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Abstract

The goal of this work is to characterize a novel navigation method which uses carrier

Doppler shift measurements from Low Earth Orbit (LEO) satellites. An ever-growing

reliance on the Global Navigation Satellite System (GNSS) has coincided with an

increase in ways it can be degraded or denied, whether naturally occurring or man-

made. These potentially disastrous threats to traditional navigation and timing have

necessitated new technologies to augment GNSS in the case of an outage. LEO

constellations, whose size and higher signal power make them potentially useful for

navigation, are one technology that has been explored. The navigation algorithms

detailed in this research use Doppler measurements from 8 or more LEO satellites to

simultaneously solve for position, clock offset, velocity, and clock offset rate. Through

simulation, a user-satellite geometry analysis is conducted for a number of emerging

LEO constellations, as well as navigation simulations with the same constellations.

Results are presented which show promise from both a satellite geometry perspective

and position, velocity, and time (PVT) solution convergence perspective.
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PERFORMANCE ASSESSMENT OF NAVIGATION USING CARRIER

DOPPLER MEASUREMENTS FROM MULTIPLE LEO CONSTELLATIONS

1. Introduction

1.1 Background

Navigation can be defined as the simultaneous calculation of a body’s three-

dimensional position and time relative to a given coordinate system. A number

of different tools can be used to navigate: a compass and map, a Global Navigation

Satellite System (GNSS) receiver, an inertial navigation system (INS), or multiple

navigation sensors can be combined with a Kalman filter. As the world has become

more and more reliant on GNSS, of which the Global Positioning System (GPS) is a

member, it has opened up a severe vulnerability. Much of the US infrastructure relies

on GPS and would not be able to function, without a backup, in the event of a GPS

outage. A study found that a GPS outage could cost $1 billion per day to the US

economy [41]. There has been a major push in the defense and commercial markets

to develop technologies that help to augment GNSS. Whether natural obstructions

to GNSS or intentional interference, navigation methods independent of GNSS are

more necessary than ever before.

1.2 Motivation

Traditional GNSS navigation uses satellites that orbit the Earth in what is con-

sidered Medium Earth Orbit (MEO) at around 20,000 kilometers above sea level [3].

Historically, there have been several instances of navigation systems operating in Low

1



Earth Orbit (LEO), but nothing as robust as GNSS. In the past 5-10 years, there has

been a major surge in commercial entities launching, or planning to launch, large LEO

constellations to provide different communication services. An increasingly popular

research area has been exploring the possibility of leveraging these larger LEO constel-

lations for navigation. The motivation behind this thesis is to expand upon one such

paper that introduced a LEO-based navigation method [38]. The navigation method

uses carrier Doppler shift measurements from 8 LEO satellites to simultaneously solve

for position, receiver clock offset, velocity, and receiver clock offset rate. The original

research utilized a single LEO constellation, whereas this research investigates the

use of multiple different constellations for navigation. A primary goal of this research

is to evaluate the suitability of these LEO constellations in the navigation method

proposed.

1.3 Approach

The approach taken to facilitate this research was through the use of a naviga-

tion simulation using the Python programming language. The navigation equations

derived throughout this document were used to implement a simulated receiver nav-

igation engine. The required ephemeris parameters for the orbit propagator in the

simulation used two sources. Publicly available LEO satellite orbital parameters were

used for the already launched vehicles. For the yet-to-be-launched vehicles, the or-

bital parameters were fabricated using published information about the constellation.

Simulation scenarios and receiver initial conditions were in part derived from previous

research [38], though additional scenarios are also considered in an attempt to further

the work. The test scenarios were simulated a total of 100 times with each different

LEO constellation to aid in the formation of observations and conclusions. Simulated

receiver convergence rate, number of filter iterations, and the final receiver state er-

2



rors are the metrics used to determine the success or failure of a given simulation.

Additional techniques are derived to present the ability of a constellation to provide

the coverage and geometry necessary for navigation. The results and analysis from

these techniques are also presented.

1.4 Related Work

The work that this research is heavily based on is presented in [38]. Psiaki pro-

posed a novel navigation method that uses carrier Doppler shift measurements from

8 LEO satellites to solve for position, clock offset, velocity, and clock offset rate. A

simulation is developed with an earlier version of the proposed Starlink constellation

which resulted in sub-10 meter position accuracies [8]. Geometric Dilution of Preci-

sion (GDOP) analysis is also presented for different versions of the proposed Starlink

and OneWeb constellations [5].

The navigation method introduced in [38] is researched further in [32]. McLemore

and Psiaki employ the use of a Kalman filter to combine the solutions from the LEO

Doppler measurements and an inertial measurement unit (IMU). A comparison of

the effect of satellite signal availability and the grade of IMU was performed using a

simulated flight path. Sub-meter level performance was presented for the best case

scenario, with position errors on the order of 5 meters presented for the worst case

IMU and signal availability.

In [39], Reid et al. researched the possibility of leveraging large LEO constellations

to augment GNSS, or even act as a standalone backup to it. The work performed a

thorough dilution of precision (DOP) analysis for several planned LEO constellations

and compared against other GNSS constellations. With the improved DOP values,

a trade study was conducted to assess what accuracy would be necessary, from LEO

ephemeris and timing messages, in order to match the performance of GNSS. A hosted

3



payload design that utilizes lower cost alternative technologies than those of GNSS

is proposed.

Prata et al. researched the possibility of outfitting LEO satellites with a multi-

band GNSS receiver for precise tracking and orbit determination in [13]. The main

goal of this research is to provide highly accurate position, velocity, and time (PVT)

(10 cm, 0.1 mm/sec, 5 ns) to objects in LEO. To date, only ground-based tests have

been conducted, but the results from the multi-band GNSS receiver are promising.

In [12], Ardito et al. also research the aiding of an INS with both pseudorange

and Doppler observables from LEO satellites. The work simulates an INS with access

to GPS for a predetermined amount of time, during which the navigation system is

tracking and improving its estimate of LEO satellite states. Once GPS is denied, the

system uses a simultaneous tracking and navigation (STAN) framework to simulta-

neously track the LEO satellite states and navigate. Two sets of cases were tested.

The first set of cases only employ the INS following denial of GPS while the second

set utilizes the INS tightly-coupled with LEO measurements. Following a 10 minute

simulation, Root mean square (RMS) and final errors are improved by several orders

of magnitude when LEO measurements are included in the solution.

In [28], [31], [34], and [35], Kassas et al. explore different techniques to simulta-

neously track LEO satellites and characterize their state vectors. The work in [28]

uses a receiver with a known position to track LEO signals and extract their pseu-

dorange and Doppler observables. A method is developed to use these observables

to provide satellite ephemeride estimates that are improved from only using an orbit

propagator. The improved satellite ephemerides are then used to localize a receiver

with an unknown position and compared against the performance with propagated

ephemerides. The results show improvements in both the satellite ephemeris accuracy

and receiver positioning accuracy. The research in [31] focuses on machine learning

4



frameworks to aid in STAN with LEO satellites. Several machine learning techniques

are explored with the most fruitful technique achieving a 3-D RMS error of 3.6 meters

following a 30 second ground-vehicle trajectory of 871 meters. This is compared to a

LEO-aided INS which achieved a 3-D RMS error of 30 meters. The work in [34] and

[35] also focuses on a STAN technique that shows results better than those of a simple

orbit propagator. The improved satellite ephemerides are used in a LEO-aided INS

scenario, which result in better 3-D accuracy than a GPS-denied INS-only solution.

In [25], Gutt et al. demonstrate the timing accuracy that can be achieved when

using a LEO receiver to discipline different types of clocks. Apart from the excel-

lent timing produced from the LEO-disciplined clocks, the work highlights one major

advantage LEO signals have over GNSS. One of the test scenarios involves a LEO re-

ceiver tracking signals from the Iridium constellation in an indoor office environment.

The higher received signal power provided from LEO allows the receiver to track in

areas GNSS could not reach.

Research in [16], [27], [30], and [37] utilized software defined radios (SDRs) to

blindly track signals from in-orbit LEO satellites. In [16], the authors developed

a multi-constellation SDR and demonstrated its ability to derive receiver position,

receiver clock drift, and satellite clock drift from Doppler shift measurements from

LEO downlink signals. This work used signals from both Iridium and Orbcomm

satellites to generate a position accuracy of 172 meters. Both [27] and [37] used a SDR

design similar to Figure 1.1 to blindly track signals from the Starlink constellation.

The stationary receiver was able to successfully measure the Doppler shift from 6

Starlink satellites and achieve a sub-35 meter 3-D position accuracy. In [27], Kassas

et al. also provides a satellite coverage and DOP analysis of the proposed Starlink

constellation. Work in [30] employed a Kalman filter and Doppler shift measurements

from 2 Orbcomm LEO satellites to achieve a position accuracy of 360 meters after 1
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Figure 1.1. Example LEO software defined receiver design [27]

minute.

In [29] and [42], the research focuses on navigation using real LEO signals in a

base and rover configuration. The approach taken in [29] is where the base station is

at a known stationary position and it communicates this position, along with LEO

carrier phase observables, to the rover. The rover uses the known position from

the base station and its own carrier phase observables to derive its position. Using

signals from Orbcomm satellites, this method resulted in a sub-15 meter position

error. The research in [42] uses a similar base station and rover approach but does

not require knowledge of satellite states. The base station performs an angle-of-arrival

measurement on a blindly tracked LEO signal and derives its azimuth and elevation.

The base provides these azimuth and elevation estimates to the rover. With azimuth

and elevation and differential Doppler positioning, the rover can solve for its position

without knowledge of the satellite states. The benefit of this method is that it is

constellation agnostic and overcomes the problem of lack of knowledge of transmitter

states.
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1.5 Outline

The remainder of this work will be presented in the following format. Chapter 2

will provide the necessary mathematical background for derivation of the navigation

equations, as well as some general navigation background. Chapter 3 introduces the

different LEO constellations considered, the navigation equation derivations, and a

description of the simulation. Chapter 4 presents the results from the research along

with observations and analysis. Finally, Chapter 5 provides an overall summary

of the research, including the contributions made and limitations of the research.

Recommendations for future work based on this research are additionally included.
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2. Background

2.1 Mathematical Notation

The following mathematical notation will be used throughout this document:

Scalars: Scalar quantities are denoted by uppercase or lowercase italicized

characters, such as a or A.

Vectors: Vectors are denoted by lower case italicized characters with an arrow

on top, such as ~a or ~b. All vectors are assumed to be column vectors unless

otherwise stated.

Matrices: Matrices are denoted as lowercase or uppercase boldface characters,

such as ω or A.

Derivatives: Derivatives are denoted using dots above a character or symbol.

The first derivative of ~v is denoted as ~̇v. All subsequent derivatives are denoted

with additional dots.

Partial Derivatives: Partial derivatives are denoted as ∂
∂
, where ∂

∂x
A is the

partial derivative of A with respect to x. Within equations, partial derivatives

are also denoted by ∂xA as shorthand. The two partial derivative notations

here should be considered equivalent throughout the thesis.

Transpose: The transpose of a vector or matrix is denoted with a superscript

of >. ~a> denotes the transpose of the vector ~a.

Unit Vectors: A unit vector is a vector of length 1. The unit vector of ~ρ is

equal to each component of ~ρ divided by the magnitude of the vector, ~ρ
||~ρ|| . Unit

vectors are denoted with a hat, ρ̂.

Superscripts: Unless otherwise stated, superscripts will denote the satellite

index of a scalar, vector, or matrix. For example, an, ~bn, and An are values

associated with the nth satellite.
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Subscripts: Unless otherwise stated, subscripts will be used as descriptors

to differentiate between identically denoted variables. For example, δtntrop and

δtnion denote the time delay from the nth satellite caused by the troposphere and

ionosphere, respectively.

Vector Components: A secondary use of subscripts is to denote components

of a vector or matrix. Individual vector components that represent a scalar value

are denoted by a subscript corresponding to a particular axis, as in ~rx. Matrix

components that represent a row vector are similarly denoted by a subscript

corresponding to a particular axis, as in Ay.

Function Notation: Functions and their inputs are denoted using parentheses.

Matrix A as a function of x is denoted as A(x). Similarly, vector ~r as a function

of t is denoted as ~r(t).

Gradient: The gradient of a function, ∇, is a vector consisting of the partial

derivatives of the function.

∇f(x, y) =

[
∂f

∂x
,
∂f

∂y

]

Hessian: The Hessian matrix of a function, ∇2, is a square matrix consisting

of the second-order partial derivatives of the function.

