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Abstract

Analytical atomic spectroscopy methods have the potential to provide solutions for

rapid, high fidelity chemical analysis of plutonium alloys. Implementing these meth-

ods with advanced analytical techniques can help reduce the chemical analysis time

needed for plutonium pit production, directly enabling the 80 pit-per-year by 2030

manufacturing goal outlined in the 2018 Nuclear Posture Review. Two commercial,

handheld elemental analyzers were validated for potential in situ analysis of Pu. A

handheld XRF device was able to detect gallium in a Pu surrogate matrix with a

detection limit of 0.002 wt% and a mean error of 8%. A handheld LIBS device was

able to yield univariate detection limits as low as 0.1 wt% Ga with mean error of

3%. Implementing machine learning methods for spectral analysis with the hand-

held LIBS device reduced error to 0.27%, but the limited device resolution impedes

improvements in sensitivity. A compact Echelle spectrometer was implemented with

a laboratory LIBS setup to reach a detection limit of 0.006 wt% Ga when coupled

with an optimized extra trees regression. A Gaussian kernel regression trained on

this high resolution data set yielded the most accurate predictive model with 0.33%

error. Lastly, the phenomenon of self-absorption was quantified and corrected for in

Ce-Ga LIBS spectra. By implementing a Stark broadening based correction, the uni-

variate detection limit for Ga from LIBS spectra was reduced to 0.008%. Overall, this

research indicates that implementing a compact, high resolving power spectrograph

for recording Pu alloy spectra and developing optimized machine learning models for

spectral analysis can yield high fidelity solutions for Pu alloy chemical analysis and

quality control.
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ENABLING RAPID CHEMICAL ANALYSIS OF PLUTONIUM ALLOYS VIA

MACHINE LEARNING-ENHANCED ATOMIC SPECTROSCOPY

TECHNIQUES

I. Introduction

The 2018 Nuclear Posture Review (NPR) outlined several initiatives to be pursued

by the United States to ensure the necessary capability, capacity, and responsiveness

of nuclear weapons infrastructure and the needed skills of the workforce. One of these

initiatives is outlined as follows:

”Provide the enduring capability and capacity to produce plutonium pits
at a rate of no fewer than 80 pits per year by 2030. A delay in this would
result in the need for a higher rate of pit production at higher cost.”

The production of these pits, which are the masses of fissile fuel in a nuclear weapon

primary, is a complex process involving several metallurgical and radiochemical pro-

cessing steps to turn raw plutonium into a finished nuclear component. Increasing

the production rate would greatly bolster US deterrence posture and allow us to keep

pace with global adversaries in their nuclear endeavors. One avenue to shorten the

Pu component production timeline would be to reduce the time required for analysis

of plutonium alloys at various stages of the production cycle.

The complex series of metallurgical and chemical steps that plutonium metal is

subjected to during processing introduces several avenues for minor metal impurities

to be introduced into the final alloy. Pits must meet a certain chemical specification

which limits the concentration of minor elements which can appear in the bulk Pu
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metal. Traditionally, the levels of impurities present are evaluated using mass spec-

trometry methods, such as inductively coupled plasma - optical emission spectroscopy

(ICP-OES) or mass spectrometry (ICP-MS). These established methods consistently

and accurately yield trace elemental information of impurities in Pu metal down to

the parts-per-billion (ppb) level. Although they provide accurate chemical content

information, they introduce a significant amount of analysis time into the overall pro-

duction process. Pu samples must be transported between labs and undergo a lengthy

preparation process before the analyte can be introduced into the mass spectrome-

try equipment. This has garnered a search for an analytical method which can be

performed in-situ and yield accurate, rapid chemical composition information from

plutonium metal. This work builds on an initial proof-of-concept study which imple-

mented a handheld laser-induced breakdown spectroscopy (LIBS) device for chemical

analysis of Pu surrogate samples, with the goal of furthering a state of the art ana-

lytical spectroscopy method of plutonium analysis. A handheld LIBS device, along

with a handheld x-ray flourescence (XRF) device are compared by quantifying their

performance detecting gallium in cerium to determine advantages and drawbacks of

the two methods. The handheld LIBS was utilized for analysis of Pu alloy samples in

a glovebox setting, coupled with chemometric methods, to validate the results seen

previously with Pu surrogate material. A full-scale laboratory LIBS setup leverag-

ing a high resolution spectrometer was implemented to maximize data quality and

couple the recorded spectra with advanced machine learning paradigms. A machine

learning workflow was implemented to optimize several machine learning regression

models and determine the superlative analysis method based on sensitivity and pre-

cision for Ga quantification. This provided a robust, laboratory scale comparison to

the performance of the handheld devices using advanced analytical methods.
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1.1 Background

LIBS has been used as a diagnostic technique for a wide variety of applications,

and has proven to be a versatile analytical tool. Traditional LIBS setups on the

laboratory scale have been used in a plethora of experimental proceedings to include

combustion and plasma diagnostics, [1–5], uranium detection [6], detection of nuclear

material in varying sample matrices [7–11], and nuclear safeguard applications [12–14].

Recent experimental proceedings have garnered great interest in the application of

commercial off-the-shelf (COTS) portable LIBS systems for nuclear material analysis.

The SciAps corporation produces handheld Z-series LIBS analyzers, which weigh only

a few pounds, cost approximately $40,000 (USD), and are widely used for elemental

analysis of scrap and industrial metals [15,16]. A recent study using cerium, a common

chemical surrogate for plutonium, proved that the Z500 could effectively quantify the

presence of gallium in Ce-Ga alloys [17, 18]. This has paved the way for applying

portable LIBS systems for elemental analysis of plutonium samples.

Similarly, XRF is a widely used spectroscopic technique for elemental quantifi-

cation and chemical analysis. A portable XRF device has been successfully utilized

for detection of plutonium contamination in wounds [19]. Additionally, a study by

Kirsanov et. al. highlighted the technique for its potential in analyzing complex

mixed lanthanides using chemometric techniques [20]. Many handheld XRF devices

are commercially available, such as the Bruker S1 Titan series marketed for fast, non-

destructive elemental identification for a wide variety of applications including alloy

analysis, mineral identification, geo exploration, and consumer safety. This device

also has the potential to provide rapid, precise quantification of minor analytes in

plutonium alloys in a laboratory or production envrionement.

The study of spectral emission lines of plutonium is much less developed than

that of common industrial metals. While data on lines from plutonium in a mixed
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actinide sample has been tabulated, no thorough studies have been conducted con-

cerning spectral analysis of Pu alloys using a hand-held LIBS device [21]. Quan-

titative analysis of plutonium is typically conducted in the laboratory environment

using plasma spectroscopy techniques, such as inductively coupled plasma - optical

emission spectroscopy (ICP-OES). This technique uses plasma to excite a sample

and measures light from the de-excitation of the sample atoms [22]. Recent work has

demonstrated capability of ICP-OES to identify optical emissions of plutonium; spec-

tral data gathered can be processed and deconvolved for quantitative analysis [23].

While results of high resolution ICP-OES experiments show promise for quantitative

analysis of plutonium alloys, the complex equipment requirements and sample prepa-

ration process leave a few areas of improvement open for investigation. In contrast, a

portable LIBS or XRF device can provide a compact system for rapid spectral data

acquisition and elemental analysis. The simplicity of these handheld systems and

depth of their commercial capabilities make them ideal candidates for the purpose of

plutonium/plutonium surrogate fabrication and quality control.

1.2 Problem

This project can be sectioned into three main problems to investigate:

1. Spectroscopic methodology: To replace conventional analytical methods used

for the analysis of Pu alloys, we seek to investigate other atomic spectroscopy

methods which could provide rapid elemental quantification. As mentioned,

LIBS is a prime candidate for this application. A portable LIBS system will

be the main focus of this research; the analytical performance of the Z300 will

be compared to that of a standard laboratory LIBS setup with a full-scale

laser and spectrograph. Using a more powerful laser and a larger spectrograph

with better resolution may improve the performance of the chosen analytical
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methods. Additionally, x-ray fluorescence (XRF) will be implemented as a

comparison of a related atomic spectroscopy technique.

2. Plasma physics phenomena: A common phenomenon seen in LIBS is self-

absorption; a plasma becomes optically thick to certain wavelength emissions

and reabsorbs, preventing the detector from reading the true representative in-

tensity of those emissions from a sample. This deleteriously affects calibrations

constructed from the self-absorbed spectra. This phenomenon, and potential

mitigation strategies, will be investigated as part of this study to improve ac-

curacy of univariate LIBS calibrations.

3. Data complexity: The complex optical emission spectrum of plutonium gener-

ates significant interference between Pu emissions and those of any other trace

elements in the sample. Therefore, it is imperative to implement advanced anal-

ysis techniques to discern the presence of elemental impurities in the spectrum

and separate these trace signatures from the bulk Pu emissions. This research

seeks to implement both chemometric and machine learning methodologies to

create robust prediction models which can accurately quantify the presence of

trace elements in a bulk Pu matrix at LoDs comparable to traditional labo-

ratory setups. Creating these models would significantly boost the analytical

applications of COTS LIBS devices for nuclear material analysis.

1.3 Hypothesis

This research furthers my initial master’s research hypothesis; analytical algo-

rithms can be developed to discriminate between spectral lines originating from dif-

ferent elements in a handheld LIBS spectrum. In order to produce robust, efficient cal-

ibration models for predictive elemental analysis, machine learning methods must be
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implemented. Regression and classification paradigms commonly used in data science

can provide optimum solutions for complex spectroscopic problems and outperform

traditional analytical techniques. Machine learning can yield predictive models for

various trace elements allowing the Z300 to achieve low limits of detection comparable

to those of traditional laboratory LIBS setups.

1.4 Approach

Cerium samples are created with varying concentrations of minor analytes gal-

lium and silicon. A handheld LIBS and handheld XRF device are both used to

record spectra of the Ce-Ga samples. Univariate calibrations are constructed with

both types of spectra and quantification performance is compared with sensitivity

and precision metrics. Self-absorption in the handheld LIBS spectra is addressed and

corrected. An initial investigation into machine learning models is conducted with

the handheld LIBS to quantify Si in Ce-Si samples; precision and sensitivity of the

regression models are evaluated. The study of the Ce-Ga samples is then extended to

Pu alloy samples; the handheld LIBS is used to quantify different minor metals in Pu

samples. Chemometrics are implemented to evaluate different regression techniques

for sensitivity and error. Lastly, a lab-scale LIBS experiment using a high-resolution

spectrograph is implemented to record spectra of the Ce-Ga samples. An initial uni-

variate analysis is conducted to observe self-absorption effects and calibration quality

at different gate delays, and correct the calibrations for self-absorption. A full ma-

chine learning experimental design is then implemented to evaluate several paradigms

for Ga quantification; these models are tuned with hyperparameter optimization to

ascertain the superlative machine learning approach with the highest sensitivity and

precision.
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1.5 Research Assumptions and Limitations

This study is primarily limited by the design of the Z300. The accuracy of the

calibrations made using data collected from the device will depend largely on the

resolution, fixed time gating and low laser power of the system. It is assumed that

the system resolution of 0.1 nm is enough to resolve differences between the cerium

and gallium emission lines to be used in quantitative sample analysis. This study

is also limited by the resources available in a laboratory setting and the quality of

experimental samples used to build the analytical program. The true composition

of the created samples is affected by the accuracy of the various apparati used in

their creation, such as the weigh scale for estimating proper weight fractions of each

material to yield a particular composition. The sample homogeneity of the powder

prior to pellet pressing will affect how representative the recorded LIBS spectra is of

the true chemical makeup. This is directly affected by the homogenization mixing

process. Additionally, the applicability of the chosen analytical models used for Ce

is limited when used for analyzing Pu. Although the spectral responses are similar,

Pu has significantly more complex emissions which cannot be fully simulated by Ce.

Furthermore, the study of these methods on Pu alloys is limited to the Pu samples

we are able to access due to radiation protection protocols and COVID-19 measures

enacted in the laboratory.

1.6 Research Contributions

This research will advance the analytical capabilities of COTS handheld elemental

analyzers, provide novel analysis of plutonium spectra, and advance existing analyt-

ical methods for spectral analysis. Some of the specific contributions are listed as

follows:
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• Validating capability of COTS portable LIBS system for plutonium

analysis: This study confirmed that the Z300 LIBS analyzer can be imple-

mented for in-situ analysis of trace metals in plutonium metal

• Providing a new analytical tool for Pu production quality control:

This research developed techniques which can be used to conduct rapid in-situ

analysis of plutonium samples at various stages in the pit production process.

This provides the DoE with a critically desired capability to assist in meeting

the 80 pits per year mission [24].

• Integrating machine learning paradigms for analysis of actinide LIBS

spectra for the first time: This work examine the efficacy of various machine

learning methods seldom seen in analytical spectroscopy. These paradigms pro-

duced robust models which could predict the content of various trace elements

present in the complex plutonium spectrum. The new machine learning methods

outperformed traditional techniques used for spectroscopic analysis, including

PCA/PLS and ANN.

• Overcoming self-absorption with a mathematical correction: Using a

correction methodology based on Stark broadening parameters can mitigate the

effects of self-absorption on univariate calibration curves, drastically improving

error and sensitivity of these models.

• Comparing two COTS portable analyzers: Investigating differences in

performance between handheld LIBS and XRF analyzers for trace analyte quan-

tification. This will open the door for exploration of data fusion techniques to

increase the precision of predictive regression models.
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1.6.1 Research Accomplishments

Awards:

1. Society for Applied Spectroscopy Outstanding Poster Award (SciX 2021)

2. DOE Innovations in Nuclear Technology R&D Award (2021)

Peer reviewed research articles:

1. Pending RSC Technical Note

2. Rao, A.P., Jenkins, P.R., Auxier II, J.D., Shattan, M.B. and Patnaik, A.K.

(2022). “Analytical comparisons of handheld LIBS and XRF devices for rapid

quantification of gallium in a plutonium surrogate matrix.” Journal of Analyt-

ical Atomic Spectrometry.

3. Ashwin P. Rao, Phillip R. Jenkins, John D. Auxier, Michael B. Shattan, and

Anil K. Patnaik, ”Development of advanced machine learning models for anal-

ysis of plutonium surrogate optical emission spectra,” Appl. Opt. 61, D30-D38

(2022)

4. Rao, A.P., Jenkins, P.R., Vu, D.M., Auxier II, J.D., and Shattan, M.B. (2021).

“Rapid quantitative analysis of trace elements in plutonium alloys using a hand-

held laser-induced breakdown spectroscopy (LIBS) device coupled with chemo-

metrics and machine learning.” Analytical Methods, 13, 3368-3378.

5. Rao, A.P., Jenkins, P.R., Auxier II, J.D., and Shattan, M.B. (2021). “Com-

parison of machine learning techniques to optimize the analysis of plutonium

surrogate material via a portable LIBS device.” Journal of Analytical Atomic

Spectrometry, 36 (2), 399-406.

Conference proceedings:
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1. Rao, A.P., Auxier II, J. D., Vu, D.M., and Shattan, M.B. (2020). “Applications

of portable LIBS for actinide analysis.” Optical Sensors and Sensing Congress,

OSA Technical Digest (Optical Society of America), paper LM1A.2.

Conference presentations:

1. Rao, A.P., Pinson, R. E., Jenkins, P.R., and Patnaik, A.K. (2021) “Applica-

tions of laser-induced breakdown spectroscopy for chemical analysis of nuclear

materials.” 2021 SciX, September 26-30, 2021, Providence, RI. (Invited talk).

2. Rao, A.P., Jenkins, P.R., Auxier II, J.D., Shattan, M.B., and Patnaik, A.K.

(2021) “Development of tree-based machine learning methods for quantification

of gallium in a Pu surrogate matrix via LIBS.” 2021 SciX, September 26-30,

2021, Providence, RI. (Poster presentation).

3. Rao, A.P., Jenkins, P.R., Auxier II, J.D., Shattan, M.B., and Patnaik, A.K.

(2021) “Decision tree-based methods for chemical analysis of Pu surrogate spec-

tra.” 2021 Fall ACS National Meeting, August 22-27, 2021, Atlanta, GA. (Oral

presentation).

4. Rao, A.P, Jenkins, P.R., Auxier II, J.D., and Shattan, M.B. (2020). “Improving

analytical performance of a portable laser-induced breakdown spectroscopy de-

vice through use of a boosted regression ensemble.” 2020 SciX Annual Meeting,

October 12-15, 2020, Virtual (Poster Presentation).

5. Rao, A.P., Auxier II, J. D., Vu, D.M., and Shattan, M.B. (2020). “Applications

of portable LIBS for actinide analysis.” 2020 OSA Congress, LACSEA, June

22-26, 2020, Virtual (Oral Presentation).
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II. Theory

The development of predictive models for quantitative analysis of trace metals in

plutonium alloys requires an understanding of laser-plasma spectroscopy, techniques

for chemical analysis of spectral data, and the complex properties of plutonium metal.

