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Abstract

This dissertation draws on the fields of heuristic and metaheuristic algorithm devel-

opment, resource allocation problems, and scheduling to address key Air Force problems.

The world runs on many schedules. People depend upon them and expect these schedules

to be accurate. A process is needed where schedules can be dynamically adjusted to allow

tasks to be completed efficiently. For example, the Space Surveillance Network relies on

a schedule to track objects in space. The schedule must use sensor resources to track

as many high-priority satellites as possible to obtain orbit paths and to warn of collision

paths. Any collisions that occurred between satellites and other orbiting material could be

catastrophic. To address this critical problem domain, this dissertation introduces both

a single objective evolutionary tasker algorithm and a multi-objective evolutionary algo-

rithm approach. The aim of both methods is to produce space object tracking schedules

to ensure that higher priority objects are appropriately assessed for potential problems.

Simulations show that these evolutionary algorithm techniques effectively create schedules

to assure that higher priority space objects are tracked. These algorithms have application

to a range of dynamic scheduling domains including space object tracking, disaster search

and rescue, and heterogeneous sensor scheduling.

xi



SCHEDULING FOR SPACE TRACKING AND HETEROGENEOUS SENSOR

ENVIRONMENTS

1. Introduction

The way missions are conducted for our military depends on space. Satellites are used

to communicate with troops, gather intelligence, fly drones, target weapons, etc. These

satellites are not only vulnerable to attack, but also vulnerable to seemingly benign and/or

small space debris [73]. When considering that the speed these objects can reach is 20,000

kilometers per hour or more, the potential destructive energy of even a very small object

becomes very significant.

If a small object can be destructive, consider the old rocket bodies or defunct satellites

of a greatly larger size that can cause catastrophic results. For example, on October 15,

2020, satellite tracking experts doing conjunction assessment of a defunct Russian satellite

and a discarded Chinese rocket body watched their orbits at about 615 miles above Earth.

They narrowly missed each other by 11 meters [64]. This is an example of Resident Space

Objects (RSO) that, if they collide, could start a chain reaction known as the Kessler

Syndrome [58]. The Kessler Syndrome is a concept of colossal cascading collisions of RSO

in which the unstable condition of orbiting objects will eventually collide and break up

into smaller pieces; therefore, increasing the collision rate. This scenario could result in a

debris field so wide that it could inhibit space travel and block sunlight.

The field of scheduling is well studied; yet, in specific areas like satellite tracking

and heterogeneous sensor environments are parts of continued interest for novel research

[7][9][75]. These are the areas that are the focus of this dissertation, which will draw on the

fields of heuristic and metaheuristic algorithm development, resource allocation problems,

and scheduling to address key Air Force problems. The world runs on many schedules.

People depend upon them and expect these schedules to be accurate. A process is needed

where schedules can be dynamically adjusted to allow tasks to be completed efficiently.

For example, the Space Surveillance Network relies on a schedule to track objects in space.

1



The schedule must use sensor resources to track as many high-priority satellites as possible

to obtain orbit paths and to warn of collision paths. Any collisions that occurred be-

tween satellites and other orbiting material could be catastrophic. To address this critical

problem domain, this dissertation introduces both a single objective evolutionary tasker

algorithm and a multi-objective evolutionary algorithm approach. The aim of both meth-

ods is to produce space object tracking schedules to ensure that higher priority objects

are appropriately assessed for potential problems. Simulations show that these evolution-

ary algorithm techniques effectively create schedules to ensure that higher priority space

objects are tracked. These algorithms have application to a range of dynamic scheduling

domains, including space object tracking, disaster search and rescue, and heterogeneous

sensor scheduling.

1.1 Technical Motivation

A 24-hour schedule for sensors tracking satellites is created daily by the SP Tasker

algorithm [8]. SP stands for special perturbations. Miller’s article analyzes the SP Tasker

algorithm [75]. Although the results for SP Tasker show that it does well on its evaluation

metrics (unique track percentage and track response rate), it treats higher priority satellites

the same as other satellites, like space junk. Moreover, it takes most of a 24-hour cycle

to prepare a schedule for the next day. This dissertation further analyzes the algorithm

and presents some novel alternative techniques that perform better with key measurable

parameters.

As part of the Space Surveillance mission, the Geosynchronous Space Situational

Awareness Program satellites will be able to collect pertinent information for more accurate

tracking and characterization of man-made RSO [39]. These objects are launched by at

least 11 countries. Of these countries combined, it is estimated that only about 23,300 of

the 34,000 RSO >10 cm diameter are on orbit right now [17]. Only about 5,600 of these

on orbit RSO are active payloads, because many of them are just space junk [38].

2



1.2 Contributions

The Research Contribution Hierarchy in Figure 1 works from the generic scheduling

problem down to more specific problems and solutions that are novel in this dissertation.

These are the 5 specific areas that are the major contributions to this research. Also briefly

highlighted in this section, there are several minor contributions that are not listed in the

hierarchy to avoid it being too cluttered.

The need to effectively catalog and track an increasing portfolio of RSO provides

motivation to create more effective schedule algorithms geared towards space tracking

using a heterogeneous mixture of sensor environments. This dissertation starts with the

current state of scheduling theory and works towards solving specific real-world problems.

The research presented in this effort concentrates on two main topics: Resource Allocation

Problem (RAP) and the Multi-Objective RAP (MORAP). Specifically, the algorithms

developed focus on applications involving the Satellite Sensor Allocation Problem SSAP

and the Multi-Objective SSAP (MOSSAP).

The full formal mathematical definition for the SSAP is provided. Previously in the

literature, the problem has only been partially defined. The novel Evolutionary Algorithm

Tasker (EAT) solves the SSAP. Another contribution is that the EAT adds priority back

into the tasking system. It does this by using the priority objective defined later. EAT

also performs significantly better than the current system in two out of three key metrics.

The MOSSAP is mathematically defined. It is similar to the SSAP; however, instead

of having a single objective that objective is split into competing objectives (probability

and priority). The novel Multi-Objective EAT (MEAT) solves the MOSSAP. MEAT does

well with the spread metric. Another contribution is the fact that is dissertation explores

various MOEAs with respect to MOSSAP and benchmark problems. Also, the design of

Chapter 3 allows the user to make the tradeoff between which algorithm to use, and which

solution to choose from all the possible solutions provided by software.

Newman et al. [84] wrote an article comparing stochastic optimization approaches

for scheduling satellite sensors. Improvements mentioned in Newman’s article serve as an

inspiration for the work in this dissertation. The algorithm improvements entail contri-
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Figure 1 Research Contribution Hierarchy: Starting with a generic scheduling field, the
research is narrowed to RAP and MORAP. The work is narrowed further to
five specific contribution areas in the bottom row.
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butions of single objective evolutionary algorithm (EA) and multi-objective evolutionary

algorithm (MOEA) solutions to the SSAP. In this dissertation, new refinements are intro-

duced to solve the SSAP problem more effectively according to key metrics of real-world

significance.

Finally, there are a couple more contributions from this dissertation. This disserta-

tion explores various MOEAs and does a scalability analysis. The experimentation also

confirms that NSGA-II and SPEA2 do well with scalability. The scalability analysis is an

important part of this research, because it is good step toward the overall research goal of

solving the Heterogeneous Ariel Sensor Environment Problem (HASEP). The MOEAs are

compared based on changing the number of decision variables. An additional contribution

is the discussion of the HASEP. There are many differences between the SSAP problem

and the HASEP. The objectives are different, and constraints are different.

1.3 Dissertation Outline

Chapter 2 explores the RAP inherent in Space Surveillance Network (SSN), which

protects valuable space-based assets. This leads to the first research questions:

RQ1 : Will the EAT perform better, across key metrics, than existing algorithms on
a full scale SSAP? When compared to the current algorithm that assigns the space
tracking system, where does EAT perform better and where does EAT perform worse
and by how much?

The second chapter seeks to allocate resources to track satellites to obtain the biggest

yield that the present system can handle. This yield is based on three key metrics, which

are track response rate, unique-track percentage, and not-tracked percentage. The SSAP

is mathematically modeled in such a way that both the control and experiment are on a

level playing field. The approaches to the SSAP add priority into the equation so that

the most important satellites are tracked more often. The effectiveness of the approach is

shown in the good results.

Chapter 3 seeks to build upon the key insights gained from developing the single

objective algorithm into a multi-objective algorithm. It does this by splitting the single

objective into two competing objectives. Chapter 3 explores the research questions:
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RQ2 : How well does the MEAT perform in comparison to well-known MOEAs that
have a comparable time complexity? If it does well, what metrics did the MEAT
perform well?

The third chapter develops the novel MEAT that features a hybrid genetic algorithm

approach. Building on the novel algorithm developed in Chapter 3, Chapter 4 changes the

application domain from primarily ground-based assets to aerial and space-based assets.

The EAT and MEAT are designed and developed with specific evolutionary techniques to

perform well on the SSAP. Further experimentation and analysis of the SSAP is conducted

with MOEAs using the jMetal software framework [34]. Chapter 4 examines the research

questions:

RQ3 : Can increasing the decision variables provide good step towards addressing a
real-world scaled problem? Which MOEA performs the best overall with the scalability
analysis?

The fourth chapter provides key insights into understanding the capabilities of such

systems both in the application domain and the computation domain. Three MOEAs are

tested against benchmark problems and scaled to find out which performs better in large

scale environments. Chapter 5 concludes the dissertation by summarizing the answers to

the research questions that have just been outlined.

1.4 Background

This section provides a high-level background covering the most popular approaches

to scheduling problems, as shown in Table 1. It shows an abridged summary of the litera-

ture reviewed. Much more literature is cited throughout this dissertation. For this list see

the bibliography.

In the table there are 9 columns, each of which pertains to a different area of the

hierarchy of scheduling approaches in the literature. The authors on the left side indicate

publications they have written. The dots show the relationship between the authors’ writ-

ings and their scheduling approaches. Baker and Pinedo have written books on scheduling,

sequencing, and planning [7][90]. These books provide in-depth reference material for the

interested reader.
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Table 1 Scheduling Literature Overview

S
ch

ed
u

li
n

g

R
A

P

E
A

M
O

E
A

S
S

A
P

D
y
n

a
m

ic
S

ch
ed

u
li

n
g

A
d

-h
o
c

A
rr

iv
al

E
A

S
ch

ed
u

li
n

g

S
ch

ed
C

A
T

Baker (2009) [7] • • •
Brandenberg [13] • •
Cerqueira [19] • •
Chapman [21] •
Choi [24] •
Coello [26] • •
Deb [30] • •
Durillo (2011) [34] • •
Elliott [37] • •
He (2004) [50] •
Honório [52] • •
Kessler [58] •
Kiekintveld [59] •
Kleeman [60] • • • •
Liu [67] • •
Maheswaran [70] • •
Malve [72] • • • • •
Miller (2007) [75] • •
Nebro (2010)[82] • •
Newman [84] • • •
Osman (2005) [85] • • •
Petrick [87] •
Pinedo (2012) [90] • • •
Pinedo (2005) [89] • •
Rangsaritratsamee [92] • • • •
Reynolds [93] •
Singh (2013) [100] •
Tan [104] • •
Wang (1999) [110] •
Weeden [112] •
Wieder [114] • •
Zhang [122] • •
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1.4.1 Space Surveillance Network. With space debris and satellites adding to the

congestion around the earth, the chances for objects to collide continues to increase. The

sensors in the Space Surveillance Network track objects with the hope of avoiding colli-

sions. However, with the current resources it is impossible to track all satellites, leaving the

potential for unforeseen collisions. Many people around the world depend on satellite tech-

nology like the Global Positioning System (GPS) satellites, which are vulnerable to space

object collisions. Information from GPS satellites need to be transmitted and received in

a timely manner. Any collision could inhibit the ability of the system to work properly.

EAs are used to assign the sensor in such a way to minimize this potential problem.

Like the SSAP, scheduling for real-time systems incorporates a set of tasks that need

to be assigned to sensors. More specifically, it is a priority-based set cover scheduling

problem where most of the information is off-line. Off-line refers to the fact that the

information needed to compute a schedule is available before one begins to process the

tasks. This creates an interesting problem. Namely, it raises the question of how-to best

merge potentially conflicting events into the schedule. Many possibilities emerge as the

algorithm considers a set of heterogeneous sensors to perform the assigned tasks to make

a schedule.

1.4.2 Scheduling Cycle. A 24-hour scheduling cycle works for many systems,

but others like the SSN [9][27][75]. For example, one schedule that has been well studied

is the Air Tasking Order (ATO). The ATO is a schedule used to have joint control over

airborne assets. While having a good plan is desired, with allocating resources ahead of

time, sometimes plans do not work. In addition, plans change with new information. In a

24-hour plan cycle like the ATO, the variables have a tendency to change in the fast-paced

world. Research exists to revise the ATO in real-time [120]. The vastness of space and the

large number of orbital objects makes real-time scheduling an aspirational goal at best,

but the standard ATO serves as an operational scheduling problem that is well understood

and well executed [27].

Tactical space operations regularly change the common space picture, leading to

the need for careful consideration when making assignment decisions. It is desirable to
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have the ability to make a schedule based on sensor management decisions. The task of

assigning sensor collections to associated tracking satellites is like other scheduling systems

that incorporate sets of tasks that need sensors.

Likewise, in the aftermath of a disaster, initial schedules are made as part of the

on-going disaster recovery operations. In these recovery situations, many organizations

bring a variety of tools to help aid wounded people. For search and rescue operations to be

successful, an organized schedule for proper resource allocation is critical. Schedule creation

needs to be made carefully to best benefit the overall health and safety of individuals that

are in danger. Tools, such as satellite information, images, robots, radar, etc. need to be

carefully scheduled to provide the most help to everyone.

The No Free Lunch Theorem tells us that an algorithm tuned for a given problem

and input distribution will likely work poorly if the input distribution and desired output

distribution changes. In the context of this dissertation, we can interpret the No Free

Lunch Theorem as a warning that caution is needed when applying a given approach to

superficially similar problems, as the technique for one may not work well for another [116].

With that said, incorporating problem specific information into an algorithm can greatly

improve its effectiveness.

In scheduling, it is often desirable to have a well-planned schedule. For example,

search and rescue applications may require complex advanced scheduling, covering many

multi-dimensional factors based on current requirements [3]. This is particularly true when

robotics and other automated mechanisms are employed. In this dissertation, evolutionary

algorithms serve as the basis for both types of multi-dimensional planning.

1.5 Dissertation Overview

Chapter 1 presents the state of space surveillance and reviews broad approaches

to solving the problem. Chapter 2 provides an initial research approach by introducing

the EAT as an algorithm, which outperforms a published tasking algorithm. Chapter 3

presents the novel MEAT as a hybrid genetic algorithm in combination with evolutionary

strategy to create solutions to the MOSSAP. Chapter 4 continues to explore the MEAT
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and applies it to a heterogeneous sensor environment. Chapter 5 concludes the dissertation

by summarizing its contributions, summarizes each of the previous chapters, provides final

thoughts, and provides ideas for future avenues of research.
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2. Sensor Allocation for the Space Surveillance Network

2.1 Introduction

Rocket, spacecraft, and satellite builders continue to launch new satellites, which

are causing the exosphere to become more congested. As space becomes more congested,

tracking and knowing the orbits of space objects becomes more important. Once accurate

orbits are determined, collisions and/or damage from space debris can be prevented. Many

key assets, including expensive satellites, manned spacecraft, etc. need to be protected.

Each collision can cause objects to break up into smaller pieces, which could cause future

collisions. Even a small piece can cause significant damage because of the kinetic energy

of these impacts. These are just a few reasons why space surveillance is such a critically

important topic. The purpose of this chapter is to take the first step in an incremental

research model. This step is to introduce the EAT and show its effectiveness.

On March 24, 2012, a piece of debris passed close enough to the International Space

Station that the crew was ordered into escape capsules as a precaution [71]. The object

was spotted too late to move the orbiting laboratory out of the way. The debris came from

a collision between two satellites in 2009 that created 2,000+ pieces of orbital debris. The

problem grows with every collision. Thus, the ability to avoid collisions is critical. Such

a collision could cause what is known as the Kessler Syndrome. It is the idea that one

collision could cause a chain reaction of cascading collisions [58]. This potential catastrophe

could paralyze space exploration if not resolved. Current sensor networks have a limited

ability to track satellites, which is causing problems such as the collision in 2009 and the

more recent close call with the International Space Station [112][113].

The Satellite Sensor Allocation Problem (SSAP) is an issue that needs a good solu-

tion. The SSAP is a type of resource allocation problem (RAP) [75]. The Space Surveil-

lance Network (SSN) is a global network of ground-based radar and optical sites, as well

as space-based visible and other types of sensors [39]. These sensors are used to detect,

track, and catalog artificial objects orbiting the Earth. A key task in satellite surveillance

involves maintaining the satellite catalog, which has been maintained since 1957 [87]. The

orbital information contained in the satellite catalog is used to chart the relative position
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of objects and predict future orbits. These future orbits are used to anticipate collisions

or near collisions between space objects.

The satellite catalog is updated daily with information from satellite sensors. A

relatively small number of high-capacity ground-based sensors are used to track many

Resident Space Objects (RSO). In fact, the space around Earth contains too many RSO

for ground sensors to track. As a result, the sensor schedulers must decide which RSO to

track, among the myriad of possibilities [75][76][77].