∇2f(x, y) =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]

Root Mean Square: The root mean square is the square root of the mean

square, where the mean square is the average of the squares of a set of numbers

[7].
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2.2 Gauss-Newton Method

The Gauss-Newton method is often used as a method to solve nonlinear least-

squares problems. Nonlinear least-squares optimization involves using m observations

to solve for n unknowns using a model that is nonlinear, where m ≥ n. The Gauss-

Newton method works by minimizing the cost function, J(x),

J(x) =
m∑
i

r2
i (2.1)

ri = hi(x)− y, (2.2)

where hi(x) is the nonlinear measurement model function that predicts a measure-

ment, y is a measurement, and ri are the residuals. The minimization of this cost

function yields the least-squares estimate. The Gauss-Newton method is a modifica-

tion of the Newton method.

Differentiating Equation 2.1 with respect to xj yields

∂

∂xj
J(x) =

m∑
i

∂ri
∂xj

ri. (2.3)

The gradient of J is

∇J = H>~r, (2.4)

where H is an m-by-n Jacobian matrix. Differentiating again, this time with respect

to xk, yields

∂2

∂xj∂xk
J(x) =

m∑
i

(
∂ri
∂xj

∂ri
∂xk

+
∂2ri

∂xj∂xk
ri

)
, (2.5)

where the Hessian of J is

∇2J = H>H + Q. (2.6)

Q represents the second order partial derivatives that can become impractical to
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compute, which the Gauss-Newton method ignores. This is where the Gauss-Newton

method differs from the Newton method.

The method is initialized with an initial guess, ~xi, and an update to that guess is

calculated using the Jacobian matrix.

∆~x = (H>H)−1H~r (2.7)

~xi+1 = ~xi + ∆~x (2.8)

In order to avoid divergence and ensure the ∆~x update is not too large, a slight

modification to the Gauss-Newton method can be made. Often called a damped

Gauss-Newton method, a comparison of the old and new cost functions can be made

prior to applying the update. The sequence of this method as it would be implemented

in code is shown below. The cost function (J), residuals (~r), and Jacobian matrix

Initial guess ~xi
while ∆~x > some value do

Compute J and ~r
Compute ∆~x
~xtemp = ~xi + ∆~x
Compute Jnew using ~xtemp
while Jnew > J do

∆~x = ∆~x/2
~xtemp = ~xi + ∆~x
Compute Jnew using ~xtemp

end while
~xi+1 = ~xi + ∆~x

end while

(H) are calculated using the initial guess (~xi). The update (∆~x) is then calculated

and applied to find a new cost function (Jnew). The damping occurs if the new cost

is larger than the old cost function – the update is halved if this is the case, and the

process is repeated until the new cost is less than the old. This sequence continues
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until an exit condition is met, which in the scenario above is when ∆~x falls below a

certain value. The damping value and the exit condition are not universally standard

and will depend on the problem [23] [24].

2.3 Global Positioning System

GPS is a satellite based radio navigation system operated by the United States

Space Force. The first GPS satellite was launched on February 22nd, 1978 and the

constellation became fully operational in 1993. Typical GPS receivers require signals

from 4 different satellites in order to derive accurate position and time. Position

and time are derived using a technique called trilateration, which involves measuring

distances. Figure 2.1 depicts an example of trilateration using 4 satellites. Three

dimensional position and time represent 4 unknowns that a receiver is trying to solve

for – the distance from 4 satellites satisfies the 4 unknowns. A minimum of 24 satellites

are necessary for GPS to provide adequate coverage over the entire globe and be

considered fully operational. Anywhere between 24 and 32 satellites are operational

at one time with 30 currently in orbit, arranged such that 6 satellites are in view at

any given time from anywhere on the Earth. GPS consists of three segments – the

Space Segment, the Control Segment, and the User Segment [33].

2.3.1 Space Segment

Unsurprisingly, the 30 operational satellites represent the Space Segment portion

of GPS. The satellites fly in MEO at approximately 20,000 kilometers (12,500 miles)

from the Earth’s surface. The orbital period of GPS satellites is 12 hours, meaning

they circle the Earth twice per day and depending on the location on Earth, each

satellite is visible for up to several hours at one time. The GPS constellation consists of

6 orbital planes, with 4-6 satellites per plane, flying at an inclination of approximately
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Figure 2.1. Trilateration [2]

55 degrees. A rendering of the GPS constellation is shown in Figure 2.2.

GPS satellites continually transmit a modulated carrier wave signal which GPS

receivers use to calculate position and time. GPS utilizes the L-band to transmit its

signal – L1 (1575.42 MHz), L2 (1227.60 MHz), and L5 (1176.45 MHz). The signal

contains information, specifically transmission time and satellite position data, that

the receiver can use in conjunction with its own time reference to derive a PVT

solution. In order for the satellites to transmit accurate data, they themselves must

keep accurate records of their time and position. Each GPS satellite carries multiple

atomic clocks to contribute to accurate signal timing on the order of nanoseconds. An

ephemeris message, which includes orbital information for the transmitting satellite,

is transmitted to help provide accurate satellite position. With the transmission time

and time of arrival of the signal, a receiver can calculate the pseudorange between itself

and a satellite because of the nature of radio waves. Radio waves travel at the speed

of light, a known constant, making it trivial to calculate pseudorange given the signal

propagation time. The term pseudorange is used to denote an approximate range due

to the inevitable errors in the measured signal propagation time. Trilateration can
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Figure 2.2. GPS constellation (not to scale) [4]

be performed once signals from 4 satellites have been received.

2.3.2 Control Segment

The entity in charge of ensuring satellites are operating correctly is known as

the GPS Control Segment (also referred to as Ground Segment). The Control Seg-

ment consists of a Master Control Station (MCS), located at Schriever Air Force Base

(AFB), CO, dedicated GPS ground antennas, and dedicated monitor stations. Figure

2.3 depicts a map of the Control Segment infrastructure. The primary responsibility

of the MCS is to monitor each satellite and provide navigational updates when nec-

essary. Updates involve synchronizing the atomic clocks on board the satellites and

providing orbital model updates critical to ensuring accurate ephemeris messages.

Monitoring satellites and sending updates is facilitated by the monitoring stations

and ground antennas around the globe. The Control Segment plays an integral role

in the reliability and precision of navigation using GPS.
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Figure 2.3. The Control Segment [1]

2.3.3 User Segment

As mentioned in the previous sections, GPS receivers generate PVT by using

the modulated carrier signal transmitted by satellites. To allow receivers to identify

which satellites they are receiving signals from, the carrier signal is modulated with

a pseudo-random noise (PRN) code unique to each satellite. A PRN code is a binary

sequence that appears to be random but is actually deterministic and can be generated

at any given state. Each GPS satellite transmits its own PRN code. The navigation

message, containing transmission time and satellite ephemeris, is also modulated with

the carrier signal. GPS uses binary phase-shift keying (BPSK) modulation to combine

the signal and the data. For receivers to demodulate the signal and make use of the

navigation data, they keep a bank of PRN codes that correlate with the PRN codes

being transmitted. Autocorrelation functions are used between each of the receiver

PRN codes and the incoming signal to determine which satellite it came from. PRN

codes are designed such that they have little cross-correlation when non-matching

codes are correlated or the code phase is not aligned, but a clear peak is present

when matching codes are correlated and their phases match. Once the signal has
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been demodulated, the receiver can make use of the data and generate several GPS

observables.

2.3.3.1 Pseudorange

The observable that a majority of GPS receivers rely on to generate PVT solutions

are pseudorange measurements. A pseudorange is the “pseudo” distance between a

satellite and receiver. Navigation messages and PRN codes transmitted from satellites

are designed so that a receiver, with its own set of PRN codes, can easily determine

the transmit and receive time of the signals. This is known as the signal propagation

time and can be multiplied by the speed of light to give the pseudorange. Figure

2.4 shows that there are also errors present in the propagation time calculation that

need to be taken into effect. The clocks on each satellite and GPS receiver introduce

error into the calculation. However, satellite clock errors are minimized with the help

of the control segment, which make receiver clocks the dominant error source. As

has been mentioned, simultaneous pseudorange measurements from 4 satellites can

be used to derive three dimensional position and time. The traditional pseduorange

Figure 2.4. GPS signal propagation time calculation [26]
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measurement equation can be found in Equation 2.9,

ρj =

√
(rjx − rx)2 + (rjy − ry)2 + (rjz − rz)2 + cδtr (2.9)

where rjx, r
j
y, and rjz is the Earth-Centered Earth-Fixed (ECEF) position of a satellite,

c is the speed of light, rx, ry, and rz, is the unknown ECEF position of a receiver,

and δtr is the unknown receiver clock error. With 4 psuedorange measurements, the

4 unknowns can be solved for.

2.3.3.2 Doppler Shift

The Doppler effect, or Doppler shift, is the change in frequency of a transmitted

signal due to the relative motion between the transmission source and observer. A

simple example of Doppler shift that almost everyone has been exposed to, but not

necessarily noticed, is emergency vehicle sirens. A stationary observer will hear a

higher pitched siren when a firetruck is moving towards them, as compared to when

it is moving away. The same concept applies to the GPS signal received by users on

the Earth’s surface. The Doppler equation is

fo =
c± vo
c± vs

fs, (2.10)

where fs and vs are the transmitted frequency and velocity at the source of the signal,

and fo and vo are the received frequency and velocity of the observer. Velocity of the

source and observer is added or subtracted depending on the direction. As a GPS

receiver observable, Doppler shift will be negative if the satellite is moving away from

the receiver and positive when moving towards the receiver. While pseudorange is

the dominant observable used for navigation, Doppler shift can also be used, which

will be explored in Section 2.6.
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2.3.3.3 Carrier-Phase

In simple terms, the carrier-phase measurement between a receiver and a satellite

is a measure of the range given in cycles of the carrier frequency. Because the carrier

wavelength is known, the carrier-phase measurement is very precise (on the order of

millimeters). However, the actual number of cycles between the receiver and satellite

is not measurable, which is known as the carrier-phase ambiguity. Figure 2.5 is an

example of a carrier-phase measurement, where “measured” is the calculated value

and “ambiguity” is the portion of the value that cannot be resolved. A good analogy

for this is to imagine a rope, with knots every 20 centimeters, stretching from a

receiver to a satellite. It’s easy to precisely measure the distance between the receiver

and the closest knot, but it’s impossible to know how many knots exist between the

receiver and satellite. There are methods, which will not be discussed in this thesis,

for resolving the carrier-phase ambiguity [33].

2.4 Keplerian Orbital Elements

Orbital elements are the parameters that can be used to describe the orbit of a

given satellite or body in space. There are 6 orbital elements traditionally used in

orbit determination, called Keplerian elements after Johannes Kepler. The definitions

from [6] are provided below.

Eccentricity (e): is the shape of an ellipse, describing how much it is elongated

compared to a circle.

Semimajor Axis (a): is the sum of the periapsis and apoapsis distances

divided by two. For two-body orbits, the semimajor axis is the distance between

the centers of the bodies.

Eccentricity and semimajor axis are used to define the shape and size of the orbital

ellipse.
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Figure 2.5. Carrier-Phase measurement [33]

Inclination (i): is the vertical tilt of the ellipse with respect to the reference

plane, measured at the ascending node.

Longitude of the Ascending Node (Ω): horizontally orients the ascending

node of the ellipse with respect to the reference frame’s vernal point (γ).

Inclination and longitude of the ascending node are used to define the orientation of

the orbital plane where the ellipse resides.

Argument of Periapsis (ω): defines the orientation of the ellipse in the orbital

plane, as an angle measured from the ascending node to the periapsis.

True Anomaly at Epoch (ν): defines the position of the orbiting body along

the ellipse at a specific time (the epoch).

Figure 2.6 provides a diagram which includes the 6 traditional orbital elements. For

satellites that orbit the Earth, the reference plane would be in the Earth’s equatorial

plane.
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Figure 2.6. Keplerian Orbital Elements [6]

2.5 Receiver Initialization State

The ability of, and speed at which, a GPS receiver (or other satellite based navi-

gation device) can converge on a correct solution is dependent on a number of factors.

A large factor is the state in which a receiver is powered on and initialized. The three

main receiver initialization states are cold start, warm start, and hot start. A cold

start is the most difficult scenario, where the receiver has no prior knowledge of its

position, velocity, time, or satellite locations. Often times, a cold-started receiver will

report PVT values of 0 until it is able to track satellites and generate a usable solu-

tion. In a warm start scenario, the receiver typically has an estimate of the current

time within 20 seconds, current position within 100 kilometers, and velocity within

25 m/sec. The receiver would also have some prior knowledge of satellite locations.

A hot start scenario provides the receiver with accurate position, time, and satellite
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ephemeris data upon startup. This enables rapid signal acquisition [9].

2.6 Geometric Dilution of Precision

GDOP is a metric used in satellite navigation to describe the mathematical effect

of satellite geometry on receiver position and time errors. GDOP values range from

< 1 to well over 100, with < 2 being excellent, 2− 10 being moderate, and anything

over 20 being poor. The GDOP calculation for pseudorange based navigation systems

is shown in the following equations.

