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Abstract

Synthetic aperture radars are popular for both military and commercial purposes

due to their ability to penetrate cloud cover and produce images in low-light/nighttime

conditions. However, the process necessary to produce such images is complex, with

many potential paths leading to image distortion and ultimately task failure. At any

point during the radar’s imaging process, from the initial signal transmission to the

collection of raw data to its transformation into intelligible image products, events

could occur that have varying effects on the utility of the final product. Occurrences

such as high clutter returns and the presence of motion measurement errors, leading

to low image quality, are of primary concern. Understanding how decreases in image

quality affect task performance would assist radar engineers in focusing their atten-

tions towards data collection issues that would provide the greatest reward through

resolution. This thesis explores the relationships present between signal-to-clutter

ratios, motion measurement errors, image quality metrics, and the task of target de-

tection, in order to identify which factor to focus on in order to attain the highest

probability of detection success. This investigation is accomplished by executing a

high number of Monte Carlo trials through a coherent target detector and analyzing

the results. The aforementioned relationships are demonstrated via sample synthetic

aperture radar imagery, histograms, receiver operating characteristic curves, and error

bar plots.
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EFFECTS OF MOTION MEASUREMENT ERRORS ON RADAR TARGET

DETECTION

I. Introduction

1.1 Problem Background

There are a wide variety of radar operations, ranging from military applications

such as search/track, air defense, and instrumentation, to commercial uses such as

weather tracking, terrain mapping, and ground penetration [1, 2]. Intelligible radar

image products are integral to the completion of these tasks, so data quality control

is of utmost importance. There are many commonly used data quality metrics that

are useful in assessing radar data quality [3–5]; however, meeting a specific data

quality metric does not always indicate that the data product possesses the right

type of quality needed for a particular task, such as target detection. This thesis

examines the application of different image quality metrics to SAR images and their

relationships with the probability of target detection.

1.2 Research Goals and Contributions

The goal of this research is to study various radar image quality metrics (IQMs)

and assess their individual connections with target detection performance metrics.

This research will be accomplished by first simulating the radar data processing

chain to produce large sets of images utilizing different signal-to-clutter ratios (SCRs).

Varying amounts of motion measurement error (MME) will then be injected into the

image formation process to produce images of degraded quality; Monte Carlo target

1



detection trials will be run on the degraded images, resulting in quantitative represen-

tations of how much image degradation affects target detection. Selected IQMs will

also be computed to assess the degree of quality degradation, permitting data trend

examination and determination of relationships between the image quality metrics

and target detection success. This thesis will link IQMs with motion measurement

errors and target detection success, and discuss which IQMs should be considered as

the best indicators for target detection success.

1.3 Assumptions

Some key assumptions were made for research purposes. They are as follows:

• The SAR signal encounters the same amount of propagation effects as it travels

through the surrounding environment, each and every time the signal is trans-

mitted. This facilitates accurate assessment of the results of the Monte Carlo

trials, without concern over the varied effects of this additional factor.

• The SAR system employed in this thesis inhibits system noise to a level that

is negligible in comparison to target and clutter returns, directing focus on

signal-to-clutter ratios as opposed to signal-to-clutter-plus-noise ratios.

• There is a complete absence of interference from other sources of RF energy.

• All point scatterers within the target scene are stationary through the duration

of signal transmission and reflection back to the receiver.

• SAR spotlight mode operation is utilized, as opposed to SAR stripmap mode.

• Phase history is acquired through straight and level broadside acquisition.

• A monostatic radar configuration is employed, as opposed to a bistatic or mul-

tistatic configuration.

• The target scene is on flat ground (i.e., there are no changes in target elevation).

• The ground range and slant range are large enough to be considered as constants

2



with respect to slow time.

• The radar platform follows a level flight path with constant velocity.

1.4 Thesis Overview

The rest of the thesis is organized as follows: Chapter II provides fundamental

knowledge regarding the SAR system environment, the radar imaging process, and

metrics that will be used to judge image quality. Chapter III explains the phase

history models and detector algorithms utilized in researching this thesis. Chapter IV

details the setup of the simulations, presents the results, and discusses observations

of the results. Finally, all key findings are summarized in Chapter V, followed by

recommendations for future works.

3



II. Background and Literature Review

This chapter provides the necessary framework to understand the simulation setup

and results discussed in the following chapters. To this end, an overview of the radar

data collection and processing chain, and a description of basic SAR imaging concepts,

are presented.

2.1 Synthetic Aperture Radar

SAR is a coherent imaging radar based on the concept of synthesizing a very long

antenna, primarily by transmitting a signal from a small antenna moving along a

platform flight path and then processing the signal’s reflection [6]. Both amplitude

and phase of the received signal must be recorded in order to synthesize the receiving

antenna. The principal product of a SAR system is a two-dimensional image depict-

ing the reflective intensity of scatterers positioned in the illuminated area. Higher

range resolution is achieved by increasing signal bandwidth and implementing pulse

compression techniques [7]; meanwhile, azimuth (cross-range) resolution is related to

the synthetic aperture length and the antenna’s distance from target scene, along

with associated matched filters and data transformations.

There are a few basic concepts to understand when discussing how SAR signal data

is transformed into intelligible images, including SAR geometry, scene reflectivity,

phase history, and MMEs. These topics will be further explained and discussed

below.

2.1.1 SAR Geometry

The radar data collection process involves transmitting RF energy towards a par-

ticular scene of interest, where it is reflected off of scatterers within the target scene;

4



a portion of the transmitted energy then propagates back the SAR receiver. This

thesis assumes a monostatic SAR system, meaning that the signal’s transmitter and

receiver are co-located on the same platform, as opposed to bistatic or multistatic sys-

tems where the transmitter(s) are located on a platform separate from the receiver(s).

Figure 1 depicts the axes, angles, and paths that must be considered when discussing

a SAR system; they are defined as follows:

• The azimuth angle subtended by the SAR platform during signal transmission

and reception, with respect to scene center, is represented by φ, while ∆φ

describes the distance traveled by the SAR platform while fulfilling the azimuth

angle. This distance is also referred to as azimuth extent, or aperture length.

• The grazing angle at which the SAR platform travels with respect to the target

scene’s ground plane is represented as ψ.

• The direction of the y-axis is parallel to the platform’s flight path when φ = 0;

this path can also be referred to as the along-track or cross-range direction. The

Figure 1: The SAR geometry utilized in this thesis

5



y-axis runs through the center of the target scene.

• The x-axis lies perpendicular to the y-axis along the ground plane, and runs

through the center of both the target scene and the azimuth extent; this path

is also referred to as the range direction. The intersection of the x- and y- axes

is always presented as coordinates (0,0) in this thesis.

• The z-axis is perpendicular to both the x- and y-axis, and is used to denote the

SAR platform’s height.

• The particular SAR geometry utilized in this thesis is based on a right-handed

coordinate system.

2.1.2 Spatial Frequency Domain

The SAR system relies on information gained from the spatial frequency domain

in order to function. The spatial frequency domain is based on spatial frequency U ,

which follows the equivalency [7]

U =
2ω

c
=

4πf

c
(1)

where f represents all frequencies utilized to produce the radar signal, angular fre-

quency is related to frequency as ω = 2πf , and c represents the speed of light. SAR

systems generally utilize a LFM “chirp” waveform to produce the signal used in il-

luminating the target scene; with this waveform, the signal frequency is altered in a

linear fashion throughout frequency range ∆f (or bandwidth B) during pulse dura-

tion T for a chirp rate of α rad/sec2 or γ Hz2, such that α = 2πγ = 2π∆f
T

. Signals

produced using the LFM waveform can be modeled by [7–9]

s(t) = rect

(
t

T

)
Re{ej(ωct+

αt2

2
)} = rect

(
t

T

)
cos (2πfct+ πγt2) (2)
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where ωc is the center frequency in radians, fc is center frequency in Hertz, and

rect(t) =


1 if |t| ≤ 0.5

0 if |t| > 0.5

. (3)

The instantaneous frequencies ωinst and finst are found by taking the time derivative

of the phase, such that

ωinst =
d

dt
(2πfct+ πγt2) = 2π(fc + γt) (4)

finst =
ωinst
2π

= fc + γt. (5)

Because t ∈ (−T
2
, T

2
) and γ = ∆f

T
= B

T
, equations (4) and (5) can be manipulated to

see that the frequency is bounded as follows:

2π

(
fc +

∆f

T

(
−T

2

))
≤ ωinst ≤ 2π

(
fc +

∆f

T

(
T

2

))
(6)

fc −
B

2
≤ finst ≤ fc +

B

2
(7)

which simply shows that the instantaneous frequency is indeed bounded by its band-

width (∆f = B). For spatial frequency, substituting finst into (1) gives

4πfc
c
− 2π∆f

c
≤ U ≤ 4πfc

c
+

2π∆f

c
(8)

Uc −
2πB

c
≤ U ≤ Uc +

2πB

c
(9)

and hence a spatial frequency range of

∆U =
4πB

c
. (10)
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(a) View from overhead (b) View from behind platform

Figure 2: Spatial Domain

The projection-slice theorem states that the orientation of projections in the spa-

tial domain can be used to specify “slices” in the spatial frequency domain [10]. Using

the spatial geometry depicted in Figure 2a and 2b, spatial frequencies X, Y , and Z

are defined as

X = U cosφ =
4πf cosφ

c
(11)

Y = U sinφ =
4πf sinφ

c
(12)

Z = U sinψ =
4πf sinψ

c
(13)

with X and Y lying in the slant range plane. Likewise, the spatial frequency band-

widths in the x- and y-directions on the slant range plane can be approximated as

∆X =
4π∆f cosφc

c
=

4π∆f

c
(14)

∆Y =
4π

c

(
2fc sin

∆φ

2

)
=

8πfc sin ∆φ
2

c
(15)

where φc = 0°, as shown in Figure 3. When considering spatial frequency as projected
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into the ground range dimension, the expression needs to be multiplied by cosψ; the

spatial frequencies X and Y then become

X =
4πf cosφ cosψ

c
(16)

Y =
4πf sinφ cosψ

c
(17)

and the spatial frequency bandwidths become

∆X =
4π∆f cosψ

c
(18)

∆Y =
8πfc sin ∆φ

2
cosψ

c
. (19)

Figure 3: Spatial Frequency Domain

2.1.3 Scene Reflectivity and Ideal Phase History

In the previous section, the LFM chirp was briefly discussed. As this RF signal

arrives at a reflective object, the signal energy induces an electric charge on the

surface of the object that reradiates the incident signal. This reradiation is referred

to as reflection or scattering; the amount of energy that is reflected (scattered) is
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dependent on the size, shape, and composition of the illuminated target surface [1].

A SAR system’s most basic function is to measure the (real or complex) reflectivity

of a target surface; hence, a SAR image is ideally a representation of that reflectivity.

