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Computational based investigation of lattice cell optimization under 
uniaxial compression load☆ 

Derek G. Spear a,*, Jeremiah S. Lane b, Anthony N. Palazotto a, Ryan A. Kemnitz a 

a Air Force Institute of Technology, Department of Aeronautics and Astronautics, 2950 Hobson Way, Wright-Patterson AFB, OH, 45 433, USA 
b Air Force Institute of Technology, Department of Mathematics, 2950 Hobson Way, Wright-Patterson AFB, OH, 45 433, USA   

A R T I C L E  I N F O   

Keywords: 
Topology optimization 
Additive manufacturing 
Triply periodic minimal surfaces (TPMS) 
Lattices 

A B S T R A C T   

Structural optimization is a methodology used to generate novel structures within a design space by finding a 
maximum or minimum point within a set of constraints. Topology optimization, as a subset of structural opti
mization, is often used as a means for light-weighting a structure while maintaining mechanical performance. 
This article presents the mathematical basis for topology optimization, focused primarily on the Bi-directional 
Evolutionary Structural Optimization (BESO) and Solid Isotropic Material with Penalization (SIMP) methodol
ogies, then applying the SIMP methodology to a case study of additively manufactured lattice cells. Three lattice 
designs were used: the Diamond, I-WP, and Primitive cells. These designs are all based on Triply Periodic 
Minimal Surfaces (TPMS). Individual lattice cells were subjected to a uniaxial compression load, then optimized 
for these load conditions. The optimized cells were then compared to the base cell designs, noting changes in the 
stress field response, and the maximum and minimum stress values. Overall, topology optimization proved its 
utility under this loading condition, with each cell seeing a net gain in performance when considering the volume 
reduction. The I-WP lattice saw a significant stress reduction in conjunction with the mass and volume reduction, 
marking a notable increase in cell performance.   

1. Introduction 

Structural optimization is a mathematical approach of fundamental 
interest to the engineering field due to its potential for future growth and 
development. At its core, optimization is concerned with maximizing or 
minimizing certain properties given specific loading conditions and 
constraints on the structure. The subject of structural optimization is 
broken into three separate but related sub-domains: size optimization, 
shape optimization, and topology optimization. In engineering appli
cations, these three sub-domains are often treated separately. The size 
and shape of a structure are typically determined by utility and re
quirements, having a minimal design space available to consider. Thus, 
topology optimization is of utmost interest when attempting to construct 
the most effective design of structures. 

While the shape and size of a given structural design are well un
derstood, the consideration of topology to the design process is much 
more esoteric. Geometrically, topology is concerned with the arrange
ment of the material itself within the given structural shape and size. As 

the goal is generally to maximize a specific structural or mechanical 
quality while minimizing the amount of material required, a firm un
derstanding of the applicable principles of topology optimization is 
necessary. 

The first step in preparing a structure for a topology optimization 
analysis is to understand the design space. That is, the nature of design 
decisions made throughout the topology optimization must be formal
ized. This aim is achieved by performing a finite element analysis (FEA) 
on the structure. The continuum design space is partitioned into a mesh 
of discrete elements of finite size within the prescribed shape and size. 
Then a structural analysis is carried out on the elements. This type of 
analysis is widely used within the field of mechanics, and thus a variety 
of tools and software packages exist for FEA, such as Abaqus [1] and 
Fusion 360 [2]. This formulation naturally allows for design decisions 
based on the property to be optimized and the constraints placed on the 
structure. That is, for each finite element within the mesh, the deter
mination is made on whether the material should exist as part of the 
solution or if the mesh volume should be left a void. 
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The optimization problem can be formulated with the finite element 
method because it allows the incorporation of design decisions for a 
structure’s topology. Canonically, any optimization problem can be 
expressed through well-defined design variables, an objective function, 
and constraints to the size and shape of the structure. The generalized 
optimization problem is depicted below, where f(x) is the objective 
function to be minimized, x is the vector of design variables, and Cj is the 
jth constraint to be satisfied by the design variables. 