A =


r1
x−rx
||~r1||

r1
y−ry
||~r1||

r1
z−rz
||~r1|| −1

r2
x−rx
||~r2||

r2
y−ry
||~r2||

r2
z−rz
||~r2|| −1

...
...

...
...

rjx−rx
||~rj ||

rjy−ry
||~rj ||

rjz−rz
||~rj || −1

 (2.11)

Once again, rjx, r
j
y, and rjz is the ECEF position of a satellite and rx, ry, and rz, is

the ECEF position of a receiver. The first 3 columns of A represent the components

of the unit vector from the receiver to each respective satellite.

Q = (A>A)−1 =


σxx σxy σxz σxt
σxy σyy σyz σyt
σxz σyz σzz σzt
σxt σyt σzt σtt

 (2.12)

Q is the covariance matrix, and several DOP metrics can be derived from its values,

where PDOP is the position dilution of precision and TDOP is the time dilution of

precision.

PDOP =
√
σxx + σyy + σzz

TDOP =
√
σtt

GDOP =
√
PDOP 2 + TDOP 2
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The horizontal dilution of precision (HDOP) and vertical dilution of precision (VDOP)

can be also be calculated following a coordinate conversion. An alternative GDOP

calculation for the navigation method described in this thesis will be presented in

Section 3.4.

2.7 Two-Line Element Sets

A Two-Line Element (TLE) set is a data format containing orbital characteristics

for a given object orbiting the Earth at a given time, or epoch. The North American

Aerospace Defense Command (NORAD) tracks and generates TLE data for every

body of significant size, including space debris as small as 10 centimeters in diameter

[36]. Along with a propagation model, the position and velocity of a space vehicle

can be predicted at any time using TLE data. The position error at epoch is on

the order of kilometers, however, and continues to grow as time diverges from epoch.

Because of the limited accuracy inherent with using TLE files, their use is better

suited for a simulated environment as opposed to real-world receivers. This thesis

explores the use of currently in-orbit LEO satellites as well as those not yet launched

for the purpose of navigation. To achieve this, a combination of NORAD-maintained

and fabricated TLE files are used. An example TLE file can be found in Figure 2.7

and a description of the data fields can be found in Figure 2.8.

Figure 2.7. Example TLE Set [11]

22



Figure 2.8. Definition of TLE parameters: Top Left: title line, Bottom Left: line 2,
Right: line 1 [11]

2.8 LEO vs. MEO

The majority of Chapter 2 has been dedicated to providing background on nav-

igation using GPS satellites, which operate in MEO. MEO orbits have an altitude

between 2,000 kilometers and approximately 36,000 kilometers. LEO satellites oper-

ate at an altitude below 2,000 kilometers. GPS satellites orbit the Earth twice per day

while LEO constellations have an orbital period of less than 128 minutes, meaning

they orbit the Earth at least 11.25 times per day. This difference in orbital periods

also means that while GPS satellites are visible for hours at a time, LEO satellites

are visible for less than 15 minutes at a time.

2.8.1 Comparison of LEO Satellites to GPS

Altitude is not the only differentiator between the GPS constellation and LEO

constellations. As a function of the satellites operating at significantly different alti-

tudes, there are several other differences between MEO and LEO constellations.

One major advantage that LEO satellites’ proximity to the Earth results in is
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signal strength. A LEO signal received on the surface of the Earth can be up to 1,000

times (30 decibels (dB)) stronger than GPS. The stronger signal means that LEO

signals potentially have better penetration through obstructions, lessen the effects of

multipath, and have better resistance to interference. LEO signals theoretically can

reach areas that traditional GPS cannot, potentially even indoors. Conversely they

can transmit 30 dB less power and generate the same received signal strength.

Because GPS satellites orbit at such a high altitude, they can provide a much

larger signal footprint. Each GPS satellite provides a signal footprint approximately

12,000 kilometers in diameter, while LEO satellites can provide roughly 1/4 of that.

Figure 2.9 depicts this fact. A direct result of the signal footprint differences is

the need for different numbers of satellites in order to provide global coverage at all

times. As previously mentioned, the GPS constellation requires a minimum of 24

active satellites in order to stay fully operational. Depending on the intended use

of a particular LEO constellation (navigation, communication, broadband Internet,

etc.), the number of needed satellites can be upwards of three times that of GPS to

provide global coverage. While there are significantly fewer GPS satellites in orbit, it

costs more to launch the satellites. The higher launch costs also drive manufacturing

prices up since GPS satellites need to be made as resilient as possible so as replace-

ments are rarely necessary. This is a benefit of LEO constellations – the launch costs

Figure 2.9. MEO vs. LEO signal footprint [39]
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are significantly lower, meaning that defective satellites can be easily replaced and

manufacturing costs can be kept lower.

A drawback of the lower manufacturing costs, and the simple fact that the majority

of LEO constellations weren’t designed for navigation purposes, is the absence of high

quality clocks and accurate ephemerides. As discussed in Section 2.3, GPS satellites

have several atomic clocks on-board to help provide nanosecond level timing accuracy.

The size, weight, power, and cost (SWaP-C) of high quality atomic clocks make them

unsuitable for LEO satellites. GPS satellites also broadcast detailed and accurate

navigation messages, which are monitored and updated by the Control segment, to

users. While certain LEO constellations do broadcast navigation messages, as detailed

below, others currently do not.

One orbital characteristic working in the favor of LEO constellations, with re-

spect to this particular navigation method, is the speed at which they travel. LEO

satellites travel at speeds between 25,600-28,000 km/hr while GPS satellites travel

at approximately 14,000 km/hr. The greater relative speed between the user and

satellite results in a stronger and more robust Doppler shift observable. Also due to

the higher relative speed, multipath effects occur at a much higher rate and therefore

tend to average out over intervals of several seconds. For MEO, multipath effects

linger for intervals on the order of tens to hundreds of seconds.

The small signal footprint provided from LEO satellites also means that a number

of different inclinations will be necessary in order for the constellation to provide

global coverage. Because of the altitude of GPS satellites and the signal footprint

they provide, only 6 planes at an inclination of 55 degrees are needed to cover the

globe – including the poles. LEO constellations either require a large number of

planes at an inclination near 90 degrees, or they need to have several planes at a

diverse set of inclinations. Chapter 3 will further expand upon the orbital design of
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the LEO constellations of interest in this thesis.

2.8.2 TRANSIT

Under sponsorship from the United States Navy, the Johns Hopkins Applied

Physics Laboratory (APL) and the Defense Advanced Research Projects Agency

(DARPA) jointly developed the Transit System, which was the first satellite navi-

gation system. The first Transit launch was in 1959 and the last was in 1988, with

the service operational until 1996 – 3 years after GPS became fully operational. Users

could derive their location from the Transit system by precisely knowing the satel-

lite’s position and using Doppler shift. Transit satellites transmitted two ultra high

frequency (UHF) carrier signals containing time tags and its orbital information.

Similar to GPS, Navy ground stations uploaded corrections to the clocks and orbital

parameters twice per day [15].

Satellites were launched into low Earth polar orbits at an altitude of approxi-

mately 1,100 km. They traveled at roughly 27,000 km/hr with an orbital period of

about 106 minutes. Five satellites were necessary to provide reasonable global cov-

erage, while ten satellites were active on average during full operation. The Transit

system provided location accuracy of approximately 200 meters for a user tracking a

single pass of a satellite. The few satellites in service and the small visibility window

for the satellites meant that users were often left without a fix for upwards of an

hour, depending on their location. While this fact would make Transit unsuitable for

traditional GPS users, it was sufficient for slow moving ships or submarines which

could more easily dead reckon during outages [10].
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2.8.3 Orbcomm

Orbital Sciences Corporation created the Orbcomm low earth orbit system in

the late 1980’s to provide global communication and messaging services. Orbital

Sciences filed the world’s first license application with the Federal Communications

Commission (FCC) in 1990, for a network of LEO satellites [17]. Filing an application

with the FCC has since become the important first step for any company looking to

launch any sort of LEO constellation. Orbital Sciences’ successful FCC application

allows Orbcomm to operate in the 137-150 Megahertz (MHz) very high frequency

(VHF) band. A total of 60 Orbcomm satellites have been launched since 1991, with

59 still in orbit and 35 satellites still operational today. While navigation was not the

intended function of the Orbcomm system, there have been studies conducted where

users were able to extract pseudorange and Doppler shift observables from the signal,

as discussed in Chapter 1.

2.8.4 Iridium

The Iridium satellite constellation was designed in the 1990’s, by Iridium Commu-

nications, to provide voice and data messaging services to handheld phones. The in-

tention was for handheld devices to communicate with geostationary satellites (35,785

km), however the handheld devices did not have sufficient power to reach such alti-

tudes. To solve this issue, the initial Iridium constellation, launched between 1997-

2002, was launched into low Earth orbit at roughly 780 km. The original constellation

has since been replaced with the Iridium NEXT constellation, which provided addi-

tional capabilities [18]. Iridium NEXT satellites were launched between 2017-2019.

The current constellation consists of 66 operational satellites (plus 9 spares) in 6

planes at the same 780 km altitude. The constellation operates in near polar orbits

(86.4 degrees) and transmits signals at an L-band frequency of 1,618.85-1,626.5 MHz.

27



Iridium is another constellation that was not designed for navigation at its inception,

but has been utilized for just that.

Satelles, Inc. is a technology company that partners with Iridium Communications

to provide position and timing solutions using signals from the Iridium constellation.

Iridium transmits a satellite time and location service for use by Satelles to generate

accurate PVT. Similar to GPS, this time and location service transmits messages

whose accuracies are monitored and updated from the ground. The Satelles LEO

navigation solution reaps the benefits described in Section 2.6.1 to augment GPS when

it is degraded or denied. An added benefit of the Satelles solution is its operation

in the L-band – the same as GPS. This allows Satelles receiver designs to be similar

to GPS receivers. An assured positioning, navigation, and timing system leveraging

both GPS and Iridium signals could also potentially use the same antenna because

both signals reside in the L-band. The Iridium constellation and its use for LEO

based navigation is further discussed in Section 3.1.

2.8.5 Future LEO

The Transit, Orbcomm, and Iridium systems give a glimpse at what LEO con-

stellations have historically looked like and been used for. LEO constellations have

been larger in satellite number than GPS but not exorbitantly so. In recent years

however, several tech companies have filed applications with the FCC to launch large

LEO constellations. Many of these large LEO constellations have a common goal

of providing global satellite Internet broadband services. OneWeb, a London based

communications company, has launched 358 of its satellites into low earth orbit since

2019. SpaceX has successfully launched 1,732 of its Starlink satellites since the start

of 2018. Amazon, with its Kuiper constellation, and Canadian communications com-

pany Telesat, have also filed FCC applications for large low Earth constellations.
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Based on the FCC filings and contingent on successful launches, there could be up-

wards of 50,000 satellites in LEO in the next 10 years [14]. Even though the majority

of these constellations are being launched for purposes other than navigation, there

remains a tremendous opportunity to leverage their signals in manners described in

this thesis.

2.9 Summary

This chapter described the mathematical notation that will be used throughout

this thesis and introduced concepts that will be used. A brief introduction to navi-

gation, as well as traditional GPS, was provided. The difference between low Earth

and medium Earth orbit was explored along with the differences between LEO con-

stellations and GPS. Historical and future LEO constellations were covered, some of

which will be explored further in Chapter 3. With Chapter 1 and 2 forming a knowl-

edge base, the design and methodology of this research is presented in the following

chapter.
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3. Design and Methodology

This chapter describes the experimental methodology employed in the assessment

of navigation using carrier Doppler measurements from LEO constellations. Section

3.1 introduces the current and emerging LEO constellations that are used in the

navigation simulation. Section 3.2 derives the equations necessary for a receiver to

navigate using LEO Doppler observables. Section 3.3 describes the simulation and

provides the initial conditions used in each simulation scenario. Finally, Section 3.4

derives the equations needed to conduct a GDOP analysis for each constellation.

3.1 Constellations of Interest

As discussed in Chapter 2, there are characteristics of low Earth orbit that are

driving factors in the design of a constellation used for navigation purposes. The

typically small coverage area of LEO constellations will require both a large number

of satellites, and either a larger number of planes or several different inclinations.

This thesis will explore the individual suitability of the Kuiper, OneWeb, Starlink,

and Telesat constellations for navigation. Two “constellation of constellations (CoC)”

will also be explored. The first will include all of the satellites in orbit from the

Iridium NEXT, OneWeb, and Starlink constellations as of April 8th, 2021. The

second will include all of the satellites in the planned Kuiper, OneWeb, Starlink, and

Telesat constellations. The public FCC filings, when available, were used to design

the constellations and this information was also used to fabricate the necessary TLE

files.
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3.1.1 Kuiper

Amazon has filed an application with the FCC for a constellation of 3,236 satellites

operating at altitudes between 590-630 kilometers [21]. The satellite-to-user signal

is planned to be transmitted at frequencies of 17.7 - 20.2 Gigahertz (GHz). To

date, there have been no satellites launched, with the first launches schedule in 2022.

