Thanks to Dr. William Bailey, Lt Col David
Coulliette and Dr. Jerry Boatz for their many insightful questions, comments and

encouragement.
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Capt. and Mrs. Greg Williams for visits, support and encouragement. Thanks to
Maj. Greg Vansuch and family for the many good lunches, dinners and conversation.
I'd be at a loss with out Maj. Jack McCrae and Capt. Kim McCrae. Thanks for the
satellite dish, and the many hours spent getting Babylon 5 a week ahead of time,
the superb beers we brewed and all the many adventures. A very special thanks to
Capt. and Mrs. Rob Franklin without whom I'd be missing the major part of my

life, my horse HPS Bad Boy and my cat Robert.

There’s also a great number of people outside AFIT without whom Id probably
gone crazy. Thanks to Bill and Lora Rumsey whom I've known all my life. Without
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and their children Nick and Suzie for all the meals and just general good times. For
everything, many thanks go to Ms. Gera Dingemans. A very big thank you to BA
in Columbus, live long and prosper! Finally, but not least, to that special Texan,
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Abstract

In an effort to develop a more efficient time dependent approach for calculating
scattering matrix elements, absorbing boundary conditions are combined together
with the channel packet method. The channel packet method relies on calculat-
ing two Mpgller states: one representing reactants and one representing products.
The time dependent correlation function between the two Mgller states is efficiently
-computed by individually propagating the Mgller states using absorbing boundary
conditions as they exit the interaction region of the potential. As a Mgller state
evolves in time, it will be attenuated by the absorbing boundary conditions without
reflecting off the edge of the grid thereby permitting the use of a much smaller grid.
The Fourier transform of the correlation function is then used to compute scattering

matrix elements.

The efficiency of the combination of the channel packet method with absorbing
boundary conditions is demonstrated in one dimension through application to the one
dimensional square well. The one dimensional square well has an analytic solution
which provides a benchmark for testing both the efficiency and accuracy of this
approach. Scattering matrix elements obtained using the channel packet method
with absorbing boundary conditions are in excellent agreement with the analytic
solution. The new approach converges to the correct, analytic solution as well as
provides a dramatic reduction in grid size. The reduced grid size results in a faster,
more efficient computation. The effects of absorbing boundary conditions in one
dimension are investigated using a one dimensional potential consisting of a Gaussian

well with symmetric Gaussian barriers.

Similar to the one dimensional square well, the collinear H + H; reaction
provides a benchmark for testing the efficiency and convergence of the channel packet

method with absorbing boundary conditions as applied to scattering matrix elements
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in two dimensional scattering. Again, the new method is more efficient than previous
methods while converging on the accepted solution. The combination of the channel
packet method with absorbing boundary conditions results in an order of magnitude

savings in the time necessary to compute the correlation function.

With the channel packet method with absorbing boundary conditions estab-
lished as an efficient, accurate method for computing quantum reactive scattering
matrix elements, a model system consisting of two coupled collinear Morse oscilla-
tors is used to investigate the effects of kinetic energy coupling and potential well
depth on scattering. However, for light-light-light, medium-light-medium and heavy-
light-heavy mass configurations, absorbing boundary condition reflection introduces
significant error into the scattering matrix elements. In an effort to understand
the errors introduced by absorbing boundary condition reflection, scattering matrix
elements are presented for reflection from absorbing boundary conditions using a
simplified Morse oscillator potential. Unlike the previous three mass configurations,
scattering matrix elements for the light-heavy-light mass configuration do not suf-
fer from significant absorbing boundary condition reflection error. For this mass
configuration, the effects of kinetic energy coupling and well depth on scattering
matrix elements are presented for a variety of two collinear coupled Morse oscillator

potentials.
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REACTIVE QUANTUM SCATTERING IN TWO DIMENSIONS

1. Introduction

" Molecular reaction dynamics plays a central role in many research efforts
of interest to the United States Air Force. For example, the High Energy Density
Materials®? project at Edwards AFB, CA seeks to identify new rocket fuels that will
improve the current spacelift capabilities of the Air Force. This effort is supported
and guided by a variety of computational models that primarily focus on determining
the molecular structure and energies of high energy density material candidates.
Both classical and quantum mechanical models of the dynamical properties will
play an essential role in determining the suitability of a new high energy density
material for use as a rocket fuel. Another research effort of interest to the Air Force
is the development of more powerful and compact chemical lasers at the Air Force
Institute of Technology and Phillips Lab, Kirtland AFB, NM.** Chemical lasers
will be useful in a variety of Air Force applications including the Airborne Laser
project and the Infrared Countermeasures project.>”” The continued development of
chemical lasers will benefit from a more detailed view of the collisional transfer of
energy afforded by molecular dynamics simulations. In addition, several Air Force
research projects at the Geophysics Directorate, Phillips Lab, Hanscom AFB, MA
are investigating the dynamics of upper atmosphere pollution.®*® The research into
upper atmosphere pollution is concerned with both the sources of pollution as well
as the many chemical reactions between pollutants and the natural constituents of
the upper atmosphere. For example, what is the impact of high altitude flights by
supersonic aircraft, military or commercial, on the ozone layer? The answer to this
question and many others will benefit from the ability to efficiently model reaction

dynamics involved in upper atmosphere pollution.
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The quantum dynamics of a molecular reaction can be understood through
the calculation of quantum scattering matrix (S-matrix) elements. The absolute
value squared of an S-matrix element is the state-to-state resolved probability of
reaction. Current methods for computing S-matrix elements are limited to very
simple reactions where the number of dimensions is two or three. The research
presented here is part of an effort to develop computational methods which are more
efficient than current methods and thereby extend the range of reactions for which

S-matrix elements may be calculated.

1.1 Background

It is only in the last two decades that time dependent methods have become
practical for computing S—-matrix elements. Historically, the first practical methods
for computing S-matrix elements were analytical solutions to very simple problems.
In 1929, London first presented his method for analytically modeling potential energy
surfaces.!! London’s method only took into account three, collinear theoretical atoms
A, B and C and yields an analytic solution for the S-matrix elements. In 1931,
Eyring and Polanyi extended London’s methods to produce an analytical surface
and S-matrix elements for the two dimensional, collinear H + H, reaction.!? The
LEP surface, as it was named, correctly matched several features of the true surface;
though, the surface incorrectly predicts a potential well for the intersection of H,+ H
and H + H,. It wasn’t until 1955 when Sato!® corrected the LEP surface (to the
LEPS surface) to show a barrier in the interaction region of H + Hy — Hy+ H. The
analytical methods of London, Eyring, Polanyi and Sato remained state of the art

for computing S—matrix elements well into the 1970s.

In the 1950’s, new methods that relied on the numeric solution of time in-
dependent classical and quasi-classical equations became possible with the advent
of the digital computer.!*2® The disadvantage to these methods is that they rely

upon the diagonalization of large matrices whose elements are the coefficients of the
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equations of motion of the reacting particles. The disadvantages of large grids and
matrices with the high financial cost of computer time continued to limit their use to
simple one and two dimensional problems. In the early 1980s faster, less expensive
computers became available and quantum S-matrix calculations became computa-
tionally feasible.2!*¢ However, these calculations are limited in scope to either two
dimensional geometries for a variety of reactions or three-dimensional calculations
for very simple reactions like D + H, — DH + H. While some quantum meth-
ods allow the computation of a single state-to-state® resolved S-matrix element, the
computational overhead associated with the large grids necessary to perform these
caléulations remains the limiting factor. A reduction in grid size while maintaining
the accuracy of the result will lead to faster computations and the ability to compute

S-matrix elements for a wider variety of reactions.

1.2 Problem and scope

The goal of this research is to develop the combination of the time depen-
dent channel packet method (usually referred to as the channel packet method)?5:37:38
with absorbing boundary conditions®"*® as a valid, accurate and efficient approach
to calculating quantum scattering matrix elements in one and two dimensions. The
new method will be tested for validity through the application of several conver-
gence tests. The first tests convergence towards the correct solution. A method
which converges to a wrong answer has no use. In one dimension, the square well
potential has an analytic solution a provides an excellent test for convergence to the
correct solution. In two dimensions, the collinear H + H, reaction is well estab-
lished!7:25:3135,:39 55 5 henchmark for computational quantum chemistry and will be
used to test the new method for convergence towards the correct solution. The test
for convergence to the correct solution also demonstrates the accuracy of the new

method. The second test for convergence is concerned with efficiency, or order. A

aWhere the states involved are limited to those described in the Hamiltonian.
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method can be valid while also being cumbersome and computationally expensive.
The application of the channel packet method with absorbing boundary conditions
will be tested for efficient convergence for the square well potential in one dimension
and the collinear H + H, potential in two dimensions. The efficiency of the new
method, gained by reducing the size of the grids used in the computation, can be
judged by the time a computation using the channel packet method takes with and
without absorbing boundary conditions. Finally, the influence of absorbing bound-
ary conditions on the computational results will be investigated using a Gaussian

potential in one dimension and two coupled Morse oscillators in two dimensions.

The computer resources used for this study include the MIPS-R3000-based
Silicon Graphics workstations at the Air Force Institute of Technology, the MIPS-
R10000-based Silicon Graphics Power Challenge Array at the Major Shared Resource
Center at Wright-Patterson AFB and the MIPS-R5000-based Silicon Graphics work-
stations at the Air Force Research Lab, Hanscom AFB. The FORTRAN77 computer

language was used for all code development.

1.2 Qutline

Chapter II provides a basic overview of quantum reactive scattering, ab-
sorbing boundary conditions, the channel packet method and the underlying use of
Mgller operators, and the numeric implementation Qf the channel packet method
with absorbing boundary conditions. Chapter III presents the results of scattering
in one dimension for a square well potential and a Gaussian barrier-well-barrier po-
tential. Chapter IV researches the application of the combination of the channel
packet method with absorbing boundary conditions to two dimensional quantum
scattering by computing S-matrix elements for the collinear H + H, reaction.*!
The problem of reflection from problems of absorbing boundary conditions is re-
searched in Chapter V for a model two dimensional system of two coupled Morse

oscillators. Absorbing boundary condition reflection introduces error into the S-
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matrix elements for certain mass configurations. As an initial analysis of reflection
from absorbing boundary conditions, S-matrix elements are presented for reflection
from absorbing boundary conditions for the light-light-light, medium-light-medium
and heavy-light-heavy mass configurations. Chapter VI presents S-matrix elements
using the model two dimensional system of two coupled Morse oscillators for a light-
heavy-light mass configuration. S-matrix elements for this mass configuration do
not exhibit errors attributed to reflection from absorbing boundary conditions. An
analysis of the effect of the depth of the well in the interaction region is presented
for the light-heavy-light mass configuration as well as the effects of kinetically de-
coupling the two Morse oscillators. Conclusions and recommendations are contained
in Chapter VIL. Appendix A contains the derivation of the channel packet method
formulation of S—matrix elements for two dimensional scattering. Appendix B gives
the derivation of the momentum transformation between Jacobi and bond repre-
sentations. Appendix C briefly overviews the one dimensional and two dimensional
codes implementing the channel packet method with absorbing boundary conditions.
Appendix D contains the complete set of graphs for the research presented in Chap-
ter VI

1.4 Conventions and units

Throughout this document, the term channel is used to denote a given
arrangement of atoms, for example, A+ BC and AC + B. The term channel is syn-
onymous with arrangement and arrangement channel. Within a given channel, the
fragments involved in reactive scattering may have internal degrees of freedom. In
quantum mechanics, these internal degrees of freedom are described by eigenstates
and associated quantum numbers. The term subchannel is used to denote the com-
bination of a channel with a particular set of eigenstates of the internal degrees of

freedom in that channel.
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The units used in the actual computations are atomic units denoted by au.

Table 1.1 contains conversions between au and other commonly used units.

Table 1.1 Atomic units

| unit | 1 au equals |
mass 9.11x107% kg
angular momentum (%) | 1.05x107%* J-sec
length 5.29x10"" m
time 2.42x10717 sec
energy 27.21 eV

1-6




II. Quantum scattering theory

The central goal of quantum scattering theory is to determine the probabil-
ity of reaction. In this chapter, the theories of coordinate systems, Hamiltonians and
asymptotic limits, absorbing boundary conditions, and the channel packet method

and the application of Mgller Operators are developed.

2.1 Background

Quantum scattering begins with the time dependent Schrédinger equation,
L d .
i (1)) = H1D (1), (2.1)

where H is the Hamiltonian and the state of the system is given by |¥ (t)). For time
independent Hamiltonians, the formal solution to Equation 2.1 is
. Ht
9 () = 0 () [0 (¢ = 0)) = exp —i73 |10 (¢ = 0), (22)
where U (t) is the time evolution operator. The Hamiltonian H is usually defined as

the sum of two operators,

H=T+V, (2.3)

where T is the kinetic energy operator and V is the potential energy operator. For

a wide variety of reactions, T is the same and the dynamics are governed primarily
by V.
2.2 Coordinate systems

Equation 2.1 must be expressed in some representation in order to be solved
and two coordinate systems used to provide a representation are of interest: Bond

coordinates and Jacobi coordinates.*? In Section 2.3, we will explore the need for two
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coordinate systems as they relate to the Hamiltonian and asymptotic limits. Bond
coordinates, illustrated in Figure 2.1, treat each channel on an equivalent basis. Two
sets of Jacobi coordinates, (r, R,) and (rg, Rg), illustrated in Figure 2.2, are used

to provide a separable representation of H in the asymptotic limit in each of the two

possible channels A + BC and AB + C.

In the A + BC channel, the transformation between Jacobi coordinates and

bond coordinates in two dimensions is given by

ra ) 1 m—gcm— X
(2)-( 7))

where m; is the mass of the atom j. From Equation 2.4, Figure 2.1 and Figure 2.2,
it is clear that the Jacobi coordinate R, is equal to the bond coordinate ¥ and r,
is equal to the sum of X and distance from atom B to the center-of-mass of the BC

diatom.

2.3 Hamiltonians and asymptotic limits

The issue of which coordinate system to use is closely linked to the issue
of asymptotic limits. In quantum scattering, we must assume that at some point in
space the fragments, either products or reactants, are widely separated such that the
interaction potential between them is zero. Under this assumption, the Hamiltonian
is written as

H=Hy+V, (2.5)

where H is the full scattering Hamiltonian, Hy is the asymptotic Hamiltonian and

V is the interaction potential that vanishes in the asymptotic limit,
lim V=0, y=a,8, (2.6)

where v = a, 3 labels the channel.




Figure 2.2 Jacobi coordinates.
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Using Jacobi coordinates, the asymptotic Hamiltonian can be separated into

parts according to

IA{OZ [:Irel'*'ﬁinta ("

(O]
-1
~

where I:[rel is Hamiltonian governing the relative motion between reactants or prod-
ucts and ﬁin, is the Hamiltonian governing the internal dynamics of reactants or
products. It is important to note that Jacobi coordinates suitable for one channel
will not separate H, in another channel. An appropriate choice of Jacobi coordinates
is used to construct the initial reactant and product wave packet in each channel. Ja-
cobi coordinates are used since the Hamiltonian is separable in Jacobi coordinates as
shown in Equation 2.7. The wave packets are then transformed to bond coordinates
to facilitate the computation of a correlation function used to calculate S-matrix

elements.

2.4 Absorbing boundary conditions

One problem with time dependent methods is reflection of the wave function
at the edges of the grid used in numerical calculations. These reflections can lead
to spurious results and are usually handled by choosing a grid large enough that, by
the time the wave function reaches the edge, it has completely left the interaction
region and the computation may be terminated. The increased grid size translates
into increased computational overhead. Absorbing boundary conditions have been
used previously in a variety of calculations!4-17:21,22,36,39,40,43-51 ¢, prevent evolving
wave packets from reflecting from the edge of the grid before the computation has
finished. It should be noted, however, that reflection can only be minimized and not
eliminated. In the channel packet method, it is in the calculation of the correlation
function that the application of absorbing boundary conditions proves useful. This

application is discussed in Section 2.6.2.

Negative, imaginary potentials are well known as the only absorbing potentials.

These potentials, whose mathematical form is arbitrary, absorb by exponentially
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attenuating the wave function as it evolves in time. In the application of absorbing
boundary conditions to the channel packet method performed for this study, a simple
exponential of the form
2

. . r—x
V. = £Atexp {(—-(i} , (2.8)

B
was selected where A and B were chosen to minimize reflection. This form for the
absorbing boundary condition was chosen because it is a smooth function which can
reach a large, positive value in a relatively short distance. These two characteris-

tics permit the use of the smallest grid possible with a subsequent improvement in

computational efficiency.

2.5 Channel packet method

The time dependent channel packet method, referred to as the channel

25,37,38 and is based on the use

packet method, was developed by Weeks and Tannor
of Moller operators.® In this section, Mgller operators are discussed and then applied

in the derivation of the channel packet method.