The magnitude of an object’s reflectivity can be represented by its radar cross section

(RCS), whose formal definition [11] is

σRCS = lim
R→∞

4πR2 |Es|2

|Ei|2
(20)

where R is the distance from the radar to the target scattering center, Ei is the

electric-field strength of the incident wave impinging on the target, Es is the electric-

field strength of the scattered wave at the radar; note that both electric fields are

vectors that depend on direction and signal frequency.

However, radar imaging does not directly measure RCS; rather, it attempts to

estimate target reflectivity. Freeman provides a mathematical description of target

reflectivity [12] as

g(x, y) =
√
Kse

jφsSpq(x, y) (21)

where Spq(x, y) represents the complex amplitude data recorded by the SAR receiver

as elements of the scattering matrix, and Ks and φs are the gain and phase imposed

on the data by the radar. Doring links the amplitude data with RCS [13] in the

following formula:

Spq(x, y) =
√
σRCSδ(x, y) (22)

where δ(x, y) is the Dirac delta function. The combination of (21) and (22) leads to

g(x, y) =
√
KsσRCSe

jφsδ(x, y) (23)

In order to calculate the reflectivity for an entire object or scene, each scatterer
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can be represented as a system of single-point isotropic nondispersive scatterers. This

assumption creates what is called the isotropic point model, which can be written as [1]

g(x, y) =
M∑
m=1

Amδ(x− xm, y − ym). (24)

In this thesis, Am represents the complex amplitude of the mth isotropic point scat-

terer, where the amplitude density’s variance retains equivalency to the
√
KsσRCSe

jφs

term in (22).

After reflection off the target scene, the LFM signal propagates through the envi-

ronment back to the radar receiver. The radar system then records the arrival times

τk of each LFM pulse, and the uniformly sampled frequencies fi contained within

each pulse; these two variables combine together to form what is known as phase

history [7, 14]. The slow-time variable τk can be replaced with φk, the indexed angle

at which the LFM pulse is transmitted and/or received (location of transmission and

reception is the same under the move-stop-move assumption); the radar platform’s

position at φk should coincide with its position at time τk. The phase history of the

total received SAR data, before deramp processing, can be modeled as the sum of

the returns from all of the scatterers in the scene, such that [9]

G(Ui, φk) =
∑
m

Ame
jΦm(fi,φk) + Ω (25)

where Am represents the same complex amplitude as described in (24), Φm is the

phase of the received SAR signal from the mth scatterer, and Ω represents circular

white Gaussian noise introduced by the receiver. For the purposes of this thesis,

Gaussian noise is excluded from consideration, as it is generally dominated by the

return from the scatterers. The phase history depicted in (25) is ideal because it does
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not entail any type of errors at all; it is further defined by

Φm(fi, φk) = −2πfi
∆Rm(φk)

c
= −Ui∆Rm(φk)

2
(26)

where fi is the ith sampled frequency from within the band f ∈ [fc − B
2
, fc + B

2
]

and τk is the time of the kth transmitted pulse as measured from the center of the

radar aperture. The differential range ∆Rm is the difference between the round-trip

distance from the radar to scene center and the round-trip distance from the radar

to the mth scatterer. Given platform ranges that are much larger than the size

of the illuminated scene, a far-field assumption can be utilized to approximate the

differential range [15] as

∆Rm(φk) ≈ −2xm cosφk cosψ − 2ym sinφk cosψ − 2zm sinψ (27)

where φk is the azimuthal angle of the platform from scene center at time τk, and ψ

is the platform’s grazing angle (which is equivalent to its elevation angle, due to flat

earth and level flight path assumptions).

The ideal phase history can be used to derive a spatial frequency model of the

scene reflectivity by substituting in the differential range equation and applying an
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inverse Fourier transform [9], as follows:

G(U, φk) =
M∑
m=1

Ame
jU∆Rm(φk)/2 (28)

=
M∑
m=1

Ame
jU(−2xm cosφk cosψ−2ym sinφk cosψ−2zm sinψ)/2 (29)

=
M∑
m=1

Ame
−j(xmU cosφk cosψ+ymUi sinφk cosψ+zmU sinψ) (30)

=
M∑
m=1

Ame
−j(xmXk+ymYk+zmZk) (31)

=
M∑
m=1

AmF [δ(x− xm, y − ym, z − zm)} (32)

= F{g(x, y, z)] (33)

= G(X, Y, Z) (34)

where G(U, φk) is also known as the range profile at a specific aperture angle φk

achieved at slow-time pulse index k = 1, ..., Nτ .

2.1.4 SAR Image Formation

Once phase history data has been collected, the data can then be converted into an

intelligible image by employing one of several different methods, including matched

filtering, backprojection, and polar reformatting [9]. Matched filtering is considered

the mathematically ideal method of image formation process, while backprojection

offers a slightly less rigorous and more efficient method. However, both of these

methods require a vast number of computational operations, which may be too time-

consuming for operational purposes. This thesis employs a PFA [7].

The need for PFA arises because, while the SAR system invariably collects sam-

ples of phase history using polar measurements, a FFT can only be applied to data
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presented on a rectangular grid. Therefore, the polar phase history data needs to

be reformatted into rectangular data in order to complete conversion into an image.

PFA is accomplished using the following steps [7]:

1. Interpolate phase history data to a uniform grid in the range direction

2. Further interpolate the data to the same grid in the cross-range direction

3. Perform a two-dimensional IFFT on the reshaped data to form a SAR image

Note that it is important to set the number of frequency samples and slow-time pulses

correctly to prevent aliasing in the range and cross-range dimensions, respectively.

Such issues are normally avoided by setting image pixel size equal to the 2-D SAR

resolution; this methodology will be utilized later in this thesis.

2.1.5 Point Spread Function

The PSF of a SAR image is equivalent to the impulse response of the SAR imaging

system, or the output of processing the image of a single ideal point scatterer through

that particular system. In Section 2.1.2, spatial frequency bandwidth was derived as

∆U =
4π∆f

c
(35)

∆X =
4π∆f cosψ

c
(36)

∆Y =
8πfc sin ∆φ

2
cosψ

c
(37)

The spatial frequency bandwidths in (36)-(37) provide a rectangular region of support

for the phase history data; this region of support can be modeled as

H(X, Y ) =


1 if |X −Xc| ≤ ∆X

2
and |Y − Yc| ≤ ∆Y

2

0, otherwise

(38)
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where Xc and Yc are the center spatial frequencies in the x- and y-directions, respec-

tively, and are modeled as

Xc =
4πfc cosψ

c
(39)

Yc =
8πfc sin φc

2
cosψ

c
= 0. (40)

Note that, because φc = 0° by definition, Yc is also defined as zero as well. This region

of support can also be represented as

H(X, Y ) = rect

(
X −Xc

∆X

)
rect

(
Y − Yc

∆Y

)
(41)

= δ(X −Xc, Y ) ∗ rect

(
X

∆X

)
rect

(
Y

∆Y

)
(42)

where ∗ denotes convolution. Now, by applying an inverse Fourier transform to the

region of support H(X, Y ), the PSF for the SAR system is derived as

h(x, y) = ∆X∆Y ejXcxsinc

(
x∆X

2π

)
sinc

(
y∆Y

2π

)
=

32π2f∆f sin ∆φ
2

cos2 ψ

c2
ejXcxsinc

(
2x∆f cosψ

c

)
sinc

(
4yfc sin ∆φ

2
cosψ

c

) (43)

where the sinc function is defined by [7]

sinc(a) =


sin (πa)
πa

a 6= 0

1 a = 0

(44)

The term resolution refers to the minimum distance necessary between two point

scatterers to allow them to be distinguishable in a SAR image. Range resolution can
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be derived as

ρx =
2π

∆X
=

c

2∆f cosψ
=

c

2B cosψ
(45)

in the ground plane (as opposed to the slant range plane), while ground cross-range

resolution is derived as

ρy =
2π

∆Y
=

c

4fc sin ∆φ
2

cosψ
=

λc

4 sin ∆φ
2

cosψ
(46)

where λc is the center wavelength utilized by the SAR system during RF transmission.

Substituting the resolution calculations (45) and (46) into (43) leaves a much simpler

formula for PSF:

h(x, y) =
4π2ejXcx

ρxρy
sinc

(
x

ρx

)
sinc

(
y

ρy

)
(47)

Figures 4a-4d display images of PSFs formed using PFA with different range and

crossrange resolution combinations; note that the amplitude of the PSF at coordinates

(0,0) match the expected output from inserting those coordinates into (47). For

example, for both a range and crossrange resolution of 1 (ρx = ρy = 1):

h(0, 0) =
4π2ejXcx

ρxρy
sinc

(
x

ρx

)
sinc

(
y

ρy

)
(48)

=
4π2ejXc(0)

(1)(1)
sinc

(
0

1

)
sinc

(
0

1

)
= 4π2 = 39.478 (49)
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(a) ρx = 1 m, ρy = 1 m (b) ρx = 2 m, ρy = 1 m

(c) ρx = 1 m, ρy = 2 m (d) ρx = 2 m, ρy = 2 m

Figure 4: PSF Images with Differing Range and Cross-Range Values
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2.1.6 Motion Measurement Errors

Equation (25) gives an ideal phase history achieved through the exact and precise

measurement of platform motion that is devoid of even the slightest amount of de-

viation; unfortunately, such error-free measurements are impossible under real-world

conditions. The presence of MMEs are unavoidable, and therefore must be reflected

in the calculation of the phase history data, as

Gε =
∑
m

Ame
jΦ̂m . (50)

Equation (50) reflects the phase history data with phase errors

Φ̂m = −2πfi∆R̂m(φk)

c
= −Ui∆R̂m(φk)

2
, (51)

where the differential range calculation now includes both the true differential range

between scene center and the mth scatterer, as derived in (27), and the amount of

differential range deviation caused by errors in motion measurement:

∆R̂m(φk) = ∆Rm(φk) + ∆R̃r(φk). (52)

The differential range error can be expressed in a manner similar to that found in

(27),

∆R̃r(φk) ≈ −2x̃r cosφk cosψ − 2ỹr sinφk cosψ − 2z̃r sinψ (53)

where (x̃r, ỹr, z̃r) are the total location measurement errors for the SAR platform,

but in order to examine the effects of MMEs on SAR image formation, the errors

must be explicitly linked to both the position and motion of the radar. This can be
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done by first making the assumptions that the ground range r =
√
x2
r + y2

r and slant

range R =
√
x2
r + y2

r + z2
r , with true radar position (xr, yr, zr), are large enough to be

considered as constants with respect to slow time τ , and that the platform is following

a linear flight path with constant velocity [1, 7–9]. Following Rigling’s model in [9],

these assumptions permit the linear approximations

cosφk ≈
xr + vxτk

r
(54a)

sinφk ≈
yr + vyτk

r
(54b)

cosψ ≈ r

R
(54c)

sinψ ≈ zr + vzτk
R

(54d)

where (vx, vy, vz) is the true velocity of the SAR platform in the x-, y-, and z-

directions. By combining (53) with (54), the differential range can now be expressed

as

∆Rm(τk) ≈ −2xm
xr + vxτk

R
− 2ym

yr + vyτk
R

− 2zm
zr + vzτk

R
(55)

while the differential range error can be expressed as

∆R̃r(τk) ≈ −2x̃r
xr + vxτk

R
− 2ỹr

yr + vyτk
R

− 2z̃r
zr + vzτk

R
. (56)

Low-frequency MMEs are often modeled as [9]


x̃r

ỹr

z̃r

 =


p̃x

p̃y

p̃z

+


ṽx

ṽy

ṽz

 τk +


ãx

ãy

ãz

 τ
2
k

2
(57)

where (p̃x, p̃y, p̃z), (ṽx, ṽy, ṽz), and (ãx, ãy, ãz) represent errors in the measurement of

the radar platform’s position, velocity, and acceleration, respectively. These motion
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measurement errors, when combined with Equation (56), result in

∆R̃r(τk) ≈− 2

(
p̃x + ṽxτk + ãx

τ 2
k

2

)
xr + vxτk

R

− 2

(
p̃y + ṽyτk + ãy

τ 2
k

2

)
yr + vyτk

R

− 2

(
p̃z + ṽzτk + ãz

τ 2
k

2

)
zr + vzτk

R
.