This chapter’s development consists of several key parts. First, priority is added to

the model and the algorithms, so all new approaches can benefit from priority. Priority

has been used in a greedy allocation scheme, but with this model, priority is balanced with

probability that limits starvation of lower priority RSO. This way the most important RSO

are tracked more often. Second, the Evolutionary Algorithm Tasker (EAT) is designed and

developed with specific evolutionary techniques to perform on the SSAP. It is a unique

approach as a major extension of a traditional genetic algorithm by modifying and adding

several novel techniques that Section 2.4.1 discusses. It includes an exclusive selection

operator and hybrid Evolutionary Strategy/Genetic Algorithm. The EAT is the first time

to our knowledge that an Evolutionary Algorithm (EA) has been applied to the full scale

SSAP.

This chapter discusses the current space tasking situation and some possible ap-

proaches to solving the problem. Section 2.2 summarizes RSO and the sensors that track

them, as well as related algorithms. Section 2.3 formally defines the SSAP and its rela-

tion to the more generic RAP. These sections, except for the conclusion, are split into two

parts: one discussing a single objective evolutionary algorithm and the other discussing

multi-objective research on the SSAP. Section 2.4 presents the evolutionary algorithmic

approach and the implementation of each algorithm. Section 2.5 discusses the goals and

measurable objectives of experiments. Section 2.6 covers the experimental output and per-

forms a statistical analysis of the data. Finally, Section 2.7 summarizes, offers conclusions,

and recommends ideas for future work.
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2.2 Background

Knowing the present state of SSN is antecedent to discussing solutions. The SSN

includes details on RSO and the sensors that track them. Previous solutions to the SSAP

are also reviewed.

2.2.1 Resident Space Objects in the Earth’s Orbit. RSO are active systems

that communicate information or space junk (consisting of old rocket boosters, retired

satellites, etc.). The SSAP only considers the RSO that are trackable, numbering in the

tens of thousands, see Table 2. The table has three rows based on categories: trackable,

potentially trackable, and untraceable. Each category has corresponding sizes that define

general limits to each category. The estimated population is how many objects around

the Earth exist in each category. The tiny, untraceable objects are estimated to be in the

many millions to billions! However, it is hard to know a more exact amount. The last

column is the potential risk to RSO. Even though these objects are small, they can cause

significant damage. These numbers are updated as of May 2022, but they are expected to

increase rapidly.

Table 2 Three Categories of RSO with Their Definition by Size, Estimated Population,
and Potential Risk [38, 112]

Category Definition (diameter) Estimated Population Potential Risk to RSO

Trackable > 10 cm 36,500 Complete destruction
Potentially Trackable > 1 cm 1 million Complete to partial destruction

Untraceable > 1 mm 130 million Degradation, loss of sensors or subsystems

The image in Figure 2 provides a visualization depicting where the greatest orbital

debris populations exist. About 95% of the objects in this image are non-functioning RSO

as opposed to the relatively small number of active payloads and operational satellites [47].

The objects are scaled with respect to the image size so that they can be seen otherwise,

they would be smaller. As displayed in the illustration, the most concentrated area for

orbital debris is within 2,000 km of Earth. A ring of functioning satellites is about 35,785

km above the equator in geosynchronous orbit. Geosynchronous debris is a threat to these

functioning satellites even at this great distance from Earth [10].
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Figure 2 Depiction of Orbital Debris Surrounding the Earth [47]

2.2.2 Satellite Tracking Sensors. Satellite tracking sensors detect objects and

gather positional information. A single point of positional data is called an observation.

A track is a collection of observations obtained during one pass of a space object [87].

The tracking sensors come in many forms, including various radar systems, optical

telescopes, laser ranging, the International Space Station, other satellites, etc. [39]. Ground

radar sensors form the core of the SSN and perform most of the tracking, which most

commonly use phased-array radar [22]. The second major type of sensor is the optical

telescope. The satellite laser ranging sensors use ultra-short pulses of light to satellites

equipped with reflectors [115].

The Eglin Air Force Base (AFB) phased-array radar is one of the main workhorse

locations in the SSN, accounting for 30 percent of the total world-wide network capacity

[22][91]. Most of the other radars track significantly less RSO per day. For example,

Fylingdales, UK, can track 856 RSO per day, and Thule AFB can track 572 RSO per

day [28][11]. Most, but not all, the sensors have published information about objects

tracked per day. The ones that do not have public information were calculated based on

the published number of active elements for the radar. For instance, if a radar has 7680
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active elements, then a good estimate of how many objects it can track in a day is 900

because many elements are needed to obtain each observation of an object [22][28][11].

Furthermore, if radar has more elements, it will be able to track more RSO.

This chapter focuses on the assignable ground-based satellite sensors. Because the

primary mission of most sensors is missile warning, tracking RSO is secondary to these

sensors. However, a few dedicated sites have satellite tracking as their primary mission.

The SSN has many sensor sites worldwide, totaling around 250 sensors [9]. Currently only

4 (2 U.S. and 2 Canada) are doing Space Based Space Surveillance (SBSS), that is satellites

tracking other space objects, but Utzmann et al. plan to have more satellites in a network

tracking separate areas of space [106][107].

2.2.3 Perturbed Motion. Perturbed motion is relevant because normal two-

body (Earth-space object) motion theory is not enough to accurately predict an orbit

propagation of satellites. Barker explained it well when he wrote, “The actual path will

deviate from the two-body path due to perturbations caused by external mass bodies (e.g.

the Sun, Moon, and planets) and internal forces not considered in Keplerian motion (e.g.

due to the geopotential, atmospheric drag, etc.)” [8]. The two-body motion equation can

be found in vector form in Equation (1), and the perturbed motion equation where the

perturbing accelerations are added to the two-body motion in Equation (2). The perturbing

accelerations, ~̈rP , are a sum of influences like the Sun, Moon, atmospheric drag, etc. Both

equations and more information about the differences between General Perturbations (GP)

and Special Perturbations (SP) are in [8].

~̈r2B = −GM

r3
~r (1)

~̈rT = −GM

r3
~r + ~̈rP (2)

GP models are analytical orbit models, while SP models are numerically based [95].

Some historic GP models are the Simplified General Perturbations model 4 and Position

and Partials as functions of Time 3 [53][54]. It has been known for some time that SP
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models are the preferred way to represent orbital motion [95]. GP models may have

kilometers of inherent prediction error, but SP models have only meters of inherent error

[8][95]. SP models are more accurate because the numerical nature of the model gives it

that ability. From the late 1990’s to early 2000’s new computer techniques were able to

overcome the immense processing power it took to produce the long lists of numbers that

SP models required. Table 3 provides an alphabetized digest of all symbols for Equations

(1) and (2). It also holds many other symbols used in the remaining formulas for the

readers to conveniently reference.

Table 3 Symbol Summary
C the set of capacities ci
ci capacity of the ith sensor
D the set of opportunities or passes dij
dij an opportunity for the ith sensor to track the jth satellite
GM the gravitational parameter

i the index that refers to a specific sensor
j the index that refers to a specific satellite
k the index that refers to a specific daily pass
m number of sensors
n number of RSO
O the set of priorities oj
oj priority of the jth satellite, where 1 ≤ oj ≤ 5
P the set of probabilities pijk

pijk probability of the ith sensor to track the jth satellite on the kth daily pass, where 1 ≤ k ≤ dij
R the set of required tracks per day rj
rj required tracks per day for the jth satellite
r the distance between object centers
~r relative location vector

~̈r2B the two-body acceleration vector acting on the satellite

~̈rP the combined perturbing acceleration vector (sun, Moon, atmospheric drag, radiation, etc.)

~̈rT the total acceleration vector acting on the satellite
s the scaling factor for the EAT scoring value
T the size of the neighborhood for MOEA/D-DE and pMOEA/D-DE
X the output set that is an allocation of sensors tasked to track RSO

xijk number of tracks allocated from the ith sensor to the jth satellite on the kth daily pass

2.2.4 SP Tasker. James Miller developed the SP Tasker at the MITRE Corpora-

tion [75]. The SP Tasker is an algorithm designed to tell the sensors at the ground stations

which RSO to track. The SP Tasker uses SP instead of a traditional general perturbations

method because SP are more accurate. The tracked RSO are recorded in a database cat-

aloging satellite movements [9]. The sensors cannot track all of the RSO every day. The

system needs to calculate whether it will track or ignore each satellite. A sensor is tasked
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when it is assigned an object to track. A satellite is tracked when the sensor receives the

tracking information for the satellite.

The current space tracking algorithm, the SP Tasker, is more effective by several

measures than its predecessor, the Space Defense Operations Center (SPADOC) tasking

process [68]. However, the SP Tasker does not allow for tracking priorities to reflect the

reality that tracking certain RSO is more important than tracking others.

The SP Tasker is compared to the SPADOC tasking process [75]. The SP Tasker

experiments show that it is more effective than SPADOC because it can task more RSO

to the same sensors. On November 9, 2005, the SP Tasker replaced the SPADOC tasking

process to become the operational system tasking the SSN [75]. Since the SP Tasker has

been operational, it has improved the performance of sensor tasking on two important

metrics. The SP Tasker decreased the number of RSO uniquely tracked. The unique-track

percentage is the percentage of tracked RSO that were tracked by only one sensor. If RSO

are tracked by only one sensor, they have a single point of failure, allowing for more risk if

some sensors were unable to track the RSO assigned to them. The SP Tasker increased the

track response rate, which is the percentage of satellite tracks obtained over the number of

tasks assigned to the sensors.

The SP Tasker algorithm for solving this problem is augmented from a marginal

analysis algorithm in Denardo’s Dynamic Programming book [32]. This algorithm solves a

single RAP, and it is extended for the SP Tasker algorithm to solve the multi-RAP [75]. A

version of the SP Tasker is implemented based on the information from the literature for

comparison to the EAT [75][32]. Since the SP Tasker is currently in use, it is the standard

for testing. For balanced testing the three original metrics (unique-track percentage, track

response rate, and not tracked percentage) evaluating the SP Tasker are reevaluated in

experimentation to compare the SP Tasker and EAT.

2.2.5 Evolutionary Algorithm. The choice to develop an EA, specifically the

EAT, to solve the SSAP is because EAs have been shown to perform well on RAP. A

couple examples, of related research where EA work well on RAP, are articles of Osman

and Newman [86][84].
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M. S. Osman uses an evolutionary algorithm approach to solve a multi-objective

RAP [86]. Like the approach Miller uses with the SP Tasker, Osman also uses dynamic

programming techniques to solve a multi-objective resource allocation problem. However,

Osman concludes that the dynamic programming approach can have problems due to the

potential for rapid state explosion. Since genetic algorithms are designed to efficiently

search a large population of points, they should be better with the numerous states in such

cases.

Newman compares a variety of stochastic optimizers to task sensors including an

evolutionary algorithm (EA) approach like the method developed here, but with different

parameters [84]. The EAT simulation size is also much larger and closer to actual sensor and

satellite numbers than those employed by Newman. They compare their EA with a particle

swarm optimizer, a combination of swarm and EA, and a perturbation based stochastic

approach [84]. Their results show the hybrid combination of an EA, and a particle swarm

optimizer did better than the other three approaches; however, these results are from a

small scale test.

2.3 Problem Definition

The goal of the SSAP is to find an assignment of sensors to RSO given specific sensor

and satellite constraints. The first objective is to have a higher accumulative probability of

RSO being tracked and cataloged; the second objective is to have the higher priority RSO

more likely to be tracked [75][84]. The constraints, such as sensor capacity, satellite daily

passes, satellite track requirements, and priority serve as input for the problem and make

it difficult to achieve these objectives. These constraints are based on real world physical

restrictions like the relative location of the RSO and the sensors, the sensors field of view,

and the capacity of each sensor. The model covers these and other physical restrictions in

more detail. Also, the model shows how the complex restrictions reduce to their pertinent

factors.

For a formal definition of the problem, the SSAP consists of a set of sensors and a

set of RSO. The number of sensors is m, and n represents the number of RSO.
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Each sensor can only track a certain number of RSO where ci ∈ C is a positive

integer and denotes the capacity of the ith sensor. The limited capacity of physical sensors

prohibits the sensors from tracking all the RSO. Specifics on the actual capacity of the

sensors are in Section 2.2.2.

Nonetheless, each object has a set number of tracks per day that are necessary for

accurately determining orbital information [75]. The sensors can obtain complete (based

on requirements) tracks for many of the RSO where rj ∈ R is a positive integer and denotes

the required tracks per day for the jth satellite. The required tracks per day are the number

of tracks that the sensors must catalog for the satellite to be considered fully tracked. In

order to obtain a full track, a set of observations must be taken to determine the current

orbital path of the satellite.

This set of observations for a single track can be recorded during one pass of the

satellite over the sensor. Each sensor’s field of view is analyzed, resulting in a daily pass

and corresponding track probability for each time the satellite enters a sensor’s field of

view. Each satellite has a set of daily passes or opportunities to be tracked where dij ∈ D,

where dij is a positive integer and denotes an opportunity for the ith sensor to track the

jth satellite. For example, if satellite, j = 29, passes into the sensor, i = 6, field of view

four times in one day, the amount for that daily pass would be d29 6 = 4. Likewise, if

the satellite does not pass over the sensor in that day, the corresponding daily pass value

would be zero.

The daily pass value is how this model store the location of an object over a sensor.

The exact location of each object cannot be predicted before the schedule or assignment is

produced, but a reliable estimate location is necessary for planning purposes. The model

depends on this location to accurately plan and task the sensors. Each sensor in the SSN

has a specific location. For example, since the location of the Eglin sensor is in Florida,

an object must be expected to be within the sensor’s field of view somewhere close to the

Southeastern United States to register in the model as a daily pass. There are many other

sensors as well. Some ground-based sensors are Ascension, Clear, Cobra Dane, Diego

Garcia, Fylingdales, Globus, and Thule to name a few. Also, space-based sensors are
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GSSAP, NEOSSat, SBSS Block 10, Space Tracking and Surveillance System, Sapphire,

and more [1][29].

Each pass has a track probability which is determined by range and radar cross

section. When considering how the range influences probability, an object being further

from the sensor corresponds to a lower probability of receiving a good signal. The radar

cross section is the object’s ability to reflect a radar signal back to the receiver. The

ability to reflect the signal impacts track probability settings as well. The track probability

pijk ∈ P denotes the probability of the ith sensor’s ability to track the jth satellite on the

kth daily pass where 1 ≤ k ≤ dij .

The imagery in Figure 3 illustrates the relationship between daily passes and track

probability. This pedagogical example has three sensors (1-3) and fourteen satellites (A-

N). The satellites are labeled by letters to mark the current locations and the wavy lines

to describe their next few hours of orbit. The sensors are dots on the map with concentric

circles emanating from the middle. This image has many notable events. As the simulation

progresses the first event is satellite C doing one of its daily passes over sensor two about

eight minutes into simulation time. Then satellite J is over sensor one at fifty-three minutes,

followed by M over two at sixty-one minutes. The last event easily seen in this two-hour

window is D over one at ninety minutes. Satellite D clearly goes over sensor one, but it

does not cross close to the center like the other satellites did. This pass will get a lower

probability because there may not be enough time in the sensors field of view to obtain the

observations necessary for a complete track. Note: Sensor three looks like it is all alone

at this snapshot, but if the simulation continues even with this small number of satellites;

E will pass over it at 126 minutes. It is also important to remember that each time a

satellite is recorded to be over a sensor that implies the sensor can see the satellite in its

field of view. Systems Tool Kit (STK) is a product of Analytical Graphics Inc. (AGI) [5].

STK includes, but is not limited to, simulating ground and space objects as they interact

with each other. STK produced this image, but all the algorithms are implemented, and

experiments completed outside of STK.

The track probability and the priority are both important aspects of this proposed

approach. Every satellite has a priority where oj ∈ O denotes the priority of the jth
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Figure 3 STK Example: Displays Three Sensors (1, Cavalier; 2, Eglin; 3, Kwajalein) as
Concentric Rings and Fourteen Satellites (A-N) with Their Orbital Lines [5]
(Traci Greve enlarged the labels for better visibility in Photoshop [2]).

satellite. The priority range is 1 ≤ oj ≤ 5 with 1 being the most important. Priority is

mainly based on the significance of the satellite and potential loss in the event of a collision.

For instance, active RSO are a higher category like 1, 2, or 3, and inactive RSO or debris

are in categories such as 4 or 5. The five categories are adequate to address the diversity

of importance among RSO [23][87].

The orbit accuracy of a satellite causes differing priority levels as well. These levels

can be assigned based on calculations of the orbit error covariance, which is a good measure

of orbit accuracy [51]. In order to reduce the error in estimating the orbit of a satellite,

more error prone RSO are given slightly higher priority.

All of these parameters (C,R,D, P,O) serve as input to a tasking solver. The output

is an allocation of sensors tasked to track RSO X where xijk ∈ X is a Boolean value and

denotes the track allocated from the ith sensor to the jth satellite on the kth daily pass

(1 = true and 0 = false). A set X is part of the chromosome for the EAs.

2.3.1 Resource Allocation Problem. As previously noted, the SSAP is a specific

form of RAP and can be categorized in the class of general theoretic scheduling problems.