2.5.1 Moyller operators. The development of Mgller operators begins
with the Hamiltonian and asymptotic limits discussed in Section 2.3. Utilizing these

ideas, the Hamiltonian can be written as
H=H]+V" (2.9)

where H is the full Hamiltonian, I“{g is the asymptotic Hamiltonian in channel ¥
and V7 is the interaction potential that vanishes in the asymptotic limit. The label
~ now includes the channel label as well as the labels of the internal eigenstates,

thereby labeling both the channel and subchannel.
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Moller operators are defined by

. At Ht
QF = tlé:anoo exp (Z—);z.) exp (—.L F? ) , (2.10)
where U (t) = exp (—i%) is the time evolution operator. Mgller operators are
isometric
ala, =1, (2.11)

and if bound states are not present, they are unitary®?

OL =03 (2.

o
—
&No
~—

The result of propagating a state under a Maller operator is denoted by
Qi:lq}in(out)> = lqu:), (213)

where |U+) is referred to as a Moller state. The effect of the Mgller operator Qs
is to propagate the state |¥) backward (forward) to time ¢t = —oo (t = +00) under
the influence of Hp , then propagate the result forward (backward) to time ¢t = 0
under the influence of H. By definition, the Mgller operator (_ operates only
on asymptotic product states |¥,,;) and the Mgller operator Q+ operates only on
asymptotic reactant states |¥;,). Mgller operators are used to define the scattering

operator through
$=01q, (2.14)

where the probability of scattering from an initial state |¥;,) to a final state |¥out)

is given by

P = [(Woudl $1Win) P = |(Wona L 0 [030) P = (U= 42 (2.15)
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Equation 2.15 yields S-matrix elements in the (¥;,|¥,,) representation. While
this is an acceptable result, it is more useful to express S-matrix elements in the
energy or momentum representation. In the channel packet method, expressing S—
matrix elements in the momentum representation leads to the calculation of a time

dependent correlation function.

2.5.2 The channel packet method. The core of the channel packet
method is the use of two wave packets to compute state-to-state S—-matrix elements.
One wave packet represents the asymptotic reactant subchannel, labeled v, and the
second wave packet represents the asymptotic product subchannel, labeled v'. The
choice of the two subchannels, reactant and product, determines which S-matrix
elements are calculated. The technique is to propagate each wave packet using the

appropriate Mgller operator.

The v subchannel asymptotic Hilbert space is spanned by the direct product
of eigenstates of the relative Hamiltonian, H?,, represented by the ket |k,), and
eigenstates of the internal Hamiltonian, IA{ZU, represented by the ket |y). The basis

vectors spanning the Hilbert space are given by,

|k ) (2.16)

These basis vectors are eigenstates of the asymptotic Hamiltonian with eigenvalues

given by
. - - h?
g1k, = (At ) Iosn) = (k24 B, ) ) = Bl (21)
~“

where hzkf(/Q,uA, is the relative kinetic energy, u. is the reduced mass of the system,
E. is the energy associated with the internal eigenstate and E is the total energy.

A new set of states is generated by operating on the basis |k,,v) with the Mgller




operators

ey yt) = Ol 7), (2.

o
—
o0
~—

where the & in |k,,v%£) labels both the state |k,) and the state |7y).

It is easy to show that the |k,,y%) are eigenstates of the full Hamiltonian.

Using the intertwining relationship,?
HOy = Oy Hy, (2.19)
and from Equations 2.17 and 2.18, it follows that

Hik,vx) = HOLlk,,7)
Al“y[k'v"w

= Q HO
. |

Q1 (h_zﬁ +E ) Ik, 7) (2.20)
- (—k? +E, ) 0Llk,,)

- (—k2+E ) Ty

24y
where the eigenvalues of H are the same as the eigenvalues of Hj.

Consider the initial state | U]

m out

) constructed as a product of a linear combi-

nation of kets |k,) with an eigenstate |v),

+o0o
|‘I;m(out)> —/-oo dkﬂ?i (kﬂ)|k’va7> (221)

The corresponding Mgller states |¥7)) are given by

-~ +w
03) = QL) = [ dhyn (), 7). (2.22)




From Equations 2.21 and 2.22 it is clear that the expansion coefficients, ns (k,),
used to expand the initial wave function in terms of the eigenstates of H] are the
same coefficients used to expand the Moller states in terms of the eigenstates of
H. Thus, the eigenstates of the full Hamiltonian can be used to expand the Mgller

states, |1 ).

The isometric subchannel Mgller operators, 1}, acting on the basis vectors
|k, 7), which span the asymptotic Hilbert space, generate two sets of basis vectors

|k,,v£), which are eigenvectors of the full scattering Hamiltonian H. The two

complete sets satisfy the orthogonality relations,?

K Ay yE) = (K, v £07T 0Lk, )
= (K, 7]k, ) (2.23)
= Sy, (K, — k),

and

Koy =l ) = (k107107 k)
= (K181 ) (2.24)
NN

= V———4§(F' -FE) Sy
vV HAy By Kk
where %[kwi = m is the density of states and S 'k is the on-shell S—matrix ele-
ment giving the probability amplitude of scattering from subchannel v with relative

momentum k., to subchannel 4" with relative momentum £/, .

Equation 2.24 shows that all that is necessary to obtain S-matrix elements in
the momentum representation is the evaluation of the scalar product (k,/, v'—|ky,v+).

In the channel packet method this is done by first considering the Fourier transform




of the time evolution of the Moller state |¥} ),

+oo iEt —iHt\ |,
|AT(E)) = /' dt exp (-—h——> exp ( . ) |T7). (2.25)

o0

Substituting the expansion of |¥}) in terms of |k,,7), given in Equation 2.22, into
Equation 2.25, it is easy to show that |47} (E)) is an unnormalized eigenvector, shown

in Appendix A, of the full scattering Hamiltonian given by

o]

Ty

Al

|43 (B)) = (14 (Fks) [k, v ) + 0= (=ky) | =Ry, 7 4)]- (2.26)
The prefix + or — on k, in Equation 2.26 explicitly labels the degenerate eigenstates
of the full scattering Hamiltonian. The degenerate eigenstates are explicitly labeled
by the =+ prefix as having positive momentum (+) or negative momentum (—). S-
matrix elements result from the evaluation of the scalar product <\IJZI |AL(E)), where

Equation 2.22 is used to expand |¥”') in terms of LARER

2/—‘ v +oo / * ! !
o [kl [ (L) e (k) (R, =1k 7o)
Alky| J=co

2 (k) e (=) (KL, v =1 =F yH) (2:27)

(VTAL(E) =

The orthogonality relation given in Equation 2.24 reduces the integral in Equa-
tion 2.27 to

(VT]AL(E)) = % (02 (+Ky) me (k) ST o,
o (4K) e (=) ST, (2.28)
+ 12 (—k;,) N+ (+ky) Z’kv;,+k7
+ (—kf,,) n+ (—ky) 51’1:'7,-1:1]-

We are free to simplify Equation 2.28 since the only requirement that the asymptotic

states | ¥ ,,,)) must satisfy in order to obtain Equation 2.28 is that they are elements
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of the 4" subchannel Hilbert space. The simplification is to choose the expansion
coefficients n4 (k,) such that they include only one degenerate state for each value
of the relative kinetic energy in the v subchannel. Choosing ny (k,) = 0 for k, > 0

and 7_ (/cf,) = 0 for &/ <0, the evaluation of Equation 2.28 reduces to

2"\/ oy ey

(U|AY(E)) = nt (4K ) 04 (=ky) ST -
NN v

(2.29)

Now, we make a slight notation change where the label + on the relative

7

in(our))- InVerting

momentum corresponds to the four possible combinations of | & ¥
Equation 2.29, we obtain the on-shell S-matrix element for scattering from the state

| — k,,7) to the state | + k. 7v"),

(27) " kLIl |
ne (+k ) ne (—ky) N By

ST -k, = (AL (E)), (2.30)

where the scalar product (¥”'|A7 (E)) is given by the Fourier transform of the cor-

relation function (¥ |exp (";:”) ),

(w7 |AY (E)) = | 7 dtexp (%{) (U7 |exp (-“ﬁﬂ) 7). (2.31)

—00

The numerical implementation of Equations 2.30 and 2.31 will be covered as part of

the next section.
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2.6 Numerical implementation

The numerical implementation of the channel packet method is fairly
straight forward. In this section, we will outline the steps involved in computing

S-matrix elements for the collinear reaction
A+ BC(v) = AB(V)+C (2.32)

where the internal diatom eigenstates are labeled v and v/. The actual calculation
of S-matrix elements can be broken into three broad sections: calculating the Mgller

states, calculating the correlation function and calculating S-matrix elements.

2.6.1 Calculating the Mpller states. Numerically, the reactant Mgller
state is calculated in the following manner. In the asymptotic limit of subchannel v,
the asymptotic channel Hamiltonian is separable using Jacobi coordinates according

to Equation 2.7. H], is a function only of R, and f[;yel is a function only of r,. The

solutions to H7, are diatomic vibrational eigenstates and the solutions to H}, are

int
plane waves. The reactant state |¥7,) is the direct product of a single vibrational
eigenstate and a linear combination of eigenstates of ﬁ:e, given by Equation 2.21.
The reactant state |¥7,) is then transformed to Bond coordinates for propagation.
The choice of t = 0 and the placement of the wave functions is pufely arbitrary,

though, the choice of ¢ = 0 and placement in the interaction region facilitate the

calculation of the correlation function in Section 2.6.2.

The state |U7 ) is propagated using the Mgller operator Q, as follows. The
limits ¢ — +oo are numerically approximated by ¢ — £7 where the time 7 is taken
to be when the wave packet completely exits the interaction region. The interaction
region is taken to be where V7 is not negligibly small. First, |¥7,) is propagated

backward in time from ¢t = 0 to t = —r under Hy. This can be done analytically
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since the internal eigenstate |y) evolves in time as

[y (1) = exp (=i ) 1 (¢ = ), (2.33)

and the time evolution of n (k) is given by,

=

n(k) = /_jdx(%(mof)_%(”m%)‘f)_

jiﬂ;i + lko (Z‘ - .110) - Zkz-@'t'
x exp { —tazo) = o2 exp (1kz). (2.34)

L+ 2(Azo) u

Equation 2.34 is a complex Gaussian where Az is the initial wave packet spread in
the coordinate representation and ko is the initial momentum offset. The advantage
to using Equations 2.33 and 2.34 is that half the action of the Meller operator 01,

the evolution of the initial state |¥7 ) under HY, can be done analytically.

The numerical propagation is based on the Baker-Campbell-Housdorf theo-

rem®* which states

A A A~

exp (A + B) = exp (A) exp (B) exp ([/i, B]) (2.33)

for operators A and B. For the time evolution operator U (t), applying the theorem
yields
?

eXP[E (T + f/) At] = exp (%TAt) exp (%VAt) exp (

?

- T, V]Atz) . (2.36)

where 7' is the kinetic energy operator and V is the potential energy operator. Simply
neglecting the last term leads to an error on the order of At® . Instead. we use the
split operator approach to achieve the same effect with improved accuracy.”® The
split operator method first splits the Hamiltonian in half before expanding in terms

of T and V. Then the Baker—-Campbell-Housdorf is applied to the two exponentials.




This leads to an approximation of Equation 2.36 given by

exp[% (T + V) At] = exp (2%\71325) exp (%TAt) exp ( 5 VAt) + 0 (AtB) ,
(2.37)
where the error in the approximation is on the order of At® instead of At®. In
Equation 2.37, the potential operator is diagonal in the coordinate representation
and the kinetic energy operator is diagonal in the momentum representation. The

transformation between the two representations is a Fourier transform pair given by

g(k)=F Hg(z \/_./ dzexp ( z?rkx) (z), ' (2.38)

and

0(2) = Flg(k)} = —= [ dkexp (—i2mkz) g (k). (2.39)
=l

Numerical propagation proceeds by first defining a coordinate grid and a momen-
tum grid using the bond coordinate representation. The coordinate grid is used to
determine the diagonal representation of exp (ﬁVAt) and the momentum grid is
used to determine the diagonal representation of exp (%TAt) The initial reactant
wave packet ¥ (r,, R,,t = 0) is transformed to the bond coordinate representation

and using Equation 2.40 the wave packet at t + At is computed,

U7 (¢ + At)) = exp (%vm) Flexp (%TAt) F1{exp (-2-%1“/&) 0T ()}
(2.40)
In order to efficiently propagate using Equation 2.40, we use Fast Fourier transforms
(FFTs). Repeated application of Equation 2.40 iteratively determines the wave

packet at time 7. The calculation of the product state is similar.

2.6.2 Calculating the correlation function. With the two Mgller states

|¥,) and |¥_) calculated at ¢t = 0, the next step is to compute the correlation




function in Equation 2.31 and given by

Cory (1) = <\I}Z’| €xp (_ith> |97). (2.41)

We need to know C.., (t) from time¢ = —7 to ¢ = 7 in order to take the Fourier trans-
form in Equation 2.31. First, the reactant Mgller state | ¥ ) is propagated from time
t = 0 to t = 7 under the full scattering Hamiltonian H. Second, the reactant Mgller
state |¥,) at ¢ = 0, is propagated from time ¢ = 0 to ¢ = —7 under the full scattering
Hamiltonian H again computing the correlation at each step. It is in calculating the
correlation function that absorbing boundary conditions are applied since the Mgller
states are typically well localized in the interaction region at ¢ = 0. The absorbing
boundary conditions are applied in an area where I\Ilzl (t = 0)) is already zero thus
C.y, is zero and the absorbing boundary conditions do not affect its value. The form
of the absorbing boundary conditions, on the discretized numeric grid, are altered
slightly from those in Equation 2.8 by the multiplication of a step function so that
the absorbing boundary conditions are in fact zero where |\IIZ, (t = 0)) is non-zero.
The absorbing boundary conditions, as implemented numerically are given by

Vo = 2h(z — z0) Al exp {(»’B;vaoﬁ} , (2.42)

where h(z — zo) is the heavyside step function given by

1, 20 <
hz-z)=| =7 . (2.43)

0, otherwise

2.6.3 Calculating S-matriz elements. In the channel packet method,

the formula for computing S-matrix elements is contained in Equations 2.30 and

L
—
ot




2.31. Numerically, the starting point is Equation 2.31 given by

' +oo ZEt ' -—lf‘[t o
wlayE) = [ dtexp(T)wuexp(—h—)mg

-0

= /+OO dt exp (%) Cya(t), (2.44)

-0

where C,(t) is the correlation function computed in the previous section. Numeri-
cally, Equation 2.44 is implemented by taking the discrete Fourier transform of the
correlation function computed in Section 2.6.2. We are free to chose the grid on which
the discrete Fourier transform is taken. The best choice is an energy grid where the
underlying momenta, recall £ = i;%i’ are such that the expansion coefficients 74 in
Equation 2.21 are numerically non-zero. This ensures that the normalization by the
expansion coefficients in the numeric implementation of Equation 2.30 does not lead
to numeric error caused by dividing large numbers by small numbers. After taking
the discrete Fourier transform of the correlation function, the computation of S-
matrix elements using Equation 2.30 is simple and straight forward. The probability

of reaction is given by

' 1)
. 2
P/:;:yk, = ISZ;%,I ) (2.45)

where 5';’,':’ , are the S—-matrix elements computed from Equation 2.30.

[N]
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III. One dimensional quantum scattering

As an introduction to quantum scattering, the channel packet method with
absorbing boundary conditions was applied to quantum scattering in one dimension

for two systems: A square well, and a Gaussian well with Gaussian barriers.

3.1 One dimensional square well

The computation of S-matrix elements begins with Schrodinger’s Equation
in one dimension,
d

ih— (1) = HU (1), (3.1)

where the Hamiltonian H is given by

A~

H=T+V, (3.2)

T is the kinetic energy operator and V is the potential operator. Since there is only
a single degree of freedom, the particle has no internal structure. The formula for S-
matrix elements using the channel packet method, given in Equation 2.30, simplifies

to
(27)" ' A LAl
= (+k)ny (k) m

where the scalar product (V_|A; (E)) is given by the Fourier transform of the cor-

Sk'k =

(_|A4 (E)), (3.3)

relation function

(U_|A, (E)) = /:” dt exp Q%) (U_|exp (—z%) 0,). (3.4)

The mathematical form of the one dimensional square well is given by

VW, —a<z<a
Viz) = { }, (3.5)

0, otherwise
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where the potential V" (z) is non-zero from z = —a to @ = a. This square well
is shown in Figure 3.1. It should be noted that the sides of the one dimensional
square well are discontinuous at = = £a. This discontinuity and the impact on the

numerical implementation is discussed further in Section 3.1.1

For the potential illustrated in Figure 3.1, the scattering is elastic and S-matrix

elements are non-zero only for |k’| = |k|. For a one dimensional square well potential

energy surface the Hamiltonian is given by

. P? -Vo, —a<z<a
A= 0 (3.6)
£m 0, otherwise
and the probability of transmission, given by Pwx = |Sk|?, has an analytic solu-
tion®®3" given by
¢\’
P (E) = [cos® (2ka) + (5) sin? (2ka)] ™, (3.7)
with
2
ko= —h—m(E—Vo) (3.8)
2
K o= |E (3.9)
h
kK
d ¢ = —+— 3.
and € o + P (3.10)

where 24 is the well width, V; is the well depth, E is the particle energy and m the

particle mass.