Minimize f (z)
Subject to :

Cj
zj = 0 ​ or ​ 1 

For a structure subject to extreme loading or extreme boundary 
conditions, it is of particular interest to explore the microscale effects of 
the material by which the structure is composed. Historically, topology 
optimization has been performed under the assumption of linear elastic 
structures with negligible microscale effects. For larger homogeneous 
structures undergoing standard loading, it was an effective assumption 
that permitted more easily calculable solutions. However, with more 
strenuous engineering requirements, such as a complex starting design 
like an open cell lattice, it is necessary to consider the microstructure of 
the material composing the structure. At a fundamental, physical level, 
every material can be characterized by the structural formation of its 
atoms. Metals are characterized by the formation of periodic crystal 
structures composed of their respective atoms. These structures then 
form the grain microstructure of the metal. The governing behavior of 
this phenomenon is well understood through materials modeling in 
physics. As the size of the elastic structure approaches the scale of its 
constitutive microstructure, the behavior of the microstructure becomes 
more significant. 

The following sections will introduce the mathematical details of the 
optimization problem and then explore the relationship between the 
micro and macro scales, discussing potential methods for bridging the 
gap between them. Two widely used optimization methodologies will be 
presented in greater detail: Bi-directional Evolutionary Structural 
Optimization (BESO) and Solid Isotropic Material with Penalization 
(SIMP). After discussing these methods, an optimization study involving 
three Triply Periodic Minimal Surface (TPMS) lattice cells will be 
presented. 

The decision to optimize lattice cells is based on the growing interest 
in the mechanical properties of additively manufactured metal lattice 
structures to meet specific engineering needs. Early work in this area 
was performed by Körner through experimentation of additive fabrica
tion methods and materials to characterize the quality of the 
manufacturing process for both method and material [3]. Al-Ketan et al. 
performed a variety of compressive mechanical characterization testing 
on strut, skeletal, and surface-based lattices additively manufactured out 
of steel, comparing the mechanical properties between lattice types and 
cellular designs [4–6]. Recent research has expanded into characterizing 
the compression mechanical behavior of surface-based lattices fabri
cated out of Inconel 718 (IN718), with a more focused investigation of 
the designs’ energy absorption characteristics to be used in survivability 
applications [7–9]. Asadpoure et al. performed some of the early work in 
the topology optimization of additively manufactured metal lattices, 
although their work focused on two-dimensional representations of the 
lattice design [10,11]. Du et al. used topology optimization to improve 
the shear stiffness of lattice cells employing a two-dimensional ener
gy-based technique focused on the lattice microstructure [12]. Liu et al. 
further developed this research area by expanding their 
two-dimensional representations into three-dimensional space [13]. 
Hanks and Frecker developed a three-dimensional ground structure to
pology optimization approach to optimize a unit cell for additively 
manufactured heat sink applications [14]. Additional research has been 
performed on three-dimensional lattice topology manipulation by 
evaluating variational designs of TPMS cells through modification of the 

trigonometric expressions for each cell design [15]. The present work 
aims to expand upon this latest research utilizing topology optimization 
methods on three-dimensional lattice cells to develop new designs for 
consideration in engineering and design applications. 

2. Multiscale model 

To formulate the topology optimization problem while accounting 
for both the macroscale and microscale effects within the structure, the 
first-order homogenization method, FE2, will be considered [16]. This 
method assumes a distinct separation of the treatment of the two spatial 
scales, including their periodicity assumptions. The procedure seeks to 
attain macroscale equilibrium within the structure given an initial 
loading condition. The structure is assumed to be homogeneous at the 
macroscale, wherein each discrete finite element maintains unknown 
structural characteristics to be determined by the constitutive micro
structure. Fig. 1 provides a visual representation for the characterization 
of the structural macroscale and material microscale. 

For a given material, the potential relationship as a function of 
microstructure strain is assumed to be known, where the microstructure 
stress is the partial derivative of the potential function with respect to 
strain: 

σ(ϵ) = ∂ω(ϵ)
∂ϵ

(1) 

Next, periodic boundary conditions for each structural element 
within the finite element framework are established. Iteratively, given 
the initial loading conditions, the microstructure strain at each discrete 
material point within the discrete structural point is set equal to the 
structural average strain value, or mean strain, represented by ϵ [18]. 
Letting X denote the spatial position of the macroscale element, and 
letting x denote the position of the microscale element within the 
structural element, the following relation is established: 

ϵ(X, x) = ϵ(X) (2) 

Employing this relation, the microstructure stress, σ(X, x), is then 
calculated using Eqn. (1) [18]. The macroscale stress at each structural 
element is then found by taking the mean stress, σ, across the material 
elements through means of volume averaging across the interfacing 
elements: 

