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Abstract
Researchers typically increase training data to improve neural net predictive capa-
bilities, but this method is infeasible when data or compute resources are limited. 
This paper extends previous research that used long short-term memory–fully con-
volutional networks to identify aircraft engine types from publicly available auto-
matic dependent surveillance-broadcast (ADS-B) data. This research designs two 
experiments that vary the amount of training data samples and input features to 
determine the impact on the predictive power of the ADS-B classification model. 
The first experiment varies the number of training data observations from a limited 
feature set and results in 83.9% accuracy (within 10% of previous efforts with only 
25% of the data). The findings show that feature selection and data quality lead to 
higher classification accuracy than data quantity. The second experiment accepted 
all ADS-B feature combinations and determined that airspeed, barometric pressure, 
and vertical speed had the most impact on aircraft engine type prediction.

Keywords  Multivariate long short-term memory–fully convolutional network · 
Automatic dependent surveillance-broadcast · Publicly available information · 
Open-source data · Classification · Machine learning

1  Introduction

Over the last three decades, storage on the internet increased by over 40,000% 
from 15.8 exabytes in 1993 to 6.8 zettabytes in 2020  [1]. While it is difficult 
to determine the exact number, as of February 2022, the size of the internet is 
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estimated to be about 21 zettabytes and is doubling every two years  [2]. If we 
assume the average personal computer (PC) has a hard drive of one terabyte, 21 
zettabytes is equivalent to 21 billion PCs, essentially three PCs for every person 
in the world. While a lot of this data is personal data, a large portion of it is con-
sidered publicly available information (PAI) and can be utilized by any internet 
user or organization.

This increase in available data has resulted in the study of identifying trends 
(i.e., data analytics), becoming more and more prevalent in multiple facets of 
society to include commerce and government. Researchers and major corpora-
tions have considered multiple ways to best utilize this massive resource, aptly 
referred to as ‘Big Data.’ Some areas that have shown promise include Internet 
of Things (IoT) analysis [3–5], traffic modeling  [6], flight and maritime move-
ment  [7–11], image recognition  [12], search engines  [12] and natural language 
processing [12].

The increased focus on PAI and data analytics is recognized by military defense 
strategists who are responsible for making sound defense decisions. By incorporat-
ing PAI with the plethora of sensor data at their disposal, such as data from intel-
ligence, surveillance, and reconnaissance platforms, it is possible to improve the 
predictive power of those resources. The need for data analytics is apparent in the 
United States Air Force and Space Force where multi-domain operations are inte-
gral to their defense strategies. In fact, the FY22 Posture Statement calls out Com-
mand and Control’s need for the translation and sharing of data to provide ‘real-
time dissemination of actionable information’ to provide ‘joint warfighting across 
all domains at a pace faster than our competitors’ [13]. Without recent advances in 
technology, artificial intelligence, and machine learning, this goal would be virtually 
impossible. Fortunately, new techniques can be used to filter the noise in big data 
much faster than human speed to quickly make inferences that are important to mili-
tary decision makers.

To aid military leaders with analyzing the immense data at their disposal, we 
seek to improve military operations by providing enhanced capabilities for a major 
user of big data: intelligence analysts. One focus area important to intelligence ana-
lysts is pattern-of-life (POL) modeling. Some researchers seek to improve POL 
modeling via machine learning  [14–18]. Recent research interests suggest analyz-
ing ground-based and onboard aircraft sensors with deep learning to predict aircraft 
characteristics.

One stream of research for POL modeling is focused on exploiting automatic 
dependent surveillance-broadcast (ADS-B) data to make predictions about air-
craft [6, 8, 11, 19]. Aircraft within certain airspace are required to broadcast ADS-B 
Out via an onboard transponder. The benefit of using ADS-B data for classification 
problems is that it is publicly available and aircraft flying in the USA and Europe are 
required to broadcast it in most classes of airspace [20, 21]. ADS-B data is collected 
from various sites worldwide where hobbyists and researchers maintain a receiver 
to collect it. ADS-B collectors submit their data to centralized repositories, such as 
the ADS-B Exchange [22], that aggregate the data for public use. In these reposi-
tories, both statistical and kinematic information about the broadcasting aircraft is 
available.
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1.1 � Problem description/objective

Pattern-of-life (POL) modeling is a research area with many techniques and best 
practices [14–18]. Military and defense personnel have an interest in POL mod-
eling that includes more than modeling human day-to-day activities. For example, 
unattributed data from aircraft sensors, such as those collected from Air Traf-
fic Control’s (ATC) primary radar, can allow inferences to be made about the 
transmitting aircraft with some analysis. ATC’s primary radar collects kinematic 
information such as location and airspeed, but is unable to obtain an aircraft’s 
identification without the aircraft providing it via its transponder. With this basic 
kinematic aircraft data, models can predict information such as aircraft model or 
engine type without it being directly stated in the original dataset. The benefit of 
ADS-B data is that these features are present in the dataset and can be used as 
truth data to build models for datasets that do not have the truth data.

Since this type of processing can be resource intensive, it can be difficult or, 
in some cases, impossible to train a deep learning model when dealing with lim-
ited computing resources. The amount of computing resources required to train a 
model is heavily influenced by the size of the training data. For this reason, it is 
important to understand how to best utilize the available resources by minimiz-
ing the data used to train the model. There are two ways to minimize the data: 
limit the number of features or reduce the number of training samples. In this 
research, using aircraft kinematic data, we examine the impact of varying these 
factors when predicting engine type. Since reducing the training data will inevita-
bly reduce the accuracy of the resulting model, for the purpose of this paper, we 
define an acceptable model as one that predicts within 10% of the previous base-
line research results of 89.2% accuracy [23]. Therefore, models that can achieve 
at least a 79.2% accuracy will be considered ‘acceptable.’