3.1.1 Choosing the grid. The first step in applying the channel packet
method to a given scattering problem is determining the grid parameters. Kosloff’s
seminal article®® on time dependent scattering outlines the constraints on choosing

grids. Consider first the total energy a particle may have during the scattering event.
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Figure 3.1 One dimensional square well of width 2a and depth V5.

The total energy, Fmax, giveh by

Emax = Eint + Tmax - VmaX7 (311)

A

is not the same as the expectation value of the Hamiltonian (H). Instead, it is a
combination of the maximum translational energy, the maximum potential energy
and the internal energy. In one dimensional scattering, there is no internal energy
to consider, leaving only translational and potential energy. The maximum transla-
tional energy is taken to be the energy of the single component of the wave packet
with the highest absolute value of k. For the potential energy, the maximum depth
of the potential well is added to the total energy in Equation 3.11. Barrier energies

are not subtracted from the total energy.

From the total energy, the maximum value of the momentum grid, Kkmax is

derived through the relationship between energy and momentum for non-relativistic

Fkmax = \/2m Emax. (3.12)

scattering,
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Figure 3.1 One dimensional square well of width 2a and depth Vq.

The total energy, Emax, given by
Emax = Eint + Tinax — Vmaxv (311)

is not the same as the expectation value of the Hamiltonian (H). Instead, it is a
combination of the maximum translational energy, the maximum potential energy
and the internal energy. In one dimensional scattering, there is no internal energy
to consider, leaving only translational and potential energy. The maximum transla-
tional energy is taken to be the energy of the single component of the wave packet
with the highest absolute value of k. For the potential energy, the maximum depth
of the potential well is added to the total energy in Equation 3.11. Barrier energies

are not subtracted from the total energy.

From the total energy, the maximum value of the momentum grid, kmax is

derived through the relationship between energy and momentum for non-relativistic

hkmax = /2 Emax. (3.12)

scattering,
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The momentum and coordinate representations are related through a Fourier trans-
form pair, given by Equations 2.38 and 2.39. However, this choice of Fourier trans-
form pair requires the channel packet method to make use of a different momentum

usually denoted by k; and given by
k .

Throughout this document, k, is used and the subscript b is omitted. The Fourier
transform pair in Equations 2.38 and 2.39 also yields the relationship between kmax

and Az the coordinate grid spacing,

Az = 1

(3.14)

kaax

The choice of the maximum value of the coordinate grid is less straightforward. The
usual manner in which Zyay is determined is to consider the time evolution of the
Mgller states. The coordinate grid must be large enough to support the evolving
Mgller states until the calculation of the correlation function can be terminated.
The purpose behind using absorbing boundary conditions is to decrease the size of
the grid and exponentially attenuate the evolving Mpller state before it reaches the
edges of the smaller grid. Thus, the grid must only be large enough to contain the
interaction region ® as well as the Mgller states at ¢ = 0 and the absorbing boundary
conditions. The absorbing boundary conditions are placed as close as possible to
the Mogller states without overlapping them. This maximizes the benefit of using
absorbing boundary conditions. The extent of the grid past the point at which
the absorbing boundary conditions are placed need only be large enough so that
the evolving Mgller state is fully attenuated before it reflects from the edge of the
grid. Initially, the location of the absorbing boundary conditions is based upon the

estimated spatial extent of the Mgller states with the absorbing boundary conditions

2The area in which the interaction potential is non-zero.
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location adjusted later as necessary. The numerical implementation of the channel
packet method, discussed in Section 2.6, makes use of FFTs and the Temperton®
FFT used in this project requires that N be a power of 2. 3 or 5. The most efficient
FFT is for N to be a power of 2. In choosing N to be a power of 2, that restriction

combined with the estimated rmax leads to choosing N such that it is a power of 2

N

and f—;— X AZ > Tmax. In one dimension, we use % since the spatial grid contains both

positive and negative values of z and is chosen to be symmetric.

The total energy in Equation 3.11 is also used to determine the time step At.
Similar to the momentum and coordinate representations. energy and time are also
related by a Fourier transform pair which yields the relationship between Enay and
Atmax,

h

Atpax = ——. 3.15
E (3.15)

At this point, the parameters Atmax, kmax, and Az have been determined.

The one dimensional square well is discontinuous at ¢ = Za as shown in
Equation 3.5 and Figure 3.1. Using a discrete spatial variable z leads to a modeling
of the discontinuous sides as slopes instead of perfectly vertical. Numerically, it would
require an infinite number of points in the spatial grid to reach vertical sides. Fewer
points leads to the square well being modeled as a trapezoid. As the number of points
increases, the slope of the sides of the trapezoid approaches the perfectly vertical,
and discontinuous, sides of the square well. This is shown in Figure 3.2 where the
numeric implementation of the analytic square well is shown as the number of grid
points increases and their spacing decreases. With an infinite number of points, the
numeric potential perfectly matches the analytic potential in Equation 3.5. Using
the Az previously determined, the number of points N needs to be 4096 in order to

obtain a numeric solution that is close to the analytic solution.

3.1.2 Mopller states. In constructing the initial wave packets, the

reactant channel is chosen arbitrarily to be the left side of the potential, z < 0, and
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Figure 3.2 The discontinuous sides of the one dimensional square well modeled as
trapezoidal sides.

the product channel is the right side of the potential, x > 0. Compact Mgller states
are important in reducing the overall grid size and the most compact Mgller states
for scattering from a one dimensional square well are those with an initial spread in
the coordinate representation less than the width of the well. This determination
of compactness is based solely on trial and error. In this case, the reactant Mgller
state was computed for a range of initial spreads and then plotted on the spatial
grid. After a few trials, it became clear that the narrower spreads were leading to
more compact Mgller states. The trials were then performed again to find the most
compact Mgller state, i.e. narrowest spatial spread, without excessive spread in the
momentum representation as the spread in k is inversely proportional to the spread in
z. The two wave packets, representing reactants and products, have zero coordinate
offset and the same spread in the coordinate representation in order to locate the
compact Mgller states in the interaction region. The momentum offset must be large

enough so that the initial wave packet, in the momentum representation, has only
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positive or negative momentum in order to apply the formula for S—matrix elements
given in Equation 3.3. With the initial wave packets created, the reactant Mgller
state is computed by propagating the initial reactant wave packet backward in time
analytically using Equation 2.34 and then forward in time numerically under the
full scattering Hamiltonian H using the split operator approximation. Likewise, the
product Moller state is computed by propagating the initial product wave packet
forward in time analytically and then backward in time numerically under the full

scattering Hamiltonian.

3.1.3 Correlation function. In calculating the correlation function, the
reactant Moller state remains at ¢t = 0 and the product Mgller state evolves in time.
First, the product Moller state is propagated from ¢ =0 tot = —7 while computing
the correlation function at every step. Second, the product Mgller state at ¢ = 0,
which is stored in memory, is propagated to ¢ = +7, again computing the corre-
lation function at every step. Without the use of absorbing boundary conditions,
the coordinate grid would have to be large enough to support the evolving Mgller
state; instead, absorbing boundary conditions are used to exponentially attenuate
the evolving Moller state and prevent reflection from the edges of the smaller grid.
The form of the absorbing boundary conditions, given in Equation 2.8, needs only
three parameters, A4, B, and xo. The choice of z¢ is based on the spatial extent
of the Mgller states and is chosen so that the absorbing boundary conditions be-
gin close to the Moller states but that the Mgller states are numerically zero at zo.
The parameters A and B are determined by the need to fully absorb the evolving
Mogller state while minimizing reflection. Reflection is minimized by selecting an
absorbing boundary condition amplitude large enough to absorb the highest energy
components of the evolving Moller state. It is also important to avoid the sudden
onset of absorbing boundary conditions that will tend to reflect the lower energy
components of the evolving Moller state. As investigated in Section 3.2.3, absorbing

boundary conditions that reach a height of 7 au are sufficient to fully attenuate the
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evolving Mgller state before it reaches the edge of the grid. The initial step has only
a small effect and should be in the range of 1 x 107° to 1 x 1073, The parameter A
is determined by two competing factors: the need to place the absorbing boundary
conditions in as small a space as possible to reduce the grid size while avoiding the
steep onset of absorbing boundary conditions. A safe first choice for A is on the
order of 1 x 107°. While a larger value of A may lead to more compact absorbing
boundary conditions, it may possibly lead to reflection errors. A small value will

most likely eliminate that possibility.

3.1.4 Results and convergence testing. The initial parameters of the one
dimensional square well and the resulting grid parameters, are listed in Table 3.1.
The small time step and the fact that potential wells tend to trap long-lived, quasi-
bound states requires a long computation time in order for the correlation function to
reach zero numerically. The choice of zero is important. Choosing to terminate too
early leads to incomplete information for computing S-matrix elements and a resul-
tant oscillation in the probability of transmission. Reviewing the literature reveals
that a typical choice for numeric zero is on the order of |C| = 1076.14-17,21,25.37,38,43,58
This is the cutoff used throughout this research project. The reactant Mgller state
is shown in Figure 3.3 and the resulting correlation function is shown in Figure 3.4.
The probability of transmission, both numeric and analytic, are shown in Figure 3.5.
They are in agreement and show that the combination of the channel packet method
with absorbing boundary conditions provideé a valid approach to computing S-
matrix elements. The main source of error is that the discontinuous square sides of

the one dimensional square well are computationally modeled as trapezoids.

The performance of a numerical solution needs to be evaluated against two
tests of convergence. First, does the solution converge to the correct solution? A
solution which converges to a wrong answer is of little use. The channel packet
method uses discrete spatial and temporal variables and the solution is only approx-

imate. However, as the spatial and temporal grids are refined, the channel packet
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Table 3.1 Initial parameters for scattering from a one dimensional square well.

| Parameter | Value (au) | Notes

mass 1.0 Electron mass

Az 0.005 x grid resolution

nstep 450 Number of time steps for reactant propagation

npstep 1000 Number of time steps for correlation function propagation
At 0.001 Time step

ioff 0.0 initial x offset

imom 1.8 initial momentum offset in units of &,

sprd 0.25 initial wave packet spread in coordinate representation

Absolute Value of the Wave
Function

1.2

08
0.6 1
04 v

02 1

X (au)

Figure 3.3 Reactant Mgller state for a one dimensional square well. The well ex-
tends from —1 to 1.
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Figure 3.4 Absolute value of the correlation function for scattering from a one

Transmission Coefficient

dimensional square well.
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Figure 3.4 Probability of transmission for a one dimensional square well.
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Figure 3.6 Convergence of the channel packet method solution towards the analytic
solution for a one dimensional square well.

method should converge to the exact solution. The L; norm is used as a measure of

convergence and is defined by

N |P‘,ana1ytic - P]|

=1 Pj,analytic

1
L, = I,\—[j , (3.16)
where N is the number of points computed in the probability of reaction curve,
P; analytic is the analytic solution at point j and P; is the calculated probability. The
solution is considered to have converged when the L; norm has converged to three
digits. For the one dimensional square well, this is illustrated in Figure 3.6 where
the spatial grid resolution Az is gradually reduced and the L; norm has converged

to three digits and the method is considered to have converged to the correct answer.

The second test of convergence illustrates the efficiency of the channel packet
method. This test concerns how the approximate solution approaches the analytic
solution when one grid resolution is varied while the rest remain fixed. In the first
case, the temporal resolution remains fixed while the spatial resolution is changed.

In the second case, the temporal resolution is varied while the spatial resolution
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remains fixed. However, there is one proviso to the case where the spatial resolution
is changed. Since the one dimensional square well, in the approximate solution,
consists of trapezoidal sides ® it is important to model the trapezoidal sides so that
the improvement in the accuracy of the solution is due solely to the changes in the
spatial grid and not the trapezoidal potential approaching the analytic square well
potential. The trapezoidal result of discretizing the spatial grid was discussed in
Section 3.1.1 and illustrated in Figure 3.2. In determining the order of convergence
for changes in Az, the one dimensional square well potential given in Equation 3.5
is modified to explicitly model the trapezoidal potential. This new potential is

illustrated in Figure 3.7 and given by

0, 2 < —aq

mo X T +by, —ag<z< —a
V(z)={ Vi, —a<z<a , (3.17)
my Xz +by, a<z<Lag

0,1'2(10

\ J

where —ag is the boundary between Region I and Region II in Figure 3.7, m; and b,
are the slope and intercept of the trapezoidal side in Region II, —a is the boundary
between Region II and Region III, V; is the depth of the potential well in Region
III, m4 and b4 are the slope and intercept of the trapezoidal side in Region IV, and
ao is the boundary between Region IV and Region V. Changes in the spatial grid
resolution where the potential is given by Equation 3.17 has the effect of adding
more points to the sloping sides of the trapezoid and not changing the slope of the
trapezoid to approach the analytical square well. This ensures that the order of
convergence for Az is due solely to changes in the spatial grid resolution and not
to the numerical square well (the trapezoidal well) approaching the analytic square

well.

bSee the discussion near the end of Section 3.1.1.
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Figure 3.7 One dimensional trapezoid potential well used in determining the order
of convergence for changes in Az.

The efficiency of the numeric solution, also known as the order of convergence,
is derived in the following manner. As the resolution of the spatial grid is increased
by a factor 6 = Az;/Az;4y, Az; > Aziyy, where Az is the spatial grid resolution,

the error in the approximate solution should be reduced according to

€

=6, (3.18)

€it1
where n is the order of convergence. The relative errors €; and €;4; are given by

. |Soo - Sil

S (3.19)

€

where S, is the benchmark solution. On a log-log plot of the error versus the grid
resolution refinement, the order of convergence is the slope of the resulting curve.
Methods with a large order of convergence n show a greater reduction in error for a

given grid refinement as opposed to those methods with a small order of convergence.
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Figure 3.8 In a one dimensional trapezoidal well, relative error vs. changes in
spatial grid resolution for the probability of transmission in a one di-
mensional square well potential.

Figure 3.8 illustrates the convergence behavior of the channel packet method
for spatial grid resolution refinement. The four runs, where for each run the shape
of the trapezoid was changed in order to reflect a trapezoid approaching a square
well, exhibit similar behavior and all four have an order of convergence of 3. The
dramatic change and behavior in the relative error for a spatial grid resolution of
greater than 0.06 au reflects the rules laid down in Section 3.1.1 for choosing the
grid. Using Az > 0.06 au results in a maximum momentum grid value that is too
small to support the wave function on the momentum grid which leads to spurious

behavior and incorrect results for the probability of reaction.

Likewise, Figure 3.9 illustrates the convergence behavior of the channel packet
method for temporal grid resolution refinement. Since changes in At do not affect the
shape of the numeric trapezoidal well, only one potential was needed. For changes
in the temporal grid resolution, the channel packet method exhibits an order of
convergence of 4. Again, the dramatic change in relative error and the oscillations

for At > 0.001 au reflects a violation of the rules in Section 3.1.1.

3-14




1.0E+00

1.0E-01 +

Relative Error

1.0E-02 t

1.0E-03 -
1.0E-04 1.0E-03 1.0E-02

Temporal Resolution (au)

Figure 3.9 In a one dimensional square well, relative error vs. changes in temporal
grid resolution for the probability of transmission in a one dimensional
square well potential. '

3.2 Gaussian well with Gaussian barriers

A Gaussian well with Gaussian barriers provides a smooth potential to
investigate the influence of barriers and wells on one dimensional scattering. Since
the Gaussian well lacks the discontinuity of the one dimensional square well, the
spatial grid requires fewer points in order to effectively model the potential and the
computation runs in less time. This allows investigation of many different aspects

of one dimensional scattering in a relatively short time.