σ(X) = σ(X, x) (3) 

This method assumes small displacements within the macrostruc
ture. It proceeds to calculate the tangent stiffness tensor and subse
quently update the macroscale displacement using a numerical 
technique, such as the Newton-Raphson Method, which is used in the 
FE2 methodology. The macrostructure is determined to be in a state of 
equilibrium when the divergence of the Cauchy stress tensor, σ(X) is 

Fig. 1. Relationship between macrostructure and microscale material proper
ties [17]. 
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zero at every structural element, 

∇⋅σ(X) =
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= 0 (4)  

and the Cauchy stress tensor is equal to the external Cauchy traction 
vector, t, along the structural boundary: 

t = σ⋅n (5) 

In essence, this method establishes an equilibrium between the 
structural macroscale, characterized by the potential energy of the 
external forcing, and material microscale effects, described by the po
tential energy of the internal strain, through the implementation of 
periodic boundary conditions between the two scales, and iteratively 
updating the macroscale displacements through non-linear elastic 
analysis while checking that necessary equilibrium conditions are met. 
Fig. 2 provides a visual depiction of this iteration process. 

As might be expected, the iterative nature of the FE2 methodology for 
resolving macroscale and microscale effects within a structure comes 
with a high computational cost. The solution requires storing microscale 
data within each macroscale element, which increases computer mem
ory requirements, especially for fine finite element meshes. Further
more, the computation of the macroscale displacement requires 
numerical root-finding methods, which may require several iterations 
depending on the desired accuracy. 

3. Topology optimization 

The conventional optimization problem requires the maximization 
or minimization of a specific objective function over a set containing 
design variables subject to a system of constraints that must be met. 
Design limitations or requirements typically set these constraints. For 
linear optimization problems, the solution methods are well established 
and relatively easy to implement. Such problems are solved using linear 
programming through the simplex algorithm, which evaluates the 
objective function while traveling along vertices of the n-dimensional 
polytope bounded by the permissible region established by the con
straints on the n decision variables. This procedure assumes a linear 
relationship between the objective function, system constraints, and 
design variables. In addition, the method requires that the design space 
be continuous. For the non-linearly elastic topology optimization 
problem described in this paper, neither of these conditions are met. 

Therefore, non-linear optimization methods must be used to solve the 
topology optimization problem at hand. By default, discrete topology 
optimization algorithms within FEA systems have the disadvantage that 
the product of the optimization is a non-smooth structural geometry. As 
many engineering applications require smooth geometric shapes, a 
smoothing procedure has to be performed. Depending on the optimi
zation geometric constraints, the resulting geometry is usually highly 
organic in form, requiring a manual process of interpreting and imple
menting the results into a parameterized model suitable for further 
computational analysis or production. 

In developing the topology optimization model, the first consider
ation that must be precisely determined is what is to be optimized within 
the structure. For many structural applications within the aerospace 
industry, interest often lies in minimizing structural deformation due to 
an applied loading profile within the prescribed size and weight con
straints. This phenomenon is captured through the stiffness of the 
structure, which can be thought of as the structure’s resistance to 
deformation at a given applied load. Due to its importance in applica
tion, the focus of this paper will be on the effective maximization of 
structural stiffness. An equivalent objective to maximizing stiffness is 
minimizing the mean compliance, or flexibility, of the structure. Mean 
compliance is defined as: 

C = f⋅u (6) 

where f is the applied load vector acting on the structure and u is the 
elemental displacement at the location of the applied load. This objec
tive function is equivalent to minimizing the strain energy of the 
structure under static loading cases while neglecting other energy effects 
such as thermal considerations. As structural elements will be added and 
removed to pursue an optimal topology, the overall system is con
strained by the total volume of possible structural elements. That is, the 
total sum of structural elements must be less than or equal to the total 
allowable number of structural elements as defined in the finite element 
discretization of the structure. Additionally, a load equilibrium 
constraint must be imposed on the structure. The externally applied 
force must be in equilibrium with the subsequent internal loads expe
rienced within the structure, which can be expressed through the 
relation: 

f −
∑N

i=1
xi

∫

Vi

BT σdΩi = 0 (7)  

where xi is the ith design variable representing the binary existence of a 
structural element, B is the shape function matrix for the element, σ is 
the Cauchy stress tensor, and Ωi is the ith structure elemental volume. 
The topology optimization problem is obtained by combining the 
objective function with these constraints: 

Minimize C = f⋅u
Such that :

Vtot −
∑N

i=1
xiVi ≥ 0

f −
∑N

i=1
xi

∫

Vi

BT σdΩi = 0

Where :

xi = 0 ​ or ​ 1 

Solving such a non-linear, integer programming problem is highly 
nontrivial and must rely on numerical methods to obtain a solution. 