(58)

For ease of analysis, Rigling rewrites (58) as a cubic polynomial expression

∆R̃r(τk) ≈ −2(β̃0 + β̃1τk + β̃2τ
2
k + β̃3τ

3
k ) (59)

where the error terms are defined as

β̃0 =
p̃xxr + p̃yyr + p̃zzr

R
(60)

β̃1 =
p̃xvx + p̃yvy + p̃zvz + ṽxxr + ṽyyr + ṽzzr

R
(61)

β̃2 =
ṽxvx + ṽyvy + ṽzvz

R
+
ãxxr + ãyyr + ãzzr

2R
(62)

β̃3 =
ãxvx + ãyvy + ãzvz

2R
. (63)

The separation of terms provides a clear indication of how MMEs are directly linked

to constant, linear, quadratic, and cubic phase errors, which have varying effects on

SAR image quality. The dominant effect of constant and linear phase errors is a

spatially invariant shift in the imaged scatterer locations, while quadratic and cubic

errors cause a “smeared” response in the final image. Examples of such smearing can

be seen in Figures 5 and 6, and demonstrate the potential visual effects such errors

can have on image quality.
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(a) No Velocity Error (b) Velocity Error of 0.25 m/s

(c) Velocity Error of 0.50 m/s (d) Velocity Error of 1.00 m/s

Figure 5: Effects of Various Along-Track Velocity Errors on SAR Image with Point
Scatterer at (0,0)
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(a) No Acceleration Error (b) Acceleration Error of 0.5 m/s2

(c) Acceleration Error of 1.0 m/s2 (d) Acceleration Error of 2.0 m/s2

Figure 6: Effects of Various Along-Track Acceleration Errors
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Hence, the MMEs can be modeled in the spatial frequency domain by combining

(28) and (59), such that

Gε(X, Y, Z) = e
−jXik

(
p̃x+ṽxτk+

ãxτ
2
k

2

)
+Yik

(
p̃y+ṽyτk+

ãyτ
2
k

2

)
+Zik

(
p̃z+ṽzτk+

ãzτ
2
k

2

)
(64)

= ejUi∆R̃r(τk)/2 (65)

= e−jUi(β̃0+β̃1τk+β̃2τ2k+β̃3τ3k ). (66)

Meanwhile, the phase terms can also be multiplied out for the true differential range

in (55), as

∆Rm(τk) ≈ −2
xmxr + xmvxτk + ymyr + ymvyτk + zmzr + zmvzτk

R
(67)

≈ −2

(
xmxr + ymyr + zmzr

R

)
− 2

(
xmvx + ymvy + zmvz

R

)
τk (68)

≈ −2(β0 + β1τk). (69)

Finally, (59) and (69) are combined into the differential range equation (52), so that

∆R̂m(τk) = ∆Rm(τk) + ∆R̃r(τk) (70)

≈ −2(β0 + β1τk + β̃0 + β̃1τk + β̃2τ
2
k + β̃3τ

3
k ) (71)

≈ −2(β0 + β̃0)− 2(β1 + β̃1)τk − 2β̃2τ
2
k − 2β̃3τ

3
k . (72)

2.2 Image Quality Metrics

IQMs not only provide quantitative indications of image quality improvement, but

can also provide numerical estimates of the phase error to be corrected through aut-

ofocus. As such, researchers have proposed a large number of autofocus algorithms

based on optimization of IQMs such as sharpness [16–21], contrast [22–25], and en-

tropy [26, 27]. However, higher-order phase errors (quadratic and above) affect each
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IQM and the resulting autofocused images in different manners; therefore, careful

IQM selection may lend towards improving the success of radar tasks such as target

detection. The IQMs of interest for this thesis are contrast, sharpness, and entropy.

2.2.1 Contrast

By definition, contrast metrics evaluate the difference in brightness between the

light and dark areas of an image. A well-focused image will have darker dark areas

(representing high energy scattering in this thesis) and brighter bright areas (rep-

resenting low energy scattering), as higher-order phase errors tend to smear energy

from dark regions into the bright ones. This metric can be calculated as the ratio of

the standard deviation to the mean of the image amplitude, as follows [9, 28]:

C1 =

√
E
(
[A(nx, ny)− E(A(nx, ny))]

2)
E (A(nx, ny))

(73)

where A(nx, ny) is the image pixel amplitude and E(·) is the spatial average operator

E(A(nx, ny)) =
1

NxNy

Nx∑
nx=1

Ny∑
ny=1

A(nx, ny). (74)

An alternate contrast metric can be defined as [22,28]

C2 =

√
E
(
[I(nx, ny)− E(I(nx, ny))]

2)
E (I(nx, ny))

(75)

where I(nx, ny) is the image pixel intensity (also referred to as power or magnitude-

squared)

I(nx, ny) = |A(nx, ny)|2 . (76)
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2.2.2 Sharpness

Sharpness metrics typically employ a function of the image intensity that will

emphasize high-energy areas and de-emphasize low-energy areas. Parseval’s theorem

states that the total image energy, computed as the 2-D sum over image intensity,

will remain constant, independent of any defocusing due to phase errors. However,

a 2-D sum over a higher order power of image intensity, such as amplitude cubed

or intensity squared, provides sensitivity to the defocusing effects of azimuth phase

errors. For the purpose of this thesis, intensity squared

S =
Nx∑
nx=1

Ny∑
ny=1

I(nx, ny)
2 (77)

will be utilized for the sharpness metric [9, 16].

2.2.3 Entropy

Like the sharpness metric, the entropy metric may also be classified as a higher

order function of image intensity. Entropy is classically used to quantify energy

dispersion. Viewing the image defocusing effect of phase errors as a type of energy

dispersion implies that, in general, image entropy will increase as phase errors worsen.

In order to calculate image entropy, the SAR image intensity is first normalized, such

that

Ī(nx, ny) =
I(nx, ny)∑Nx

nx=1

∑Ny
ny=1 I(nx, ny)

. (78)

Now the entropy function can be defined as [9, 27,29]

E1 = −
Nx∑
nx=1

Ny∑
ny=1

Ī(nx, ny) ln Ī(nx, ny). (79)
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An alternative entropy function utilizes the normalized magnitude image

Â(nx, ny) =
|A(nx, ny)|∑Nx

nx=1

∑Ny
ny=1 |A(nx, ny)|

(80)

and defines entropy as [30]

E2 =
Nx∑
nx=1

Ny∑
ny=1

Î(nx, ny)e
1−Î(nx,ny). (81)
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III. SAR Imaging Process and CFAR Detector Setup

3.1 Overview

This chapter describes the algorithms used to simulate the SAR imaging process,

as well as the setup of the detector algorithms employed in the Monte Carlo trials for

target detection.

3.2 Complete Phase History Model

In Chapter II, the SAR system’s 2-D point spread function was modeled as

H(X, Y ) = rect

(
X −Xc

∆X

)
rect

(
Y

∆Y

)
, (82)

the phase history of the scene reflectivity as

G(X, Y ) =
M∑
m=1

Ame
−j(xmXik+ymYik) (83)

≈
M∑
m=1

Ame
−jUi(β0m+β1mτk) (84)

where

β0m =
xmxr + ymyr

R
(85)

β1m =
xmvx + ymvy

R
, (86)

and the phase history of the motion measurement errors as

Gε(X, Y ) ≈ e
−jXik

(
p̃x+ṽxτk+

ãxτ
2
k

2

)
+Yik

(
p̃y+ṽyτk+

ãyτ
2
k

2

)
(87)

≈ ejUi∆R̃r/2 ≈ e−jUi(β̃0+β̃1τk+β̃2τ2k+β̃3τ3k ) (88)
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where

β̃0 =
p̃xxr + p̃yyr

R
(89)

β̃1 =
p̃xvx + p̃yvy + ṽxxr + ṽyyr

R
(90)

β̃2 =
ṽxvx + ṽyvy

R
+
ãxxr + ãyyr

2R
(91)

β̃3 =
ãxvx + ãyvy

2R
. (92)

Through multiplication of the spatial frequency domain representation of the point

spread function, the scene reflectivity, and the motion measurement errors, a complete

model of the phase history data is formed as

R(X, Y ) = G(X, Y )Gε(X, Y )H(X, Y ) (93)

≈ rect

(
X −Xc

∆X

)
rect

(
Y

∆Y

)
M∑
m=1

Ame
−jXik

(
xm+p̃x+ṽxτk+

ãxτ
2
k

2

)
−jYik

(
ym+p̃y+ṽyτk+

ãyτ
2
k

2

) (94)

≈ rect

(
X −Xc

∆X

)
rect

(
Y

∆Y

) M∑
m=1

Ame
−jUi(β0+β̃0+β1τk+β̃1τk+β̃2τ2k+β̃3τ3k ). (95)

The inverse Fourier transform of the phase history data R(X, Y ) provides a complete

SAR estimate of the scene reflectivity:

r(x, y) = h(x, y) ∗ g(x, y) ∗ gε(x, y) (96)
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where

h(x, y) ∗ g(x, y) =
M∑
m=1

Amδ(x− xm, y − ym) ∗ 4π2ejXcx

ρxρy
sinc

(
x

ρx

)
sinc

(
y

ρy

)
(97)

=
4π2

ρxρy

M∑
m=1

Ame
jXc(x−xm)sinc

(
x− xm
ρx

)
sinc

(
y − ym
ρy

)
. (98)

The motion measurement error gε(x, y) portion of the scene reflectivity equation (96)

is left here without a closed-form solution, as analytically solving the inverse Fourier

transform of (87) has proven to be a very difficult task. Therefore, MMEs shall be

represented simply as the inverse Fourier transform of Gε(X, Y ), leading to a full

scene reflectivity model of

r(x, y) = h(x, y) ∗ g(x, y) ∗ gε(x, y) (99)

= F−1[Gε(X, Y )] ∗ 4π2

ρxρy

M∑
m=1

Ame
jXc(x−xm)sinc

(
x− xm
ρx

)
sinc

(
y − ym
ρy

)
.