Since the SSAP involves multiple sensors, it is essentially a multi-RAP. Toshihide Ibaraki
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and Naoki Katoh proved that this problem is NP-Hard [55][16]. No one can expect to find

an optimum solution in polynomial time; therefore, a polynomial time heuristic algorithm

is needed to provide a sub-optimal but good solution to this problem in a timely manner.

The EAT is such a heuristic, and the EAT is also a precise mode-approximation solution

to this specific form of resource allocation.

A RAP tries to distribute scarce resources among many activities and can be de-

scribed using a linear programming model. In this case, the resources are the sensors, and

the activity involves tasking the sensors to track RSO. A linear programming model can

define explicitly both single and multi-objective formulations for the SSAP. This model

incorporates all of the pertinent factors for the daily SSAP.

2.3.1.1 Single Objective Problem. To officially map the SSAP to an RAP,

the following linear programming model is created, where the objective is to maximize

Equation (3).

m∑
i=1

n∑
j=1

dij∑
k=1

pijkxijk (3)

Subject to the following linear constraints:

n∑
j=1

dij∑
k=1

xijk ≤ ci ∀i (4)

0 ≤
dij∑
k=1

xijk ≤ dij ∀i ∀j (5)

And soft constraint:

m∑
i=1

dij∑
k=1

xijk = rj ∀j (6)

The first objective in Equation (3) is to maximize the summed probability of tracking

as many RSO as possible. The limited sensor resources do not allow observers to track
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all the RSO, so the objective to maximize the probability of cataloging as many RSO as

possible. To put it another way, the objective maximizes the probability of tracking all the

RSO that are scheduled to be tracked. The higher the probability, the greater likelihood

additional RSO will be tracked.

If the algorithm assigns sensor i the task to track satellite j on its kth pass, then pijk

is added to the summed probability objective. Otherwise, if the sensor i is not assigned to

track satellite j on pass k, then pijk is not added to the sum because xijk = 0 = false.

The constraints model the real-world limitations inherent to the space tracking prob-

lem. The first set of constraints in Equation (4) prevents the total number of allocated

tracks for the ith sensor from exceeding the capacity ci of that sensor. This ensures that

each sensor is not over assigned.

The second set of constraints in Equation (5) keeps the algorithm from allocating

more tracks xijk than the daily passes dij or opportunities to track the satellite. The

system cannot track an object more times than it physically exists above the target.

The final set of constraints in Equation (6) ensures that the algorithm’s selected

tracks meet the required number of tracks rj for each object if possible. In order to obtain

complete information about each object, the requirements must be met; however, since

this is a soft constraint, the algorithm can obtain at least partial requirements on some

RSO even if a full track requirement cannot be met. This partial information is better

than nothing when the analysts are trying to determine risk of collision.

2.3.1.2 Multi-objective Problem Formation. The model defined in the pre-

vious section focused on single objective optimization, but this approach also uses multi-

objective optimization on the SSAP. For a multi-objective problem, another objective is

needed in addition to Equation (3). The goal is to maximize Equations (3) and (7) subject

to the constraints in Equations (4)-(6). Therefore, the probability objective is defined in

Equation (3); the priority objective is defined in Equation (7).

m∑
i=1

n∑
j=1

dij∑
k=1

xijk
oj

(7)
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This priority objective is to maximize the ratio of allocated RSO to the corresponding

priority. The allocated tracks xijk are divided by the priority oj . The summation is

designed to ensure the highest priority RSO affect the objective value more than the lower

priority RSO. For example, if xijk = 1 and oj = 2, then values would translate into a

larger impact on the total sum than other scenario of xijk = 1 and oj = 5 (i.e. 1
2 > 1

5).

Accordingly, each of these values is summed up where the higher priority RSO have more

significance.

2.4 Computation Domain

In the computation domain, the algorithms are developed and detailed. The first is

the EAT single objective evolutionary algorithm. The other algorithms are a few Multi-

Objective Evolutionary Algorithms (MOEA) using the two objectives of probability and

priority. These heuristics are based on the mathematical model and parameters result in

good resource allocation (i.e. an assignment of sensors to track RSO).

Genetic algorithms are search methods that emulate biological natural selection and

survival of the fittest [4]. They start with a “population” of solutions to the problem.

Then they use a series of selection, recombination, and mutation to potentially improve

the solutions. The individual solutions can also be called a genotype or chromosome. A

chromosome is a specification of the solution to the problem.

Table 4 Example Strand of Chromosome: Holds All the Assignment Values xijk for
Sensor Zero.

x000 = 0 x010 = 1 x020 = 0 x030 = 0 x040 = 0 x050 = 1 x060 = 1 x070 = 0

x001 = 1 x011 = 0 x021 = 1 x031 = 0 x041 = 1 x051 = 0 x061 = 0 x071 = 1

x002 = 0 x012 = 0 x022 = 1 x032 = 0 x042 = 0 x052 = 0 x062 = 0 x072 = 1

Both single and multi-objective problems use the same chromosome definition for

a solution to the SSAP. Each individual chromosome is a random assignment of RSO to

be tracked by the sensors that is constructed with the capacity, probability of obtaining

a track, and the daily passes. The initial assignments are the sensors being randomly

assigned RSO to track that are feasible based on the constraints. For example, if the daily

pass does not exist then that assignment cannot be made. The capacity is the length of
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each strand. A strand is only part of a whole chromosome. The daily passes dictate the

depth of each individual column. For a small example to illustrate one strand see Table

4. This tiny example strand shows only 8 satellites allowing for the whole strand to be

displayed. The core of the strand is the xijk Boolean values because that is where the

assignment decisions are delineated.

Table 5 Chromosome Structure: A strand for each sensor is combined to form a chro-
mosome, where the varying width represent the different capacities.

X0 X1 X2 X3 X4 X5 X6 X7

One strand for each sensor combines to make a full chromosome. The chromosome

seen in Table 5 has a strand for each sensor, and the width of each column is based on

the capacity of that sensor. The X0 represents the entire set of xijk values sensor 0. The

capacity values do not change for the experiments because each sensor capacity is set

to correspond to the capabilities of that real-world sensor. Each sensor cannot exceed

its capacity ci set by constraint Equation (4). Each xijk is a solution of Boolean values

summed for each sensor satellite pair. It must be greater than or equal to zero and less

than or equal to the daily passes for each pair. The values of xijk are dictated by constraint

Equation (5) in this manner.

2.4.1 Evolutionary Algorithm Tasker. The core operating principle for the EAT

is that a “good” evolutionary algorithm should explore the solution space and exploit the

good individuals it finds. In comparison with the SP Tasker approach, the EAT is in a

separate category of optimization algorithms altogether. This means the algorithms are

structured very differently. The SP Tasker is based on the idea of Marginal Analysis. For

Marginal Analysis to work, the function must exhibit decreasing marginal return, which

is synonymous with concavity [32]. Because the RAP has a concave function, the SP

Tasker can work, knowing that if it tasks a satellite to be tracked after that satellite has

already been tracked several times, each additional track will have decreased the value of

return. More details on the SP Tasker and its Marginal Analysis approach is available in

the literature [32][75].
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The EAT is an evolutionary algorithm that is a hybrid Evolutionary Strategy (ES)

and Genetic Algorithm (GA). Considering the parameters (capacities, daily passes, proba-

bilities, requirements, and priorities) the EAT starts by generating an initial population of

64 possible individuals. The range is also limited to 64 children generated. Given the large

size of the chromosome, the population and range of the ES are limited to aid computa-

tional efficiency. EAT generates a new population at each iteration based on the previous

or initial population, as shown in Figure 4. A traditional GA does a single selection in

which the entire selected population is treated the same, but this algorithm uses two differ-

ent ways of selecting individuals to split the population into two parts and eventually four

parts. The first part keeps the best 25% of the individuals from the previous generation

like the elitist strategy of Goldberg [41]. This ensures a “healthy” portion of the best

solutions already found are kept. Since priority is a part of the fitness metric, the EAT

selects solutions with a higher likelihood of containing more important satellites. Other

approaches like the SP Tasker and Newman’s EA do not calculate fitness based on priority

[75][84]. The second 25% is a distinctly random subset from the previous generation to

explore the solution space stochastically. This keeps the population spread out over the

solution area without much computing power. All individuals in the initial population

are available for random selection to prevent loss of genetic diversity, which could result

in the solution getting stuck at a local minima. Keeping the entire parent for the next

generation is not like a traditional GA, because traditional GA would only keep a genetic

recombination of the parent.

These two groups are then used to derive the other two groups. Some of the tech-

niques used in the EAT are related to those found in research that combined Evolutionary

Strategies (ES) and Genetic Algorithms (GA) [15][42], but the EAT has some different

techniques. Typical ES only do the mutation step to introduce change [63] [96]. Like an

ES, the EAT performs only a mutation on the best evaluated individuals. This way the

algorithm tries to exploit the best individuals of the population. The third 25% of the

new generation is the result of point mutations based on the best 25% already found. A

point mutation is a small alteration to a good solution that potentially improves the in-

dividual. This small change is applied by removing one satellite assignment from a sensor
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Initial Population 

 New Population 

Random 25% 

Crossover Point Mutation 

Best 25% 

Figure 4 EAT Generation: Starting with an Initial Population the Best 25% individuals
and a Random 25% are selected for the New Population. Then a Point Muta-
tion is performed only on the Best Set, and a Crossover is performed only on
the Random Set.

and replacing it with another satellite assignment. In early testing the mutation rate is

a standard 0.05, but it is incremented while producing slightly better solutions until it

peaked at 0.25. Thus, the EAT uses 0.25 as the mutation rate.

As well as exploiting the population, the EAT is designed to explore the solution

space. The algorithm does this by using a standard two-point crossover [101]. However,

it differs from most literature because the crossover is performed without a following mu-

tation. The mutation is such a small change compared to the crossover recombination.

The EAT performs a two-point crossover on the 25% random solutions already chosen to

form the final 25% of the new generation. A new set of two random points are selected as

crossover points for each generation, but the crossover points are fixed during the crossover

operations for each generation. The next generation creates two new random points for

crossover. The crossover itself is performed at a high rate of 100%, meaning that at every

potential crossover point the crossover is performed. That sounds very high, but if should

be remembered that the EAT is selecting only 25% of the overall population to make
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FUNCTION generateNextGenerat ion ( currentPopulat ion , s c o r e s )

newPopulation = emptySet ; // i n i t i a l i z e to empty s e t
bes tSet = best25 ( currentPopulat ion , s c o r e s ) ;
newPopulation = bes tSet ; // add 25 b e s t i n d i v i d u a l s to new popu la t ion
randomSet = random25 ( currentPopu lat ion ) ;
newPopulation += randomSet ; // add 25 random ind i v . to new popu la t ion
// do po in t mutation and add them to new popu la t ion
newPopulation += mutateParent ( bes tSe t ) ;
// take 2−po in t cros sover and add them to new popu la t ion
newPopulation += twoPointCross ( randomSet ) ;

return newPopulation

Figure 5 EAT Next Generation Pseudocode: The function generateNextGeneration
takes the currentPopulation and forms a newPopulation through selection, mu-
tation, and crossover.

this extreme change. The crossover is a stronger change with the goal of finding a good

individual in an area not yet explored.

The EAT then evaluates the population by giving a score to each individual deter-

mined by its probability and coverage requirements. The individual with the best score

is found and archived. Subsequent generations are likely to find a better individual who

replaces the best solution each time until the algorithm converges. The algorithm termi-

nates when it converges on a best solution, or 1000 iterations are reached. The count of

1000 is chosen from the varied initial parameter testing to save computational resources.

The individual with the best score is the final output.

For more information the pseudocode is provided in Figure 5. This code shows that

each of the four parts is created from the current population and is added in succession to

make a new population.

2.4.2 Multi-Objective Evolutionary Algorithm. Not only does single objective

algorithm work on the SSAP, but also MOEAs work on the SSAP as well by separating

the single objective into both probability and priority parts. The well-known evolutionary

algorithms are used like MOEA/Decomposition-Differential Evolution (MOEA/D-DE) and

the parallel version, pMOEA/D-DE [65][82][122]. The DE represents an extended version

of MOEA/D using differential evolution as the main search engine [67].
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Nebro and Durillo further developed the MOEA/D-DE to create a parallel version

pMOEA/D-DE [82]. In Figure 6, a flowchart of the parallel version shows which pieces of

the algorithm execute in parallel and which parts must execute sequentially.

Both MOEA/D-DE and pMOEA/D-DE are initialized with the same four steps,

which are to initialize the weight vectors, neighborhood, population, and ideal/reference

point consecutively [122]. In any MOEA, the individuals in a population have their own

weight vector that algorithm uses to compare potential individuals. Both algorithms use

the weight vectors, so the initialization step creates a weight vector for each individual

that is evenly spread across the solution space. Once the weight vectors are created,

Euclidean distances can be calculated between them. These distances are analyzed to find

the T closest weight vectors, where T is the predetermined size of the neighborhood. Each

vector has an initial neighborhood that is the T closest vectors. The third initialization

step is to generate a population based on problem specifications. Lastly, an ideal point or

reference point is selected beyond the Pareto front to help drive the solution toward this

goal [122].

At this point, the pMOEA/D-DE starts to differ from the MOEA/D-DE. Next the

pMOEA/D-DE determines which set of indices or population group are run on each of the

available threads. Then, the algorithm iterates until the termination condition is met.

At each iteration a probability is generated to select whether the neighborhood mat-

ing pool (local) or the entire population mating pool (global) is used for selection and

recombination. After recombination, these algorithms perform a polynomial mutation

that is detailed in their article [82]. The new individuals are evaluated to determine their

fitness value. Finally, the pMOEA/D-DE updates the ideal point and solutions. More

information on updating ideal/reference point and updating solutions can be found in Li

and Zhang’s work [65], and full pMOEA/D-DE pseudocode can be found in Nebro and

Durillo’s work [82]. The pMOEA/D-DE works similarly to other MOEAs by keeping/up-

dating a set of solutions from which the decision maker picks. The main differences are

the decomposition into subproblems with weighted vectors and the neighborhood mating.
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Figure 6 The pMOEA/D-DE Flowchart: Illustrating Sequential Components of the Left
and the Parallel Components on the Right [82]
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2.4.2.1 Algorithmic Complexity. MOEA/D-DE and pMOEA/D-DE are

memetic algorithms. Memetic algorithms do not focus only on global search, but also use

local search techniques to explore a neighborhood and reduce computational complexity

[33]. MOEA/D-DE has computational complexity of O(MNT ) where M is the number of

objectives, N is population size, and T is the number of neighbors [122]. Many common

MOEA have computational complexity of O(MN2) [30][65][124]. Since T is less than N,

MOEA/D-DE has a lower computational complexity. The smaller complexity is due to the

MOEA/D-DE algorithms employing a local search instead of a global search. They only

consider the neighborhood of subproblems to determine the mating pool.

Computational complexity is important because the SSN is on a 24-hour tasking

cycle, meaning the sensors get a new assignment every day. Given this, the run-time should

not take longer than one day. The dominate factor in the computational complexity of the

metaheuristic selected is the number of RSO. Since simulation needs to track many RSO,

the algorithmic time has to be a computationally efficient polynomial.

2.5 Experimental Design

Two sets of experiments are run. The first set relates to the single objective EAT,

which has its own measurable objectives. The other set of generated measurements re-

lates to the multi-objective approach implemented in jMetal. The jMetal framework is

“an object-oriented Java based framework for multi-objective optimization with meta-

heuristics” [83]. The framework has implemented several multi-objective algorithms and

benchmark MOEA problems ready for experiments. Users have many options to experi-

ment with inside jMetal, some of which are to develop their own algorithms or solve their

own multi-objective optimization problems. Another environment considered is the MOEA

Framework, which would have been a good option, but jMetal has an easier implementa-

tion and well-planned design [44]. In fact, MOEA Framework makes use of some of the

jMetal metaheuristic code.

2.5.1 Evolutionary Tasker Algorithm Design. The SP Tasker and the EAT are

compared with four metrics. The first metric is the not-tracked percentage, which is the
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percentage of RSO that did not receive any tracks at all. The lower the not-tracked

percentage the better, because the target is to track as many RSO as possible.

Second, the unique-track percentage, previously mentioned in Section 2.2.4, should

be minimized. For example, if a sensor is the only one assigned to track a satellite and

the sensor cannot perform a full track for some reason; other sensors may be able to track

the satellite. The fact that most sensors manage tracking as a lower priority task means

that this activity is subject to interruptions (highest priority is missile warning). If that

occurs, the impact on satellite tracking would be significant, especially if sensor 0 fails (X0

and P0 of the first strand of the chromosome representation in Table 5). If it was just the

worst-case sensor that fails, thousands of satellites would not be tracked.

The third metric is the track response rate defined as number of tasked tracks re-

ceived/number of tasked tracks, which should be maximized. In other words, the track

response rate is the percentage of how often the satellite assigned to a sensor is being

tracked. The track response rate should be maximized. The final metric is the run time,

which should be minimized and should finish within the 24 hours.