3.1. Bi-directional Evolutionary Structural Optimization 

One of the most prominent methods developed to address non-linear, 
numerical optimization in the past couple of decades is the BESO 
method. This method is concerned with establishing an algorithm that 
converges stably towards the optimal solution by simultaneously adding 
and removing structural elements and evaluating the resulting impact 
on the objective function. This requires the introduction of an ith Fig. 2. Iterative solution procedure of the FE2 methodology.  
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elemental sensitivity number, αe
i , which is defined by: 

αe
i = ΔCi =

1
2
uT

i Kiui (8)  

where Ki is the ith elemental stiffness matrix. This number measures the 
change in the objective function due to a change in displacement from 
adding or removing a structural element. In the BESO procedure, the 
sensitivity number is first calculated for each structural element and 
sorted in size. Additionally, an evolutionary volume ratio (ER) must be 
predefined, which limits the total possible change in volume between 
successive steps k in the algorithm by: 

Vk+1 = Vk(1±ER) (9) 

This parameter is determined through intuition and experience, and 
must strike a balance between convergence speed and solution stability. 
It is standard to set ER = 1% for moderately sized problems. Once each 
sensitivity parameter is calculated, the algorithm determines which 
structural elements to add or remove by comparing the previous volume 
iteration to the current value. Elements with sensitivity numbers greater 
than the sensitivity value corresponding to the threshold value from the 
newly calculated volume will be added, with the converse being true for 
low sensitivity numbers. A filter radius (FR) is also used within the 
sensitivity analysis to prevent checker-boarding of the elements [19]. 
Checker-boarding is a problem that arises in a fixed grid FEA-based to
pology optimization, where the discretized elements become discon
tinuous using a purely independent analysis of the element sensitivity 
factors. The FR is a smoothing length that averages the sensitivity factor 
across elements within the chosen radius to ensure a locally smooth 
element sensitivity. After the addition and removal of elements, the 
objective function is updated, and a relative error is computed to mea
sure the state of convergence: 

rerr =
|
∑M

i=1Ck− i+1 −
∑M

i=1Ck− M− i+1|

|
∑M

i=1Ck− i+1|
(10)  

where M is usually set to five to measure the relative error across the last 
five steps [20]. Once the relative error falls below a chosen threshold, rerr 
≤ τ, the algorithm terminates, and the optimization problem is solved. It 
is worth noting that this iterative procedure fails to guarantee solution 
convergence, and could be susceptible to slow convergence rates and 
significant fluctuations in objective function evaluations. Furthermore, 
since each step in the procedure requires evaluating the sensitivity 
number at each structural element and sorting the values, this algorithm 
carries a significant computational burden when tasked with performing 
topology optimization over large scales and fine element meshes. 
However, the BESO procedure is a frequently employed method of 
evaluating the topology optimization problem and can easily be 
implemented in software packages such as MATLAB, Fusion 360, and 
Abaqus. 

3.2. Solid Isotropic Material and penalization method 

Another prevalent optimization technique is the SIMP method. This 
method assumes that each structural element composing the finite 
element discretization of the structure is made of isotropic materials, 
where each structural element can have variable density. This formally 
eliminates the binary design variable restriction present in the BESO 
method, enabling the introduction of solution methods prohibited by the 
integer requirement. However, the underlying principle behind the 
design decisions is effectively the same, as the elemental densities are 
driven by a power-law material interpolation scheme to take values 
close to zero or one. Aside from this fundamental shift, the presentation 
of the optimization problem is effectively identical: 

Minimize C = f⋅u
Such that :

Vtot −
∑N

i=1
xiVi ≥ 0

f −
∑N

i=1 xi

∫

Vi

BT σdΩi = 0

Where :

0 ≤ xmin lt; xi ≤ 1  

where xmin is a small number to ensure that no singularities are 
encountered. Just as in the BESO method, the sensitivity of the objective 
function to the existence, or non-existence, of a structural element is 
computed. Since SIMP assumes continuous design variables, the partial 
derivative of the objective function can be taken with respect to the 
design variable at the ith structural element: 