Table 3.1 presents the anticipated design of the Kuiper constellation. The number

Table 3.1. Kuiper Constellation

Satellites Altitude [km] Inclination [deg] Planes SV’s Per Plane

784 590 33.0 34 34

1,296 610 42.0 36 36

1,156 630 51.9 28 28

of planned satellites in the Kuiper constellation make it an appealing option for

navigation purposes. However, the fact that all satellites have inclinations between

33-51.9 degrees mean that the satellite coverage will be very poor at higher and

lower latitudes and nonexistent at the poles. Additional satellites would need to be

launched at inclinations closer to 90 degrees, or another constellation would need to

be leveraged in order for the Kuiper constellation to provide the necessary global

coverage.

3.1.2 OneWeb

OneWeb has plans to launch a constellation of 6,372 satellites at an altitude of

1,200 kilometers [22]. To date, the company has successfully launched 348 satellites

with the first being launched in February, 2019. The constellation’s satellite-to-user

signal operates at 40.0-42.0 GHz. Table 3.2 shows the design of the complete OneWeb

constellation. Similar to the Kuiper constellation, OneWeb has plans for a large

number of satellites in LEO that make it an obvious choice for this research. Unlike
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Table 3.2. OneWeb Constellation

Satellites Altitude [km] Inclination [deg] Planes SV’s Per Plane

1,764 1200 87.9 36 49

2,304 1200 55.0 32 72

2,304 1200 40.0 32 72

Kuiper, the OneWeb constellation has satellites at inclinations of 40.0, 55.0, and 87.9

degrees. The volume of satellites at each of these inclinations also mean that OneWeb

should be able to provide sufficient global coverage at all times.

3.1.3 Starlink

SpaceX has filed several applications with the FCC for a LEO constellation con-

sisting of 11,914 vehicles operating at altitudes between 335-570 kilometers. While

the original design had satellites at altitudes up to 1200 kilometers, the FCC ap-

proved a modification from SpaceX to keep all satellites below 570 kilometers [19].

The satellite-to-user signal from Starlink satellites is transmitted at 10.7-12.7 GHz.

Table 3.3 shows the design of the full Starlink constellation, proposed to be complete

by November, 2027. Please note that the values with an asterisk have not been deter-

mined by SpaceX as of yet. The number of planes and satellites per plane were chosen

here to achieve the intended number of satellites in the fully operational constella-

tion. Also note that an inclination between 90-180 degrees constitutes a retrograde

orbit, while an inclination between 0-90 degrees is a prograde orbit. A prograde or-

bit rotates in the same direction of the Earth and a retrograde orbit rotates in the

opposite direction. Similar to OneWeb, the Starlink constellation has a significant

number of satellites at a wide range of inclinations. The massive number of satellites

at inclinations between 42-70 degrees will undoubtedly provide more than enough

signal coverage in the mid-latitude regions. Even though the Starlink plans call for

508 satellites in near polar orbit, it may not provide enough coverage around the poles
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Table 3.3. Starlink Constellation

Satellites Altitude [km] Inclination [deg] Planes SV’s Per Plane

1,584 550 53.0 72 22

1,584 584 53.2 72 22

720 570 70.0 36 20

172 560 97.6 4 43

336 560 97.6 6 58

2,493 335.9 42.0 28* 89*

2,478 340.8 48.0 42* 59*

2,547 345.6 53.0 49* 52*

at all times.

3.1.4 Telesat

Telesat is another communications company that has filed applications with the

FCC for a constellation of LEO satellites [20]. Telesat’s constellation is comprised of

298 satellites at altitudes of 1015 and 1325 kilometers. The satellite-to-user signal is

transmitted at a frequency of 37.5-40 GHz. Several test satellites have been launched

since 2018 by Telesat, with the rest of the constellation scheduled for launch in the

coming years. Table 3.4 shows the design of the Telesat constellation. Compared

Table 3.4. Telesat Constellation

Satellites Altitude [km] Inclination [deg] Planes SV’s Per Plane

78 1015 88.0 6 13

220 1325 45.0 20 11

to the other large LEO constellations discussed here, Telesat is by far the smallest

in number. The inclination diversity of the satellites is the reason the Telesat con-

stellation was considered in this research. Coverage gaps are to be expected with a

constellation of this size when at least 8 are necessary for navigation. Section 3.2.1

explains the need for 8 satellites when pseudorange-based navigation only requires 4.
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The Telesat constellation can still provide value in a multi-constellation solution by

improving coverage at the poles and improving overall user-satellite geometry.

3.1.5 Current Constellation of Constellations

As mentioned above, the first multi-constellation solution that is explored includes

the Iridium NEXT, OneWeb, and Starlink constellations as of April 8th, 2021. These

constellations are considered for a number of reasons. The Iridium constellation is

one of the most mature LEO constellations and is already leveraged for navigation

purposes. OneWeb and Starlink both represent the mega LEO constellations that

will be launched in the coming years and they are the only two that currently have

a substantial number of satellites in orbit. The differing altitudes and inclinations

between constellations also provide better potential for global coverage and favorable

satellite geometry for navigation applications. Table 3.5 shows the state of all 3

constellations as of April 8th, 2021. The Starlink constellation includes satellites

Table 3.5. Iridium NEXT, OneWeb, and Starlink Constellations as of April 8th, 2021

Constellation Satellites Altitude [km] Inclination [deg]

Iridium NEXT 75 780 86.4

OneWeb 146 1200 87.9

Starlink
1279 550 53.0

10 560 97.6

at an inclination of 53 degrees which helps to provide coverage in the mid-latitude

regions. The Iridium NEXT and OneWeb constellations include satellites in near

polar orbits that will provide coverage around the poles. As the OneWeb and Starlink

constellations grow, the signal coverage and user-satellite geometry will continue to

improve.
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3.1.6 Future Constellation of Constellations

The second multi-constellation solution researched includes the planned fully op-

erational constellations of Kuiper, OneWeb, Starlink, and Telesat. The idea behind

including these constellations was to explore the kind of global coverage and satel-

lite geometry that could be achieved using several mega-constellations with differing

altitudes and inclinations. For comparison’s sake, the 4 constellation designs are in-

cluded in Table 3.6. Each of the 4 constellations provide lower and mid-inclination

Table 3.6. Planned Kuiper, OneWeb, Starlink, and Telesat Constellations

Constellation Satellites Alt. [km] Inc. [deg] Planes SV’s Per Plane

Kuiper

784 590 33.0 34 34

1,296 610 42.0 36 36

1,156 630 51.9 28 28

OneWeb

1,764 1200 87.9 36 49

2,304 1200 55.0 32 72

2,304 1200 40.0 32 72

Starlink

1,584 550 53.0 72 22

1,584 584 53.2 72 22

720 570 70.0 36 20

172 560 97.6 4 43

336 560 97.6 6 58

2,493 335.9 42.0 28* 89*

2,478 340.8 48.0 42* 59*

2,547 345.6 53.0 49* 52*

Telesat
78 1015 88.0 6 13

220 1325 45.0 20 11

satellites, while the OneWeb, Starlink, and Telesat constellations provide the near 90

degree inclination satellites. The 21,820 satellites in this mega-constellation make it

an order of magnitude larger than any single constellation in orbit, especially those

used for navigation. One potential design consideration, which is not included in this

research, is signal deconfliction. A single receiver might struggle to differentiate the

signals from potentially thousands of satellites. However, A constellation of this size
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is included in this research to demonstrate the type of navigation performance that

it might result in.

3.2 Point-Solution Batch Filter

The measured carrier Doppler shift from a given satellite is equal to the negative

time derivative of the accumulated delta range, divided by the wavelength of the

transmitted signal.

Dj = −1

λ

d∆ρjADR
dtR

(3.1)

Psiaki develops a point solution algorithm to simultaneously solve for position, veloc-

ity, clock offset, and clock offset rate using the carrier Doppler shift from 8 satellites

in [38]. The navigation solution is estimated by solving the following nonlinear least-

squares problem, where position (~r), clock offset (δR), velocity (~v), and clock offset

rate (δ̇R) are found in order to minimize the cost function:

J(~r, δR, ~v, δ̇R) =
1

2

N∑
j=1

 λDj +
d∆ρjADR
dtR

∣∣∣
(~r,δR,~v,δ̇R)

λσjDopp


2

(3.2)

The term on the right hand side of the numerator in Equation 3.2 is the accumulated

delta range rate, and is solved for below. The denominator term, λσjDopp, is the range-

rate-equivalent measurement error standard deviation for the jth satellite. λ is the

carrier wavelength of the signal in meters, and Dj is the Doppler shift from the jth

satellite. Minimization of J(~r, δR, ~v, δ̇R) leads to an estimation of receiver position,

clock offset, velocity, and clock offset rate.
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3.2.1 Accumulated Delta Range

Before the accumulated delta range rate can be found, the accumulated delta

range must first be solved for.

∆ρjADR(~r, δR; tR) =

√
[~r −A(ωEδt

j
p)~rj(tR − δR − δtjp)]>[~r −A(ωEδt

j
p)~rj(tR − δR − δtjp)]

+ c(δR − δj) + c(δjtrop − δ
j
iono) + λβ (3.3)

In Equation 3.3, ~r is the unknown receiver position in ECEF coordinates, ~rj is the

known position of the jth satellite in ECEF coordinates, ωE is the rotation rate of

the Earth, δtjp is the signal propagation time from the satellite to the receiver, δj is

the satellite clock offset, δjtrop is the signal delay due to the troposphere, δjiono is the

signal delay due to the ionosphere, β is the beat carrier phase, and tR is the erroneous

receiver clock time. The signal propagation time is found using Equation 3.4.

δtjp =

√
[~r −A(ωEδt

j
p)~rj(tR − δR − δtjp)]>[~r −A(ωEδt

j
p)~rj(tR − δR − δtjp)]

+ δjtrop − δ
j
iono (3.4)

In order to compensate for the rotation of the ECEF coordinate frame while the signal

is traveling to the receiver, the satellite position is multiplied by a direction cosine

matrix, A(ωEδt
j
p).

A(ωEδt
j
p) =

 cos(ωEδt
j
p) sin(ωEδt

j
p) 0

− sin(ωEδt
j
p) cos(ωEδt

j
p) 0

0 0 1

 (3.5)

Methods for calculating the tropospheric and ionospheric delays are detailed in [40].

With equations to calculate the accumulated delta range between a receiver and a

given satellite, the accumulated delta range rate can now be derived. Psiaki presents
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a 5-point finite difference formula that numerically computes the time derivative of

the accumulated delta range.

d∆ρjADR
dtR

∣∣∣∣∣
(~r,δR,~v,δ̇R)

= {∆ρjADR(~r − 2~v∆tR

1 + δ̇R
, δR −

2δ̇R∆tR

1 + δ̇R
; tR − 2∆tR)

−8∆ρjADR(~r − ~v∆tR

1 + δ̇R
, δR −

δ̇R∆tR

1 + δ̇R
; tR −∆tR)

+8∆ρjADR(~r +
~v∆tR

1 + δ̇R
, δR +

δ̇R∆tR

1 + δ̇R
; tR + ∆tR)

−∆ρjADR(~r +
2~v∆tR

1 + δ̇R
, δR +

2δ̇R∆tR

1 + δ̇R
; tR + 2∆tR)} 1

12∆tR
(3.6)

∆tR is the nominal finite difference interval of the erroneous receiver clock time, which

Psiaki recommends setting between 0.1 sec ≤ ∆tR ≤ 0.25 sec – this research uses a

value of ∆tR = 0.175 sec. Please note that Equation 3.6 only contains 4 terms because

of the zero-weighting placed on the middle term. The accumulated delta range rate

from Equation 3.6 is substituted into the cost function in Equation 2.1, which is used

to solve for position, clock offset, velocity, and clock offset rate.

