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Abstract 

Natural hazards, such as hurricanes, wildfires, floods, and droughts impact human 

systems that rely on predictable patterns in the natural elements with which they interact. 

These events threaten communities everywhere, and humanity continually seeks to adapt. 

Skillful prediction of the impacts of climate change on linked, human-natural systems, 

like surface water resources, can help ensure physical risks within vulnerable 

communities are mitigated, resource sustainability is maximized, and intersectoral 

markets continue to contribute to socio-economic stability. Due to water resources being 

a primary conduit through which climate uncertainty impacts people, economies, and 

ecosystems, its study is worthy of investigation; particularly, where those resources are 

uncertain and demanded by a variety of competitive users. This work evaluates a season-

ahead statistical prediction model of growing season streamflow (September – 

December) in Andes, Antioquia, Colombia, against a suite of global and local predictor 

variables: precipitation, soil moisture, Niño 3.4 sea-surface temperature anomaly, and 

Southern Oscillation Index anomaly. Skillful results, which are defined as streamflow 

forecasts that outperform a specified climatological baseline, are produced for the models 

when analyzing extreme streamflow events (r2 = 0.77, mean absolute percentage error = 

21.87, ranked probability skill score = 0.21). Even a lean model, consisting of just Niño 

3.4 as a predictor, produces skillful results (r2 = 0.37, mean absolute percentage error = 

21.98, ranked probability skill score = 0.087). Viewed cumulatively, these results suggest 

streamflow predictions and forecasts can identify the role of global and local climate on 

communities, inform how and when changes should be implemented, and justify 

stakeholder decisions. 
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THE IMPACTS OF CLIMATE UNCERTAINTY ON STREAMFLOW IN ANDES, 

ANTIOQUIA, COLOMBIA. 

I.  Introduction  

 

Background 

Hydrology is one of a few natural processes through which climate directly 

impacts people, ecosystems, and economies (Sadoff and Muller, 2009). In fact, it was 

speculated that in 2012 over 780 million people globally, lack access to a dependable 

source of clean and safe water (Salaam-Blyther, 2012). Supply uncertainty is influenced 

by climate uncertainty, and communities due to their dependency on water resources, and 

water is likely to be increasingly less available as climate changes. Even under supply 

stress, demand continues to increase.  Water is frequently demanded for use in many 

different sectors such as: municipal, agriculture, recreation, energy production, industry, 

etc.  

Generally, the impacts of a changing climate are nonlinear, but have been 

observed across the globe, as illustrated by the intensification and increasing frequency of 

extreme hydrologic events such as hurricanes and other high-intensity rainfall events. 

Previous studies have sought to identify the indicators of a changing climate, recognize 

important climate thresholds, and apply adaptation strategies through intensive modeling 

simulations; however, few have had long-term success with the direct mitigation of 

climate uncertainty impacts within small communities (Smith et al., 2001; Fischer, 2002; 

Hitz, 2004; Johansen, 2017; Didier 2018; Cutter, 2020).  Accurately predicting water 
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availability at the community scale is one of the first steps toward adaptation planning as 

it pertains to preparing communities for the added stresses of long-term changes in 

weather patterns, and hydrologic regime shifts brought about by climate change. Water 

scarcity and increased demand will continue to threaten communities everywhere unless 

humanity adapts (Hellmuth, 2007).   

Motivation 

Since the turn of the century, there have been numerous instances where 

considerable tension existed between industry and residents over the quantity and quality 

of available water resources, particularly in underdeveloped countries (Hellmuth, 2007; 

Sadoff and Muller, 2009). Numerous studies have sought to remedy these issues through 

the application of adaption strategies that utilize intensive modeling simulations 

(Olmstead, 2014; Rod et al., 2020). However, few have had long-term success with the 

direct mitigation of climate uncertainty impacts within small communities. Despite 

complicated intersectoral demands, communities need tailored forecasts to provide 

decision-makers with suitable lead times to enact water supply, demand, and adaptation 

policies. The lead-time, which is embedded in forecasts, compliments proper decision-

making time, and will only increase in value as climate-induced water resources 

uncertainty intensifies.  A case study is developed to explore this problem, and further 

illustrate the value of information held in forecast leads. The community of Andes, 

Antioquia, Colombia is selected as there is an opportunity to test the applicability of 

statistically based forecasting modeling methods, and the development of water 
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allocation policies across many competing agricultural, aquacultural, industrial, and 

municipal uses. A forecast-informed water policy, which does not exist in this current 

community, may reduce tensions between water users and ensure that the major 

economic uses of water, such as coffee farming and gold mining, remain successful 

through the changes brought forth by climate uncertainty.  While this case study 

considers a small area, the community, water conflicts, and climate uncertainty are 

analogous to many locations, and as such, the forecast model constructed here could be 

easily adapted to any location.     

Case Study:  Andes, Antioquia, Colombia 

The Andes community is a rural municipality of approximately 42,000 residents, 

located in the southwestern part of Antioquia, Colombia, South America (Información 

del Municipio, 2018) (Fig. 1). Even though the community itself is relatively small, water 

quality and quantity issues have the potential to impact nearly 4-million inhabitants 

downstream. Andes is located in the Aburrá Valley, which is one of the most populous in 

Colombia; this valley exists amongst the western part of the Andes Mountain range in 

rugged terrain (Bedoya, 2009). Due to its location in the high rainforests on the west end 

of the Amazon Basin, the human and natural communities of Andes are very sensitive to 

changes in climate. These changes in climate can include increased storm intensification, 

which can lead to a higher probability of landslide occurrence; or, decreased water 

availability during prolonged periods of drought.   
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Figure 1: Geographical location of Andes, Antioquia, Colombia, South America 

The main economic drivers in Andes: coffee farming, artisanal small-scale gold 

mining (ASGM), and fisheries are all affected by surface water availability, and could 

face additional risk as the climate continues to shift (Schwartz, 2021; Zapata Restrepo 

and Mejia Aramburo 2019; Salazar A. 2014; Información del Municipio, 2018). In 

Andes, coffee farmers make up approximately 90 percent of local economic activity and 

serve as the main source of dependable income for many families. ASGM makes up 

approximately 10 percent of the economy but has the perception of being responsible for 
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most of the environmental pollution present in surface waters (O’Brien 2020). Return 

flows from ASGM are laden with heavy metals, the most concerning of which is 

mercury.  The instream aquaculture (captive fish production) community is sparse, with 

only one local fishery being noted near the Andes municipality. Both coffee growers and 

aquaculturists view contaminated return flows from ASGM as destructive to their 

activities.  

Coffee Production 

Coffee is the second-most globally traded product, after oil (Davis et al. 2012). 

Growers contribute significantly to the socio-economic development of 120 million 

people in over 60 countries, in mostly equatorial regions (TCI 2016; Jayakumar et al. 

2017). Generally, there are two distinct ways coffee is processed: wet or dry (Goto, 1956; 

Bosselmann et al., 2009).  Depending on which of these methods is used to process the 

coffee, the characteristics of coffee waste such as biochemical oxygen demand, acidity, 

and nutrient content vary significantly. Unfortunately, coffee waste is not generally 

viewed as toxic by producers and is therefore commonly disposed of in nearby rivers or 

streams without regulation or regard for potential consequences (Beyene et al., 2012). 

Several studies suggest that untreated waste from coffee processing productions threatens 

surface waters around the world, and is the most severe in developing countries during 

harvesting seasons (Joshi and Sukumaran 1991; Beyene et al. 2012). Left untreated, these 

water quality indicators commonly lead to poor water conditions and depletion of aquatic 

life.  
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There are currently two distinct seasons of interest for coffee bean production in 

Antioquia, Colombia: March through April, and again between September and December 

(Fig 2). Locally, coffee wet-processing methods are used, which borrow from surface 

water. Coffee trees are predominantly rainfed and supplemented with stored irrigation 

when precipitation is insufficient to ensure suitable production.  

 

Figure 2: Identifying Seasons of Interest for Coffee Farming 

During the growing seasons (February and June-September) and the harvesting 

seasons (March – April and September – December) farmers are very dependent on ideal 

temperature and precipitation conditions. Coffee farmers have expressed concern with 
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noticeable changes in precipitation and temperature, citing longer seasons of high heat 

and drought, accompanied by high-intensity storm events (Frank, 2010). For this 

analysis, forecasts were created for the main growing season (September- December) due 

to its extreme importance on the local economy and the prolonged use of water from the 

San Juan River for wet-processing techniques.  

Successful coffee production is highly sensitive to both local and global climate 

patterns, especially during the vegetative and reproductive phases of the plant (DaMatta 

and Ramalho 2006; Pham et al., 2019; Tavares et al., 2018). Shifts in temperature and 

precipitation surplus or shortages reduce the production of coffee by over 34% in many 

regions (Gay et al., 2006). Several other negative impacts, including loss of coffee-

optimal areas throughout major global coffee-producing countries, growth in pest and 

disease, and the reduction of flowering, fruiting, and bean quality have been found (Lin, 

2007). Clearly, irrigation could be used to meet crop-water demand, but only if sufficient 

surface water supply and quality are provided.  

Artisanal Gold Mining 

Although Andes is well-known for its production of coffee, it also has a long 

history of gold mining, which has remained largely artisanal since 1852 (Schwartz, 

2021). As mentioned above, ASGM makes up approximately ten percent of local 

economic activity, but is widely regarded as the largest contributor to water pollution in 

the area, and has gained international attention as the largest human-caused source of 

mercury pollution in the world, credited with releasing nearly 1,220 metric tons of 
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mercury to both water and land in 2015 alone (UN Environment, 2019). ASGM is also 

responsible for the release of arsenic, copper, lead, cadmium, and a wide array of 

additional inorganic contaminants into water, soil, sediment, and air (Schwartz, 2021; 

Gottesfeld et al., 2019; Rajaee et al., 2015; Tirima et al., 2016). The release of these 

contaminants into both soil and waterways makes ASGM a significant source of 

environmental contamination and is known to contribute to major health risks for locals 

and downstream communities. ASGM in Andes is conducted by individual miners or 

small enterprises with limited production capability. In the past, local miners commonly 

used mercury to extract gold from the ore and disposed of used mercury in local 

waterways; however, miners have actively worked to remove mercury from their current 

gold-extraction practices since Colombia’s 2018 law which banned mercury use in 

mining activities (O’Brien, 2021).  Throughout the Andes region, there are both active 

and abandoned mines scattered throughout the mountains.  

Fisheries 

Fisheries make up a very small portion of the economy in Andes, with only one 

local fishery noted upstream of the city center. Even as a minor use of water from the San 

Juan River, due to the off-river tanks’ water levels being maintained with river water, it is 

an area of concern. Climate uncertainty has been predicted to negatively impact fresh-

water fisheries due to changes in temperature, water availability, and streamflow 

variability (Ficke et al., 2007; Allison and Edward, 2009). If climate change leads to 
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changes in freshwater habitats, low-income populations especially in Latin America can 

be regionally impacted by loss of food security (Harrod et al., 2019).   

Municipal Water Use of San Juan River 

The municipality of Andes uses centralized running water drawn from the San 

Juan River, while rural Andes populations tend to use rainwater collection systems as a 

source of drinking water. The municipality’s supply system is reportedly treated, 

however the water quality in the San Juan River is known to be very poor and is avoided 

by concerned members of the community whenever possible (O’Brien, 2021). The 

municipal uses of water in Andes include cleaning, cooking, bathing, and watering 

vegetation around the home.  

Interconnectedness of Water Use 

The aforementioned water uses are largely in conflict, and there are anecdotal 

examples of residents interacting in multiple sectoral uses (O’Brien, 2021). Each of these 

communities are interconnected and depend upon appropriate water availability and 

quality to survive. Not only are all communities dependent upon appropriate water 

resources, but they all impact each other’s use of water in some sense and are responsible 

for its quality (Fig. 3). 
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Figure 3: Visual of Community Interconnectedness in Andes (Adapted from O'Brien 

2021, used with permission). Due to River networks in the area being a common topic of 

discussion and a central mechanism for mercury contamination, it is highlighted in red 

along with old tailings piles. The diversity of stakeholder groups is represented by 

varying shades of blue, except for two groups: processing plant workers and covert 

processors, shown in red due to their direct contact with mercury. 
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Clearly, the two uses that hold the potential impact water quality most are coffee 

and gold mining industries. Without proper pretreatment, gold mining waste pollutes 

waterways and has caused coffee farmers to avoid it as a source of potential supplemental 

irrigation for their agriculture operations, which is particularly important during times of 

low flows tied to drought. Gold mining operations also affect local fisheries and 

community members by contributing to the bioaccumulation of mercury in both fish and 

humans. Coffee farming operations impact the environment by depleting oxygen with 

polluted return flows. This has potential impact on both the gold mining industry, local 

fishery, and community members. Improper disposal of coffee waste can change essential 

water quality characteristics, which could have an impact on the quality of gold able to be 

collected by miners, reduce the amount of healthy fish populations at the local fishery, 

and make consumers sick. Without intervention, these water quality issues will cause 

environmental and health risks to the global community (Esdaile and Chalker, 2018).  