∂c
∂xi

= − pxp− 1
i uT

i K0
i ui (11)  

where p ≥ 3 is the penalization factor, which leads to the polarization of 
the design variables to take on an effective binary value [21]. The SIMP 
methodology also used an FR scheme to balance the connectivity of 
elements with the individual element sensitivity factors to prevent 
checker-boarding of the element grid. From this point, the SIMP method 
diverges notably from the BESO method when updating the continuous 
design variables. Here, the ith design variable updated at the Kth iter
ation is found by comparing the K − 1 iteration’s design variable to a 
numerical parameter found through the application of optimality 
criteria or conditions [22,23]. In evaluating the performance of the SIMP 
method, it is helpful to note that due to the penalization scheme imposed 
on the continuous design variables, it is possible to arrive at locally 
optimized solutions while iterating through the solution process. Addi
tionally, there is no guarantee of a convergent solution, much in the 
same fashion as the BESO method. One distinct advantage the SIMP 
method maintains over the BESO method is that the convergence of the 
solution is less dependent on user-selected parameters. 

4. Lattice cell optimization 

Lattice cells were chosen as an optimization case due to emerging 
interests in the aerospace, automotive, and defense industries due to 
their ability to control and absorb energy at a fractional weight cost to 
solid material. Based on TPMS cells, three different cellular design to
pologies were chosen for optimization: the Diamond, I-WP, and Primi
tive surfaces. The Diamond and I-WP lattices were chosen due to 
previous compressive strength and toughness testing accomplished by 
Al-Ketan et al. [4,5], and additional mechanical characterization of 
TPMS structures accomplished alongside this research effort [7–9,15]. 
Results provided within these studies indicated the highest average 
compression stress during cell collapse, or plateau stress, and greatest 
energy absorption capability for these two designs. The Diamond lattice 
exhibited the best overall mechanical properties combined with typi
cally lower relative density values than the other lattice designs 
considered. The Primitive lattice design was chosen for its geometry 
characteristics. Within the Primitive design, the transition network be
tween cells has a circular cross-sectional area. This feature helps to limit 
stress concentration points across the lattice surface, providing a more 
uniform stress distribution throughout the structure. 

Each of these cells was developed based on their trigonometric ap
proximations. These approximation expressions are presented in Eqs. 
(12)–(14) for the Diamond, I-WP, and Primitive surface cells, 
respectively. 

sin mxsin mysin mz + sin mxcos mycos mz
+cos mxsin mycos mz + cos mxcos mysin mz = 0 (12)  
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2(cos mxcos my + cos mxcos mz + cos mycos mz)
− cos 2mxcos 2mycos 2mz = 0 (13)  

cos mx + cos my + cos mz = 0 (14) 

In these representations, x, y, and z represent the lattice surface’s 
three-dimensional Cartesian coordinates, and m is the periodicity 
scaling factor, which sets the number of cells replicated throughout the 
structural space, which is the ratio of 2π to the cell size. A depiction of 
each of these three TPMS cell designs is provided in Fig. 3. 

The surfaces were then thickened using a surface normal offset of the 
half-thickness value. These architectured surfaces are then used to 
create a cellular solid of replicated unit cells, as depicted in Fig. 4. 

The finite element model was established using a single cell repre
sentation based on the experimental uniaxial compression conditions 
that yielded the mechanical properties for IN718 used within the FEA 
[8]. As the analysis remained within the linear elastic loading regime for 
the lattice cells, only the modulus of elasticity and Poisson’s ratio of 
additively manufactured IN718 were used in the analysis. The value for 
IN718’s modulus of elasticity was further refined based on experimental 
tests of the lattice structures, which were then used in the baseline 
analysis. 

Due to the geometry of the lattice cells, tetrahedral meshes were 
utilized under the free-structured methodology in Abaqus, based mainly 
on the surface triangulation technique used in generating the cells. 
Three-dimensional stress elements of a quadratic geometric order from 
the Standard Element Library within Abaqus were chosen, specifically 
the C3D10 M element. This element is a modified 10-noded quadratic 
tetrahedron that works well in deformation analysis and exhibits mini
mal shear and volumetric locking. Fig. 5 provides a depiction of the 
model and mesh for each of the lattice cells. 