1.2 � Research contribution

The research contribution of this paper can be summed up in the following points:

•	 Since there is no definitive guideline for minimum dataset size for deep learn-
ing classification problems, this research aims to determine a baseline for air-
craft prediction models.

•	 This paper determines the baseline features to identify an aircraft with kin-
ematic data: Speed, barometric pressure, and vertical speed

•	 This paper analyzes and reiterates the importance of selecting appropriate fea-
tures. The ‘noise’ feature within this dataset severely limited the classification 
power of the network.
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1.3 � Organization

The rest of this paper is organized as follows: An exhaustive literature review and 
background information on ADS-B is provided in section two. In the third sec-
tion, the methodology and process used to develop and evaluate each model is 
discussed. The fourth section presents the results. The conclusion is provided in 
the fifth section.

2 � Background and literature review

This section describes automatic dependent surveillance-broadcast (ADS-B) data; 
previous attempts to classify engine type from it; relevant deep learning tech-
niques; and the recommendations for dataset size when building a neural network 
model. Table 1 outlines the papers discussed in this section.

2.1 � Automatic dependent surveillance‑broadcast (ADS‑B)

Automatic dependent surveillance-broadcast (ADS-B) is an aircraft sensor used 
throughout many regions of the world. Several researchers have utilized ADS-B 
data to identify flight patterns  [8, 11, 24, 25], improve aircraft operations [26, 
27], increase ADS-B transmission security [28, 29] and classify targets [7]. The 
transmissions are openly broadcast via an ADS-B Out transponder at 1090 MHz 
in many countries worldwide and at both 1090 MHz and 978 MHz within the 
USA. ADS-B data is received and collected via various methods to include other 
aircraft, ground stations, and satellites. Figure 1 depicts an ADS-B communica-
tions network.

Ground stations consist of sites where antennas collect ADS-B transmissions 
from passing aircraft. The ground stations are typically managed by commercial 
or government organizations, but hobbyists also collect the broadcasts. In the 
case of hobbyists, the aircraft transmissions are collected on a nearby device and 
transferred to one or multiple organizations that host the data for public use (e.g., 
the ADS-B Exchange [22]).

The ADS-B Exchange and similar services save the incoming data to their 
servers in two- to five-second intervals as a JavaScript Object Notation (JSON) 
file. Per the USA’s DO-260B standard and Europe’s ED-102A standard, each 
broadcast contains up to 70 features about the transmitting aircraft including the 
International Civil Aviation Organization (ICAO) identifier, altitude, airspeed, 
vertical speed, directional heading, position time, latitude, longitude, and ground 
status [22, 30].

Table 2 provides details on the countries that have an ADS-B mandate and the 
date when the mandate began or is projected to start. The chart shows that most 
countries, including the USA, Australia, the European Union Aviation Safety 
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Agency (EASA), and many East Asia and Pacific island countries, began their 
mandate on or before 2020 which forces aircraft that fly within those regions to 
install the appropriate ADS-B Out equipment.

Within the USA, the mandate is not required for low flying aircraft and aircraft 
operating out of rural airports. Table 3 explains the US requirements in more detail. 
Within the USA, ADS-B Out is required for aircraft flying above 10,000 feet MSL 

Table 1   Comparative study table

Paper ADS-B Prediction & 
classification

Improve 
aircraft 
operations

Trans-
mission 
security

Dataset size Collection 
& process-
ing

Ginoulhac et al. 
(2019) [7]

✓ ✓

Qian et al. (2019) [8] ✓ ✓

Kumar et al. 
(2021) [11]

✓ ✓

Basrawi (2021) [19] ✓ ✓

Basrawi et al. 
(2021) [23]

✓ ✓

Sun et al. (2016) [24] ✓ ✓

Sun et al. (2017) [25] ✓ ✓

Ruseno et al. 
(2022) [26]

✓ ✓

Filippone et al. 
(2021) [27]

✓ ✓

Hasin et al. 
(2021) [28]

✓ ✓

Pearce et al. 
(2021) [29]

✓ ✓

Sun (2021) [30] ✓ ✓

Karim et al. 
(2017) [31]

✓

Karim et al. 
(2019) [32]

✓

Goodfellow et al. 
(2016) [33]

✓

Hu et al. (2018) [34] ✓

Alwosheel et al. 
(2018) [35]

✓

Cho et al. (2015) [36] ✓

Jain et al. (1982) [37] ✓

Baum et al. 
(1988) [38]

✓

Haykin (2009) [39] ✓
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and aircraft operating in locations near airports classified by Class B or Class C 
airspace.

2.2 � Multivariate long short‑term memory–fully convolutional neural networks

Artificial neural networks (ANNs) have been shown to be successful at classifying 
a variety of datatypes. Many ANN variations have been developed over the years 
to classify the infinite number of datatypes researchers encounter. Long short-term 
memory (LSTM) networks were developed to classify time series data and convo-
lutional neural networks were developed to classify images. Combining these two 
networks, the multivariate long short-term memory–fully convolutional network 
(MLSTM–FCN) is shown to improve upon previous methods to classify time series 
data [31]. The algorithm, developed by Karim et al., combined fully convolutional 
networks (FCN), LSTM networks, and squeeze-and-excite blocks. FCNs were uti-
lized to allow for the CNN benefit of class action maps without the requirement 
of extensive hyperparameter preprocessing that is normally required by a CNN. 
LSTMs were selected to detect the importance of sequences of observations in time 
series data. Squeeze-and-excite blocks were added to the algorithm to improve the 
classification power of multivariate datasets by ensuring feature maps have a similar 
impact to subsequent layers. In their study, Karim et al. tested four variations of the 
algorithm against 35 different datasets to include voice, human signal monitoring, 

Fig. 1   ADS-B high-level operational concept graphic
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and other time series data. Their algorithms outperformed the current state-of-the-
art algorithm in 27 out of the 35 datasets [31]. Additionally, a variation of the algo-
rithm, the multivariate attention long short-term memory–fully convolutional net-
work (MALSTM–FCN), predicted aircraft engine type using ADS-B data [19]. This 
research will be further discussed in the next section.