To reduce long-term water availability risk, the Andes community should prepare 

a water policy to ensure risk is properly mitigated. There is not currently any type of 

water rights policy implemented within the community, but the policy should consider 

coffee farming, gold mining, aquaculture, and individual community member operations 

in its development. To properly govern and manage water in a developing economy, it is 

important that policy is founded upon proper modeling and data collection. Seasonal 

forecasts answer this call and have the potential to be very useful for agricultural 

activities and serve as a good starting point for early warning and response planning 
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within a community (Johansen et al., 2017; Hellmuth, 2007). Statistical and probabilistic 

forecast methods have been used to provide deterministic and categorical forecast 

information that can be calibrated to suit decision-maker needs. The challenge is to 

incorporate such forecast information, with its explicit uncertainties, into decision-

making (Hellmuth, 2007). And even skillful forecasts must be tailored such that their 

delivery suits decision-makers. Very often, forecasts are translated from a raw value, e.g., 

streamflow, to an economic output using sectoral models. 

The Andes community presents an excellent opportunity to test the development 

of a forecast that could promote the long-term sustainability of water resources through 

climate change. Each of the communities within Andes has unique requirements with 

respect to water availability and quality. The sources of pollution pose a great threat in 

developing countries and should be remediated efficiently and quickly. According to 

local sources, there is a notable conflict between gold miners, coffee farmers, local 

fisheries, and community members when it comes to water use and allocation. Coffee 

growers are highly concerned about water quality issues and face growing concerns with 

respect to how changing climate could affect water availability.  

Water availability could be impacted in two distinct ways due to climate 

uncertainty: scarcity or surplus. The discussion up to this point has focused on water 

scarcity conflicts in the area of study. However, in cases of extreme water surplus, this 

research could be used to develop a forecast with appropriate leads to aid in landslide 

mitigation planning for local stakeholders. 
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Research Question 

The aforementioned literature and local context illustrate the need for seasonal 

management of water resources, where water availability and quality, and competition 

have the potential to stress supply, and therefore economic activity. This research focuses 

on one research questions as a means of understanding the unique climate uncertainty 

conditions in Andes, Antioquia, Colombia, which may be applied more broadly—

geographically—to water resource availability and competitive use problems: 

1. Can an accurate statistical forecast model be built to aid in local water 

sustainability discussions? 

Methodology Overview 

The methodology of this research consists of two major efforts: the preliminary 

analysis of data, and the prediction of streamflow in Andes, Antioquia, Colombia using a 

statistical forecasting modeling approach. The model component uses multiple linear 

regression (MLR) and principal component regression (PCR) methodologies to create 

suites forecasts. The skill of deterministic and ensemble forecasts are assessed using a 

variety of standard forecast metrics including coefficient of variation, ranked probability 

skill score (RPSS), and mean absolute percent error (MAPE).  

Thesis Organization 

The organization of this research is broken into five major efforts: literature 

review, the gathering and analysis of data, formation and methodology of forecasting 
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models, results, and discussion. Chapter 2 is the literature review section which covers 

the topics of climate uncertainty, water scarcity, statistical forecast modeling, and the 

common drivers of hydrology in Colombia. Chapter 3 consists of an overview of the data 

gathered. Chapter 4 discusses how the forecast model was set up and executed. Chapter 5 

highlights the overall results from the four different model variations evaluated, and then 

focuses on the more detailed results for the best-determined model. Chapter 6 focuses on 

the discussion of how the completed forecast model can help members of the Andes 

community mitigate their risk when it comes to water availability, whether that be due to 

extreme drought and water allocation issues or during high flood periods where landslide 

risk increases dramatically. Chapter 7 summarizes the main findings, the significance of 

the research, and future research to be completed. 
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II.  Literature Review  

Chapter Overview 

To determine the appropriate data and model for predicting seasonal streamflow it 

is necessary to investigate the topics and methods that reveal the best approaches.  As 

such, climate uncertainty, water scarcity, forecast modeling, and other research being 

completed within the area of study are reviewed. This section of the thesis is essential to 

consolidate what is already known, address any knowledge gaps, and determine how this 

research can contribute to the further understanding of forecast modeling. The 

conversation on climate uncertainty, water scarcity, and other research completed in the 

case study location is brief but essential in gaining required background knowledge. The 

focus of this section is statistical forecast modeling with an emphasis on the moisture 

transport process in South America.  

Climate Uncertainty and Water Scarcity in Colombia 

Studies have found that climate uncertainty will spur an increase in global 

extreme climate events, which have the potential to impact both water demand and 

supply (Jimenez Cisneros et al., 2014; Allan and Soden, 2008). These impacts, such as 

persistent droughts and/or flooding events, have presented considerable challenges to 

decision-makers involved in regional water planning and management. These challenges 

include the execution of water reduction measures for agriculture, manufacturing, and 

residential sectors while simultaneously maintaining fiscal stability and public relations 

throughout regions (Zimmerman et al., 2016).  
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Colombia has previously been considered a nation with high water wealth; 

however, climate uncertainty is expected to bring new water scarcity conflicts throughout 

the entire region over the next 50 years (Vargas-Pineda, 2020). Many studies throughout 

this region focus on the water footprint of important crops, water supply available, 

perceptions of water scarcity, and planning and water management practices (Vargas-

Pineda, 2020; Naranjo-Merino, 2018; Murtinho et al., 2013). Changes in water variability 

and scarcity will greatly impact the coffee industry, the primary crop throughout 

Colombia, due to its high sensitivity to climatic extremes such as droughts, torrential 

rains, and landslides (Frank et al., 2011). In Colombia, both water quantity and quality 

are strongly influenced by climate variability and potential long-term seasonal changes 

are very likely to develop (Felipe et al., 2013). The perception of water scarcity 

throughout the region has a significant impact on the implementation of adaption 

strategies amongst communities and government organizations; with limited community 

knowledge of the approaching water scarcity being of great concern (Murtinho et al., 

2013). 

Research has shown that it is very possible for the climate to be affected in both 

the long-term availability and the short-term variability of water resources throughout 

many regions (Olmstead 2010). These potential regional impacts could include increased 

frequency and magnitude of droughts, heatwaves, and floods. Climate uncertainty may 

also impact essential water resources by influencing long-term changes in precipitation, 

temperature, humidity, wind intensity, duration of accumulated snowpack, vegetation, 
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soil moisture, and runoff (Olmstead 2010, Solomon et al. 2007, Keating 2021, Delorit et 

al. 2017). The Bolivian High, eastern and northern winds that carry moisture towards the 

Andes Mountains from the Amazon, has also been shown to impact precipitation in South 

America (Vizy and Cook, 2007).  

Until recently, there were no set of actions, policies, or management measures 

unique to the problem of adapting water resource management to global warming 

(Stakhiv, 1998). In 2019, a book was published that outlines potential modeling 

frameworks for considering uncertainty in decision making processes (Marchau et al., 

2019). These approaches have made it possible for deep uncertainty to be included in 

practical decision-making processes. Other studies have promoted the principles of water 

resources planning and river basin management using skillful season-ahead streamflow 

forecasts (Delorit et al., 2017; Block, 2009). These studies suggest, with a reasonable 

degree of confidence, that vulnerability within communities due to climate change and 

water scarcity can be minimized or stabilized in most cases with proper planning and 

community involvement.  

Forecast Modeling  

Forecast modeling predominately falls into two categories: dynamical or 

statistical; however, it can also be used in a hybrid sense (Block et al., 2009; Sabzi, 

2017). The dynamical approach is a physically-based model that seeks to simulate 

physical processes such as runoff or infiltration to produce streamflow predictions (Souza 

Filho and Lall, 2003; Keating, 2021). The second technique, statistical modeling, utilizes 
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predictor variables to directly estimate the dependent variable through numerical 

techniques such as multiple linear regression. The hybrid approach is becoming more 

popular in practical applications, but recent studies have found there are numerous 

instances where the results have been greatly distorted during implementation (Zhu et al., 

2018). Overall, these three forecasting techniques have been widely used in the literature 

to estimate diverse objectives such as streamflow quantity, earthquake probability, global 

solar radiation, fish population rates, and even lake-level fluctuations (Block & 

Rajagopalan, 2009; Sabzi, 2017).   

Statistical forecast modeling only provides value if the forecast lead allows time 

for informed decision-making to occur. Due to the ability to investigate lagged 

relationships between variables of interest, statistical prediction models have been found 

to generally outperform dynamical models when it comes to predicting streamflow in 

many regions, particularly where teleconnective strength between global variables, e.g., 

El Niño Southern Oscillation (ENSO), and streamflow is greatest (Zimmerman et al., 

2016, Delorit et al., 2017, Keating, 2021). Statistical prediction models typically 

capitalize on identifying patterns and pattern changes from climate-related anomalies at 

large spatial and temporal scales. They also rely entirely on the relevance and availability 

of historical data (Chambers et al., 1971). Due to this, there are unique instances where 

statistical prediction models may not be fully capable of incorporating a complete 

physical understanding of the climate uncertainty in an area with limited data supply 

(Block, 2009). However, most models are still able to facilitate in decision-making 



19 

 

 

processes and assist in the development of local policy (Johansen, 2017; Rod et al., 

2020).  In short, the simplicity of statistical models, and the ease with which outputs are 

translation to decision-ready outputs, make them attractive to both modelers and decision 

makers.  

There have been a handful of studies which have properly leveraged appropriate 

lead times to ensure skillful streamflow forecasts, at the seasonal scale.  These studies are 

subsequently applied to sectoral models aid in the development of water allocation 

policy, energy management, irrigation plans, municipality water management strategy, 

and environmental services (Cai, 2008; Delorit et al., 2017; Alexander et al., 2021). 

There are many potential early actions that can be taken when forecast lead times are 

properly aligned to a decision maker’s decision points, and are sufficiently skillful. 

Though, it is generally accepted that forecast lead and skill are inversely related. Longer 

lead times allow for a greater range of early actions to be taken but must be balanced to 

ensure forecast uncertainty remains within acceptable ranges (Bazo et al., 2019).  

Although the improvements in seasonal climate forecast skill and advocacy for 

integration into risk reduction strategies may be well documented, demonstrated forecast 

use in localized water allocation and policy strategies is extremely limited. There is also a 

scarcity of literature on how forecast modeling can be used to predict the quality of water 

for a community’s local stream or watershed. One recently published study details water 

quality forecasts for the purposes of maintaining the proper quality of life in the Great 

Barrier Reef, Queensland, Australia (Khan et al., 2020). This research used the Short-
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term Water Information and Forecasting Tools (SWIFT), a statistical-based forecasting 

tool, designed for operational streamflow forecasting and scientific research in Australia 

(Hapuarachchi et al., 2017; Kabir et al., 2018).  

The techniques used to create the water quality model for this study could be 

reproduced to develop water quality models at other locations; however, since the method 

presented in this study is computationally intense a supercomputing platform is an 

essential requirement (Khan et al., 2020). A previous study, which was completed in 

2005, shows that simpler techniques can be used to develop a forecast for streamflow 

quality but might give up some accuracy in the prediction of pH and some other essential 

water quality indicators (Kurunc et al., 2005). This research focuses on evaluating 

different forecasting techniques such as the autoregressive integrated moving average 

(ARIMA) statistical forecasting technique to determine river water quality. Even though 

these studies generally apply forecasting techniques to address the growing concern of 

potable water available to communities, neither of these studies address the importance of 

community involvement in successful water policy implementation or evaluate how 

changes in forecasted water availability impact overall community stability due to their 

dependence on proper water quality and quantity.  

Other Relevant Research within Andes, Antioquia, Colombia.  

Researchers have taken a keen interest in Andes, Antioquia, Colombia due to a 

slew of potential areas of environmental concern, water conflict, and economic activities 

that occur in the area. Most of these matters deal with extreme land and water pollution 
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from ASGM practices, but there have also been a few areas of study that focus on 

understanding how local agriculture has impacted the region (Schwartz, 2021; O’Brien, 

2020). Building resilient communities through the implementation of sociotechnical 

solutions, focused-working groups, the formation of diverse research teams, and 

community involvement has also been evaluated by many academics (Smits et al., 2020; 

Schwartz, 2021; O’Brien, 2020; O’Brien, 2021). 

Even though this research has been crucial in the development of safe ASGM 

practices and ASGM climate impact understanding, there has been little to no progress 

made to address the growing concern of climate uncertainty. In interviews conducted 

during physical immersion within the Andes community, numerous members expressed 

concern for how climate uncertainty could impact their essential economic operations and 

water availability in the future (Schwartz, 2021). Andes’ localized conditions and 

community interconnectedness make this an ideal location for continued research on the 

implementation of forecasting modeling, and how technical solutions can be successfully 

implemented at the community level.  
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III.  Data 

Chapter Overview 

In this section, the processes for gathering required data and performing 

preliminary analysis on these data are discussed. The data gathered for this study were 

obtained from a combination of both global and localized databases. While stakeholders 

might prefer the use of locally collected data, continuous data that accounts for regional 

and global forcings should be prioritized when creating a statistical forecasting model.  