Equation 3.6 illustrates why Doppler measurements are needed from 8 satellites in

order for a receiver to derive position and time. In a traditional pseduorange-based

navigation system where an equation similar to Equation 2.9 is used, a receiver is

only solving for 4 unknowns. By simultaneously tracking 4 satellites, a receiver can

solve for its three dimensional position and time. However, Equation 3.6 contains 8

unknowns – three dimensional position, clock offset, three dimensional velocity, and

clock offset rate. Therefore, a receiver using the method detailed in this research

needs Doppler measurements from 8 satellites in order to navigate.
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3.2.2 Batch Least-Squares Filter

The cost function in Equation 2.1 can be modified into the standard weighted

nonlinear least-squares form, shown in Equation 3.7:

J(~x) =
1

2
[~y − ~h(~x)]>R−1[~y − ~h(~x)], (3.7)

where ~x is the 8 x 1 vector of unknown receiver quantities being estimated,

~x =


~r
δR
~v

δ̇R

 =



rx
ry
rz
δR
vx
vy
vz
δ̇R


,

~y is the N x 1 measurement vector,

~y =


λD1

λD2

λD3

...
λDN

 ,

~h(~x) is the N x 1 nonlinear measurement model function,

~h(~x) =



d∆ρ1
ADR

dtR

∣∣∣
(~r,δR,~v,δ̇R)

d∆ρ2
ADR

dtR

∣∣∣
(~r,δR,~v,δ̇R)

d∆ρ3
ADR

dtR

∣∣∣
(~r,δR,~v,δ̇R)
...

d∆ρNADR
dtR

∣∣∣
(~r,δR,~v,δ̇R)


,
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and R is the N x N measurement error covariance matrix,

R =


(λσ1

Dopp)
2 0 0 . . . 0

0 (λσ2
Dopp)

2 0 . . . 0
0 0 (λσ3

Dopp)
2 . . . 0

...
...

...
. . .

...
0 0 0 . . . (λσNDopp)

2


In order to solve this nonlinear least-squares problem, the Gauss-Newton method will

be applied. The nonlinear problem is linearized by calculating the Jacobian matrix of

the nonlinear measurement model function. This involves taking the partial derivative

of the function with respect to each of the variables in the state vector, ~x.

3.2.3 Jacobian Derivation

H =
∂

∂~x
~h(~x) =



∂~h1(~x)
∂rx

∂~h1(~x)
∂ry

∂~h1(~x)
∂rz

∂~h1(~x)
∂δR

∂~h1(~x)
∂vx

∂~h1(~x)
∂vy

∂~h1(~x)
∂vz

∂~h1(~x)

∂δ̇R
∂~h2(~x)
∂rx

∂~h2(~x)
∂ry

∂~h2(~x)
∂rz

∂~h2(~x)
∂δR

∂~h2(~x)
∂vx

∂~h2(~x)
∂vy

∂~h2(~x)
∂vz

∂~h2(~x)

∂δ̇R
∂~h3(~x)
∂rx

∂~h3(~x)
∂ry

∂~h3(~x)
∂rz

∂~h3(~x)
∂δR

∂~h3(~x)
∂vx

∂~h3(~x)
∂vy

∂~h3(~x)
∂vz

∂~h3(~x)

∂δ̇R
...

...
...

...
...

...
...

...
∂~hN (~x)
∂rx

∂~hN (~x)
∂ry

∂~hN (~x)
∂rz

∂~hN (~x)
∂δR

∂~hN (~x)
∂vx

∂~hN (~x)
∂vy

∂~hN (~x)
∂vz

∂~hN (~x)

∂δ̇R


(3.8)

The full Jacobian matrix requires partial derivatives of each of the 4 terms in Equation

3.6 with respect to each receiver unknown. For the purposes of this document, only

the partial derivatives of the first term in Equation 3.6 will be presented, but the

process is the same for the remaining 3 terms. In order to make the equations more

reader friendly, some abbreviations will be explicitly defined and used below. The

square root term from Equation 3.3 will be abbreviated as
√
~θ>~θ, where

√
~θ>~θ =

√
[~r −A(ωEδt

j
p)~rj(tR − δR − δtjp)]>[~r −A(ωEδt

j
p)~rj(tR − δR − δtjp)].
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The partial derivative with respect to the receiver’s ECEF x-position, rx, is derived

below. The terms in parenthesis are plugged in as ~r, δR, and ∆tR in Equation 3.3,

respectively.

∂

∂rx
∆ρjADR(~r − 2~v∆tR

1 + δ̇R
,δR −

2δ̇R∆tR

1 + δ̇R
; tR − 2∆tR)

=
∂

∂rx

(√
~θ>~θ + c(δR − δj) + c(δjtrop − δ

j
iono) + λβ

)

Because ~r appears in the signal propagation delay term, δjtp, we will need to find the

partial derivative of A(ωEδt
j
p) and ~rj(tR − δR − δtjp) with respect to rx.

∂

∂rx
A(ωEδt

j
p) = A′x

A′x =
ωE
c

rx − (cos(ωEδt
j
p)r

j
x + sin(ωEδt

j
p)r

j
y)√

~θ>~θ

[
− sin(ωEδt

j
p) cos(ωEδt

j
p) 0

]
(3.9)

∂

∂rx
~rj(tR − δR − δtjp) = rj

′

x

rj
′

x = −1

c

rx − (cos(ωEδt
j
p)r

j
x + sin(ωEδt

j
p)r

j
y)√

~θ>~θ
vjx(tR − δR − δtjp) (3.10)

rx is the x-component of ~r − 2~v∆tR
1+δ̇R

, rjx and rjy are the x- and y-components of the

satellite position vector, respectively, and vjx is the x-component of the satellite ve-

locity vector. Because this process will be repeated for the partial derivatives with

respect to ry and rz, the terms rj
′
y , rj

′
z , and A′y are also derived below.

∂

∂ry
A(ωEδ

j
tp) = A′y

A′y =
ωE
c

ry − (− sin(ωEδ
j
tp)r

j
x + cos(ωEδ

j
tp)r

j
y)√

~θ>~θ

[
− cos(ωEδ

j
tp) − sin(ωEδ

j
tp) 0

]
(3.11)
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∂

∂ry
~rj(tR − δR − δtjp) = rj

′

y

rj
′

y = −1

c

ry − (− sin(ωEδt
j
p)r

j
x + cos(ωEδt

j
p)r

j
y)√

~θ>~θ
vjy(tR − δR − δtjp) (3.12)

∂

∂rz
~rj(tR − δR − δtjp) = rj

′

z

rj
′

z = −1

c

rz − rjz√
~θ>~θ

vjz(tR − δR − δtjp) (3.13)

Note that because the bottom row of the direction cosine matrix, A(ωEδt
j
P ), consists

of only zeros, the partial derivative with respect to rz is 0. ~rj
′
can also be constructed

using the partial derivatives in Equations 3.10, 3.12, and 3.13.

~rj
′
=

rj′xrj′y
rj

′
z

 (3.14)

With the terms in Equations 3.9 - 3.14, analytical expressions for the partial deriva-

tives with respect to rx, ry, and rz are defined below.

∂

∂rx
∆ρjADR(~r − 2~v∆tR

1 + δ̇R
, δR −

2δ̇R∆tR

1 + δ̇R
; tR − 2∆tR) =

rx − (Ax~r
j + (A′x~r

j + Ax~r
j′)rx)− 1

2
(A′x~r

jAx~r
j + (rj

′
x Ax~r

j + (A′x~r
j + Ax~r

j′)~rj)Ax)√
~θ>~θ

(3.15)

∂

∂ry
∆ρjADR(~r − 2~v∆tR

1 + δ̇R
, δR −

2δ̇R∆tR

1 + δ̇R
; tR − 2∆tR) =

ry − (Ay~r
j + (A′y~r

j + Ay~r
j′)ry)− 1

2
(A′y~r

jAy~r
j + (rj

′
y Ay~r

j + (A′y~r
j + Ay~r

j′)~rj)Ay)√
~θ>~θ

(3.16)
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∂

∂rz
∆ρjADR(~r − 2~v∆tR

1 + δ̇R
, δR −

2δ̇R∆tR

1 + δ̇R
; tR − 2∆tR) =

rz − (rjz + rj
′
z rz)− rj

′
z r

j
z√

~θ>~θ
(3.17)

In Equations 3.15 and 3.16, Ax and Ay denote the first and second rows of the

direction cosine matrix, respectively, from Equation 3.5.

The next partial derivative needed is with respect to the receiver clock offset.

Similar to with the receiver position partial derivatives, δR appears in the ~rj(tR −

δR − δtjp) term.

∂

∂δR
~rj(tR − δR − δtjp) = ~rj

′

δR

~rj
′

δR
= −~vj(tR − δR − δtjp), (3.18)

where ~v is the known satellite velocity vector. Using Equation 3.18 the full partial

derivative with respect to clock offset can be derived.

∂

∂δR
∆ρjADR(~r − 2~v∆tR

1 + δ̇R
, δR −

2δ̇R∆tR

1 + δ̇R
; tR − 2∆tR) =

~rjA(ωEδt
j
p)~r

j′

δR
−A(ωEδt

j
p)~rA(ωEδt

j
p)~r

j′

δR√
~θ>~θ

+ c (3.19)

The partial derivatives with respect to the receiver velocity components are similar

to those with respect to the position components. In fact, the velocity partial deriva-

tives can be calculated by scaling the position partial derivatives by ∂
∂~v

(
~r − 2~v∆tR

1+δ̇R

)
.

∂

∂~v

(
~r − 2~v∆tR

1 + δ̇R

)
= − 2∆tR

1 + δ̇R

∂

∂vx
∆ρjADR(~r − 2~v∆tR

1 + δ̇R
, δR −

2δ̇R∆tR

1 + δ̇R
; tR − 2∆tR) = − 2∆tR

1 + δ̇R

(
∂

∂rx
∆ρjADR(...)

)
(3.20)
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∂

∂vy
∆ρjADR(~r−2~v∆tR

1 + δ̇R
, δR−

2δ̇R∆tR

1 + δ̇R
; tR−2∆tR) = − 2∆tR

1 + δ̇R

(
∂

∂ry
∆ρjADR(...)

)
(3.21)

∂

∂vz
∆ρjADR(~r−2~v∆tR

1 + δ̇R
, δR−

2δ̇R∆tR

1 + δ̇R
; tR−2∆tR) = − 2∆tR

1 + δ̇R

(
∂

∂rz
∆ρjADR(...)

)
(3.22)

Similar to the partial derivatives with respect to ~v, the partial derivative with

respect to δ̇R can be derived by utilizing Equations 3.15, 3.16, 3.17, and 3.19 and

scaling them by ∂
∂δ̇R

(
~r − 2~v∆tR

1+δ̇R

)
or ∂

∂δ̇R

(
δR − 2δ̇R∆tR

1+δ̇R

)
.

∂

∂δ̇R

(
~r − 2~v∆tR

1 + δ̇R

)
=

2~v∆tR

(1 + δ̇R)2

∂

∂δ̇R

(
δR −

2δ̇R∆tR

1 + δ̇R

)
= − 2∆tR

(1 + δ̇R)2

∂

∂δ̇R
∆ρjADR(~r − 2~v∆tR

1 + δ̇R
, δR −

2δ̇R∆tR

1 + δ̇R
; tR − 2∆tR) =

2vx∆tR

(1 + δ̇R)2

(
∂

∂rx
∆ρjADR(...)

)
+

2vy∆tR

(1 + δ̇R)2

(
∂

∂ry
∆ρjADR(...)

)
+

2vz∆tR

(1 + δ̇R)2

(
∂

∂rz
∆ρjADR(...)

)
− 2∆tR

(1 + δ̇R)2

(
∂

∂δR
∆ρjADR(...)

)
(3.23)

Again, please note that all of the partial derivatives derived in the equations above

are only for the first term in Equation 3.6, where:

~r = ~r − 2~v∆tR

1 + δ̇R

δR = δR −
2δ̇R∆tR

1 + δ̇R

tr = tR − 2∆tR

To find the full measurement model Jacobian matrix, this process needs to be repeated
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for the remaining 3 terms, after which the partial derivatives are summed. With the

full Jacobian matrix defined, the Gauss-Newton method from Section 2.2 is utilized

to estimate receiver position, clock offset, velocity, and clock offset rate.

3.3 Simulation

A Python simulation was generated to assess the feasibility of a receiver to ac-

curately estimate its PVT when using this carrier Doppler shift navigation method,

along with the different constellations mentioned above. In the simulation, both ac-

tive and fabricated TLE files are used in conjunction with an orbit propagator to

provide satellite position and velocity information to the receiver. Any satellite that

appears above a 7.5 degree elevation mask from the receiver is assumed to provide

a valid carrier Doppler shift observable. The truth location was randomly selected

to be anywhere on the Earth with equal probability. The truth altitude was also

selected from a uniform distribution between 0 and 5000 meters. The truth receiver

clock offset was sampled from a uniform distribution between -0.25 sec and 0.25 sec.

The truth receiver velocity was sampled from a Gaussian distribution with a mean

of 0 and a standard deviation of 25 m/sec for each of the ECEF directions. Finally,

the truth receiver clock offset rates have been sampled from a Gaussian distribution

with a mean value of 0 and a standard deviation of 3.336 × 10−9 seconds/second.