3.2.1 The potential. The potential is a Gaussian well with symmetric

Gaussian barriers,
V(z) = Aexp {— (z— .’171,0)2} — 0.09exp {—x2} + Aexp {— (z — 332,0)2} ,  (3.20)

where A is the height of the barriers and z; and x5 are the left and right offsets
for the barriers with the offsets chosen so that the barriers are zero before the well

becomes non-zero. Figure 3.10 illustrates the potential for 0.03 au barriers. The

3-15




Table 3.2

Initial parameters for scattering from a one dimensional Gaussian barrier-
well-barrier potential for a barrier height of 0 au.

| Parameter | Value (au) ]

Note

mass 1224.0 Reduced mass of H + H; system

Ar 0.10 x grid resolution

nstep 1500 number of time steps for reactant propagation

npstep 1500 number of time steps for product propagation

At 1.0 time step

ioff 0.0 initial x offset

imom 1.5 initial momentum offset in units of k,

sprd 0.55 initial wave packet spread in coordinate representation

initial parameters for the calculation are shown in Table 3.2. The parameter imom
is changed with changes in barrier height so that the initial wave packet has a peak
energy near the energy of the barrier height. Both the reactant and product wave
packets are propagated out to the asymptotic limit under Hy to t = +nstep x At
and back to t = 0 under the full scattering Hamiltonian H. Figure 3.11 illustrates
the resulting reactant Moller state for a barrier height of 0.03 au. The correlation
function is then calculated for negative times from t = 0 to ¢ = —1 x nstep x At.
Since this action reverses the propagation from the asymptotic limit to the interaction
region, the evolving Mgller state quickly exits the interaction region. However, for
t > 0 the evolving Mgller state becomes trapped in the interaction region and the
propagation time necessary for the correlation function to reach zero can become
very long. The parameter npstep sets the limit for the propagation forward in
time to t = npstep x At. For a barrier height of 0.05 au, the correlation function
reached zero after approximately 200, 000 steps compared to the correlation function
reaching zero after 1500 time steps for a barrier height of zero. Again, with non-zero
barrier heights and without absorbing boundary conditions, the grid would have to
be quite large in order to support the evolving Mgller state before completely exiting
the interaction region. These calculations were performed on a spatial grid of 2048

points. Without absorbing boundary conditions, the spatial grid would have to be 21
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Figure 3.10 Gaussian well bounded by Gaussian barriers.

times larger in order to accommodate the evolving wave packet until the quasi-bound
state completely exited the interaction region in the case where the barrier height
was 0.05 au. However, the restriction that the number of points in the spatial grid
be a power of 2 forces the grid to be 32 times larger instead of 21. An estimate can
be made of the cost savings resulting from the smaller grid. Since the majority of the
computational effort is in the FFTs, we can estimate the reducting in computational
time due to the smaller grid from how an FFT scales computationally. For N a power
of 2, the computational cost of an FFT scales as Nlog, N. Using a small grid of IV;
points instead of a larger grid of NV; points leads to a savings in the computational

effort in the FFT of
_ N1 logz N1

= Nilog, N,

(3.21)

where £ is the estimated savings. For the case where the barrier height was 0.05 au,
N; was 2048 and NV, is estimated to be 65536. This leads to an estimated savings of
¢ = 46.
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Figure 3.11 Reactant Moller state for a Gaussian barrier-well-barrier potential.
The dashed line is the potential and the solid line is the absolute value
of the Mgller state, (z|¥; (t = 0)).

3.2.2 S-matriz elements. Figure 3.12 illustrates the probability of
transmission for the Gaussian barrier-well-barrier potential. The Gaussian well with-
out barriers exhibits 100% transmission for the range of energies examined using the
channel packet method. The high transmission rate is not unexpected due to the
smooth nature of the potential. The behavior at very low energies is not resolvable
in the channel packet method due to the requirement that the initial wave packet
contain no negative momenta. With the addition of barriers at z = +6 au, the
probability of transmission exhibits significant amplitude below the barrier height,
and some reflection at energies above the barrier height. Transmission coefficients
computed for all three barrier heights have the same general form. However, the
features in each curve are offset in energy by the barrier height. The influence of the
barriers is most significant in the quasi-bound states that they trap in the interaction
region. A quasi-bound state can be pictured as the part of the evolving Mgller state
that remains behind in the interaction region after the major part of the evolving

Moller state has exited the interaction region. The remaining wave packet is not
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Table 3.3 Initial parameters used for the absorbing boundary conditions.

fParameter| Value J

B 5.6 -
A 1.0 x 10=°

truly bound; over time the quasi-bound state will exit the interaction region. The
overlap between the quasi-bound state and the non-evolving reactant Mgller state
prevents the correlation function from rapidly approaching zero. Without absorbing
boundary conditions, the grids would have to be quite large in order to support the
evolving Moller state in the presence of quasi-bound states. For the case where the

barrier height is 0.03 au, the spatial grid would have to be 8 times larger.

3.2.3 Influence of absorbing boundary conditions. The Gaussian
barrier-well-barrier potential, with a barrier height of 0.03 au, was used to inves-
tigate the influence of absorbing boundary conditions on the S-matrix elements. In
particular, how do poorly chosen absorbing boundary conditions influence the final
result? Three sets of poorly chosen absorbing boundary conditions were investigated:
too steep, too shallow and large initial step height. The numeric implementation of
absorbing boundary conditions, given in Equation 2.42, leads to a initial step where
the absorbing boundary conditions are first non-zero. The Gaussian potential was
chosen for two reasons: the overall computation time is short allowing for a wide va-
riety of poor absorbing boundary conditions to be investigated, and the probability
of transmission has many features for poorly chosen absorbing boundary conditions
to influence. The initial parameters used for the absorbing boundary conditions in

the probabilities of transmission illustrated in Figure 3.12 are given in Table 3.3.

Absorbing boundary conditions which are too steep will reflect more strongly
than properly chosen absorbing boundary conditions. Table 3.4 lists the values of

the parameter B, which governs the steepness in Equation 2.8, for the three sets of
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Table 3.4 Values for the parameter B used in determining when absorbing bound-
ary conditions are too steep.

Run “
0 5.6
1 2.0
2 1.0
3
4

0.1
0.01

S-matrix elements shown in Figure 3.13. Run 0 is the value of B for the original ab-
sorbing boundary conditions that were used in the calculations of S-matrix elements
shown in Figure 3.12. Runs 1 and 2 produced results that were nearly indistinguish-
able from the results of Run 0. Runs 3 and 4 produced the dramatic changes in the
S-matrix elements shown in Figure 3.13. Absorbing boundary conditions which are
too steep lead to nearly periodic oscillations in the S—matrix elements that rapidly
obscure the correct result. The erroneous probability of transmission elements range

from slightly more than 1 to values much more than 1.

Absorbing boundary conditions which are too shallow will not fully attenuate
the evolving Moller state. For example, a wave packet headed out the product chan-
nel, moving to the right, will reappear in the asymptotic limit of reactant channel, on
the left, still moving to the right. This is due to the imposition of periodic boundary
conditions by the use of FFTs. The FFT treats the end points of the grid as the
same point thus the evolving wave packet wraps around. Table 3.5 lists the values
of the parameter B, which governs the steepness in Equation 2.8, for the three sets
of S-matrix elements shown in figure 3.14. Again, Run 0 is the original absorbing
boundary condition computation. Runs 5 and 6 produced results nearly indistin-
guishable from Run 0. Run 7 leads to a slight, nearly periodic oscillation overlying
the answer in Run 0. Run 8 leads to clear oscillations which are beginning to obscure
the correct answer. While absorbing boundary conditions which are too shallow do

not fully attenuate the evolving wave packet, they can attenuate a significant por-
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Figure 3.13 Probability of transmission for a Gaussian barrier-well-barrier potential in which the absorbing

boundary conditions are too steep.




Table 3.5 Values for the parameter B used in determining when absorbing bound-
ary conditions are too shallow.

Ran | B
5.6
10.0
20.0
40.0
60.0

0| | | O O

Table 3.6 Values for the step height parameter A used in determining when the
absorbing boundary condition step height is too high.

[ Run | A l
0 1x1077
9 1x107°
10 1x10°3

tion of the evolving wave packet introducing less error into the S-matrix elements
than absorbing boundary conditions which are too steep. Figure 3.14 illustrates the

results when the absorbing boundary conditions are too shallow.

The final set of poorly chosen absorbing boundary conditions concerns the
initial step height governed by the parameter A in Equation 2.8. Initially, the step
height was fixed at the very low value of 1x10~7 in an effort to avoid any reflection
from a sudden onset of absorbing boundary conditions. Table 3.6 lists the values
of the parameter A for the three sets of S—matrix elements shown in Figure 3.15.
The step height was adjusted as well as the steepness B so that the absorbing
boundary conditions had the same peak amplitude as in Run 0. Again, Run 0
is the original result. As seen in Figure 3.15, the step height has only a slight
influence on the final values of the S—-matrix elements. From these computations, a
valid first choice of absorbing boundary conditions has a parameter A of 1 x 1073
and a parameter B such that the absorbing boundary conditions are as shallow as

possible while still reaching a peak amplitude greater than 7 au. A valid initial set of
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absorbing boundary condition parameters based on this analysisis A = 1 x 10~ and
B = 5.6. The value of z4 is dependent on the reaction under consideration can not
be determined in advance since it sets the point at which the absorbing boundary

conditions are non-zero.

3.3 Summary

Since S-matrix elements for the one dimensional square well have an ana-
lytic solution, a comparison of the analytic solution with the computational result,
illustrated in Figure 3.3, shows the combination of the channel packet method with
absorbing boundary conditions is a valid approach to computing S-matrix elements.
The validity of the method is further demonstrated through two tests of convergence.
The first, illustrated in Figure 3.6, shows that as the spatial grid resolution is refined,
the numeric solution approaches the analytic solution. Second, the channel packet
method exhibits third order convergence for spatial grid resolution refinement and
fourth order convergence for temporal grid resolution refinement. These orders of

convergence are illustrated in Figures 3.8 and 3.9.

Using a Gaussian well with symmetric Gaussian barriers, the effects of barriers
and wells on scattering was explored. A well without barriers may or may not trap
a quasi-bound state in the interaction region requiring long computation times in
calculating the correlation function. However, the addition of barriers does lead
to quasi-bound states with possibly long lifetimes. Correct S-matrix elements are
rapidly obscured by errors introduced into the correlation function calculation by
poorly chosen absorbing boundary conditions as seen in Section 3.2.3. Absorbing
boundary conditions which are too steep quickly lead to large oscillations in the
probability of transmission and unphysical values much greater than one. Absorbing
boundary conditions which are too shallow lead to oscillations in the probability of
transmission that rapidly obscure the correct result. However, the initial step height

introduced by the numeric implementation of absorbing boundary conditions has
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only a small influence on the probability of transmission and a choice of 1 x 1072 for

the parameter A in Equation 2.42 is a valid first choice.




IV. Two dimensional H 4+ Ho

The two dimensional H + H; system has been extensively studied and
S-matrix elements have been calculated using a wide variety of methods.}725-312%:39
In this study, computing S-matrix elements for collinear H 4+ H; and comparing the
results with previous work provides proof of concept for the combination of absorbing

boundary conditions with the channel packet method.*!

4.1 Background

Liu, Siegbahn, Truhlar and Horowitz (LSTH) have computed a highly ac-
curate potential energy surface for collinear H + H,.>*®® The LSTH potential energy
surface, which is accurate to within 0.1% of the true potential, is characterized by
two troughs parallel to the relative coordinate in each of the channels H + H; and
H, + H, and a saddle point, or barrier, in the interaction region. Computations
involving the H + H; system are simplified by the barrier in the interaction region.
Figure 4.1 is a contour plot of the LSTH potential energy surface. The plain in the
upper right corner of Figure 4.1 represents the H+ H+ H channel and is energetically

inaccessible in this study.

The application of the channel packet method begins with the definition of
two initial wave packets ¥}’ (X,Y) and g2 (X,Y) at ¢ = 0, where X and Y
are the bond coordinates describing the three collinear hydrogen atoms.*? The first
wave packet ¥} (X,Y) is used to describe the incoming reactants, H + H; (v), in
arrangement channel 1 where the diatom is prepared in a single vibrational eigenstate
labeled v. A Gaussian wave packet is used to describe the wave packet in the
relative coordinate between H and H;. The second wave packet o2y (X,Y) is
used to represent outgoing products H, (v/) + H in arrangement channel 2 where

the diatom is in a single vibrational eigenstate labeled v/. Again, a Gaussian wave

packet is used to describe the wave packet in the relative coordinate between H,
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Figure 4.1 Contour plot of the LSTH potential energy surface. The contour lines
' are evenly spaced from 0 au to 0.1 au. The saddle point is marked with
a dot.
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and H. The next step is to compute a pair of intermediate states obtained from
the initial states by propagating ;" (X,Y) backward in time to t = —oco using the
asymptotic channel Hamiltonian ! and propagating ¥2% (X,Y) forward in time
to ¢ = 400 using the channel Hamiltonian Hg This is illustrated in Figure 4.2
where infinity is reached numerically at ¢t = —4000 au. The intermediate reactant
(product) states are then propagated from +oco(—oc) using the full Hamiltonian
backward (forward) to time ¢ = 0 to obtain the reactant (product) Mgller states.
The correlation function between the resulting reactant and product Mgller states
is then computed using absorbing boundary conditions as they continue to evolve
forward and backward in time to ¢ = +00. The application of absorbing boundary
conditions with the channel packet method when computing the correlation function
is facilitated by the fact that the resulting reactant and product Mgller states are
typically well localized in the interaction region of the potential at ¢t = 0. The well
localized Moller states U1 (X,Y)and¥?*°(X,Y) are shown in Figures 4.3 and 4.4.
To compute the correlation function, we choose one Mgller state to evolve while the
other remains static. The evolving Mgller state will eventually reach the absorbing
boundary conditions and be exponentially attenuated. However, since the absorbing
boundary conditions are placed where the static Mgller state has zero amplitude,
there is no overlap between the static Mgller state and the evolving Mgller state in
the region where the evolving state is being attenuated. The correlation function
is therefore unaffected by the absorbing boundary conditions. Figure 4.5 illustrates
the placement of absorbing boundary conditions with respect to the Mgller states.
S-matrix elements are then obtained from the Fourier transform of the correlation

function.?5:37,38

Recently, Jackel and Meyer*® employed absorbing boundary conditions in a
version of the channel packet method adapted to work with a time-dependent-self-
consistent-field approach to compute S-matrix elements for the collinear H + H,

reaction. Dai and Zhang®® have also used absorbing boundary conditions with the
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Figure 4.3 Contour plot of the absolute value of the Mgller state (X, YUl at

t = 0. The two parallel contours mark the 0.1 au contour of the LSTH
potential energy surface.
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Figure 4.4 Contour plot of the absolute value of the Mgller state (X, Y |¥>°) at
t = 0. The two parallel contours mark the 0.1 au contour of the LSTH

potential energy surface.
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Figure 4.5 Contour plot of the placement of the absorbing boundary conditions
with respect to the Mgller states. The two closed contours are the 0.1
au contours of the Mgller states. The two parallel contours are the 0.1
au contours of the LSTH potential energy surface. The saddle point is
marked with a dot. The shaded region represents the area in which the
absorbing boundary conditions are non-zero.




channel packet method in their analysis of the three dimensional H + O, reaction.
In their analysis, Dai and Zhang selected a product Mgller state located in the
asymptotic limit. As a result, the absorbing boundary conditions are placed far
from the interaction region of the potential. The idea behind this research is to use
the smallest possible grid in order to achieve the most efficient use of computational
resources. Any grid must contain the interaction region where the physics occurs.
A small grid must somehow eliminate the asymptotic regions while simultaneously
supporting the evolving wave packet until the interaction is complete. A product
Mgller state that lies in the asymptotic region far from the interaction region leads
to the use of a large grid which defeats the purpose. Our approach differs in that we
localize both the reactant and product Mgller states in the interaction region. Thus
there is no need to support the far regions of the asymptotic limit, where Dai and
Zhang’s product Mgller state is placed, leading to the use of a smaller, more efficient

grid.

4.2 Computational Procedure

The initial wave packets are constructed from a linear combination of
eigenstates of the relative Hamiltonian H,., given by Equation 2.21 and a single
eigenstate of the internal Hamiltonian ﬁim. The parameters deltazl, deltaz?2, and
deltat are all chosen according to Kosloff’s paper®® and discussed in more detail in
Section 3.1.1. The choice of zmin! and zmin2 is based on the behavior of the LSTH
potential near zero. Near zero, the LSTH potential flattens out at a value of 5 au
and rminl and zmin?2 are chosen so that the potential at (zminl,zmin2) is just at
5 au. Since the time necessary to fully compute the correlation function is greatly
affected by the grid size, compact Mgller states are necessary in order to use small
grids. In the one dimensional case, the final form of the Mgller state was heavily
influenced by the parameters ioff, imom and sprd. Likewise, the final form of the

reactant Mgller state in channel 1 is heavily influence by ioff!, imom1 and sprdl.
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Following the results of the one dimensional square well case, the initial choice for
ioff! was made to center the initial wave packet over the interaction region with a
wave packet spread, sprdl, such that the initial wave packet did not extend past
the edge of the interaction region. The choice of the momentum offset, imom1, was
based on the requirement that the initial wave packet have no negative momentum
in the relative coordinate. The reactant Moller state was computed based on these
choices. However, this turned out to not be the optimal choice for two reasons.
In order to accommodate the spread of the wave packet on the spatial grid as the
packet is propagated back in time, a long narrow grid is the most efficient one to use.
The spread along with the long narrow grid is illustrated in Figure 4.2. In centering
the initial wave packet in the interaction region, the resulting Moller state at t=20
has bifurcated into both channels and the initial, long, narrow grid would have to
be widened to accommodate the bifurcation. Instead, the parameter ioff! is set so
that the initial wave packet is slightly offset into the reactant channel. The resulting
Moller state is well localized in the interaction region as illustrated in Figure 4.3.
The parameters for the reactant Mgller state calculation are shown in Table 4.1. The
H + H, potential energy surface has a barrier and no well so the total energy contains

only the maximum relative kinetic energy and internal vibrational eigenstate energy.