While LSTMs and FCNs are well established, the use of squeeze-and-
excite blocks is a much newer technique. To understand how they improve the 
MLSTM–FCN, it’s important to understand how they work and what they pro-
vide. Squeeze-and-excite blocks were introduced by Hu et  al. in 2018 to improve 
the representational capacity of a neural network [34]. They are used with convolu-
tional networks to help model the dependencies between the channels. As the name 
implies, it consists of a squeeze mechanism followed by an excitation mechanism. In 
the squeeze step, the classifier uses global average pooling to aggregate the spatial 
information of each channel. Using the example of an image, where an image has 
dimensions of H ×W × C for height, width, and (normally 3) channels, the squeeze 
step would pass the image through a global average pooling operator where it would 
become a shape of (1 × 1 × C) . Then, the excite step uses a gating mechanism to 
capture channel-wise dependencies [32]. The excitation step uses a multi-layer neu-
ral network with one hidden layer. The input and output layer are the same shape 
(1 × 1 × C) , but the hidden layer reduces the space by a reduction factor, r, mak-
ing the number of neurons in the hidden layer C/r. Karim et al. and Hu et al. use a 
reduction factor of 16  [32, 34]. This (1 × 1 × C) value is multiplied element-wise 
with the original (H ×W × C) input. The graphical representation of the squeeze-
and-excite block developed by Hu et al. can be seen in Fig. 2.

Table 2    ADS-B mandate timelines [40]



	 S. Bolton et al.

1 3

Using the squeeze-and-excite block in conjunction with an LSTM and FCN, the 
MLSTM–FCN was developed to create a model for time series classification. Fig-
ure 3 shows the architecture Karim et al. designed for their research. This algorithm 
is used to develop all of the models in this research.

2.3 � Dual‑stage deep engine classifier

Multiple researchers have focused on using the ADS-B dataset to predict engine 
type with ADS-B kinematic data [8, 19]. One of the limitations with analysis on this 
dataset is that while the models have very few problems determining if the aircraft 
is a jet, they tend to have trouble predicting the difference between turboprop and 
piston engines. The reason for this is twofold. First, the dataset is heavily imbal-
anced toward jet engines which causes the data to have fewer samples of turboprop 
and piston engines from which to learn. Second, the kinematic differences between 
piston and turboprop engines are minimal.

As a method to remedy this problem, Basrawi et al. developed a Dual-Stage Deep 
Engine Classifier (DSDEC) [19]. Using the MALSTM–FCN algorithm as a basis for 
the model, the DSDEC algorithm employs a unique 2-stage approach. When using 
the model to make predictions, the first stage predicts if the aircraft is a jet or not a 
jet. Then, the ‘not jet’ predictions are fed to the second stage. The second stage pre-
dicts if the aircraft has a piston or turboprop engine. The results from both the first 
and second stage are combined to provide an engine prediction for each observation. 
Figure 4 portrays the architecture that is used.

Basrawi et al. are the first to classify aircraft engine type using ADS-B data with 
a deep learning model. Using the DSDEC method, researchers were able to identify 
jets with 98.4% accuracy, turboprop aircraft with 79.2% accuracy, and piston engine 
aircraft with 89.9% accuracy. However, the DSDEC method would still confuse tur-
boprop aircraft as piston engine aircraft 17.9% of the time [19]. Table 4 shows the 
results achieved by Basrawi et al. compared to a support vector machine (SVM) and 
random forest (RF) as baseline from previous research[8].

During the experiments, static time steps were used and each time step was sepa-
rated by two seconds. 300 time steps would be equivalent to 600 seconds or 10 min-
utes of flight time. Similarly, 100 time steps would be 200 seconds or 3 minutes and 
20 seconds of flight time. While Basrawi et al. indicated that more research would 
be needed to determine the influence of the time step size, their results point to the 
possibility that longer flight observations improve the model’s predictive power. In 
fact, while the DSDEC algorithm was used against 21 different models to determine 
which hyperparameters led to the highest accuracy, none of the 100 time step mod-
els performed as well as the 300 time step examples.

2.4 � Size of dataset

Determining the exact dataset size needed to build an artificial neural network 
(ANN) classifier is an open research problem that may never have a complete 
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solution due to the infinite number of ANN combinations. However, experts suggest 
several guidelines to ensure enough data is available to train a model with sufficient 
accuracy value [35–39]. Guidelines can be broken into three important characteris-
tics of the dataset: the number of prediction classes, the number of features, and the 
number of weights in the network. The following guidelines sum up the results from 
past research endeavors: 

1.	 Prediction Classes: A sample size should have 50-1000 times the number of 
observations as prediction classes [36]. For this paper, there are three prediction 
classes: Jet, turboprop, and piston.