This is particularly true given the known teleconnective strength between the region of 

interest and global circulations. The gathering and preliminary analyses performed on the 

streamflow data will be discussed first, followed by each predictor variable used in the 

modeling. Each of these variables will be listed, explained, and justified; with any 

transformations or modifications to the data discussed.  

Gathering Required Streamflow Data 

Andes, Antioquia, Colombia is a rural, largely underdeveloped area, and as such, 

obtaining consistent data is difficult.  A streamflow gauge (Station Code: 26197010) was 

discovered for the San Juan River approximately 3-km downstream of Andes, Antioquia, 

Colombia. This streamflow gauge started recording daily mean values in January 1972 

until it stopped capturing readings at the end of 2015. There are not currently any other 

streamflow gauges in the area that have been reported by the Colombian government.  

This gauge is considered to be reflective of flows near Andes given consumptive 
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extractions from the San Juan River are minimal; most uses are either run-of-river or 

provide return flows.  

The streamflow data gathered were obtained as mean daily values from January 

1st, 1972, to December 31st, 2015, from Colombia’s national hydrology database known 

as de Datos de Hidrología y Meteorología (DHIME) (Fig. 4). These data were then 

aggregated to the monthly time scale, in order to match other input data resolution. After 

completing the aggregation to the monthly scale, it was discovered that 21 of the 528 

months of data were missing. These missing months were from the years 1999, 2000, 

2011, and 2015. To fill in these missing data, synthetic data were created in accordance 

with the standard practice of using each month’s respective mean from the remaining 

years. The streamflow data for the years 1972-1981 were not included in the development 

of the forecasting model due to ENSO data only being available from 1982-present.  

 

Figure 4: Time-series of the Streamflow in the San Juan River.  
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Preliminary Analyses on Streamflow Data 

The preliminary analyses performed on the streamflow data include time-series 

analysis, descriptive statistics, Student’s t-test, and the Mann-Kendall test. Each of these 

tests and analyses performed helps identify the basic nature of the data gathered and 

highlights any potential discontinuities. Here the aforementioned tests are performed both 

on the monthly data (n = 408) and for the season of interest (September-December, n = 

34). 

When analyzing the entire dataset (n = 408), the Mann-Kendall test reveals a 

slight positive increase in monthly flows for the period 1982-2015, with 95% confidence 

(Fig. 4). Using the Student’s t-statistic and the Mann-Kendall’s test revealed that the 

median, minimum, and maximum flows for the first ten years of data (1982-1992) and 

the last ten years of data (2005-2015) are different at the 95% confidence interval (Table 

1); with minimum and maximum values becoming more extreme over time. 

Table 1: Minimum, Median, and Maximum for Streamflow Dataset (𝜶 = 𝟎. 𝟗𝟓) 

Value First Ten Years (1982-1992) Last Ten Years (2005-2015) 

Minimum 8.77 m3 s-1 7.92 m3 s-1 

Median 22.99 m3 s-1 29.24 m3 s-1 

Maximum  61.1 m3 s-1 64.8 m3 s-1 

 

Next, descriptive analysis on the streamflow dataset was completed to gain a 

sense of how the data are distributed, to determine the appropriate modeling techniques 

(i.e., linear transformations of nonlinear data enable linear modeling approaches). By 

performing a goodness of fit test on the streamflow data, it was determined that these data 
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are not normal or log-normal but are best fit with a gamma distribution, which is a 

distribution type capable of mimicking most nonlinear distributions (Fig. 5). 

 

Figure 5: Descriptive Statistics on Streamflow Data (1982-2015) 

To aid in the basic understanding of the dependent variable, the tests ran on the 

entire streamflow dataset were re-accomplished for the September-December (SOND) 

season of interest. The data for streamflow SOND exhibits the same slight positive 

increase over the 1982-2015 period and varies significantly on an interannual basis (Fig. 

6). Instances of extreme drought are extremely rare during September – December, while 

high flow events will become more likely due to increased precipitation during this time.  
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Figure 6: Time-Series for SOND Streamflow 

The mean of the first half of data (1982-1997) and the last half of the data (1998-

2015) are different upon comparison with 95% confidence. This was conducted using 

Student’s t-test on each of the time periods, which was found to be significant at the 95% 

confidence level. To highlight the difference in values between these two periods, the 

specific values for the minimum, median, and maximum are presented in Table 2. 

Table 2: Minimum, Median, and Maximum for SOND Dataset (𝜶 = 𝟎. 𝟗𝟓) 

Value First Half (1982-1997) Second Half (1998-2015) 

Minimum 17.20 m3 s-1 19.84 m3 s-1 

Median 27.08 m3 s-1 29.56 m3 s-1 

Maximum  51.33 m3 s-1 47.37 m3 s-1 
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To test if the peaks and troughs in streamflow are becoming more extreme over 

time, the Mann-Kendall’s test was performed on the 75th and 25th percentiles of the 

SOND time series.  No trend was found, which suggests that peak and low flow years are 

not increasingly variable.  

Lastly, a descriptive analysis of the data was completed to gain a sense of how it 

is distributed. By performing a goodness of fit test on the streamflow data, it was 

determined that these data are not normal but are best fit with the log-normal distribution 

(Fig. 7). 

 

Figure 7: Descriptive Statistics on SOND Streamflow (1982-2015) 
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Variables of Interest: Local and Global Predictors 

A mixture of global and local predictor variables that have historically been 

shown to have an influence on the streamflow are evaluated in this section. Global 

predictors, e.g., sea surface temperature (SSTs) and sea level pressure (SLP), are 

generally tied to general circulations like El Niño Southern Oscillation (ENSO). The 

SSTs evaluated here consist of the 3.4 region of the ENSO anomaly (120W-180W, 5S-

5N). The SLP evaluated in this research emanated from the Southern Oscillation Index 

(SOI), which is a pressure differential between Darwin, Australia, and Tahiti. The local 

predictors include precipitation, soil moisture, and temperature. The following sections 

list, explain, and justify any transformations or modifications made to the collected 

predictor variable datasets.  

Precipitation 

Reliable, station-based precipitation data were not available at the local level or 

from any of the Colombian databases. To remedy this, globally gridded precipitation 

(mm) data were obtained from the NOAA Physical Sciences Division database at the 1.0 

x 1.0˚ grid resolution. These data were collected at the hourly time step for the period 

1979 – present. These data were obtained from the latitude range 283.7˚E – 284.2˚E and 

longitude 5.5˚N – 6.3˚N, which is the coordinate range closest to Andes, for which data 

are available. There were no missing values in this dataset. These data were aggregated to 

the monthly scale for the period 1982-2015. 

Soil Moisture 
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Soil moisture (mm) data were obtained at the 0.5 x 0.5˚ grid resolution from the 

NOAA Physical Sciences Division database. These data were collected at the daily time 

step for the period 1948 – present, from the latitude range 248˚E – 284.5˚E and longitude 

5.5˚N – 6˚N. There were no missing values in this dataset. These data were aggregated to 

the monthly scale for the appropriate 1982-2015 period. No other modifications were 

made to this dataset. 

The El Niño–Southern Oscillation (ENSO) 

ENSO involves changes in sea surface temperatures in the Pacific, and is related 

atmospheric circulation patterns that largely drive global climate. The ENSO index is 

characterized by a 3-month running mean anomaly of Sea Surface Temperatures (SST). 

When SSTs are higher than the long-term mean, it is referred to as El Niño, and when 

they are below the long-term mean, it is referred to as a La Niña. The two phases of 

ENSO are marked by different ‘strengths’ measured as the magnitude of the departure 

from the long-term mean. The ability to monitor and forecast ENSO events has improved 

significantly since the 1990s (Balmaseda et al., 1995; Trenberth, 2002; Block et al., 2009; 

Delorit et al., 2017; Chen, 2020).  

ENSO displays a spatial pattern in the Equatorial Pacific, typically extending 

from 160˚E, east to the coast of South America, and between 5˚N and 5˚S. Because the 

intensity and behavior of ENSO vary across this wide area, researchers have proposed 

regions for which indices are calculated: Niño 1 + 2, Niño 3, Niño 3.4, and Niño 4 (Fig. 

8). 
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Figure 8: Niño Regions 

Research has commonly shown the El Niño and La Niña phases have a 

periodicity of 2-8 years (Neelin et al., 1998; Bombardi et al., 2014; Delorit et al., 2017). 

The ENSO data used in this research were gathered from the National Oceanic and 

Atmospheric Administration’s website in anomaly values. ENSO is available from 1982 

– the present. In this research, the 3.4 index was chosen because it displays the highest 

correlation with streamflow values for the SOND season of interest (Fig. 11. A). This 

finding is consistent with other South American-based studies (Delorit et al., 2017). 

The Niño 3.4 region is related to local streamflow and precipitation data (Fig 9). 

Visually, it is apparent that the highest streamflow and precipitation values occur during a 

negative SST (La Niña) phase. During the La Niña phases, both precipitation and 

streamflow appear elevated, e.g., 1988, 1996, 2008, and 2011. The opposite is also true; a 

strong El Niño most often results in severe low flows and precipitation, e.g., 1982, 1997, 
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and 2010. Extreme high and low streamflow values also seem to be related to the strength 

of the Niño 3.4 phase.  

 

Figure 9: Total annual precipitation (black dashed), streamflow (blue solid), and Niño 

3.4 sea surface temperature anomalies (orange bars). 

Southern Oscillation Index (SOI) 

The Southern Oscillation Index (SOI) is a standardized index, based on the 

observed sea level pressure (SLP) differences between Tahiti and Darwin, Australia. The 

SOI is one measure of the large-scale fluctuations in air pressure occurring between the 

western and eastern tropical Pacific (i.e., the state of the Southern Oscillation) during El 

Niño and La Niña episodes. In general, the three-month moving mean time series of the 

SOI correspond very well with changes in ocean temperatures across the eastern tropical 

Pacific (Yan et al., 2011). The negative phase of the SOI represents below-normal air 
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pressure at Tahiti, while above-normal air pressure at Darwin. Prolonged periods of 

negative SOI values coincide with abnormally warm ocean waters across the eastern 

tropical Pacific typical of El Niño episodes. The methodology used to calculate SOI is 

available below.  

𝑆𝑂𝐼 =  
(𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑇𝑎ℎ𝑖𝑡𝑖−𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝐷𝑎𝑟𝑤𝑖𝑛)

𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
   (Eqn. 1) 

The SOI data were gathered from NOAA’s website in their standardized anomaly values. 

SOI is available from January 1951 – present in both their anomaly and standardized 

forms. The only modification to the data was curtailing it to the proper time frame 1982-

2015. ENSO and SOI have a strong negative correlation (Fig 10).  

 

Figure 10: Relationship between ENSO and SOI 
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Correlation Plots Between DV and Predictor Variables: ENSO, SOI, and Precipitation 

NOAA’s Linear Correlations in Atmospheric Seasonal/Monthly Averages 

mapping tool was used to evaluate which region of SST, precipitation, and SLP were 

most highly correlated with SOND streamflow (Fig. 11). Plot A shows streamflow has a 

strong negative correlation with SSTs in the equatorial pacific, which matches previous 

findings (Fig. 9). Plots B and C show streamflow has high positive correlations with both 

precipitation and SOI.  

 

Figure 11: (A) Correlation of MJJA SST with SOND streamflow (1982-2015).  Note box 

represents Niño 3.4; (B) Correlation of Precipitation with SOND streamflow (1982-

2015); (C) Correlation of MJJA SLP with SOND streamflow (1982-2015). 
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This section provided the necessary information on the variables used in the 

development of the forecast models (i.e., streamflow, precipitation, Niño 3.4 anomaly, 

SOI, and soil moisture).  These variables were assembled using both local and globalized 

datasets for the 1982-2015 period, with the smallest possible number of modifications 

made to the datasets. To gain a better understanding of streamflow in the San Juan River, 

basic statistical tests such as time-series analysis, the Mann-Kendall test, the goodness of 

fit test, and Student’s t-test were used to provide insight into the data’s behavior and 

authenticity. These tests resulted in the identification of basic trends and relationships, 

such as increasing variability in extreme streamflow values or positive or negative 

correlations between the dependent and independent variables. Streamflow has both 

positive and negative correlations with the predictor variables. To start, all Niño regions 

Niño 1 + 2, Niño 3, Niño 3.4, and Niño 4 were evaluated using both statistical tests and 

correlation mapping tools to determine which region was most highly related with 

streamflow in Andes. These tests resulted in the use of Niño 3.4 region as a predictor 

variable, while the other regions were not analyzed further. Streamflow is positively 

correlated with precipitation, soil moisture, and the southern oscillation index, while it is 

negatively correlated with Niño 3.4 anomaly.  
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IV.  Forecasting Model Methodology 

Chapter Overview 

Here, the statistical forecast model configuration and modes are discussed. This 

includes the initial model setup utilizing techniques including simple multiple linear 

regression (MLR), principal component regression (PCR), and PCR with cross-validation 

(PCA+CV).  Four independent variable configurations are tested for each modeling 

technique and will be referred to as predictor modes. The section concludes with a 

presentation of validation and performance metrics used to evaluate statistical and 

probabilistic skill.  