To obtain eigenstates of the internal Hamiltonian, H;,: is represented in a ba-
sis of Morse oscillator eigenstates ana that matrix representation is diagonalized.
The transformation matrix that diagonalizes H;,, contains the linear combination
of Morse oscillator eigenstates required to compute the eigenstates of Hine. In the
collinear H + H, reaction, the Mogller state calculations are most efficiently com-
puted on long, rectangular grids as illustrated in Figure 4.2. The initial wave packet
‘s shown at ¢t = 0 with the intermediate state at ¢ = —4000 au. The intermediate
state is obtained by analytically propagating the initial state from t = 0 to t = —4000
au using Jacobi coordinates. The propagation spreads the initial wave packet in the

relative coordinate r according to Equation 2.34 and develops a phase factor in the
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Table 4.1 Initial Moller state calculation parameters for the H 4 H, reactant

channel.
[ Parameter ] Value (au) I Notes J
xminl 1x10°7 minimum X grid boundary
xmin2 1x1077 minimum Y grid boundary
ma 1837.1526025 | mass of hydrogen atom a
mb 1837.1526025 | mass of hydrogen atom b
mc 1837.1526025 | mass of hydrogen atom ¢
deltax1 0.2 X grid resolution
deltax?2 0.2 Y grid resolution
nstep 4000 number of time steps
sftent 4000 number of time steps to stop the propagation at
deltat 1.0 time step
ioffl 1.40105 initial X offset
ioff2 0.0 initial Y offset
imoml -1.3 initial Px offset
imom? 0.0 initial Py offset
sprdl 0.4 initial relative wave packet spread in the X direction
sprd2 0.0 initial relative wave packet spread in the Y direction
taul -4000.0 temporal offset for channel 1 initial wave packet
tau2 0.0 temporal offset for channel 2 initial wave packet
evch 1 asymptotic eigenstate number

4-10




internal coordinate R according to Equation 2.33. The intermediate wave packet
is then transformed to bond coordinates and the final Moller state is computed by
propagating back to ¢ = 0 under the full scattering Hamiltonian H. This propagation
is done numerically using the split-operator method discussed in Section 2.6, using
a modified version of the code first developed by Weeks and Tannor.?® Figures 4.3
and 4.4 show the Mpller states (X, Y |¥}%) and (X,Y|¥>°) respectively. Note that
the Moller states are well localized in the interaction region. This permits the ab-
sorbing boundary conditions to be placed close to the interaction region and still
have the spatial extent to fully attenuate the evolving Moller state during the corre-
lation function computation. The placement of the absorbing boundary conditions
with the LSTH potential energy surface and the Moller states is shown in Figure 4.5.
The absorbing bounéla\ry conditions in two dimensions take a form similar to those
in one dimension given by Equation 2.42. For the collinear H + H, reaction, the
absorbing boundary conditions are given by

VXY +h (Xo) Az‘exp{i%} x>y | W)

+h(Ys) Azexp {ﬂ—_—BE’L} , X <Y

where h (£) is the heavyside step function given in Equation 2.43, X, and Y, are where
the absorbing boundary conditions begin in channel 1 and channel 2, respectively,
and A and B govern the shape of the absorbing boundary conditions. For the
collinear H + H, reaction, the parameters A = 1 x 10™> and B = 2 were chosen so
that the evolving Mgller state was completely attenuated before reflecting from the
grid edges with a minimum of reflection. The offsets X, and Y, were chosen to be
6.2 so that the absorbing boundary conditions begin just beyond where the Mgller

states reached numeric zero.

In Weeks and Tannor’s original calculation,?® the grid size was 256 points by
256 points in order for the correlation function to reach zero before the evolving

Mgller state reached the edge of the grid and reflected. The reactant and product
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Moller states are well localized inside a grid of 32 by 32 points. An initial grid of 64
by 64 points was used to apply the combination of absorbing boundary conditions
and the channel packet method to the computation of the correlation function. The
choice of 64 x 64 was partly arbitrary and partly due to the FFT being most efficient

for .V a power of 2.

4.3 Results

In order to compute S—-matrix elements for the v = 0 — v/ = 0, 1 reactions,
the Moller state |¥7) is computed using the v = 0 internal vibrational eigenstate
and two Moller states |U”') are computed using the »/ = 0,1 internal vibrational
eigenstates.”® At t = 0, the reactant and product Mgller states are localized in the
interaction region of the potential and the absorbing boundary conditions are located
as shown in Figure 4.5. In this computation, the reactant Mgller state is chosen to
evolve in time to both t = —7 and t = +7. As the reactant Moller state evolves
backward in time, it retraces its path along channel 1. However, as it reaches the
region containing the absorbing boundary conditions, it is steadily attenuated before
it reaches the edge of the smaller grid. While there is some reflection, it is minimized
by the choice of the absorbing boundary conditions. Likewise, as the reactant Mgller
state evolves forward in time, it bifurcates into both channels. Again, as it reaches
the regions containing the absorbing boundary conditions, it is attenuated with a
minimum of reflection and does not reach the grid edges as illustrated in Figure 4.6.
As the reactant Mgller state evolves from —7 to 7, its correlation C,, (t) with the
product Mgller state is calculated. Correlation functions for the v = 0 to v/ = 0
and v = 0 to ¢/ = 1 reactions are shown in Figures 4.7 and 4.8. The correlation
function C., (t) is then used to compute S-matrix elements, SZZ}CW, according to
Equation 2.30. Figures 4.9 and 4.10 show the probability of transmission for two
reactions H + Hy (v =0) —» H,(v' =0,1) + H.and are in agreement with previous

calculations.?®3173%:3% In order to quantify the error in the new method compared
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Contour plot of the time evolution of the Mgller state |¥}°) at ¢ = +1000
au. The closed contours are the 0.1 au contours of [(X,Y|¥L%)]. The
thick closed contour is the 0.1 au contour of the non-evolving Mgller
state |(X, Y|¥*%)|. The two parallel contours are the 0.1 au contours of
the LSTH potential energy surface. The shaded region represents the
area in which the absorbing boundary conditions are non-zero.
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Figure 4.7 Absolute value of the correlation function calculated using the
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to previous work, the work of Weeks and Tannor®> was used as a benchmark and

the L; norm was computed using

]- Pees_Pac
L1=7,§I:Z|Wk bI

) 4.2
PWeeks ( )

where N is the number of probabilities of reaction computed, pweexs 1s the work of
Weeks and Tannor?® and pgs. is the computation performed using absorbing bound-
ary conditions. The L; norm error was 6.3 x 1073 which is at the third digit conver-
gence test used in Chapter III and the calculation is considered to have converged

to the correct solution.

Using absorbing boundary conditions, the correlation functions used to com-
pute S—matrix elements shown in Figures 4.9 and 4.10 are computed using a 64 x 64
grid compared with a 256 x 256 grid required to compute the correlation function
without absorbing boundary conditions.?® The calculation of C.., without absorbing
boundary conditions took ~ 31,000 seconds of CPU time on a MIPS R3000 Sili-
con Graphics workstation and on the same computer the calculation with absorbing
boundary conditions took ~ 2500 seconds of CPU time. Similarly,on a MIPS R10000
Silicon Graphics workstation, the calculation without absorbing boundary conditions
took ~ 1450 seconds of CPU time and the calculation with absorbing boundary con-
ditions took ~ 80 seconds. Thus, an order of magnitude improvement in the calcu-
lation time is obtained when using absorbing boundary conditions with the channel
packet method to compute the correlation function for the H + H; reaction. Similar
to Chapter III, an estimate of the savings can be computed from the computational
scaling of the FFTs used in the calculation. For a grid of Ny x N; points, the FFT
scales as (N, x Ny)log, (N7 x Ns). In the special case where N; = N, this reduces
to 2 x N?log, N. Reducing the grid from 256 x 256 to 64 x 64 leads to an estimated
cost savings of 21. The actual savings was 18 with the difference due to the fact that

not all the computational effort is in the FFTs.
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4.4 Convergence testing

Similar to the one dimensional case, the channel packet method in two
dimensions is tested against two criteria for convergence. The first test is convergence
to the correct answer and the second is the efficiency, or order, of convergence.
Convergence to the correct answer is is necessary as a method which converges,
but not to the correct answer, is of little use. Figure 4.11 illustrates the channel
packet method with absorbing boundary conditions converging towards the correct
answer for the reaction H + H, (v =0) — H, (v =0) + H. The data set labels in
Figure 4.11 do not reflect the values of any one parameter. Between each of the data
sets, Az, Azy, N and At may have changed. The line labeled “10” in Figure 4.11
illustrates the result when the guidance for grid selection in Section 3.1.1 is violated.
In this case. the temporal grid was too coarse to properly support the wave packet.
As in Section 3.1.4, the L; norm defined in Equation 3.16 is used to judge the
convergence towards the correct solution. The data sets labeled “1” and “2” have
in fact converged to the correct solution such that the L; norm has converged to 3
digits.

The second test of convergence, the efficiency or order, was outlined in Sec-
tion 3.1.4. In the two dimensional case, only the parameter At can be isolated and
tested due to the nature of the H + H; collinear reaction. The symmetric potential
energy surface and the two reaction channels require equal spatial grid parameters.
Unequal spatial grid parameters in the Mgller state calculation requires interpolation
between grid points for one or both Mgller states in the correlation function calcula-
tion. The order of convergence for the two dimensional channel packet method is 4
as is illustrated in Figure 4.12. This is the same as in the one dimensional case. The
dramatic rise in the relative error in Figure 4.12 for values of At > 1.0 au is due to

temporal grid that is too coarse to support the wave packet.
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Figure 4.11  Convergence of the probability of reaction using the channel packet
method with absorbing boundary conditions towards the correct answer for

the reaction H + H,(v=0)— H,(v'=0)+H.
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Figure 4.12  Relative error vs. Temporal grid resolution for the probability of reaction
for the reaction H+ H,(v=0)— H,(v’=0)+H.
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4.5 Summary

The two dimensional H + H, system has been extensively studied and S-

17,25,31-35,39 and

matrix elements have been calculated using a wide variety of methods
provides an excellent benchmark for testing the combination of the channel packet
method with absorbing boundary conditions. The results are in agreement with

25,31-35,39 with the L, norm error between the channel packet

previous calculations
method and the channel packet method with absorbing boundary conditions is on
the order of 6 x 1072, This is a small error in comparison to the dramatic reduction in
computational effort the combination of the channel packet method with absorbing
boundary conditions produces. The grid for computing the correlation function was
reduced by a factor of 16, from 256 x 256 to 64 x 64. Overall, the result of the grid

reduction was an order of magnitude improvement in the time necessary to compute

the correlation function.*!
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V. Two dimensional reactive quantum scattering for a model
system of two coupled Morse oscillators

A simple model system of two coupled Morse oscillators is proposed to
investigate the combination of the channel packet method with absorbing boundary
conditions in systems with a well in the interaction region. In this chapter, three
mass configurations are investigated: light-light-light (LLL), medium-light-medium
(MLM) and heavy-light-heavy (HLH). The light-heavy-light (LHL) mass configura-
tion is treated in the next chapter. The mass configurations label the masses of the
collinear atoms in the reaction from left to right. For example, HLH labels atom A

as heavy, B as light and C as heavy in the reaction A+ BC (v) —» AB (V') + C.

5.1 Two coupled Morse oscillator potential

The equation for the potential energy surface of two coupled Morse oscil-

lators is simply
V(X,Y) = D. {1 — exp[—a(X — r)]}* + D, {1 — exp[a(Y = r)]}* = D., (5.1)

where D, is the dissociation energy, « is related to the anharmonicity and r. is
the diatomic equilibrium separation. The dissociation energy is subtracted from the
potential energy surface so that in the asymptotic limit at the equilibrium position
the potential energy surface is equal to zero. The parameters governing the potential
energy surface are completely variable in this model. For the reactions in this chapter,
a single potential energy surface was constructed having a dissociation energy of D, =
0.1 au = 2.72 eV, an equilibrium separation of r, = 0.7 au, and the anharmonicity,
a = 5, such that the asymptotic limit could be reached while remaining on a 256 x 256
grid. These choices are governed by the fact that in order to reach the asymptotic

limit, the value of the AB Morse oscillator potential in the A+ BC channel has to be




numerically zero. However, there must still be room on the coordinate grid in that
channel so that the evolving wave packets completely exit the interaction region,
i.e. reach the asymptotic limit, without reflecting from the edge of the grid. For
comparison, a model proton transfer system® has D. = 0.16 au and the collinear
H + H, reaction has D, = 0.17 au. A contour plot of the model potential energy
surface where D, = 0.1 au and a = 5 is shown in Figure 5.1. The well is 0.1 au
below the bottom of the asymptotic limit of the troughs and 0.2 au below the plain
representing the energetically inaccessible A + B + C channel.

5.2 Mass configurations

Initially, three mass configurations were considered: LLL, MLM and HLH.
The purpose was to investigate for the same potential energy surface the effect of
the kinetic energy operator T on reactive quantum scattering. In bond coordinates,

T is given by

B B Beby

T =
2ﬂa,bc 2Hc,ab my

(5.2)

where Px and Py are the conjugate momentum operators for the bond coordinates

(X,Y) and the reduced masses 4. and p.q5 are given by

m; (my + my)

. (5.3)
m; + mg +my

Hikl =

Equation 5.2 illustrates that the kinetic energy operator is parameterized by the
masses of the reacting particles. In this investigation, the masses were chosen to
model the H + H; reaction for the LLL mass configuration. The MLM configuration
was chosen to be slightly mass disparate compared to the non-mass disparate LLL
configuration and the HLH configuration was chosen to have very disparate masses.
The mass configurations are given in Table 5.1. The three configurations have differ-
ent asymptotic limits in the number of internal vibrational eigenstates and energies

due to the mass in the kinetic energy term in Equation 5.2. The eigenstates and
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Contour plot for the model two coupled Morse oscillator potential energy
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dot in the center of the well represents the lowest point on the potential
energy surface.
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Figure 5.2 Reactant Mgller state for the two coupled Morse oscillator LLL mass

configuration. The two parallel contours are the 0.1 au contours of
the two coupled Morse oscillator potential energy surface. The closed
contours represent the absolute value of the Mgller state (X, Y|¥1?).




plitude of (X, Y|¥}°) has exited the interaction region into the product channel. A
small amount of reflection back into the reactant channel is also visible. The correla-
tion function calculation, shown in Figure 5.5, rapidly approaches zero for negative
times but not for positive times indicating the presence of a quasi-bound state in the

interaction region.

The probability of reaction shown in Figure 5.6 exhibits an overall oscillation
that is questionable in nature. Similar oscillations can be induced by terminating
the computation of the correlation function prior to the correlation function reach-
ing zero. However in Figure 5.5 it is clear that the correlation function has reached
zero and the oscillation is not due to early termination of the correlation function
computation. In an attempt to understand the oscillations in Figure 5.6, the cor-
relation function was computed using a smaller grid where the absorbing boundary
conditions have been placed closer to the interaction region. The correlation func-
tion for this calculation is shown in Figure 5.7. Figure 5.8 illustrates the probability
of reaction for the LLL mass configuration computed from the correlation function
shown in Figure 5.7. While the underlying shape of the curve has not changed,
including the drop in the probability of reaction at 0.75 eV, the oscillations have
changed in both frequency and amplitude. In order to determine if the feature at
0.75 eV is real or an artifact of the absorbing boundary condition reflection error,
the correlation function, shown in Figure 5.9, for the LLL mass configuration was

computed without using absorbing boundary conditions. The feature at 0.75 eV is

Table 5.2 The three lowest internal vibrational eigenstate energies for the two cou-
pled Morse oscillator potential energy surface for the three mass config-
urations. Energies are in atomic units.

["JLLL |[MIM |HLH |
0 [0.03223 [ 0.02967 | 0.02551
0.07794 | 0.07339 | 0.06528
0.09865 | 0.09627 | 0.09006

[SV1 B
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Table 5.3 Initial Mogller state calculation parameters for the LLL mass

configuration.

[ Parameter | Value (au) | Notes J
xminl 0.2 minimum X grid boundary
xmin?2 0.2 minimum Y grid boundary
ma 2000.0 mass of atom a
mb 2000.0 mass of atom b
mc 2000.0 mass of atom ¢
deltax1 0.05 X grid resolution
deltax?2 0.05 Y grid resolution
nstep 800 number of time steps
sftent 800 number of time steps to stop the propagation at
deltat 1.0 time step
ioffl 1.4 initial X offset (0 for product wave packet)
10ff2 0.0 initial Y offset (1.4 for product wave packet)
imoml1 -1.5 initial Px offset (0 for product wave packet)
imom?2 0.0 initial Py offset (-1.5 for product wave packet)
sprdl 0.3 initial relative wave packet spread in the X direction
sprd2 0.3 initial relative wave packet spread in the Y direction
taul -800.0 temporal offset for channel 1 initial wave packet
tau2 -800.0 temporal offset for channel 2 initial wave packet
evch 1 “asymptotic eigenstate number
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Figure 5.3 Compact Mgller states and absorbing boundary condition placement

for the two coupled Morse oscillator LLL mass configuration. The two
parallel contours represent the 0.1 au contours of the potential energy
surface. The dot represents the bottom of the well in the interaction
region. The two closed contours are the 0.1 au contours of the absolute
value of the Mgller states. The shaded region represents the area in
which the absorbing boundary conditions are non-zero.