The simulations were conducted on the individual unit cells by 
applying a mixed boundary condition scenario to account for both the 
cell’s loading condition and periodicity inside of the cellular solid. When 
considering the uniaxial compression loading, with the load occurring 
along the y-axis, boundary conditions must be imposed on the loading 
and opposing surfaces. In this case, the boundary conditions due to 
uniaxial loading are: 

u1|y=0 = u2|y=0 = u3|y=0 = 0
u1|y=L = u3|y=L = 0 (15)  

where L is the unit cell length. Under uniaxial loading, the free, or non- 
loading, surfaces must be kept flat in order to satisfy the symmetry of the 
cell, or periodicity, within the overall cellular solid [24,25]. This is done 
by fixing the non-loading axes and imposing a restraint on the rotational 
axis that corresponds to the loading axis: 

u1|x,z=0 = u3|x,z=0 = 0
u1|x,z=L = u3|x,z=L = 0

ur2|x,z=0 = ur2|x,z=0 = 0
(16)  

these mixed boundary conditions provide the uniaxial loading scenario 
depicted in Fig. 6. 

Topology optimization was performed using the same FEA models as 
previously described incorporating the SIMP methodology for optimi
zation. The chosen objective was to minimize the strain energy present 
within the unit cell. As the selected loading was considered within the 
elastic range under static loading, this is equivalent to minimizing the 
mean compliance of the cell. Within the SIMP options available, the 
target volume was set to 70% of the original value, a filter radius of 1.3 
times the average element edge length was used, the convergence 
criteria was set at 0.000 1, and element deletion was allowed. Element 

Fig. 3. Single cell TPMS lattice designs: (a) Diamond, (b) I-WP, (c) primitive.  

Fig. 4. Diamond TPMS sheet-based lattice: (a) Unit cell, (b) replicated 
cellular solid. 

Fig. 5. Single-cell finite element setup and mesh: (a) Diamond lattice, (b) I-WP 
lattice, (c) primitive lattice. 
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deletion was based on the sensitivity analysis performed at each loading 
step; elements with low sensitivity factors, based on low material den
sity factors, lost structural importance and were eliminated from further 
iterations. Additional constraints were placed upon the free surfaces to 
prevent element deletion that would cause a break between unit cells 
within the overall cellular solid. 

5. Results and discussion 

5.1. Baseline condition 

The baseline cells were first analyzed by comparing the uniaxial 
displacement results of the FEA model to the experimental results [8]. 
This was done as part of a convergence study of the element size within 
the model, and to verify the accuracy of the model prior to evaluating 
the stress field and performing the subsequent optimization. The largest 
average element size that provided consistent results was selected for 
simulation to reduce the required computation time. The displacement 
results are presented in Table 1; the experimental displacement value is 
the average value for three tests performed on each lattice cell design. As 
the elastic modulus used in simulation was refined based on the exper
imental uniaxial compression tests that are being modeled here, the 
results are very close. 

With the model being validated against experimental results, the 
stress field was analyzed to locate regions of peak stress and note their 
values. The peak stress was achieved along the edge of the cell surface 
vertical curve for the Diamond lattice, reaching a maximum value of 
656.23 MPa. The minimum stress was found near the adjacent cell 
connecting edge of the x-z axis, with a value of 0.85 MPa. The I-WP peak 
stress was located along the inner surface of one of the upper connecting 
arms, with a peak value of 2, 639.07 MPa. Minimum stress for the I-WP 
cell was 2.81 MPa and situated on the upper exterior surface along the 
vertical axis. The Primitive peak stress was located along the outer 
surface of the circular opening that passes between the cells, which was 
expected to be a stress concentration point based on circular hole the
ories, and the stress reached a value of 838.54 MPa. The minimum stress 
value for the Primitive lattice cell was 19.17 MPa and was found along 
the outer surface between the connecting openings between cells. The 
stress fields for each of the lattice cell designs can be seen in Fig. 7. 

5.2. Optimization 

The minimum stress locations within the lattice cell stress field 
correlate to the minimum load path criticality, which are areas where 
the objective function is not highly sensitive to the structural element. 
These regions, in turn, correspond to the regions that will be volume 
reduced during the optimization process. The uniaxial compression 
loading used during the optimization process for each cell was carried 
out over twenty steps, where the load path criticality and element 
sensitivity were evaluated at each step for volume reduction and stiff
ness maximization. With the boundary conditions placed on the con
necting surface edges, the load path criticality of these edges was 
increased to prevent element deletion. 