(100)

3.3 SAR Image Grid

The fast-time variable t has been discussed as a continuous variable in order to

facilitate explanation of the fundamental principles behind the phase history model

derived in previous sections. However, in reality, the SAR processor samples the re-

ceived signal using analog-to-digital converters (ADC), transforming fast time data t

into discrete phase history data [8,9]. This data must then be appropriately interpo-

lated onto a grid sized for display, which is accomplished in this thesis through PFA

as discussed in Section 2.1.4. The end result is an image grid spaced in increments

of dx and dy along the x- and y-axes, and numbering the pixels within this grid as

nx and ny; these two components combined effectively translate into coordinates to
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pixel centers throughout the grid, represented by x′ = nxdx and y′ = nydy. The SAR

image model then becomes

r(x, y) = A(x′, y′) (101)

= F−1[Gε(X, Y )] ∗ 4π2

ρxρy

M∑
m=1

Ame
j4π(x′−xm)/λsinc

(
x′ − xm
ρx

)
sinc

(
y′ − ym
ρy

)
(102)

where A(x′, y′) is the complex value of the pixel centered at (x′, y′). From this point on

in this thesis, the image pixel value will be denoted as An, to shorten it from A(x′, y′)

but still differentiate it from target reflectivity complex amplitude Am. Also, the

constant factor of 4π2

ρxρy
is normalized out to simplify calculations, leaving

An = F−1[Gε(X, Y )] ∗
M∑
m=1

Ame
j4π(x′−xm)/λsinc

(
x′ − xm
ρx

)
sinc

(
y′ − ym
ρy

)
. (103)

3.4 Statistics of a Pixel

In Section 3.3, it is shown that the process of transferring SAR data onto an

imaging grid may lead to a deterministic scaling of reflected signal amplitudes; this

scaling is not representative of a point scatterer’s true reflectivity amplitude Am,

due to the imaging of the point scatterer at a location (xm, ym) that may not fall

directly upon a corresponding pixel center (x′, y′). In such cases, some of the point

scatterer’s representative reflective energy is shared with neighboring pixels. In addi-

tion, the sidelobes from the point scatterers representing clutter contribute additional

amplitude to all other image pixel amplitudes. However, the mean and variance of

the random pixel amplitudes can be accurately calculated using (101) with a pri-

ori knowledge of the range/crossrange resolutions and the image pixel dimensions to

model the pixel amplitude probability distribution function.
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The mth scatterer’s complex random reflectivity amplitude Am is computed in

this thesis as the summation of random real and imaginary components u and v,

both drawn from independent (and identical) zero-mean Gaussian distributions and

each possessing exactly half of the reflective power, equating to a variance of σ2
m

2
, such

that um ∼ N (0, σ
2
m

2
), vm ∼ N (0, σ

2
m

2
), and Am = um + jvm. The mean, variance, and

second moment of the complex random amplitude are

E[Am] = E[um + jvm] = E[um] + jE[vm] = 0 + j0 (104)

var[Am] = E[(Am − E[Am])2]

= E[(um + jvm)2]

= E[u2
m + j2umvm + v2

m]

=
σ2
m

2
+ E[u]2 + j2E[u]E[v] +

σ2
m

2
+ E[v]2

= σ2
m

(105)

E[A2
m] = E[Am]2 + var[Am] = 02 + σ2

m = σ2
m (106)

Meanwhile, taking the magnitude of the two components’ sum leads to |Am| =√
u2
m + v2

m. The square root of the sum of squares of two i.i.d. zero-mean Gaus-

sian random variables with the same variance exhibits a Rayleigh distribution [31],

such that |Am| ∼ Rayleigh(σm√
2
); therefore, the expected value, variance, and second

moment of |Am| are [32]

E[|Am|] =

√
πσ2

m

4
=
σm
√
π

2
(107)

Var[|Am|] = σ2
m −

πσ2
m

4
= σ2

m

(
1− π

4

)
(108)

E[|Am|2] = E[A2
m] = σ2

m. (109)

Equation (101) shows that, after the scene reflectivity data has gone through
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image processing, Am is modified by a scale factor that is dependent on point scatterer

location (xm, ym) in relation to pixel centers (x′, y′), as well as phase. This scaling

factor is represented as ηm, such that

ηm = ej4π(x′−xm)/λsinc

(
x′ − xm
ρx

)
sinc

(
y′ − ym
ρy

)
(110)

Without motion measurement errors, the pixel amplitude can now be modeled as

An =
M∑
m=1

ηmAm (111)

whereas it is

An = gε(x, y) ∗
M∑
m=1

ηmAm (112)

when affected by MMEs.

The scale factor ηm is essentially a linear transform on the complex Gaussian ran-

dom variable Am, for which the scaling results in another complex Gaussian random

variable that can again be fully described by its mean and variance. Because the

scale factor ηm itself is not random, its expected value is equal to the factor itself

(E[ηm] = ηm) and does not vary (Var[ηm] = 0). Hence, the expected value for each

error-free pixel amplitude is

E[An] = E

[
M∑
m=1

ηmAm

]
(113)

=
M∑
m=1

E [ηm(um + jvm)] (114)

=
M∑
m=1

ηm(E[u] + jE[v]) (115)

= 0 + j0 (116)
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and the variance is

Var[An] = Var

[
M∑
m=1

ηmAm

]
(117)

= E

( M∑
m=1

ηmAm − E

[
M∑
m=1

ηmAm

])2
 (118)

= E

( M∑
m=1

ηmAm

)2
 (119)

= E

[
M∑
m=1

η2
mA

2
m +

M∑
m6=j

ηmηjAmAj

]
(120)

=
M∑
m=1

η2
mE[A2

m] +
M∑
m6=j

ηmηjE[AmAj] (121)

=
M∑
m=1

η2
mσ

2
m. (122)

The statistics derived here only apply to pixels unaffected by MMEs. Due to the

difficulty of deriving an analytic solution for the MME model gε(x, y), this thesis relies

on numerical analysis of the pixel amplitudes when they have been altered by MMEs.

3.5 Target Detection

In order to perform target detection on a SAR image, it would be ideal to set up

a likelihood ratio test (LRT) expressed as

ΛLRT (An) =
p(An|H1)

p(An|H0)

H1

≷
H0

P (H0)

P (H1)
(123)

where hypothesis H1 represents the presence of a target (as well as clutter), whereas

H0 represents the sole presence of clutter. However, utilization of an LRT for SAR

detection would require a priori knowledge of the probability densities for each hy-

pothesis (P (H1) and P (H0)), which is not likely to be known for an operational SAR
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system. Instead, a NP detector [32] can be implemented such that

ΛNP (An) =
p(An|H1)

p(An|H0)

H1

≷
H0

γ. (124)

With the NP detector, only the likelihood of encountering a particular pixel amplitude

An within each hypothesis region (p(An|H1) and p(An|H0)) must be known. The

resultant ratio can then be evaluated against a detection threshold γ which is set

to maximize probability of detection (PD) while maintaining a desired probability of

false alarm (PFA). Setting a constant false alarm rate in this manner is referred to

as CFAR detection, where the constant false alarm rate is expressed as

PFA =

∫
An:Λ>γ

p(An|H0)dAn (125)

CFAR detection is one of the most popular detection algorithms used on SAR imagery

[33], but it requires accurate modeling of pixel probability densities for both clutter

and targets. While literature presents a fairly large number of realistic distribution

models for clutter, including log-normal, Weibull, gamma, and K-distributions [34],

the clutter (and target) pixel magnitudes are modeled in this thesis with a Rayleigh

distribution derived from complex Gaussian point scatterer reflectivities. The use of

complex Gaussian distributions facilitates derivation of the necessary test statistics.

The image pixel probability density is derived by first focusing on scatterer reflec-

tivity as represented in the point scatterer model. The real and imaginary components

um and vm of scatterer reflectivity amplitudes Am are separated into two vectors, such

that u = [u1, u2, . . . , uM ]T and v = [v1, v2, . . . , vM ]T , respectively, for a quantity of

M scatterers. The two component vectors u and v are then stacked into a single
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2M -length real random vector A, such that

A =

u
v

 = [u1, u2, . . . , uM , v1, v2, . . . , vM ]T (126)

Section 3.4 states that the independent and identical components u and v each

follow a zero-mean Gaussian distribution and possess a variance of σ2
m

2
; therefore, the

expected value of A is defined as

E[A] = µ = E

u
v

 =

µu
µv

 = 0 (127)

and the covariance matrix as

Σ = E[(A− E[A])(A− E[A])T ] (128)

= E[(A− µA)(A− µA)T ] (129)

= E[AAT ]− µAµTA (130)

=

Σuu Σuv

Σvu Σvv

 (131)

where

Σuu =



var(u1) cov(u1, u2) . . . cov(u1, uM)

cov(u2, u1) var(u2) . . . cov(u2, uM)

...
...

. . .
...

cov(uM , u1) cov(uM , u2) . . . var(uM)


=



σ2
1

2
0 . . . 0

0
σ2
2

2
. . . 0

...
...

. . .
...

0 0 . . .
σ2
M

2


= Σvv

(132)

Σuv = −Σvu = 0 (133)
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The point scatterer reflectivity vector is now fully characterized as multi-dimensional

Gaussian A ∼ N (0,Σ); however, the CFAR detector still needs the probability

density of pixel measurement An in order to function. Noting that the pixel amplitude

is simply the scaled sum of target reflectivity amplitudes (An =
∑M

m=1 ηmAm), the

scale factor ηm can be separated into its real and imaginary components, in the same

manner that the reflectivity amplitude was separated into two components. These

components are represented as

ηrm = Re{ej4π(x′−xm)/λ}sinc

(
x′ − xm
ρx

)
sinc

(
y′ − ym
ρy

)
(134)

ηim = Im{ej4π(x′−xm)/λ}sinc

(
x′ − xm
ρx

)
sinc

(
y′ − ym
ρy

)
(135)

Two scaling vectors are generated from the components, whereNr = [ηr1, ηr2, ..., ηrM ]T

and Ni = [ηi1, ηi2, ..., ηiM ]T . The new vectors are used to scale the stacked u and v

vectors to create stacked pixel measurement vector An, such that

An =

un
vn

 =

NT
r u

NT
i v

 =

∑M
m=1 ηrmum∑M
m=1 ηimvm

 (136)

where un and vn are the real and imaginary components of the complex pixel mea-

surement An. This new pixel vector, which consists of scaled Gaussian components

and is therefore Gaussian itself, assists in deriving the mean and covariance matrices

of the pixel amplitude:

µn = E[An] = E

un
vn

 = E

NT
r u

NT
i v

 =

NT
r µu

NT
i µv

 = 0 (137)
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Σn = E[(An − E[An])(An − E[An])T ] (138)

= E[AnA
T
n ]− µnµTn (139)

= E


NT

r u

NT
i v

[uTNr vTNi

] (140)

= E

NT
r uu

TNr NT
r uv

TNi

NT
i vu

TNr NT
i vv

TNi

 (141)