Absolute Value of the Wave Packet

Figure 5.4 Surface plot of the absolute value of the evolving LLL reactant Mgller
state at t = +800 au. The reactant channel is parallel to the X direction
and the product channel is parallel to the Y direction. Almost all the
evolving Moller state has exited the interaction region in the product
channel. ’
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Figure 5.9 Absolute value of the correlation function for the two coupled Morse
oscillator LLL mass configuration for the reaction A + BC (v =0) —
AB (V' = 0) + C where absorbing boundary conditions were not used.

clearly evident in the probability of reaction computed from the correlation function
in Figure 5.9 and shown in Figure 5.10 and is likely to be real. In Figure 5.10, the
probability of reaction at low energies and the overlying oscillations are due to pre-
maturely terminating the computation of the correlation function in order to avoid

edge of grid reflection.

5.2.3 MLM S-matriz elements. Figure 5.11 illustrates that the MLM
Mgller states are well localized in the interaction region. A surface plot of the
evolving reactant Mgller state, shown in Figure 5.12, illustrates how the evolving
Mgller state bifurcates into both channels. The correlation function, shown in Fig-
ure 5.13, rapidly approaches zero in both the negative and positive time directions.
However, the probability of reaction shown in Figure 5.14 again exhibits an overly-
ing oscillation as in the LLL mass configuration shown in Figure 5.6. In order to
determine if the resonances were real or artifacts of absorbing boundary condition

reflection error, the correlation function was computed using a new set of absorbing
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Figure 5.10 Probability of reaction for the two coupled Morse oscillator LLL mass
configuration for the reaction A + BC (v =0) — AB(v'=0)+C
where the correlation function is computed without the use of absorb-
ing boundary conditions.

boundary conditions, shown in Figure 5.15, and without using absorbing boundary
conditions, shown in Figure 5.16. The new set of absorbing boundary conditions are
constructed using Jacobi coordinates appropriate to each channel and then trans-
forming them to bond coordinates. For example, in the A4 BC channel, the area of
the channel in which to apply absorbing boundary conditions is selected. Then, at
each point in this area, the (X,Y’) coordinates are transformed according to Equation
2.4 into the Jacobi coordinates (r,, R,). Next, the absorbing boundary conditions
are computed using Equation 2.8 except that now the potential is given in terms of
V, (ra, Ro) instead of V, (X). The placement of the absorbing boundary conditions
is still subject to the restriction that they are non-zero only where the initial Mgller
states are zero. Figure 5.17 illustrates the probability of reaction for the three sets
of absorbing boundary conditions. In each case, the oscillations change but the posi-
tion of the resonances do not. The resonances and the underlying shape of the curve

are probably real with the overlying oscillations due to either absorbing boundary
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Compact Mgller states and absorbing boundary condition placement
for the two coupled Morse oscillator MLM mass configuration. The two
parallel contours represent the 0.1 au contours of the potential energy
surface. The dot represents the bottom of the well in the interaction
region. The two closed contours are the 0.1 au contours of the absolute
value of the Moller states. The shaded region represents the area in
which the absorbing boundary conditions are non-zero.
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Figure 5.12 Surface plot of the absolute value of the evolving MLM reactant Mgller
state at £ = +1000 au. The reactant channel is parallel to the X
direction and the product channel is parallel to the Y direction. The
evolving Mgller state has bifurcated into both channels while a quasi-
bound state is evident in the interaction region.
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' configuration for the reaction A + BC(v =0) - AB(v'=0)+C.
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Absoute value of the correlation function for the two coupled Morse oscil-
lator MLM mass configuration for the reaction A +BC(v=0)—>

AB (v’= 0) +C . In this calculation, the ABC are first constructed in Jacobi
coordinates and then transformed to bond coordinates.
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Probability of reaction for the two coupled Morse oscillator MLM mass
configuration for the reaction A + BC(v =0)— AB(v'=0)+C. In this

calculation, the ABC are first constructed in Jacobi coordinates and then
transformed to bond coordinates.
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condition reflection error, for the solid and dashed lines, or are due to prematurely
terminating the computation of the correlation function in order to avoid edge of

grid reflection for the dash-dot line.

5.2.4 HLH S-matriz elements. Figure 5.18 illustrates that the HLH
Moller states are well localized in the interaction region. In the correlation function,
shown in Figure 5.19, the onset of absorbing boundary condition reflection error is
quite clearly visible at approximately ¢ = 46000 au. In order to test that the oscil-
lations in Figure 5.19 are due to absorbing boundary condition reflection, another
calculation was performed using the same absorbing boundary conditions placed fur-
ther from the interaction region on a larger grid. Figure 5.20 illustrates that as the
absorbing boundary conditions are moved further from the interaction region, the
onset of oscillations in the correlation function do occur later in time are are due to
absorbing boundary condition reflection error. The probability of reaction, shown
in Figure 5.21 using the correlation function shown in Figure 5.19, exhibits a reso-
nance at 0.34 eV and an overlying oscillation. As in both the LLL and MLM mass
configurations, another computation of the correlation function without the use of
absorbing boundary conditions was performed in order to determine which features
in the probability of reaction in Figure 5.21 are most likely real and which are due
to reflection error. Figure 5.22 illustrates the resulting probability of reaction for the
three calculations. Figure 5.23 illustrates the correlation function where the compu-
tation does not use absorbing boundary conditions. The oscillations at ¢ = +6000
au are absent. However, in order to avoid edge of grid reflections, the computation
is terminated prematurely which will lead to spurious oscillations in the resulting S-
matrix elements. In each calculation, the resonance in the probability of reaction at
0.34 eV remains and is most likely real as well as the underlying shape of the curve.
However, the remaining oscillations change in both amplitude and frequency are are

due to errors introduced by reflection from the absorbing boundary conditions (solid
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Figure 5.18 Compact Mgller states and absorbing boundary condition placement
for the two coupled Morse oscillator HLH mass configuration. The two
parallel contours represent the 0.1 au contours of the potential energy
surface. The dot represents the bottom of the well in the interaction
region. The two closed contours are the 0.1 au contours of the absolute
value of the Mgller states. The shaded region represents the area in
which the absorbing boundary conditions are non-zero.
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Figure 5.20  Absolute value of the correlation function for the two coupled Morse
oscillator HLH mass configuration for the reaction
A +BC(v=0)—> AB(V'=0)+C on two different grid sizes.
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Figure 5.21  Probability of reaction for the two coupled Morse oscillator HLH mass
configuration for the reaction A +BC(v=0)— AB(v'=0)+C. The

correlation function used to compute this probability is shown in Figure
5.19.
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Figure 5.23 Absolute value of the correlation function for the two coupled Morse
oscillator HLH mass configuration for the reaction A + BC (v = 0) =
AB (V' = 0) 4+ C where absorbing boundary conditions were not used.

and dashed lines) or premature termination of the correlation function calculation

(dash-dot line).

5.3 S-matriz elements for absorbing boundary condition reflection

In order to more fully investigate the problem of absorbing boundary
condition reflection error, S—matrix elements were computed for absorbing boundary
condition reflection using a simple trough potential energy surface for the LLL, MLM,

and HLH mass configurations.

5.3.1 Trough potential energy surface. The potential energy surface is
simply a trough parallel to the X direction and a Morse oscillator in the Y direction
given by

Virough (X, Y) = D {1 —exp[—a (Y - re)l}?, (5.4)

where Vi ougn has the same form as the asymptotic limit of the channels in the full two

dimensional calculation. In this calculation, the scattering potential (which defines
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the interaction region) is chosen to be the absorbing boundary conditions used in
the full two dimensional calculation. Because, in the channel packet method, we
are free to choose the coordinate offset and zero of time, the initial wave packets
and final Moller states can be the same by placing the coordinate offset far from
the absorbing boundary conditions. Figure 5.24 illustrates these points. The shaded
region represents the area in which the absorbing boundary conditions are non-zero.
In this calculation, the absorbing boundary conditions are the scattering potential
and thus also represent the interaction region. The two parallel lines represent the
0.1 au contours of the trough potential given in Equation 5.4. The closed contours at
the right end of the potential represent both the initial wave packet and final Meller
state. They are the same since the initial wave packet is placed in the asymptotic
limit and under propagation by the Mpgller Operators given in Equation 2.10, the
asymptotic and full scattering Hamiltonians are the same thus the effect of the Mgller

Operator is multiplication by 1.

-

5.3.2 S-matriz elements. Figures 5.25, 5.26 and 5.27 illustrate the
probability of reflection for the reaction A+ BC (v =j3) - A+ BC (V' =j), j =
0,1,2 for the LLL, MLM and HLH mass configurations. Comparison of the overall
magnitudes of the probability of reflection for the three mass configurations and,
within a given mass configuration, the three internal vibrational eigenstates, indi-
cates that wave packets in the MLM mass configuration are less likely to undergo
absorbing boundary condition reflection than the LLL and HLH mass configura-
tions. For some energies, the HLH or LLL mass configurations may have a lower
probability of reflection, overall, they are more likely to reflect than the MLM mass
configuration. In the MLM and HLH mass configurations wave packets constructed
from the v = 0 internal vibrational eigenstate are more likely to undergo absorbing
boundary condition reflection than wave packets constructed from the v = 1 and
v = 2 internal vibrational eigenstates. The probability of reflection for v/ # v is

essentially zero.
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5.4 Summary

The initial purpose of this part of the study was to investigate, using the
channel packet method with absorbing boundary conditions, the effects of potential
energy surface wells on the probability of reaction. However, absorbing boundary
condition reflections introduce non-trivial errors into the correlation function with
resulting errors in the S-matrix elements. Currently, the unambiguous signatures
of absorbing boundary condition reflection error are S-matrix elements that fail to
converge, probabilities of reaction significantly greater than one or oscillations in the
probability of reaction which change with changes in the absorbing boundary con-
ditions. Some insight into which features in the probability of reaction are real and
which are due to absorbing boundary condition reflections can by obtained by com-
puting the correlation function without absorbing boundary conditions. However,
these comparisons only yield insight into where there might be sharp resonances and

the overall trends in the probability of reaction.
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VI. Two dimensional reactive quantum scattering for a model
system of two coupled Morse oscillators in a light-heavy-light
configuration

Quantum reactive scattering results are presented for a model system of
two coupled Morse oscillators in a light-heavy-light (LHL) mass configuration. The
conclusions in this chapter are based on observed features of the S—matrix elements

and are primarily qualitative in nature.

6.1 S-matriz elements

The possibility of significant absorbing boundary condition reflection error
for the LHL mass configuration needs to be eliminated before the effects of well depth
and kinetic coupling may be explored. For the LHL mass configuration, the light
masses are 2000 au and the heavy mass is 10,000 au. Using the same model potential
energy surface as in Equation 5.1 with D, = 0.1 au and o = 5.0, the asymptotic
limit of the Morse oscillator has 4 bound states where the » = 0,1,2 vibrational
eigenstate energies are the same as for the HLH mass configuration in Table 5.2.
The energies are the same since for both the HLH and LHL mass configurations the
diatom mass configuration consists of a light atom and a heavy atom. Parameters for
the Mgller state calculation are given in Table 6.1 and the procedure for calculating
the Mgller states is the same as in Section 5.2.1. The probability of reaction shown
in Figure 6.1 exhibits three sharp resonances. However, in light of the results in
Chapter V, where absorbing boundary condition reflection introduced non-trivial
errors into the calculation, two further computations of the correlation function were
performed in order to investigate the effects, if any, of absorbing boundary condition
reflection error. The first computation involved a larger grid where the dbsorbing
boundary conditions were moved further from the interaction region. Figure 6.2

illustrates the results compared to the correlation function computation on a smaller
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Table 6.1 Initial Mpgller state calculation parameters for the LHL mass
configuration.
[ Parameter | Value (au) | Notes |
xminl 0.2 minimum X grid boundary
Xxmin2 0.2 minimum Y grid boundary
ma 2000.0 mass of atom a
mb 10000.0 mass of atom b
mc 2000.0 mass of atom ¢
deltax1 0.05 X grid resolution
deltax?2 0.05 Y grid resolution
nstep 1200 number of time steps
sftent 1200 number of time steps to stop the propagation at
deltat 1.0 time step
10ff1 1.4 initial X offset (0 for product wave packet)
10ff2 0.0 initial Y offset (1.4 for product wave packet)
imom1 -1.4 initial Py offset (0 for product wave packet)
imom?2 0.0 initial Py offset (-1.4 for product wave packet)
sprdl 0.3 initial relative wave packet spread in the X direction
sprd2 0.3 initial relative wave packet spread in the Y direction
taul -1200.0 temporal offset for channel 1 initial wave packet
tau2 -1200.0 temporal offset for channel 2 initial wave packet
evch 1 asymptotic eigenstate number
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Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v =0) - AB(v'=0)+C.
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Absolute value of the correlation function for the two coupled Morse
oscillator LHL mass configuration for the reaction
A+BC(v=0)— AB(V'=0)+C for two different grid sizes. For the

larger grid size, the absorbing boundary conditions are placed further away
from the interaction region.
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Figure 6.3 Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A+ BC (0) = AB (0)+C for two different
grid sizes. For the larger grid size, the absorbing boundary conditions
are placed further away from the interaction region.

grid. The differences between the two functions are small and the resulting S-
matrix elements, shown in Figure 6.3, are essentially the same as in Figure 6.1. The
second computation, shown in Figure 6.4, involved using the large grid without the
application of absorbing boundary conditions. The computation of the correlation
function without absorbing boundary conditions introduces oscillations into the S-
matrix elements shown in Figure 6.5. These oscillations are due to terminating the
correlation function calculation before the correlation function has reached zero in
order to avoid the onset of edge of grid reflection. The comparison of all three
computations demonstrates that absorbing boundary condition reflection introduces

negligiblé error into the resulting S—matrix elements for the LHL mass configuration.

The original intent of combining absorbing boundary conditions with the chan-
nel packet method was to improve the efficiency of the computation of S—matrix
elements. Figure 6.5, where the correlation function is computed without the use of

absorbing boundary conditions, illustrates that on a 512x512 grid without absorbing
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Figure 6.4 Absolute value of the correlation function for the two coupled Morse
oscillator ~ LHL mass configuration for the reaction
A +BC(v=0)—> AB(V'=0)+C without the use of absorbing boundary

conditions.
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Figure 6.5 Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v =0) - AB(v’=0)+C without

the use of absorbing boundary conditions.
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Figure 6.6 Absolute value of the correlation function for the two coupled Morse
oscillator LHL mass configuration for the reaction A + BC(0) —
AB(0) 4+ C where the grid size has been reduced to 128x128 and the

absorbing boundary conditions moved closer to the interaction region.

boundary conditions, good S-matrix elements can be obtained. The calculation of
the correlation function in Figure 6.4, on a MIPS R10000 Silicon Graphics work-
station took approximately 55,000 seconds of CPU time. However, using absorbing
boundary conditions and a small 128x128 grid, the calculation of the correlation
function, shown in Figure 6.6, took only 1900 seconds of CPU time for a factor of
29 savings in computation time. As shown in Figure 6.7, the resulting S-matrix el-
ements computed from the correlation function in Figure 6.6 are in good agreement
with Figures 6.1 and 6.3. Again, the combination of absorbing boundary conditions
with the channel packet method results in significant time savings as opposed to the

channel packet method alone.

6.2 Resonances and well depth

Since the LHL mass configuration is effectively free of absorbing boundary

condition reflection error, the influence of well depth on S-matrix elements can be
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Figure 6.7 Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC (0) — AB(0) + C where the
grid size has been reduced to 128x128 and the absorbing boundary
conditions moved closer to the interaction region.

investigated. The well depth in the model potential energy surface is easily adjusted
by changing the dissociation energy of the Morse oscillators, denoted by D, in Equa-
tion 5.1. In this investigation, S-matrix elements are computed for values of D, from
0.1 au to 0.26 au in steps of 0.01 au. The step size is purely arbitrary. For each value
of D., the anharmonicity a was changed so that the spring constant of the harmonic
limit of the Morse oscillator, given by K = 2D.a?, remained the same. For each
potential energy surface, the initial grid and wave packet parameters are the same
as in Table 6.1. Figure 6.8 illustrates the probability of reaction for four values of
D.. Figures illustrating the probability of reaction for values of D, from 0.1 au to

0.26 au in steps of 0.01 au are in Appendix D.