First, a summary of plasma spectroscopy and the function of the SciAps Z300 is

presented. This topic is followed by a discussion of previous work using LIBS for

elemental analysis and analysis techniques as well as a technical discussion of the XRF

technique. Previous LIBS studies specific to nuclear material analysis are presented,

followed by a discussion of plutonium chemistry and metallurgy. Finally, traditional

chemometric techniques used for spectral analysis are presented, followed by a detailed

discussion of all the machine learning methods implemented in this work.

2.1 Laser Ablation

Laser ablation, depicted in Fig. 1, has traditionally been used to remove ma-

terial from the surface of a target object. The ablation process itself occurs when

short wavelength radiation from a laser beam couples with the material surface. The

ablation process is fundamentally dependent on different laser parameters, including

wavelength, pulse duration, repetition rate, and beam quality. Laser wavelength af-

fects the energy of the laser photons, which determines the way in which they interact

with the atomic matrix of the material. Laser photons with energies higher than the

atomic force attracting electrons to the nucleus will liberate these electrons from the

atom, causing ablation. This process is defined as a photochemical interaction. Lower

energy photons won’t liberate electrons from their orbits, but will simply cause them

to vibrate, causing molecular dissociations. If many such photons are incident on

the atomic matrix of a material over time, the cumulative vibration is imparted as
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thermal energy. This interaction, called photothermal coupling, can also be used to

remove electrons from the atomic matrix of a material [25].

Pulse duration and repetition rate affect the thermal characteristics of the ab-

lation. Shorter pulses minimize thermal damage to the area surrounding the abla-

tion event, and higher laser repetition rates enable maintaining a constant ablation

temperature, preventing heat waste. Beam characteristics such as size, focus, and

homogeneity are all factors affecting the ablation efficiency. These parameters must

all be carefully evaluated prior to experimental data collection in order to perform

successful ablation of a selected material. Typically, ablation blows material off the

surface of the target in the form of a gas. At higher laser fluxes, the ablated material

interacts with a trailing portion of the laser pulse, further ionizing the ablated mate-

rial. This ionization creates a plasma of the ablated surface material, forming what

is referred to as a laser-induced plasma.

Figure 1. Breakdown of laser ablation process stages [26].

The general process of a laser ablation event is depicted in Fig. 1, describing the

ablation of silica. Initially, the incident laser photons deposit part of their energy
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on the surface of the material, while part of the energy is absorbed through various

ionization processes (multi-photon, inverse Brehmstrahlung, avalanche), creating the

laser plasma. Next, material heated by the laser is ejected away from the target site.

This heated mass transfers heat to the surrounding air, compressing it to create a

shockwave front. Additionally, pressure induced by the laser forms a thermoelastic

wave, which propagates as a pressure wave. This second stress wave further com-

presses material at the target site, leading to a second ejection and the formation

of the contact front. As this front expands, further compression of the ablation site

occurs and a third stress wave is generated. At the end of the ablation process, the

target site is left with an ablation crater filled with highly dense material formed from

the compressions [26]. While this process occurs in the material, the plasma plume

is expanding as a result of the shock front propagation. As it expands, the plasma

begins to cool and recombine, leading to optical emission from various atomic shell

transitions. The exponential temperature decrease is described in Fig. 2.

Figure 2. Example of temporal evolution of laser-induced plasma temperature [26].

As the ions and electrons recombine and the collision rate of the plasma slows, the

temperature decreases to an asymptote over the period of a few thousand nanosec-
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onds. Eventually, all the constituent particles of the plasma recombine. In pulsed

LIBS, the entire process described above is repeatedly cyclically between each laser

pulse incident on the target material. For the purpose of material composition iden-

tification, a pulsed laser at a lower power and small beam diameter can be used to

interrogate and collect data on a sample material with minimal damage beyond the

ablation point on the surface.

2.2 Laser-Induced Breakdown Spectroscopy (LIBS)

LIBS is an analytical process which extends the laser ablation technique to excite

the atoms of the target material when it is vaporized by the laser energy. This

occurs when material blown off by the ablation is vaporized, forming a plasma plume.

Atoms within the plume absorb laser photon energy; this leads to the excitation of

electrons to higher level energy states. As the plasma cools, these electrons de-excite

and return to their ground state configurations; this results in the emission of a de-

excitation photon with a wavelength corresponding to the energy lost in the electronic

transition. A simple rendering of this process is shown in Fig. 3.

Figure 3. Basic rendering of the atomic de-excitation process [27].

De-excitation photon emissions from a plasma are characteristic of the specific

energy level transitions of a particular atom. An example energy level diagram (ELD)
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is shown below for helium, along with different possible atomic transition paths.

As evident from the figure, one element may emit photons at multiple wavelengths

characteristic of one type of transition; some of these transitions are more probable

than others.

Figure 4. Atomic energy level diagram for Helium [28].

Resonant transitions refer to transitions linked to the ground state; these tran-

sitions are favorable with high probabilities, and therefore the emitted radiation is

generally intense. Radiation in the visible spectra used for optical emission spec-

troscopy generally originates from transitions between different excited states [28].

The wavelength (λ0) of the photon emitted from a transition can be calculated from

the energies of the transition states as given in Eq. 1, where h is Planck’s constant,

c is the speed of light, Ep is the lower level and Ek is the upper level.

λ0 =
hc

Ep − Ek
(1)

The intensity εpk of the emitted light is a function of the particle density (n(p)) and
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the transition probability (Apk), and can be quantified as described in Eq. 2.

εpk = n(p)Apk
hc

4πλ0
(2)

The spectra of emitted light from a plasma can be recorded using a spectrometer.

Emitted light directed into a spectrometer is collimated and focused onto a diffraction

grating, which disperses the light into its different constituent wavelengths. The

diffracted light is then reflected off a focusing mirror and can be directed onto a

detector, such as a CCD camera, to be recorded. The monochromator, shown in Fig.

5, is a commonly used spectrometer which can be coupled to a plasma experiment

to record spectral emission of a particular narrow band of wavelengths. To record a

larger bandwidth, some spectrometers do not use an exit slit, and instead direct all

the diffracted light straight to a detector.

Figure 5. Schematic of Czerny-Turner style spectrometer [29].

The complete LIBS process, depicted in Figure 6, brings the atomic de-excitation

and spectrometry processes discussed above. The optical emission generated by a

laser-produced plasma can be focused and directed into a spectrometer, dispersing

the light into its different wavelengths. The dispersed light can then be detected using

a camera, and the intensities of the various wavelengths can be recorded. Strong
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spectral emissions characteristic of particular atoms in the laser-ablated sample show

up as peaks in the spectrum; analysis of these peaks can yield different information

about the sample itself.

Figure 6. Schematic diagram of LIBS setup [15]. A pulsed laser ablates the sample
surface; the recombination of particles in the resulting microplasma produces photons
which can be captured by a spectrometer and recorded by a CCD camera. This spectra
can then be analyzed to determine sample composition.

2.2.1 Self-absorption

The phenomenon of self-absorption is often evident in optically thick laser-produced

plasmas (LPPs), and can be fundamentally detrimental to quantitative analyses built

with LIBS spectra affected by this phenomenon. In self-absorption, the hotter inte-

rior of the plasma preferentially emits wavelengths of resonant transitions. As these

resonant emissions travel to the colder periphery of the plasma, they are reabsorbed

before they can escape to the detector system. This is particularly detrimental for

LIBS measurements, as many major LIBS emissions stem from resonant transitions.

For quantitative analyses relating emission peak intensity to analyte concentration

changes in a sample, the presence of self-absorption can reduce the linearity of the

relationship between intensity and concentration, ultimately reducing the efficacy of

calibration curves created with the peak intensity data. The degree of self-absorption

can vary based on the transition parameters of the particular line being observed,

as well as on properties of the plasma related to the optical thickness such as the
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electron density and temperature distribution. Higher degrees of self-absorption can

affect recorded emission peaks in different ways.

In an optically thick plasma, the number of ionized emitters can directly affect

the self absorption behavior, as illustrated in Fig. 7. This diagram shows the Cu I

Figure 7. Diagram taken from Bulajic et. al. showing how increasing emitter density
exacerbates the effects of self absorption on a peak, leading to broadening and eventual
peak flattening [30]

324.7 nm emission behavior changing with different emitter number density (electron

density). As number density increases, the emission peak intensity also begins to

increase, but the behavior is markedly nonlinear as self-absorption begins to take

effect. Peak broadening is evident after a density of N = 1015 cm−3 is reached; peak

flattening begins to occur as well when the blackbody limit is reached at N = 1017

cm−3. When N < 1015 cm−3, the line profile is distinctly Lorentzian, corresponding

to an optically thin plasma. This result is important to reference for LIBS studies,

as a denser plasma may have higher intensities of critical emission lines, but may be

marred by self-absorption effects that can reduce overall calibration fidelity.

It is known that the dynamics of the plasma plume during expansion and cooling

have a significant effect on the optical thickness and self-absorption effects. The ob-

served self-absorption can then be strongly dependent on the acquisition delay time
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(gate delay), as this parameter controls the period in the plasma lifetime at which

atomic emissions are recorded. Previous studies have suggested an inverse relation-

ship between the gate delay and the measured self-absorption, as depicted in Fig.

8. This data depicts the SA coefficient change for two neutral Al emissions over

Figure 8. Diagram taken from Rezaei et. al. illustrating effects of gating parameters
on self-absorption of Al peaks [31].

an 18 µs period; as the gate delay is increase the SA coefficient decreases, indicating

increasing self-absorption. The current explanation for these observations is that as

the plasma cools with time, states with lower excitation energies become relatively

more populated and can reabsorb more radiation. In particular, the periphery of the

plasma cools at a quicker rate than the inner plasma, thus leading to higher probabil-

ities of radiation re-absorption at later times. Most current studies investigating this

behavior have only examined lines of common lighter metals with transitions termi-

nating on lower energy levels. Therefore it should be noted that transitions between

higher-lying energy levels behave differently, and have different temporal evolution of

self-absorption effects.

Lastly, it is worth mentioning that the self-absorption effects in spectra of Pu alloys

or surrogate materials has not been extensively studied. In particular, the degree of
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opacity of an LPP of this characteristic material is not known. Alloying metals used

in Pu, such as Ga, have major atomic transitions to the ground state level. The Ga

I 417 nm emission transitions to the 2p3/2 level of the ground shell [32]; while not a

completely resonant transition its proximity to the ground state presents the potential

for this emission to be absorbed by the LPP. It is important to keep in mind that

optical thickness does not manifest simply as a ”present or not present” phenomenon,

rather it can appear at different levels. Prior to the advent of LIBS, initial studies on

self-absorption were conducted on emission profiles of arcs and sparks. The results of

this investigation formulated a relation for emitted radiation intensity dependent on

an absorption parameter, p. A non self-absorbed line is characterized by p = 0, as

shown in the most prominent peak of Fig. 9. Values of p larger than 0 indicate some

Figure 9. Diagram taken from Hou et. al. illustrating effects of increasing self-
absorption coefficient on emission peak shape [33].

degree of optical thickness, which in turn affects the behavior of the emitted line.

The second line characterized by p = 0.5 shows the effects of mild self-absorption;

the line profile and shape has not changed from the non self-absorbed condition,
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but the intensity has decreased due to the reabsorption of some radiation by the

plasma. The effects of mild self-absorption are of importance to calibration curve

LIBS studies as they can affect the fidelity of the curves by reducing the linearity of

the relationship between line intensity and analyte concentration. This can sometimes

be hard to discern since there is no change in line shape, but tracking the intensity

across analyte concentration range can reveal the presence of this p < 1 opacity.

Moderate self-absorption effects begin to appear at p > 1, as the emission line profile

becomes less Lorentzian and broadens at the wings. Additionally, the blackbody limit

is reached at these more moderate levels of opacity, and the peak begins to flatten at

the top. Severe levels of self-absorption, seen at p ≥ 2 show the phenomenon known

as self-reversal, wherein the peak intensity begins to decrease downwards while the

wings remain the same, causing a ”valley” to appear at the peak centroid. The

varying degrees of self-absorption can affect calibrations built from peak intensity

measurements in different ways. In general, non-linear changes in intensity with

respect to analyte content will decrease the slope of a calibration and reduce the

calibration sensitivity. This study will investigate the occurence of this phenonemon

in the cerium-gallium emission spectra by quantifying the self-absorption effect and

attempting to correct the calibration curves mathematically to boost precision and

sensitivity.

2.3 X-ray Flourescence (XRF)

XRF applies a collimated beam of x-ray photons at the surface of a target in order

to knock an inner shell electron from its position in the shell of surface atoms. An-

other electron from a higher energy level de-excites to fill the inner shell vacancy; this

de-excitation then emits an x-ray photon. Different materials fluoresce at different

wavelengths characteristic of their constituent atoms, and a spectra can be recorded
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to conduct elemental composition analysis of experimental samples [34]. Fig. 10 illus-

trates the fluorescence process in a simplified manner. XRF is a common technique

Figure 10. Diagram of the x-ray fluorescence process. Incident radiation ejects an
inner shell electron; an outer shell electron fills the vacancy and a characteristic x-ray
is emitted by the de-excitation [35].

used in chemical analysis of various substances, and is similar to LIBS in efficiency,

resolution, detection limits and time required for sample analysis. XRF also requires

little to no sample preparation. Additionally, LIBS is semi-nondestructive and pre-

serves the bulk sample while leaving small ablation craters on its surface, but XRF is

completely non-destructive and does no physical damage to the sample surface. Hand

held XRF devices are commercially available, with detection speed and accuracy com-

parable to a portable LIBS device [36]. Previous research has proven the effectiveness

of XRF for rapidly quantifying Pu surrogate contamination in wounds [19]. Some

studies have been conducted evaluating XRF for use in quantifying lanthanides in

rare earth rice ores and mixed lathanide materials [20, 37]; these experiments found

significant interferences between lanthanide and trace element emissions in samples

and noted that calibration curve quality could be hampered by poor signal-to-noise

ratios of the recorded spectra, making the analysis of Ce potentially challenging. One

particular drawback of portable XRF devices lies in their inability to detect elements

lighter than magnesium. Elements with Z < 11 will typically only emit K-shell emis-

sions due to the lack of larger electron shells. This means that an inner shell electron
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is ejected and an electron from the L or M shell fills its place. Since these lighter

elements only have 2 electron shells (s and p), they will typically only emit lower

energy Kα x-rays rather than higher energy emissions corresponding to transitions

between higher energy shells seen in heavier elements. These lower energy emissions

are often reabsorbed in the electron cloud and fail to escape the material to the x-ray

detector. Those that do escape are often attenuated in the space between the air and

the detector itself. A very sensitive detection setup is required to record these K-shell

fluorescence emissions from lighter elements, and portable devices do not have this

capability.

2.4 Nuclear Material Analysis via LIBS

Previous work using Z series LIBS analyzers has confirmed lanthanide and ac-

tinide quantification capabilities of the hand held device. A prior study by Shattan

et. al. examined the Z500 for quantification of uranyl flouride in sand by taking

spectra from samples varying from 1 to 39.5 weight percent UO2F2 [16]. Figure

Figure 11. U(II) 409.1 nm peak for varying uranyl fluoride concentrations [16].

11 shows the variation in the spectra of the 409.1 U(II) peak height over different

concentrations of uranyl flouride (UO2F2) mixed with sand [16]. It is expected that
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as the uranium concentration in the sample decreases, the line intensity decreases

since less of the transitions emitting the 409.1 nm line are occurring. Calibration

curves were built using intensities of each uranium line selected for all sample concen-

trations, an example calibration curve for the U II 409.1 nm line is shown in Figure

12. The fitted line to the datapoints gives the calibration curve which can be used to

determine concentration of an unknown sample once the appropriate line ratios has

been calculated. This technique can be applied to Ce-Ga alloys as well, allowing the

creation of a calibration curve for the plutonium surrogate. An additional study

Figure 12. Calibration curve for the U II 409.1 nm line [16].

conducted by Manard et. al. [38] demonstrates how portable LIBS can be used to

discriminate rare earth metals in a uranium matrix. Here, a Z500 was able to detect

Eu, Nd, and Yb in levels up to hundredths of a percent in a uranium oxide powder.

These results indicate that the HH-LIBS device is capable of detecting dopants in a

bulk actinide compound matrix and also show promising potential for the Z500 device

to discriminate and identify gallium in a cerium, or even plutonium matrix.