Both implementations of the SP Tasker and the EAT are given the same data sets

and are run 50 times to form a solid statistical base for analysis of variance testing. Also,

the input data is generated from random seeds. The simulation tests are constructed so

that they apply many factors that exist in the real-world SSAP. Some of these real-world

factors are the number of sensors and RSO, sensors’ fields of view, locations of both sensors

and RSO, capacities of the sensors, etc. The application uses m = 8 sensor sites and use

n = 20, 000 RSO. The set of sensor capacities, C, is the known capacity of each sensor site

ranging from 400 ≤ ci ≤ 10, 000, which is detailed in Section 2.2.2. The SSN Optimization

Study determined the required number of tracks per day, R, for the SSN to meet the US

Strategic Command Capstone Requirements Document accuracy requirements [102]. The

set of daily passes, D, and set of probabilities, P , are based on an STK simulation for a

24-hour period. The satellite priorities, O, are set based on mainly risk of loss, which is

detailed in Section 2.3.

32



The EAT scoring is based on priority and probability, shown in Equation (8). The

priority can be a partial measure of a sensor-satellite assignment, and the inverse prob-

ability can also be used as a partial measure of quality for a sensor-satellite assignment.

Summing these two measures gives (oj) + (1 − pijk), which does not yield good results.

Because priority ranges from 1-5, the priority dominates the probability that ranges from

0-1. This can lead to starvation for the lower priority RSO. To limit starvation a better

formula is developed by adding a scaling factor to give the probability more strength re-

sulting in Equation (8). The scaling factor is four and is used in the experiments which

are determined from initial testing.

(oj) + [s× (1− pijk)] (8)

2.5.2 Multi-Objective Design. Both evolutionary algorithms have parameters

that are set in the same manner to form a consistent baseline for testing and comparison.

Each algorithm has a population size, 100; distance vectors, 100; maximum evaluations,

25,000; distribution index, 20; and crossover probability, 90%. The distribution index is

the same for both crossover and mutation. If the EA allows too many evaluations or allows

the population size to grow too large, the algorithm may not finish within the required

24-hour window mentioned in Section 2.4.2.1.

2.5.2.1 Implementation in the jMetal Framework. The jMetal4.3 software

package is well designed from base components that allow for relatively easy problem

implementation [35]. The goal is to implement SSAP to run against a couple of MOEAs

and examine the differences. Figure 7 shows a UML (Unified Modeling Language) diagram

illustrating how the SSAP Class is implemented in the jMetal Framework. The base of

jMetal has abstract classes, such as Algorithm and Problem. The specific metaheuristic

algorithms, like MOEAD or pMOEAD, extend from the abstract class Algorithm. Likewise, the

implemented SSAP extends from the abstract Problem. Note: the jMetal code calls these

algorithms MOEAD and pMOEAD even though they are MOEA/D-DE and pMOEA/D-

DE, respectively.
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jmetal.metaheuristics.moead

pMOEAD_main

pMOEAD
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ProblemAlgorithm
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ProblemAlgorithm
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MOEAD_main
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Figure 7 The jMetal UML Diagram with the SSAP Class Inside the “problems” Package,
MOEAD and pMOEAD Classes Inside the “metaheuristics” Package

2.5.2.2 Performance Metrics. The mathematical model and performance

metrics allow for the objective evaluation of various allocation algorithms. A performance

metric is an evaluation measurement by which algorithms are compared and ranked. Some

desired goals for measuring a Pareto front are generational distance (GD), spacing, and

maximum spread [104]. However, the preferred quality indicators are Pareto dominance

compliant because they are based on dominating individuals. The Pareto compliant quality

indicators applied are hypervolume, epsilon indicator, R2 indicator, and R3 indicator [26].

The final utility indicators R2 and R3 are designed to measure the difference in the

mean distance of the attainment surfaces, A and R [46]. The array A is an MOEA solution

set, and R is the relaxed Pareto front. Simply put, these indicators reveal how far each

solution is from the relaxed Pareto front. The closer the indicator is to zero, the closer the

solution is to the front. The pMOEA/D-DE does better than MOEA/D-DE because its

solution R2 value is lower and R3 value is the closest to zero.

Even though the true Pareto front (PF), PFtrue is not obtainable, the relaxed Pareto

front derived from simulations can serve as PFknown. The term “relaxed” refers to a Pareto

front that is not the PFtrue but can improve the evaluation metrics because PFknown is

created in terms of true function evaluations. To obtain the relaxed Pareto front, it is better
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to use a variety of MOEAs since no single MOEA has a proof of convergence to the true

Pareto-optimal solutions. For an approach similar to the one used in Laumanns’ approach,

an archive of experimental solutions is kept from all multi-objective algorithms ran on the

SSAP (e.g. SPEA2, NSGA-II, MOEA-D/DE, pMOEA-D/DE, PAES, OMOPSO, etc.)

[65][30][124][62][61][99]. Unfortunately, SPEA2, NSGA-II, PAES, and OMOPSO were not

able to produce enough points for full experimental testing; however, they are able to

produce enough points to improve experiments involving the relaxed Pareto front, PFknown.

This archive is used as the best relaxed Pareto front of all the experiments run in the tests.

2.6 Results and Analysis

All the experiments are run on AFIT’s Linux cluster called Nordic. The computer

architecture of this is listed in Table 6. The table depicts the number of nodes, the

number and speed of the processors, the amount of memory per node, and the speed

of the communication back-plane between nodes. It also displays the sum total of these

attributes. The experiments are run with jMetal which supports parallel metaheuristics.

Since this jMetal version can evaluate solutions in parallel, even traditionally non-parallel

algorithms like MOEA/D-DE can take advantage of some parallel processing [83].

Table 6 Computer Architecture: Showing the Number of Nodes, the Number and Speed
of the Processors, the Amount of Memory per Node, and the Speed of the
Communication Backplane of AFIT’s Nordic Linux Cluster

Nodes Processors Memory Back-plane

10 16 x 2.3 GHz 4 GB 10 Gigabit
2 32 x 2.2 GHz 16 GB 10 Gigabit

Total 12 224 processors 72 GB -

2.6.1 Evolutionary Algorithm Tasker Results. In this section, the results of both

the SP Tasker and the EAT approaches are compared. Table 7 provides a statistical

analysis of the data. The experimental variability is very low, but each of the 50 runs has

a unique seed that generates close, but unique, results as seen in Table 8. The first column

of Table 8 is the seed used for that run. The remaining column headers start with SP or

EA for the SP Tasker and EAT, respectively. Each column header also ends with a metric
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Figure 8 SP-Tasker and EAT: The Track Response Rate Mean (higher is desired),
Unique-Track Percentage Mean (lower is desired), and Not-Tracked Percentage
Mean (lower is desired) are shown as bars of fifty runs, potential range 0-100.

identifier NT (Not-Tracked Percentage), UT (Unique-Tracked Percentage), and TR (Track

Response Rate).

Table 7 SP & EAT Statistical Data: The Average, Standard Deviation, Median, Maxi-
mum, Minimum, and T-Test (two sets are significantly different)

Not Tracked Unique Track Track Response
SP EAT SP EAT SP EAT

Average 37.839 35.628 50.466 32.008 89.943 79.930
Std. Dev. 0.853 0.250 0.882 0.342 0.140 0.188
Median 37.888 35.640 50.408 32.010 89.930 79.918

Max. 39.315 36.135 52.360 33.015 90.261 80.410
Min. 35.950 35.195 48.980 31.315 89.623 79.462

T-Test 1.984E-22 1.393E-63 8.319E-82

The average for all those runs is presented with 99.9% confidence intervals in Figure

8. A confidence level of 99.9% indicates a corresponding significance level of 0.01% or

p-value under 0.01. This confidence level has been used in all cases comparing EAT to SP

Tasker, which means that the differences are unlikely to have occurred by chance with a

probability of 99.9%. The t-test and box plots reinforce the confidence intervals conclusion
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Table 8 EAT and SP Tasker Raw Data Table: The Full Result of All Fifty Runs
SEED SPNT EANT SPUT EAUT SPTR EATR

484486 39.315 35.720 48.980 31.940 90.050 80.119
939958 38.310 35.360 49.935 32.255 89.851 80.109
87429 37.795 35.780 50.685 32.270 89.920 80.142
82013 36.355 36.040 52.025 31.455 89.861 80.122
12619 37.425 35.715 51.080 31.810 89.923 79.965

549597 37.485 35.755 50.875 31.795 89.939 79.877
69095 37.865 35.735 50.520 32.240 89.938 79.811

317481 37.645 35.590 50.770 31.815 89.808 80.117
940194 39.135 36.010 49.270 31.705 90.100 79.895
757261 36.115 35.735 51.900 31.995 89.982 80.072
122379 38.460 35.540 49.925 31.930 89.919 80.080
818529 37.530 35.545 50.890 31.945 90.096 80.112
521407 37.800 35.440 50.360 32.395 89.903 80.002
17554 35.950 36.135 52.355 31.315 89.768 79.784

761961 39.140 35.675 49.025 32.105 89.980 80.102
240309 38.185 35.985 49.925 31.675 89.709 79.880
957083 38.805 36.020 49.560 31.320 89.989 80.215
924668 37.955 36.020 50.230 31.575 90.045 79.716
679060 38.300 35.195 50.170 32.515 89.876 79.770
550037 38.850 35.735 49.375 32.140 89.969 79.761
475376 39.060 35.710 49.105 32.365 89.994 80.147
716207 37.595 35.355 50.530 31.990 90.247 79.860
362016 38.410 35.195 50.075 33.015 89.770 79.816
324448 37.825 35.655 50.425 31.955 90.084 80.160

9673 37.905 35.480 50.620 31.935 89.906 79.735
323681 36.495 35.345 51.840 32.220 89.910 79.837
602484 38.985 35.570 49.260 32.145 89.900 79.462
196921 37.815 35.695 50.365 32.075 89.781 79.929
707985 36.860 35.545 51.445 32.095 90.149 79.602
335060 37.455 35.315 50.560 32.205 90.170 80.064
643501 37.645 35.735 50.610 31.955 90.020 79.801
876769 38.895 35.990 49.150 31.650 89.996 80.128
278613 38.020 35.400 50.555 31.940 89.623 79.939
638099 38.495 35.245 49.895 32.375 90.092 79.571
574294 38.470 35.455 49.660 32.005 90.261 80.099
769655 38.420 35.230 49.985 32.895 89.795 79.852
353646 36.860 35.605 51.550 32.035 89.880 79.790
572707 37.280 36.030 51.050 31.460 89.759 79.945
331625 38.265 35.255 50.155 32.440 89.711 79.724
990813 36.805 35.415 51.720 32.020 89.941 80.012
634839 37.870 35.415 50.400 32.185 89.759 79.915
136460 36.715 35.485 51.610 32.080 89.918 80.173
328564 38.230 35.750 50.055 32.110 90.089 79.895
481641 36.005 35.625 52.360 32.015 89.918 79.783
575691 36.880 35.660 51.410 31.625 89.836 80.410
159425 37.930 35.990 50.415 31.550 89.835 79.922
298980 38.110 35.825 50.060 31.895 90.042 79.691
15498 38.675 35.465 49.575 32.145 89.943 79.900

749041 37.240 35.720 51.215 31.750 90.043 79.942
392783 38.305 35.495 49.800 32.080 90.162 79.744
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that these data sets are significantly dissimilar. The raw data in Table 8 shows how the

data has very low variability, which results in high confidence.

Each set of data is tested for normality to prepare for the significance tests, and

the normality tests show that all data are normally distributed [97]. For each significance

test or t-test, the null hypothesis is equality between the SP and EAT data sets. For

example, when comparing SP Tasker Not-Tracked Percentage (SPNT) with EAT Not-Track

Percentage (EANT), the null hypothesis would be SPNT=EANT. The null hypothesis is

tested to determine if there is a statistically significant difference between the two sets

of data. Since the value is very low (<< 0.05) for all three pairs of data, each null

hypothesis is rejected. Therefore, the t-test is evidence that each set of data are different,

for comparison of the SP Tasker and EAT. To enumerate: the SP Tasker track response rate

data is statistically different from the EAT track response rate; the SP Tasker unique-track

percentage data is statistically different from the EAT unique-track percentage; and the

SP Tasker not-tracked percentage data is statistically different from the EAT not-tracked

percentage.

The SP Tasker had a higher track response rate than the EAT, as seen in Figure

9. The track response rate is the only metric where the SP Tasker performed better than

the EAT. The SP Tasker mean is 89.943 compared to 79.930 for the EAT. This is to be

expected, because the SP Tasker only focuses on the probability, while the EAT strives

toward a greater goal of balancing probability and priority.

When it comes to redundancy and accuracy, the EAT does a “better” job at the

unique-track percentage as seen in Figure 10. The EAT mean is 32.008, and the SP Tasker

mean is 50.466. A greater percentage of RSO are tracked by more than one sensor. This

ensures that more RSO are tracked in case a sensor fails or must yield to the higher priority

of the missile warning system.

The EAT has a lower not-tracked percentage, which is better than the SP Tasker, as

seen in Figure 11. The EAT mean is 35.628 compared to 37.839 for the SP Tasker. The

EAT shows the ability to obtain at least one track for more RSO.
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Figure 9 Track Response Rate Box Plot: The plot presents the difference in data sets
where the SP performs better.
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Figure 10 Unique-Track Percentage Box Plot: The plot presents the difference in data
sets where the EAT performs better.
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Figure 11 Not-Tracked Percentage Box Plot: The plot presents the difference in data
sets where the EAT performs better.

The EAT ran on average approximately fifty times faster than the SP Tasker. The

longest single run time of the SP Tasker is almost nineteen hours. This time is like the

SP Tasker Performance experiment by Concetto Giuliano and Francis Chun et. al. [40].

Their results on a cluster of sixteen CPUs achieved a time of just less than twenty-four

hours; their results on a cluster of fifty CPUs achieved a time of approximately twelve

hours. The run time measurement does not matter as much as the other measurements

unless the time violates the 24-hour cycle threshold, but as the amount of RSO grows in

the coming years the EAT has a large margin under the 24-hour threshold.

2.6.2 Multi-Objective Results. For experimentation in jMetal, the SSAP imple-

mentation has both the previously defined objectives and constraints from the program-

ming model defined in Section 2.3.1. The two MOEAS (MOEA/D-DE, pMOEA/D-DE)

solve the SSAP, producing the following results.

2.6.2.1 Additional Variables for Constraints. For problems like the SSAP

that are restricted by several constraints, it is hard to find feasible solutions because the

constraints restrict the problem for small sets of variables [69]. In initial experimentation

with a small number of RSO (< 4000), the algorithms struggle to form a Pareto front of

solutions. To produce a highly populated Pareto front, more variables need to be added.

In Figure 12 the additional variables of more RSO allow the EAs to find more feasible
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Figure 12 MOEA/D-DE and pMOEA/D-DE Points on Pareto Front: The points on the
Pareto Front increase as the number of input satellites increases.

solutions resulting in more points on the Pareto front. The problem lends itself to many

RSO. For the 20,000 trackable RSO, the EAs can find solutions where nearly all of their

points are on the Pareto front!

2.6.2.2 Pareto Front. Figure 13 shows the two approximate Pareto fronts

from each algorithm’s solution. The points shown are the best non-dominated points

generated by more than forty runs of each algorithm. The decision makers must choose a

solution from the Pareto front to use. The scatter plot of points shows that the pMOEA/D-

DE can generate better points for most of the area, but not the lower-right side of the plot

where MOEA/D-DE achieves better points. If the decision maker wants to favor the

probability of tracking the most RSO, they would choose a point from the upper-left side.

Conversely, if the decision maker wants to favor the priority of tracking more important

RSO, they would choose one of the points in the lower-right side. For a balanced approach,

the decision can be one of the solutions in the middle.
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Figure 13 MOEA/D-DE and pMOEA/D-DE Pareto Front: Probability on the vertical
axis is competing with priority on the horizontal axis for the SSN Resources
while the MOEAD and pMOEAD solutions are on the plot.

Table 9 Quality Indicators: Mean and Standard Deviation for Each Indicator (Ep-
silon, Hypervolume, Generational Distance, and Spread) and Each Algorithm
(MOEA/D-DE & pMOEA/D-DE)

Indicator MOEA/D-DE pMOEA/D-DE
Epsilon Mean 3.05e + 05 3.42e + 05

Std. Dev. 7.5e + 05 7.9e + 05
Hypervolume Mean 0.8767 0.8907

Std. Dev. 0.1052 0.0959
GD Mean 0.0172 0.0173

Std. Dev. 0.0099 0.0085
Spread Mean 0.9563 0.9490

Std. Dev. 0.0591 0.0471

2.6.2.3 Quality Indicators.

The quality indicators used to measure each algorithm’s performance are epsilon,

the hypervolume, the generational distance (GD), and the spread. These quality indicator

values can be found in Table 9.

The epsilon indicator measures the translation distance between two approximate

sets. The epsilon indicator calculates the smallest amount that must be used to translate
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set, A, so that every point in set B is covered. If the mean epsilon indicator is greater than

one, then both contain solutions not dominated by the other set [26]. If the epsilon is one,

then both sets are the same Pareto front approximation. If the epsilon less than one, then

all points in set B are dominated by a point in set A. However, the desired outcome is still

the smallest epsilon value, which is achieved by the MOEA/D-DE that has the smallest

epsilon.

The hypervolume measures the volume, or in this case, the area of the two-dimensional

dominated portion of the objective space. The pMOEA/D-DE has a slightly higher hy-

pervolume than MOEA/D-DE, but the numbers are within one standard deviation of each

other.

The GD is the average distance of the known algorithmic front to the relaxed Pareto

front. The MOEA/D-DE produced a slightly larger value for GD, meaning that it is further

away from the relaxed Pareto front.