2.	 Features: There should be 10-100 times the number observations as features [37].
3.	 Network Weights: The sample size should be equivalent to 10 times the number 

of weights in the network [38, 39].
(a)	 Another paper decided on a stricter limit stating that there should be 50 

times the number of observations as network weights [35].

2.5 � Summary

The information provided in this section shows that ADS-B sensor data is a useful 
resource when trying to understand POL modeling with aircraft. Previous research 
has used this data to predict aircraft characteristics  [7, 8, 19]. When predicting 
engine type, researchers found that the MLSTM–FCN was able to train a model that 
achieved an overall accuracy of 89.2% [19]. This paper uses the information gleaned 

Fig. 2   The schema of the squeeze-and-excite model
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Table 3   US ADS-B Airspace Requirements [20]

Fig. 3   MLSTM–FCN architecture [32]
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from research done with the MLSTM–FCN [32] and DSDEC [19] to learn how to 
minimize the input data size while maintaining a similar accuracy and loss.

3 � Methodology

This section outlines a method to efficiently classify engine type from ADS-B data. 
It improves on Basrawi et al [19] by reducing the model complexity and decreasing 
the requisite ADS-B dataset size to classify engine. Basrawi et al. used two feature 
sets, a limited and a full feature set, which had 6 and 9 features, respectively. Addi-
tionally, they used 9 days worth of ADS-B data to train a dual-stage classification 
algorithm. This method reduces the model complexity to a single stage and only 
requires a 24-hour sample size and three ADS-B features to achieve similar classi-
fication accuracy results. It uses data from 1 December 2020 to train the model and 
16 November 2020 to test the model.

The rest of this section describes two experiments:

•	 Experiment 1: The first experiment creates 24 models with two different 
learning rates, three feature sets, and four data amounts. The models train over 
a period of 200 epochs and are evaluated on the testing data. The goal of the 

Fig. 4   DSDEC architecture [23]

Table 4   Results from Basrawi et al. [19]

Bold italic values indicate the best performing examples

Classifier Overall accuracy Jet Accuracy Turboprop 
accuracy

Piston 
engine 
accuracy

DSDEC (300 time steps) 89.2% 98.4% 79.2% 89.9%
SVM (300 time steps) 77.4% 85.5% 72.2% 74.6%
SVM (100 time steps) 68.6% 81.1% 56.6% 68.1%
RF (300 time steps) 83.4% 94.1% 70.5% 85.8%
RF (100 time steps) 76.7% 90.0% 61.5% 78.6%
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first experiment is to determine the effect of varying the number of training data 
observations. Effects to accuracy, loss, precision, and recall are recorded.

•	 Experiment 2: In the second experiment we develop models using all possible fea-
ture combinations (255). The goal of the second experiment is to determine which 
subset of features has the highest overall accuracy when predicting engine type. The 
models train for 50 epochs, which is where the first experiment shows training and 
validation data accuracy diverge.

The details of each experiment can be seen in Table 5.

3.1 � Assumptions and limitations

The dataset used in this research is smaller than the one used by Basrawi et al. [19]. In 
this research, the training data from 1 December 2020 has 4,110 tracks/tensors, and the 
evaluation data from 16 November 2020 has 2,487 tracks/tensors. In the experiment 
completed by Basrawi et al., the training data ranged from 1 to 8 December 2020 con-
sisting of 7,749 tracks/tensors. The evaluation data was also from 16 November 2020, 
but consisted of 4,158 tracks. This amounts to approximately half of the tracks for 
training and evaluation in this experiment. It is assumed that the effects of reducing the 
data size would be proportional regardless if one week or one day was used for training.

Although researchers have shown that the integrity of ADS-B sensor data is vulner-
able to a variety of cyber attacks [41, 42], the dataset is assumed accurate for the pur-
poses of this paper. While vulnerable, cyber attacks against ADS-B are not a common 
occurrence. Air traffic control-related attacks occur only a few times each year [43]. We 
consider this to be an acceptable assumption since the number of occurrences of mes-
sage injects and other ADS-B attacks is low in comparison to the millions of flights that 
occur each year.

3.2 � Process

The process for converting raw ADS-B data into a model that can predict engine 
type can be broken down into five steps that will be explained in the subsequent 
paragraphs Fig. 5.

3.2.1 � Data preparation

The ADS-B data acquired by Basrawi et al. [19] contains aircraft observations from 
thousands of locations each day from November to December 2020. During the 
preparation phase, the data is converted from JavaScript Object Notation (JSON) 
files to Python Data Analysis Library (Pandas) data frames, sorted by unique Inter-
national Civil Aviation Organization (ICAO) and time, and then saved as Comma-
Separated Values (CSV) files. Then, the CSV files are reloaded as a Pandas data 
frames with invalid and irrelevant data (e.g., helicopter and glider data points) 
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removed. Aircraft without at least 300 transmissions (10 minutes) are removed and 
any transmissions after 300 time steps are discarded to keep the data as similar as 
possible. For all aircraft, only the first 10 minutes of the takeoff segment of flight are 
used. The remaining data is balanced by engine type using an undersampling tech-
nique [44, 45] to reduce the impact of the heavily imbalanced dataset. The under-
sampling technique is selected over an oversampling or a hybrid method since the 
dataset is already very large and diverse. Thousands of ‘Jet’ observations remain in 
the dataset even with undersampling. Since they are randomly removed, overfitting 
is avoided. Then, the engine type feature is converted from a number to a one hot 
encoding of Boolean values with ‘jet,’ ‘turboprop’ and ‘piston’ as possible options. 
The data preparation step reduces 44 GB of raw data to 270 MB of processed data.