At first glance, a higher dissociation energy, i.e. a deeper well, leads to more
resonances with doublets and then triplets appearing. By comparing S-matrix el-
ements computed using different values of D., resonances that initially appear at

high relative translational energy move to lower relative translation energy as the
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Figure 6.8 Probability of reaction as a function of dissociation energy for the two
coupled Morse oscillator LHL mass configuration for the reaction A +
BC (0) = AB(0) + C. The dissociation energy is equal to 0.10 au, 0.15
au, 0.20 au and 0.26 au.




dissociation energy increases. The peak positions of several of the resonances with
respect to potential energy surface dissociation energy is shown in Figure 6.9. The
initial position appears, qualitatively, to be governed by an envelope. The form of

the envelope can be fit by a function of the form
b
y=a-+ et (6.1)

where y is the resonance position and z is the dissociation energy. This envelope as

well as the points used to derive it are shown in Figure 6.10.

In Figure 6.11, the position of a resonance with respect to dissociation energy
is connected with a curve for a number of resonances. The connections between the
points in Figure 6.9 which are not included in Figure 6.11 are more difficult to make
due to the bifurcation and trifurcation of the underlying resonances. Each of the
curves in Figure 6.11 has the same general shape, with the position of a resonance
changing slowly at first and then more rapidly with increasing dissociation energy.
Some resonances also appear to bifurcate with increasing well depth. In Figure 6.25,
the resonance represented by the dashed line was chosen for further investigation
due to the bifurcation at a dissociation energy of 0.19 au. S-matrix elements were
computed for D, = 0.18 to 0.20 au in steps of 0.002 au. Figure 6.12 illustrates
the position of the bifurcating resonance as a function of dissociation energy. The
bifurcation occurs between 0.184 and 0.186 au and the subsequent behavior of the
resonance position rapidly approaches the general behavior of the other resonances

as seen in Figure 6.9.

For the one dimensional square well, the resonances in the probability of trans-
mission can be related to virtual states of the infinitely deep square well.%¢:>” In order
to investigate the possibility that such a relationship might exist for the two coupled
Morse oscillators, the eigenstates of the harmonic limit need to be computed. This

can be done analytically by constructing the force, F, and mass, M, matrices then
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Figure 6.10 Qualitative envelope governing the initial position of a resonance in
the probability of reaction.

diagonalizing the matrix (M~!F).52 The diagonal elements of the resulting matrix
are the squares of the frequencies of the normal modes of the system. For the two

coupled Morse oscillator potential, the force matrix is given by

K -K 0
F=|-K 2K -K|, (6.2)
0 -K K

where K is the force constant of the harmonic limit of the Morse oscillator and the

mass matrix is diagonal with m, = m. and given by

m, O 0
M = 0 my 0 . (63)
0 0 mg
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Diagonalizing the matrix (M™'F) yields

w@ 0 0 0 0 0
0 wf 0|=f0 & 0 : (6.4)
0 0 w? 0 0 Aimetm

Mmamy

The normal mode associated with wy = 0 is translation. The normal mode associated
with w; is the symmetric stretch and the normal mode associated with w; is the
asymmetric stretch. The energy eigenvalues of the harmonic limit of the two coupled

Morse oscillator potential are given by

1 1
E (n1,n3) = hwy (nl + 5) + hw, (Tl2 + 5) , (6.5)

where n; and n, are the quantum numbers associated with the eigenstates (normal
modes) whose frequencies are w; and w;. n; and n; are integers and range from
zero to infinity. For the LHL mass configuration, the energy eigenvalues associated
with the frequencies are hw; = 1.36 €V and hw; = 1.61 eV. The 20 lowest energy
eigenvalues are given in Table 6.2 with their associated quantum numbers. The
spectrum of the energy eigenvalues is given in Figure 6.13. From the spectrum
below 8 eV, the eigenstates of the harmonic limit can be grouped into singlets,
doublets and triplets. However, the resonances in the S—-matrix elements shown in
Figures 6.1 and 6.8 do not line up with the spectrum shown in Figure 6.13, and
there is no clear analytic connection between the resonances and the eigenstates of
the harmonic limit. Graphically, at low values of dissociation energy, the resonances
can be grouped as singlets and doublets. At higher dissociation energy, resonances
can also be grouped into triplets. It is tempting to attribute the resonant multiplets
to virtual states of the harmonic limit of the two coupled Morse oscillators. However,
only qualitative similarities are observed and making such a connection between the
virtual states of the harmonic limit and the resonances in Figures 6.1 and 6.8 is

premature.

6-14




Table 6.2 Quantum numbers and energy eigenvalues of the 20 lowest eigenstates of
the harmonic limit of the two coupled Morse oscillator potential for the
LHL mass configuration.

[ 71 | n2 | Energy (eV) |

010 1.485
110 2.845
011 3.095
210 4.205
1|1 4.455
012 4.705
310 3.565
211 5.815
1|2 6.065
013 6.315
4 10 6.925
3|11 7.175
212 7.425
113 7.675
014 7.925
510 8.285
4 |1 8.535
3|2 8.785
213 9.035
1] 4 9.285
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6.3 Resonances and kinetic coupling

In the bond coordinate representation of the full scattering Hamiltonian,

the kinetic energy operators in Equation 5.2 are coupled via

Px Py

my

: (6.6)

where 151- is the conjugate momentum operator in the j direction and m; is the mass
of atom B. In this analysis. the minus sign in front of the coupling term is replaced
by a parameter which is varied from -1 to 0 in steps of 0.1 where the step size is
arbitrary. The potential energy surface with a dissociation energy of 0.20 au was
chosen for the analysis for the number of, and complex nature of, the resonances.
Figures 6.14 and 6.15 illustrate the effect of kinetic coupling on S-matrix resonances.
The complete set of S—matrix elements for kinetic energy coupling constants of -1 to
0 in steps of 0.1 are contained in Appendix D. As the kinetic coupling is reduced, the
resonances labeled 1 in Figure 6.14, simply decrease in magnitude with decreasing
coupling. The resonances labeled 2 both decrease in magnitude and coalesce into
a single resonance. As expected, the probability of reaction where the two Morse

oscillators are completely kinetically decoupled is zero as shown in Figure 6.15.%

6.4 Absorbing boundary condition reflection S—-matriz elements

Similar to the analysis in Section 5.3, S—matrix elements were computed
for absorbing boundary condition reflection for the reaction A+ BC (v = j) =+ A+
BC (V' =j), j =0,1,2 for the LHL mass configuration and are shown in Figure 6.16.
The probability of reflection for v/ # v is essentially zero. As seen in the MLM
and HLH mass configurations, wave packets constructed from the v = 0 internal
vibrational eigenstate are more likely to reflect than those constructed from the

v =1 and v = 2 eigenstates. However, the magnitude of the probability of reflection

%The labels 1 and 2 are purely arbitrary.
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Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A+ BC (0) — AB(0)+ C where the dis-
sociation energy is 0.20 au. Probabilities are shown for kinetic energy
coupling constants of -1, -0.5 and 0.
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is not drastically reduced from the probability of reflection for the MLM or HLH

cases.

The reason why the LHL mass configuration does not suffer from significant
absorbing boundary condition reflection error is not attributable solely to the magni-
tude of absorbing boundary condition reflection. In order to investigate the reasons
why absorbing boundary condition reflection error is significant in the LLL, MLM
and HLH mass configurations and not the LHL mass configurations, consider the

correlation function given by

)= (87 exp (~iF3 ) 92). (67)

The derivation of the formula for S-matrix elements in Appendix A and Chapter
II uses a Hamiltonian that does not contain absorbing boundary conditions. With
the application of absorbing boundary conditions, the formula for the correlation
function changes,
o —it A s -
Corn (8) = (W fexp { 2 (1 = i¥2) }07), (6.8)
to include V, the absorbing boundary condition potential. The wave packets |¥) can

be expanded in terms of expansion coefficients and the eigenbasis of H,

08) = [ dkens (ke e ). (69

Expanding the bra-ket in Equation 6.8 and using Equation 6.9, the result is

too / +oo * ’
Con(t) = [ iy [ dkt (K ) ma (k)
—1t

x(ky,y'—|exp {_h— (I:[ - zf/a) }|kv, 7+). (6.10)




We believe that the mixing of eigenstates of H by V, in Equation 6.10 governs
the absorbing boundary condition reflection error. However, the complex nature of
the integrals in Equation 6.10 does not lend itself to deriving an absorbing potential
which minimizes the error introduced by mixing the eigenstates of H and a solution
to the problem of absorbing boundary condition reflection error is unknown at this

point.

6.5 Summary

The light-heavy-light mass configuration of the two coupled Morse oscilla-
tors is qualitatively unaffected by absorbing boundary condition error. This can be
seen in that changing the position of the absorbing boundary conditions does not af-
fect the probability of reaction. This is in contrast to the results in Chapter V where
the position of the absorbing boundary conditions greatly influence the resulting
probability of reaction. One of the primary purposes of this study was to improve
the efficiency of the computation of S-matrix elements. For the light-heavy-light
mass configuration, the correlation function computation without absorbing bound-
ary conditions, which yields good S—matrix elements, took approximately 55.000
seconds of CPU time. Applying absorbing boundary conditions, reduced the grid
size by a factor of 16 yielding a factor of 29 reduction in the computation time for
the correlation function. Again, the combination of absorbing boundary conditions
with the channel packet method results in significant time savings as opposed to the

channel packet method alone.

The effect of dissociation energy on the probability of reaction for the two cou-
pled Morse oscillators can be investigated using the light-heavy-light mass configu-
ration since it is not affected by absorbing boundary condition error. Qualitatively,
the deeper the well in the interaction region, i.e. the higher the dissociation energy,
the probability of reaction exhibits more resonances. The initial placement, energet-

ically, of a resonance appears to be governed by an envelope shown in Figure 6.10.




Overall, the position of a resonance, as seen in Figure 6.11, as a function of dissoci-
ation energy exhibits the same overall shape. Figure 6.12 illustrates the breaking of

a degenerate resonance between 0.184 and 0.186 au.

The virtual eigenstate of the harmonic limit of two coupled Morse oscillators
can be determined. The energy spectrum of these states is shown in Figure 6.13.
However, no clear analytic connection can be made between virtual eigenstates of the
harmonic limit of the two coupled Morse oscillators and the resonances illustrated in

Figures 6.1 and 6.8. The question of influence by the virtual states remains open.

The effect of kinetic coupling is also investigated using the light-heavy-light
mass configuration. Figures 6.14 and 6.15 illustrate the effect of kinetic coupling on
S—matrix resonances. As the kinetic coupling constant is reduced, so is the magnitude
and number of S-matrix resonances. When the two Morse oscillators are completely
uncoupled, the coupling constant is zero, the S-matrix elements are zero. This is
expected since without any coupling there is no energy transfer between the two
oscillators. For a tiny coupling constant, -0.1, there is only a slight possibility of
reaction at a relative translation energy of approximately 0.5 eV. An analysis of S-
matrix resonances divides the resonances into two types. One type simply decreases
in magnitude with decreasing coupling. The other type concerns pairs of resonances
that coalesce into a single degenerate resonance before their magnitude reaches zero

with decreasing coupling.




VII. Conclusion

The calculation of S-matrix elements for quantum reactive scattering re-
mains computationally intensive. We have developed a new method that dramati-
cally improves efficiency for computing S—matrix elements by combining the channel
packet method with absorbing boundary conditions. While absorbing boundary
conditions have been used in the past for preventing edge of grid reflections, never
before have they been used for the specific purpose of reducing the size of the grid
used to perform the computations. The dramatic improvement in computational
efficiency is achieved by exploiting the manner in which the channel packet method
computes S—matrix elements. The channel packet method relies on computing two
Moller states: one representing reactants and one representing products. The time
dependent correlation function between the two Mgller states is computed and used
to calculate S-matrix elements. The formulation using two Moller states is exploited
by individually propagating the Mgller states on a small efficient grid by using ab-
sorbing boundary conditions to attenuate the evolving Mgller states as they exit the
interaction region of the potential. The attenuation of the evolving states prevents
their reflecting from the edges of the much smaller grid. The Fourier transform of

the correlation function is then used to compute S—matrix elements.

The one dimensional square well has an analytic solution for the S-matrix
elements. S—matrix elements computed using the combination of the channel packet
method with absorbing boundary conditions are in excellent agreement with the
analytic solution. Two tests of convergence are used to demonstrate agreement with
the analytic solution. First, it is important that a method not only converge but that
it converge to the correct answer. In Figure 3.6, the solution computed using the
channel packet method with absorbing boundary conditions is converging towards
the analytic solution. Second, the order of convergence provides a test of efficiency

for the channel packet method with absorbing boundary conditions. The order of
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convergence can be computed by determining the slope of a line in a log-log plot
where the changes in a gi\'efl parameter, for example the spatial grid resolution,
are plotted against the relative error. For changes in the spatial grid, the channel
packet method with absorbing boundary conditions converges with an order of 3.
For changes in the temporal grid, the order is 4. These orders of convergence are
illustrated in Figures 3.8 and 3.9. These convergence tests validate the application of
absorbing boundary conditions with the channel packet method to one dimensional

quantum reactive scattering.

While absorbing boundary conditions are extensively used, very little informa-
tion is available about their behavior and possible influence on S-matrix elements.
Quantum scattering for a simple one dimensional potential consisting of a Gaussian
well bounded by symmetric Gaussian barriers is used to investigate the behavior of
absorbing boundary conditions when applied to the channel packet method. The
efficiency of the combination is once again demonstrated when quasi-bound states
are tra‘pped by the barriers around the Gaussian well. Without absorbing boundary
conditions, the grid would have to be large enough to support the evolving Mgller
state until the quasi-bound state has completely exited the interaction region. For
example, when the barriers are 0.05 au high, without absorbing boundary conditions,
the spatial grid would have to be 21 times larger in order to accommodate the evolv-
ing wave packet until the quasi-bound state has completely exited the interaction
region. The resulting large grid is computationally prohibitive. The investigation
into the effects of absorbing boundary conditions begins with conditions that are too
steep. Absorbing boundary conditions that are too steep will reflect the evolving
Mpller state back into the interaction region thereby introducing error into the cor-
relation function. The resulting S-matrix elements exhibit near periodic oscillations
and probabilities of transmission greater than one. Similarly, absorbing boundary
- conditions which are too shallow will not fully attenuate the evolving Mgller state

and the periodic boundary conditions imposed by the fast Fourier transforms used

T]
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in the propagation allow the Mgller state to wrap around the grid. This introduces
errors into the correlation function and the resulting S-matrix elements again exhibit
nearly periodic oscillations as well as probabilities of transmission greater than one.
Finally, the sudden onset of the absorbing boundary conditions can introduce small
errors into the correlation function. The resulting S-matrix elements exhibit only

minor oscillations about the correct answer.

Quantum reactive scattering for the collinear H 4 H, reaction has been ex-
tensively studied using a variety of methods and provides an excellent benchmark
for testing the combination of the channel packet method with absorbing boundary
conditions. The results are in agreement with previous calculations with the L,
norm error between the channel packet method without absorbing boundary condi-
tions and the channel packet method with absorbing boundary conditions is on the
order of 6 x 1073, This is a small error in comparison to the dramatic reduction in
computational effort the combination of the channel packet method with absorbing
boundary conditions produces. The grid for computing the correlation function was
reduced by a factor of 16, from 256 x 256 to 64 x 64. Overall, the result of the grid
reduction was a significant order of magnitude improvement in the time necessary

to compute the correlation function.*

The collinear H + H, reaction was also used to demonstrate the convergence
of the channel packet method with absorbing boundary conditions. Figure 4.11
illustrates the convergence of channel packet method with absorbing boundary con-
ditions’ solution to the accepted solution based on previous work.?3173%3% Again,
the order of convergence for the channel packet method with absorbing boundary
conditions is tested for changes in the temporal resolution. As in the one dimensional

case, the order of convergence is 4. This is illustrated in Figure 4.12.

A simple system of two coupled Morse oscillators is used to investigate the
effects of potential well depth and reaction masses on quantum reactive scattering

for two dimensional potentials where there is a barrierless well in the interaction

7-3




region. However, S-matrix elements for the light-light-light, medium-light-medium
and heavy-light-heavy mass configurations suffer from non- trivial errors introduced
by absorbing boundary condition reflection. While qualitative information about
the S—matrix elements may be gleaned, the exact nature of the S-matrix elements
remains obscured by the error introduced by absorbing boundary conditions reflec-

tion.

Unlike the previous three mass configurations, the light-heavy-light mass con-
figuration of the model two coupled Morse oscillator potential does not suffer from
significant absorbing boundary conditions reflection error. The exact relationship
between the kinetic, potential, and absorbing boundary conditions terms in the
Hamiltonian that leads to only negligible absorbing boundary condition reflection
is not clear. However, the influence of well depth and kinetic coupling on quantum
reactive scattering can be investigated using the light-heavy-light configuration since
it does not suffer from absorbing boundary condition reflection error. Increasing well
depth leads to a greater number of and more complex resonances in the S—matrix
elements. However, there is no clear analytic connection between the virtual states
of the harmonic limit of the two coupled Morse oscillators and the S-matrix element

resonances.