Finally, the spread or spacing is a metric that describes how the vectors in the known

front are spaced. It measures the distance between neighboring vectors in the known front.

The spread value is zero where all vectors are evenly spaced. The pMOEA/D-DE value

is closer to zero, or more evenly spaced than the MOEA/D-DE value, but again they are

still within one standard deviation of each other.

The R2 and R3 indicators from the SSAP experiments are in Table 10. As explained

earlier in Section 2.5.2.2, the R2 and R3 values are desired to be closer to zero, which

means the pMOEA/D-DE performed better.

Table 10 R2 and R3 Indicators: For MOEA/D-DE and pMOEA/D-DE

MOEA/D-DE pMOEA/D-DE

R2 174552 85407
R3 0.0683 0.0334

The pMOEA/D-DE slightly outperformed MOEA/D-DE for five out of six of these

multi-objective quality indicators (epsilon, hypervolume, GD, spread, R2, and R3), but

the values are not different enough to be statistically significant.
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2.7 Conclusion

This chapter adds priority into the SSAP model and presents a novel solution tech-

nique. This solution is the novel EAT which is a single objective evolutionary algorithm.

Both the SP Tasker algorithm and the EAT are implemented to solve the SSAP. The EAT

can assign more RSO to be tracked and have more RSO tracked by multiple sensors. On

the other hand, the SP Tasker has slightly higher success at tracking the RSO that receive

sensor tracking assignments. The EAT run time is much quicker, which could allow for a

reduced cataloging cycle and/or have room for expansion of the current catalog.

The EAT algorithm holds great promise to update the space tracking system. Po-

tentially the EAT or a similar evolutionary algorithm can be the next tasking algorithm.

With further refinement, the EAT can conceivably improve its track response rate results

to become better than the SP Tasker.

The second solution technique is applying two MOEAs to the SSAP. The two MOEAs

are pMOEA/D-DE and MOEA/D-DE. They did well when tested against the SSAP. Em-

pirical results suggest the highly restrictive constraints of the SSAP can be met by ad-

ditional variables. In Section 2.6.2.3, the pMOEA/D-DE is shown to be slightly better

than the MOEA/D-DE in all but one of the tested quality metrics. Examination of the

quality indicators shows the difference between the MOEAs. The MOEA experiments are

useful because they show a computationally efficient and quality MOEA approach to the

multi-objective SSAP. They also give the decision maker more flexibility in deciding which

solution to choose.

The experimental results provide a quantitative basis for improved tracking, leading

to decreased risk of collision. Further experimental testing could measure the not-tracked

percentage, unique-track percentage, and track response rate of the multi-objective algo-

rithms. This information could validate the case for a new evolutionary algorithm ap-

proach.

Further research could be done to develop new approaches, using both single objective

and multi-objective solutions that use priority to track more important RSO. The current

system considers expensive operating payloads and broken pieces of debris equally. A
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new system that increases the track locations and orbits of higher priority RSO would

better serve the purpose of protecting space assets. With any new development, priority

can be a key piece of measurement. A metric such as the number of priority satellites

not tracked would be a good addition to the assessment. Another multi-objective option

using a commercial off the self product called ACE Premier Intelligent Resource Optimizer

(AceIRO) should be a branch of future work. Triet Tran used this commercial off the self

product, AceIRO, to run a multi-objective resource optimization to task sensors in the

SSN [105]. Their experiment only used hundreds of tasks, but further research could scale

this up to a more realistic size.

The results from this study and further research could provide a more an effective

way to detect collisions like the one in 2009 and the near miss with the International Space

Station in 2012. With each collision the problem grows worse and closer to a catastrophic

Kessler Syndrome situation. Evolutionary algorithms can be the answer to avoid such a

catastrophe. A novel solution called EAT shows improved sensor allocation performance

for all but one metric, and the SSAP model improves on current/previous systems.
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3. Multi-Objective Evolutionary Algorithm Tasker

3.1 Introduction

Many government agencies are trying to tackle the problem of space debris. Coor-

dination is key because the limited assets of separate states are better when added to a

multiple pronged approach to address the issues [12]. Additional satellite constellations

should not be added to Low Earth Orbit (LEO) unless careful planning and resources are

used to mitigate the space debris. Companies like SpaceX, OneWeb, Boeing, and others

are planning large satellite constellations in the already congested LEO region. To get an

idea of how much this would impact the current state of the space catalog here are the

numbers: The United States Space Surveillance Network (SSN) is currently tracking about

44,000 objects with about 19% being operational satellites, 14% being old rocket bodies,

and 67% being debris. The set of operational satellites is dramatically larger in the last

decade from about 5% because of massive increase in satellite launches. SpaceX plans to

add at least 4,425 satellites into LEO by 2024 [14, 18]. In total, the number of additional

satellites proposed by these companies is between 14,041 and 15,601. This all increases

the chance of a costly collision between Resident Space Objects (RSO).

Although these companies have plans to minimize their space debris, there will be

a very large increase in the catalog in a short amount of time. Some of these large-

scale satellite constellations have already been approved by the Federal Communications

Commission. These companies all have plans for minimizing space debris. The literature

indicates that ground or space-based lasers could be used to knock debris into a lower orbit

or even a decaying orbit [88][98]. Although this presents an interesting approach, currently

the application of such technology is prohibitively expensive. Limiting the number of RSO

is the best practice [113].

These issues are not limited to LEO. Satellites in Geosynchronous Equatorial Orbits

(GEO) are at risk of collision from debris as well, even though these satellites tend to

have deep space orbits. Space assets are in international space. Yes, there are assets in

GEO over specific ground locations belonging to that territory, but most of the time even

geosynchronous satellites can service more than one continent, let alone multiple countries
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with its area of service. Currently, many countries have interests and property in space.

Data-sharing can help improve Space Situational Awareness (SSA) by taking advantage

of all the global resources [94]. Global leaders have worked together on some international

efforts like the European Space Agency, Space Data Association, Secure World Foundation,

etc. These organizations have differing technical abilities. In an environment where radar

sensors, optical sensors, etc. are present as SSA resources, it is important to take advantage

of each sensor’s unique abilities and strategic locations. The hybrid sensor situation lends

itself to evolutionary optimization because of the vast array of states to explore.

There are many hybrid MOEAs [15, 117, 121]. The algorithm design shown in

this chapter follows the same pattern as that of this algorithmic class. Characteristic

techniques include point mutation and/or capitalizing on the best individuals. The novelty

of the new algorithm starts with the application space operations, especially the SSN and

other combined capabilities of the algorithm. Satellite applications are important to the

future, and systems based on satellites must be dependable. Work has been done to make

satellite applications more reliable [118]. While there are many hybrid MOEAs, few use

an evolutionary strategy or genetic algorithm as a part of their approach. The closest

to Multi-objective Evolutionary Algorithm Tasker (MEAT) is an algorithm which uses an

evolutionary strategy one part design [121]. Altogether the approach used in the MEAT

is a novel line of research.

3.1.1 Short Survey. The previous chapter developed the Evolutionary Algorithm

Tasker (EAT) for experimentation and research. This chapter augments the EAT into the

Multi-objective Evolutionary Algorithm Tasker (MEAT) to further this line of research. In

preview, this chapter discusses the model and implementation of multi-objective methods

to specific scenarios of RAP for orbital information. First is the background knowledge in

Section 3.2 that includes basic definitions of the SSN, genetic algorithms, and summarizes

the sensor resources. Section 3.3 categorizes the multi-objective model as a RAP. Section

3.4 presents the optimal approach and application of the problem, as well as the goals

and measurable objectives of experiments. Section 3.5 covers the experimental output

and performs statistical analysis of the data. Finally, Section 3.6 summarizes the key
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points, offers concluding remarks, and advocates ideas for future work. For the reader’s

ease of understanding and quick look up, the following Table 11 provides a list of acronym

definitions.

Table 11 List of Acronym Definitions Alphabetically
AFSIM Advanced Framework for Simulation Integration and Modeling
DM Decision Maker
EAT Evolutionary Algorithm Tasker
ESSS European Space Surveillance Sensors
GD Generational Distance
GEO Geosynchronous Equatorial Orbit
HV Hyper-Volume
ISON International Scientific Optical Network
LEO Low Earth Orbit
MOEA Multi-Objective Evolutionary Algorithm
MEAT Multi-Objective Evolutionary Algorithm Tasker
MOES Multi-Objective Evolutionary Strategy
MOEA/D Multi-Objective Evolutionary Algorithm Based on Decomposition
MOGA Multi-Objective Genetic Algorithm
MOGLS Multi-Objective Genetic Local Search
NP-Hard Nondeterministic Polynomial-time Hard
NSGA-II Non-dominated Sorting Genetic Algorithm II
PF Pareto optimal Front
RSO Resident Space Objects
RAP Resource Allocation Problem
SSAP Sensor Satellite Allocation Problem
SSA Space Situational Awareness
SSN Space Surveillance Network
SPEA2 Strength Pareto Evolutionary Algorithm
ZDT Zitzler, Deb, Thiele

3.2 Background

The current environment in space surveillance is complicated. Being aware is impor-

tant. When considering possible solutions understanding the environment in space is key.

Figure 14 demonstrates the congestion in the exosphere and lower regions of space [81, 48].

Knowing the objects orbiting is only part of the battle, because people are depending on

the information gained from satellite systems. With many international players and many

possible algorithmic solutions to the SSAP, it is best to know the history and current

research in these areas.

The focus of this chapter is two-fold. First, the SSAP is discussed regarding the

development and use of a jMetal study including a problem set and test suite. Second, a

fundamental comparison is made between MOEAs with benchmarks and quality indicators.

This image shows a global problem that needs a global solution.
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Figure 14 Image showing low earth region where the debris is the most concentrated.

3.2.1 Overview of Space Surveillance Networks. Much more collaboration could

be done without compromising each country’s security concerns. Some countries have many

space surveillance assets, while others have few or even none. Without the ability to see

into space well, these states need to rely on others to launch satellites or risk the potential

for collision before the satellite even gets into an operational orbit. Since 2016 Australia

has really increased their capability of tracking space assets by conducting experiments

and using various sensors track RSO [78]. RSO are all objects that are orbiting earth,

including active systems and space junk (consisting of orbital debris, old rocket boosters,

etc.) The Canadian Space Surveillance System has a satellite, Sapphire, that adds space-

based, sensor-tracking abilities [74]. Sapphire is also feeding information to the United

States SSN. The SSN is the most extensive space surveillance system with ground-based

sensors in all four quadrants of the global. Europe, China, and Russia have their respective

systems as well [78]. India, Japan, Kazakhstan, Korea, and Ukraine have smaller networks

also [108, 20].

Table 12 summarizes open and available data for the sensors that could be tasked

worldwide, and the table is not meant to be a comprehensive diagram of all sensors [108].
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Table 12 Satellite Tracking Sensors
Organization Phased Array Optical Radar Other

China 3 9 - -
ESSS - 12 8 1
ISON - 28 - -

Russia 15 2 - -
United States 20 24 16 11

Other 3 13 3 -

It shows a large set of passive sensors. The total count of passive sensors is probably over

250 [9]. Passive sensors track RSO that are not actively participating in tracking. Another

group of sensors are called active sensors. These active sensors track satellites that are

designed to aid in the tracking by reflecting the signal or generating a response signal. A

few examples of these are satellites equipped with transponders or equipped with mirrors

to reflect laser-ranging signals. In Table 12, ESSS stands for European Space Surveillance

Sensors, and ISON stands for International Scientific Optical Network. Nearly all these

sensors do many other important tasks besides observing orbital debris.

The SSN tracks current RSO and catalogs them by recording the state of orbital

objects. The current Space-Track catalog has a current listing showing the present state

of RSO [18]. Historically, the catalog holds tens of thousands of items, but many have

already decayed into the atmosphere and burned up. The catalog only contains objects

that are trackable, generally greater than 10cm in diameter [112]. Many millions of objects

are smaller than the generally observable size. The small objects still have the potential

to damage assets despite their size.

3.2.2 Metaheuristic Techniques. Metaheuristics is a class of approximation algo-

rithms. They come into play often because many problems are to computationally complex

to obtain an optimal answer in a reasonable amount of time. Metaheuristics provide “ac-

ceptable” solutions in a timely manner [103]. As formerly noted, the SSAP is a specific

form of the RAP. Because the SSAP involves multiple sensors, it is a multi-RAP. Toshihide

Ibaraki and Naoki Katoh proved that this problem is nondeterministic polynomial-time

hard (NP-Hard) [55]. This means that no one can expect to find an optimum solution in

polynomial time; therefore, a polynomial time heuristic algorithm is needed.
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One of many possible heursitics is the Multi-objective Evolutionary Algorithm Based

on Decomposition (MOEA/D). Decomposition is a simple strategy in multi-objective op-

timization where the problem is broken up into sub-problems. The MOEA/D uses such

a strategy. Once the magnitude optimization sub-problems are created, each problem is

solved and optimized concurrently [67, 122]. Each sub-problem is improved by using infor-

mation from its neighboring sub-problems. The neighborhood technique instead of a global

technique allows the MOEA/D to have lower computational complexity at each generation

than Multi-objective Genetic Local Search and non-dominated sorting genetic algorithm II

(NSGA-II) [30, 56]. The neighborhood size of MOEA/D was experimentally investigated

considering scalability and the sensitivity. Zhang and Li found that the computational cost

linearly scaled up when the number of decision variables increased. However, the regular

MOEA/D does not work well with highly constrained problems like the SSAP [31].

A special version of Constraint-Handling NSGA-III works toward the purpose of

maintaining a population with more feasible solutions [31]. Focusing on constraints is good

because the infeasible solutions are useless in the end. Many MOEAs consider Pareto dom-

ination during selection, but the constraint-domination principle values feasible solutions,

while still considering the usual domination principle [124, 30].

NSGA-II has a smaller computational complexity than NSGA-III [31]. The NSGA-

II procedure is run later for the results and analysis [30]. NSGA has many versions like

NSGA-IIss, aNSGA-II, and rNSGA-II [36, 45, 83]. NSGA-IIss is an augmentation to use

steady-state selection instead of generational selection which the original applies [36]. After

evaluating all these versions in the literature, the NSGA-IIss was chosen as the most likely

to do well on the SSAP specifications.

Strength Pareto Evolutionary Algorithm 2 (SPEA2) has a fine-grained fitness assign-

ment strategy, a density estimation technique, and an enhanced archive truncation method

[124]. SPEA2 focuses on two main aspects of the algorithm the mating selection and envi-

ronmental selection. In mating selection, the SPEA2 employs a partial elitist strategy of

keeping individuals with the best fitness values and incorporating the density information

to avoid groups all packed in the same general area of the search space. For the environ-
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mental selection, SPEA2 also relies on making sure that the boundary solutions are kept.

SPEA2 reaches better results on all considered problems than several other MOEA [124]

A basic MOGA does a single selection in which the entire selected population is

treated the same, but this algorithm has two different ways of selecting individuals. MOES

performs a mutation on only the best individuals. [6]

Many real-world optimization problems are multi-objective, meaning they have two

or more competing objectives. In this case, no single solution can optimize all the ob-

jectives simultaneously. Instead, Pareto optimal solutions are achievable for reasonably

sized problems that try to optimize all objectives at once, given the constraints. The

Pareto optimal front (PF) is the set of all the Pareto optimal solutions in the objective

space. The PF spread of solutions are interesting to the decision maker (DM) for practical

purposes [26]. The DM chould choose which solution to use. MOEAs are a good fit for

multi-objective problems because they can produce an approximate PF very quickly in a

single round [109]. They are frequently strong to latent objective function traits [26, 66].

Evolutionary algorithms approaches have been found to be advantageous for automatic

processing applications with an abundance of data. MOEAs do well at refining turbulent

data via excellent parameter selection, allowing significant information to be found [80, 79].

3.3 Problem Definition

The EAT is a single objective algorithm that has shown promising results with the

specific RAP called SSAP [43]. Some of the same techniques in the EAT are used in the

multi-objective version called MEAT, such as the ES and GA strategies. This chapter

investigates why the MEAT performs well on the RAP and investigates whether it will

work well on other problems. In order to figure out this inquiry, MEAT is compared to

other well-known MOEAs and run against the same set of benchmark problems.

The specific benchmark problems selected are the Zitzler, Deb, Thiele (ZDT) problem

set [123]. The following are reasons why the ZDT benchmarks are selected. The originators

of this problem set designed them to present MOEAs with different problem features. This

way it is possible to identify whether the MEAT is successful or not on each kind of problem.
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These benchmark problems are common in the literature. They are readily available in

the jMetal framework to be implemented straight away.

The results only reflect that the MEAT works effectively on the benchmarks tested.

To know if the MEAT works well on other problems beyond the ones tested here, they will

have to be tested individually because of the No Free Lunch Theorem [116]. The MEAT

is developed to present a novel approach to solving MOEAs with the combination MOGA

and MOES techniques.

To give a brief context to the problem, the SSAP consists of a set of sensors and a

set of RSO. The number of sensors is m and n represents the number of RSO. The set

of observations for a single track can be recorded during one pass of the satellite over the

sensor. Each sensor’s field of view is analyzed, resulting in a daily pass and corresponding

track probability for each time the satellite enters a sensor’s field of view. Each satellite

has a set of daily passes or opportunities to be tracked where dij ∈ D, and where dij is

a positive integer and denotes an opportunity for the ith sensor to track the jth satellite.