= E

NT
r ΣuuNr NT

r ΣuvNi

NT
i ΣvuNr NT

i ΣvvNi

 (142)

=
1

2

∑M
m=1 η

2
rmσ

2
m 0

0
∑M

m=1 η
2
imσ

2
m

 (143)

It is important to note that covariance matrix Σn only relates the real and imaginary

components of a single SAR pixel; it does not relate one pixel to another because

SAR image pixels are not independent of each other and therefore would require a

more complex covariance matrix to describe their relation. Equations (137) and (143)

show that µn is a 2 × 1 zero vector and Σn is a 2 × 2 scalar matrix; together, they

fully characterize a single (bivariate Gaussian) SAR pixel as An ∼ N (0,Σn). This

information can now be used to find the pixel’s probability density:

p(An) =
e−

1
2

(An−µn)TΣ−1
n (An−µn)√

(2π)2|Σn|
=
e−

1
2
ATnΣ

−1
n An

2π
√
|Σn|

(144)

For target detection purposes, each SAR image pixel can be classified as either

“target” or “clutter”. In this thesis, target pixels are defined as pixels containing point

scatterers that possess a reflectivity variance of σ2
t , while clutter pixels solely possess

point scatterers with reflectivity variance of σ2
c . The clutter reflectivity variance is

assumed to remain constant throughout the entire target scene; this means that the
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i.i.d. zero-mean Gaussian components uc ∼ N (0, σ
2
c

2
) and vc ∼ N (0, σ

2
c

2
) are equal, and

re-deriving (127) to (144) leads to clutter pixel measurement vector Ac ∼ N (0,Σc),

where

Σc =
σ2
c

2

∑M
m=1 η

2
rm 0

0
∑M

m=1 η
2
im

 (145)

For the sake of simplicity, all target point scatterers are also assumed to have equal

reflectivity variance σ2
t . This assumption results in target pixel covariance matrix Σt

where

Σt =
σ2
t

2

∑M
m=1 η

2
rm 0

0
∑M

m=1 η
2
im

 . (146)

The preceding image pixel information can now be used to properly set up the

binary hypotheses to be utilized in the CFAR detector. The null hypothesis H0 will

indicate a clutter pixel possessing solely point scatterers with reflectivity variance σ2
c ,

as defined above; such a pixel’s probability density would be described by a clutter

pixel covariance matrix, so that p(An|H0) ∼ N (0,Σc). Meanwhile, the alternative

hypothesis H1 will indicate the target’s presence (with variance σ2
t ) within the eval-

uated pixel; however, the pixel would also potentially contain clutter as well, so the

probability density of a target pixel would necessarily be described by clutter and

target covariance matrices summed together, such that p(An|H1) ∼ N (0,Σt + Σc).

Therefore, the requisite binary hypotheses take the following form:

H0 : An ∼ N (0,Σc) (147)

H1 : An ∼ N (0,Σt + Σc). (148)

Utilizing the Neyman-Pearson criteria laid out in (124) and the joint distribution of
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An found in (144), the LRT can now be defined as

Λ(An) =
p(An|H1)

p(An|H0)
(149)

=
e−

1
2
ATn (Σt+Σc)−1An√

(2π)2|Σt + Σc|

√
(2π)2|Σc|

e−
1
2
ATnΣ

−1
c An

(150)

=

√
|Σc|

|Σt + Σc|
e−

1
2
ATn [(Σt+Σc)−1−Σ−1

c ]An
H1

≷
H0

γ (151)

and the log-likelihood ratio is

ln Λ(An) =
1

2
ln |Σc| −

1

2
ln |Σt + Σc| −

1

2
AT
n [(Σt + Σc)

−1 −Σ−1
c ]An

H1

≷
H0

γ′ (152)

where new threshold γ′ = ln γ. To find a suitable test statistic, the constant terms

are moved into the threshold, leaving

T (An) = −1

2
AT
n [(Σt + Σc)

−1 −Σ−1
c ]An

H1

≷
H0

γ′. (153)

Figure 7: Plot of all simulated point scatterers; blue points represent clutter, and red
point represents a target point scatterer stacked on top of a clutter point scatterer
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As seen in (153), the test statistic relies on the complex pixel amplitude vectorAn,

as well as the target and clutter covariance matrices Σt and Σc. In order to calculate

the values for these parameters, a target scene is set up with a scene extent Dx meters

long in the range direction and Dy meters long in the cross-range direction. For this

thesis, such a target scene possesses 441 clutter point scatterers are distributed evenly

throughout the scene as shown in Figure 7. It is assumed that only one target scatterer

is present in the target scene, and that it is always located in the very center of the

scene; a target placed in such a manner would necessarily share the same space as the

clutter point scatterer at the scene center, as also seen in Figure 7. Such stringent

assumptions are set only because the purpose of the thesis is to compare IQMs to the

task of target detection, not to encounter the best target detection algorithm.

Figure 8: Depiction of CFAR stencil used for target detection in this simulation.

Also necessary for test statistic calculation is the utilization of a sliding CFAR

detector window. Figure 8 displays a CFAR stencil that is 5 × 5 pixels in size; this

stencil “slides” sequentially over each tested image pixel, or CUT. The CUT (shown

in green) provides the measurements for the complex pixel amplitude and the target
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covariance matrix, while the clutter covariance matrix is estimated using measure-

ments gathered from the pixels within the background clutter band (in yellow). The

two regions are separated by a guard band (in blue) to prevent incidental mixture of

the two sets of measurements. The CUT can be comprised of either a single pixel or

multiple pixels, but it is recommended that it be the size of the smallest expected tar-

get, while the size of the guard band should be large enough to encompass the largest

expected target [34]. In this thesis, all SAR image pixels are resolution-sized, as is

typical for PFA-formed images; therefore, the target is the size of a single pixel, and

only a single-pixel CUT is necessary. This assumption leads to a target covariance

matrix Σt that is equivalent to identity matrix I. Meanwhile, the clutter covariance

matrix Σc is estimated utilizing a sample covariance matrix Σ̂c that is determined as

Σ̂c =
1

j − 1

j∑
i=1

(Ai − Āc)(Ai − Āc)
T (154)

where j is the number of pixels utilized to form the sample (i.e., the number of pixels

in the background clutter band); Ai is the pixel measurement vector of the ith clutter

pixel under consideration, similar in structure to the pixel measurement vector An

as expressed in (136); and Āc is the sample mean of all j pixel measurement vectors,

as evaluated in

Āc =
1

j

j∑
i=1

Ai (155)

Thus, the 2×2 sample covariance matrix Σ̂c, relating the real and imaginary parts of

a single pixel, is approximated by spatially averaging over the sample means and 2×2

covariances of the pixels in the background region of the CFAR window. Because the

background region always possesses sixteen pixels (j = 16), the sample mean vector
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and sample covariance matrix ultimately become

Āc =
1

16

16∑
i=1

Ai (156)

Σ̂c =
1

15

16∑
i=1

(Ai − Āc)(Ai − Āc)
T (157)

and the test statistic employed for target detection in this thesis becomes

T (An) =
1

2
AT
n [Σ̂−1

c − (I + Σ̂c)
−1]An

H0

≷
H1

γ′. (158)

The test statistic portrayed in (158) would work well on SAR images gained

through precisely-measured platform motion; however, the lack of motion measure-

ment errors would be considered an unrealistic scenario for true SAR observations.

Unfortunately, difficulties in arriving at a closed-form solution for the addition of

MMEs forces a numerical review of the results.

3.6 Number of Required Monte Carlo Trials

To ensure accuracy in the results and findings, a requirement is set such that the

randomized reflectivity amplitudes Am are accurate to within ±0.1 units 95% of the

time; this requirement subsequently forces a certain level of pixel amplitude accuracy

as well. Since the reflectivity amplitudes are all i.i.d., the central limit theorem is

invoked; this theorem states that as a number of samples approaches infinity, the

sample mean is normal distributed regardless of the type of data distribution from

which the samples were taken. Kay prescribes the following equation for finding the

probability that a certain quantity exceeds a specific amount of error ε [32]:

Pr[T > ε] = Q

(
ε√
σ2/N

)
(159)
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where σm is the standard deviation of reflectivity amplitudes Am and N is the num-

ber of realizations needed to achieve a confidence level equal to 100(1 − α)%. The

probability found in (159) will be equal to half the margin of error α, so substituting

Pr[T > ε] = α/2 results in

N ≥
(
σmQ

−1(α/2)

ε

)2

, (160)

with which the minimum number of realizations needed can now be determined for

the differing values of σm utilized in this simulation, as listed in Table 1.

Table 1: Minimum number of realizations needed for different standards of deviation
at 95% confidence in ±0.1 amplitude error

σm N realizations
1 384
2 1537
3 3458
4 6147
5 9604

Table 1 shows that at least 9604 realizations would be needed to attain the desired

level of confidence in an amplitude error of ±0.1 when the target amplitude reaches

the largest assigned standard deviation of 5. As such, the simulation will utilize

10000 realizations of all SAR images and related artifacts, in order to maintain a

95%-or-higher level of confidence in not exceeding a margin of 0.1 units of reflectivity

amplitude.
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IV. Results and Analysis

4.1 Overview

This chapter covers the effects of implementing various motion measurement errors

on target detection within simulated SAR images of different signal-to-clutter ratios.

It also examines the image quality levels achieved after MME implementation, and

compares these metrics to achieved probabilities of detection.

4.2 Simulation Setup

Table 2: SAR Simulation Parameters

SAR Image Parameters Symbol Values

Scene Extent (m) Dx, Dy 6.0× 6.0
Pixel Size (m) dx, dy 0.3× 0.3

Range and Cross-Range Resolution (m) ρx, ρy 0.3× 0.3
Frequency Range (GHz) f ∈ [8.7502, 9.2498]

Bandwidth (MHz) ∆f 499.65
Frequency Sample Spacing (MHz) δf 0.9993

Azimuth Range (deg) φ ∈ [−1.5907, 1.5907]
Azimuth Extent (deg) ∆φ 3.1813

Azimuth Sample Spacing (deg) δφ 0.063626
Grazing Angle (deg) ψ 0

As previously described in Section 3.5 and shown in Table 2, a 6× 6-meter scene

is simulated with 144 clutter point scatterers and one target point scatterer. Data

collection is simulated using a frequency range of 8.75-9.25 GHz for a center frequency

of 9 GHz and a bandwidth of 499.65 MHz, and a transmit aperture extending from

-1.59° to 1.59° for an azimuth extent of 3.18°; these parameters result in both a ground

range resolution ρx and a ground cross-range resolution of 0.3 meters. The pixel size

of the image grid is purposely set to 0.3×0.3-m as well, allowing each clutter scatterer

to appear in the exact center of each image pixel.
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As indicated in previous sections, the generation of all point scatterers into phase

history is accomplished by drawing the complex reflectivity amplitudes Am for both

clutter and target from Gaussian random processes with means of zero and variances

of σ2
c

2
and

σ2
t

2
, respectively. In order to further enhance potential trends and compar-

isons between MMEs, IQMs, and target detection, five different sets of target scenes

are incorporated into the simulation, corresponding to five different SCRs: 1, 4, 9,

16, and 25. These five SCRs are chosen for test variety as well as simplified im-

plementation, as they are easily achieved by maintaining a static clutter reflectivity

variance σ2
c of 1, while increasing the target reflectivity standard deviation σt in unit

steps from 1 to 5 (understanding that the ratio σ2
t /σ

2
c has equivalency to SCR). Then

10000 realizations are produced for each SCR scenario, resulting in 50000 unique SAR

phase histories. The Polar Reformatting Algorithm, as described in Section 2.1.4, is

applied to the phase history data to produce 10000 SAR images for each SCR set,

50000 in total.