Forecasting Model Framework and Steps 

The model used to evaluate these data is based primarily on techniques developed 

by a student conducting research in South America, though never before for locations to 

the east of the cordillera of the Andes Mountains (Delorit et al. 2017; Zimmerman et al., 

2016; Keating, 2021). The modeling processes are divided into three different steps: 

modeling, post-analysis/performance metric production, and evaluation. The modeling 

portion of the methodology is focused on the creation of MLR, PCA, and PCA+CV 

forecasts. The post-analysis portion focuses on the production of forecast skill metrics 

that are used to determine which, if any, models possess skill and enables a discussion of 

the tradeoffs of differently parametrized models, i.e., independent variable combinations. 

The evaluation process allows the four created predictor modes to be ran through the 
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models, and various lead times to be tested in order to explore tradeoffs between forecast 

issue date and skill, which ultimately targets stakeholder’s value of information. 

Forecast Modeling Techniques: Multiple Linear Regression, Principal Component 

Analysis, and Cross-validated Principal Component Regression Models 

Three different forecasting models were created to analyze the predictability of 

streamflow in Andes: multiple linear regression, principal component regression-based 

forecasting model, and a principal component model with cross-validation. Multiple 

linear regression forecast modeling is a statistical technique that uses several explanatory 

variables (precipitation, temperature, ENSO anomaly, SOI anomaly, etc.) to predict the 

outcome of a response variable, i.e., streamflow. This technique is commonly used to 

create models in many different fields and has become very popular due to its simplicity 

(Equation 2), 

𝑦𝑖 =  𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑛𝑥𝑖𝑛 + 𝜖   (Eqn. 2) 

Where, i is the number of observations, 𝑦𝑖= dependent variable, 𝛽0 = y-intercept, 𝑥𝑖 = 

predictor variables, 𝛽𝑛 = slope coefficient for each predictor variable, and 𝜖 = model 

error.  

This type of deterministic model is simple and can be improved by using principal 

components in place of independent variables. This process results in a set of principal 

components representing the variance in the predictors. It is important to clarify that 

principal component analysis (PCA) is not a regression; it is a technique used to create 

new independent variables from the original set. PCA is commonly applied in forecasting 
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and hindcasting to ensure a fair forecast is made by reducing both model dimensionality, 

when principal component retention rulesets are applied, and multicollinearity (Delorit et 

al., 2017). 

Reduction of model dimensionality is possible when then number of input 

variables is reduced.  PCA naturally produces an independent variable set that is ordered 

by variance in the underlying input dataset.  That is, the first PC explains the most 

variability, the second explains less variability than the first PC, but more than the third 

PC, and so on.  Because of this, rulesets are typically used to determine the number of 

PCs to retain.  By retaining fewer PCs in the PCR, than the total number produced by 

PCA, dimensionality—complexity—of the underlying model is reduced, without 

significant loss of skill.  One such rule is Joffille’s rule, which is used as a PC retention 

and dimensionality reduction technique in this research. This method commonly retains 

any principal component whose Eigenvalue was greater or equal to 0.7.  

The last model created, PCA+CV, was a leave-one-out crossvalidated hindcast 

model across the dataset. This technique produces a bias-reduced, deterministic 

prediction; however, since this form of cross-validation removes the streamflow value for 

the time-step being predicted, the deterministic skill of the model, e.g., 𝑟2 can be 

significantly lower than non-crossvalidated alternatives. Utilizing Jofille’s rule in the 

crossvalidated model results in the PCA+CV model being an unbiased and conservative 

estimate of streamflow. 
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Variable Combinations to Allow Adequate Lead Time and Evaluate Scenarios 

To evaluate how streamflow is influenced during the season of interest (SOND), 

up to 35 independent variables are made available from the underlying predictor set: 

Niño 3.4, SOI, precipitation, soil moisture, and the difference of ENSO and SOI, by 

adjusting temporal combinations. These 35 variables were created using the one-month 

aggregated mean values across May, June, July, and August in different combinations, 

e.g., May, June, July, August, MJJA, MJJ, and MJ, for the years 1982-2015. The purpose 

of the combinations is to test the time-skill tradeoffs for different forecast leads against 

the predictability of streamflow. Using these combinations allows the forecasting lead-

time to be extended or adjusted up to three months if required. For example, if 

information up to June 30th is included in the forecast being issued for SOND, this 

forecast has an issue date equal to the day after the last day of information is collected 

(July 1st) and has a lead equivalent to the number of days or months between the issue 

date and the first day of the season of interest (2 months). 

Next, these 35 input variables are iteratively used as inputs to the multiple linear 

regression (MLR) and principal component regression (PCR) and cross-validated 

principal component regression (PCR+CV) models for both normal and log-normal 

streamflow. Due to the distribution of streamflow typically being log-normal, a 

transformation of the dependent variable may be necessary to improve model skill. 

However, sometimes this transformation is not always necessary or particularly 

beneficial from a forecast skill perspective. Each forecasting model, e.g., MLR, PCR, and 
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PCR+CV was run in four modes: basic predictors, expanded predictors, top predictors 

from each category, and ENSO Only for both normal and log-normal streamflow. In total 

24 unique model runs were completed, with the goal of balancing input complexity and 

deterministic skill. Each mode is explained below.  

1.  Basic Predictors is comprised of twenty-eight independent variables. These 

twenty-eight variables consist of seven ENSO 3.4 variables, seven SOI index 

variables, seven precipitation variables, and seven soil moisture variables (Table 

3). This model is the baseline model that was used to test the forecasting model 

code and determine if ENSO, SOI, precipitation, and soil moisture were good 

predictors of streamflow in Andes. 

2. Expanded Predictors (Appendix, Table 10) consists of twenty-nine independent 

variables. These twenty-nine variables consist of seven ENSO 3.4 variables, 

seven SOI index variables, seven precipitation variables, the most highly 

correlated soil moisture variable, and seven new variables that represent the 

difference between ENSO and SOI. This new variable, known as the Difference, 

was inserted into the model due to ENSO and SOI being highly correlated with 

streamflow, but in the opposite directions (Fig 10).  

3. Top Predictors (Appendix, Table 11) includes the top predictors from each of the 

variable categories: MJJ Niño 3.4, August SOI, August Precipitation, and May 

Soil Moisture. The newly created Difference variable was not included in this 

model because it was discovered to not be a significant contributor to streamflow 
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prediction. The variables used in this model were determined by viewing which 

singular variable from each category (precipitation, soil moisture, ENSO, and 

SOI) had the highest correlation with streamflow in the basic mode (Fig. 14). 

This combination was evaluated to see how forecasts would perform with limited 

input information.  

4. ENSO Only consists of the seven ENSO 3.4 combinations i.e., May ENSO, June 

ENSO, July ENSO, August ENSO, MJJA ENSO, MJJ ENSO, and MJ ENSO 

(Table 9, Chapter 6). This fourth model was created to evaluate how easily 

streamflow could be predicted if community members only knew information 

about the current ENSO cycle.  

 

When creating the above variable combinations, it was mathematically necessary to 

have at least two more observations (years of streamflow) than independent variables. 

This was due to linear modeling constraints outlined in previous research (Chambers et 

al. 1972). Due to this finding, independent variable combinations were kept below thirty-

two variables for the MLR, PCA, and PCA+CV models. The input variables for the basic 

predictor mode are shown in Table 3, while the other three variable combinations are 

showcased in the Appendix. This table showcases how each variable for the basic 

predictor mode was combined and gives a basic description of each created variable. 

Each of the variables were made using either local or globally gridded data mean values 

for the time-period 1982-2015 as shown in the variable description. Lead-times are 
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described for each variable to illustrate the relationship between each variable 

combination and the associated forecast lead. 

Table 3: Basic Predictor Mode Variable Combinations  

Variable 
Variable 

Type 
Variable Title 

Lead Time Variable 

Description 

1 

ENSO 

Niño 3.4_May 3-Month Lead 

Mean value, 1982-

2015 

 

2 Niño 3.4 _Jun 2-Month Lead 

3 Niño 3.4 _Jul 1-Month Lead 

4 Niño 3.4 _Aug 0-Month Lead 

5 Niño 3.4 _MJJA 0-Month Lead 

6 Niño 3.4 _MJJ 1-Month Lead 

7 Niño 3.4 _MJ 2-Month Lead 

8 

SOI 

SOI_May 3-Month Lead 

9 SOI _Jun 2-Month Lead 

10 SOI _Jul 1-Month Lead 

11 SOI _Aug 0-Month Lead 

12 SOI _MJJA 0-Month Lead 

13 SOI _MJJ 1-Month Lead 

14 SOI _MJ 2-Month Lead 

15 

Precipitation 

Precip_May 3-Month Lead 

Globally gridded, 

Mean value, 1982-

2015 

 

16 Precip _Jun 2-Month Lead 

17 Precip _Jul 1-Month Lead 

18 Precip _Aug 0-Month Lead 

19 Precip _MJJA 0-Month Lead 

20 Precip _MJJ 1-Month Lead 

21 Precip _MJ 2-Month Lead 

22 

Soil 

Moisture 

SM_May 3-Month Lead 

23 SM_Jun 2-Month Lead 

24 SM _Jul 1-Month Lead 

25 SM _Aug 0-Month Lead 

26 SM _MJJA 0-Month Lead 

27 SM _MJJ 1-Month Lead 

28 SM _MJ 2-Month Lead 
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Validation Metrics 

To evaluate the skill of each model run, and to provide a basis for exploration of 

model-to-model tradeoffs, the mean absolute percent error (MAPE), and ranked 

probability skill score (RPSS) are calculated. MAPE is the most widely used forecasting 

uncertainty statistic and has been used in multiple instances to analyze forecast skill 

(Delorit et al., 2017; Keating, 2021; Zimmerman et al., 2013). When utilizing MAPE, a 

score above 50 percent signifies inaccurate forecasting, a score between 20 and 50 

percent signifies a prediction model of “reasonable” quality, a score between 10 and 20 

percent represents a good forecasting model, and a score that falls below 10, the forecast 

model is said to be of “excellent” quality,  

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑡−�̂�𝑡

𝑦𝑡
| × 100𝑛

𝑖=1    (Eqn. 3) 

where 𝑛 is the number of observations; 𝑦𝑡is  mean streamflow observation at time t; and 

�̂�𝑡 = predicted streamflow value at t.  

RPSS is a metric used to account for probabilistic skill in the model outputs. 

Ensembles are generated by drawing, with replacement, from a normal distribution of the 

errors between the observations and the deterministic model values. The number of 

random errors generated is equal to the product of the number of ensembles desired and 

the number of predicted values in the deterministic model output.  For example, if 100 

ensembles are desired for a 50-year forecast, the total number of errors is 5,000.  The 

random errors are added to the replicated deterministic model outputs.  Following the 

example above, the 50-year deterministic forecast output is replicated 100 times, such 
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that the 5,000 random error terms may be added to each forecast value. These ensembles 

are then used to calculate ranked probability skill score (RPSS).  

𝑅𝑃𝑆𝑆 =
𝑅𝑃𝑆̅̅ ̅̅ ̅̅ −𝑅𝑃𝑆̅̅ ̅̅ ̅̅ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

0−𝑅𝑃𝑆̅̅ ̅̅ ̅̅ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
= 1 −

𝑅𝑃𝑆̅̅ ̅̅ ̅̅

𝑅𝑃𝑆̅̅ ̅̅ ̅̅ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
   (Eqn. 4)     

Where: 𝑅𝑃𝑆̅̅ ̅̅ ̅̅  = ranked probability score 

For RPSS, a score greater than zero constitutes a forecast outperforming the 

climatological odds. In this calculation, a reference to climatology is first established by 

separating the distribution of observed data into categories based on the characteristics of 

the distribution. This becomes the standard against which the prediction ensembles are 

tested. Climatology and the prediction model are scored based on the number of 

ensemble predictions that fall in the same category as the observed data, for the 

predefined categories.  

Any time the forecast and the observed value occur in the same bin the RPSS 

increases. In cases where the forecast is not in agreement with observations, the RPSS 

falls proportional to the degree of inaccuracy. For example, if the forecast is for above-

normal streamflow, and the observation is below normal, the RPSS score is reduced more 

than if the forecast were for near-normal. If both forecasts are wrong; the first scenario 

misses by two categories, and is penalized accordingly. 
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The following figure shows an example of what 1000 random ensemble 

generations using the PCA+CV method looks like in comparison to the observed 

streamflow data. 