For example, if satellite, j = 18, passes into the sensor, i = 4, field of view four times in

one day, the amount for that daily pass would be d18 4 = 3. Likewise, if the satellite does

not pass over the sensor in that day, the corresponding daily pass value would be zero.

Each pass has a track probability, which is determined by range and radar cross

section. When considering how the range influences probability, an object being further

from the sensor corresponds to a lower probability of receiving a good signal. The radar

cross section is the object’s ability to reflect a radar signal back to the receiver. The

ability to reflect the signal impacts track probability settings as well. The track probability

pijk ∈ P denotes the probability of the ith sensor’s ability to track the jth satellite on the

kth daily pass where 1 ≤ k ≤ dij .

Every satellite has a priority where oj ∈ O denotes the priority of the jth satellite.

The priority range is 1 ≤ oj ≤ 5 with 1 being the most important. Priority is mainly

based on the significance of the satellite and potential loss in the event of a collision. For

instance, active RSO are a higher category, such as 1, 2, or 3, and inactive RSO or debris
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are in categories such as 4 or 5. The five categories are adequate to address the diversity

of importance among RSO [87][23].

The goal is to maximize both Equations 3 and 7 from Chapter 2 subject to the

constraints. They are copied to Equations 9 and 10 below for convenience.

m∑
i=1

n∑
j=1

dij∑
k=1

pijkxijk (9)

m∑
i=1

n∑
j=1

dij∑
k=1

xijk
oj

(10)

The model defined in the previous literature has the full formal problem definition including

the long list of constraints [43]. The single objective SSAP is transformed into the mutli-

objective SSAP (MOSSAP) by Equations (9) and (10). The first objective in Equation

(9) is to maximize the summed probability of tracking as many RSO as possible. The

limited sensor resources do not allow observers to track all the RSO, so the objective

to maximize the probability of cataloging as many RSO as possible. To put it another

way, the objective maximizes the probability of tracking all the RSO that are scheduled

to be tracked. The higher the probability, the greater likelihood additional RSO will be

tracked. The priority objective in Equation (10) is to maximize the ratio of allocated RSO

to the corresponding priority. The allocated tracks xijk are divided by the priority oj . The

summation is designed to ensure that the highest priority RSO affect the objective value

more than the lower priority RSO. For example, if xijk = 1 and oj = 2, then values would

translate into a larger impact on the total sum than the other scenario of xijk = 1 and

oj = 5 (i.e. 1
2 > 1

5). Accordingly, each of these values is summed up where the higher

priority RSO has more significance.

3.4 Experimental Design

The approach of using MOEAs on the SSAP is preferred because MOEAs have

been shown to perform well on RAP [84, 86]. The well-known algorithms like SPEA2, and
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NSGA-II are used as a baseline comparison. Both algorithms have been tested and verified

to perform well on many problems including RAP [111].

Many research efforts only used terrestrial observers which was a safe assumption

because there was only one orbital observer, the International Space Station, taking a

few observations [43]. However, recent space-based surveillance is not as easily ignored.

Now that there are more orbital observers and they are growing in number quickly, the

simulation considers both terrestrial and orbital observers.

3.4.1 Multi-Objective Evolutionary Tasker Algorithm Design. MEAT mating

selection is important because those are the individuals used for offspring production.

Mating selection needs to be done carefully to avoid problems. For example, if mates are

selected based on fitness alone, then the search could get stuck at local maximum instead

of exploring the entire search area.

The main principle of the MEAT is that a good search algorithm should explore

the solution space and exploit the good individuals it finds. The MEAT is designed with

an MOES part to exploit the best solutions and a MOGA part to explore the solution

space. The combination results in the ability to find good solutions while avoiding the

drawbacks of these techniques used separately. The selection operator employs these elitist

and exploration methods.

3.4.2 Performance Metrics and Quality Indicators. Pareto Compliant Quality

Indicators consist of the error ratio, hyperarea ratio (hyper-volume), epsilon indicator, and

utility R1 and R2 indicators [26].

Generational Distance (GD) [119] measures the closeness of the solutions to the

relaxed PF. The closer the individuals are to the PF the better. Of course, finding solutions

on the optimal true PF would be ideal, but that is not always possible. GD will calculate

how close the overall solution approaches the PF.

The Hyper-Volume (HV) measures both closeness and diversity. It measures how

close the resulting solutions are to the true PF, or in this case, the relaxed PF. HV also

measures the diversity of the solutions by analyzing the individuals to see their similarities
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and differences. The fact that both closeness and diversity are measured with HV makes

it a Pareto compliant quality indicator. Thus, HV is the preferred measure.

The spread is a metric concerning the spacing of solutions. A PF is less useful if the

solutions are all bunched together. Preferably the solutions would be spread out to cover

the objective space uniformly. The spread is a measure quantifying how well the PF is

evenly spaced.

Regarding the decision maker (DM) and the process of selecting a solution, it is a

probability versus priority decision. For example, if the DM wants higher priority satellites

tracked more often on a given day, the DM will choose a solution lower on the PF. If the

DM wants a balanced solution, the DM will select a solution in the middle. If the DM

prefers tracking a larger number of RSO, then the DM would pick a solution toward the

left side of the PF.

3.5 Results and Analysis

Table 13 SPREAD. Mean and Standard Deviation
NSGAII SPEA2 MEAT

ZDT1 3.30e − 012.2e−02 3.20e − 011.5e−02 3.79e − 014.2e−02
ZDT2 3.75e − 014.9e−02 3.45e − 013.9e−02 3.28e − 015.3e−02
ZDT3 7.46e − 011.3e−02 7.28e − 012.0e−02 6.76e − 012.0e−02
ZDT4 3.28e − 012.8e−02 8.76e − 015.1e−01 4.37e − 013.4e−02

Table 14 SPREAD. Median and Interquartile Range
NSGAII SPEA2 MEAT

ZDT1 3.39e − 014.2e−02 3.21e − 012.9e−02 3.64e − 018.1e−02
ZDT2 3.78e − 019.8e−02 3.63e − 017.3e−02 3.22e − 011.1e−01
ZDT3 7.39e − 012.4e−02 7.39e − 013.5e−02 6.71e − 013.8e−02
ZDT4 3.17e − 015.2e−02 9.70e − 011.0e+00 4.27e − 016.5e−02

Table 15 GD. Mean and Standard Deviation
NSGAII SPEA2 MEAT

ZDT1 2.18e − 041.4e−05 4.01e − 048.9e−05 3.62e − 041.4e−04
ZDT2 1.42e − 045.2e−05 2.40e − 044.5e−05 4.46e − 043.2e−04
ZDT3 1.30e − 041.2e−05 2.11e − 044.8e−05 4.38e − 036.8e−03
ZDT4 2.18e − 049.1e−05 4.44e − 025.8e−02 5.32e − 035.4e−03

Table 16 GD. Median and Interquartile Range
NSGAII SPEA2 MEAT

ZDT1 2.19e − 042.8e−05 3.76e − 041.7e−04 4.04e − 042.6e−04
ZDT2 1.58e − 041.0e−04 2.42e − 049.0e−05 4.37e − 046.3e−04
ZDT3 1.33e − 042.4e−05 1.90e − 048.9e−05 5.74e − 041.2e−02
ZDT4 2.41e − 041.8e−04 2.32e − 021.1e−01 3.64e − 031.0e−02

The benchmarks used for comparison and analysis of the results are from ZDT. These

benchmark test problems are processed by the MEAT, NSGA-II and SPEA2. The results
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Table 17 HV. Mean and Standard Deviation
NSGAII SPEA2 MEAT

ZDT1 6.60e − 012.2e−04 6.56e − 014.5e−04 6.25e − 012.4e−03
ZDT2 3.27e − 016.4e−04 3.24e − 017.9e−04 2.97e − 011.6e−03
ZDT3 5.15e − 011.9e−04 5.11e − 012.0e−03 4.80e − 012.5e−02
ZDT4 6.59e − 011.1e−03 6.58e − 014.1e−04 6.00e − 012.5e−02

Table 18 HV. Median and Interquartile Range
NSGAII SPEA2 MEAT

ZDT1 6.60e − 014.1e−04 6.56e − 019.0e−04 6.26e − 014.5e−03
ZDT2 3.27e − 011.2e−03 3.23e − 011.4e−03 2.98e − 012.9e−03
ZDT3 5.15e − 013.7e−04 5.12e − 014.1e−03 4.93e − 014.4e−02
ZDT4 6.58e − 012.0e−03 6.58e − 017.6e−04 6.08e − 014.8e−02

are displayed in Tables 13-18. The HV and GD show us that the NSGA-II is the strongest

algorithm with the chosen ZDT problem set, because it performed well in the majority

of the metrics. However, research has shown that NSGA-II is a robust algorithm, and

the interest lies in how the novel MEAT compares with other algorithms. Regarding the

spread, the MEAT did better than both NSGA-II and SPEA2. Since the spread is a judge

of spacing, the MEAT obtains better uniformity of solutions. Specifically, the MEAT did

better on problems ZDT2 and ZDT3.
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Figure 15 Pareto Front of NSGAII

3.6 Conclusion

MEAT is a novel algorithm that can solve multi-objective problems with comparable

numbers, especially with the spread of solutions. MEAT works well for some specific

application areas like the SSAP, ZDT2, and ZDT3. More research is needed to figure out
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Figure 17 Pareto Front of MEAT
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what characteristics of these three problems contributes to the MEAT’s high performance.

Every application of MEAT is going to be different because of the No Free Lunch Theorem.

That said many RAP applications have similar characteristics. MEAT is built on these

characteristics. The purpose is to have a system that can be tuned and tweaked as needed

to meet the requirements of a new application. In future research it would be beneficial to

have a visualization to show what would happen based on the results for the SSAP.

Future work, Advanced Framework for Simulation Integration and Modeling (AF-

SIM) is a framework for simulating many different missions and has visions of being a

comprehensive simulation domain for many important operations [25].
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4. Tasking for Sensors in Space with Hybrid GA and ES Algorithm

4.1 Introduction

In Chapters 2 and 3, the research revolved around looking up at satellites for resource

allocation. From this point on, the viewpoint considered is flipped to satellites looking

down. Especially in a disaster search and recovery scenario, the heterogeneous sensors

used to do satellite imaging could help first responders. If a picture is cropped in and does

not have the entire context of the situation, then important items are missed. In Figure

18, water, coastline, and a few objects can be viewed, but not much else.

Figure 18 This screenshot of an AFSIM project that shows a cropped view of a few ships
in the water.

To see the big picture in Figure 19, much more information can be gleaned. When not

seeing the big picture the act of zooming out could change everything. More information

or context can make a huge difference. Responsible managing of resources to get more

information could change the whole decision-making process and focus resources on where

it is headed most. It is desirable to gain to get the context and know the information that

makes a difference. The better the resource allocation, the less likely to miss the important

information.

This chapter develops a few key parts. First, the application is implemented and

tested in the AFSIM framework to provide imagery like seen in Figure 18 and 19 [25].
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Figure 19 This screenshot of an AFSIM project shows two satellites and many ships in
the water for the search and rescue mission.

Additionally and most importantly, a scalability analysis is performed on the MOEAs

to show the results of changing the decision variables. Because real-world problems are

typically large scale including many computation variables, this chapter’s analysis expands

the problems to a larger number of variables. The MEAT, NSGA-II, and SPEA2 are run

to figure out how well they perform with these adjustments.

In preview, this chapter discusses satellite imaging and resource allocation. Section

4.2 reviews the literature and other approaches, and formally defines the SSAP and its

relation to the more generic RAP. Section 4.3 covers the experimental output and performs

a statistical analysis of the data. Finally, Section 4.4 summarizes and offers conclusions.

4.2 Background

The goal of this RAP is to find an allocation for the satellite constellation given

specific heterogeneous sensor constraints [86]. The first objective is to have a higher per-

formance by completing the most jobs, balanced with priority of that job. The second

objective is to lower the cost of acquiring the necessary imagery. The constraints, such as

satellite capacity, location, priority, cost, time, etc. serve as input. Each day comes with

a list of points of interest (POI). These POI consist of quality requirements, priority, and
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location information. The quality requirements detail the resolution required. The priority

is split into four bins evenly distributed.

In the heterogeneous sensor in environment there are satellite sensors and aircraft

sensors. According to the Cost Study, the operation and support of the Global Hawk high

altitude aircraft is $4,500 per hour [57]. Figure 20 shows an example of one of this aircraft.

These sensor platforms can carry a variety of sensors, but typically utilize a multi-spectral

camera which can record visual light images and infrared heat signatures.

Figure 20 Global Hawk Research Unmanned Aircraft

The previous approach of the hybrid genetic algorithm and evolutionary strategy

will not directly apply to this problem, but an augmentation has potential. The previous

approach was good; it had no guarantees, but the proper tuning and adjustments make

the algorithm work on this problem.

4.2.1 Algorithmic Complexity. A quick way to find the algorithmic complexity

of any algorithm is to evaluate the worst-case scenario. MEAT needs M comparisons in

the worst case to determine the ranking of best solutions. This is needed to find the “Best

25%” necessary for the crossover calculation, which will require O(MN2) computations.

Therefore, the time complexity of MEAT is O(MN2), where M is the number of objectives

and N is the population size. In Figure 21, the flowchart describes where the determination

of the best solutions is made in the process. It also shows all the other steps as the algorithm

works through initialization, evaluation, selection, mutation, crossover, combination, and

convergence.

4.2.2 Resource Allocation Problem. Given the cost and completion objectives the

algorithm must solve the problem subject to the list of constraints: type, signal, resolution,
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Figure 21 Multi-objective Evolutionary Algorithm Tasker Flowchart: From start to end
the flowchart shows the process of the algorithm.
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time, capacity, location, etc. Resource allocation or resource management is the scheduling

of activities and the resources required by those activities while taking into consideration

both the resource availability and the project time. The task is to assign the sensors jobs.

The weight of each job completed, or priority, adds an importance factor to each job that

could potentially be accomplished. The completion objective would be to sum the jobs

completed. The solution should be to complete as many jobs as possible with respect to

the constraints. Given real world constraints, the application needs to find the right type

of sensor to do the job at the proper location. It also must account for the capacity to

store all the data necessary. In Figure 22 the resource allocation problem is diagrammed.

Specifically in this chapter, the discussion is about a specialized RAP called Het-

erogeneous Aerial Sensor Environment Problem (HASEP). It might be simple to say that

the HASEP is like the SSAP versions from the previous chapters, but it is not the same.

While it may have some similarities like the purpose of assigning sensors tasks, the HASEP

has many differences. The objectives are based on weight of the job and completion of

the job, the previous SSAP uses priority and probability. There is not probability that

factors into the HASEP objectives. These objectives are based on true or false answer to

whether a job was completed or not. The constraints are also different for the new aerial

imaging problem. HASEP uses satellite capacity, location, priority, cost, time, type, signal,

and resolution, while SSAP uses priority, daily pass probability, capacity, number of daily

passes, and track requirements. There are a few similarities there, but for the most part

they are different.

4.2.3 Advanced Framework for Simulation Integration and Modeling. The Air

Force Research Laboratory’s Approach to a high-fidelity simulation environment. The idea

behind the Advanced Framework for Simulation Integration and Modeling (AFSIM) is a

common modeling framework, using common models in a common environment. AFSIM

is ideal for mission-level simulations on the order of a few hours. AFSIM is a framework

for simulating many different missions and has visions of being a comprehensive simulation

domain for many important operations. Figure 19 shows an instant in the simulation where

there are a couple satellites tracking targets. AFSIM will help achieve realistic constraints.
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 Sensors  Jobs

Figure 22 Resource Allocation Problem: Sensors are the resources, and jobs are the
activities.
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For example, it will help to obtain answers questions such as: Is that sensor able to capture

the target at that time? Is the sensor at the proper location to obtain the data? Is the

POI in the sensor’s field of view? As shown in Figure 23, a given satellite typically has a

cone to represent its field of view. The Max Imaging Range is shown as a dashed line with

targets that may or may not be in range. AFSIM does a good job of considering targets

in range and ignoring targets out of range.

 

 Max Imaging Range

 IN RANGE

 IGNORED

= Potential 
 Target

 

Figure 23 AFSIM gives more accurate and realistic scenario to determine targets in
range and ignore targets out of range.

4.3 Results and Analysis

The experiments focus on the dimensionality of the selected MOEAs. Dimensionality

is the number of decision variables. This is important because in the real-world engineering

problems tend to have thousands of variables. This section assesses the MOEAs which are

NSGA-II, SPEA2, and MEAT. The standard or default for these benchmark problems is

usually thirty variables, and sometimes as low as ten decision variables. The goal is to

study how these MOEAs perform with the quality indicators (EP, SPREAD, and IGD+).