Finally, recent work conducted by the author using the Z500 developed the ground-

work for analysis of Pu by conducting experiments on cerium alloys [18]. This study

examined the capabilities of the portable LIBS system for quantifying gallium present

in Ce-Ga alloys. The primary challenge of this analysis was discriminating atomic
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emissions of gallium from the complex spectrum of the bulk cerium; an example

spectrum taken from a cerium oxide sample is shown in Fig. 13.
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Figure 13. CeO2 spectra from hand held LIBS device with Ce II lines identified.

The two minor Ga I emissions at 287.4 and 294.4 nm were extracted from the

Z500 spectra and used for initial spectroscopic analysis. These are shown in 14; this

data demonstrates a clear dependence on Ga signal intensity with Ga concentra-

tion of the sample. The result indicates that the handheld LIBS device can register

changes in concentration based on spectral data and would be sensitive enough for

the construction of regression models.

The accomplishments of this initial work are listed below:

• Univariate calibration analysis for quantification of Ga in Ce: Using

univariate line calibration fits to different ratios of Ga and Ce emission line

intensities, an LoD for Ga up to 0.3 wt% was achieved.

• Implementation of chemometrics for Pu surrogate analysis: Multivari-
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Figure 14. Two of the minor Ga I emission peaks at a) 287.4 nm and b) 294.4 nm,
showing the increase in emission intensity of the peak as the concentration of the Ga
in the sample increases.

ate regression, principal components regression and partial least-squares regres-

sion techniques were implemented to build the groundwork for more robust

predictive models for determining Ga content. A 2-factor multivariate regres-

sion drove the LoD down to 0.2 wt%. PCR and PLSR models yielded root

mean square errors (RMSEs) of 0.7 and 0.2, respectively.

• Evaluation of portable LIBS device for conducting surface mapping

of variation in Ga content: A modified laboratory setup was built for the

Z500 to analyze points along the surface of a cerium alloy sample. The spectral

data was used in conjunction with the multivariate calibration model to visually

depict variations in the gallium distribution along the surface of the sample.

A visual depiction of the surface Ga content generated with the data from the

Z500 is shown in Fig. 15.
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Figure 15. (a) Photograph of the 3% Ga cerium alloy sample used in the mapping
analysis and (b) surface Ga concentration map of the sample. The color map represents
the localized weight percent of gallium ranging from zero to six percent.

2.5 Plutonium Metallurgy

Plutonium is a critical material used in the manufacturing of pits of modern

nuclear explosive devices. Due to the complex chemical and physical properties of

plutonium metal, a variety of procedures must be implemented to form a pit from raw

plutonium. One particular property crucial to plutonium manufacturing is the phase

behavior of Pu metal across different temperatures. Plutonium metal exists in many

different material phases, or allotropes, defined by different arrangements of the atoms

in the crystal lattice of the metal. The mechanical and thermal properties of pluto-

nium vary widely between the different phases; understanding the phase chemistry

of Pu metal is critical to weapon core design and nuclear forensics. This particular

property of plutonium makes it extremely sensitive to phases in temperature and al-

lows for large changes in atomic volume between phase transitions [39]. Fig. 16 shows

the change in atomic volume of plutonium with temperature, along with the various

phase ranges and transition points. Upon extraction from reprocessed uranium fuel,

27



Figure 16. Atomic volume change over various temperatures for known Pu allotropes
[39].

plutonium is found in the alpha phase, which exhibits a simple monoclinic crystal

structure. As a result, it is brittle, weak and not easily compressed or machined. Ad-

ditionally, it is susceptible to large changes in atomic volume over small temperature

fluctuations. Both of these properties make it far from ideal for manufacture and

use in a weapon pit. The beta (body-centered monoclinic) and gamma (face-centered

orthorhombic) exhibit similar behavior as the alpha phase. The delta phase of pluto-

nium can be reached by heating up Pu metal within 310 to 452 Celsius. This phase

exhibits face-centered cubic (FCC) crystal structure, and is much less sensitive to

volume changes due to temperature fluctuation. Additionally it behaves more like a

traditional metal, and has a comparable strength and malleability to aluminum. Pu

metal in this phase is easily machined and formed into different shapes [40]. In order

to stabilize delta phase Pu at room temperatures, the Pu metal must be heated and

then alloyed with a dopant [40,41]. The most common alloying metal used is gallium.

A phase diagram of Pu-Ga up to 12 atom percent Ga concentration is shown in Fig.
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17. The phase diagram indicates that alloying larger percentages of Ga with Pu

Figure 17. Pu-Ga alloy phase diagram [41].

allows for delta phase stabilization across a wider range of temperatures. This allows

for the alloyed plutonium to undergo a variety of machining, casting, or forming pro-

cesses upon cooling back down to room temperature. Enabling the machinability of

Pu metal is key to nuclear component production, and highlights the importance of

having a proper alloying process in place on Pu component production lines.

Pu-Ga alloys are made by adding a certain amount of gallium to a mass of molten

plutonium to achieve the desired weight percent of Ga. Gallium segregates itself

in plutonium, forming rich grain centers and lean grain boundaries, as shown in

Fig. 18. In order to diffuse the gallium through the plutonium, the alloy must be

annealed at a temperature in the delta phase transition region. This homogenization

process stabilizes the lattice structure of the alloy. Upon cooling, the alloy stabilizes

in the FCC configuration of delta-phase Pu, making it ideal for undergoing various
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Figure 18. E-probe image of Pu-Ga alloy [42].

machining, casting or forming processes [40].

2.5.1 Cerium as a Plutonium Surrogate

While conducting experimental LIBS measurements of plutonium alloys can yield

valuable data, plutonium is relatively hard to access compared to other radioisotopes.

However, conducting LIBS measurements of similar metals can provide more easily

accessible results and help characterize the possible LIBS signatures of an actual

Pu-Ga alloy. Cerium, a lanthanide metal, is a commonly used chemical surrogate

for plutonium [43, 44]. Fundamental links between cerium and plutonium have been

reported in several studies. Both metals have low melting points, asymmetrical crystal

lattice structures, and multiple allotropes which exhibit large volume changes with

phase transformations. The similarities in properties has been attributed to the
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fact that f-shell electrons in both elements are in transition to a localized state [42].

Fig. 19 shows the E-probe image of a Ce-Ga alloy; this alloy exhibits the same

Figure 19. E-probe image of Ce-Ga alloy [42].

segregation behavior as seen in Pu-Ga in Fig. 18. The similarities between cerium

and plutonium have made cerium compounds a popular choice for use in experimental

work to overcome many of the laboratory hazards of working with plutonium. Cerium

compounds such as cerium oxides have been studied extensively as an experimental

substitute for plutonium oxides, and the comparative behavior of both compounds

in different experimental conditions has been documented in literature [42–45]. This

work will examine LIBS spectra of both Ce-Ga in metal and oxide forms and develop

a base of analytical measurements which can be extended to Pu-Ga alloys.

2.6 Chemometric Methods for Analytical Spectroscopy

2.6.1 Univariate Analysis

Univariate analysis generates a simple regression model relating changes in inten-

sity of an emission line, or intensity ratios of emission lines, to changes in analyte

concentration across a sample set. A simple linear regression fit to these data points

generates a calibration curve describing the sensitivity of the spectral response to
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Figure 20. Calibration curve based on intensity ratios of emissions from Ga I 287.4 nm
to Ce II 394.3 nm.

the concentration. The univariate calibration method works best when the emission

line of interest can be extracted from a simple, well-resolved spectrum without in-

terferences from other nearby emissions. LoDs based on univariate calibrations are

directly dependent on the sensitivity (slope) of the calibration; this often results in

univariate calibrations producing unreliable and less accurate regression models from

complex spectral data. This is evident in Fig. 20, produced during the analysis of

cerium-gallium alloy spectra in previous Master’s thesis work. It is important to note

the high uncertainty in the data points corresponding to higher Ga concentrations;

increased shot-to-shot deviation in recorded spectral intensity contributes to an over-

all higher standard deviation of the lines being used in a univariate calibration. This

can lead to inferior regression fit to the calibration data, producing a poor model for

prediction.
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2.6.2 Multivariate Analysis

Multivariate analysis techniques seek to use multiple variables in a data set to

quantify relationships between samples. Multivariate methods are often implemented

in analytical chemistry, commonly referred to as chemometrics; these techniques seek

to implement advanced statistical methods for analysis of chemical data. Chemo-

metrics is extremely useful in processing of LIBS data, due to the complex nature of

spectral responses and the large number of variables present [46–51]. Two commonly

implemented methods for ascertaining chemical information from LIBS spectra are

principal components analysis (PCA) and partial least-squares (PLS).

PCA is a statistical analysis technique used to reduce the dimensionality of a com-

plex data set by creating a smaller set of variables describing the variance in most

of the original data [52, 53]. PCA algorithms are commonly used in the LIBS com-

munity to identify significantly varying spectral lines in crowded spectral data sets

and analyze only the factors causing variations in the data [8, 47–51, 54, 55]. PCA

Figure 21. Percent of explained variance in data set vs. principle component number.

uses matrix algebra to construct linear combinations of the original data set vari-
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ables, called principal components (PCs). Each PC is uncorrelated, but most of the

information in the data set is compressed into the first few PCs. Each component

explains a percentage of the total variance of the overall data set; this can be graph-

ically represented in order to determine how many PCs are needed to represent the

data set. An example is shown in Fig. 21. PCA outputs two information matrices
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Figure 22. Example PC loadings of LIBS spectra of Ce-Ga. The Ga emissions vary
significantly in the data set and have higher loadings values, as marked by the annota-
tion.

for each PC: loadings and scores. Loadings describe correlations between the vari-

ables, as well as their relative contributions to the data set. Scores quantify patterns

and correlations between samples in the data set itself. Examining the relationship

between loadings values and emission wavelengths of LIBS spectra can identify the

emission lines causing the most variance in the data set, and aid in variable reduc-

tion. Fig. 22 shows how wavelengths of different metals in a LIBS spectra load on

the first PC of a decomposed LIBS data set. The plot indicates that Mg, Si, Al, and

Ca emissions contribute to most of the variance of the data set. While loadings are

useful for discriminating sample elements and representing variable correlation, PCA

scores plots can represent patterns and resolve differences in the sample distribution.
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Figure 23. Principle component scores comparison between PC 1, PC2 and PC 3.
Clustering based on Ga concentration is evident.

Fig. 23 represents the first three PC scores; the data points are identified by the

Ga concentration of the sample from which they were taken. This 3D plot of the

scores can be rotated to observe different patterns and features that are similar in

the sample set.

PLS regression is a technique which combines features from ordinary multivariate

regression and PCA, and is another commonly used technique used to analyze complex

LIBS spectra of a limited sample set [7,51,54,56,57]. A PLS regression builds a model

predicting an outcome from predictor variables in order to describe their common

structure. PLSR finds a set of components called latent vectors, which decompose

the predictor and outcome matrices such that the information contained within the

latent vectors explains as much of the variance between the predictors and outcomes

as possible. A regression then decomposes the predictor matrix in order to determine

outcome.

At the simplest level, PLS analysis involves generating a regression model which

correlates the LIBS spectral data (X) to elemental concentrations (Y) as described in
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Eq. 3.

Y = XB (3)

B represents a regression coefficients matrix describing the relationships between the

spectral emission intensities and the elemental concentrations (response). Comparing

the regression coefficients to the predictor variables (wavelengths) generates a plot

similar to the loadings comparison depicted in Fig. 22. This allows for discrimination

of the important variables in the data set, as noted in Fig. 24. The PLS algorithm

Figure 24. Comparison of PLS regression coefficients to wavelength variables from data
set. The behavior of the coefficients clearly identifies which emissions contribute to the
variation in the data [7].

then uses a linear combination of values to relate the variation in the spectra with

the elemental compositions using a familiar linear equation:

Y = b0 + b1X1 + ...+ bkXk (4)

In Eq. 4, Y refers to the elemental composition variables, and the b terms represent

regression coefficients for the corresponding emission wavelength X. This regression

model can be used to determine elemental concentrations using spectral data taken
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from a sample of unknown composition. PLSR often yields higher fidelity regressions

compared to PCR. This is due to the supervised nature of PLS in contrast to the

unsupervised nature of PCA; PLS generates data accounting for the covariance be-

tween the input and output variable. More specifically, the latent variables generated

by PLS also account for explained variance in the output data. This allows it to fit

trends in the input to the target output more accurately using the same number of

components. This improved fit is demonstrated in Fig. 25, which shows both re-

gression methods fitting LIBS data to predicted concentrations of gallium in cerium

alloys [18]. The corresponding fit metrics are shown in Table 1. The supervised na-

ture of PLSR yielded significantly lower root mean-squared error (RMSE) and higher

linearity (R2) of the fit, indicating superior precision of the PLSR model.
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Figure 25. Comparison of measured and predicted Ga concentration using PCR and
PLSR models.

Table 1. RMSE and R2 values of PCR and PLSR models

PCR PLSR
RMSE 0.716 0.216

R2 0.603 0.964
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2.7 Machine learning (ML) Methods for Analytical Spectroscopy

While the aforementioned traditional methods of spectroscopic analysis have been

implemented for spectroscopic regression problems in various fields, the complex na-

ture of the spectra of lanthanide and actinide metals limits their usage for creating

high-fidelity predictive models. The complex electronic structure of metals like pluto-

nium yields a plethora of possible emission wavelengths that are recorded in a LIBS

spectra. These bulk emissions can often interfere with or hide emissions from sec-

ondary metals in the bulk matrix, making the quantification of these lighter elements

a challenging and complex analytical problem. As a result, we look towards im-

plementing advanced ML paradigms typically applied towards complex data science

problems in order to discern trends in the complex Pu and Pu surrogate spectra.

2.7.1 Artificial Neural Networks (ANNs)

Figure 26. ANN architecture diagram; each circular node represents a single neuron,
and each arrow represents the connection of the output of one neuron to the input of
another.

ANNs are a machine learning paradigm inspired by the structure of biological

nervous systems. Similar to how a neuron receives an input and turns it into a

signal to pass to another neuron, a neural network takes a series of input variables
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and multiplies them by weights. More specifically, data enters an ANN through

an input layer and is fed-forward to subsequent layers. Each hidden layer contains

neurons (nodes), wherein each neuron sums weighted inputs from the previous layer

and generates an output by applying an activation function. The output layer sums

weighted inputs from the last hidden layer and generates a numerical output via

an activation function. [53, 58] This process is modeled as a mathematical analog of

synaptic communication in biological neural pathways; Fig. 26 illustrates a single

hidden layer ANN architecture. ANNs have the capability to capture highly complex

data relationships and produce accurate classification or regression solutions for very

large data sets, and are often used for image or pattern recognition. [59, 60] Their

ability to tie a large number of input variables into a concise output makes them

ideal for use in spectroscopy, particularly for the plutonium analysis problem.

2.7.2 Tree-based Methods

Decision Trees

Decision trees are commonly used supervised machine learning techniques with

applications to a variety of other fields, including data mining, stellar imaging, as-

trophysics, and molecular modeling [53, 61–64]. Decision trees take input variables

and relate them to a target output by following branches across different decision

nodes based on the input attribute values, until a terminating node is reached which

provides an output result. These algorithms are used in classification and regression,

and provide a promising solution to the spectroscopic problem outlined in this study.

A graphical depiction of a lone decision tree built from the ceria spectra is shown in

Fig. 27, diagramming how the model determines Si content based on the value of

different emissions in a spectrum. Whereas a single decision tree model often suffers

from overfitting and lower performance with large data sets, an ensemble of trees
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can improve performance by reducing variance and increasing bias. These types of

ensemble methods aim to partition the decision space rather than provide a general

separation, making them ideal for use in nonlinear problem spaces.

Figure 27. Example of a lone regression tree for Si content prediction. Each rectangle
represents a node, or decision based on the intensity value of a particular emission in
the spectra, where A,B,C, and D are values determined by the fit model. Each circle
represents a leaf, or outcome, determining the Si content from the flow of the nodes
and branches.

Ensemble Methods

Two ensemble methods, boostrap-aggregated (also known as bagged) regression

trees and boosted ensemble regression trees, can yield the aforementioned enhanced

performance over a single regression tree. The methodologies of these ensemble meth-

ods are diagrammed in Fig. 28. Bagging uses random replacement sampling to cre-

ate subsets (S) of the data and independently trains the individual regression models

(M), whereas boosting introduces an adaptive algorithm which focuses on areas in the

dataset generating higher misclassifications and trains each model sequentially. [53,61]

Whereas bagged models run in parallel and the final prediction is made from an ag-
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gregate of each trained model, boosting changes the input weights for each model

depending on the error of the previous iteration to improve the accuracy of subse-

quent learners. Using this sequential adaptive process to mitigate misclassification

errors generates improved learners that are combined into a final regression model to

make the prediction. The adaptive nature of the boosting algorithm reduces errors in

prediction due to variance and bias in the data set, yielding models with significantly

lower MSEPs and better regression fits. Although both ensemble methods improve

model generalization and reduce prediction error, the sequential training process of

the boosted ensemble method renders it a ”slow learner” compared to the bagged

ensemble method, introducing a trade-off between training time and prediction accu-

racy [65].