 

Figure 12: 1000 Generated Ensembles for Basic Predictor Mode, PCA+CV Model 
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V.  Results 

Chapter Overview 

In this section the results are organized to ensure a certain straightforwardness. 

First, all four combinations of independent variables discussed in the variable setup 

section (i.e., predictor modes) were analyzed to determine which combination of 

variables best forecasts streamflow in Andes. After the best configuration was 

determined, the forecasting results for that configuration are discussed in depth. These 

results showcase the independent variable correlations with streamflow, a correlation heat 

map against the other independent variables, comparisons of MLR, PCR, and PCR+CV, 

and deterministic and probabilistic skill metrics of the best-performing model. 

Competitive Model Comparison and Best Model Results 

Each of the four variable combinations were analyzed using both normal and log-

normal streamflow. However, due to the similarity in skill metrics for normal and log-

normal flow inputs, the log-normal translation is not discussed, because the assumption 

of normality removes transformations. The four combinations of model modes yielded 

similar results, though the basic predictors mode produced the best skill scores (Table 4). 

The extended predictors mode produces a lower adjusted R2 than the simplified basic 

predictors, which suggests that additional information, in the form of increasing the 

number of independent variables, adds false skill. The top predictors mode, which retains 

just those variables that correlate highest with streamflow has the lowest ratio between R2 

and adjusted R2, which is to be expected, though overall, it is not as deterministically, or 
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probabilistically skillful as the basic predictors.  Finally, the ENSO only mode produced 

skillful results, and is valuable as a limited-data model, i.e., SSTs explain roughly 60% of 

SOND streamflow variability. Still, the most skillful mode remains basic predictors, and 

as such, the remainder of the results focus on its performance. 

Table 4: Model Comparison between Multiple Variable Combinations  

  Basic 

Predictors 

Extended 

Predictors 

Top 

Predictors 

ENSO 

Only 

 

 

 

 

Deterministic Skill 

Metrics 

Linear 

Prediction: R2 

0.959 0.803 0.446 0.367 

Linear 

Prediction: 

adjusted R2 

0.772 0.276 0.370 0.197 

Linear 

Prediction: p-

value 

0.0243 0.261 0.0014 0.0732 

All PC: R2 0.959 0.961 0.446 0.367 

Cross-

Validation: R2 

0.240 0.003 0.289 0.083 

Cross-

Validation – 

Joffille’s: R2 

0.228 0.120 0.222 0.135 

Probabilistic Skill 

Metrics 

MAPE (50th 

percentile 

forecast) 

21.87% 23.24% 21.98% 24.52% 

RPSS [5,24,5] 21.14% 7.55% 8.67% 14.38% 

 

The results of the PCA suggest that there are two major modes of variability in 

the underlying independent variable set, which is observed in the Scree plot (Fig. 13).  

For the basic predictors mode, 5 PCs were retained using Joffille’s rule, which represents 

91% of variability explained and an 82% reduction in dimensionality. Back-correlating 

the independent variables with the PCs revealed that May, June, and August Niño 3.4 
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variable combinations were identified as the predictors that explains the most variability 

in streamflow through the PCA.  That is PCs 1, 2, and 3 are most correlated with the 

aforementioned variables. 

 

Figure 13: Scree plot to show the variability explained by principal components 

To better understand the basic predictor mode, a cross-correlation map of its 28 

independent variable combinations (Table 3) against streamflow, reveals that Niño 3.4 

and soil moisture are negatively related to streamflow, while SOI and precipitation are 

positively correlated (Fig. 14). These correlations range between -0.5 to 0.5, with Niño 

3.4 and SOI having the strongest correlations. This suggests that global forcings are more 

highly linked to seasonal trends in streamflow than local variables.  
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Figure 14: Cross-Correlation Heatmap between DV and IVs 
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Deterministic, temporal comparisons of the MLR, PCR, and PCR+CV models to 

observed streamflow for the basic and top predictor modes illustrate the tradeoff in 

model skill and model fairness (Figs. 15-17).  

A.            B. 

  

Figure 15: Model Performance between All PC’s for (A) Basic Predictors and (B) Top 

Predictor Modes 

A.      B. 

 

Figure 16: All directly as Predictors, drop-one-year Cross-Validation Model 

Performance between (A) Basic Predictors and (B) Top Predictors Modes 
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Even though the top predictor variable does not perform as well in MLR and PCA, it still 

performs extremely well in the PCA+CV modeling without a ruleset (Table 4, Fig. 16). 

A.           B. 

  

Figure 17: Joffille’s Rule, drop-one-year Cross Validation Model Performance between 

Modes. (A) Basic Predictors, Rule-based n= 5 PC(S) as Predictors (B) Top Predictors, 

Rule-based n= 3 PC(S) as Predictors 

The basic predictors mode does a better job of predicting the observed 

streamflow extremes during cross-validation, and with the Joffille’s PC-retention ruleset, 

than any of the other variable combinations analyzed. This metric also performs the best 

when utilizing, the MAPE and RPSS model validation metrics. To establish forecast skill 

using MAPE at various forecast percentiles and RPSS, 1000 ensembles were created to 

be able to establish errors as discussed in the forecasting methodology (Fig. 12).  

MAPEs for all modes are of “reasonable” quality and are relatively similar (Table 

5). Forecast percentile scores are derived from the ensembles and presented as a measure 

of forecast pessimism (25th percentile) and optimism (75th percentile). Generally, 
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optimistic forecast ensembles perform better than pessimistic ensembles, which is a 

reflection of the fact that low-flow conditions in Andes are not synonymous with drought 

conditions, which are extremely rare in Andes.  

Table 5: MAPE Results for All Variable Combinations 

Description 
Basic 

Predictors 

Expanded 

Predictors 

Top 

Predictors 

ENSO 

Only 

Deterministic 21.87 23.24 21.98 24.52 

25th percentile 

forecast 
30.78 34.56 31.68 31.16 

50th percentile 

forecast 
21.63 22.91 21.54 24.61 

75th percentile 

forecast 
23.34 24.29 22.68 24.92 

 

The accuracy of this created ensemble forecast is shown in a boxplot format to 

establish how well the PCR+CV values compare to the original observed streamflow 

values.  The PCR+CV model using basic predictor mode performs well as shown in the 

boxplot (Fig. 18). Nineteen of the thirty-four years of predictions are within the 

interquartile range.  None of the predictions fall outside the 5th and 95th percentile, i.e., 

not considered outliers in the forecast, though 15 predictions do exist outside of the 

interquartile range.  
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Figure 18: Cross-validated September forecast of Streamflow (m3s-1) 

The same information, as presented in a boxplot can be presented probabilistically 

(Fig. 19) and as a function of the deterministic forecast according to categorical binning 

of observed streamflow data (Table 6). Using flow-regime breakpoints to establish 

categories (i.e., above normal, 6; near normal, 18; or below normal, 10), forecast 

certainty can be evaluated for the ensemble predictions. Given these ‘breaks’ a flow 

below 24 𝑚3𝑠−1 constitutes a below normal flow, while a normal flow exceeds this value 

but is below 38 𝑚3𝑠−1, and any flow above 38 𝑚3𝑠−1, is considered above normal. 

When the observation falls within the strongest prediction category, a “hit” occurs.  For 

the PCR+CV forecast, the number of years where the probabilistic ensemble majority 

correctly corresponds with the observed category is 20 of 34 predicted years (59%). 
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While this outcome is not impressive, changing the metric just slightly, to a case 

where a forecast is only issued when the total ensemble proportion in the largest category 

is greater than 50%, i.e., more than half of the ensembles occur in a single category, the 

forecast accuracy improves to 70%.  The model issues a forecast in just 10 of 34 years 

and declines to forecast in the remaining 24 years, which are mostly years with normally 

observed flows. 

 

Figure 19: Categorical Forecast Strength for PCA+CV Basic Predictors Mode 

Table 6: Contingency Table for Above Normal, Near Normal, or Below Normal 

  Forecast 

  Below Normal Above 

O
b
se

rv
ed

 Below 1 6 0 

Normal 3 17 1 

Above 0 4 2 
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In Andes during the September-December season of interest, above and below 

normal streamflow values, i.e., floods are of primary concern to stakeholders, as are 

droughts, however rare. To gain an understanding of how the forecast model compares to 

climatology when predicting extremes, the high and low thresholds are set, such that the 

forecast ensembles can be tested for extreme flow prediction skill. Thresholds, create 

categories of flow conditions, that are commonly referred to as “bins”.  Several bin 

constructs were explored, across two (above- and below-normal flow) and three bin 

methods (above-, near-, and below-normal flow) (Table 7 and Table 8).  

Table 7: RPSS - Two Bin (n = 34) 

Climatology 
Below 

Normal 

Above 

Normal 

RPSS 

Basic 

RPSS 

Extended 

RPSS 

Top 

RPSS  

Enso Only 

Uniform 17 17 33.25% 22.91% 14.42% 15.91% 

2-bin (high 

flow focus) 
29 5 84.28% 66.55% 73.27% 74.24% 

2-bin  (low 

flow focus) 
5 29 18.24% 1.97% 10.26% 21.33% 

 

Table 8: RPSS – Three Bin (n = 34) 

 

Climatology 
Below 

Normal 
Normal 

Above 

Normal 

RPSS 

Basic 

RPSS 

Extended 

RPSS 

Top 

RPSS  

Enso 

Only 

15 % 5 24 5 21.14% 7.55% 8.67% 14.38% 

25% 9 16 9 -4.53% -19.32% -5.50% -13.56% 

Even 11 12 11 -1.82% -13.03 -0.77% -9.58% 
3-bin 

histogram 
10 18 6 15.23% 5.50% 12.99% 10.99% 
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When predicting above or below streamflow values the cross-validated models 

are better than climatology in all instances (Table 7). The basic predictor mode greatly 

outperforms all the other variable combinations and predicts above or below normal 

streamflow values better than climatology. This forecasting model has the capability to 

predict below above-normal streamflow values better than below-normal.  This is 

advantageous considering low flow events during this season are rare, and again not 

drought-like. 

The 3-bin combinations do not provide positive results in all instances; however, 

this analysis shows that this model is still helpful for predicting extremes (Table 8). 

Understanding how the model performs when predicting extreme streamflow events, 

such as droughts and flooding, is vital to creating a water allocation policy that mitigates 

climate uncertainty for the appropriate stakeholders. For example, in a 15% tail scenario 

(5 below, 24 near, 5 above), the cross-validated forecasting model performs better than 

climatology across all four predictor modes. This model does not perform better than 

climatology when looking at even bins or 25% of the tails, which is attributable to the 

fact that the streamflow observations are not uniformly distributed. Lastly, using the 

probability density function of the observed streamflow to categorize flow regimes (10 

below, 18 near, 6 above), which is likely the most statistically accurate of the three-bin 

scenarios, all modes are skillful.  This suggests that if streamflow observations follow the 

same general trend, i.e., more above-normal flows than below-normal, the model holds 

the potential to provide value, at least categorically. 
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There is a trade-off between model skill and forecast lead time (Fig. 20). This 

concept is very important to remember when providing stakeholders forecasts with 

adequate lead times. Shorter lead times will provide forecast models of higher skill, while 

longer lead times will produce forecasts of less skill. Until mitigation policy is made, 

longer lead times are preferred for the Andes community, especially since the results for 

the 15% tail scenario (5 below, 24 near, 5 above) perform better than climatology in all 

instances. As stakeholders feel comfortable with reducing the forecast lead time, models 

of higher skill can be created.  

 

Figure 20: Model Skill vs. Lead Time for 15% tail scenario (5 below, 24 near, 5 above). 
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VI.   Discussion 

Chapter Overview  

This chapter discusses the implications of the results in the context of Andes, analyzes 

the importance of implementing forecasting techniques to help the community address 

the vulnerabilities highlighted in the background, and reviews the research question 

initially proposed at the beginning of this work.  

Review of Research Questions Initially Proposed 

The research question analyzed in this work was written to address water resource 

availability and competitive use problems.  

1. Can an accurate forecast model be built to aid in local water sustainability 

discussions? 

Accurate statistical forecast models can be built to aid in the local water 

sustainability discussion for communities like Andes. The model built for the Andes 

community resulted in a model of reasonable quality according to the MAPE score. This 

may be able to be improved if localized soil moisture and precipitation data were made 

available in the area. However, this research shows that for small communities like 

Andes where reliable data is not available forecasts that perform better than climatology 

can still be produced using globally gridded data to aid in sustainability discussions.  

Climate Uncertainty and Water Resources in Andes 

The Andes community is susceptible to hydrologic extremes. In the case of 

drought, water availability for coffee farming, gold mining operations, fisheries, and 
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population consumption would become extremely controversial and limited due to the 

number of intersectoral demands; and, in the more likely case of high flows certain 

sectors could be negatively impacted by landslides; rapid, river geomorphology, or 

inundations. Independent of extremes, the relationships between intersectoral water users 

will become increasingly important as climate shifts.  Coffee farmers and the ASGM 

community serve as good examples since these are the two most practiced economic 

drivers in the area. Ideally, both communities desire enough water to continue their 

current operations and provide for their families. However, changing flow regimes will 

likely require collaboration.  