In this study, the ZDT problem family is used. During the tests the Pareto front is the
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Table 19 Ten Decision Variables
NSGAII SPEA2 MEAT

EP. Mean and Standard Deviation
ZDT1 1.26e− 022.2e−03 1.77e− 021.9e−03 8.31e− 012.7e−01

ZDT2 1.21e− 022.1e−03 1.94e− 025.2e−03 2.53e + 005.5e−01

ZDT3 7.51e− 031.3e−03 1.18e− 022.2e−03 6.34e− 012.6e−01

ZDT4 2.01e− 021.2e−02 1.77e− 023.1e−03 5.19e + 011.8e+01

SPREAD. Mean and Standard Deviation
ZDT1 3.50e− 013.5e−02 3.32e− 013.5e−02 7.37e− 016.9e−02

ZDT2 3.60e− 013.1e−02 3.34e− 014.4e−02 1.03e + 002.8e−02

ZDT3 7.42e− 011.2e−02 7.27e− 012.0e−02 7.77e− 015.8e−02

ZDT4 3.54e− 013.5e−02 7.31e− 014.6e−01 1.01e + 004.7e−03

IGD+. Mean and Standard Deviation
ZDT1 3.05e− 031.3e−04 4.81e− 032.5e−04 7.32e− 012.2e−01

ZDT2 2.73e− 037.8e−05 4.22e− 031.6e−04 1.94e + 005.1e−01

ZDT3 1.76e− 031.3e−04 3.02e− 032.5e−04 4.47e− 011.5e−01

ZDT4 6.19e− 032.1e−03 4.58e− 032.5e−04 5.16e + 011.8e+01

same for each problem while the number of decision variables is changed. Experiments

range from ten to one-hundred decision variables.

In Tables 19-28 are the results from the three algorithms tested by the four bench-

marks. The EP is for Epsilon indicator [26]. Both epsilon and spread metrics are explained

in previous chapters. The new indicator for this chapter is the IGD+. The IGD+ stand

for Inverted Generational Distance plus. It can measure quality with specialized Pareto

fronts. For these tables the darker the gray shading the better.

The EP, epsilon, value for this set in Table 19 is dominated by the NSGAII solutions

on all but the ZDT4. In ZDT4, SPEA2 has 1.77e-02 as shown in the table [45, 65, 30, 124].

NSGAII performs significantly better on benchmarks 1-3 while SPEA2 does better on 4,

but it is close. In spread section of the table, it is the opposite. SPEA2 does better in

all but the ZDT4 while NSGAII took that one. SPEA2 and NSGAII where within one

standard deviation for ZDT1-3, but not for ZDT4. The last four lines of the table are for

IGD+ where the first three problems went to the SPEA2 with NSGAII taking the best for

only ZDT4. All these four where significant differences.

In Table 20, the EP results show that NSGAII is significantly better in on ZDT1 and

ZDT2. SPEA2 is better for ZDT3 and ZDT4 but only significantly with ZDT4. For the

spread metric there was not statically significant winner. For ZDT4 specifically, MEAT,

NSGAII, and SPEA2 all produced numbers within single standard deviation. In regards
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Table 20 Twenty Decision Variables
NSGAII SPEA2 MEAT

EP. Mean and Standard Deviation
ZDT1 1.25e− 021.7e−03 1.88e− 023.2e−03 1.15e + 004.0e−01

ZDT2 1.30e− 023.2e−03 1.96e− 024.0e−03 3.06e + 004.3e−01

ZDT3 1.31e− 023.1e−02 1.27e− 022.8e−03 8.39e− 013.2e−01

ZDT4 6.70e− 012.6e−01 1.82e− 023.5e−03 1.75e + 024.8e+01

SPREAD. Mean and Standard Deviation
ZDT1 3.49e− 012.7e−02 3.26e− 013.2e−02 7.95e− 015.2e−02

ZDT2 3.51e− 012.7e−02 3.24e− 013.2e−02 1.04e + 002.3e−02

ZDT3 7.45e− 011.5e−02 7.30e− 011.9e−02 7.82e− 017.7e−02

ZDT4 9.44e− 019.6e−02 7.10e− 014.8e−01 1.00e + 005.0e−03

IGD+. Mean and Standard Deviation
ZDT1 3.24e− 031.2e−04 5.25e− 032.5e−04 1.02e + 003.5e−01

ZDT2 2.89e− 031.2e−04 4.47e− 032.4e−04 2.45e + 004.1e−01

ZDT3 2.20e− 032.0e−03 3.30e− 033.0e−04 6.15e− 012.0e−01

ZDT4 4.06e− 012.3e−01 4.68e− 039.1e−04 1.74e + 024.8e+01

Table 21 Thirty Decision Variables
NSGAII SPEA2 MEAT

EP. Mean and Standard Deviation
ZDT1 1.33e− 022.4e−03 1.85e− 022.8e−03 1.27e + 002.2e−01

ZDT2 1.33e− 022.0e−03 1.98e− 027.1e−03 3.49e + 004.1e−01

ZDT3 1.37e− 023.1e−02 1.28e− 022.1e−03 8.64e− 012.6e−01

ZDT4 2.99e + 008.2e−01 1.93e− 024.1e−03 2.81e + 024.2e+01

SPREAD. Mean and Standard Deviation
ZDT1 3.53e− 012.7e−02 3.17e− 013.2e−02 8.09e− 013.2e−02

ZDT2 3.50e− 013.3e−02 3.28e− 012.6e−02 1.04e + 002.5e−02

ZDT3 7.41e− 019.6e−03 7.34e− 012.0e−02 7.96e− 016.9e−02

ZDT4 9.36e− 013.5e−02 6.77e− 014.7e−01 1.01e + 004.4e−03

IGD+. Mean and Standard Deviation
ZDT1 3.80e− 031.9e−04 5.41e− 032.3e−04 1.12e + 002.0e−01

ZDT2 3.44e− 031.9e−04 4.61e− 032.2e−04 2.87e + 003.9e−01

ZDT3 2.44e− 032.0e−03 3.45e− 032.8e−04 6.25e− 011.3e−01

ZDT4 2.66e + 008.2e−01 5.15e− 032.7e−03 2.81e + 024.2e+01

to the IGD+, the output shows NSGAII is better for ZDT1-3 but only significantly for the

first two. SPEA2 is significantly better for ZDT4.

For Table 21, the EP indicator shows that NSGAII is significantly better in on ZDT1

and ZDT2 while SPEA2 is significantly better for ZDT4. They are statistically the same

for ZDT3. The only winner on the spread metric is SPEA2 on ZDT1. NSGAII and SPEA2

are close for ZDT2-3. MEAT, NSGAII, and SPEA2 are in a statistical tie for ZDT4. For

the MEAT spread, the value 7.96e-01 at first glance seems like it is close, but it is not

close enough to matter at this point. The IGD+ measurement shows NSGAII is better for

ZDT1-3 but is withing one standard deviation for ZDT3. In this context, the SPEA2 is

statistically better for ZDT4.
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Table 22 Forty Decision Variables
NSGAII SPEA2 MEAT

EP. Mean and Standard Deviation
ZDT1 1.37e− 021.7e−03 1.89e− 022.6e−03 1.44e + 002.3e−01

ZDT2 1.43e− 022.6e−03 2.00e− 024.7e−03 3.53e + 003.2e−01

ZDT3 1.49e− 023.1e−02 1.40e− 023.0e−03 8.99e− 012.0e−01

ZDT4 8.49e + 002.1e+00 3.43e− 027.8e−02 4.40e + 027.1e+01

SPREAD. Mean and Standard Deviation
ZDT1 3.41e− 012.9e−02 3.15e− 013.8e−02 8.27e− 012.9e−02

ZDT2 3.45e− 013.2e−02 3.14e− 013.2e−02 1.04e + 002.3e−02

ZDT3 7.49e− 011.6e−02 7.32e− 011.4e−02 7.78e− 017.3e−02

ZDT4 9.70e− 012.1e−02 4.77e− 013.0e−01 1.00e + 004.0e−03

IGD+. Mean and Standard Deviation
ZDT1 4.84e− 032.8e−04 5.72e− 033.9e−04 1.27e + 002.1e−01

ZDT2 4.66e− 033.2e−04 4.72e− 032.3e−04 2.91e + 003.1e−01

ZDT3 3.06e− 032.1e−03 3.78e− 034.9e−04 6.56e− 018.8e−02

ZDT4 8.16e + 002.1e+00 1.67e− 026.2e−02 4.40e + 027.1e+01

Table 23 Fifty Decision Variables
NSGAII SPEA2 MEAT

EP. Mean and Standard Deviation
ZDT1 1.63e− 022.7e−03 1.93e− 021.7e−03 1.43e + 001.5e−01

ZDT2 2.39e− 024.4e−02 2.16e− 026.0e−03 3.92e + 003.6e−01

ZDT3 2.14e− 024.3e−02 1.35e− 022.3e−03 9.37e− 012.5e−01

ZDT4 1.76e + 014.2e+00 5.50e− 021.9e−01 5.62e + 027.7e+01

SPREAD. Mean and Standard Deviation
ZDT1 3.46e− 013.1e−02 3.27e− 012.8e−02 8.19e− 012.7e−02

ZDT2 3.48e− 014.5e−02 3.23e− 013.5e−02 1.03e + 002.8e−02

ZDT3 7.47e− 011.2e−02 7.25e− 011.7e−02 7.83e− 016.7e−02

ZDT4 9.75e− 011.8e−02 8.50e− 014.6e−01 1.01e + 004.0e−03

IGD+. Mean and Standard Deviation
ZDT1 6.49e− 035.5e−04 6.10e− 033.5e−04 1.26e + 001.3e−01

ZDT2 7.33e− 032.8e−03 4.95e− 033.0e−04 3.29e + 003.4e−01

ZDT3 4.35e− 032.7e−03 3.82e− 033.2e−04 7.03e− 011.3e−01

ZDT4 1.72e + 014.2e+00 3.68e− 021.7e−01 5.61e + 027.7e+01

In Table 22, the first four lines show the result for the epsilon indicator. The NSGAII

is best in two out of four problems. The SPEA2 is best in the other two, but only signif-

icantly for problem ZDT4. With respect to the spread these algorithms are very similar.

Most instances there is a statistical tie, but for ZDT4 where SPEA2 is better. Finally,

the IGD+ metric shows that NSGAII is better in three out of the four problems, but not

significantly in ZDT2. The SPEA2 does significantly better in this instance on ZDT4.

In Table 23, the EP results show that SPEA2 is significantly better in only ZDT3.

For the spread metric, most of these results are close. ZDT3 is only problem where SPEA2

is statistically better. With the spread and ZDT4, the MEAT is in a statistical tie with

the others. In regard to the IGD+, the output shows SPEA2 dominates all four problems

in a big way, and this is the start of a pattern of sorts among the higher decision variables.
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Table 24 Sixty Decision Variables
NSGAII SPEA2 MEAT

EP. Mean and Standard Deviation
ZDT1 1.81e− 022.3e−03 1.99e− 022.8e−03 1.58e + 001.8e−01

ZDT2 2.06e− 022.9e−03 1.95e− 024.7e−03 3.96e + 003.9e−01

ZDT3 2.33e− 024.3e−02 1.47e− 023.9e−03 9.70e− 012.2e−01

ZDT4 3.30e + 016.5e+00 1.23e− 015.6e−01 7.18e + 029.6e+01

SPREAD. Mean and Standard Deviation
ZDT1 3.51e− 012.7e−02 3.27e− 013.0e−02 8.36e− 012.1e−02

ZDT2 3.54e− 012.5e−02 3.19e− 012.6e−02 1.03e + 002.7e−02

ZDT3 7.54e− 011.3e−02 7.35e− 011.8e−02 8.02e− 016.3e−02

ZDT4 9.80e− 011.1e−02 6.39e− 014.3e−01 1.00e + 003.9e−03

IGD+. Mean and Standard Deviation
ZDT1 9.30e− 031.1e−03 6.49e− 034.1e−04 1.39e + 001.6e−01

ZDT2 1.04e− 021.4e−03 4.98e− 032.5e−04 3.33e + 003.7e−01

ZDT3 5.92e− 032.7e−03 3.94e− 033.5e−04 7.25e− 011.1e−01

ZDT4 3.27e + 016.5e+00 1.01e− 015.1e−01 7.18e + 029.6e+01

Table 25 Seventy Decision Variables
NSGAII SPEA2 MEAT

EP. Mean and Standard Deviation
ZDT1 2.29e− 022.6e−03 1.92e− 022.4e−03 1.49e + 002.1e−01

ZDT2 4.72e− 028.2e−02 1.94e− 024.0e−03 4.13e + 004.1e−01

ZDT3 1.52e− 022.2e−03 1.40e− 022.6e−03 9.53e− 012.1e−01

ZDT4 5.05e + 017.9e+00 2.75e− 011.4e+00 8.57e + 028.4e+01

SPREAD. Mean and Standard Deviation
ZDT1 3.54e− 012.2e−02 3.29e− 012.9e−02 8.29e− 012.6e−02

ZDT2 3.67e− 015.4e−02 3.14e− 013.0e−02 1.03e + 002.7e−02

ZDT3 7.55e− 011.5e−02 7.29e− 011.6e−02 8.02e− 015.3e−02

ZDT4 9.83e− 019.0e−03 6.31e− 014.3e−01 1.01e + 003.8e−03

IGD+. Mean and Standard Deviation
ZDT1 1.34e− 021.3e−03 6.44e− 032.8e−04 1.31e + 001.9e−01

ZDT2 1.79e− 021.1e−02 5.25e− 033.1e−04 3.49e + 003.9e−01

ZDT3 7.30e− 038.9e−04 3.95e− 033.3e−04 7.17e− 011.1e−01

ZDT4 5.02e + 017.9e+00 2.52e− 011.3e+00 8.57e + 028.4e+01

For Table 24, the EP indicator shows that SPEA2 is significantly better than NSGAII

in on ZDT3-4. They are statistically the same for ZDT1-2. The only winner on the spread

metric is SPEA2 on ZDT2-3. NSGAII and SPEA2 are close for ZDT1. MEAT, NSGAII,

and SPEA2 are in a statistical tie for ZDT4. For the second time in as many tables, the

SPEA2 dominates all four problems with the IGD+ measurement.

In Table 25, the first four lines show the result for the epsilon indicator, where the

SPEA2 is significantly best in three out of four problems. It ties with SPEA2 on only the

ZDT3 here. With respect to the spread these algorithms and these instances show there is

a statistical tie expect for ZDT2-3 where SPEA2 is better. The MEAT is in statistically

tie with the other algorithms for the ZDT4 problem. Finally, the IGD+ metric shows that

NSGAII is better in all four problems when considering seventy decision variables.
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Table 26 Eighty Decision Variables
NSGAII SPEA2 MEAT

EP. Mean and Standard Deviation
ZDT1 2.78e− 023.1e−03 2.00e− 022.7e−03 1.57e + 001.5e−01

ZDT2 1.40e− 011.9e−01 1.99e− 024.6e−03 4.07e + 003.2e−01

ZDT3 3.11e− 023.1e−02 1.42e− 022.6e−03 1.02e + 001.6e−01

ZDT4 7.18e + 011.7e+01 4.91e− 012.4e+00 9.82e + 021.0e+02

SPREAD. Mean and Standard Deviation
ZDT1 3.59e− 012.7e−02 3.20e− 012.3e−02 8.38e− 011.7e−02

ZDT2 4.33e− 011.1e−01 3.14e− 013.4e−02 1.04e + 002.7e−02

ZDT3 7.55e− 012.0e−02 7.29e− 012.1e−02 8.12e− 013.7e−02

ZDT4 9.88e− 018.0e−03 7.44e− 014.5e−01 1.00e + 003.6e−03

IGD+. Mean and Standard Deviation
ZDT1 1.86e− 022.5e−03 6.60e− 033.1e−04 1.38e + 001.4e−01

ZDT2 3.75e− 023.3e−02 5.41e− 032.9e−04 3.44e + 003.0e−01

ZDT3 1.20e− 022.9e−03 4.04e− 033.5e−04 7.72e− 018.4e−02

ZDT4 7.14e + 011.7e+01 4.62e− 012.3e+00 9.82e + 029.9e+01

Table 27 Ninety Decision Variables
NSGAII SPEA2 MEAT

EP. Mean and Standard Deviation
ZDT1 3.19e− 023.8e−03 1.99e− 022.9e−03 1.61e + 001.7e−01

ZDT2 2.30e− 012.5e−01 2.10e− 025.4e−03 4.17e + 003.6e−01

ZDT3 3.57e− 025.9e−03 1.36e− 022.4e−03 1.01e + 001.7e−01

ZDT4 9.79e + 011.3e+01 7.93e− 013.9e+00 1.14e + 039.9e+01

SPREAD. Mean and Standard Deviation
ZDT1 3.61e− 012.0e−02 3.22e− 013.4e−02 8.40e− 012.3e−02

ZDT2 4.88e− 011.6e−01 3.15e− 012.6e−02 1.03e + 002.6e−02

ZDT3 7.55e− 011.5e−02 7.39e− 011.7e−02 8.17e− 015.1e−02

ZDT4 9.89e− 016.6e−03 6.99e− 014.5e−01 1.00e + 003.4e−03

IGD+. Mean and Standard Deviation
ZDT1 2.58e− 024.0e−03 6.96e− 034.2e−04 1.42e + 001.6e−01

ZDT2 6.47e− 025.6e−02 5.49e− 032.6e−04 3.53e + 003.4e−01

ZDT3 1.67e− 022.5e−03 4.11e− 033.7e−04 7.72e− 019.3e−02

ZDT4 9.76e + 011.3e+01 7.60e− 013.8e+00 1.14e + 039.9e+01

At this point, SPEA2 is starting to perform even dominate nearly every measurement.