7.1 Further research

There is a great deal of research on two dimensional quantum reactive
scattering that remains to be done. The work presented here provides a firm foun-
dation for further research. As we saw in the one dimensional case, potential wells
with barriers tend to trap long-lived, quasi-bound states. These states may take
quite some time to completely exit the interaction region. Methods that do not take
advantage of absorbing boundary conditions would require excessively large grids
to support the evolving wave packet until the quasi-bound state completely exits

the interaction region. In one dimension, the application of absorbing boundary
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conditions eliminated the need for such a large grid. However. this has yet to be

demonstrated for two dimensions.

There is also the research into which potentials the channel packet method with
absorbing boundary conditions is applicable. The combined method apparently fails
to work for poténtial surfaces where there is a well in the interaction region and the
scattering atoms are in anything other than a light-heavy-light mass configuration.
It appears that reflection from the absorbing boundary conditions are the culprit

though the mixing of eigenstates of the full Hamiltonian as in Equation 6.10.

Finally, there is the extension of the channel packet method with ébsorbing
boundary conditions to scatter in three dimensions. Current research in three di-
mensional reactive scattering is limited to very simple reactions like H 4+ H;. While
computational power continues to increase, the current methods used in three di-

mensional scattering again rely on large grids which are inefficient.
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Appendiz A. Derivation of the formula for scattering matriz
elements

The formula in the channel packet method for scattering matrix elements

given in Equation 2.30 is derived from the orthogonality relationship

Koy —loys) = (k|07 O [k, )
= (K., 7'5]ky,7) (A.1)
/TR T

- VY Y T S(E-E)S),
VHA Hy v

Inverting the final line in Equation A.2 shows that all that is necessary to compute

S-matrix elements is to evaluate the scalar product
(Koo, =y, v ). (A.2)

Evaluating Equation A.2 begins by defining the state |Az+) as the Fourier
transform of the time evolution of the reactant Meller state. The state |Ag+) is
given by )

AL +) = /+oo dt exp (z%) exp (—z%) %) (A.3)

Substituting the expansion of |¥2) in terms of |k,,7) given in Equation 2.22 and

expanding H in terms of T and V gives

oo oo T, + V. Et
Y — + i 2 =
) = [kt (k) ) [ dtexp (<img e (i) (A4

—_ —00

Now consider the second integral in Equation A.4. The integral of two complex

exponentials yields a delta function given by
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o0 T, + V. Et 1 1 1., 1
/_co dt exp (—z 2 ; A’) exp <z7> = 276 (ET1 + ;‘{E’Y hT” - EEW>
h ,2
= m{m k2 — K, )}, (A.5)
where the substitution

h*k? A6)
T, = .6

Y 2“’7 (

has been used.

Two more properties of delta functions are used to simplify Equation A.5.

) (%n) = £6 (n) (A.7)
and
6 (a? —¥) = ﬁ[é(a—b)-ké(a—kb)] (A3)

reduce the complexities in Equation A.5 to

—0oC

+oo T, +V. Et\  2mu,. ,
/ dt exp (—z a p 7> exp <27> = hl: | [6 (k,y - kw) + 6 (k,, + k,y)] (A.9)
Y

The two delta functions in Equation A.9 reduce the integral over dk, in Equation

A.4 to a simple sum given by

A4) = (%n’:_;) e (+o) [+ 1) + 10 (—k) =B v}l (AL0)

where the + in front of the k., explicitly labels positive (+) and negative (—) mo-

menta.




Evaluating the scalar product (VY| AL+) where Equation 2.22 is used to ex-
pand [¥7) in terms of |k!,,v') to obtain S-matrix elements leads to
' ZT +eo f '
(WY Ap+) = Wf”, ak Tz (KEy) s (b (Rl 7' =Ky, 1)
+7 (K, )77+( ko) (K v ==k vH)]. (A.11)

The orthogonality relationship in Equation 2.24 reduces the integral in Equation A.11

to

(047 (E ’,’"”" D (R ) me (k) ST
Al
o (K ) ms ( S+',j, e (A.12)
+ (=K ) ns (k) —k’ Tk
+n7 (=K ) ns 7;3 =k, -

The remaining derivation follows Equation 2.28 on page 2-10.
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Appendiz B. Jacobi-to-bond transformation for momentum

In the transformation from the Jacobi representation to the bond repre-
sentation, the momenta are no longer separable. The transformation from Jacobi

coordinates to bond coordinates is given by

(R) B (; T) (f) (B.1)

where ¢ is the mass related factor given by

p=—— (B2)

my + mc'

This transformation is for the A + BC channel where r, is the distance between the
masses in the diatom BC and R, is the distance between the atom A and the center-
of-mass of the diatom. The derivation of the momentum transformation is also for
the A + BC channel. For the AB + C channel, the derivations and tfansformations

are similar.

For calculating the momentum transformation, the starting point is the La-
grangian formulation

L=T-V, (B.3)

where L is the Lagrangian, T is the kinetic energy and V is the potential energy.
For the quantum reactive scattering studied in this research project, the potential
V is independent of the velocity and it is omitted from the rest of the discussion of

the transformation. The conjugate momenta P; is derived from the Lagrangian via

oL

P =2,
aq,”

(B.4)




where q; is the time derivative of the coordinate q. In Jacobi coordinates. the

Lagrangian for a free particle

1

- 1
24y

T 2m,

P+ 5—F,

where m, is the mass of atom a, p, is the reduced mass given by

mpme

He = ———,
my + me

and Pg and P. are the non-relativistic momenta given by

Pr=my,R and P, = p,r.

Combining together equations B.5 and B.7 gives

L= %maR2 + ?12—/1,7"2.

(B.6)

(B.8)

Now. using the coordinate transformations from equation B.2 together with equa-

tion B.8, yields
1 1
L=gma (X + oY) + -Q-H,YZ.

(B.9)

Using the relationship in equation B.4, the conjugate momenta Px and Py are given

by
JdL 1 ,
.PX = a—X—5m0(2X+2®Y)
oL 1
= o= om, (2 R
Py Sy = 3Ma (26X +2Y) + Y

B-2

(B.10)

(B.11)




Combining terms together with the transformation in equation B.2 yields the final

transformation,

Py = m.R (B.12)

Py = m R+ (ma + py — maq')2) . (B.13)

In the A+ BC channel, Px may be interpreted as the relative momentum. However,

the interpretation of Py is clouded by mixing between relative and internal momenta.




Appendiz C. Code overview

The code implementing the application of the channel packet method to-
gether with absorbing boundary conditions to quantum scattering in one and two
dimensions is briefly overviewed here. The code is written in FORTRANTT with

extensions made available by the Silicon Graphics compiler.

The fast Fourier transform (FFT) used throughout this code is the Temperton
FFT written by the CECAM group.>® The two dimensional front end to the FFT
was written by the author. The original two-dimensional code was written by Dr.
David Weeks during a post-doctoral fellowship at Notre Dame University under the
direction of Dr. David Tannor and was altered to include the application of ab‘sorbing
boundary conditions by the author. Both the one and two dimensional codes rely
upon the use of individual modules of code compiled into a single executable using
the Unix make command. The initialization of the code variables is done using a
header file and all variables are common. No screen input is required as the input

data is contained in a data file read into the program at the start.

C.1 One dimensional code

The code implementing the application of the channel packet method to-
gether with absorbing boundary conditions to quantum scattering in one dimension
was written by the author. The module titles are in boldface with a brief explana-

tion of its function.

1DFFT.f: This module contains the Temperton FFT and the initialization
modules for the FFT.

1DScatter.h: Header file containing all the variables used in the program.

All the variable are common.

1DScatter.f: Main program file which calls each of the modules in turn.
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1DVariables.f: This module reads in the input data file containing the grid

and wave packet initialization data.

1DGrid.f: This module creates the coordinate and momentum representation

grids.
1DWave.f: This module computes the initial wave packets.

1DPotential.f: This module creates the potential array based on the coordi-

nate grid.

1DMatrix.f: This module implements the split-operator array representation
of the full scattering Hamiltonian using the coordinate and momentum grids together
with the potential array. It is here that absorbing boundary conditions are introduced

into the Hamiltonian.

1DNuscreen.f and 1DGraphs.f: The first module initializes the graphics
screen and the second module draws to the screen using the OpenGL libraries on
a Silicon Graphics workstation. The modules are specific to the Silicon Graphics

operating system and are not for use on any other platform.

1DReactant.f: This module computes the reactant Moller state in the manner
outlined in section 3.1.2. On a Silicon Graphics workstation, the evolving wave packet

can be displayed on the screen through the 1DGraphs.f module.

1DProduct.f: This module computes the product Mgller state in the manner
outlined in section 3.1.2. On a Silicon Graphics workstation, the evolving wave

packet can be displayed on the screen through the 1DGraphs.f module.

1DNuWay.f: This module propagates the product Mgller state forwards and
backwards in time calculating the correlation function at every step. On a Sili-
con Graphics workstation, the evolving wave packet can be displayed on the screen

through the 1DGraphs.f module.

1DSmatrix.f: This module computes the S-matrix elements according to

equation 2.29. The module IDFTCR.f actually computes the discrete Fourier trans-
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form of the correlation function. The resulting S-matrix elements are written to a

file and the program terminates.

C.2 Tuwo dimensional code

The calculation of S—-matrix elements for two dimensional reactive quan-
tum scattering is actually done using three separate codes: Mgller state calculation,
correlation function calculation and S-matrix calculation. The code computing the
Moller states remains unaltered from Dr. Weeks’ original work. The code computing
the correlation function is based on Dr. Weeks’ original work but altered to include
absorbing boundary conditions. The code computing S-matrix elements was written

by the author for this project.

C.2.1 Moyller state calculation code. The module titles are in boldface

with a brief explanation of its function.

TemptFFT.f: This module contains the Temperton FFT and the initializa-
tion modules for the FFT.

2DScatter.h: Header file containing all the variables used in the program.

All the variable are common.
2DScatter.f: Main program file which calls each of the modules in turn.

2DInitVar.f: This module reads in the input data file containing the grid and

wave packet initialization data.

2DInitGrid.f: This module creates the coordinate and momentum represen-

tation grids.

2DPotential.f: This module creates the potential array based on the coordi-
nate grid. This module calls another module that contains the code for the potential

energy surface. The collinear H + H, potential energy surface is contained in the
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module hh2pot.f and the two coupled Morse oscillator potential energy surface is

contained in the module morsepot.f.

2DInitWave.f: This module computes the initial wave packets which is more
complicated in the 2D case. At each grid point, depending on the channel, the
coordinates are transformed into the appropriate set of Jacobi coordinates. The Ja-
cobi coordinates are then passed to a module which computes the internal vibrational
eigenstate. For the collinear H+ H; potential energy surface, the internal vibrational
eigenstates are not analytic. The internal Hamiltonian is represented in a basis of
Morse oscillator functions and then diagonalized. The internal vibrational eigen-
state is computed from a linear combination of Morse oscillator functions according
to the transformation matrix which diagonalized the internal Hamiltonian. For the
two coupled Morse oscillator potential energy surface, the internal vibrational eigen-
states are known analytically and the matrix representation and diagonalization are
omitted. In either case, it is important to note that the code numbers the internal
eigenstates starting at 1 and not 0. The initial wave packet is constructed from
a direct product of the internal vibrational eigenstate and a linear combination of
eigenstates of the relative Hamiltonian in Jacobi coordinates. It is then propagated

analytically to 7 and then transformed into bond coordinates.

2DMatrix.f: This module implements the split-operator array representation
of the full scattering Hamiltonian using the coordinate and momentum grids together

with the potential energy surface.

2DSplitOp.f: This module computes the Mgller state from the initial wave
packet using the split operator approach. At the end of the propagation, the Mgller

state is written to a file and the program terminates.

C.2.2 Correlation function calculation code. The module titles are

in boldface with a brief explanation of its function. The overviews of the mod-
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ules TemptFFT.f 2DScatter.h, 2DScatter.f, 2DInitVar.f, 2DInitGrid.f and

2DPotential.f remain unchanged from the previous section.

2DInitWave.f: This module simply reads in the reactant and product Meller

states. /

2DMatrix.f: This module implements the split-operator array representation
of the full scattering Hamiltonian using the coordinate and momentum grids together
with the potential energy surface. This code has been altered to include absorbing

boundary conditions.

2DSplitOp.f: This module propagates the reactant Moller state forwards
and backwards in time using the split operator approach. At each time step. the
correlation function is computed and stored. At the end of the propagations. the

correlation function is written to file and the program terminates.

C.2.3 S-matriz calculation code. The module titles are in boldface

with a brief explanation of its function.

2DScatter.h: Header file containing all the variables used in the program.

All the variable are common.

2DSmatrix.f: This is the main module. It first calls 2DInitVar.f to input
all the necessary information. The main body of code computes the expansion
coefficients necessary to normalize the S-matrix elements, computes the discrete
Fourier transform of the correlation function and calculates and writes to a file the

S—-matrix elements.

2DInitVar.f: This module not only reads in the initial grid and wave packet

conditions, it also reads in the correlation function.




Appendix D S-matrix elements for two coupled Morse oscillators in a

light-heavy-light mass configuration

The following 16 plots illustrate the probability of reaction for two coupled Morse

oscillators in a light-heavy-light mass configuration where the well depth, ie.

dissociation energy, is changed from 0.11 au to 0.26 au in steps of 0.01 au.
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Figure D.3  Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v =0) — AB(v'= 0)+C where the

disassociation energy is 0.13 au.
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Figure D.4  Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v =0) — AB(v’= 0)+C where the

disassociation energy is 0.14 au.
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Figure D.5  Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v = 0) = AB(v'=0)+C where the

disassociation energy is 0.15 au.
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Figure D.6  Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v =0) = AB(v'=0)+C where the

disassociation energy is 0.16 au.
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Figure D.7  Probability of reaction for the two éoupled Morse oscillator LHL mass
configuration for the reaction A + BC(v =0) — AB(v'=0)+C where the

disassociation energy is 0.17 au.

Probability of Reaction

-+~

L . J

0.6 0.8 1 1.2 14
Relative Translational Energy (eV)

Figure D.8  Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A+ BC(v =0) — AB(v'=0)+C where the

disassociation energy is 0.18 au.
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Figure D.9  Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v = 0) - AB(v'= 0)+C where the

disassociation energy is 0.19 au.
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Figure D.10  Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v =0) — AB(V'= 0)+C where the

disassociation energy is 0.20 au.
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Figure D.11  Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v =0) — AB(v’= 0) +C where the

disassociation energy is 0.21 au.
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Figure D.12  Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v =0) — AB(v'=0)+C where the

disassociation energy is 0.22 au.
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Figure D.13  Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v = 0) - AB(V'=0)+C where the

disassociation energy is 0.23 au.
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Figure D.14  Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v = 0) & AB(v’=0)+C where the

disassociation energy is 0.24 au.
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Figure D.15 Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v = 0) - AB(V’'=0)+C where the

disassociation energy is 0.25 au.
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Figure D.16  Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v = 0) = AB(v'=0)+C where the

disassociation energy is 0.26 au.
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The following 11 plots illustrate the probability of reaction for two coupled

Morse oscillators in a light-heavy-light mass configuration where the kinetic energy

coupling constant is changed from —1 (fully coupled) to 0 (uncoupled) in steps of 0.1.
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Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v = 0) = AB(v'= 0) +C where the
disassociation energy is 0.20 au and the kinetic energy coupling constant

is -1.
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Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v = 0) — AB(v’=0)+C where the
disassociation energy is 0.20 au and the kinetic energy coupling constant
is -0.9.
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Figure D.19 Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v = 0) - AB(v’=0)+C where the
disassociation energy is 0.20 au and the kinetic energy coupling constant is
-0.8.
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Figure D.20  Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v =0) —» AB(v’=0)+C where the

disassociation energy is 0.20 au and the kinetic energy coupling constant is
0.7
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Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v = 0) = AB(v’=0)+C where the
disassociation energy is 0.20 au and the kinetic energy coupling constant is
-0.6. ‘
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Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v = 0) = AB(V’= 0)+C where the

disassociation energy is 0.20 au and the kinetic energy coupling constant is
-0.5.
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Figure D.23  Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A +BC(v =0) — AB(v'=0)+C where the
disassociation energy is 0.20 au and the kinetic energy coupling constant is
-0.4.
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Figure D.24  Probability of reaction for the two coupled Morse oscillator LHL mass
configuration for the reaction A + BC(v =0) — AB(v'= 0) +C where the

disassociation energy is 0.20 au and the kinetic energy coupling constant is
-0.3.
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Figure D.25 Probability of reaction for the two coupled Morse oscillator LHL. mass
configuration for the reaction A + BC(v = 0) — AB(v'=0)+C where the
disassociation energy is 0.20 au and the kinetic energy coupling constant is
-0.2.

1.2
g 17
2
-~
I
S 0.8 -
o=
B
% 0.6 T
S 044
el
=}
bl
& 0.2
0 - i : : :
0.2 0.4 0.6 0.8 1 1.2 1.4
Relative Translational Energy (eV)
Figure D.26  Probability of reaction for the two coupled Morse oscillator LHL mass

configuration for the reaction A + BC(v =0) - AB(v'=0)+C where the
disassociation energy is 0.20 au and the kinetic energy coupling constant is
-0.1.
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