 

Figure 21: Relationship Between Water Availability and Quality 

 When water becomes scarce, its quality will also plummet as ASGM and coffee 

farming operations remain constant. These water quality issues do not only impact local 

members of the community but also millions of people downstream (Bedoya, 2009). For 

the ASGM community, it is vital for them to understand how their current operations 



59 

 

 

impact water quality in the area and how they can help ensure the quality of their local 

water resources does not plummet due to the future intensification of drought.  

Coffee farmers are at the highest risk when it comes to climate uncertainty and 

any slight changes in local weather patterns. This should be very concerning to 

stakeholders and researchers in the area since this industry currently makes up over 90 

percent of the local economy. As previously discussed, coffee farmers are very dependent 

on ideal temperature and precipitation conditions to produce good quality crops; with any 

changes in local weather phenomena greatly reducing their crop yield. There are 

documented instances where local coffee farmers have expressed concern with noticeable 

changes in local weather patterns, mentioning longer periods of drought and intensified 

storm events. These changes might explain the decreased quality and yield coffee farmers 

in the local area are currently experiencing. As periods of drought intensify, irrigation 

could be used to meet crop-water demand, but only if sufficient surface water supply and 

quality are provided. 

Supplemental irrigation from the San Juan River is not currently an option for 

coffee farmers due to rumored ASGM gold extraction and disposal techniques 

concerning the use of heavy metals such as mercury and cyanide. Coffee farming 

disposal techniques also threaten the quality of water in the San Juan, but further research 

needs to be done in this area to truly understand these impacts. If made available, using 

the San Juan River as a reliable source of irrigation for coffee farms during periods of 

extreme drought would greatly reduce the risk coffee farmers face from climate 
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uncertainty. Focusing efforts on this singular industry and ensuring coffee farming 

remains stable through all the changes brought forth by a changing climate is one way to 

ensure the entire community of Andes continues to thrive into the future. Increased 

periods of drought are not the only concern for community members, but so is the 

increased frequency and intensity of storm events. 

Instances of increased precipitation could cause decreased coffee yield and make 

the community susceptible to a higher rate of landslides. When analyzing the 

precipitation dataset using statistical analysis, the mean of the first ten years of 

precipitation data and the last ten years differ significantly. These results showcase there 

has been an increase in precipitation throughout Andes since 1979. If proper water 

management practices are not developed to allow adequate water runoff, this increased 

precipitation could greatly impact the coffee farming industry through overwatering 

coffee fields. Developing water retention systems during periods of high-intensity 

precipitation events could also lead to a safe alternative for a potential source of crop 

irrigation during periods of extreme drought.  

Current literature has noted that the intensification of storms has been shown to 

increase the probability of landslide occurrence throughout mountainous zones, 

especially in communities with poor water management practices (Guidicini, 1977; 

Haque, 2019; Kirschbaum, 2020; Ward, 2020). Landslides are a serious concern for 

people of the Andes community and have the potential to impact all members of the 
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community in a tremendous way. Further research can be done on the relationship 

between climate uncertainty and landslide mitigation in this area. 

The Importance of Implementing Forecasting Techniques to Help Address Climate 

Uncertainty in Small Communities. 

The skillful forecasts produced here hold the potential to inform actions of the 

Andes community, as they look to adapt to changing climate. Appropriately balancing 

lead time with forecast uncertainty can be a very difficult task for decision makers and 

modelers. As a forecast’s lead is increased, i.e., the expanding gap between the forecast 

issue date and the forecast period, the skill of the forecast generally falls.  Balancing lead 

and skill is a key consideration; longer lead times enable decision time, while on the other 

hand better information allows for more accurate preparations to be made.   

If forecasting techniques, such as the one applied throughout this work, are to 

support the management of essential resources (i.e., water management) in a community, 

public involvement is crucial. There is a need for researchers to engage multiple levels of 

stakeholders in the area to facilitate awareness and education on water availability issues 

brought forth by climate uncertainty. Stakeholder dialog and participation can help ensure 

members are receiving the information they desire and shape the services provided to the 

community. However, discussing these types of climate issues presents a unique 

challenge, especially when trying to communicate forecasts and statistical predictions to 

community members in different countries. 
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There is an opportunity to link this type of forecasting modeling with 

ethnographic data from members of the Andes community. This linkage is essential to 

see if/why people of the area need this type of modeling, and how it could be integrated 

for community use. In October 2021, research colleagues conducted 31 interviews with 

over 40 local stakeholders including academics, geologists, engineers, ASG miners, 

farmers people participating in both farming and ASGM, workers at ore processing 

plants, aquaculture producers, apiarists, aqueduct managers, leaders of community 

organizations, employees of coffee cooperatives, environmental NGOs, historians, 

librarians, panela producers, and more. The information gained through these interviews 

will be vital to the successful implementation of forecast modeling into a community to 

directly aid in landslide mitigation and/or water allocation policy.  

Models that are less complex have a better chance of being accepted by 

community members. For this reason, an ENSO Only model was developed for 

streamflow prediction in Andes. This simplified model mode explains nearly 60% of 

seasonal streamflow and outperforms climatology according to the RPSS metric.  As 

such, a forecast of this type could be used to provide a simple categorical forecast.  While 

the same forecast might not possess a sufficient deterministic skill to evoke uptake, the 

categorical accuracy could spur preparations, e.g., a forecast for above-normal 

streamflow could drive community preparations for flooding or landslide mitigation 

actions. 
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ENSO Only Forecasting Model 

Having an understanding the current ENSO 3.4 phase and strength can reduce 

fear of climate uncertainty in community members throughout Andes. Based on PCA, 

water availability in Andes is mostly influenced by the ENSO 3.4 global phenomena. To 

build the MLR, PCA, and PCA+CV the seven unique variable combinations were used 

(Table 9). If all of these variables are kept in the model, there would be a zero-month lead 

due to the use of August data as a predictor.  However, of these seven variables, Niño 

3.4_May explained over 85% of the variability in streamflow for the SOND season of 

interest. This means that if any member of the community is concerned with the amount 

of water available during SOND, understanding the May ENSO cycle and intensity of 

that cycle can give decision-makers a strong indication of water availability in SOND. 

Table 9: ENSO Only Predictor Variable Combinations 

Variable 
Variable 

Type 

Variable 

Description 

Lead Time This is Random 

Section Now 

1 

ENSO 

Niño 3.4_May 3-Month Lead 

Mean value, 1982-

2015 

 

2 Niño 3.4 _Jun 2-Month Lead 

3 Niño 3.4 _Jul 1-Month Lead 

4 Niño 3.4 _Aug 0-Month Lead 

5 
Niño 3.4 

_MJJA 

0-Month Lead 

6 Niño 3.4 _MJJ 1-Month Lead 

7 Niño 3.4 _MJ 2-Month Lead 

 

Using only ENSO 3.4 information, the PCA+CV model created is better at 

predicting above or below normal streamflow conditions in comparison to climatology. 
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The model can also explain streamflow during SOND with reasonable quality, i.e., 

MAPE = 24.52 (Table 5). Streamflow and precipitation amounts experienced in the 

Andes community are related to the current ESNO cycle and strength (Fig. 9); with 

extremes being associated with increased ENSO phase intensity.  

Due to this relationship with streamflow in Andes, it is important to understand 

how the ENSO 3.4 variable could be impacted by climate change. Positive ENSO 

anomaly is negatively related to precipitation and streamflow, meaning, during a positive 

phase of ENSO 3.4 (El Niño) there is less precipitation and streamflow available 

throughout the community in Andes. Research has recently been completed to analyze 

how climate change will impact the variability of sea surface temperature in the Niño 3.4 

region (Fig. 22). This research has shown that sea surface temperatures are expected to 

increase in variability throughout the Niño 3.4 region through the year 2100. For Andes, 

this projection is not positive, especially since this increase in Niño 3.4 variability will 

directly impact the strength of extremes in the Andes region (Fig. 9). During positive 

Niño 3.4 events, precipitation and water supply in the area are going to decrease, while 

the opposite is true of negative events. This finding makes advocacy for landslide 

mitigation and water policies including distribution, storage, and quality of water of 

extreme importance for future community readiness in Andes.  
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Figure 22: Niño 3.4 and Precipitation Predictions. Adopted from: NOAA Climate.gov.  

Even though water distribution policy and instances of extreme drought may be a 

concern in the late twentieth century, landslide risk poses a high threat right now. The 

statistical analysis, and MLR, PCA, and PCA+CV models suggest intensification is likely 

to make high flows, i.e., landslides, more of a current issue in Andes. While higher flows 

might alleviate supply and some quality concerns, it will require different collaborations 

to ensure economic and social productivity.  
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VII.   Conclusion 

Chapter Overview  

This chapter reviews the findings, discusses the significance, and provides insight 

into areas of future research.  

Review of Findings 

Forecasting can be a very helpful tool to facilitate conversations about local water 

policy and conservation efforts. Data have shown that the magnitude and frequency of 

extreme events have a direct impact on the amount of water available in the local 

community of Andes. To deconflict areas of future conflict when it comes to water 

resources, hindcast forecast modeling can be accurately used to grasp an understanding of 

how local water availability has been impacted in the past. Based on these models, 

forward-looking forecasts can be created to aid in water resource management adjusted 

for climate change. Understanding the current phase and strength of the Niño 3.4 cycle 

can greatly reduce uncertainty in local precipitation and streamflow patterns.  

The biggest challenge when using forecasts to understand climate uncertainty is 

engaging local stakeholders. Coffee farmers make up the largest percentage of the local 

economy and are the most climate-vulnerable group. So far, much of the local discourse 

and research has been focused on the ASGM community, its environmental impacts, and 

potential remediation techniques. These issues are important; however, due to the 

economic risk coffee farming destabilization brings to the community, these concerns of 

climate uncertainty and water policy need to be addressed promptly. The best solution 
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going forward is to engage all stakeholders, facilitate awareness and education on water 

resource management, and to support open dialog across many levels throughout the 

community such that all members can help shape local water management and sustain 

their ways of life into the future. 

Significance of Research 

This study was a win in both the testing of forecasting techniques and in 

providing modeling tools to aid the Andes community in reducing their current 

vulnerability to climate uncertainty when it comes to water resources. This research helps 

the individual community members and other researchers working in Andes by locating 

viable data. Before this research was completed, other researchers working in the area 

were unaware of any reliable streamflow, precipitation, or soil moisture data. This 

analysis shows that the use of globally gridded data is a reliable option of use for other 

researchers working in this area. This research can also give members of the Andes who 

are concerned with how climate change is going to impact their current operations a little 

more security if they know the current ENSO cycle phase and strength. This information 

alone is a strong predictor of how streamflow and precipitation in the area will be 

influenced. 

Future Research 

This research is an advancement for researchers working in Andes, Antioquia, 

Colombia on environmental pollution and remediation projects. Without data or a basic 

understanding of how water will be impacted due to climate uncertainty, remediation of 
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pollutants in the San Juan River or water allocation policies amongst intersectoral 

communities are near impossible. Even though this research provides a good starting 

point, it can still be improved. This model is built on hindcast data, but this process could 

be improved by making forward-looking forecasts to see how streamflow will be 

impacted in the future due to a changing climate. Also, if the community works to set up 

more reliable methods of data collection, the forecasting models completed in this 

analysis could be re-accomplished to see if using localized precipitation and soil moisture 

data makes a difference in the forecasting quality and prediction capability. Another 

option for future research in relation to the forecast modeling completed in this research 

is linking the outputs with sectoral models for the area. Lastly, research on how to 

communicate this information and important findings to members of the community in 

the right way can be completed.  
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Appendix 

Table 10: Variable Description for Expanded Predictor Mode 

Variable Variable Type Variable Title Variable Description 

1 

ENSO 

Niño 3.4_May 

Mean value, 1982-2015 

 

2 Niño 3.4 _Jun 

3 Niño 3.4 _Jul 

4 Niño 3.4 _Aug 

5 Niño 3.4 _MJJA 

6 Niño 3.4 _MJJ 

7 Niño 3.4 _MJ 

8 

SOI 

SOI_May 

9 SOI _Jun 

10 SOI _Jul 

11 SOI _Aug 

12 SOI _MJJA 

13 SOI _MJJ 

14 SOI _MJ 

15 

Precipitation 

Precip_May 

Globally gridded, Mean value, 1982-2015 

 

16 Precip _Jun 

17 Precip _Jul 

18 Precip _Aug 

19 Precip _MJJA 

20 Precip _MJJ 

21 Precip _MJ 

22 Soil Moisture SM_May 

23 

Difference: 

ENSO - SOI 

Dif_May 

Difference of Mean Values 

 

24 Dif_Jun 

25 Dif_Jul 

26 Dif_Aug 

27 Dif_MJJA 

28 Dif_MJJ 

29 Dif_MJ 
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Table 11: Variable Description for Top Predictor Mode 

Variable Variable Type Variable Title Variable Description 

1 ENSO Niño_MJJ Mean value, 1982-2015 

2 SOI SOI_Aug Mean value, 1982-2015 

3 Precipitation PRCP_Aug Globally gridded, Mean value, 1982-2015 

4 Soil Moisture SM_May Globally gridded, Mean value, 1982-2015 
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Figure 23: Heatmap Showing Correlation Between Variables for Basic Predictor Mode 



72 

 

 

Bibliography 

Aksoy, H. (2000). Use of gamma distribution in hydrological analysis. Turkish Journal of 

Engineering and Environmental Sciences, 24(6), 419-428. 