The processed data is formed into (n,t,v) tensors [46], where n is the number of 
aircraft tracks, t is the number of time steps for each track, and v is the number of 
features describing each track. In the previous version of this experiment t and v 
were varied across multiple trials to determine the best combination. It was deter-
mined that reducing the t variable lower than 300, lowers the accuracy. Therefore, 
t = 300 is maintained across all iterations of this experiment. n and v are altered 
by changing the amount of training data and changing the number of features, 
respectively.

Experts agree on best practices to follow when training classification models. 
The first recommendation is that the training dataset sample size be at least 50-1000 
times the number of prediction classes  [36]. Since there are only three prediction 
classes and over a million observations, this goal is met. The second suggestion is 
that the sample size is 10-100 times larger the number of features [37]. The feature 
set with the most number of features is 12. Since 12 × 100 = 1200 and there are 
1,233,000 samples, this suggestion is also met. The final guideline states that the 
number of observations should be 10 times the number of weights in the model. 

Table 5   Experiment Details

Exp # Goals # of Models Parameters

1 Determine the effect of varying the amount 
of training data samples

24 Learning rate: 0.01 & 0.001
Drop out: 0.5
Time steps: 300
Feature set: limited, medium & full
Optimizer: Adam
Data size: Full, 1/2, 1/4, & 1/8
Epochs: 200

2 Determine the effect of each subset of 
features

255 Learning rate: 0.001
Drop out: 0.5
Time steps: 300
Feature set: all possible subsets
Optimizer: Adam
Data size: Full
Epochs: 50
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Since the model has 280,000-288,000 weights (depending on the number of fea-
tures for that experiment), the number of samples needed is near 3 million [38, 39]. 
With less than half the requisite samples, this guideline is not met. However, the 
study that this experiment was built on only used 2,324,700 samples and was able to 
achieve a nearly 90% accuracy [19]; it is assumed that not meeting the 10x weight 
requirement, but meeting all other guidelines, is sufficient for this experiment.

In the final part of data preparation, we create four training datasets of varying 
sizes. The first training dataset includes observations from the entire 24-hour period 
on 1 December 2020. This dataset is the largest dataset and is referred to as the full 
dataset throughout this paper. In the creation of the next three datasets, we randomly 
remove tensors from the full dataset to create a new dataset that is half, a quarter, 
and an eighth the size of the full dataset. Since it is done randomly, the datasets are 
not equal to 12, 6, and 3 continuous hours of observations. Instead, the observations 
are 300 time step tensors taken at various points during the 24-hour time period. 
Proportions between engine types are maintained per the undersampling technique. 
The full dataset results in 4,110 tensors (1,233,000 samples), the half dataset has 
2,055 tensors (616,500 samples), the quarter dataset has 1,026 tensors (307,800 
samples), and the eighth dataset has 513 tensors (153,900 samples). Table 6.

3.2.2 � Input feature selection

The raw ADS-B data collected during November and December 2020 contained a 
total of 57 features. Most of them were either not consistently transmitted by all 
aircraft or contained irrelevant or redundant information. There were also a few fea-
tures that contained identifying information like ICAO, aircraft model, ID number, 
country of origin, inbound/outbound location, or other non-kinetic information that 
is not intended to be used for this research. This reduced the usable kinetic input 
features from 57 to 9. We also develop 3 other input features from these inputs to 
improve the location data. The definition of each feature is listed in Table 7.

The following features are selected for inclusion into the dataset due to their 
potential for predicting engine type. 

1.	 Altitude and Ground Altitude—Since jet, turboprop, and piston engine aircraft 
tend to fly best at different altitudes, these features are important in distinguishing 
between them. [48]

2.	 Airspeed—Jets fly faster than piston or turboprop engines. Turboprop engines 
can reach greater speeds easier at higher altitudes than piston engines. [48]

Fig. 5   Data Processing Steps Data
Preparation

Input Feature
Selection

Hyperparameter
Selection

Model
Training/Testing

Model
Evaluation
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3.	 Barometric Pressure—This feature is another way to measuring altitude. For every 
thousand feet of elevation, the pressure drops by 1 inHg. [49]

4.	 Vertical Speed—The importance of this feature is similar in nature to air/ground 
speed.

5.	 Time—This feature would allow the comparison of different chronological points 
of the flight

6.	 Track—With location and speed, track can be used to learn specific aircraft pat-
terns.

7.	 Lat/Long—Aircraft may exhibit different behaviors depending on the geography. 
For example during the first ten minutes, an aircraft would takeoff differently from 
a mountainous region than an open field.

8.	 Location (X,Y,Z)—Lat/Long are normalized to better represent a 3-dimensional 
space. This feature was not in the raw data, but was instead generated to help bet-
ter represent the data. The formulas used to normalize the lat/long are as follows: 

(a)	 x = cos(lat) * cos(lon)
(b)	 y = cos(lat) * sin(lon)
(c)	 z = sin(lat)

Feature combinations for the first experiment are tested based on their size and their 
possible effects on classification. The feature combinations experiment one uses are 
outlined in Table 8.

For the second experiment, all possible combinations of the full feature set 
are used to determine the best subset of features. However, latitude and longitude 
are not used for this experiment. They are replaced with the normalized location 
coordinates.

3.2.3 � Hyperparameter selection

Since hyperparameters were already tested by Basrawi et al. to determine the best 
combination, this study uses those hyperparameters for the model creation with the 
exception of learning rate. Basrawi et al. found that the Adam optimizer and learn-
ing rates of 0.01 and 0.001 performed the best, while dropout rates were mostly 
inconsequential. Based on their findings, we train the model with a dropout rate of 
0.5 and learning rates of 0.01 and 0.001 with the Adam optimizer.