Though the true range-rate-equivalent measurement error standard deviation is yet

to be determined, it is assumed to be in line with that of GPS, λσjDopp = 0.01 m/sec.

The true value depends on several factors, including the signal’s carrier-to-noise ratio.

3.3.1 Initial Conditions

Table 3.7 provides a summary of the initial conditions of each of the 4 scenarios.

Four different test scenarios are considered for each of the constellations of inter-
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Table 3.7. Initial Conditions of 4 Different Test Scenarios

Scenario Description

1a No cold start, No SV errors Initial horizontal error between 143-151 km. No satel-
lite ephemeris or timing error.

1b No cold start, SV errors Initial horizontal error between 143-151 km. Satellite
ephemeris and timing error assumed.

2a Cold start, No SV errors Receiver initialized to ~r = [0, 0, 0]. No satellite
ephemeris or timing error.

2b Cold start, SV errors Receiver initialized to ~r = [0, 0, 0]. Satellite ephemeris
and timing error assumed.

est. The differences between the scenarios are in regard to the initial receiver errors

and the assumed accuracy of the ephemerides and timing provided by each satellite.

The tropospheric and ionospheric delays calculated by the receiver are assumed to

perfectly match the truth values.

Two sets of initial receiver errors are considered, with the first being proposed by

Psiaki in [38]. The receiver is initialized with a horizontal position error between 143

and 151 kilometers. The receiver is initialized at an altitude of 0 meters, a velocity

of 0 m/sec, a clock offset of 0 seconds, and a clock offset rate of 0 seconds/second.

This means that the initial altitude errors form a uniform distribution in the range

-5000 and 0 meters. The initial clock offset errors are a uniform distribution as

well, in the range from -0.25 to 0.25 seconds. The initial velocity errors in each axis

form a Gaussian distribution with a mean of 0 and standard deviation of 25 m/sec.

The initial clock offset rate errors form a zero-mean Gaussian distribution with a

standard deviation of 3.336× 10−9 seconds/second. The second set of initial receiver

conditions is meant to simulate a true cold start scenario. The receiver is initialized

to a latitude and longitude of 0 degrees and an altitude of 0 meters. While different

receivers behave differently in the case of a cold start, it is assumed that the receiver

defaults to the equator following a cold start. The clock offset is initialized to 0

sec, the velocity is initialized to 0 m/sec, and the clock offset rate is initialized to
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0 seconds/second. The initial clock offset, velocity, and clock offset rate errors are

distributed identically to those in [38]. The initial position errors, however, can be as

large as 15,000 kilometers following a cold start.

Two sets of satellite ephemeris and timing accuracy are also used between the four

scenarios. In the first set of cases, the batch filter is assumed to have full knowledge

of the satellite ephemerides and transmitter clock frequency offset. The second set

of cases introduces some errors into the satellite position, velocity, and clock offset

rate. The receivers per-axis knowledge of each satellite’s position vector is assumed

to have error sampled from a Gaussian distribution with a mean of 0 and a standard

deviation of 2 meters. The receivers per-axis knowledge of each satellites velocity

vector is assumed to have error sampled from a Gaussian distribution with a mean of

0 and a standard deviation of 0.002 m/sec. The receivers knowledge of each satellites

clock frequency offsets are assumed to have error sampled from a zero-mean Gaussian

distribution with a standard deviation of 3.3 × 10−11 seconds/second. Along with

satellites utilizing some sort of high quality oscillator, Psiaki proposes in [38] that

this level of accuracy could be achieved with a ground segment to track and update

the satellites’ ephemeris.

3.4 GDOP Calculations

The Geometric Dilution of Precision derivation for the traditional psuedorange-

based navigation equations is presented in Section 2.4. With this new proposed carrier

Doppler shift navigation method, an alternative GDOP calculation is also necessary.

As Psiaki states in [38], the carrier Doppler shift calculation in Equations 3.23 and

3.6 is too complicated for a GDOP analysis. Instead, a simplified analytical carrier
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Doppler shift model is proposed in [38]:

− λDj =

(ρ̂j)>(~v − ~vj)
{

1+ dδj

dTj

1+ 1
c
[ajδtp−(ρ̂j)>~vj ]

}
+ c dδR

dTR
− c dδj

dT j

1 + dδR
dTR

(3.24)

where dδR
dTR

is the unknown receiver clock offset rate, dδj

dT j
is the satellite clock offset

rate, T j is the time of signal transmission, and ajδtp is a term that arises from the time

rate of change of the propagation delay of the signal. Some assumptions can be made

to further simplify Equation 3.24. The effects due to the ionosphere and troposphere

have already been omitted. The following approximations can also be made:

1 ≈ 1 +
dδR
dTR

1 ≈ 1 +
dδj

dT j

1 ≈ 1 +
1

c
[ajδtp − (ρ̂j)>~vj]

Due to the likely stability of the receiver and satellite oscillators, the first two approx-

imations can be made and due to the speed of the satellites relative to the speed of

light, the third approximation can be made. Following the approximations, Equation

3.24 is simplified to:

− λDj = (ρ̂j)>(~v − ~vj) + c
dδR
dTR
− c dδ

j

dT j
(3.25)

Similar to a pseudorange-based GDOP analysis, a linearized relationship must be

developed between the errors in the Doppler measurements and the errors in the

filter’s estimated quantities. Using the Doppler shift approximation in Equation 3.25,
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the linearized relationship is


−λ∆D1

−λ∆D2

−λ∆D3

...
−λ∆DN

 =


( ˙̂ρ1)> [(ρ̂1)>~̇v1 + ( ˙̂ρ1)>~v1] (ρ̂1)> c

( ˙̂ρ2)> [(ρ̂2)>~̇v2 + ( ˙̂ρ2)>~v2] (ρ̂2)> c

( ˙̂ρ3)> [(ρ̂3)>~̇v3 + ( ˙̂ρ3)>~v3] (ρ̂3)> c
...

...
...

...

( ˙̂ρN)> [(ρ̂N)>~̇vN + ( ˙̂ρN)>~vN ] (ρ̂N)> c




∆~r
∆δR
∆~v

∆δ̇R

 (3.26)

where ∆~r is the error in the receiver’s estimated ECEF position, ∆δR is the error in

the receiver’s estimated clock offset, ∆~v is the error in the receiver’s estimated ECEF

velocity, and ∆δ̇R is the error in the receiver’s estimated clock offset rate.

Several issues arise from the initial derivation of Equation 3.26, being that for

a GDOP analysis the N x 8 coefficient matrix must be non-dimensional and the

elements of the 8 x 1 estimation error matrix must have the same units. The 8 x 1

estimation error matrix must also have the same units as the measurement errors,

λ∆Dj, which is m/sec. Looking at the N x 8 coefficient matrix, the first 3 columns

have units of 1/seconds, the 4th column has units of m/sec2, columns 5 through 7

are non-dimensional, and column 8 has units of m/sec. Looking at the 8 x 1 error

estimation matrix, the units of ∆~r are meters, the units of ∆δR are seconds, the

units of ∆~v are m/sec, and ∆δ̇R is non-dimensional. With units of m/sec already, the

velocity error estimation term can be left in its current state. The clock offset rate

error estimation term can simply be multiplied by the speed of light, which changes

the units to m/sec. The re-scaling factors for ∆~r and ∆δR are more complicated. In

[38], Psiaki derives the scaling factors to be applied to the position and clock offset

error estimation terms:

γ =

(
1

1− (RE/aorb)

)√
µ

a3
orb

η =

(
(RE/aorb)

1− (RE/aorb)

)√
µ

a2
orb

,

where RE is the radius of the Earth, aorb is the semi-major axis of the satellite’s
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orbit, and µ is the standard gravitational parameter. γ has units of 1/sec and can be

multiplied by ∆~r to give units of m/sec. η has units of m/sec2 and can be multiplied

by ∆δR to also give units of m/sec. With all of the re-scaling factors applied, Equation

3.26 can be rewritten as 
−λ∆D1

−λ∆D2

−λ∆D3

...
−λ∆DN

 = AGDOP


γ∆~r
η∆δR
∆~v

c∆δ̇R



where

AGDOP =


( ˙̂ρ1)>/γ [(ρ̂1)>~̇v1 + ( ˙̂ρ1)>~v1]/η (ρ̂1)> 1

( ˙̂ρ2)>/γ [(ρ̂2)>~̇v2 + ( ˙̂ρ2)>~v2]/η (ρ̂2)> 1

( ˙̂ρ3)>/γ [(ρ̂3)>~̇v3 + ( ˙̂ρ3)>~v3]/η (ρ̂3)> 1
...

...
...

...

( ˙̂ρN)>/γ [(ρ̂N)>~̇vN + ( ˙̂ρN)>~vN ]/η (ρ̂N)> 1

 .

Looking back to Section 2.4, the final 4 columns of AGDOP represent the corresponding

matrix in the GDOP analysis for a traditional pseudorange-based solution. As with

the pseudorange-based solution, the scalar GDOP value can be derived using AGDOP .

GDOP =
√
tr[(A>GDOPAGDOP )−1] (3.27)

3.5 Summary

Chapter 3 introduced the LEO constellations that are under investigation in this

research. Four large LEO constellations, as well as two multi-constellation solutions,

are tested in the navigation simulation. The mathematics behind the proposed carrier

Doppler shift navigation method are also presented. An introduction to the simula-

tion, along with the necessary initial conditions, was provided. Four different sets of

initial conditions are used in this simulation, with their differences being in initial

receiver state errors and the assumed errors in satellite ephemeris and timing data.

50



Each of the four scenarios were run a total of 100 times. Finally, equations to perform

a GDOP analysis are derived. Chapter 4 contains the results of the GDOP analysis

as well as the results of the simulation, each when using the different constellations

described above.
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4. Results

This chapter presents the results from this research, along with observations and

analysis. Section 4.1 provides the results from the GDOP analysis for each of the

constellations of interest. Section 4.2 presents PVT performance results from each of

the simulation scenarios.

4.1 GDOP Results

GDOP analysis, using the equations from Section 3.4, was conducted for each of

the constellations described in Section 3.1. The constellation designs in Tables 3.1-3.6

were used for this analysis. For each constellation, a three dimensional plot of GDOP

versus latitude and longitude has been generated. In order to provide a better visual

of the GDOP values, an additional GDOP versus latitude plot has been provided

for some of the constellations. The latitude versus GDOP plots were generated by

taking an average of GDOP at each latitude, which results in some of the asymmetries

above/below the equator. Please note that the GDOP values were capped at 25 to

ensure that any extremely high GDOP values did not distort the figures.

The GDOP statistics for the Kuiper constellation are shown in Figure 4.1. As

discussed in Chapter 3, the small signal footprint of LEO satellites necessitates a

constellation with near polar orbit vehicles in order to provide coverage at the poles.

The Kuiper constellation will operate with satellite inclinations of 33.0, 42.0, and

51.9 degrees. Figure 4.2 shows that the lack of satellites at higher inclinations results

in zero coverage above approximately ±60 degrees. However, the large number of

satellites at mid-inclinations provide moderate GDOP at ±60−±50 degrees and good

user-satellite geometry below ±50 degrees. The projected Kuiper constellation is a

good example of a constellation that could benefit from utilizing another constellation
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Figure 4.1. GDOP vs. Latitude/Longitude for Kuiper Constellation

Figure 4.2. GDOP vs. Latitude for Kuiper Constellation
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that operates satellites in near polar orbit. Even a smaller constellation, such as

Iridium NEXT or Telesat, could provide the coverage necessary to make the Kuiper

constellation a viable option for this navigation method.

The GDOP statistics for the OneWeb constellation are shown in Figure 4.3. Un-

like Kuiper, the OneWeb constellation provides sufficient coverage at the poles, with

inclinations of 40.0, 55.0, and 87.9 degrees. The large number of satellites at each

inclination results in the largest GDOP value being below 0.9, which is excellent. It

can be observed that the GDOP across the majority of the Earth is below 0.5, with

two lobes that peak at approximately 0.9 at the equator and longitudes of ± 100

degrees. This increase in GDOP is most likely the result of most satellites traveling

in the same direction (north or south) at those particular regions. While the peak in

GDOP still results in excellent geometry, it illustrates the fact that GDOP is more

than just a function of number of satellites and their inclinations.