Table 3: Theoretical vs Simulated Target Reflectivity Amplitude Statistics

Am Mean Am Variance
SCR Theoretical Simulated Theoretical Simulated

25 0+j0 -0.0193 + j0.1205 25 25.090
16 0+j0 -0.0154 + j0.0964 16 16.057
9 0+j0 -0.0115 + j0.0723 9 9.0323
4 0+j0 -0.0077 + j0.0482 4 4.0144
1 0+j0 -0.0038 + j0.0241 1 1.0036

For validation of correct implementation of the necessary phase histories, statistics

are tabulated for each set of SCRs and compared to what is theoretically derived for

(104) and (105) in Table 3. This table shows that the variances for all the target re-

flectivity amplitudes are within 0.1 units of the theoretical variances, as was intended

with the high number of amplitude realizations.

To ensure correct formation of the related SAR images, statistics are compared
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Table 4: Theoretical vs Simulated Target Pixel Statistics

An|H1 Mean An|H1 Variance
SCR Theoretical Simulated Theoretical Simulated

25 0+j0 -0.0027 + j0.0946 26 26.053
16 0+j0 0.0000 + j0.0776 17 17.028
9 0+j0 0.0027 + j0.0605 10 10.011
4 0+j0 0.0054 + j0.0435 5 5.0003
1 0+j0 0.0082 + j0.0264 2 1.9971

Table 5: Theoretical vs Simulated Clutter Pixel Statistics

An|H0 Mean An|H0 Variance
SCR Theoretical Simulated Theoretical Simulated

25 0+j0 0.0002 + j0.0000 1 0.9296
16 0+j0 0.0002 + j0.0000 1 0.9292
9 0+j0 0.0002 + j0.0000 1 0.9289
4 0+j0 0.0002 + j0.0000 1 0.9287
1 0+j0 0.0002 + j0.0000 1 0.9285

for both clutter and target pixels to what was theoretically derived in (116) and

(122) over each set of SCRs in Tables 4 and 5. Here, the results again show that

the measured variance of the simulated target pixels matches the theoretical pixel

variance to within 0.1 units in all cases.

Figures 9a, 9c, and 9e depict sample SAR images using differing SCRs, while the

histograms in Figures 9b, 9d, and 9f display the simulated magnitude distributions

of the target and clutter pixels; target pixels are represented by the blue bars, and

the clutter pixels are shown as red bars. The colored lines drawn over the histograms

represent the calculated theoretical probability density function for the pixel magni-

tudes in images with the specified SCR to demonstrate the validity of each particular

set of 10000 SAR images. Figure 9a displays a sample SAR image from the 10000

produced with an SCR of 25; in it, one can visually see how the pixel’s magnitude

allows it to stand out strongly in the field of lesser clutter pixels. Also of note is the

larger separation between the distributions of the target pixels and the clutter pixels,
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(a) Sample SAR Image, SCR=25
(b) Histograms and Pixel Magnitude Distri-
butions for SCR=25 Images

(c) Sample SAR Image, SCR=9
(d) Histograms and Pixel Magnitude Distri-
butions for SCR=9 Images

(e) Sample SAR Image, SCR=1
(f) Histograms and Pixel Magnitude Distri-
butions for SCR=1 Images

Figure 9: Image and Probability Distributions of Target and Clutter Pixel Magnitudes
for Images using Different SCRs
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which should lend itself to higher target detection performance (as is investigated

in greater detail later in this section). Figures 9c and 9d represent the set of SAR

images produced using an SCR of 9. The target pixel now possesses a magnitude

that is only slightly higher than that of the surrounding clutter pixels; this also is

evident from the magnitude distributions, where there is less separation and greater

overlap than is present in Figure 9b. Images possessing an SCR of 1 are evaluated

in Figures 9e and 9f; in Figure 9e, the target pixel is visually indistinguishable from

the clutter pixels, as a large portion of the clutter pixels possess a higher magni-

tude. From the magnitude distributions in Figure 9f, it should be noted that there is

very little separation between the clutter and target distributions, which would make

target detection challenging before any type of errors are even considered.

4.3 Effects of Motion Measurement Errors

Next, in order to accurately assess the relationship between image quality (mea-

sured through IQMs) and target detection, the image quality of all 50000 images is

degraded by inserting MMEs into the relevant phase histories before image formation

takes place. Four varying levels of error are utilized for each of three different types

of MME, as shown in Table 6.

Table 6: Theoretical vs Simulated Clutter Pixel Statistics

MME Type Symbol MME Levels Units
Position Measurement Error perr 0, 0.1, 0.2, 0.3 m
Velocity Measurement Error verr 0, 0.25, 0.5, 1.0 m/s

Acceleration Measurement Error aerr 0, 0.25, 0.5, 0.1 m/s2

Figures 10, 11, and 12 show the resultant PDFs for the target and clutter pixel

magnitudes after application of the related MME, as compared to their pre-MME

pixel magnitudes. The blue histogram bars represent the distribution of target pixel

magnitudes before MME application, while red bars represent the target magnitudes
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after MME application. Likewise, yellow bars represent clutter distributions pre-

MME, and purple bars represent clutter distributions post-MME. The yellow bars

are generally not visible because there is such little change between the clutter’s pre-

and post-MME distributions, so the red bars almost completely overlap the blue ones.

Recall that closed-form equations could not be derived for phase history or image

formation after application of MMEs; therefore, the effects of MME insertion must

assessed via measurements and quantitative comparisons. Sample SAR images and

histograms are again utilized to assist with this evaluation; the initial focus is on

images possessing an SCR of 25, as these images more strongly demonstrate the

effects of the MMEs than those of lesser SCRs. Figures 10a, 10c, and 10e contain

sample images for the three levels of position measurement error, taken from the

10000 images characterized by an SCR of 25, while Figures 10b, 10d, and 10f depict

the pixel magnitude distributions for the same set of 10000 images due to the varying

position measurement errors. These figures show that the position error of 0.1 m

does not cause a significant change in the target pixel distributions, while the 0.2-

m position error cuts the standard deviation of the target pixel magnitude in half,

which would equate to reducing the SCR to a quarter of its original value. Finally,

a position error of 0.3 m causes the target pixel magnitude’s probability density to

exactly match that of the clutter pixels, as this error causes the resultant images to

depict the target as centered in the pixel next to the pixel of its actual location, while

reducing the magnitude of the true target pixel to that of a clutter pixel.

Figures 11a-11f feature the effects of varying velocity measurement errors, again

on images with an SCR of 25. As might be expected, the figures show that increasing

the velocity error from 0.25 m/s to 0.5 m/s and then 1.0 m/s correspondingly shifts

the the target pixel magnitude’s probability density further to the left, though not in

a linear fashion. This reduction in effective SCR can be attributed to the fact that
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(a) Position measurement error of 0.10 m (b) Position measurement error of 0.10 m

(c) Position measurement error of 0.20 m (d) Position measurement error of 0.20 m

(e) Position measurement error of 0.30 m (f) Position measurement error of 0.30 m

Figure 10: Probability Densities of Target and Clutter Pixel Magnitudes in Images
with SCR of 25, after applying varying levels of position measurement error
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(a) Velocity measurement error of 0.25 m (b) Velocity measurement error of 0.25 m/s

(c) Velocity error of 0.50 m (d) Velocity error of 0.5 m/s

(e) Velocity error of 1.0 m (f) Velocity error of 1.0 m/s

Figure 11: Histograms of Target and Clutter Pixel Magnitudes in Images of SCR =
25, after applying varying levels of velocity measurement error
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the increasing levels of velocity measurement error causes the signal energy to spread

out to neighboring pixels, dissipating the target pixel’s magnitude towards that of

clutter; however, it must be reiterated that this dissipation does not appear to be

linear, so greater errors in velocity measurement do not necessarily result in greater

decreases in target pixel magnitude or SCR.

Figures 12a-12f display the effects of the varying acceleration measurement errors

on the SCR=25 images. As with the previous two types of measurement errors,

increasing levels of acceleration measurement error result in decreasing magnitudes for

the target pixel. Examination of Figures 12a, 12c, and 12e allows inference that this

magnitude reduction is again a consequence of signal energy dissipation and spread

to neighboring pixels, though exploration of acceleration measurement errors earlier

in this thesis indicated that the energy spread occurs primarily in one direction; this

distinction is difficult to evaluate visually in the related figures. This contrasts with

the spread caused by velocity measurement errors, which was clearly seen as affecting

neighboring pixels in both along-track directions in Figures 11a, 11c, and 11e. It must

also be noted that, in the cases of both velocity and acceleration measurement errors,

the signal energy spread exhibited a much less evident effect on the distribution of

clutter pixels; this can be attributed to the fact that the clutter pixel amplitudes are

already quite similar to each other (i.e., their variance is already quite low). Smearing

the energy of a target pixel with amplitude 5 into a neighborhood of clutter pixels

that each possess an amplitude of 1 will greatly lower the amplitude of the target pixel

and slightly raise the amplitude of the clutter pixels, but smearing the energy of a

clutter pixel of amplitude 1 (or 0.9, or 1.1, etc.) that is surrounded by similar clutter

pixels will not affect any of those pixels much. Assuredly, the lower the variance is

amongst a group of pixels, the less effect the application of an MME will have on

them.
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(a) Accel measurement error of 0.25 m/s2 (b) Accel measurement error of 0.25 m/s2

(c) Accel measurement error of 0.50 m/s2 (d) Accel measurement error of 0.5 m/s2

(e) Accel measurement error of 1.0 m/s2 (f) Accel measurement error of 1.0 m/s2

Figure 12: Histograms of Target and Clutter Pixel Magnitudes in Images of SCR =
25, after applying varying levels of acceleration measurement error
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(a) Position error of 0.10 m (b) Position error of 0.30 m

(c) Velocity error of 0.25 m/s (d) Velocity error of 1.0 m/s

(e) Acceleration error of 0.25 m/s2 (f) Acceleration error of 1.0 m/s2

Figure 13: Histograms of Target and Clutter Pixel Magnitudes in Images of SCR =
1, after applying varying levels of motion measurement errors
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The histograms in Figures 13a-13f depict the pixel magnitude distributions for

images composed with an SCR of 1, both before and after the relevant MMEs have

been applied. In all cases, the target pixel’s magnitude distribution after MME

application is virtually indistinguishable from that of clutter. This can be directly

attributed to the fact that the target pixel magnitude distribution closely resembles

that of clutter pixels, pre-MME application. However, it should be noted that for

every type of MME, the post-MME target pixel magnitude distribution draws even

closer to that of clutter, causing effective SCR to approach nearer to 1. It can be

expected that target detection proves to be difficult using images with an SCR of 1,

regardless of the presence of MMEs; this task would become virtually impossible to

perform with any true success after introducing MMEs to SAR images in which the

signal and clutter levels are already equal.