Figure 28. Comparison of bagging and boosting ensemble methods. Squares denoted
by ’S’ and ’M’ represent data subsets and individual learner models trained on those
subsets, respectively.

Random Forest

Random forest is a variation to the aforementioned ensemble methods. It imple-

ments bootstrap aggregation and creates subsets of the original data to train indi-

vidual learners by sampling with replacement, but the pool of variables for decision
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splits is limited. Typically, the value m = p/3 is given as the allowed number of

variables for creating regressions, with p being the total number of predictors in the

original data set. This methodology decorrelates the individual trees in the model,

improving prediction accuracy by reducing bias and variance.

Extra Trees

Extra trees is similar to random forest, but does not use bagging with random

replacement when generating each individual learner. Instead, all the data is used

to train each tree. Additionally, while random forest optimizes the decision split

points, the extra trees algorithm makes splits at random. This further decorrelates the

individual trees in the model, but can increase variance; this can then be countered by

increasing the number of individual learners used in the model to make the regression

prediction.

2.7.3 Support Vector Machine Regression (SVR)

Figure 29. Graphical example of support vector machine regression method depicting
support vector regression function wixi with error bounds (ε) fitting data points (green
stars) with slack error (ξ)
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SVR is an extension of the support vector machine (SVM), which uses hyperplanes

to divide classes of data points and is well known for its classification abilities. SVR

builds on traditional regression methods, such as an ordinary least squares (OLS)

regression by allowing the user to define a degree of acceptable error for the prediction

range and find the appropriate hyperplane to fit the data. Rather than minimizing

squared errors like OLS, SVR imposes a constraint on the error term such that the

absolute error is within a margin of maximum error ε. This error can be tuned to

maximize model accuracy. Based on this error, the SVR minimizes the model weights

w as per the function 1
2
‖w‖2 such that the regression function meets the constraint

|yi − wixi| ≤ ε. This is graphically explained in Fig. 29, derived from Cherkassky

2013 [66]. The green stars represent the input data points, the solid line represents

the regression function to the data points xi with the weights wi and the dashed lines

represent the minimum and maximum error based on ε. The variable ξ is a slack

parameter which defines a tolerance for data points outside of the regression bounds

which the model will deem acceptable for better flexibility.

2.7.4 Kernel Regression

Kernel regression is a nonparametric regression technique in which a mathematical

function called the kernel is used to calculate an output by utilizing the weighted

sum of all the data points [67]. Estimates are given via a weighted sum, calculated

using the Nadaraya-Watson kernel weighted average in Eq. 5. Here, Kh(xs, xi) is a

weighting function whose value decreases as the distance between the query point xs

and measurement point xi increases. Moreover, h is a scaling parameter known as the

bandwidth. Lastly, yi refers to the known outcome value whereas ŷs is the predicted

value.

ŷs =

∑n
i=1Kh(xs, xi)yi∑n
i=1Kh(xs, xi)

(5)
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A common choice for the kernel function is the Gaussian kernel, given by Eq. 6, based

on the Euclidean norm of xs and xi. Implementing this kernel yields the GKR; this

technique allows the use of all data points for the prediction of an outcome value,

but weights input points closer to the prediction point more heavily [68]. In doing so,

GKR can overcome issues seen with similar techniques such as k-nearest neighbors

in which the estimate of the response variable can change abruptly despite input

features changing continuously when switching the set of nearest neighbors making

the prediction.

Kh(xs, xi) = exp(−||xs − xi||
2

h
) (6)

44



III. Experimental Methodology

Figure 30. Experimental data collection and analysis flowchart.

This study implemented three separate analytical spectroscopy setups to analyze

cerium-gallium samples and a limited set of plutonium alloy samples using various

methods for quantititive analysis. Fig. 30 gives a simplified graphical depiction of the

workflow of this dissertation research. This overall workflow can be broken down into

four main phases; sample creation, analytical tool selection, spectroscopic analysis,

and predictive model quantitative evaluation.

3.1 Sample Creation

The first phase of this dissertation research required the creation of Pu surrogate

samples for in-house experiments conducted at AFIT. To efficiently accomplish this,

oxide-based samples were chosen for analysis in order to simplify the sample creation

process and ensure that new samples could be expeditiously created when necessary.
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It should be noted that the Master’s work preceding this dissertation used Ce-Ga

metal alloys; while the physical properties of a metal sample differ significantly from

that of an oxide pellet sample, the spectral response remains nearly the same. As

a result, no detriment came from switching the sample morphology for the atomic

spectroscopy experiments. The cerium-gallium pellet samples were prepared from

Sigma Aldrich cerium oxide (99.995% CeO2) mixed with varying weight percent con-

centrations of gallium oxide (99% Ga2O3). The powders were milled using an agate

mortar and pestle, weighed to achieve the desired weight percent concentrations and

then homogenized using a Fluxana MUK mixer. The mixed powder was then pressed

using a 14 mm stainless steel die at 5 metric tons for 120 seconds. Pellets with 0,

0.25, 0.5, 1, 1.5, 2, 2.5, 3 and 5 wt% Ga were created for use throughout this disser-

tation work. Each sample weighed approximately 1 gram; the mixing and pressing

equipment is shown in Fig. 31.

Figure 31. Pellet pressing equipment: 14 mm stainless steel die press set, agate mortar
and pestle.
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3.2 Spectroscopic Methods

3.2.1 SciAps Z300

The SciAps Z series handheld LIBS analyzers contain all of the hardware shown

in Fig. 6 within a compact, lightweight device capable of conducting field/in-situ

measurements of materials. This study implemented a SciAps Z300, shown in Fig.

32. The device’s built-in rastering function and capability to couple to external data

acquisition software make it particularly useful for expeditiously analyzing the surface

of a sample in a glovebox environment.

Figure 32. SciAps Z300 handheld LIBS device.

Table 2. Z300 specifications

Laser Nd:YAG
Wavelength 1064 nm
Pulse Width 1 ns
Pulse Energy 5-6 mJ
Focal Length 1.5 cm

Spot Size 50 µm
Dimensions 8.25 x 11.5 x 4.5 in

Weight 4 lbs
Bandwidth 190-950 nm
Resolution 0.1 nm FWHM
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3.2.2 Bruker S1 Titan 800

The Bruker S1 Titan Model 800 is a lightweight portable XRF analyzer, marketed

for rapid and precise analysis of elements from Mg to U. This device, shown in Fig. 33,

uses a 4W Rh target x-ray tube at energies between 6-50 kV to generate x-rays, along

with a graphene window SDD detector (20 mm2 active area) to record fluorescence

emissions with a resolution < 145 eV at 450,000 counts per second. The recording

time and voltage sweep parameters can be manually adjusted by the user for different

material types. The device also comes with a stand and shielded sample chamber for

hands-free analysis, and can be run with computer software.

Figure 33. The Bruker S1 Titan Model 800 portable XRF analyzer.

3.2.3 Laboratory LIBS Setup

A full scale laboratory laser ablation setup was implemented for the later phase of

this dissertation research to advance studies on the temporal behavior of the cerium

LIBS signal and generate large amounts of data to train advanced machine learning

models.

Table 3. Regression model error and sensitivity results

Hardware Model Parameters
Laser Quantel Everbright 250 15 Hz rep rate; 10 ns pulse width

Spectrometer Catalina Scientific EMU-120/65 30x120µm slit width; 25 mm AS;
Camera Andor USB iStar 1024x1024 pixel CCD

Delay generator Berkeley Nucleonics 577 DDG -
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Figure 34. Laboratory LIBS setup with 1064 nm laser, Echelle monochromator and
CCD camera.

The main equipment implemented is listed in Table 3. The Everbright laser gen-

erated 1064 nm laser pulses at energies between 40 - 250 mJ per pulse. The beam

was directed into a sample chamber using a mirror and periscope setup; an f=+30mm

lens focused the beam onto the sample to create the ablation. Optical emissions were

focused by an f=+150mm lens outside of the chamber and directed into the Thor

Labs SMA collimator attached to an optical cable. The cable transmitted the atomic

emission light to the Echelle spectrometer, blazed at 505 nm, dispersing the light into

a broadband spectrum between 325-925 nm at a resolution of ∆λ = 0.01. The Andor

CCD camera was used to record the spectral emissions at a variable gate delay, with

an exposure time of 1 ms and gate width of 6 µs using an MCP gain of 2000. The

DDG was used to trigger all the equipment and set timing parameters; a 190 ns delay

between the laser flash lamp and Q-switch was used, and all pulses were set to 10

ns. Both the Q-switch and camera triggered off the flash lamp. The burst mode was

used to repeatedly generate ablations with a 3.5s delay between each pulse. This

gave the KestrelSpec software on the computer enough time to record and process
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Figure 35. Cutout view of sample in chamber. Laser pulses are focused onto the
sample with an f = +30mm lens. Optical emissions are focused with the f=+150mm
lens outside the chamber and directed into the fiber collimator.

the spectra of each shot. The full setup is drawn in Fig. 34, with a close-up of the

sample chamber shown in Fig. 35. Once recorded on the computer, all spectra were

exported as text files and saved for further analysis.

3.3 Analytical Techniques

3.3.1 Univariate analysis

A basic univariate analysis was conducted for nearly every spectral data set in

this study. Univariate analysis simply relates the intensity of a single spectra line,

or ratios of two lines, to the concentration of the target analyte. These values are

plotted at different analyte concentrations and then fit with a linear regression. This

is the most basic form of quantitative spectral analysis and was implemented in the
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previous Master’s work for Ce-Ga alloys [18]. The quality of a univariate calibration

can be assessed by calculating the limit of detection (LoD) and the error, computed

as the mean average percent error (MAPE ). The LoD is the IUPAC defined quantity

representing the smallest amount of minor analyte in the bulk that the calibration

model can distinguish from a blank sample to within one standard deviation of error

[69]. A commonly implemented equation to determine LoD is shown in Eq. 7. The

univariate limit of detection stems from the standard deviation of a blank sample in

the bandwidth where the emission used in the calibration exists (σ) and the slope of

the calibration curve (b). Lower standard deviations and higher slopes yield lower

detection limits, or more sensitive calibration models.

LoD =
3σ

b
(7)

The formula for univariate calibration error is given by Eq. 8; n is the number of

data points, yi is the datapoint value and ŷi is the calibration line value. This term

quantifies the precision of the regression as the mean error between the calibration

curve and calibration data points. A lower MAPE equates to a more accurate model.

Together, these two metrics are used to evaluate the quality of a given calibration

curve.

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (8)

3.3.2 Self-absorption correction

A mathematical correction to the self-absorption phenomenon was employed to

correct the calibration curves. This was achieved by implementing a well documented

intensity correction based on Stark broadening parameters of the selected spectral

lines [31, 33, 70]. The correction is formulated as follows: It is well understood that

experimentally measured LIBS lines show significant line broadening; this behavior
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typically stems from two main sources. Doppler broadening occurs in a plasma due

to its constituent particles having velocities described by a distribution, rather than

a discrete value. Emission particles moving at different speeds produce different

Doppler shifts, and the aggregate effect of these various shifts in emissions leads to

broadening of the spectral line. Additionally, Stark broadening occurs as a result of

electric fields in the plasma splitting degenerate energy levels, which in turn splits

spectral lines and also induces broadening. The Stark broadening width, referred to

in this paper as the Stark full-width at half maximum (ws), can be used in conjuction

with other calculated plasma parameters to develop a self-absorption correction.

∆λ0 =
2wsne
1016

(9)

Eq. 9 is a very commonly used relation in LIBS relating the total peak FWHM

(λ0) to the electron density ne and the Stark width ws. The electron density in

this equation was calculated from a non-absorbed hydrogen Balmer line found in the

experimental spectra, rearranging Eq. 9 to solve for ne. The Stark broadening of the

line in the experimental spectra was calculated using a Voigt profile fit (VPF). This

fitting method describes a mathematical convolution of a Gaussian and a Lorentzian

function, and can be fit using the analytical expression in Eq. 10 where σ and γ

refer to the Doppler and Stark broadening widths and w is the Faddeeva complex

error function [71]. An example VPF of the Ga I 287 nm peak is illustrated in Fig.

36. This fit can generate the total peak FWHM and the Stark FWHM required for

calculating the self-absorption coefficient of the peak.

V (λ, σ, γ) =
Re[w(z)]

σ
√

2π
; z = λ+ iγ (10)
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Figure 36. Example deconvolution of the Ga I minor peak using a Voigt profile fitting
routine.

The self-absorption correction (SA) is formulated by Eq. 11, noting that the mea-

sured full-width at half max (FWHM) ∆λ is related to the actual non self-absorbed

broadening (∆λ0) multiplied by SA raised to the coefficient β which is given as -0.54.

∆λ = ∆λ0(SA)β (11)

Combining Eqs. 9 and 11 to relate the SA coefficient as a ratio of the corrected and

uncorrected emission lines yields the empirical expression in Eq. 12 to calculate SA

from the electron density and calculated broadening of the emission line used in the

calibration curve. The corrected intensity is then calculated as the measured intensity

divided by the corresponding SA value at each point.

SA =
I(λ)

I0(λ0)
=

(
∆λ

2ws

1016

ne

) 1
β

(12)

Employing this methodology yields a linearized calibration curve corrected for the

effects of the optically thick plasma. An appropriate LoD can be calculated from the

corrected curve to determine sensitivity, and the MAPE can be determined for the
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corrected calibration and compared to the uncorrected value to gauge improvments

in precision by employing this methodology.

3.3.3 Machine Learning Workflow

The novel component of this dissertation research largely rests on the machine

learning models discussed in the Theory section being implemented for spectroscopic

analysis. After initial cursory results on the efficiacy of ML methods for this type of

analysis [72], a machine learning workflow model, illustrated in Fig. 37, was imple-

mented to develop the most robust predictive regressions possible from the spectra

acquired in the laboratory. Each step is described below:

Figure 37. Machine learning workflow process implemented for development of higher
fidelity regression models.

1. Data preprocessing: preparing the data for quantitative analysis. This step

includes data cleaning (e.g., noise removal and filtering), transformation (e.g.,

normalization) and reduction (e.g., feature selection and/or extraction) [73].

2. Model selection: selecting ideal candidate ML paradigms to provide a robust

solution to the problem at hand. Factors such as training time, complexity, and

response to nonlinear data are among things to be considered.

3. Optimize hyperparameters: Hyperparameter optimization is key to tuning the

various numerical variables in a given ML model to achieve the best performance

(lowest error). This step often involves conducting a design experiment, in which

model performance is evaluated for different values of hyperparameters, using
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an optimization function to reach tuned values yielding the lowest prediction

error.

4. Assess tuned model: The final tuned model delivered from Step 3 is evaluated

for performance by passing in test data not used during model optimization or

training. This allows for an assessment of the model’s accuracy when fielded

new data; this step is critical to identifying overfitting, where the model can-

not successfully generalize trends in the training data to make accurate test

predictions.

3.3.4 Assessment of Models

Each regression model generated with a machine learning method was evaluated

for its precision and sensitivity on a test data set. Root mean-squared error of pre-

diction, or RMSEP, given by Eq. 13, is used to quantify precision. Here the variables

n, yi, and ŷi represent the number of samples, the target value, and the predicted

value. This metric gives a measurement of the distance between a prediction made

by a model and the true target value corresponding to the same input data point and

is used to quantify the accuracy of predictive regression models.

RMSEP =

√∑n
i (yi − ŷi)2

n
(13)

Sensitivity is evaluated using the LoD metric discussed in Sect. 3.3.1 modified for

multivariate statistics, shown in Eq. 14 [74].

LoD =
3σa
b

(14)

The multivariate LoD is a simple ratio of the dispersion of the x-intercept of the

regression (standard deviation of a) and the slope of the regression (b). Higher slopes
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from more accurately fit prediction models yield lower LoDs and are therefore more

sensitive. The goal of this study is to implement the machine learning workflow to

tune regression models to minimize error (RMSEP) and maximize sensitivity (mini-

mize LoD).
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IV. Analysis of Ce and Pu with portable LIBS device

The SciAps Z300 was implemented for a comprehensive analysis of Ce-Ga and Ce-

Si pellets, as well as a shorter analysis of actual plutonium alloy samples. This section

describes the results of basic univariate analysis, quantification of self-absorption,

and chemometric/machine learning models implemented on the cerium spectra. The

extension to plutonium analysis encompassing the same methods is presented as well.