In Table 26, the EP results show that SPEA2 is significantly better on all problems. For

the spread metric, most of these results are close for ZDT4 among the three algorithms,

NSGAII, SPEA2, and MEAT. ZDT1-3 are the problems where SPEA2 is statistically

better. In regard to the IGD+, the output shows SPEA2 dominates all four problems yet

again.

For Table 27, the EP indicator shows that SPEA2 is significantly better all four

problems. The only winner on the spread metric is SPEA2 on ZDT1-2. NSGAII and

SPEA2 are close for ZDT3. MEAT, NSGAII, and SPEA2 are in a statistical tie for ZDT4

once again. For the fifth time in as many tables, the SPEA2 dominates all four problems

with the IGD+ measurement.
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Table 28 One Hundred Decision Variables
NSGAII SPEA2 MEAT

EP. Mean and Standard Deviation
ZDT1 3.92e− 024.8e−03 2.01e− 022.3e−03 1.60e + 001.2e−01

ZDT2 2.05e− 011.9e−01 2.04e− 024.0e−03 4.23e + 003.0e−01

ZDT3 5.09e− 028.1e−03 1.46e− 022.8e−03 1.06e + 001.8e−01

ZDT4 1.25e + 021.7e+01 1.30e + 006.3e+00 1.29e + 031.1e+02

SPREAD. Mean and Standard Deviation
ZDT1 3.69e− 012.3e−02 3.17e− 012.9e−02 8.39e− 012.0e−02

ZDT2 4.87e− 011.2e−01 3.20e− 013.3e−02 1.02e + 002.8e−02

ZDT3 7.53e− 011.3e−02 7.30e− 011.7e−02 8.25e− 013.9e−02

ZDT4 9.91e− 017.2e−03 6.83e− 014.6e−01 1.00e + 003.3e−03

IGD+. Mean and Standard Deviation
ZDT1 3.39e− 025.0e−03 7.06e− 033.4e−04 1.41e + 001.1e−01

ZDT2 6.65e− 023.1e−02 5.59e− 032.7e−04 3.59e + 002.8e−01

ZDT3 2.40e− 023.7e−03 4.17e− 034.1e−04 8.12e− 011.0e−01

ZDT4 1.25e + 021.7e+01 1.27e + 006.2e+00 1.29e + 031.1e+02

In Table 28, the SPEA2 did significantly better in all but one of the twelve lines.

The only line where is statistically tied is the hard ZDT4 problem on the spread metric.

The MEAT is in statistically tie with the other algorithms for the ZDT4 problem.

In summary of the MOEA exploration tables. The SPEA2 shows a pattern of simply

being better in nearly all respects especially as the number of decision variables grows. The

MEAT was able to remain close to the other algorithm on the hard and pesky problem

ZDT4 specifically with the spread. Overall, the three algorithms had various points of

performing well.

4.4 Conclusion

In conclusion, The MEAT successfully completed the benchmark tests and matched

previous techniques in the literature in terms of the spread of the Pareto optimal front.

The MEAT performed worse in terms of the epsilon and inverted generational distance

plus metrics. The MOEAs used in this chapter were tested for scalability. The number of

decision variables of real-world problems is usually much larger than these benchmark test

problems. Increasing is the number of decision variables is one way to get closer to the

solving the desired problem. The NSGA-II and SPEA2 are both performed well on the

Pareto compliant indicators. SPEA2 specifically performed well as the decision variables

grew larger. These characteristics can help a user of the algorithms to choose an algorithm

that is the best fit for them.
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Much of this chapter discussed the on the HASEP, and unfortunately the research

must have an ending point. That is where future work comes in. The MEAT or other algo-

rithms might do well in the new sensor environment which is called HASEP. A researcher

could test and augment the MEAT to address resource allocation for the specific disaster

recovery scenarios. In previous chapters the MEAT performed space tracking tasks. The

MEAT could be used to task space sensors with surveillance of ground objects. While this

scheduling domain has some similarity to the ones in the previous chapters, the nature of

the assigning and associating resource constraints changes when moving from a paradigm

where sensors on the ground point up vs the case where satellite sensors point down at the

ground.
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5. Conclusion

This dissertation advances the state of the art in approaches to allocate space-based assets

in order to effectively utilize sensor resources through the application of multiple meta-

heuristic algorithm approaches. The solutions in each of the previous chapters, show the

potential to improve current approaches to scheduling techniques. In the experiments run,

the introduced novel scheduling algorithms produced better results or similar results in

less time. This chapter summarizes the dissertation’s main contributions through research

questions.

5.1 Satellite Tracking

The SSAP can be generalized to a RAP. From there it can be further generalized

to a Scheduling problem. A major contribution from this dissertation is the introduction

of an Evolutionary Algorithm Tasker (EAT), which produces better results in most of the

measured categories. The EAT solves the SSAP which is mathematically defined in Section

2.3.1.1. For example, it runs in a significantly shorter amount of time when compared with

a published scheduling algorithm in the literature. The dissertation addressed key research

questions.

RQ1 : Will the EAT do well on a full scale SSAP when compared to the pub-
lished algorithm from the literature in the space object tracking domain? In
what ways is the EAT better and in which ways is it worse than the previous
approach?

Chapter 2 develops the EAT to solve the SSAP, which is a specific RAP for the

SSN to protect valuable space-based assets. This is a promising approach to the SSAP.

The chapter seeks to allocate resources that track satellites resulting obtain the biggest

yield that the present system can handle. The SSAP is mathematically modeled such that

both the control and experiment are on a level playing field. Approach to the SSAP adds

priority into the equation, so that the most important satellites are tracked more often.

The effectiveness of the approach is shown in the results Section 2.6. To answer the first

question, “Will the EAT do well on a full scale SSAP when compared to the published

algorithm from the literature in the space object tracking domain?” The simple answer is
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yes. The EAT does well on the full scale SSAP when compared to the SP Tasker. Full

scale is also an important item to note, because many approaches in the literature only

handle a small-scale problem. Chapter 2 schedules tracking for tens of thousands of RSO.

To answer the second part directly, “In what ways is the EAT better and in which

ways is it worse than the previous approach?” Briefly the EAT is better in two out of

three metrics. For satellite tracking, the two new solution techniques with improved sen-

sor allocation showed improved performance over the pre-existing SP Tasker in the SSN.

The first solution is the EAT, which is a single objective evolutionary algorithm. Both the

SP Tasker algorithm and the EAT were implemented to solve the SSAP. The EAT can

assign more satellites to be tracked and have more satellites tracked by multiple sensors in

Section 2.6.1. To be exact, the results show that the EAT is 2.211% better and 18.458%

better in Not Tracked Percentage Mean and Unique-Track Percentage Mean, respectively.

The actual metric value percentages are obtained by a simple difference between percent-

ages (50.466%-32.008%) and (37.839%-35.628%). In contrast, the SP Tasker has a slightly

higher success rate tracking the satellites that receive sensor tracking assignments. Specif-

ically, the SP Tasker is 10.013% (89.943%-79.930%) better with Not-Tracked Percentage

Mean. The EAT runs much faster, based on the experiments conducted, which has the

potential to allow for a reduced cataloging cycle.

The second solution technique applies two MOEAs to the SSAP. The two MOEAs

are the pMOEA/D-DE and MOEA/D-DE. These two approaches did well when tested

against the SSAP. Empirical results suggest the highly restrictive constraints of the SSAP

can be met by introducing additional variables. In Section 2.6.2, the pMOEA/D-DE

is better than the MOEA/D-DE in all the tested quality metrics, but the differences

are not large. Examination of the quality indicators shows the difference between the

MOEAs. Both single objective and multi-objective solutions use priority to track more

important satellites more often. Both solutions produce good sensor allocations for the

Space Surveillance Network given the input constraints.

Chapter 3 seeks to build upon the key insights gained from developing the single

objective algorithm in Chapter 2 into a multi-objective algorithm. This is done by splitting
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the single objective into two competing objectives. The following research questions are

explored:

RQ2 : How well does the MEAT perform in comparison to well-known MOEAs
that have a comparable time complexity? If it does well, what metrics did the
MEAT perform well?

This dissertation develops the novel MEAT that features a hybrid genetic algorithm

approach. A minor contribution is formally defining the MOSSAP in Section 3.3. The

MEAT solves the MOSSAP and provides a Pareto front for the user to choose which

solution along the Pareto front is preferred. To answer the research questions directly

the first says, “How well does the MEAT perform in comparison to well-known MOEAs

that have a comparable time complexity?” The MEAT does a respectably well by doing

better in the spread metric while doing worse in the GD and HV measurements. The

second question is, “If it does well, what metrics did the MEAT perform well?” The

MEAT does well with one metric, that is the spread metric. Tables 13 and 14 show this

metric. The other MOEAs used for comparison performed better on the Pareto compliant

metrics. A specific characteristic where the MEAT does well, in comparison with competing

algorithms, is with the spread metric. This dissertation offers an exploration of MOEAs.

Three MOEAs are run against the MOSSAP and benchmark problems. Their results are

shown for analysis. Another minor contribution is that the decision maker can pick the

algorithm to run. The decision maker can also pick the solution from the approximation

front of solutions available.

5.2 Heterogeneous Sensors

Based on the new algorithm developed in Chapter 3, Chapter 4 changes the appli-

cation domain from primarily ground-based assets to aerial and space-based assets. This

full implementation in this new application domain is the goal, and this dissertation takes

steps toward the goal. Building on previous research, further experimentation and analysis

is made in Chapter 4 with MOEAs using jMetal [34]. Chapter 4 examines the following

research questions.
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RQ3 : Can increasing the decision variables provide good step towards address-
ing a real-world scaled problem? Which MOEA performs the best overall with
the scalability analysis?

Chapter 4 answers RQ3 by performing a scalability analysis with various algorithms.

Specifically, the MEAT does provide a computationally effective approach, because it has

similar time complexity to the other MOEAs selected. The decision maker can then look

at the results presented and make an informed decision on which algorithm and solution

to choose. Section 4.3 provides key insights into understanding the capabilities of such

systems both in the application domain and the computation domain. Unfortunately, the

MEAT does not do well on in most of the experimental cases. It does come in tie for the

best statistical result with the other algorithms on the spread metric for nine of ten times

for ZDT4. The SPEA2 is the best MOEAs tested in Chapter 4 coming in with the best

measurements on 66 out of the 120 lines of testing. Another contribution is the exploration

of the MOEAs. The number of decision variables of realistic problems is usually very large,

such as hundreds or more. The scalability study of the ZDT problems makes the analysis

increasing the number of decision variables helpful. To specifically answer the question

that says, “Can increasing the decision variables provide good step towards addressing a

real-world scaled problem?” Yes, of course since real-world problems usually have many

variables, increasing these small problems will make it closer to a real-world problem. Also,

with, “Which MOEA performs the best overall with the scalability analysis?” The short

answer is the SPEA2, but NSGA-II is an honorable mention.

5.3 Future Avenues of Research

One avenue for future research is to explore the possibility of using an artificial im-

mune system (AIS) to solve the SSAP. AISs are known for solving multi-objective schedul-

ing problems [49][52]. Although the satellite tracking problem is essentially a resource

allocation problem, the resource allocation problem and the scheduling problem have some

strong similarities. In satellite tracking, the goal is to track n satellites with m sensors.

Likewise in the generic job shop scheduling problem, the purpose is to take n jobs of vary-

ing sizes and schedule them on m identical machines with the goal of minimizing the time
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it takes to complete the jobs. The commonalities between these problems allows for simi-

lar solution approaches. As an example, an AIS for the SSAP has many similarities with

EAs, including the respective problem representations. Both algorithms often use whole

number vectors to indicate which vector index (sensor) should track which whole number

(satellite).

In terms of ad-hoc event handling, the proposed algorithm for disaster rescues dy-

namic scheduling showed promise, based on the experiments run, for dynamic scenarios

that required the ability to incorporate new on-line events into the existing schedule when

they arise. The proposed algorithm could incorporate such on-line events and indicates

why a new event cannot be added to the existing schedule when failures occur. If the

constraints are too restrictive, then further research may need to relax those constraints.

In the scenario where a new event is introduced to the schedule, the scheduling algorithm

has demonstrated the ability to quickly decide a good course of action based on the ex-

periments conducted. The algorithm can suggest whether to make a simple mutation to

the schedule in order to add the new task, to ignore a lower priority old task in order to

accommodate the needs of the new task, or to ignore the new task due to its lower overall

priority. Whatever decision is made, the aim is to produce a schedule that will perform

well according to effective and efficient metrics. The EA solution technique has shown

promise in the experiments for creating schedules well-adapted to the domain of satellite

tracking, including the ability to make changes to the schedule when on-line and ad-hoc

events dictate a need to do so.

The goal for future research would be to create a scheduling algorithm that can take

complex priorities and constraints in an almost real-time manner and produce effective

schedules according to emerging requirements. Such a system would drastically improve

the current long lead times in crafting and implementing schedules for resource allocation

systems. A research group at MITRE has just recently made the first step along these

lines [16].
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121. Zăvoianu, Alexandru-Ciprian, et al. “DECMO2: A Robust Hybrid and Adaptive
Multi-Objective Evolutionary Algorithm,” soft Computing , 19 (12):3551–3569 (2015).

122. Zhang, Qingfu and Hui Li. “MOEA/D: A Multiobjective Evolutionary Algo-
rithm Based on Decomposition,” Evolutionary Computation, IEEE Transactions on,
11 (6):712 –731 (dec. 2007).

123. Zitzler, Eckart, et al. “Comparison of Multiobjective Evolutionary Algorithms: Em-
pirical Results,” Evolutionary computation, 8 (2):173–195 (2000).

124. Zitzler, Eckart, et al., “SPEA2: Improving the Strength Pareto Evolutionary Algo-
rithm,” 2001.

87



Standard Form 298 (Rev. 8/98) 

REPORT DOCUMENTATION PAGE 

Prescribed by ANSI Std. Z39.18 

Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

6. AUTHOR(S) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code) 

asharp
Sticky Note
Accepted set by asharp

asharp
Sticky Note
Accepted set by asharp

asharp
Sticky Note
Accepted set by asharp


	Scheduling for Space Tracking and Heterogeneous Sensor Environments
	Recommended Citation

	tmp.1663337598.pdf.vJZZs

	Reset: 
	19b_TELEPHONE_NUMBER_Incl: (937)255-6565x4579 Kenneth.Hopkinson@afit.edu
	19a_NAME_OF_RESPONSIBLE_P: Dr. Kenneth M. Hopkinson, AFIT/ENG
	number_of_pages: 102
	17_limitation_of_abstract: UU
	c_THIS_PAGE: U
	bABSTRACT: U
	a_REPORT: U
	15_SUBJECT_TERMS: Genetic Algorithms, Space Domain Awareness, Evolutionary Computation, Scalability Analysis, Resource Allocation
	14ABSTRACT: This dissertation draws on the fields of heuristic and meta-heuristic algorithm development, resource allocation problems, and scheduling to address key Air Force problems.  The world runs on many schedules. People depend upon them and expect these schedules to be accurate. A process is needed where schedules can be dynamically adjusted to allow tasks to be completed efficiently. For example, the Space Surveillance Network relies on a schedule to track objects in space. The schedule must use sensor resources to track as many high-priority satellites as possible to obtain orbit paths and to warn of collision paths. Any collisions that occurred between satellites and other orbiting material could be catastrophic. To address this critical problem domain, this dissertation introduces both a single objective evolutionary tasker algorithm and a multi-objective evolutionary algorithm approach. The aim of both methods is to produce space object tracking schedules to ensure that higher priority objects are appropriately assessed for potential problems. Simulations show that these evolutionary algorithm techniques effectively create schedules to assure that higher priority space objects are tracked. These algorithms have application to a range of dynamic scheduling domains including space object tracking, disaster search and rescue, and heterogeneous sensor scheduling.
	13_SUPPLEMENTARY_NOTES: This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
	12_DISTRIBUTIONAVAILABILI: Distribution Statement A. Approved for Public Release; Distribution Unlimited
	1_1_SPONSORMONITORS_REPOR: 
	10_SPONSORMONITORS_ACRONY: AFRL/RVE
	9_SPONSORINGMONITORING_AG: Space Vehicles Directorate, Air Force Research Laboratory, Kirtland AFB                            Brian McBee Chief at Simulation & Technology Assessment Branch3350 Aberdeen Ave SEKirtland AFB, NM 87117brian.mcbee.1@us.af.mil
	8_PERFORMING_ORGANIZATION: AFIT-ENG-DS-22-J-085
	7_PERFORMING_ORGANIZATION: Air Force Institute of TechnologyGraduate School of Engineering and Management (AFIT/EN)2950 Hobson WayWright-Patterson AFB  OH  45433-7765
	6_AUTHORS: Greve, Gabriel, H. CTR 
	5f_WORK_UNIT_NUMBER: 
	5e_TASK_NUMBER: 
	5d_PROJECT_NUMBER: 19G130
	5c_PROGRAM_ELEMENT_NUMBER: 
	5b_GRANT_NUMBER: 
	5a_CONTRACT_NUMBER: 
	4_TITLE_AND_SUBTITLE: Scheduling for Space Tracking and Heterogeneous Sensor Environments 
	3_DATES_COVERED_From__To: Jan 2011 - June 2022
	2_REPORT_TYPE: Doctoral Dissertation
	1_REPORT_DATE_DDMMYYYY: 16-06-2022