Table 6   Dataset details from 1 
december 2020

Size Samples Tensors

Full 1,233,00 4,110
Half 616,500 2,055
Quarter 307,800 1,026
Eighth 153,900 513
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3.2.4 � LSTM training, testing, and evaluation

Similar to Basrawi et  al.  [19], this study uses the algorithm developed by Karim 
et al. [31]. The two major differences are that this research omits the attention mech-
anism and does not use the two-phase approach suggested by Basrawi et al. [19]. In 
the first experiment, 24 separate models are created out of the data from 1 December 
2020 to encompass the variations in learning rate (0.01 and 0.001), the feature set 
(limited, medium, and full), and the data amount used (24 hours, half of the data, a 
quarter of the data and an eighth of the data). Each model is trained for 200 epochs 
which in most cases is more than sufficient.

In the second experiment, 255 models are created using a 0.001 learning rate and 
trained on the full size dataset. The features vary between each model to evaluate all 
possible combinations of features. Each model is trained for 50 epochs which is the 
point when training and validation data accuracy deviate.

Accuracy, precision, loss, and recall are saved during the creation of the models 
for both experiments to show the models’ histories during each epoch. Those met-
rics are also saved for the final models’ evaluation. A k-fold method, where k = 10 , 
tests each model with the data from 16 November 2020. Each model is compared 
to show how the change in both the input feature size and the amount of data points 
affected the aforementioned metrics.

Table 7   ADS-B Data Features/Fields [22, 47]

Feature Field Data type Description

Altitude Alt integer The altitude in feet at standard pressure
Ground Altitude Galt integer The altitude adjusted for local air pressure
Airspeed Spd knots (float) The ground speed in knots
Barometric Pressure InHg float The air pressure in inches of mercury that was used 

to calculate the AMSL altitude from the standard 
pressure altitude

Vertical Speed Vsi integer Vertical speed in feet per minute
Time PosTime epoch (ms) The time that the position was last reported by the 

aircraft.
Track Trak degrees (float) Aircraft track angle across the ground clockwise from 

0 north.
Latitude Lat float The aircraft’s latitude over the ground
Longitude Long float The aircraft’s longitude over the ground
Location X,Y,Z float Cartesian coordinates of the aircraft. This data feature 

is derived from the lat/long coordinates and it is not 
originally part of the ADS-B broadcast
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4 � Results and discussion

4.1 � Experiment 1–24 models: data size comparison

Table 9 outlines the performance across all phases. Figures 6 and 7 represent the 
data from Table 9. The line colors represent the input feature size and the color’s 
shade represents the learning rate. The 0.001 learning rate is darker shade and the 
0.01 learning rate is the lighter shade. Blue represents the smallest input feature size, 
green the medium input feature size, and orange the full input feature set. As can be 
seen, the limited feature set has the best accuracy and loss with the medium and full 
feature set having very irregular performance. While not shown, recall and precision 
follow similar trends.

Model 1 performs the best. It has an 89.4% overall accuracy which is on par with 
the 89.2% accuracy achieved by Basrawi et al. [23], but with half the sample size. 
The confusion matrix for model 1 can be seen in Figure 8. The results for individual 
engine type are also similar to those collected by Basrawi et  al. For comparison, 
they found that jet engines were predicted correctly 98.4% of the time, turboprop 
79.2%, and piston 89.9% [23]. In this study, jets are accurately predicted 97.2% of 
the time, turboprops are 79.1% and pistons are 92.0%.

The results show that the limited feature dataset outperforms the medium and full 
feature sets. The larger feature sets never converge. This phenomenon is due to noise 
and overfitting to the training data. Experiment two is able to further analyze the 
lack of convergence. However, using the three feature sets created for this experi-
ment, it is shown that altitude, airspeed, vertical speed, and location provide suffi-
cient information about aircraft to differentiate engine type in most cases. The addi-
tional features do not provide any information that help the model learn more about 
aircraft engines. Instead, it makes the data more convoluted. This can be shown with 
the training history as seen in Figures 9,   10, and 11. These figures represent the 
training accuracy after each epoch where the feature set is varied between the fig-
ures, but learning rate and dataset size remain constant. The three images are from 
the models that had a 0.001 learning rate and used the full dataset (i.e., models 1, 3, 
and 5). While the training accuracy continues to increase, the validation accuracy 
does not. This indicates that the model is no longer improving and is instead overfit-
ting to the training data. While only a subset of the models are shown in this man-
ner, other models follow a similar pattern with the limited feature set performing the 
best in all cases.

The results from the limited feature set show that more data improves the 
classification power of the model. However, the reduction in accuracy is 

Table 8   Experiment Trial Setup

Limited feature set Medium feature set Full feature set

Altitude Airspeed Vertical 
speed Location (X,Y,Z)

Altitude Airspeed Vertical speed 
Location (X,Y,Z) Barometric 
Pressure Time Track

Altitude Airspeed Vertical speed 
Location (X,Y,Z) Barometric 
Pressure Time Track Ground 
Altitude Lat/Long
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gradual until the one-eighth size dataset. Based on our previous definition of 
an ‘acceptable’ model, the 1/4 size dataset meets the minimum accuracy with 
83.9%. For this reason, if computational power was limited, someone could 
drop the number of inputs to 1/4 of the full dataset and still be guaranteed to 
have a reasonable prediction accuracy rate.