4.1 Ce-Ga pellet univariate analysis

Using the samples previously discussed in Section 3.1, the Z300 was used to collect

spectra using an 8x8 raster pattern, averaging every 16 shots in each recording. 5

recordings of each sample concentration were collected, yielding a total data set of

180 recordings, 20 for each Ga concentration. The pLIBS devices was used in gated

mode, with an initial gate delay of 250 ns. An argon preflush was implemented

to remove air from the vicinity of the ablation. An example of the pure cerium
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Figure 38. Annotated Ce LIBS spectrum of pure Ce oxide pellet recorded with the
Z300.
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pellet spectrum recorded with the Z300 is shown in Fig. 38, with the major Ce and

Ar emissions annotated. Here it is clear that the limited 0.1 nm resolution of the

device causes issues when trying to resolve the major emissions around 400 nm, as

the individual emission lines are not discrete and interfere significantly with each

other. Additionally, the sheer complexity of the Ce LIBS spectrum is evident in this

figure, denoting the difficulty of performing univariate analyses on such data and

highlighting the need for machine learning methods.

Analyzing the recordings of the sample set allowed for the extraction of two minor

Ga I emissions at 287 and 294 nm. It should be noted that the major Ga I emissions,

such as those at 403 and 417 nm, are not well-resolved in the recorded spectra as there

is significant spectral interference in the 400-500 nm range in these recordings. Fig.

39 shows the evolution of the Ga I 287 nm emission with increasing Ga content at

250 and 500 ns delay. It is important to note that while the line intensity increases
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Figure 39. Ga I 287 nm emissions at varying Ga concentrations taken at 250 ns and
500 ns delays.
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with Ga content as expected, there is a significant plateau in the intensity increase

past 1 wt%; the 3 and 5 wt% data points in fact have almost the same spectral

response at 250 ns delay despite the significant difference in Ga content from these

samples. This is an initial indication of a phenomenon known as self-absorption, in

which a plasma becomes optically thick and reabsorbs certain emission wavelengths,

preventing them from exiting the plasma and being recorded on a detector. This

is often seen in LIBS studies and is demonstrated to be more pronounced at higher

analyte concentrations [2,70,75]. Recent studies have recommended recording signal

at longer gate delays to mitigate this effect, as it is often most pronounced in the early

phases of laser-produced plasmas [76, 77]. The 500 ns delay peak behavior indicates

a less pronounced self-absorption effect as there is a greater different between the 3

and 5 wt% peak intensities. This same behavior is evident in the behavior of the 294

nm emission, shown in Fig. 40. The intensity values of the 3 and 5 wt% Ga peaks are

noticeably similar when recorded at 250 ns delay, but are more clearly separated at

500 ns delay. However, there does seems to be a decrease in the separation between the

lower Ga content peaks at 500 ns, which stems from the overall decrease in recorded

signal intensity at 500 ns. This initial evaluation indicates that while prolonging the

gate delay of the spectral recording could potentially alleviate self-absorption effects

at higher analyte concentrations, the drop in signal later at the plasma lifetime can

affect the overall fidelity and sensitivity of the calibration.

The selected LIBS lines from the spectra at each gate delay were used to con-

struct univariate calibration curves relating the peak intensity of each line to the Ga

concentration of the sample. First, the self-absorption phenomenon was analyzed by

fitting an exponential curve to the data, rather than a linear regression. The method

implemented by Yage et. al. [75] relating the intensity of the emissions (I ) to the

analyte concentration (C ), a constant (a) and a self-absorption coefficient (b) was
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Figure 40. Ga I 294 nm emissions at varying Ga concentrations taken at 250 ns and
500 ns delays.

used to fit the peak intensity data. This relation is given by Eq. 15; b ≈ 1 signi-

fies perfectly linear behavior between intensity and concentration and the absence of

self-absorption.

I = aCb (15)

Figs. 41 and 42 illustrate the curve fit applied to the Ga I 287 nm and Ga I 294

nm peak intensities at both gate delays. The power curve fits are accompanied by

the expected linear fit to the first few data points before the self-absorption begins

to skew the linear trend and bend the calibration curve. Visually, the self-absorption

phenomenon is evident at both delay times for each line. However, it appears that

the nonlinearity begins to develop at a lower concentration with a 500 ns gate delay.
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Figure 41. Calibration curves of the Ga I 287 nm line at a) 250 ns and b) 500 ns gate
delay.
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Figure 42. Calibration curves of the Ga I 294 nm line at a) 250 ns and b) 500 ns gate
delay.

The 250 ns delay data remains relatively linear out to 1 wt% Ga, while at 500 ns the

curve begins to bend lower around 0.5%, indicating that the level of self-absorption is

more sensitive to increases in analyte concentrations at later plasma lifetimes. Table

4 lists the numerical fit coefficients for all four calibration models; the self-absorption

coefficient values (b) indicate that increasing the gate delay reduced self-absorption by

20% with the 287 nm line, but only marginally for the 294 nm calibration. This follows

the visual trend in the calibration curves showing the persistence of the phenomenon.

This indicates the 294 nm line may be more susceptible to the effects of the optically
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thick plasma, as the bend of these calibration fits is more severely pronounced at 500

ns than it is for the corresponding 287 nm line calibration.

Table 4. Self-absorption calibration fit parameters for all LIBS lines and gate delays.

λ0 td a b

287 nm
250 ns 2746 0.398
500 ns 693.2 0.507

294 nm
250 ns 5076 0.354
500 ns 1679 0.364

The SA correction methodology discussed in Sect. 3.3.2 was implemented for each

emission line at each gate delay; the original peak intensities were then divided by

their corresponding SA values to generate the corrected calibration curves also shown

in Figs. 41 and 42 with their uncorrected counterparts. Next, the precision of the

corrected and uncorrected calibrations were evaluated by calculating the (MAPE ).

This quantity estimates an average error bound for the whole calibration curve from

0 to 5 wt%. Additionally, the sensitivity of each corrected calibration was determined

by calculating the 3-sigma LoD as defined by Eq. 7, using the slope of the fit and

the blank standard deviation. These fit quality metrics are listed in Table 5. The

data clearly indicates an accuracy improvement in the models when the gate delay is

extended to 500 ns, as even the uncorrected calibration curves saw significant error

reductions at the later time. Applying the SA correction drastically improved model

precision; errors as low as 3 and 4 % were achieved in conjunction with the later gate

delay using the 287 and 294 nm peaks, respectively. These results clearly demon-

strate the merits of the applied correction methodology for improving the efficacy

of univariate calibration models. The sensitivities of each corrected model do not

differ significantly when the delay is lengthened by 250 ns; in fact, for the 287 nm

line the LoD actually increases 0.1% when the delay is extended. A potential cause

for this could stem from the overall reduction in line intensity when the spectrum is

captured later in the plasma lifetime. A calibration with lower intensity value data
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points will likely have a lower slope, which directly increases the LoD. It should be

noted that the 294 nm line calibrations were significantly more sensitive than those

of the 287 nm line post-correction. This peak seemingly benefited more from the

applied correction when compared to the 287 nm calibrations, and yields detection

limits around a tenth of a percent, which is acceptable for the problem at hand since

homogoenous δ-Pu forms with 0.5 to 2.5 wt% Ga alloyed. It should also be noted

that the Z300 has a small gate delay range with a max of 650 ns, while many LIBS

measurements are taken well beyond in the 1-2 µs range. One would expect to see

more significant differences in calibration fit when the gate delay is increased past 500

ns as the dynamics of the plasma change significantly in the µs range of its lifetime.

This is investigated with a laboratory LIBS setup in Sect. 6.1.

Table 5. LIBS univariate calibration fit metrics: MAPE, and LoD for each emission
line and gate delay.

λ0 td Uncorr. MAPE Corr. MAPE LoD

287 nm
250 ns 38.4% 10.0% 0.60%
500 ns 20.8% 4.4% 0.70%

294 nm
250 ns 27.4% 8.4% 0.14%
500 ns 18.0% 3.4% 0.11%

Overall, the LIBS calibration results indicate some important trade offs to consider

when choosing a gate delay for spectral acquisition with the Z300. While changing

the limited gate delay of the devices does not completely mitigate SA effects, it can

yield calibration models with higher precision for gallium quantification. However,

the sensitivity is not greatly affected and may even be detrimented in some cases due

to the overall decrease in recorded spectral intensity at longer gate delays.

4.2 Ce-Si pellet machine learning analysis

A study on cerium-silicon pellets was conducted as an initial exploratory venture

into various machine learning regression methods. This portion of the dissertation
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research serves as a proof of concept study of the efficacy of machine learning con-

structs for spectroscopic problems. As such, the full ML workflow was not imple-

mented, rather a cursory selection of models were trained and tested to begin the

investigation into applying machine learning paradigms. Cerium and silicon oxide

powders were used to form pellets of 0, 1, 5 and 10 wt% Si. Using an 8x8 raster pat-

tern, argon purge, and gate delay of 250 ns, the Z300 was used to record 176 spectra

across the range of sample concentrations. The raw spectra were normalized using the

standard normal variate (SNV) method in Eq. 16; each spectrum (Ik) is centered on

its mean value (µI) and then divided by the original spectrum standard deviation to

yield the SNV normalized spectrum (Isnvk ). Normalization is commonly implemented

in spectroscopic analysis to reduce signal fluctuation in the raw spectra and yield

enhanced analytical performance; [78] SNV normalization is often implemented in

pre-processing LIBS, near-infrared and Raman spectra for this purpose. [79–82]

Isnvk =
Ik − µI
σI

, ∀k (16)

Normalization was important for this application as the entire spectrum rather than

a particular wavelength range was used to train and test the different regression

methods. More specifically, SNV was implemented to allow the machine learning

models to more easily discriminate the small differences in spectral response among

the different sample concentrations. It should be noted that cutting the spectra down

and using less wavelength variables could be advantageous, especially since a lot of

lighter metals emit at lower wavelengths (200-400 nm), while the higher wavelengths

(700+ nm) in the recorded spectra contain mostly emissions from the argon purge gas.

However, this initial study sought to test the efficiency of different regression methods

with a very complex data set, so all wavelength variables were kept for training and

testing.
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4.2.1 PCA and PLS

PCA and PLS were implemented for initial trend analysis and regression, as these

are the most commonly used chemometric techniques for complex LIBS data sets.

PCA was used to perform an initial analysis of the data to visualize similarities

Figure 43. 3D plot of the PC score value of the first three components of each sample.
The percent variance of the total data explained in each component is listed on the
axis of each PC. The scores plotting reveals overlapping groups of the samples by their
Si wt%.

and differences between the samples. Examining a plot of the first three principal

component scores which collectively explain greater than 90% of the total spectral

variance, displayed in Fig. 43, shows some initial separation between the different

sample concentrations. Although a clustering pattern is noticeable, the first three

wt% groups show significant overlap. To understand how this could affect a regression

model created from the transformed variables, we examine the explained variance of

each PC. Typically, PCA is used to reduce the original variable set down to a few

principal components representing most of the variance of the original data. The

first PC of this deconstruction explains 73% of the total spectral variance. However,

examining the first PC loading values of each emission wavelength yields some insight
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into why the cluster separation is imperfect.
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Figure 44. Wavelength loadings in PC 1. A higher loading value indicates that emission
wavelength contributes more to variance of the spectral data set.

The majority of the wavelengths in the first PC with the highest loading values

correspond to emissions from the bulk cerium oxide, as seen in Fig. 44. Silicon emis-

sions, often strongest below 400 nm, [32] load relatively low on this PC despite it

explaining the overwhelming majority of the total variance of the entire spectral data

set. This indicates that the intensity of the silicon emission lines varies significantly

less between the different sample concentrations when compared to the cerium emis-

sions. Data corresponding to smaller emissions from the dopants is typically pushed

to lower PCs, while higher PCs explain variance of the bulk emissions. As a result

of this, a good visual separation between sample types cannot be achieved by simply

plotting the scores.

This result has significant implications for regressions built from the transformed

PC variables. In order to ensure that a regression model can properly distinguish

the variations in spectral features between different dopant concentrations, a higher

number of components needs to be used in the model. PCs explaining very little of

66



the total variance can often contain important information corresponding to variation

in emissions from dopant or impurity elements, and need to be included for accurate

determination of elemental concentrations. Ten-component PC regression (PCR)

and PLS regression (PLSR) models were built with this data set; the models are

compared graphically in Fig. 45, and their R-squared (R2), (RMSE ), and LoD values

are listed in Table 6. The higher R2 value of the PLSR model indicates a superior
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Figure 45. 10-component regression models built with PCA and PLS, comparing the
Si content of a sample predicted by the model to the actual value.

regression fit to the transformed data, whereas the lower RMSEP and LoD values

indicate higher predictive accuracy and sensitivity for Si prediction. As expected,

these results indicate that PLSR provides the better regression model.

Table 6. Comparison of R2, RMSE and LoD values for regression models

Model R2 RMSE LoD
PCR 0.887 1.388% 1.67%
PLSR 0.967 0.749% 1.15%

67



4.2.2 Ensemble Regression Methods

Two tree-based ensemble methods discussed in Section 2.7.2 were implemented

to generate regressions predicting Si concentration from spectral inputs. Bagged and

boosted ensemble regressions were trained on the spectra using a 70/30% training

and testing split on the normalized data. The default leaf size of 5 was used for both

methods, along with 100 learners in each model. Fig. 46 displays the test regression

results.
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Figure 46. Ensemble test regression results using a) bagged and b) boosted methods.

Both ensemble regressions exhibited similar linearity in their first to the test data,

with the bagged ensemble being slightly better with R2 = 0.974. The RMSEP and

LoD metrics defined in Section 3.3.4 were calculated in order to compare precision

and sensitivity between the two ensemble methods. The boosted ensemble yielded

higher overall precision with a RMSEP of 0.272% compared to the bagged model at

0.675 %. This is indicative of the iterative boosting algorithm decreasing error of the

subsequent individual learners in the model during the training process. The LoD

calculations revealed that the bagged model was nearly an order of magnitude more

sensitive than the boosted model, as both fits yielded LoDs of 0.279% and 2.05%,
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respectively. Initially it seems counterintuitive that the more precise model would

be significantly less sensitive. However, examining the blank test predictions (0%)

data of Fig. 46b reveals significant dispersion of these points; higher dispersion of the

intercept increases the value of σa, thereby rendering the model less sensitive to lower

concentrations of analyte and increasing the limit of detection. It is unclear what

prevents the boosted model from generalizing a blank sample while the bagged model

is able to do so much more efficiently. However, both ensemble methods show promise

for solving similar analytical spectroscopy problems with further model tuning and

optimization as they clearly outperform traditional chemometric methods such as

PCR and PLSR with regards to precision. The bagged ensemble also yields an order of

magnitude lower LoD than PCR and PLSR, indicating superior sensitivity compared

to these methods.

4.2.3 Feedforward neural network (FFNN) Regression

The FFNN is a simple type of ANN architecture employing a single layer of neu-

rons and no feedback loops. An FFNN regression model was constructed, with a layer

size of 15 neurons, and a 70/15/15% training/validation/test partition was applied

to the data set. A scaled conjugate gradient training function was implemented for

optimization; the network was run over 42 full learning cycles, or epochs, and its per-

formance is graphically evaluated in Fig. 47. The FFNN produced a model with the

lowest validation MSE of 0.412, initially indicating high predictive accuracy. Upon

closer inspection, however, it appears that this ANN structure suffers from overfitting

of the data. In Fig. 47, the training (blue) and validation (green) curves are driven to

low MSEs, but the test performance curve (red) has a minimum error almost an order

of magnitude higher (1.123) than that of the lowest MSE of the validation curve. This

indicates that while the model was able to accurately fit the training data and lower
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Figure 47. ANN regression model performance curve tracking MSE over each training
cycle for all 3 data splits.

prediction error by updating weights during validation, it failed to generalize these

results to the test set. As a result, the FFNN could not provide accurate predictions

of Si content for new data. The model can be further analyzed by evaluating the fits

of the regressions between the targets and outputs in Fig. 48.

Overall, the FFNN provided good regression fits to the training (Fig. 48a) and

validation (Fig. 48b) data, but yielded a poorer fit to the test set (R2=0.936) in Fig.

48c. This yet again indicates overfitting and a failure to properly generalize the model

to new data. The model yielded a total R2 value of 0.975 (Fig. 48d), comparable to

the PLSR and ensemble regressions. Although ANNs have traditionally provided

accurate regression and classification models for spectroscopic problems, this study

presents evidence that ensemble regression methods can be used in-lieu of traditional

neural network architectures for rapid and accurate quantification of trace elements

in a bulk cerium matrix. These results are summarized in Table 7, with the best

regression performance parameters in boldface. While the bagged ensemble provided

the best regression fit (R2 = 0.974) and highest sensitivity (LoD = 0.279%), the
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Figure 48. Feedforward network (a) training, (b) validation, (c) test and (d) total
regression fits on Ce-Si spectral data.

boosted ensemble yielded the highest precision predictive model (RMSEP = 0.272%).