The normalized stiffness for the lattice cells was determined at each 
optimization solution step, then compared to determine the convergence 
of the solution. The optimization convergence history is provided in 
Fig. 8. The curves for each cell show an initial decrease in normalized 
stiffness. This is due to the removal of non-load bearing elements from 
the initial sensitivity analysis. Once the bulk of non-load bearing ele
ments are removed, the stiffness then increases as the topology opti
mization reinforces the areas that support the majority of the load. The 
increase in stiffness is caused by either increasing element volume or the 
addition of new elements. Each cell type requires a different number of 
solution steps to achieve a converged state, with the Diamond lattice cell 
reaching a converged stiffness in 42 steps, while the I-WP needed 55 
steps, and the Primitive cell required 73. 

The optimization process for the Diamond lattice cell can be seen in 
Fig. 9, showing the starting load path criticality and reduction to a target 
volume of 70%. The low-stress regions of the cell along the primary 
horizontal surface sections were quickly removed within the optimiza
tion process. Then the developed void space was further expanded 
through the incrementation of the process. This resulted in large open
ings that aligned with the loading direction, while the optimized Dia
mond lattice cell retained 69.06% of the original cell volume. 

The I-WP lattice cell optimization is presented in Fig. 10. In the I-WP 
lattice cell, there were larger regions of low stress in the base cell loading 
scenario, which ultimately lead to large openings along the loading di
rection in the center of the cell, and at each corner through both the 
upper and lower connection pathways. Further elements were removed 
from the outer surface of the center region of the cell between the high- 
stress loading bands running between the upper and lower arms of the 
cell. The resultant volume of the optimized I-WP lattice cell was 70.02%. 

Fig. 6. Mixed boundary conditions for uniaxial compression loading of a unit lattice cell: (a) Diamond lattice, (b) I-WP lattice, (c) primitive lattice.  

Table 1 
Comparison of FEA and experimental uniaxial compression displacement for three lattice cells.  

Lattice Cell Design Compression Load (kN) Number of FEA Model Elements FEA Model Compression (mm) Experimental Compression (mm) Difference (%) 

Diamond 19.57 20,367 0.058 16 0.058 20 − 0.06 
I-WP 37.84 30,851 0.053 3 0.053 30 0.04 
Primitive 19.88 21,389 0.057 13 0.057 10 0.05  
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Finally, the Primitive lattice cell optimization process is shown in 
Fig. 11. Due to the nature of being a cell of a connected lattice, several 
low-stress regions of the Primitive cell were not eligible for deletion 
along the circular connecting openings. This led to a more significant 
portion of the volume reduction from the connecting arms’ upper and 
lower surfaces. As with the I-WP cell, the remaining volume reduction 
needed to reach the target 70% volume reduction was taken from the 
sides of the center region of the cell between the arms. The resultant 
optimized Primitive lattice cell had void regions develop through the 
upper and lower surfaces of the connection pathways and a final volume 
of 75.07%. 

5.3. Optimized condition 

The optimized cells were then evaluated under the same loading 
conditions that the base lattice cells were subjected to, maintaining the 
base material properties. The key to this evaluation was to note changes 
in the stress field and the peak stress values and locations observed 
within the cells. A second convergence study was performed for the 
optimized cells, as the changes in geometry necessitated changes in 

Fig. 7. Stress field under uniaxial compression for unit lattice cell: (a) Diamond lattice, (b) I-WP lattice, (c) primitive lattice.  

Fig. 8. Convergence of stiffness optimization for TPMS lattice cells.  

Fig. 9. Diamond lattice cell topology optimization under uniaxial compression loading: (a) 0% volume reduction, (b) 15% volume reduction, (c) 30% vol
ume reduction. 
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element size and location. Once again, the largest average element size 
that produced a consistent result was used in further simulations. 

The stress field for the optimized Diamond lattice design is presented 
in Fig. 12a. There was a noticeable change in the stress field from the 
base cell design to the optimized design. While there was a peak stress of 

twice the peak stress value observed in the base condition, 1, 248.17 
MPa, it was located along a sharp feature within the optimized mesh 
along the lower surface where an interior cell was removed during 
optimization, which caused an artificial stress concentration point at the 
feature. This stress concentration point was determined to be artificial 

Fig. 10. I-WP lattice cell topology optimization under uniaxial compression loading: (a) 0% volume reduction, (b) 15% volume reduction, (c) 30% volume reduction.  