4.2 � Experiment 2–255 models: feature set comparison

The goal for experiment two is to find the subset of features that best predict engine 
type from the full size dataset. All possible feature combinations from 8 available 
features result in the creation of 255 models. The top 20 results from the 255 models 
are presented in Table 10. Airspeed, pressure, and vertical airspeed create the best-
performing dataset. This result is unexpected since it does not include altitude. Jets 
fly at a different altitude than piston or turboprop engines. For that reason, it would 
seem like altitude would be an important feature. A possible reason for this might 
be that the observations only include the first 10 minutes after takeoff. Jet engines 
would not have the time to reach cruising altitude until the end of the 10 minute time 
frame.

Additionally, the results from experiment show that a combination of all of the 
features except for ‘PosTime’ provide the third best feature indicator for accuracy. 
However, not only is ‘PosTime’ not included in the 3rd best combination, but it is 
also interesting to note that all of the worst-performing models contain ‘PosTime.’ 
Table 11 shows the 10 worst-performing models. It is not until the 43rd worst per-
former (the model with just the ‘Trak’ feature with a 48.9% accuracy rate) that the 
‘PosTime’ feature is not present.

5 � Conclusion

The goal of this research is to determine the effect of minimizing the size of the 
training data that was used to develop a MLSTM–FCN model. We do this with two 
separate experiments. In experiment one, we vary the number of training samples in 
the training dataset with three different feature sets. In experiment two, we vary the 
number of features present in the dataset. Those models are tested to determine how 
each change affects the accuracy and loss of the model against a separate test set. 
We deem a model to be ‘acceptable’ if the accuracy was within 10% of results from 
previous research [19].

There are a few main takeaways from this experiment. The first is that the qual-
ity of a dataset is more important than the quantity of data when building a neural 
network. Having redundant features or features that do not add pertinent information 
to the model can cause the model to perform poorly. This fact is convenient when 
it comes to minimizing a dataset, but can be frustrating when trying to determine 
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which features are actually important. Too many irrelevant features will add noise 
into the model and produce results that are less than ideal. Based on this experiment, 
speed, pressure and vertical speed are some of the more important features needed 
to identify an aircraft’s engine type.

This dataset is reduced to a quarter of its original size before the model starts 
exhibiting severe negative effects. During both experiments, the best model achieves 
an accuracy of 89.4%. Reducing the data by half only reduces the accuracy by 4.6% 
to 84.8% accuracy which has a rate of change of 9.2% ( Δ accuracy∕Δ size). Reduc-
ing it to a quarter of its original size produces an 83.9% accuracy rate which is a 
22.0% rate of change from the full size dataset. However, reducing the dataset to 
an eighth of its original size produces a 75.8% accuracy rate which is a 108.8% rate 
of change from the full size dataset. Since the raw data from 1 December 2020 was 
about 44 GB, this large file size could be reduced to 11 GB using the quarter size 
dataset and still effectively train a classification model. Most computers, laptops, or 
small handheld devices could perform data processing and train a model that was 
only 11 GB. This observation would work well for military operations in remote 
locations with low computational resources. If data and computation resources were 

Table 9   Performance comparisons

Bold value indicate the best performing examples

Num Learn rate Feature set Data amt Mean accuracy Mean loss

1 0.001 Limited Full 0.894 (+/−0.018) 0.413 (+/−0.069)
2 0.01 Limited Full 0.890 (+/−0.019) 0.346 (+/−0.083)
3 0.001 Medium Full 0.513 (+/−0.031) 1.321 (+/−0.092)
4 0.01 Medium Full 0.337 (+/−0.019) 3.604 (+/−0.117)
5 0.001 Full Full 0.759 (+/−0.038) 0.675 (+/−0.100)
6 0.01 Full Full 0.356 (+/−0.018) 2.960 (+/−0.210)
7 0.001 Limited Half 0.848 (+/−0.019) 0.474 (+/−0.072)
8 0.01 Limited Half 0.865 (+/−0.023) 0.367 (+/−0.051)
9 0.001 Medium Half 0.492 (+/−0.029) 1.493 (+/−0.102)
10 0.01 Medium Half 0.490 (+/−0.031) 1.622 (+/−0.102)
11 0.001 Full Half 0.740 (+/−0.025) 0.595 (+/−0.053)
12 0.01 Full Half 0.354 (+/−0.023) 3.071 (+/−0.149)
13 0.001 Limited 1/4 0.839 (+/−0.016) 0.473 (+/−0.098)
14 0.01 Limited 1/4 0.839 (+/−0.014) 0.478 (+/−0.054)
15 0.001 Medium 1/4 0.700 (+/−0.026) 0.789 (+/−0.078)
16 0.01 Medium 1/4 0.391 (+/−0.040) 2.211 (+/−0.152)
17 0.001 Full 1/4 0.658 (+/−0.028) 0.891 (+/−0.089)
18 0.01 Full 1/4 0.505 (+/−0.040) 1.645 (+/−0.121)
19 0.001 Limited 1/8 0.758 (+/−0.019) 0.897 (+/−0.124)
20 0.01 Limited 1/8 0.688 (+/−0.037) 1.525 (+/−0.224)
21 0.001 Medium 1/8 0.678 (+/−0.028) 1.008 (+/−0.088)
22 0.01 Medium 1/8 0.607 (+/−0.026) 1.397 (+/−0.175)
23 0.001 Full 1/8 0.595 (+/−0.038) 1.833 (+/−0.179)
24 0.01 Full 1/8 0.484 (+/−0.021) 2.120 (+/−0.116)
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not as plentiful, reducing the model to approximately 300,000 observations would 
create a model that could make observations with a small trade-off of less than 10% 
reduced accuracy.