These results indicate that ensemble methods can provide advantages in accuracy

and sensitivity while avoiding overfitting when compared to more common analytical

approaches, and present themselves as a promising new tool for use in analytical

spectroscopy.

Table 7. Summary of regression model performance parameters

Model R2 RMSEP LoD
PCR 0.8871 1.388% 1.669 %
PLSR 0.967 0.749% 1.155%

Bagged Trees 0.974 0.675% 0.279%
Boosted Trees 0.964 0.272% 2.05%

ANN 0.936 1.059% 1.086%
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4.3 Analysis of Plutonium Alloys

A study on plutonium alloy samples was conducted at Los Alamos National Lab-

oratory, using the Z300 to record spectra from 4 different Pu samples with known

concentrations of different trace elements. The Pu samples used in this study were

metal coupons approximately 30 mm in diameter; a notional depiction is presented

in Fig. 49. These samples had varying concentrations of the two trace elements

Figure 49. Notional image of size of Pu coupon samples used in this study.

analyzed in this study. The sample compositions are listed in Table 8. Due to ra-

dioactivity and pyrophoricity of plutonium metal, our work had limited access to only

a few different Pu samples for spectroscopic introspection. However, a large amount

of spectra were recorded from each sample to ensure sufficient data for constructing

chemometric models. The first sample, labeled S0, was a plutonium Certified Ref-

erence Material (CRM) at 99.96% purity. The other samples were fabricated alloys

with different levels of various trace elements present. The concentrations of several

trace elements in these samples were verified by ICP methods at LANL, and we were

provided the concentrations of Fe and Ni for this study. Additionally, samples 3 and

4 have the same reported concentrations for both metals as these two sample pieces

originated from the same larger component. They were removed to initially analyze
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alloy homogeneity.

Table 8. Trace element concentrations of each type of sample used in Pu spectral data
acquisition.

Trace element content (ppm)
Sample type Fe Ni

S0 0 0
S1 634 1305
S2 743 561
S3 246 105
S4 246 105

Spectral acquisition was conducted through the SciAps Profile Builder software,

enabling laser triggering and data acquisition settings changes from the computer,

while the device remained in glovebox. The device was used in gated collection mode,

with a gate delay of 250 ns and an integration period of 1 ms. An 8x8 raster pattern

was implemented, recording 8 spectra at 8 locations on the sample each time the laser

was triggered and averaging every 8 spectra, yielding a final total of 8 spectra per

individual recording. An example Pu spectra recorded by the device is illustrated in

Fig. 50, with the major Pu and Ar emission peaks labeled. Between 2-6 locations
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Figure 50. Pu CRM spectrum recorded by the Z300.
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on each sample were tested, generating a total of 145 spectra collected across the

whole sample set after a few individual spectra were thrown out due to recording

errors by the computer software. It should be noted that while the device is triggered

from an external laptop, it is held to the sample by a glovebox operator. Small hand

movements during the laser firing and signal recording process can yield jitter and

shot-to-shot deviations in the spectra that are greater than a typical laboratory LIBS

experiment. This was partially mitigated by operator training, and our work yielded

shot-to-shot intensity fluctuations of 30% which is within the typical range for LIBS

experiments; this was adjusted for during pre-processing using the standard normal

variate (SNV) method for spectral normalization as defined by Eq. 16.
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Figure 51. Peaks of a) Fe and b) Ni shown in the Pu spectra with surrounding inter-
ference emissions.

Chemometric routines were developed to utilize the entire UV-VIS spectra to iden-

tify changes in analyte concentration and compared to a univariate technique based

on a singular peak height. The overarching goal of implementing chemometrics in

this work was to generate a robust prediction model that can relate holistic changes

across the breadth of the UV-VIS spectra that are related to changes in analyte con-

centration. Chemometric methods are imperative when analyzing a complex metal

like plutonium due to the large amount of spectral intereferences that can occur with
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other trace analytes in the sample. This is illustrated in Fig. 51, which demon-

strates the close proximity or direct interference of common Fe and Ni emissions with

nearby Pu emission lines. These large interferences between emissions of the bulk and

trace analyte material throughout the spectra make traditional univariate calibration

methods difficult to implement for development of accurate regression models. The

complexity of the spectra of actinide metals therefore highlights the need for more

advanced techniques which can adequately detect peaks of trace metals like Ni and

Fe and discern the relationship between small changes in spectral intensity and the

trace analyte concentration.

4.4 Univariate calibrations
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Figure 52. Emissions of a) Fe and b) Ni in the Pu spectra chosen for univariate analysis.

The Fe I 358 nm and Ni I 310 nm lines were selected as the basis of univariate

calibrations as shown in Fig. 52 because they were the strongest lines available

that were also interference free. Nonetheless they are still minor peaks as all major

peaks for iron and nickel suffered from interferences with Pu emissions. The selected

emission line peak intensities for the four different concentrations of each element were

extracted from the data, along with uncertainties propagated from standard deviation
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of the peak intensities between each shot. The custom MATLAB function linfitxy()

was implemented to produce a linear regression which factored in the uncertainty of

each data point, determined from the standard deviation of peak intensity between

shots and statistical error propagation rules. The resulting linear regressions for Fe

and Ni, along with R2 values for each fit, are displayed in Fig. 53.
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Figure 53. Regression fits of a) Fe and b) Ni peak intensities over the range of sample
concentrations.

The linear regressions to peak intensity were used to calculate a univariate LoD

and MAPE for each regression model in order to evaluate the regression sensitivity

and precision, respectively. The fitting parameters and sensitivity/precision metrics

for each model are listed in Table 9. The fit to the Ni peak yielded a better R2

value than the Fe regression, but was marked by a poorer LoD. This is directly

attributable to the lower slope of the Ni regression. The univariate LoD is directly

dependent on the sensitivity of the measurements, quantified by the slope of the

regression. A lower regression fit slope then correlates to a higher LoD and overall

less sensitive model. It should also be noted that the univariate calibration LoDs

are in the high hundreds of ppms; these quantities are unacceptable for accurately

conducting a trace metal analysis in Pu. One potential underlying cause of the low

sensitivities of these models is the self-absorption phenomenon discussed earlier [83].
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Additionally, a previous study by Zhang et al. notes the fragility of implementing

univariate methods for creating calibration curves due to susceptibility to fluctuations

in laser energy and matrix effects in the sample [84]. Sometimes these effects can be

mitigated by normalizing the spectral internally to a particular strong emission line,

however internal standard normalization often becomes less effective when analyzing

a complex metal like plutonium with hundreds of convolved major emissions. This

sheds some light as to the reasons for the high LoDs from these calibrations. Both

regressions had RMSE values of the same order, with Ni markedly lower around 38.

Ideally for a more accurate model, these RMSE values should be orders of magnitude

lower than the range of target values for the regression. The clear underperformance

of these simple univariate models stresses the need to implement chemometrics to

generate more robust models which yield lower LoDs and prediction error values for

better trace element quantification.

Table 9. Regression fitting parameters from the Fe and Ni univariate calibration models
for the line y = ax + b.

Element a δa b δb R2 LoD (ppm) MAPE
Fe 0.658 0.324 184.9 123.6 0.816 640 15.4%
Ni 0.245 0.091 47.47 45.32 0.927 700 27.9%

4.5 Chemometric regression results

The PCA algorithm was used to decompose the entire 145x23141 spectral emission

data set into loadings and scores; the variance explained by the first 10 principal

components is depicted in Fig. 54. The first three PCs explain over 95 percent of the

variance of the data, a more than sufficient quantity needed to generate a regression.

The first three PCs were kept and used to create a regression relating the transformed

PC scores of components 1 through 3 to the mean centered concentrations of Fe and

Ni in all the samples. Fig. 55 depicts the generated predictive regression for each
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Figure 54. Percentage of variance of the total data set explained by cumulative PCs.
The more PCs used in the regression, the larger the percentage of the original variance
explained by the model.

trace element, with the accompanying R2 value for each fit.

The PCR method provided a poor fit to the Fe target data, and performed slightly

better for the fit to the Ni target data. Analyzing the predictive accuracy of each

model can be conducted by calculating the LoD and RMSE of each regression. Table

10 lists the regression fit parameters, R2, and calculated LoDs and RMSE s for each

element. Although the LoD for Ni was comparable to the lower bound of the range

of this trace metals in the samples, the result for Fe is markedly poorer at 340 ppm.

This is directly caused by the poor PCR fit to the Fe target data, indicating that

PCR may not be able to perform well enough to reliably analyze trace iron content in

plutonium metal. One explanation for this disparity in achieved LoD could be that

emissions from Fe interfere more with the Pu emissions in the spectra than Ni emis-

sions do. Higher elemental and spectral interference may inhibit the PCA algorithm’s

ability to distinguish between the elements and provide a robust regression model.

Overall, both PCR models displayed poor predictive accuracy as noted by their high

RMSE values. These values are an order of magnitude higher than the corresponding
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Figure 55. PCR fits of a) Fe and b) Ni data. The fit (blue) to the data (black points)
denotes how well the model output prediction of elemental concentration compared to
the known target concentration.

univariate RMSE s. This trend is directly attributable to the unsupervised nature

of the PCA technique; without target data to fit to the trends in spectral intensity

variations, the predictive capability of the model is significantly diminished. These

results conclude that PCA is not the ideal solution for analysis of complex spectral

data, and a supervised chemometric technique such as PLS is necessary.

Table 10. Regression fit parameters, R2, LoD and RMSE for PCR models.

Element a b R2 LoD (ppm) RMSE (ppm)
Fe 230 0.51 0.513 340 176
Ni 60 0.88 0.883 125 160

A PLS decomposition was performed on the complete spectral data set; a regres-

sion was constructed using the first 3 latent variables, which account for more than

95% of the original variance, to keep consistency with the PCR model. The regression

fits and accompanying R2 values are illustrated in Fig. 56. LoD and RMSE values

were calculated for each fit according to the previously discussed methodology; these

metrics along with the regression fit parameters are listed in Table 11. The R2
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Figure 56. PCR fits of a) Fe and b) Ni data. The fit (blue) to the data (black points)
denotes how well the model output prediction of elemental concentration compared to
the known target concentration.

Table 11. Regression fit parameters, R2, LoD and RMSE for PLSR models.

Element a b R2 LoD (ppm) RMSE (ppm)
Fe 1.3 0.99 0.997 15 13.2
Ni 1.2 0.99 0.998 20 22.8

values indicate a nearly perfect correlation between the target and predicted analyte

concentrations. Each model was able to achieve an LoD an order of magnitude lower

than that of their corresponding PCR fits, reaching the low 10s of ppm levels for

both elements. This significant improvement in sensitivity is directly attributable

to the high slopes of the regression fits to the PLS prediction data. Additionally,

significant improvements in RMSE were made with this model when compared to

the univariate and PCR methods, with the Fe regression reaching the low 10s of ppm

levels for error. These values show promise that the PLS algorithm can accurately

track small changes in spectral intensity caused by variations in trace metal content,

and accurately represent these trends in a quantitative model. Overall, the PLSR

models performed substantially better than the PCR models evaluated earlier, show-

ing vastly increased sensitivity and higher predictive accuracy. To determine exactly
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why PLSR outperforms PCR to this degree, we examined the variance explained by

each latent variable for each part of the data. Unlike PCA, PLS also generates vari-

ables explaining the covariances between the input (spectral data) and output (metal

content); this is illustrated in Fig. 57. The first 3 LVs explain over 95 percent of
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Figure 57. Percent variance in total input (X) and target (Y) data explained by cu-
mulative LVs of PLS model. Constructing a regression with more LVs yields a model
explaining a higher portion of the total data variance.

the variance in X, but also account for about 85 percent of the variance in Y. The

PLSR model uses the transformed data relating the input and output variables in the

regression and is able to better quantify the relationships between spectral response

and trace metal content. As a result, it generates better regression fits to the target

data and yields lower LoDs for each element than the corresponding PCR models.

These results indicate that a supervised learning technique is necessary to properly

capture and quantify the relationship between spectral emission variations and trace

metal content in the plutonium metal.
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4.6 ANN regression results

A shallow feedforward neural network (FFNN) with 100 neurons in the hidden

layer and a scaled conjugate gradient optimization function was built to perform re-

gression fits of the data for both trace elements. This specific structure was chosen

since it was applied in a previous study on Pu surrogate material spectra for detec-

tion of Si [72]. A 60/20/20 % training/validation/testing split was applied to the full

set of 145 spectra. Figs. 58 and 59 display the training (blue), validation (green),

testing (red) and total (grey) regressions for Fe and Ni content determination. R2

values for each elemental model and partition are listed in Table 12. The training and

validation fits for Fe showed high R2 values, but the test regression significantly un-

derperformed with a poor R2 of 0.492. This result provides a primary indication that

the FFNN failed to generalize an accurate predictive model for new spectral data,

despite achieving good fit metrics for the data during training and validation. Addi-

tionally, the FFNN test regression data for Fe yielded an LoD of 290 ppm, four times

higher than the LoD of the PLSR for Fe, indicating significant underperformance for

iron content prediction.

Table 12. R2 values for ANN training, validation, test and total regression fits for each
elemental model.

Element Train Validate Test Total
Fe 0.977 0.960 0.492 0.834
Ni 0.940 0.975 0.813 0.921

Fig. 60 illustrates the performance curves for the ANN models built for the

Fe and Ni regressions over each training cycle (epoch). The blue, red, and green

lines respectively note the mean-squared error (MSE) yielded by the model at a

certain epoch for the training, validation, and test data. In both models, the test

performance curve terminates at an MSE about an order of magnitude higher than

the training and validation MSEs. This indicates the occurrence of overfitting; the
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Figure 58. FFNN a) training (blue), b) validation (green), c) testing (red) and d) total
(grey) regression fits for Fe content prediction.
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Figure 59. FFNN a) training (blue), b) validation (green), c) testing (red) and d) total
(grey) regression fits for Ni content prediction.
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Figure 60. Performance curves for a) Fe and b) Ni regressions denoting change in MSE
for each ANN model during training (blue), validation (green) and testing (red) over
each training cycle (epoch). The order of magnitude disparity between the end result
of the test curve to the training curve indicates overfitting.

model failed to generalize the results from training and validation to new data and

could not generate accurate predictions for the test set. Further evidence of this

behavior is listed in Table 13, which displays RMSE of the training set, root mean-

squared error of cross validation (RMSECV ) for the validation set, and root mean-

squared error of prediction (RMSEP) of the test set. The model generates order of

magnitude higher errors with the test data than with the training or validation set,

indicating a failure to generalize the trends from the spectral information. Overfitting

Table 13. Root mean-square errors for training, validation and testing ANN regression
models for Fe and Ni. All error values are in ppm.

Element RMSE RMSECV RMSEP
Fe 28.9 50.6 211
Ni 62.6 73.2 184

often plagues ANN based regression models when large and complex data sets are

being passed for training and prediction. The behavior seen in the performance

curve indicates that the ANN models are operating with low bias and high variance.

This result indicates the need to implement methods such as hyperparameter tuning

and regularization to increase bias and lower variance to overcome overfitting. The
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performance curve results also reflect the disparity between the R2 values of the

training and test regressions in Fig. 60. Combining the evidence of the poorer test

regression fit and higher test MSE rendered by the Fe and Ni prediction models,

it is clear that the chosen ANN architecture cannot produce an entirely reliable or

robust model for concentration determination of these two trace metals. The test

data regression fitting parameters and evaluation metrics for all ANN models are

listed in Table 14.

Table 14. Regression fit parameters, R2, and LoD for ANN models.

Element a b R2 LoD (ppm)
Fe 53 0.79 0.492 290
Ni 66 0.98 0.813 150
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V. Analysis of Ce with portable XRF device

The Bruker S1 Titan model 800 was implemented for analysis of the cerium-

gallium pellets. This experiment used a generation energy from 15-40 kV, and a

multi-phase recording over 120 seconds to generate and record a broad range of ele-

mental x-ray excitation emissions from the cerium pellets. 20 recordings were taken

of each of the 9 different sample concentrations, yielding 180 total spectra for calibra-

tions. The XRF spectrum of cerium is remarkably simpler than its LIBS spectrum;

Fig. 61 illustrates the XRF spectrum of pure CeO2 with the three major Ce L-shell

emissions annotated. The L designation signifies the emission occurs from an electron

transitioning to fill a vacancy in the L-shell. The Greek letter subscripts depend on

the quantum number change associated with the transition. It is clearly evident that

the XRF spectra will prove much less challenging to analyze, as even the heavier

lanthanide metals only have a few tabulated x-ray emissions that show up on the

spectrum.
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Figure 61. Pure cerium oxide XRF spectrum recorded with the Bruker S1 Titan.