Fig. 11. Primitive lattice cell topology optimization under uniaxial compression loading: (a) 0% volume reduction, (b) 15% volume reduction, (c) 30% vol
ume reduction. 

Fig. 12. Stress field under uniaxial compression for topology optimized unit lattice cell: (a) Diamond lattice, (b) I-WP lattice, (c) primitive lattice.  
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due to the location along a symmetry bounded face, as well as a com
parison of the stress values found in the adjacent elements. Outside of 
this localized stress concentration, the maximum stress value observed 
was 648.93 MPa, located at the mid-surface hinge of the lattice cell. This 
could be another mesh artifact, when comparing the stress value in this 
location on the optimized cell to that of the base cell, although the hinge 
point along the surface edge would also lead to a stress concentration 
point. The stress value within the optimized cell stress field at the 
maximum stress location of the base cell was 611.79 MPa. This equates 
to a 1.11% decrease in the maximum stress value for a 30.94% decrease 
in cell volume and a 6.77% decrease in the stress value located along the 
mid-surface ridge, which is a meaningful gain in the cell’s performance 
under uniaxial compression loading. The location of minimum stress for 
the Diamond lattice remained the same, with a 77% reduction in stress 
value. 

The results for the optimized I-WP lattice design can be seen in 
Fig. 12b. The stress field pattern did not change significantly for the 
optimized I-WP lattice cell, although the stress values themselves saw a 
marked change. The peak stress for the I-WP cell was still located along 
one of the connecting arms of the lattice, as was the case for the base cell; 
however, in this case, the maximum stress value was only 986.14 MPa, a 
reduction of 62.63%. Optimization provided an even more significant 
gain for the I-WP lattice, with the 62.63% reduction paired with a 
29.98% reduction in volume and mass. The minimum stress value within 
the lattice cell field was also reduced, this time by 99.64%. The mini
mum stress location of the base I-WP cell was removed during the 
optimization process, and within the optimized cell was located along 
the connecting face with an adjacent cell. 

Finally, the stress field for the optimized Primitive cell can be found 
in Fig. 12c. As with the optimized I-WP lattice, the stress field of the 
optimized Primitive lattice cell remained relatively similar, even main
taining the exact locations for maximum and minimum stress values 
within the field. Unlike the previous two lattice cell designs, the opti
mized Primitive lattice cell saw an increase in maximum stress, up to a 
value of 904.03 MPa, which equates to a 7.81% increase. Considering 
the 24.93% decrease in cell volume, this can still be regarded as a net 
gain for the optimized Primitive cell’s performance. The minimum stress 
value for the optimized cell was 0.44 MPa, which is a 97.70% reduction 
in the stress value. 

Table 2 displays the changes in cell volume, maximum stress, and 
minimum stress values for each of the three lattice cases. 

6. Conclusions 

This study was focused on applying topology optimization methods, 
specifically the SIMP methodology, to an individual cell of a lattice 
design. As the method used within the FEA software for this research 
was not specific to the PMS lattice cells under investigation, these 
techniques could be applied to other lattices or cellular designs taking 
into account the loading conditions and constraints applied within the 
simulation. One constraint on the optimization process used here was 
that the cells retain the ability to be replicated into sheet lattices for use 
in engineering applications, there is some question as to how the opti
mized cells would perform when replicated. That is, if the change in 
topology would lead to a subsequent shift in overall mechanical prop
erties. Furthermore, the loading condition used for optimization was 
under uniaxial compression within the initial loading response of the 
lattice cell. The optimized cell response beyond this condition will 
require further examination as well. 

As a whole, this case study is an example of how topology optimi
zation can prove successful, as the process was able to develop new cell 
designs intended to maximize lattice performance under the prescribed 
loading condition. Across all three optimized cell designs, the optimized 
cell saw an improved stress field response when considering the 
reduction in cell volume and subsequent reduction in mass. Even 
without considering the mass reduction, the Diamond and I-WP lattice 

cells showed improved performance. The I-WP lattice saw the most 
improvement through the topology optimization process, with a 62.63% 
decrease in maximum stress loading along with a 29.98% reduction in 
cell volume. Overall, topology optimization proved beneficial for 
designing TPMS-based lattice cells under an initial uniaxial loading 
condition. 
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