The GDOP statistics for the Starlink constellation are shown in Figure 4.4. With

the Starlink constellation, the same behavior is observed from the Kuiper constel-

lation, only less severe. GDOP values for Starlink reach highs of around 10 near

the poles, which still allows for moderate user-satellite geometry. Looking at the

constellation design, Starlink plans call for 11,914 satellites at inclinations of 42.0,

48.0, 53.0, 53.2, 70, and 97.6 degrees. Note that the Starlink plans do call for near

polar satellites, but the number is much smaller in comparison to mid-inclination

satellites. This, along with direction of satellite travel, is a contributor to the regions

of increased GDOP. Figure 4.5 provides a look at GDOP versus latitude. The fig-

ure has the same ramp shape of Kuiper’s Figure 4.2, where the mid latitude regions

between -60 and +60 degrees have excellent GDOP. The difference being that the

Starlink constellation is still able to provide good geometry to the areas above +60

degrees and below -60 degrees latitude. Starlink is by far the largest proposed LEO

54



Figure 4.3. GDOP vs. Latitude/Longitude for OneWeb Constellation

Figure 4.4. GDOP vs. Latitude/Longitude for Starlink Constellation
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Figure 4.5. GDOP vs. Latitude for Starlink Constellation

constellation, but again, sheer number of satellites is not the sole driving factor of

user-satellite geometry. As with the Kuiper constellation, this version of the Starlink

constellation could leverage another small LEO constellation to improve geometry at

and around the poles.

The GDOP statistics for the Telesat constellation are shown in Figure 4.6. Out

of the constellations individually considered in this research, Telesat is the smallest.

With only 298 satellites projected at inclinations of 45.0 and 88.0 degrees, Figure 4.6

shows a large number of coverage gaps over the surface of the Earth. Even though

the constellation does have plans for high-inclination satellites, the relatively small

number still result in poor coverage at the poles. It’s noteworthy that there appears

to be much less symmetry across latitude and longitude for the Telesat GDOP val-

ues compared to the other constellations. Figure 4.7 illustrates this for the latitude

values. Again, the lack of symmetry could be due in part to the averaging of GDOP

along longitude, but the lower number of satellites also plays a role. Unlike traditional

pseudorange-based navigation, there is a need for 8 visible satellites to generate PVT.

56



Figure 4.6. GDOP vs. Latitude/Longitude for Telesat Constellation

Figure 4.7. GDOP vs. Latitude for Telesat Constellation
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As Figures 4.6 and 4.7 illustrate, the Telesat constellation can provide sufficient cov-

erage for patches of the Earth, but additional satellites or better constellation design

are necessary for total global coverage. Somewhat dependent on longitude, the Tele-

sat constellation results in moderate to good GDOP values between approximately

±70 and ±5 degrees latitude.

The GDOP statistics for the current multi-constellation solution are shown in Fig-

ure 4.8. The current multi-constellation solution contains satellites from the Iridium

NEXT, OneWeb, and Starlink constellations at inclinations of 53.0, 86.4, 87.9, and

97.6 degrees. Similar to the Telesat constellation, the GDOP values from the current

multi-constellation solution are more erratic than the other constellations. This is

due to the fact that 2 out of the 3 constellations utilized are not fully operational.

Iridium NEXT is the only fully operational constellation, while the other 2 have only

begun to launch vehicles. The constellation that results from satellites in orbit as

of April 8th, 2021 is much less symmetrical than it would be once fully operational.

With that said, outside of a few spikes at and around the equator, the current con-

stellation provides good user-satellite geometry across the Earth. Iridium NEXT,

OneWeb, and Starlink all provide satellites at high-inclinations to cover the poles.

Starlink also provides a large number of vehicles at mid-inclination which covers the

rest of the Earth. As discussed, the areas where GDOP increases is largely due to

the incomplete OneWeb and Starlink constellations.

The GDOP statistics for the future multi-constellation solution are shown in Fig-

ure 4.9. Table 3.6 lists all of the different inclinations that the combination of constel-

lations operate at, which range from 33.0 to 87.9 degrees. The largest GDOP value

from Figure 4.9 is below 0.7 which means the entire Earth has excellent user-satellite

geometry. Looking at the shape of the plot, it looks familiar to the Kuiper and Star-

link plots, where GDOP is very good below -60 and above +60 degrees but increases
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Figure 4.8. GDOP vs. Latitude/Longitude for Iridium, OneWeb, and Starlink Con-
stellations as of April 8th, 2021

Figure 4.9. GDOP vs. Latitude/Longitude for Future Kuiper, OneWeb, Starlink, and
Telesat Constellations
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closer to the poles. The plot shape along the equator also takes the same shape

as the OneWeb plot with 2 noticeable peaks and otherwise excellent GDOP. Being

that Kuiper, OneWeb, and Starlink make up the majority of this multi-constellation

solution, it should come as no surprise that the GDOP plot bears a resemblance.

4.2 Simulated PVT Performance Results

The simulated PVT results when using each of the discussed constellations are

shown below. A table of statistics is presented for each of the constellations to express

the performance. There are 10 columns in each table. The first column is labeled

‘Scenario’ and denotes which of the four simulation scenarios the data corresponds

to. The simulation scenarios can be found in Table 3.7. The second column is

labeled ‘Unconverged’ and communicates the number of cases, out of 100, that did

not converge. In this case, the term unconverged means that the filter on a particular

simulation either converged on an incorrect solution, or reached the maximum number

of Gauss-Newton iterations without converging. The maximum number of iterations

was set to 30 for every simulation. The third and fourth columns denote the maximum

number of iterations and the mean number of iterations out of the converged cases,

respectively. The next six columns are the maximum final error and RMS error of

the receiver position, velocity, and clock offset when compared to the truth values. It

is important to note that the maximum and RMS clock offset error values in columns

9 and 10 are in units of milliseconds. The clock offset rate errors will be discussed

later in this chapter.

From the perspective of a receiver’s ability to generate accurate PVT, the simula-

tion scenarios proceed in order from easiest to hardest. Scenario 1a can be considered

the easiest because the initial error is bounded and the satellite ephemerides and tim-

ing are assumed to be error free. On the other hand, Scenario 2b begins from a cold
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start and there exists some assumed error in the satellite PVT. In general, each of

the constellation statistics reflect this. Additional observations are provided below,

including a comparison of the simulation performance between each constellation.

Table 4.1 contains the statistics from each of the four simulation scenarios with the

Kuiper constellation. Beginning with column 2, Scenario 1a had the fewest number

of unconverged cases with 24, while Scenario 2b had 75 such cases. This falls in

line with the idea that Scenario 1a should be the easiest and Scenario 2b should be

the hardest. The GDOP values presented in Figure 4.1 illustrate the poor coverage

at and around the poles. For Scenarios 1a and 1b, the cases where the filter did

not converge more than likely stem from a truth location with a lack of coverage.

The same can partially be said for Scenarios 2a and 2b, but the challenging initial

conditions play a large part in why upwards of 70% of the cases did not converge.

The maximum and mean iterations are similar for Scenarios 1a and 1b and Scenarios

2a and 2b. When the initial error is bounded, the filter was able to converge in an

average of 3 iterations. The number of mean iterations jumped to approximately 8

for Scenarios 2a and 2b. Error in the initial receiver state had an obvious impact on

both the filter’s ability to converge and the time it took to converge. Turning to the

filter’s convergence accuracy, a pattern also exists between results from Scenarios 1a

and 2a and Scenarios 1b and 2b. The difference between these sets of Scenarios is

the assumed error in the satellite ephemerides and timing. The pattern is especially

noticeable in the position error statistics where the RMS position error jumps from

below 1 meter up to several meters from Scenarios 1a and 2a to Scenarios 1b and

2b. The pattern is present but less pronounced in the velocity error results. When

compared to expected receiver errors using GPS and traditional pseudorange-based

navigation, both the position and velocity errors are on par. The clock offset errors

are significantly worse and as Psiaki points out in [38], the reason for this larger clock
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Table 4.1. Simulation Results - Kuiper Constellation

Sce-
nario

Uncon-
verged

Max
Iterations

Mean
Iterations

Max Pos.
Error [m]

RMS Pos.
Error [m]

Max Vel.
Error [m

s
]

RMS Vel.
Error [m

s
]

Max Clk. Off.
Error [ms]

RMS Clk. Off.
Error [ms]

1a 24 4 3.05 1.6701 0.403 0.0067 0.0016 0.1156 0.0301

1b 29 4 3.04 4.3776 3.1082 0.0097 0.0022 0.1294 0.0287

2a 71 14 8.14 0.9052 0.1785 0.0043 0.0011 0.1581 0.0313

2b 75 11 7.76 3.3722 2.5556 0.0047 0.0017 0.0869 0.0294

Table 4.2. Simulation Results - OneWeb Constellation

Sce-
nario

Uncon-
verged

Max
Iterations

Mean
Iterations

Max Pos.
Error [m]

RMS Pos.
Error [m]

Max Vel.
Error [m

s
]

RMS Vel.
Error [m

s
]

Max Clk. Off.
Error [ms]

RMS Clk. Off.
Error [ms]

1a 0 3 2.99 1.9858 0.1986 0.0094 0.0009 0.5011 0.0501

1b 0 3 2.99 2.3576 2.2494 0.0245 0.0024 1.5913 0.1591

2a 53 11 6.4 2.132 0.3729 0.0247 0.0036 3.005 0.4394

2b 58 10 6 3.9417 3.5552 0.0066 0.0014 0.7415 0.1427

Table 4.3. Simulation Results - Starlink Constellation

Sce-
nario

Uncon-
verged

Max
Iterations

Mean
Iterations

Max Pos.
Error [m]

RMS Pos.
Error [m]

Max Vel.
Error [m

s
]

RMS Vel.
Error [m

s
]

Max Clk. Off.
Error [ms]

RMS Clk. Off.
Error [ms]

1a 0 3 3 1.7747 0.3254 0.019 0.0027 0.2587 0.0415

1b 0 4 3.01 5.8615 4.8332 0.0199 0.0028 0.1944 0.0402

2a 37 11 6.4 1.9447 0.3957 0.0072 0.0015 0.1677 0.0382

2b 48 15 6.6 5.9717 4.8417 0.377 0.0056 1.4651 0.197
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offset error stems from the maximum value of the acceleration of the satellite relative

to the receiver. This acceleration is not large enough to replicate the timing accuracy

from pseudorange-based navigation systems. This will be true for the clock offset

error results from each constellation considered in this research.

Table 4.2 contains the statistics from each of the four simulation scenarios with the

OneWeb constellation. The number of unconverged cases follows the same pattern of

the Kuiper constellation. However in the bounded initial error scenarios, the OneWeb

constellation did not have a single unconverged case. The lack of coverage gaps

in the OneWeb GDOP plot contribute to the 100% convergence rate from these 2

simulation scenarios. The number of unconverged cases rises to 53 and 58 respectively

for Scenario 2a and Scenario 2b. While there is improvement in comparison to the

Kuiper constellation, the convergence rate still falls below 50%. Even with excellent

user-satellite geometry over the entire Earth, the simulation still struggles to converge

following a cold start. This points to the difficulty of a scenario where the receiver

has no prior knowledge of its state. In line with results from the Kuiper constellation,

the mean number of iterations roughly doubled from 3 to 6 when going from bounded

initial errors to cold start. The receiver maximum and RMS position error follow

the pattern of imperfect satellite observables leading to increased error values in

Scenarios 1b and 2b. As with other constellations, the position and velocity errors

compare favorably to GPS while the clock offset errors do not.

Table 4.3 contains the statistics from each of the four simulation scenarios with

the Starlink constellation. As far as convergence rate, Starlink performs the best out

of any of the individual constellations considered in this simulation. The bounded

initial error scenarios resulted in 100% convergence rate while the cold start scenarios

resulted in 63% and 52% convergence rate, respectively. Though the Starlink GDOP

values reach peaks greater than OneWeb around the poles, the massive number of
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satellites allows for a higher convergence rate. The increased GDOP manifests in the

receiver state errors where larger errors are observed when compared to the OneWeb

results. Again, the satellite errors lead to an increase in the maximum and RMS

receiver state errors. Position and velocity errors also fall in line with those from GPS-

based navigation while clock offset errors do not. It’s interesting that convergence

rate appears to be more of a function of pure satellite number and coverage where

receiver errors rely more on the user-satellite geometry.

Table 4.4 contains the statistics from each of the four simulation scenarios with

the Telesat constellation. The convergence rate increased with the scenario number

which is consistent with the other constellations. Interestingly, the Telesat constella-

tion convergence rates are slightly better than the Kuiper constellation. With only

298 satellites, the Telesat constellation is roughly 1/10th the size of Kuiper and while

it is not without geometry issues, the polar orbit satellites help mitigate total coverage

lapses. Looking at Figures 4.2 and 4.7 might seem hard to believe the convergence

rates of Telesat are better than Kuiper. However, a much larger portion of the Kuiper

plot reports lack of coverage (GDOP > 25). The GDOP values are moderate at best

for the Telesat plot, but there are smaller areas of insufficient coverage. The maxi-

mum number of iterations in column 3 suggest that the filter struggled to converge

more so than other constellations. The errors in columns 5-10 reflect this as well. The

maximum and RMS values are the largest of any constellation. Similar to the Star-

link constellation, the better overall Earth coverage with sometimes degraded GDOP

values result in higher convergence rates and larger receiver state errors. Even with

the larger receiver errors, they are still comparable to values from the other tables.