Two major Ga K-shell emissions were identified in the spectra of the samples;
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these are illustrated in Fig. 62. The intensity of both these major emissions shows a

clear linear variation with increasing Ga concentration in the samples. Additionally it

should be noted that because the physical mechanism of XRF doesn’t require the gen-

eration of a plasma to induce photon emissions, the XRF spectrum isn’t susecptible

to plasma physics phenomena such as self-absorption, which was clearly seen in the

pLIBS spectra in Section 4.1. As a result, it can be expected that univariate calibra-

tions from these spectra will be more sensitive and precise.
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Figure 62. Ga K-shell peaks at a) 9.25 keV and b) 10.26 keV varying with increasing
Ga content.

The selected XRF emissions were used to construct calibration curves to con-

trast to the LIBS calibration models analyzed earlier. Since XRF doesn’t generate

a plasma and induces electronic emissions by perturbing individual electrons rather

than the bulk sample, there are no physical phenomena such as self-absorption to

affect the intensity data collected by this device. This is clearly demonstrated in

the calibration curves for the Kα and Kβ peak intensities in Fig which demonstrate

nearly perfect linear fits to the data points. The MAPE and LoD values calculated

for each calibration are listed in Table 15. The XRF calibrations yield a mean error

percentage of the same order of magnitude as the corrected handheld LIBS calibra-

tions discussed in Section 4.1, with less than 10 percent error shown by the models
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Figure 63. Calibration curves relating Ga concentration to intensity changes of a) Ga
Kα and b) Ga Kβ peaks.

created with either devices. While the 500 ns delay portable LIBS calibrations are

still slightly more accurate by a few percent, a significant overall improvement over

the LIBS calibrations is attributed to the LoD values for the XRF models. The LoDs

for the Kα and Kβ curves reach 0.002% and 0.008% Ga, respectively. To achieve such

low sensitivities from LIBS, either a large laboratory laser and spectrograph setup are

needed, or complex machine learning algorithms are required for analysis of the LIBS

spectra. Additionally, the effects of self-absorption in a LIBS plasma often hamper

the sensitivities of calibration models, even when the intensity values are corrected.

The distinctly linear response to concentration yielded by the fluorescence technique

created a robust model with excellent detection capabilities and superlative responsiv-

ity to changes in Ga concentration. This result points to significant advantages of the

Table 15. XRF univariate calibration fit metrics: MAPE and LoD for each emission
peak.

Peak MAPE LoD
Kα 9.8 % 0.002%
Kβ 8.3% 0.008%

portable XRF for the detection of gallium in a cerium matrix. The method provides a

significantly less complex data set for chemometric analysis, and can circumvent the

88



many physics processes which occur in a laser-induced plasma which can detriment

the accuracy of LIBS spectra based quantitative calibration models. As a result, the

XRF was able to yield superior quantitative models in this study. Drawbacks to note

of the XRF device are the durability of the device itself and the data acquisition time.

While a LIBS measurement can be conducted in less than a second, the XRF needs

a timescale of minutes to generate reliable spectra. Additionally, the Bruker Titan

relies on a delicate silicon drift detector (SDD), which can be sensitive to changes

in temperature or damage from impact shocks to the device. Lastly, a key potential

drawback of the XRF stems from its inability to detect elements lighter than Mg;

quality control studies may need to quantify presence minor elements such as Li, Be,

B or Na in the Pu matrix to ensure the alloy chemistry is passing comprehensive

fabrication standards. Detection of light minor elements can easily be done with the

handheld LIBS device. While this study does not seek to chose one device as the

superlative method for potential trace element analysis in Pu alloys, the results of

this investigation bring up several important factors to consider when choosing these

devices for analysis of nuclear material or related endeavors.

This investigation comparing another elemental analyzers to the LIBS device

served to discover potential points of consideration when evaluating handheld LIBS

or XRF devices for trace element quantification. The complexity of the electronic

emissions seen in lanthanide and actinide metals, coupled with deleterious plasma

effects such as self-absorption, limit the performance of a handheld LIBS device for

analysis of gallium in plutonium or cerium. While precision can be improved using

a self-absorption correction and a later delay time to reduce errors down to the low

single percent range, the corrected sensitivity is not greatly affected by increasing gate

delay. In fact, the reduction in recording signal could potentially increase the detec-

tion limits at later delay times. The XRF device yielded much cleaner calibration
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fits with comparable errors on the same order of magnitude as the corrected LIBS

fits. The XRF calibrations saw immense improvements in sensitivity, showing LoDs

as low as 0.002% for the detection of Ga. Although the XRF needs longer timescales

for data acquisition and relies on more sensitive components for detection, it pro-

duced quantitative models with objectively superior sensitivity and for the problem

examined in this experimental work.
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VI. Laboratory scale LIBS setup results

The full-scale LIBS setup described in Section 3.2.3 was implemented for an initial

higher resolution univariate study of the cerium-gallium pellet spectra. The laser was

run at an energy of 100 mJ/pulse, with other laser and camera parameters set as

discussed in Section 3.2.3. The burst mode of the DDG and a 3.5s delay between

shots was used to capture 20 spectral recordings of each sample concentration (0, .25,

.5, 1, 1.5, 2, 2.5 3, and 5 wt% Ga). The initial data set was captured with a 500 ns gate

delay, and found that the major Ga I emission at 417.2 nm was present in all spectra

containing Ga. This is of note because emissions in this range were not extractable

from the Z300 data due to the limited resolution. The Echelle spectrograph used in

the laboratory setup had an order of magnitude better resolution than the Z300, at

∆λ = 0.01 nm, making peaks in this more cluttered bandwidth easily resolvable. The

difference between the spectra around the emission line wavelength is show in Fig.

64.
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Figure 64. Comparison of the resolution of the Ga I 417.2 nm peak as recorded with
the a) Z300 and b) Echelle.

A filtering routine was implemented to pre-process the extracted spectral data

around the 417 nm peak. A 7-point Savitzky-Golay filter was applied to removed
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continuum noise from the peak, and a third order 1D median filter was applied to

further remove noise from the peak wings of each recording. These parameters were

optimized to remove signal noise while minimizing peak information loss. Once a

successful pre-processing routine was solidified, the LIBS measurements were repeated

on the samples at gate delays of 250 and 1000 ns to evalute temporal changes of the

Ga I 417 nm line. Fig. 65 illustrates the relationship between emission line intensity

and Ga concentration for 5 of the 9 samples at each delay time; each peak taken

from the average of the 20 spectra taken of each sample at each gate delay. While
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Figure 65. Ga I 417.2 nm line intensity relationship to Ga concentration at (a) 250 ns
(b) 500 ns and (c) 1000 ns gate delay.

the intensity follows the expected trend of increasing with Ga content at each gate

delay, the behavior at 250 ns differs significantly from the other two times. At 250
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ns it would appear that the increase in intensity begins to fall off as the Ga content

approaches 5 wt%, with the overall trend being distinctly nonlinear. This effect

is much less pronounced at 500 and 1000 ns. This initial visual inspection of the

emission lines points to the presence of self-absorption suppressing intensity increases

at higher concentrations, particularly at early gate delay times. This result hints at

self-absorption being more prevalent earlier in the plasma lifetime.

6.1 Evaluation of Temporal Self-Absorption Behavior

Calibration curves relating the peak intensity of the Ga I 417 nm line to the Ga

concentration were built for all three gate delay times. The 20 recordings taken for

one sample at a given delay time were averaged; intensity of the Ga line was extracted

from this averaged spectra, and uncertainty was calculated as the standard deviation

of the peak intensity between each shot in one set of 20 recordings. To quantitatively

evaluate self-absorption, a power curve in the form of Eq. 12 previously described in

Section 4.1 was fit to the data to yield a calibration curve. This provided a relationship

between the peak intensity (I) at each concentration (C), which varied based on an

intercept factor (a) and an exponent (b) known as the self-absorption (SA) coefficient.

A curve with b ≈ 1 denotes no self-absorption, and smaller values of b indicate the

greater effect of the phenomenon on the spectral intensity. Calibration curves of

this form have been used in previous LIBS experiments to evaluate self-absorption

behavior [75,76].

The corresponding power fits to the peak intensity data at each gate delay time

are illustrated in Fig. 66; the calibration curves clearly demonstrate the presence of

self-absorption in the plasma bending the curve downwards. The fitting parameters

for each data set are listed in Table 16. A visual inspection of each calibration curve

concludes that self-absorption has a greater effect on the calibration at an earlier
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Figure 66. Calibration curves using Ga 417 nm peak intensity at 250, 500 and 1000 ns
gate delay.

Table 16. Calibration curve coefficients at each gate delay time.

td a b
250 ns 972.9 0.2992
500 ns 626.0 0.4764
1000 ns 566.4 0.4855

gate delay, as the 250 ns curve shows a more pronounced ’elbow’ where the curve

deviates from linear behavior. However, collecting the spectra at later times reduces

recorded signal intensity as the LIBS plasma is significantly cooler, which diminishes

the sensitivity of a derived calibration curve [26]. Thus, there is a trade-off between

the mitigation of self-absorption effects and achievable univariate calibration sensitiv-

ity when increasing the gate delay. This trend is expressed in the fitting parameters

shown in table 1 as longer gate delays yield a lower ’a’ coefficient (sensitivity) while

improving the ’b’ coefficient (self absorption). One should also note that continu-

ing to extend the gate delay leads to diminishing improvements in self absorption

after about 500 ns while sensitivity continues to decrease at faster rate. This behav-

ior indicates that extending the gate delay can only partially mitigate the effects of
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self-absorption, as the increases in linearity will plateau while the loss of total signal

persists.

6.2 Self-Absorption Correction Results and Analysis

The methodology discussed in Sect. 3.3.2 was implemented to correct for the

effects of self-absorption of the Ga I 417 nm line. Fig. 67 displays the mathemati-

cally corrected calibration curves (blue line) at each gate delay. The SA correction

formulation yields a noticeably more linear calibration curve that follows the ex-

pected intensity. To evaluate the corrected and uncorrected calibrations, the MAPE

and LoD are again calculated as measures of model precision and sensitivity, respec-

tively. Table 17 lists these calculated parameters for each gate delay time; MAPE

was calculated for both corrected and uncorrected calibrations to examine how the

mathematical correction affects precision. The uncorrected calibration error reveals

Table 17. Percent error of calibration before and after SA correction, and LoD of the
corrected linear calibration model at each gate delay.

td Uncorr. MAPE Corr. MAPE LoD
250 ns 23.5% 7.56% 0.008%
500 ns 19.5% 13.6% 0.009%
1000 ns 14.8% 4.31% 0.015%

another temporally varying behavior of the calibration curves; MAPE is reduced as

the gate delay time is increased, hinting that the uncorrected models have higher

precision at longer delay times. The earlier analysis of the self-absorption coefficient

behavior indicated that the effects of self-absorption were less prevalent at later gate

delays. The mathematical correction greatly reduced the error of all three models,

with the 1000 ns calibration being the most accurate with a MAPE of 4.3%. These

improvements clearly indicate that implementing the SA factor correction yields a

more precise calibration, and could help circumvent the deleterious effects of self-
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Figure 67. Self-absorption corrections of Ga calibration curves at a) 250 ns b) 500 ns
and c) 1000 ns.

absorption on calibration accuracy. The sensitivity of the corrected model, evaluated

by the LoD, appears to follow the opposing trend as gate delay is increased. Due to

the lower intensities recorded at longer gate delays, the slope of the corrected calibra-

tion decreases as delay is increased. This in turn increases the LoD of the corrected

model, rendering the calibrations slightly less sensitive as td is raised. The 250 ns

calibration is most sensitive with an LoD of 0.008 wt% Ga. The 500 and 1000 ns fits

yield LoDs of 0.009 and 0.015 wt% Ga, respectively. Reaching sub 100s of ppm sen-

sitivity levels for a univariate calibration quantifying metals in lanthanide or actnide

matrices is often difficult with LIBS data due to combined effects of self-absorption

and other chemical matrix effects. However, the results of this study indicate that
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performing the mathematical correction can help boost calibration sensitivity even

when faced with physical phenomena that detract from the reliability of the spectral

recording.

These results serve as an initial, proof-of-concept that using a self-absorption

correction can help mitigate plasma effects and yield more robust calibration models.

Additionally, it also serves to demonstrate the trade off between sensitivity loss and

precision gain when extending the gate delay of a spectral recording to circumvent

self-absorption. These results set the foundation for further investigations of other

analytical methods to improve the efficacy of regression models without having to

implement physics-based corrections to the spectra. Notably, the complex spectral

response and physical effects in the plasma hint at the need to apply machine learning

methods to yield better analytical solutions for this problem.

6.3 Machine Learning Model Study

The last major phase of this analysis sought to test several machine learning

methods on the spectra acquired with the laboratory setup to examine how enhancing

the resolution of the recordings and tuning ML models could help boost fidelity of the

predictive regression models. Using the same Ce-Ga pellet set between 0-5 wt% Ga,

40 recordings of each sample concentration were taken at a delay of 500ns and laser

energy of 100 mJ/pulse; other camera, laser and delay settings were kept the same as

used for the univariate data set collection. The ML workflow layed out in Section 3.3.3

was implemented in full for this analysis. Firstly, normalization and feature reduction

were applied to the raw data set; 40 recordings at 9 different Ga concentrations yielded

a data set of 360 recordings with 60,001 wavelength variables each. The raw data

was normalized with the SNV method used previously and described by Eq. 16. This

was done to reduce signal fluctuation and hopefully boost the training performance
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of ML models used on the data set. Next, a PCA decomposition was performed to

analyze the loadings values in the broadband 325-925 nm spectra. The loadings
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Figure 68. PC 1 loadings of each wavelength in the data. The two wavelengths corre-
sponding to the strongest Ga I emissions load the highest, and therefore contribute to
most of the total variance of the data.

of each wavelength on the first PC, which explains more than 65% of the variance

of the original data, are shown in Fig 68. The inset portion of the figure shows the

two largest tabulated Ga I emissions loading the highest on this PC, indicating that

they explain a significant portion of the variance in the data. As a result of this

initial analysis, the normalized data set was then reduced from the full 325-925 nm

spectra to just the 400-420 nm range, cutting the total data set down to a 360x2001

matrix. This significantly simplifies the data set allowing for higher computational

efficiency when training the selected ML methods for regressions. Lastly, the filtering

routine using a 7-point SG filter and 3rd order median filter described earlier were

implemented to finish the preprocessing method.

The eight different machine learning paradigms discussed in Section 2.7 were cho-

sen for optimization, training and testing. These include: decision trees, bagged

ensemble regression, boosted ensemble regression, extra trees, random forest, sup-

98



port vector regression, kernel regression and artificial neural networks. The following

sections describe the hyperparameter optimization experiment and training results.

6.3.1 Optimization of Hyperparameters

An automated hyperparameter optimization routine was implemented on all the

selected regression models. This routine used a Bayesian optimizer to run through

a set range of values of all tunable hyperparameters of each model, changing the

values from one iteration to the next in order to minimize model error (mean-squared

error). Each optimization was run for 30 iterations, which was enough learning cycles

for all models to converge to a low error value after hyperparameter tuning. Table

18 shows a comprehensive list of all regression models, tunable hyperparameters, and

ranges of values examined to determine the best model of each kind. Leaf size and

number of splits were tuned for a single decision tree model. Minimum leaf size refers

to the depth of each tree in the ensemble, or the number of decision nodes, where

maximum number of splits refers to the number of total branches created from all the

nodes in the tree. For ensemble regressions, both bagged and boosted models were

examined. The number of learning cycles (i.e., the number of predictors) was varied

for both types of ensembles. The boosted ensemble learning rate was also tuned;

this parameter affects how much the contribution of each subsequent learner shrinks.

Additionally, extra trees and random forest were tuned for leaf size, number of splits,

and learning cycles. Kernel function bandwidth (h) and error margin ε were tuned

for both the SVR and GKR to adjust the input weights and function error tolerance,

respectively. SVR optimization also examined three types of kernel functions to

generate weights, and tuned the slack variable ξ for misclassification penalty. The

GKR optimization also examined a parameter called regularization (λ); this variable

is used to penalize overly complex models and encourage the development of simpler
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regression models to the input data. This is implemented to prevent overfitting.

Regularization constants were also examined in the ANN optimization. Three types

of single layer ANNs were tested, with narrow, medium and wide referring to an

increasing number of neurons in the single layer. Bilayer and trilayer architectures

were also examined with varying numbers of neurons in the different layers as well.

Three different activation functions were examined during tuning to optimize the

weight values generated by each neuron, and the training iteration limit was varied

from 100-10000 to adjust how much time the model had to converge. All ANNs tested

in the optimization experiment used a limited memory Broyden-Flecter-Goldfarb-

Shanno quasi-Newton algorithm (LBFGS) for loss function minimization, based on

the mean-squared error (MSE). The tuned values of all model hyperparameters used

for analysis of predictive regressions are listed in the last column of Table 18.