 

Alexander, S., Yang, G., Addisu, G., & Block, P. (2021). Forecast-informed reservoir 

operations to guide hydropower and agriculture allocations in the Blue Nile basin, 

Ethiopia. International Journal of Water Resources Development, 37(2), 208-233. 

 

Allan, R. P., and B. J. Soden (2008), Atmospheric warming and the amplification of 

precipitation extremes, Science, 321(5895), 1481–1484. 

 

Allison, E. H., Perry, A. L., Badjeck, M. C., Neil Adger, W., Brown, K., Conway, D., ... 

& Dulvy, N. K. (2009). Vulnerability of national economies to the impacts of 

climate change on fisheries. Fish and fisheries, 10(2), 173-196. 

 

Balmaseda, M. A., Davey, M. K., & Anderson, D. L. (1995). Decadal and seasonal 

dependence of ENSO prediction skill. Journal of Climate, 8(11), 2705-2715. 

 

Bazo, J., Singh, R., Destrooper, M. and Coughlan de Perez, E.: Pilot experiences in using 

seamless forecasts for early action: The “ready-set-go!” approach in the Red 

Cross, in Sub-seasonal to Seasonal Prediction, pp. 387–398, Elsevier., 2019. 

 

Bedoya, J., & Martinez, E. (2009). Air quality in the Aburrá Valley Antioquia-Colombia. 

Dyna, 76(158), 7-15. 

 

Beyene, A., Kassahun, Y., Addis, T., Assefa, F., Amsalu, A., Legesse, W., ... & Triest, L. 

(2012). The impact of traditional coffee processing on river water quality in 

Ethiopia and the urgency of adopting sound environmental 

practices. Environmental monitoring and assessment, 184(11), 7053-7063. 

 

Block, P. and Rajagopalan, B.: Statistical – dynamical approach for streamflow modeling 

at Malakal, Sudan, on the White Nile River, J. Hydrol. Eng., 185–196, 

doi:10.1061/(ASCE)1084-0699(2009)14:2(185), 2009. 

 



73 

 

 

Block, P. J., Souza Filho, F. A., Sun, L., & Kwon, H. H. (2009). A streamflow 

forecasting framework using multiple climate and hydrological models 1. JAWRA 

Journal of the American Water Resources Association, 45(4), 828-843. 

 

Bombardi, R. J., Carvalho, L. M., Jones, C., & Reboita, M. S. (2014). Precipitation over 

eastern South America and the South Atlantic Sea surface temperature during 

neutral ENSO periods. Climate Dynamics, 42(5-6), 1553-1568. 

 

Bosselmann, A. S., Dons, K., Oberthur, T., Olsen, C. S., Ræbild, A., & Usma, H. (2009). 

The influence of shade trees on coffee quality in small holder coffee agroforestry 

systems in Southern Colombia. Agriculture, ecosystems & environment, 129(1-3), 

253-260. 

 

Cai, X. (2008). Water stress, water transfer and social equity in Northern China—

Implications for policy reforms. Journal of Environmental Management, 87(1), 

14-25. 

 

Célleri, R., Buytaert, W. O. U. T. E. R., De Bièvre, B. E. R. T., Tobón, C., Crespo, P., 

Molina, J., & Feyen, J. (2010). Understanding the hydrology of tropical Andean 

ecosystems through an Andean Network of Basins. IAHSAISH Publication, 336, 

209-212.Chambers, J. C., Mullick, S. K., & Smith, D. D. (1971). How to choose 

the right forecasting technique. Harvard University, Graduate School of Business 

Administration. 

 

Chen, H. C., Tseng, Y. H., Hu, Z. Z., & Ding, R. (2020). Enhancing the ENSO 

predictability beyond the spring barrier. Scientific reports, 10(1), 1-12. 

 

Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D. P., & Palmer, R. N. (2004). 

The effects of climate change on the hydrology and water resources of the 

Colorado River basin. Climatic change, 62(1), 337-363. 

 

Cutter, Susan L. & Sahar Derakhshan (2020) Temporal and spatial change in disaster 

resilience in US counties, 2010–2015, Environmental Hazards, 19:1, 10-29, DOI: 

10.1080/17477891.2018.1511405 

 



74 

 

 

Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on 

indigenous Arabica coffee (Coffea arabica): predicting future trends and 

identifying priorities. PLoS ONE 7:e47981. 

https://doi.org/10.1371/journal.pone.0047981  

 

DaMatta FM et al (2016) Sustained enhancement of photosynthesis in coffee trees grown 

under free-air CO2 enrichment conditions: disentangling the contributions of 

stomatal, mesophyll, and biochemical limitations. J Exp Bot 67:341–352. 

https://doi.org/10.1093/jxb/erv463 

 

Delorit, J.,  E. C. G. Ortuya, and P. Block. (2017). “Evaluation of model-based seasonal 

streamflow and water allocation forecasts for the Elqui Valley, Chile,” Hydrology 

and Earth System Sciences; Katlenburg-Lindau, vol. 21, no. 9, pp. 4711–4725, 

doi: http://dx.doi.org.afit.idm.oclc.org/10.5194/hess-21-4711-2017 

 

Didier, M., Broccardo, M., Esposito, S., & Stojadinovic, B., (2018) A compositional 

demand/supply framework to quantify the resilience of civil infrastructure 

systems (Re-CoDeS), Sustainable and Resilient Infrastructure, 3:2, 86-102, DOI: 

10.1080/23789689.2017.1364560 

 

Ficke, A. D., Myrick, C. A., & Hansen, L. J. (2007). Potential impacts of global climate 

change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17(4), 

581-613. 

 

Fischer, G., Shah, M., van Velthuizen, H., 2002. Climate Change and Agricultural 

Vulnerability. International Institute of Applied Systems Analysis, Vienna. 

 

Fowler, H. J., & Ekström, M. (2009). Multi‐model ensemble estimates of climate change 

impacts on UK seasonal precipitation extremes. International Journal of 

Climatology: A Journal of the Royal Meteorological Society, 29(3), 385-416. 

 

Frank, E., Eakin, H., & López-Carr, D. (2011). Social identity, perception and motivation 

in adaptation to climate risk in the coffee sector of Chiapas, Mexico. Global 

environmental change, 21(1), 66-76. 



75 

 

 

Gay, C., Estrada, F., Conde, C., Eakin, H., & Villers, L. (2006). Potential impacts of 

climate change on agriculture: a case of study of coffee production in Veracruz, 

Mexico. Climatic Change, 79(3), 259-288. 

 

GOA. (2020). Climate Resilience. United States Government Accountability Office. 

GAO-21-46. 

 

Goto, Y. B., & Fukunaga, E. T. (1956). Coffee: harvesting and processing for top quality 

coffee. 

 

Gottesfeld, P., Tirima, S., Anka, S.M., Fotso, A., Nota, M.M., 2019. Reducing lead and 

silica dust exposures in small-scale mining in Northern Nigeria. Ann. Work Expo. 

Health 63, 1–8. https://doi.org/10.1093/annweh/wxy095.Guidicini, G., & Iwasa, 

O. Y. (1977). Tentative correlation between rainfall and landslides in a humid 

tropical environment. Bulletin of the International Association of Engineering 

Geology-Bulletin de l'Association Internationale de Géologie de 

l'Ingénieur, 16(1), 13-20. 

 

Guidicini, G., & Iwasa, O. Y. (1977). Tentative correlation between rainfall and 

landslides in a humid tropical environment. Bulletin of the International 

Association of Engineering Geology-Bulletin de l'Association Internationale de 

Géologie de l'Ingénieur, 16(1), 13-20. 

 

Hamlet, A. F., Huppert, D., & Lettenmaier, D. P. (2002). Economic value of long-lead 

streamflow forecasts for Columbia River hydropower. Journal of Water 

Resources Planning and Management, 128(2), 91-101. 

 

Hapuarachchi, H. A. P., Kabir, A., Zhang, X. S., Kent, D., Bari, M. A., Tuteja, N. K., ... 

& Ahmad, Z. (1815). Performance evaluation of the national 7-day water forecast 

service. In Proceedings of 22nd International Congress on Modelling and 

Simulation (Vol. 1821). 

 

Harriman, L.: Cyclone Phailin in India: Early warning and timely actions saved lives, 

Environ. Dev., 9, 93–100, doi:10.1016/j.envdev.2013.12.001, 2014. 



76 

 

 

Harrod, C., Ramírez, A., Valbo-Jørgensen, J., & Funge-Smith, S. (2019). How climate 

change impacts inland fisheries. Impacts of climate change on fisheries and 

aquaculture, 375. 

 

Haque, U., Da Silva, P. F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., ... & Glass, G. E. 

(2019). The human cost of global warming: Deadly landslides and their triggers 

(1995–2014). Science of the Total Environment, 682, 673-684. 

 

Hellmuth, M. E., Moorhead, A., Thomas, M. C., & Williams, J. (2007). Climate risk 

management in Africa: Learning from practice. 

 

Hitz, S., & Smith, J. (2004). Estimating global impacts from climate change. Global 

Environmental Change, 14(3), 201-218. 

 

Informacion ´ del Municipio [WWW Document], 2018. Alcaldia Andes (accessed 20 

May 2020). http://www.andes-

antioquia.gov.co/MiMunicipio/Paginas/Informacion-de l-Municipio.aspx 

 

Jayakumar M, Rajavel M, Surendran U, Gopinath G, Ramamoorthy K (2017) Impact of 

climate variability on coffee yield in India—with a micro-level case study using 

long-term coffee yield data of humid tropical Kerala. Clim Chang 145:335–349. 

https://doi.org/10.1007/s10584-017-2101-2 

 

Jimenez Cisneros, B. E., T. Oki, N. W. Arnell, G. Benito, J. G. Cogley, P. Doll, T. Jiang, 

and S. S. Mwakalila (2014), Freshwater resources, in € Climate Change 2014: 

Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. 

Contribution of Working Group II to the Fifth Assessment Report of the 

Intergovernmental Panel of Climate Change, edited by C. B. Field et al., pp. 229–

269, Cambridge Univ. Press, Cambridge, U. K. 

 

Johansen, C., Horney, J., & Tien, I. (2017). Metrics for evaluating and improving 

community resilience. Journal of Infrastructure Systems, 23(2), 04016032. 

 

Joshi, H. C., & Sukumaran, P. K. (1991). Water pollution investigation in the River 

Tungabhadra near Harikar, Karnataka. Indian Journal of Animal Sciences, 61(2), 

230-234. 



77 

 

 

Kabir, A., Hasan, M., Hapuarachchi, P., Zhang, S., Liyanage, J., Gamage, N., Laugesen, 

R., Plastow, K., MacDonald, A., Bari, M., Tuteja, N., Robertson, D., Shrestha, D., 

Bennett, J.C., 2018. Evaluation of multi-model rainfall forecasts for the national 

7-day ensemble streamflow forecasting service, 2018. In: Hydrology and Water 

Resources Symposium (HWRS 2018): Water and Communities. Engineers 

Australia, Melbourne, pp. 393–406. In: Hydrology and Water Resources 

Symposium (HWRS 2018): Water and Communities. Melbourne: Engineers 

Australia, 2018: 393- 406. 

 

Keating, C., Lee, D., Bazo, J., & Block, P. (2021). Leveraging multi-model season-ahead 

streamflow forecasts to trigger advanced flood preparedness in Peru. Natural 

Hazards and Earth System Sciences, 21(7), 2215-2231. 

 

Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., & Senior, C. A. 

(2014). Heavier summer downpours with climate change revealed by weather 

forecast resolution model. Nature Climate Change, 4(7), 570-576. 

 

Khan, U., Cook, F. J., Laugesen, R., Hasan, M. M., Plastow, K., Amirthanathan, G. E., ... 

& Tuteja, N. K. (2020). Development of catchment water quality models within a 

realtime status and forecast system for the Great Barrier Reef. Environmental 

Modelling & Software, 132, 104790. 

 

Kirschbaum, D., Kapnick, S. B., Stanley, T., & Pascale, S. (2020). Changes in extreme 

precipitation and landslides over High Mountain Asia. Geophysical Research 

Letters, 47(4), e2019GL085347. 