Table 4.5 contains the statistics from each of the four simulation scenarios with the

current multi-constellation solution. With satellites from the Iridum NEXT, OneWeb,

and Starlink constellations, this constellation resulted in 100% convergence in Sce-
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Table 4.4. Simulation Results - Telesat Constellation

Sce-
nario

Uncon-
verged

Max
Iterations

Mean
Iterations

Max Pos.
Error [m]

RMS Pos.
Error [m]

Max Vel.
Error [m

s
]

RMS Vel.
Error [m

s
]

Max Clk. Off.
Error [ms]

RMS Clk. Off.
Error [ms]

1a 18 13 3.3 2.18 0.39 0.0544 0.0072 0.3614 0.0654

1b 22 10 3.27 4.2986 4.0543 0.0081 0.0012 0.3008 0.0322

2a 58 14 7.51 1.898 0.5312 0.0103 0.0025 0.3329 0.0692

2b 65 18 7.49 7.3525 6.0159 0.0222 0.0036 0.4037 0.0702

Table 4.5. Simulation Results - Current Constellation of Constellations

Sce-
nario

Uncon-
verged

Max
Iterations

Mean
Iterations

Max Pos.
Error [m]

RMS Pos.
Error [m]

Max Vel.
Error [m

s
]

RMS Vel.
Error [m

s
]

Max Clk. Off.
Error [ms]

RMS Clk. Off.
Error [ms]

1a 0 4 3.14 1.6424 0.3324 0.0109 0.0016 0.0941 0.0216

1b 0 4 3.04 5.2549 3.9802 0.0149 0.0022 0.4236 0.0668

2a 42 24 8.06 1.4636 0.4094 0.0104 0.0028 0.2606 0.0561

2b 48 22 8.52 5.6644 4.2519 0.0103 0.0021 0.4544 0.0859

Table 4.6. Simulation Results - Future Constellation of Constellations

Sce-
nario

Uncon-
verged

Max
Iterations

Mean
Iterations

Max Pos.
Error [m]

RMS Pos.
Error [m]

Max Vel.
Error [m

s
]

RMS Vel.
Error [m

s
]

Max Clk. Off.
Error [ms]

RMS Clk. Off.
Error [ms]

1a 0 3 3 0.1603 0.0361 0.0002 0.00005 0.0144 0.0037

1b 0 4 3.14 1.6424 0.3324 0.0109 0.0016 0.0941 0.0216

2a 15 10 6.71 1.5552 0.4275 0.0093 0.0018 0.4807 0.1058

2b 24 14 6.67 3.9477 2.6788 0.0099 0.0016 1.1258 0.138
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narios 1a and 1b and 58% and 52% convergence in Scenarios 2a and 2b, respectively.

With less than half the satellites of Kuiper, this constellation outperformed it due to

the diversity of its satellite coverage. Another constellation struggling to reach 60%

convergence during the cold start scenarios points to the difficulty of this condition for

the proposed navigation method. The maximum number of iterations for Scenarios

2a and 2b also support this idea. Initializing at position errors up to 15,000 kilometers

leads to a large number of Gauss-Newton iterations to reach convergence. Consistent

with other simulation results, the satellite ephemeris and timing errors lead to in-

creased receiver state errors, most obvious for the position vector. The position and

velocity errors are also comparable to expected error from pseudorange-based GPS

navigation.

Table 4.6 contains the statistics from each of the four simulation scenarios with

the future multi-constellation solution. The final simulations were run using a con-

stellation combining the proposed fully operational constellations of Kuiper, OneWeb,

Starlink, and Telesat. Similar to several of the constellations already discussed, the

constellation of over 20,000 satellites produced a 100% convergence rate for Scenarios

1a and 1b. The mega-constellation also provided by far the best convergence rate in

the cold start scenarios, with rates of 85% and 76%. Improvements in the conver-

gence rate are attributed to the size of the constellation. The maximum and mean

iterations are similar to those from OneWeb and Starlink, the other two constella-

tions with a large number of satellites and good global GDOP. Assumed errors in the

satellite ephemerides and timing once again lead to larger final errors in the receiver

states. Almost all of the errors in Table 4.6 represent the smallest such values in any

of the simulation result tables. The number of satellites, number of planes, number

of inclinations, and overall GDOP results contribute to this constellation providing

the best performance.
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The tables and observations above lead to several conclusions. The first being

that the convergence rates from Scenarios 1a and 1b are more closely tied to the

constellation size and design than Scenarios 2a and 2b. The apparent difficulty of

a cold start condition on the navigation method presented lead to mediocre conver-

gence rates. Another conclusion that can be drawn is that convergence rate is more

dependent on satellite coverage (8 or more) while receiver errors are more a function

of user-satellite geometry. The Kuiper and Telesat comparison illustrates this. While

Telesat provides higher convergence rates, the converged cases tend to have larger

errors than those of Kuiper. An observation that has been touched on several times

is the effect of satellite timing and ephemeris errors on the final receiver errors.

The maximum and RMS receiver clock offset rate errors were not presented for

any of the simulations. The error values from each simulation are on the order of

1× 10−12 or better which when multiplied by the speed of light, cδ̇R, result in errors

better than 0.001 m/sec. This is similar to the velocity estimates and represents

a negligible error from the receiver’s perspective. The clock offset rate errors are

comparable to a GPS navigation system.

4.3 Summary

The GDOP and simulation results from each of the considered constellations were

presented in this chapter. Through analysis of both results, the suitability of each con-

stellation to potentially provide navigation services can be determined. It should be

stated that none of the constellations are currently designed with navigation services

in mind. Combining observations from the GDOP and simulation results, Kuiper

and Telesat can be deemed the least suitable to support navigation in their currently

planned state. The remaining 4 each have their pros and cons, but all show promise

in being able to successfully be utilized for navigation. The cold start scenarios did
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present convergence issues for each constellation, but having zero prior knowledge of

the receiver state is a somewhat less likely scenario. Regardless, there is at least some

demonstrated feasibility of each constellation allowing a receiver to navigate using its

observed carrier Doppler shift.
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5. Conclusion and Recommendations

5.1 Results

In [38], a novel navigation method using simultaneous carrier Doppler shift mea-

surements from 8 LEO satellites was introduced. The algorithm solved for receiver

position, clock offset, velocity, and clock offset rate. Simulations were conducted in

order to test the feasibility of this method using the then-projected 2,825 satellite

Starlink constellation. With advancements made in both the number and size of pro-

jected LEO constellations, the goal of this thesis was to extend the research presented

in [38]. This thesis research considered 4 separate large LEO constellations, as well

as 2 multi-constellation solutions. Another goal of the work was expanding the ini-

tial receiver conditions in an attempt to explore the batch filter’s ability to converge

following a cold start.

Through the use of both NORAD-maintained and fabricated TLE files and an

orbit propagator, a Python simulation was created to facilitate this exploration. With

the equations derived in Chapter 3, a GDOP analysis was also performed to help

project the user-satellite geometry achievable. The results in Chapter 4 help to answer

some of the questions this research set out to address. Firstly, the GDOP plots in

Chapter 4 illustrate that all 6 constellations investigated provide good user-satellite

geometry over portions of the Earth. The larger constellations do this better than the

smaller ones, but the results suggest navigating this way is feasible. It should also be

pointed out again that these results are from constellations whose designs have not

been optimized for this application.

Scenarios 1a and 1b, which are cases where the initial receiver errors are bounded,

were derived directly from [38] and were included to validate the credibility of the

simulation. Outside of the constellations with few satellites (Telesat) and known
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coverage gaps (Kuiper), all simulations performed in line with those presented in

[38]. Given this, the results of the other 2 scenarios can be presented with some

confidence. Scenarios 2a and 2b, which are cases with unbounded initial receiver

errors, were used to simulate a receiver that has just been cold started and has no

knowledge of its position, clock offset, velocity, and clock offset rate. The cold start

scenarios had a clear effect on the filter’s ability to converge on an accurate solution.

None of the constellations had a convergence rate higher than 85%, which the future

multi-constellation solution achieved during the 100 cases of Scenario 2a. This is not

ideal as a standalone navigation system should not be handicapped in the case of

a cold start. Additional work could be done to explore methods to help move this

convergence rate closer 100% following a cold start. However, even the convergence

rates shown in this research are promising.

5.2 Significance of Study

As mentioned, the main goal of this research was to expand upon the work pre-

sented in [38]. In the process of replicating the work, several useful Python scripts

were generated that can be leveraged for future work. Given a constellation design –

number of satellites, planes, and inclinations – the TLE fabrication script can gener-

ate the necessary TLE files for use in the actual simulation. When used in conjunction

with the GDOP analysis script, a quick glimpse at the global user-satellite geome-

try can be generated. The actual simulation script was designed to be user-friendly

where constellation(s) of choice, initial conditions, and other simulation parameters

can easily be modified.

Another contribution of this research is the exploration of new large LEO con-

stellations. Even since the original paper was published, there have been updates to

the planned constellations for several technology companies. Plans for new constel-
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lations mean that LEO traffic could reach numbers of 50,000 in the next 10 years

and there is a clear opportunity to leverage them for navigation. While the use of

GPS will continue to be extensive, the ever-evolving threats to it necessitate robust

backups. Large LEO constellations should be one of the leading research candidates.

This research successfully attempted to explore additional LEO constellations, includ-

ing multi-constellation solutions, using the proposed carrier Doppler shift navigation

method. The original work was also expanded to include the simulation results fol-

lowing a cold start of a receiver. The performance of these novel constellations was

presented in the form of GDOP plots and simulation result comparison.

5.3 Limitations of Study

A number of assumptions are made in this research that would potentially need to

be addressed in future work. The first assumption has to do with a receiver’s ability

to track the LEO signals. This simulation assumes that any satellite appearing to the

user above a 7.5 degree elevation mask provides a usable Doppler shift measurement.

The first reason this is unlikely is due to inevitable signal obstruction. Whether it is

tree cover, urban canyon, or other natural obstructions, it is unlikely a receiver would

be able to track every satellite above 7.5 degrees elevation. Another assumption made

is that every satellite in view transmits a signal that reaches the user. GPS signals are

transmitted such that a user will have simultaneous visibility of at least 4 satellites at

all times. LEO constellations are currently designed for communication purposes and

are not designed with simultaneous visibility in mind, therefore it might be unlikely

to expect signal reception from every satellite in view. LEO constellations utilized for

communication are designed to provide hand-off from one satellite to another above

a certain elevation, in order to minimize the constellation size. Signal tracking and

deconfliction is another problem not addressed in this research. Especially for the
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multi-constellation solutions, the different LEO signals are transmitted at differing

frequencies and modulation schemes. Multiple antenna’s or an ultra-wideband an-

tenna might be necessary to track signals from multiple constellations. In the event

that LEO satellites do eventually provide simultaneous visibility, the massive number

of satellites in some of these constellations would require signal deconfliction on the

part of the receiver.

It is currently not clear if these LEO constellations intend to transmit any usable

satellite ephemeris information, or what the level of accuracy would be available.

The same goes for the level of timing accuracy available on LEO satellites. The

size of GPS satellite vehicles allow them to carry multiple atomic clocks, but this is

unrealistic for LEO satellites due to their size and cost. Work has been conducted to

explore what type of ephemeris and timing accuracy would be necessary from LEO

satellites in order to replicate the performance of GPS [39]. Fully leveraging these

LEO constellations for navigation may require independent services that perform

constellation monitoring to determine orbit and clock models. Until additional LEO

constellations are leveraged for navigation, however, some assumptions must be made.

5.4 Future Work

Future work could be focused on exploring the assumptions made in this research.

There has been significant work already completed in an attempt to blindly track

LEO signals, which is an area that future work could be focused. Software defined

radios can be utilized to track signals from one or multiple LEO constellations. An

issue that has been covered in this research is the need for accurate satellite ephemeris

and timing information. Chances are that LEO satellites, in their current state, are

not equipped for such a task. Researching and prototyping a solution to this problem

would be an excellent area of focus.
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In addition, work should be focused on further improvements to the navigation

simulation presented in this research. The less-than-ideal convergence rates observed

during the cold start scenarios is one area that could benefit from additional research.

There are likely auxiliary methods that can be implemented to improve the conver-

gence following a receiver cold start. The constellation designs used in this research

were taken directly from FCC filings. They have no doubt been optimized for the

use they are intended for. Design and test of a navigation-optimized LEO constella-

tion would be a good test case for the current simulation. There are also other test

scenarios, outside of the 4 presented in this research, that would be good evaluations

of a constellation’s suitability for navigation services. Along with other current LEO

research, the successful accomplishment of the goals set out for this research warrants

further consideration of LEO constellations leveraged for navigation.
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