The tuned hyperparameter values for each model were saved and used to con-

struct optimized models which were subsequently trained and tested on the processed

spectral data. The goal of implementing this design optimization routine is to pre-

emptively drive down the loss of each regression model via hyperparameter tuning,

such that the best performance possible is obtained when the tuned model is exposed

to test data. In particular it should be noted that in previous portions of this re-

search, the ANN models used failed to generalize training results to test data and

could not yield robust predictive models for determining trace elements in the Ce

spectra. Only simple FFNN structures were implemented in previous analyses; this

design process examined other ANN architectures and introduced significantly more

variables in order to develop more robust models which are not plagued by overfit-

ting. Doing this successfully would be a huge achievement, as a well-tuned ANN

would have the potential to yield extremely sensitive regression models with minimal

prediction error.
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Table 18. Hyperparameter optimization options for all models

Model Hyperparameters Range Tuned Value

Tree
Min. Leaf Size 1-144 20

Max Num. Splits 1-100 61

Bag
Min. Leaf Size 1 - 144 10

Num. Learning Cycles 10 - 500 495

Boost
Max Num. Splits 1 - 100 34

Num. Learning Cycles 10 - 500 180
Learning Rate 0.001 - 1 0.095

ET
Min. Leaf Size 1-144 20

Max Num. Splits 1-100 5
Num. Learning Cycles 10-500 300

RF
Min. Leaf Size 1-144 20

Max Num. Splits 1-100 10
Num. Learning Cycles 10-500 300

SVR

Kernel Function Linear; Gaussian; Polynomial Linear
Slack (ξ) 0.001 - 1000 200.2

Bandwidth (h) 0.001 - 1000 454.7
Error (ε) 1.48e-3 - 148 0.362

GKR
Bandwidth (h) 0.001 - 1000 51.14

Regularization (λ) 4.99e-7 - 0.499 1.72e-5
Error (ε) 1.48e-3 - 148 1.51e-3

ANN

Layer size Narrow; Medium; Wide; Bilayer; Trilayer Trilayer
Number of neurons 2 - 50 [20;10;10]
Activation Function ReLU; Sigmoid, tanh sigmoid

Iteration Limit 1e2 - 1e4 1000
Regularization (λ) 4.99e-7 - 0.499 4.96e-5

6.3.2 Tuned Machine Learning Model Results and Analysis

Once tuned hyperparameter values for each model had been selected, prediction

models using those values were created and trained on the data set. An 80/20 percent

holdout validation split was applied to separate 20% of the spectra for testing after

the models had been trained. The tree-based regression methods were created and

analyzed first with the corresponding tuned hyperparameter values listed in Table 18.

All tree-based model test regressions are shown in Fig. 69.

The lone decision tree fared poorly, showing significant dispersion in the prediction

points, indicating a failure to properly generalize the complex spectral relationships.

This is expected, as single decision trees are fairly simple models which can struggle
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Figure 69. Tree based test regressions showing prediction results from a) decision tree
b) bagged ensemble c) boosted ensemble d) extra trees and e) random forest.
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to make accurate predictions when faced with complex, nonlinear data set. The other

four models yielded test regressions with very similar linearity values; to fully evaluate

these we examine their error and detection limits. These evaluation metrics are listed

in Table 19. The tree ensemble methods clearly outperformed the lone decision tree,

Table 19. Tree based regression model RMSEP and LoD values

Model Tree Bag Boost ET RF
RMSEP 0.475% 0.394% 0.422% 0.394% 0.391%

LoD 0.366% 0.025% 0.256% 0.006% 0.018%

with all four showing improved RMSEP values. For the most part, these errors

are lower than the errors generated by the machine learning models created from

the Z300 spectra, indicating an improvement in precision with the higher resolution

spectrometer. However, the bagged model in this study had error around a tenth of

a percent higher than the bagged model created to predict the Si concentration in Ce

from the Z300 spectra. This indicates there may be a limit to how low the prediction

error can be driven with this setup. Examining the regression figures reveals a larger

range of predictions for intermediate samples in the 1.5-3 wt% Ga range. A potential

cause of this dispersion may stem from inhomogeneities in the pressed pellet caused by

static buildup in the homogenizer capsule. One solution which should be investigated

for future studies is implementing different types of pellet binders to enable proper

dispersion of the minor analyte and form a more homogeneous pellet.

The main takeaway from these results is evident in the LoD values calculated

for the ensemble models. With the exception of the boosted regression, the other

models were able to reach sensitivities below a tenth of a percent. In particular,

the extra trees regression yielded a sensitivity of 0.006%, or 60 ppm Ga. This is an

extraordinary improvement over previous models, indicating that the high resolution

spectra allowed for the creation of much more sensitive prediction models. Achieving
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LoDs in the low tens of ppm for quantification of Ga in Pu with LIBS would be a

significant accomplishment for the Pu production quality control procedure, and this

result indicates that using machine learning paradigms with LIBS data can feasibly

accomplish this goal. The higher LoD of the boosted model must be noted however,

as it barely improved on the LoD of the lone tree. Examining Fig. 69c, particularly

the 0 wt% predictions, reveals higher dispersion of the intercept from the boosted

regression than seen in the other ensemble models. This directly contributes to a

higher σa value, thereby increasing the calculated sensitivity. It is not immediately

clear why the boosted ensemble test regression failed to accurately identify a blank

sample spectra when compared to the other models.

The test results from the three remaining tuned ML models (SVR, GKR, and

ANN) are shown in Fig. 70. Error and sensitivity calculations are listed in Table 20.

The SVR model yielded higher comparative prediction errors to all the tree based

Table 20. SVR, GKR and ANN model test regression error and sensitivity results

Model SVR GKR ANN
RMSEP 0.611% 0.329% 0.399%

LoD 0.098% 0.015% 0.017%

models, and delivered an LoD of 0.098%, better than only the boosted regression.

The GKR and ANN test regressions were able to deliver predictions with errors

comparable to the tree-based models; the GKR actually yielded the regression with

the lowest error seen in this study at 0.329%. While kernel regression methods are

seldom seen in analytical spectroscopy, this result indicates that the methodology

of the gaussian kernel function has significant advantages for solving problems with

complex and non-linear data. Weighting all inputs as a distribution and using all the

input features to form a prediction seems to have allowed this model to yield higher

precision outputs to test data when compared to the tree-based regressions. Both the
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Figure 70. Test regressions showing prediction results from a) SVR b) GKR and c)
ANN models.
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GKR and ANN delivered comparable LoDs at 0.015 and 0.017%; these sensitivities

are superior to all the tree based models except extra trees. It should be noted

that the hyperparameter optimization routine enabled the creation of an ANN model

which finally overcame the overfitting issues which had plagued previous, simpler

ANN models used for spectroscopic analysis earlier in this work. Rather than a

simple feedforward construct, the optimization routine indicated that a trilayer ANN

(20, 10 and 10 neurons in each respective layer) employed with a regularization of

4.96e-5 would minimize prediction loss. This more complex structure, in addition

to implementing a regularization function during training, finally allowed for proper

generalization of the trends in the training spectra and the creation of a regression

model which could output accurate test predictions.

Overall, the results of this ML workflow analysis reveal several important points.

First, that ML paradigms not commonly implemented in spectroscopy, such as the

GKR and extra trees, show great potential for the chemical analysis of complex ma-

terial spectra. The precision and sensitivity metrics yielded in this study indicate

promise for applications to plutonium analysis. We are able to reach tens of ppm

sensitivity levels for gallium detection when employing these ML paradigms. Sec-

ondly, the proper tuning of an ANN architecture can help overcome the overfitting

issues which commonly detriment these models when analyzing complex spectra. Im-

plementing more complex ANN structures and employing regularization can create

significantly more robust predictive models.
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VII. Conclusion

7.1 Summary of findings

This dissertation study encompassed a broad evaluation of different atomic spec-

troscopy techniques and chemical analysis methodologies, in order to demonstrate the

feasibility of alternate approaches for plutonium analysis. Building upon the prior

Master’s thesis results, the capabilities of the SciAps Z series portable LIBS devices

for lanthanide and actinide analysis were fully investigated. While advanced analyti-

cal methods yield great improvments in sensitivity for detection of trace elements in

Pu, other spectroscopic techniques offer several merits as competetive methodologies.

The SciAps Z300 was used for a complete evaluation of different analytical meth-

ods to detect trace elements in plutonium surrogate matrices. Self-absorption was ob-

served and evaluated with the univariate regression methods, and it was determined

that the effects of this plasma phenomenon along with the lower resolution of the

device called for better spectral analysis methods to be employed. Traditional chemo-

metric methods were compared to machine learning constructs, specifically tree-based

ensemble methods. It was determined that using the ensemble regression techniques

yielded great improvements in sensitivity and precision over traditional chemometric

methods, hinting at the promising efficacy of machine learning techniques. A similar

analysis was applied to spectra of actual Pu alloy samples taken with the Z300. It was

clearly demonstrated that the significant interference of Pu emissions with the major

emission lines of analytes such as Fe and Ni call for chemometrics or ML methods to

be applied. PCA, PLS and ANN methods were implemented on this limited data set;

PLSR proved superior but was still unable to reach the sub 100s of ppm detection

limit desired for this problem.

A portable XRF device was employed on Ce-Ga samples to contrast the perfor-
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mance of the LIBS device. The XRF recordings proved much easier to analyze as

even lanthanide metals only have a few notable characteristic emission peaks in an

XRF spectrum. This enabled the creation of significantly improved univariate re-

gressions, whose sensitivities reached the high tens of ppm for Ga, far exceeding the

sensitivity of the LIBS device even with machine learning employed. However, the

univariate calibrations still yielded mean errors in the high single percents. Addi-

tionally, the XRF device requires a significant amount of time to take a meaningful

spectral recording, whereas LIBS can generate a useable spectrum in fractions of a

second. Furthermore, the utility of the XRF for a complete metallurgical quality con-

trol analysis is detrimented by its inability to induce flourescence in elements lighter

than Mg. Quantifying presence of light minor elements in Pu alloys is necessary for

proper quality standards analysis, and a secondary analysis method would have to

be implemented in tandem with the XRF device to detect the presence of lighter

elements. Overall, the results of the XRF investigation indicated that this portable

device has its merits where instantaneous analysis is not required, and high error

percentages are tolerable.

Finally, the results of the portable device investigations pointed to the need to

perform this analysis on a full laboratory scale setup with a high resolution spec-

trometer in order to leverage the efficacy of the machine learning methods and the

resolving power of an Echelle spectrograph. Firstly, a univariate analysis indicated

significant self-absorption behavior in the plasma. This was partially mitigated by

recording at later gate delays albeit at the expense of sensitivity. The higher res-

olution of the laboratory spectra allowed for the use of the major Ga I 417.2 nm

emission for calibration. Subsequently, a self-absorption correction methodology was

formulated and employed based on Stark broadening parameters extracted from the

spectra. This correction yielded order of magnitude lower errors in the calibration,
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and enabled the regression models to reach detection limits comparable to those of

the pXRF. A final comprehensive design experiment was employed to optimize, train

and test several ML paradigms to predict Ga content from cerium spectra. These

optimized constructs were the most superior predictive models, with the extra trees

regression yielding a detection limit of 0.006 wt% Ga. Additionally, the novel Gaus-

sian kernel regression method yielded the lowest RMSEP of all the models from all

three methodologies in this study at around 0.33%. The last main accomplishment of

this optimization experiment was that the ANN model created was able to properly

generalize the spectral relationships and generate a robust prediction model, over-

coming the overfitting issues that previously examine ANN models had succumbed

too earlier in the study.

7.2 Benefits and limitations

This work provides a comprehensive and robust evaluation of different machine

learning methods for a complex analytical spectroscopy problem. It effectively proved

the usefulness and durability of these models for analyzing trace metal content in Pu

and Pu surrogate matrices, even though many of these methods are not typically

applied for analytical spectroscopy. The machine learning regressions created in this

study, along with the employment of a higher resolution spectrometer, show great

promise for enabling precise and rapid measurements of trace metals in Pu alloys

with high sensitivity levels.

The efficacy of a standard laboratory laser for this problem is limited by how

well a laser beam can be directed into a glovebox where plutonium is contained.

Additionally, collecting the spectral emissions from such a setup and directing them

into a spectrometer also pose a significant challenge. The likely solution to overcome

this would be to utilize fiber optic cables for both beam transmission and atomic
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emission collection. The drawback of such a setup would be light attenuation by the

fiber optic cables, as well as possible issues maintaining a stable beam energy between

shots. This work also indicates that the Z300 is more than capable of performing in-

situ analysis of Pu alloys, as was the original goal of this research. However, even with

applying machine learning for the spectral analysis, the sensitivity and accuracy of

this device is inevitably curbed by its limited spectral resolution. The device is more

than capable of yielding measurements with precision to within tenths of a percent

and sensitivities down to the low tenths of percent as well. However, the results of

these experimental proceedings do not indicate that the device can yield detection

limits in the tens of ppm that standard LIBS setups have previously demonstrated.

7.3 Recommendations for future work

• Improving sample quality: Possible inhomogeneities in the surface of the

Ce-Ga pellets may stem from the generation of electrostatic forces on the walls

of the homogeneizer capsule which cause material to clump. This could be

causing improper distribution of gallium in the Ce powder. Developing a new

sample creation methodology with a binder to improve homogenization could

yield more consistent spectra and more sensitive machine learning regression

models.

• Full range investigation of a variety of minor impurities: Investigating

mixed samples containing several different minor analytes of interest is key to

advancing the capabilities of the investigated analytical techniques and pushing

the limits of multielemental analysis. The interferences between different minor

elements could pose an additional challenge to overcome for the machine learn-

ing regression models using LIBS spectra. Additionally it is imperative that

the limits of the handheld XRF be verified by analyzing samples with elements
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Z<11 present.

• Fiber laser LIBS setup: If a higher resolution spectrograph is to be used with

a larger LIBS setup for Pu analysis, propagation of the laser beam into the glove

box, and subsequent transmission of spectral emissions out, poses a hardware

challenge. To adhere to optical safety standards, a proof of concept experiment

can be created coupling the current laboratory laser systems to optical fibers

transmitting the laser photons to the sample and refocusing the beam to induce

ablation. Laser fluence and power loss would have to be evaluated to determine

if fiber-coupled LIBS is feasible with current technology. Additionally, the qual-

ity of spectra recorded from such a setup must be evaluated for signal-to-noise

ratio, LIBS signal stability, and quality of calibrations from the spectra.

• Laser and spectrometer settings: The current laboratory setup has a va-

riety of parameters which can be varied, some of which were investigated in

this study. The lab Nd:YAG lasers have variable power levels, and conduct-

ing a study how laser power affects signal stability and quality of the recorded

spectra could yield useful data for future calibration experiments. Additionally,

a secondary investigation into altering the gate width and gate delay on the

recorded signals can be conducted. Many LIBS measurements use gate delays

past the 1 µs range examined in this study, and it would be of interest to study

the evolution of Ce-Ga emissions over a longer period of the plasma lifetime.

• Double-pulse LIBS: The laboratory setup has the capability to conduct dou-

ble pulse LIBS, and significant graduate level work could be conducted by in-

vestigating the effects of adding a second laser pulse to the current LIBS setup.

The reheating of the plasma from the secondary laser pulse could lengthen some

of the key atomic emissions used for analysis in this study. Double pulse LIBS
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is known to enhance emission signals over background noise and yield more

sensitive calibration models. Finally, the reheating of the plasma plume from

the secondary pulse could have interesting effects on the temperature evolu-

tion of the plasma, and subsequently affect how self-absorption manifests in the

plasma. The potential of a double pulse setup for mitigating SA effects should

be investigated.

• Ultrafast LIBS A full study on using pico or femtosecond laser pulses for this

LIBS analysis would be of great scientific interest. Ultrafast laser pulses interact

with material in a fundamentally different way than nanosecond pulses do. fs

lasers have shown cleaner ablations with no thermal damage to the material,

and no heat transfer between the ablation plume and the trailing laser pulse.

Using an ultrafast laser could potentially yield significant signal enhancement

and improve the quality of LIBS calibrations for cerium or plutonium alloy

analysis.

• Fielding handheld analyzers: Thus far, the handheld analyzers used in

this dissertation work have primarily been used in the controlled laboratory

environment. The work related to these devices that has been done the last few

years indicates these devices have the potential for analysis of not just Pu, but

other actinide elements of interest in nuclear science. Fielding them for on-site

analysis of nuclear debris or contamination would open up a whole new avenue

of capabilities to investigate.
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