 

Kurunç, A., Yürekli, K., & Cevik, O. (2005). Performance of two stochastic approaches 

for forecasting water quality and streamflow data from Yeşilιrmak River, 

Turkey. Environmental Modelling & Software, 20(9), 1195-1200. 

 

Lin BB (2007) Agroforestry management as an adaptive strategy against potential 

microclimate extremes in coffee agriculture. Agric For Meteorol 144:85–94. 

https://doi.org/10.1016/j.agrformet.2006.12.009 

 



78 

 

 

Mason, S. J., & Stephenson, D. B. (2008). How do we know whether seasonal climate 

forecasts are any good?. In Seasonal Climate: Forecasting and Managing 

Risk (pp. 259-289). Springer, Dordrecht. 

 

Mortensen, E., Wu, S., Notaro, M., Vavrus, S., Montgomery, R., De Piérola, J., ... & 

Block, P. (2018). Regression-based season-ahead drought prediction for southern 

Peru conditioned on large-scale climate variables. Hydrology and earth system 

sciences, 22(1), 287-303. 

 

Murtinho, F., Tague, C., De Bièvre, B., Eakin, H., & Lopez-Carr, D. (2013). Water 

scarcity in the Andes: a comparison of local perceptions and observed climate, 

land use and socioeconomic changes. Human ecology, 41(5), 667-681. 

 

Naranjo-Merino, C. A., Ortíz-Rodriguez, O. O., & Villamizar-G, R. A. (2018). Assessing 

green and blue water footprints in the supply chain of cocoa production: a case 

study in the northeast of Colombia. Sustainability, 10(1), 38. 

 

Neelin, J. D., Battisti, D. S., Hirst, A. C., Jin, F. F., Wakata, Y., Yamagata, T., & Zebiak, 

S. E. (1998). ENSO theory. Journal of Geophysical Research: Oceans, 103(C7), 

14261-14290. 

 

O’Brien, R. M., Phelan, T. J., Smith, N. M., & Smits, K. M. (2021). Remediation in 

developing countries: A review of previously implemented projects and analysis 

of stakeholder participation efforts. Critical Reviews in Environmental Science 

and Technology, 51(12), 1259-1280. 

 

O'Connor, R. E., Bard, R. J., & Fisher, A. (1999). Risk perceptions, general 

environmental beliefs, and willingness to address climate change. Risk 

analysis, 19(3), 461-471. 

 

Olmstead, S. M. (2010). The economics of managing scarce water resources. Review of 

Environmental Economics and policy, 4(2), 179-198. 

 

Olmstead, S. M. (2014). Climate change adaptation and water resource management: A 

review of the literature. Energy Economics, 46, 500-509. 

 



79 

 

 

Pham, Y., Reardon-Smith, K., Mushtaq, S., & Cockfield, G. (2019). The impact of 

climate change and variability on coffee production: a systematic 

review. Climatic Change, 156(4), 609-630. 

 

Rajaee, M., Obiri, S., Green, A., Long, R., Cobbina, S., Nartey, V., Buck, D., Antwi, E., 

Basu, N., 2015. Integrated assessment of artisanal and small-scale gold mining in 

Ghana—part 2: natural sciences review. Int. J. Environ. Res. Public Health 12, 

8971–9011. https://doi.org/10.3390/ijerph120808971.Regonda, S. K., 

Rajagopalan, B., & Clark, M. (2006). A new method to produce categorical 

streamflow forecasts. Water resources 

research,                                                         42(9). 

 

Rød, B., Lange, D., Theocharidou, M., & Pursiainen, C. (2020). From risk management 

to resilience management in critical infrastructure. Journal of Management in 

Engineering, 36(4), 04020039. 

 

Rosenzweig, C., Hillel, D., 1998. Climate Change and the Global Harvest: Potential 

Impacts of the Greenhouse Effect on Agriculture. Oxford University Press, New 

York 

 

Sabzi, H. Z., King, J. P., & Abudu, S. (2017). Developing an intelligent expert system for 

streamflow prediction, integrated in a dynamic decision support system for 

managing multiple reservoirs: A case study. Expert systems with applications, 83, 

145-163. 

 

Sadoff, C., and M. Muller (2009), Water Management, Water Security and Climate 

Change Adaptation: Early Impacts and Essential Responses, Global Water 

Partnership, Stockholm. 

 

Salaam-Blyther, T. (2012). Global access to clean drinking water and sanitation: US and 

international programs. 

 

Schwartz, M., Smits, K., Smith, J., Phelan, T., & Baena, O. J. R. (2021). Incorporating 

positive deviance into comprehensive remediation projects: A case study from 

artisanal and small-scale gold mining in the municipality of Andes, 

Colombia. Environmental Science & Policy, 123, 142-150. 



80 

 

 

 

Smith, J.B., Schellnhuber, H.J., Mirza, M.Q., Fankhauser, S., Leemans, R., Erda, L., 

Ogallo, L., Pittock, B., Richels, R., Rosenzweig, C., Safriel, U., Tol, R.S.J., 

Weyant, J., Yohe, G., 2001. Vulnerability to climate change and reasons for 

concern: a synthesis. In: McCarthy, J., Canziana, O., Leary, N., Dokken, D., 

White, K. (Eds.), Climate Change 2001: Impacts, Adaptation, and Vulnerability. 

Cambridge University Press, New York, pp. 913–967. 

 

Smits, K. M., O'Brien, R. M., Smith, N., & Phelan, T. J. (2020, December). Integrating 

scientific and local knowledge to enhance remediation efficacy using community-

informed conceptual site models. In AGU Fall Meeting Abstracts (Vol. 2020, pp. 

H031-0010). 

 

Solomon, S., Manning, M., Marquis, M., & Qin, D. (2007). Climate change 2007-the 

physical science basis: Working group I contribution to the fourth assessment 

report of the IPCC (Vol. 4). Cambridge university press. 

 

Souza Filho, F.A. and U. Lall, 2003. Seasonal to Interannual Ensemble Streamflow 

Forecasts for Ceara, Brazil: Applications of a Multivariate, Semiparametric 

Algorithm. Water Resources Research 39(11):1307, doi: 

10.1029/2002WR001373.  

 

Stakhiv, E. Z. (1998). Policy implications of climate change impacts on water resources 

management. Water Policy, 1(2), 159-175. 

 

Tavares PD, Giarolla A, Chou SC, Silva AJD, Lyra AD (2018) Climate change impact on 

the potential yield of Arabica coffee in Southeast Brazil. Reg Environ Chang 

18:873–883. https://doi.org/10.1007/s10113-017-1236-z 

 

TCI (2016) A brewing storm: the climate change risks to coffee. The Climate Institute. 

http://www.limateinstitute.org.au/coffee.html. Accessed 05/07/2019 

 

Tirima, S., Bartrem, C., von Lindern, I., von Braun, M., Lind, D., Anka, S.M., Abdullahi, 

A., 2016. Environmental remediation to address childhood lead poisoning 

epidemic due to artisanal gold mining in Zamfara, Nigeria. Environ. Health 

Perspect. 124, 1471–1478. https://doi.org/10.1289/ehp.1510145. 



81 

 

 

 

Trenberth, K. E., Caron, J. M., Stepaniak, D. P., & Worley, S. (2002). Evolution of El 

Niño–Southern Oscillation and global atmospheric surface temperatures. Journal 

of Geophysical Research: Atmospheres, 107(D8), AAC-5. 

UN Environment, 2019. Global Mercury Assessment 2018. Geneva, Switzerland. 

https://www.unep.org/resources/publication/global-mercury-assessment-2018 

(accessed 12 Dec 2021). 

 

Vargas-Pineda, O. I., Trujillo-González, J. M., & Torres-Mora, M. A. (2020). Supply–

demand of water resource of a basin with high anthropic pressure: case study 

Quenane-Quenanito Basin in Colombia. Air, Soil and Water Research, 13, 

1178622120917725. 

 

Vizy, E. K. and Cook, K. H. (2007). Relationship between Amazon and high Andes 

rainfall, J. Geophys. Res.-Atmos., 112, 

D07107, https://doi.org/10.1029/2006JD007980.  

 

Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., Ruiter, M. C. D., Duncan, M. J., 

... & Winsemius, H. C. (2020). Natural hazard risk assessments at the global 

scale. Natural Hazards and Earth System Sciences, 20(4), 1069-1096. 

 

Wilkinson, E., Weingärtner, L., Choularton, R., Bailey, M., Todd, M., Kniveton, D. and 

Venton, C. C.: Forecasting hazards, averting disasters. Implementing forecast-

based early action at scale, London., 2018. 

 

Yan, H., Sun, L., Wang, Y., Huang, W., Qiu, S., & Yang, C. (2011). A record of the 

Southern Oscillation Index for the past 2,000 years from precipitation 

proxies. Nature Geoscience, 4(9), 611-614. 

 

Zhu, J., Wu, P., Chen, H., Zhou, L., & Tao, Z. (2018). A hybrid forecasting approach to 

air quality time series based on endpoint condition and combined forecasting 

model. International journal of environmental research and public health, 15(9), 

1941. 

 



82 

 

 

Zimmerman, B. G., Vimont, D. J., & Block, P. J. (2016). Utilizing the state of ENSO as a 

means for season‐ahead predictor selection. Water resources research, 52(5), 

3761-3774. 

 

 

 



 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No.  074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.   Send comments 
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, 
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, 
VA  22202-4302.   Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply 
with a collection of information if it does not display a currently valid OMB control number.    

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY)

24-03-2022
2. REPORT TYPE

Master’s Thesis  

3. DATES COVERED (From – To)

September 2020 – March 2022 

TITLE AND SUBTITLE 

The Impacts of Climate Uncertainty on Streamflow in Andes, 

Antioquia, Colombia. 

5a.   CONTRACT NUMBER 

5b.   GRANT NUMBER 

5c.   PROGRAM ELEMENT NUMBER 

6. AUTHOR(S)

Roberts, Kristen R., 2nd Lt, USAF

5d.   PROJECT NUMBER 

5e.   TASK NUMBER 

5f.   WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology

Graduate School of Engineering and Management (AFIT/ENY)

2950 Hobson Way, Building 640

WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
REPORT NUMBER

   AFIT-ENV-MS-21-M-252 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Civil Engineering Center

2261 Hughes Ave, Ste.155

JBSA Lackland, TX 78236-9853

10.  SPONSOR/MONITOR’S
ACRONYM(S)

AFCEC 

11.  SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRUBTION STATEMENT A.  APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

This material is declared a work of the U.S.  Government and is not subject to copyright 
protection in the United States. 

14. ABSTRACT

Natural hazards, such as hurricanes, wildfires, floods, and droughts impact human systems that rely on
predictable patterns in the natural elements with which they interact. These events threaten communities
everywhere, and humanity continually seeks to adapt. Skillful prediction of the impacts of climate change
on linked, human-natural systems, like surface water resources, can help ensure physical risks within
vulnerable communities are mitigated, resource sustainability is maximized, and intersectoral markets
continue to contribute to socioeconomic stability. Due to water resources being a primary conduit through
which climate uncertainty impacts people, economies, and ecosystems, its study is worthy of
investigation; particularly, where those resources are uncertain and demanded by a variety of competitive
users. This work evaluates a season-ahead statistical prediction model of growing season streamflow
(September – December) in Andes, Antioquia, Colombia, against a suite of global and local predictor
variables: precipitation, soil moisture, Niño 3.4 sea-surface temperature anomaly, and Southern
Oscillation Index anomaly. Skillful results, which are defined as streamflow forecasts that outperform a
specified climatological baseline, are produced for the models when analyzing extreme streamflow
events (r2 = 0.77, mean absolute percentage error = 21.87, ranked probability skill score = 0.21). Even a
lean model, consisting of just Niño 3.4 as a predictor, produces skillful results (r2 = 0.37, mean absolute
percentage error = 21.98, ranked probability skill score = 0.087). Viewed cumulatively, these results
suggest streamflow predictions and forecasts can identify the role of global and local climate on
communities, inform how and when changes should be implemented, and justify stakeholder decisions.

15. SUBJECT TERMS

16.  SECURITY CLASSIFICATION 
OF:

17.  LIMITATION 
OF 
     ABSTRACT 

UU 

18.  
NUMBER 
OF PAGES 

95 

19a.   NAME OF RESPONSIBLE PERSON 

Lt Col Justin D.  Delorit, AFIT/ENV 
a.  
REPORT 

U 

b.  
ABSTRACT 

U 

c. THIS 
PAGE 

U 

19b.   TELEPHONE NUMBER (Include area code) 

(937) 255-3636, ext.  4826

(justin.delorit@afit.edu)
Standard Form 298 (Rev.  8-98) 
Prescribed by ANSI Std.  Z39-18


	The Impacts of Climate Uncertainty on Streamflow in Andes, Antioquia, Colombia
	Recommended Citation

	tmp.1658419238.pdf.3m6kP