4.4 Target Detection Performance

To perform analysis of target detection performance, all five sets of 10000 unadul-

terated SAR images are first run through the CFAR detector described in Section 3.5

to set a performance baseline for each SCR scenario, unaffected by MMEs. For each

detection trial, the CFAR stencil shown in Figure 8 is set over each pixel to individ-

ually test them using the test statistic as described in Section 3.5. The computed

test statistic is then compared to a specific threshold predetermined in accordance

with the desired false alarm rate. True detections and false alarms are recorded as

the detector runs through each pixel in each of the 10000 images in the SCR set;

then the threshold level is raised slightly, and all 10000 trials are run again. At least

twenty threshold levels are tested per Monte Carlo run. After establishment of this

performance baseline, the same target detection trials are next run under each MME

condition, such that each full set of 50000 images (all five SCR groups) are tested
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nine additional times (once for each unique level of the three MME types). Data from

the baseline trials and the nine MME-affected trials are aggregated into ROC curves

to visually demonstrate the effects of each MME on the PD against constant rates of

false alarm; these ROC curves are displayed as Figures 14a-14e.

From the ROC curves displayed in Figures 14a-14e, it is evident that the proba-

bility of target detection decreased for each decrease in image SCR. Especially note-

worthy is the fact that, once a respectable false alarm rate is set for images of SCR=1

(i.e., PFA < 10−2), the PD does not exceed 10%, even without the presence of MMEs;

this falls in line with previous observations of this class of images. Also notable is

that, when there is 0.30 meters of position measurement error present, the maximum

achievable PD for the omnisciently-known true target location is less than 30% regard-

less of image SCR, meaning that such erroneous measurements reduce the chances

of accurate target detection by more than one-third. Note that, if target location

did not matter, than the 0.3-m position measurement error would have absolutely no

affect on PD.

Table 7: Highest PDs Achieved for each SCR/MME Combination

MME SCR=25 SCR=16 SCR=9 SCR=4 SCR=1

No MME 0.9457 0.9206 0.8750 0.7636 0.5190
perr = 0.10 m 0.9237 0.8897 0.8300 0.7017 0.4631
perr = 0.20 m 0.7697 0.6948 0.5940 0.4622 0.3328
perr = 0.30 m 0.2820 0.2827 0.2834 0.2835 0.2838
verr = 0.25 m/s 0.9073 0.8633 0.7909 0.6523 0.4258
verr = 0.50 m/s 0.5638 0.4976 0.4304 0.3633 0.3067
verr = 1.00 m/s 0.5876 0.5186 0.4389 0.3572 0.3000
aerr = 0.25 m/s2 0.9303 0.9009 0.8492 0.7312 0.4838
aerr = 0.50 m/s2 0.8731 0.8233 0.7407 0.5976 0.3996
aerr = 1.00 m/s2 0.7610 0.6897 0.5884 0.4584 0.3420

To maximize visualization of these trends, the highest PDs achieved by each dis-

tinct MME for each SCR set is isolated and then combined them into a single plot,

as shown in Figure 15. This figure displays the downward non-linear trend in proba-
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(a) ROC Curves for SCR=25 (b) ROC Curves for SCR=16

(c) ROC Curves for SCR=9 (d) ROC Curves for SCR=4

(e) ROC Curves for SCR=1

Figure 14: ROC Curves with varying levels of motion measurement errors applied,
for each SCR
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Figure 15: Highest Simulated Probability of Detection for each MME applied, at each
SCR
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bility of detection for all images as SCR decreases, regardless of MME levels. Figure

15 also depicts how the applied amount of MME affects probability of detection; for

example, the detector can achieve a PD of 87.5% on images with an SCR of 9 and

no MMEs, but PD drops below 60% when a position measurement error of 0.2 m is

applied, 50% when verr = 0.5 m/s, and below 30% when perr = 0.3 m. Further data

for Figure 15 can be found in Table 7.

In general, Figure 15 indicates that the applied MMEs affected probability of

detection disproportionately, in the following order from least to greatest effect:

1. Acceleration Measurement Error of 0.25 m/s2

2. Position Measurement Error of 0.10 m

3. Velocity Measurement Error of 0.25 m/s

4. Acceleration Measurement Error of 0.50 m/s2

5. Position Measurement Error of 0.20 m

6. Acceleration Measurement Error of 1.0 m/s2

7. Velocity Measurement Error of 1.0 m/s

8. Velocity Measurement Error of 0.50 m/s

9. Position Measurement Error of 0.30 m

Due to the strong relation between the type and amount of MME and its effect on

probability of detection, all further data in this thesis will be listed in this order.

There are a few exceptions to this order evident in Table 7 and Figure 15; specifi-

cally, a higher PD is achieved when verr = 0.5 m/s than when verr = 1.0 m/s for

images with SCRs of 4 and 1, and a higher PD is also achieved when aerr = 1.0 m/s2

or when verr = 0.5 m/s, for SCR=1 images only. In addition, there is essentially

a flat line for the highest PDs produced after application of 0.3 m of position mea-

surement error, meaning SCR strength does not affect detection outcomes in light

of such erroneous measurements because the detector falsely detects the target in a

59



neighboring pixel, regardless of SCR. However, these small deviations do not detract

from the general observed trend. Of particular note is that, for images with strong

SCRs, velocity measurement errors of 0.50 m/s caused lower detection probabilities

than the greater velocity measurement error of 1.0 m/s. This observance is the only

one that violates the expected relation that greater MMEs result in lower detection

probabilities; previous observations regarding signal energy spread from velocity mea-

surement errors do not fully explain this result. More research into this phenomena

should be considered.

4.5 IQM Analysis

Now that the amount of MME has been sufficiently linked to probability of de-

tection, the impact MMEs have on IQMs can be examined, as well as the linkage

between IQMs and PD. For this thesis, five IQMs were selected: two contrast met-

rics, one sharpness metric, and two entropy metrics. In order to produce comparable

data between all IQMs (or as the aphorism goes, “to compare apples to apples”), first

the respective IQMs are calculated for every single image, both with and without

the 9 MMEs, for the entire Monte Carlo set of 10000 images at each of the 5 SCRs,

covering every possible MME-SCR image combination produced thus far. Then the

mean and standard deviation of each IQMs is then calculated for each MME-SCR

combination, and those means and standard deviations are finally normalized by di-

viding by the mean IQMs of the “No MME + SCR=25” group, as that group has

proven to allow the highest PD in all instances. For this reason, you will see that

the “No MME + SCR=25” metric value for each IQM is equal to 1. Each IQM is

examined separately below.
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4.5.1 Contrast

Table 8 represents the normalized mean Contrast 1 metric data calculated for all

MME-SCR combinations, listed in order of MMEs that have the least to greatest effect

on PD. Figures 16a-16c separate Table 8’s data into the three separate MME types:

position, velocity, and acceleration. Contrast 2 metric data is depicted in the same

manner, with Table 9 containing the tabular data and Figures 17a-17c presenting the

data in the separate MME plots.

Table 8: Normalized Mean Contrast 1 Values at each MME and SCR level

MME SCR=25 SCR=16 SCR=9 SCR=4 SCR=1

No MME 1.000 0.9689 0.9451 0.9294 0.9222
aerr = 0.25 m/s2 0.9845 0.9581 0.9384 0.9258 0.9204
perr = 0.10 m 0.9887 0.9623 0.9426 0.9302 0.9249
verr = 0.25 m/s 0.9835 0.9591 0.9413 0.9306 0.9263
aerr = 0.50 m/s2 0.9831 0.9582 0.9400 0.9292 0.9249
perr = 0.20 m 0.9822 0.9565 0.9375 0.9257 0.9208

aerr = 1.00 m/s2 0.9967 0.9737 0.9570 0.9471 0.9430
verr = 1.00 m/s 0.9847 0.9684 0.9576 0.9518 0.9495
verr = 0.50 m/s 0.9845 0.9639 0.9495 0.9414 0.9382
perr = 0.30 m 1.039 1.007 0.9832 0.9674 0.9602

A cursory examination of the Table 8 data does not demonstrate a strong connec-

tion between the metric values and the achieved probability of detection levels. Since

the normalized mean “No MME, SCR=25” value is (supposed to be) higher than

metric values for all other MME-SCR combinations, it would be a fair assumption

that lower quantities of MMEs and higher SCRs would equate to higher Contrast

1 values, which would then translate to higher detection levels. While the trend of

higher SCR values producing higher contrast values holds true throughout, the MME

quantities do not seem to hold the same type of relationship with Contrast 1 metrics.

A close look at each SCR column shows that all related MME quantities possess

normalized mean Contrast 1 values that are within 0.2 units of each other, which
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(a) Contrast 1 Metrics for Position Measure-
ment Errors

(b) Contrast 1 Metrics for Velocity Measure-
ment Errors

(c) Contrast 1 Metrics for Acceleration Mea-
surement Errors

Figure 16: Contrast 1 Metrics for each MME at each SCR
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means they would all fall within a tolerance of ±0.1. The single odd exception is that

of the 0.30-m position measurement error, which continuously possessed the highest

contrast values for each SCR...even higher than that of the error-less mean contrast

values.

These observations are further backed up by the plots in Figures 16a-16c. Figure

16a shows that the “perr = 0.30 m” error produces higher contrast values than the

other position errors, while Figures 16b and 16c demonstrate how there is no truly

tangible trend other than that of diminishing contrast values as SCR is decreased.

Table 9: Normalized Mean Contrast 2 Values at each MME and SCR level

MME SCR=25 SCR=16 SCR=9 SCR=4 SCR=1

perr = verr = aerr = 0 1.000 0.823 0.709 0.643 0.623
aerr = 0.25 m/s2 0.894 0.761 0.680 0.634 0.621
perr = 0.10 m 0.852 0.740 0.671 0.632 0.620
verr = 0.25 m/s 0.803 0.717 0.664 0.634 0.626
aerr = 0.50 m/s2 0.794 0.709 0.659 0.632 0.625
perr = 0.20 m 0.879 0.754 0.678 0.637 0.624

aerr = 1.00 m/s2 0.808 0.721 0.671 0.645 0.637
verr = 1.00 m/s 0.706 0.677 0.661 0.652 0.650
verr = 0.50 m/s 0.738 0.687 0.657 0.641 0.637
perr = 0.30 m 1.016 0.849 0.732 0.665 0.643

Table 9 data for Contrast 2 and Figures 17b-17c demonstrate a subtly stronger

relationship between the IQM, MMEs, and relative detection performance than was

apparent for Contrast 1. For example, higher Contrast 2 metric values are more

clearly aligned with certain MME levels for SCRs of 25, 16, and 9, although the

MMEs linked to higher contract values are not necessarily the ones linked to better (or

worse) detection performance. Figure 17a appears to demonstrate that the Contrast

2 values for the error-free and 0.3-m position error images were statistically equal

to each other for all SCRs, while the contrast values for the 0.1- and 0.2-m position

error images were also statistically equivalent over all SCRs. The values for Contrast

2 certainly demonstrate stronger trends than those for Contrast 1.
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(a) Contrast 2 Metrics for Position Measure-
ment Errors

(b) Contrast 2 Metrics for Velocity Measure-
ment Errors

(c) Contrast 2 Metrics for Acceleration Mea-
surement Errors

Figure 17: Contrast 2 Metrics for each MME at each SCR
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4.5.2 Sharpness

Table 10 and Figures 18a-18c provide visual presentation for the sharpness metric,

and follow the same format used in the tables and figures for contrast.