Fig. 6   Change in accuracy by change in sample size

Fig. 7   Change in loss by change in sample size
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5.1 � Future work

While the goal of this study is to determine how to minimize the input data to make 
best use of low computational resources, military operations tend to have access to 
a vast number of sensors. Combining other related sensors to the ADS-B data could 
improve results. Other potentially useful sensors include weather, radar, and image 

Fig. 8   Confusion Matrix for Model 1

Fig. 9   Accuracy Training History on Limited Feature Set for 0.001 Learning Rate and Full Dataset
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data. Researchers should look at the effects of combining these sources to determine 
if they improve classification accuracy.

The raw ADS-B data represents the ‘PosTime’ feature as the number of milli-
seconds since Epoch (1970). During the processing of the data, ‘PosTime’ is modi-
fied to more closely compare to previous work with engine type prediction. Instead 
of milliseconds since Epoch, it represents the amount of milliseconds since takeoff. 

Fig. 10   Accuracy Training History on Medium Feature Set for 0.001 Learning Rate and Full Dataset

Fig. 11   Accuracy Training History on Full Feature Set for 0.001 Learning Rate and Full Dataset
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When creating a model with an LSTM, this is not the best use of the time feature. 
Keeping track of time of day, day of the week, or even just the date would allow the 
model to better learn aircraft schedules. Future work should look at modifying this 
feature into something that would improve the classifier.

Table 10   Top 20 Performance 
Comparisons

Ex Feature set Mean accuracy Mean loss

56 Spd,InHg,Vsi 0.894 
(+/−0.013)

0.304 
(+/−0.038)

40 Spd,Vsi 0.887 
(+/−0.025)

0.336 
(+/−0.088)

251 Alt,Galt,Spd,InHg,
Vsi,Trak,location

0.886 
(+/−0.023)

0.319 
(+/−0.056)

59 Spd,InHg,Vsi,Trak,
location

0.886 
(+/−0.015)

0.307 
(+/−0.060)

186 Alt,Spd,InHg,Vsi,Trak 0.884 
(+/−0.017)

0.330 
(+/−0.059)

171 Alt,Spd,Vsi,Trak,
location

0.884 
(+/−0.016)

0.366 
(+/−0.132)

43 Spd,Vsi,Trak,location 0.884 
(+/−0.015)

0.326 
(+/−0.066)

42 Spd,Vsi,Trak 0.877 
(+/−0.017)

0.346 
(+/−0.067)

185 Alt,Spd,InHg,Vsi,
location

0.876 
(+/−0.026)

0.318 
(+/−0.056)

105 Galt,Spd,Vsi,location 0.876 
(+/−0.019)

0.347 
(+/−0.052)

105 Galt,Spd,Vsi,location 0.876 
(+/−0.019)

0.347 
(+/−0.052)

184 Alt,Spd,InHg,Vsi 0.875 
(+/−0.020)

0.332 
(+/−0.070)

235 Alt,Galt,Spd,Vsi,Trak,
location

0.875 
(+/−0.018)

0.362 
(+/−0.060)

58 Spd,InHg,Vsi,Trak 0.875 
(+/−0.015)

0.360 
(+/−0.057)

248 Alt,Galt,Spd,InHg,Vsi 0.874 
(+/−0.017)

0.342 
(+/−0.056)

123 Galt,Spd,InHg,Vsi,Trak,
location

0.874 
(+/−0.015)

0.370 
(+/−0.064)

169 Alt,Spd,Vsi,location 0.872 
(+/−0.020)

0.364 
(+/−0.077)

41 Spd,Vsi,location 0.871 
(+/−0.023)

0.334 
(+/−0.037)

104 Galt,Spd,Vsi 0.871 
(+/−0.020)

0.369 
(+/−0.060)

114 Galt,Spd,InHg,Trak 0.871 
(+/−0.017)

0.368 
(+/−0.062)

106 Galt,Spd,Vsi,Trak 0.871 
(+/−0.013)

0.396 
(+/−0.069)
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This research uses only the first 10 minutes of flight to train each model. The first 
10 minutes of flight consists of the takeoff phase and sometimes part of the cruis-
ing phase. Incorporating other phases, such as cruising and landing, could help to 
further separate the differences between engine types. The biggest benefit of using 
other phases is that jets, turboprops, and pistons have different characteristics when 
they get to the cruising phase. Jets fly at much higher altitudes during the cruising 
phase than other engine types and turboprop engines can reach greater speeds easier 
at higher altitudes than piston engines [48].
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Table 11   Bottom 10 performance comparisons

Ex Feature set Mean accuracy Mean loss

7 PosTime,Trak,location 0.337 (+/−0.038) 1.622 (+/−0.088)
29 InHg,Vsi,PosTime,

location
0.337 (+/−0.037) 4.511 (+/−3.705)

21 InHg,PosTime,location 0.337 (+/−0.028) 38.038(+/−109.699)
22 InHg,PosTime,Trak 0.336 (+/−0.024) 1.615 (+/−0.117)
52 Spd,InHg,PosTime 0.334 (+/−0.024) 2.812 (+/−0.138)
127 Galt,Spd,InHg,Vsi,

PosTime,Trak,location
0.334 (+/−0.019) 18.762 (+/−1.317)

37 Spd,PosTime,location 0.332(+/−0.016) 5.308(+/−0.238)
55 Spd,InHg,PosTime,Trak,

location
0.114 (+/−0.022) 3.323 (+/−0.116)

38 Spd,PosTime,Trak 0.110 (+/−0.018) 2.742 (+/−0.072)
54 Spd,InHg,PosTime,Trak 0.074 (+/−0.015) 4.664 (+/−0.112)
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