Table 10: Normalized Mean Sharpness Values at each MME and SCR level

MME SCR=25 SCR=16 SCR=9 SCR=4 SCR=1

perr = verr = aerr = 0 1.000 0.708 0.557 0.487 0.470
aerr = 0.25 m/s2 0.817 0.620 0.524 0.480 0.469
perr = 0.10 m 0.744 0.593 0.515 0.478 0.469
verr = 0.25 m/s 0.669 0.563 0.506 0.479 0.473
aerr = 0.50 m/s2 0.658 0.554 0.502 0.478 0.472
perr = 0.20 m 0.789 0.610 0.521 0.482 0.472

aerr = 1.00 m/s2 0.673 0.564 0.512 0.488 0.481
verr = 1.00 m/s 0.544 0.515 0.501 0.493 0.491
verr = 0.50 m/s 0.581 0.527 0.499 0.485 0.481
perr = 0.30 m 1.025 0.738 0.578 0.505 0.486

The Sharpness metric seems to be quite similar to that of Contrast 2 and fol-

lows the same general trend of diminishing sharpness aligning with decreasing MME-

related detection performance levels, except for the position measurement errors. The

most noticeable difference between the normalized mean Contrast 2 and Sharpness

metrics is that the standard deviation for Sharpness values is much greater, stretch-

ing the possible range of Sharpness values from 0.0 to 2.0, as opposed to 0.5 to 1.5

for Contrast 2 values. The greater standard deviation would make the Sharpness

metric somewhat less reliable than the Contrast 2 metric. This is unfortunate, as

there is an appreciable drop in sharpness as the amount of applied MME increases;

for example, images with an SCR of 25 and a velocity measurement error of 1.00 m/s

achieve approximately 54% of the sharpness of images with the same SCR but with

no MMEs. This phenomena would theoretically work well to help predict target de-

tection success, except that it only holds true for images with high SCRs (25 and 16),

and does not follow the same trend for position errors. The latter exception should

65



(a) Sharpness Metrics for Position Measure-
ment Errors

(b) Sharpness Metrics for Velocity Measure-
ment Errors

(c) Sharpness Metrics for Acceleration Mea-
surement Errors

Figure 18: Sharpness Metrics for each MME at each SCR
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be expected, as the position of a target within a pixel should have no true affect on

image sharpness.

4.5.3 Entropy

MME SCR=25 SCR=16 SCR=9 SCR=4 SCR=1

perr = verr = aerr = 0 1.000 0.915 0.855 0.816 0.799
aerr = 0.25 m/s2 0.953 0.879 0.827 0.793 0.778
perr = 0.10 m 0.948 0.877 0.828 0.795 0.775
verr = 0.25 m/s 0.929 0.864 0.816 0.785 0.766
aerr = 0.50 m/s2 0.925 0.857 0.810 0.779 0.766
perr = 0.20 m 0.936 0.862 0.811 0.778 0.758

aerr = 1.00 m/s2 0.863 0.799 0.755 0.726 0.712
verr = 1.00 m/s 0.731 0.684 0.651 0.628 0.617
verr = 0.50 m/s 0.859 0.802 0.762 0.735 0.722
perr = 0.30 m 0.961 0.882 0.823 0.784 0.761

Table 11: Normalized Mean Entropy 1 Values at each MME and SCR level

Table 11 indicates that Entropy 1 is the first image quality metric investigated

in this thesis for which applying the highest amount of position measurement error

does not produce a higher metric value than does applying no MME at all. Figures

19b and 19c, demonstrate a very strong relationship between the applied MMEs

and the Entropy 1 metric, where higher levels of the former produce lower values of

the latter; though this trend does not follow the previously established relationship

between MMEs and PD, it does make the most sense intuitively, i.e. verr = 1.0 m/s

should (and does) lead to higher entropy than verr = 0.50 m/s. Entropy 1 is also the

only metric that possesses statistically differentiated values amongst MMEs of the

same class, as the extent of deviation for the average metric value achieved with 1.0

m/s of velocity error does not overlap the deviation achieved before the application

of MMEs. This is only true for velocity measurement errors on images with an

SCR of 9 and below, but it can be inferred that even higher levels of MME would

produce better differentiation for higher SCRs. Figure 19a indicates that position

67



(a) Entropy 1 Metrics for Position Measure-
ment Errors

(b) Entropy 1 Metrics for Velocity Measure-
ment Errors

(c) Entropy 1 Metrics for Acceleration Mea-
surement Errors

Figure 19: Entropy 1 Metrics for each MME at each SCR
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measurement errors fail to produce the same type of trend that is evident with the

other two MME types.

MME SCR=25 SCR=16 SCR=9 SCR=4 SCR=1

perr = verr = aerr = 0 1.000 1.000 1.000 1.001 1.002
aerr = 0.25 m/s2 1.000 1.001 1.001 1.002 1.003
perr = 0.10 m 1.000 1.000 1.001 1.002 1.003
verr = 0.25 m/s 0.999 1.000 1.001 1.002 1.003
aerr = 0.50 m/s2 0.999 1.000 1.001 1.002 1.003
perr = 0.20 m 1.000 1.001 1.002 1.003 1.003

aerr = 1.00 m/s2 0.998 0.999 1.000 1.002 1.002
verr = 1.00 m/s 1.002 1.004 1.005 1.007 1.007
verr = 0.50 m/s 0.998 1.000 1.001 1.003 1.004
perr = 0.30 m 0.992 0.992 0.992 0.993 0.994

Table 12: Normalized Mean Entropy 2 Values at each MME and SCR level

No connections or trends can, nor should, be taken from the data in Table 12 for

Entropy 2 because the values are all so close together, they could be considered one

and the same. The two minor exceptions are the metric values for verr = 1.00 m/s

and perr = 0.30 m, but even their values are separated from that of no MMEs by only

0.8%. Figures 20a - 20c further emphasize the point that Entropy 2 does not provide

any useful trends, other than a statistically-insignificant increase in metric value as

the SCR decreases.
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(a) Entropy 2 Metrics for Position Measure-
ment Errors

(b) Entropy 2 Metrics for Velocity Measure-
ment Errors

(c) Entropy 2 Metrics for Acceleration Mea-
surement Errors

Figure 20: Entropy 2 Metrics for each MME at each SCR
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V. Conclusions

5.1 Key Conclusions

The results of Chapter IV indicate that there are a variety of factors to con-

sider when attempting to increase a SAR system’s probability of detection through

improved image quality. They are as follows:

• It is clear that the signal-to-clutter ratio utilized in acquiring the phase history

data that is necessary to form the SAR image has a direct and demonstrable

effect on the system’s ability to detect point targets.

• Motion measurement errors also have a demonstrable effect on target detection

success, as our simulation testing has shown that larger amounts of MMEs lead

to lower probabilities of detection. However, the connection between MMEs and

detection probability is less clear once SCR falls to 4 or lower; this discrepancy

indicates that a minimum SNR floor above 4 should be strongly considered for

target detection improvements.

• Our results indicate that higher levels of signal-to-clutter ratios improve image

quality metrics, except in the case of one particular type of entropy metrics.

This relationship was most demonstrable for sharpness metrics, but was also

apparent for contrast and entropy 1 metrics as well.

• The only conclusion we could draw with at least a medium level of confidence

regarding the relationship between image quality metrics and motion measure-

ment errors is that one certain type of entropy metrics works well for indicating

the presence of velocity measurement errors in images formed with low SCRs

(SCR=9 and below). Results seem to indicate that this scope could widen to

acceleration measurement errors and images with higher SCRs; further investi-

gation into this region should be performed with a wider range of MMEs and
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SCRs.

• We were unable to draw a strong connection between the image quality metrics

investigated in this thesis, and probability of detection. This incapacity was

further perpetuated by the unpredictable effect of position measurement errors

on contrast and sharpness metrics.

5.2 Significance of the Research

Using the detection algorithm described in Chapter III, we were able to character-

ize the effects of varying signal-to-clutter ratios on a SAR system’s target detection

performance. We were also able to characterize the effects of applying various levels

of position, velocity, and acceleration measurement errors on the probability of target

detection. We investigated the relationships, or lack thereof, between selected image

quality metrics, signal-to-clutter ratios, motion measurement errors, and the proba-

bility of target detection. The results of this thesis will better inform radar engineers

on signal formation and image processing criteria that are more likely to result in

heightened target detection success. This thesis should also provide some insight into

the image quality metrics that can best indicate the presence of motion measurement

errors, allowing radar engineers to focus their time and energy on researching and

producing autofocus algorithms based on the best subset of IQMs.

5.3 Future Work

The results of this work could be extended by:

• Utilizing an incoherent detector, as opposed to the coherent detector used in

this thesis, to ensure that results remain the same regardless of detector type

• Increasing the number of signal-to-clutter ratios tested within the established

range, to solidify the results encountered within this thesis and encounter the
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specific breaking point for the relationship between SCRs and MMEs.

• Increasing the range of motion measurement errors simulated and tested, to

further investigate any potential relationships between MMEs and target detec-

tion.

• Increasing the numbers of MME combinations utilized.

• Widening the scope of image quality metrics utilized in order to discover other

IQMs that may be even more beneficial in predicting future target detection

success.

• Relating MMEs to radar design parameters; for example, how does position

measurement error relate to range and cross-range resolution? How do velocity

measurement errors relate to pulse repetition frequency (PRF)? Do acceleration

measurement errors relate to scene extent (making quadratic phase errors more

noticeable)?

• Testing against tasks other than target detection, such as RCS pattern recovery.
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Acronyms

CFAR constant false alarm rate.

CUT cell under test.

FFT fast Fourier transform.

i.i.d. independent and identically distributed.

IFFT inverse fast Fourier transform.

IQM image quality metric.

LFM linear frequency modulated.

MME motion measurement error.

NP Neyman-Pearson.

PD probability of detection.

PFA polar (re)format algorithm.

PSF point spread function.

RCS radar cross section.

RF radio frequency.

ROC receiver operating characteristic.

SAR synthetic aperture radar.

SCNR signal-to-clutter-plus-noise ratio.

SCR signal-to-clutter ratio.
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