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Abstract
Recurrent neural networks (RNNs) are a class of artificial neural networks capable of learning
complicated nonlinear relationships and functions from a set of data. Catchment scale daily
rainfall–runoff relationship is a nonlinear and sequential process that can potentially benefit from
these intelligent algorithms. However, RNNs are perceived as being difficult to parameterize, thus
translating into significant epistemic (lack of knowledge about a physical system) and aleatory
(inherent randomness in a physical system) uncertainties in modeling. The current study
investigates a variational Bayesian dropout (or Monte Carlo dropout (MC-dropout)) as a
diagnostic approach to the RNNs evaluation that is able to learn a mapping function and account
for data and model uncertainty. MC-dropout uncertainty technique is coupled with three different
RNN networks, i.e. vanilla RNN, long short-term memory (LSTM), and gated recurrent unit
(GRU) to approximate Bayesian inference in a deep Gaussian noise process and quantify both
epistemic and aleatory uncertainties in daily rainfall–runoff simulation across a mixed urban and
rural coastal catchment in North Carolina, USA. The variational Bayesian outcomes were then
compared with the observed data as well as with a well-known Sacramento soil moisture
accounting (SAC-SMA) model simulation results. Analysis suggested a considerable improvement
in predictive log-likelihood using the MC-dropout technique with an inherent input data Gaussian
noise term applied to the RNN layers to implicitly mitigate overfitting and simulate daily
streamflow records. Our experiments on the three different RNN models across a broad range of
simulation strategies demonstrated the superiority of LSTM and GRU approaches relative to the
SAC-SMA conceptual hydrologic model.

1. Introduction

Recurrent neural networks (RNNs) achieve state-of-
the art performance on a wide range of sequence pre-
diction tasks such as time series data (e.g. Gal and
Ghahramani 2016a). These approaches are a class
of artificial neural networks with a feedback loop
that allows the algorithm to build up memory to
process arbitrary sequences of inputs-output. RNNs
are particularly suitable for modeling dynamical sys-
tems as they operate on input information as well
as a trace of previously acquired information (due

to recurrent connections) allowing for direct pro-
cessing of temporal dependencies (e.g. Mirikitani and
Nikolaev 2010).

The three widely used RNN architectures are
the vanilla RNN (or simple RNN), long short-term
memory (LSTM), and gated recurrent unit (GRU).
Vanilla RNN uses a trained backpropagation through
time (BPTT; Werbos 1990) that may lead to vanish-
ing gradient problem for longer sequences of data
training. LSTM networks are designed to overcome
this shortcoming by storing information for longer
periods of time (Werbos 1990). LSTMs are comprised
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of cells which contain gates responsible for learn-
ing which data in a given sequence should be kept
and which data can be forgotten (Hochreiter and
Schmidhuber 1997). To simplify LSTMalgorithm, the
GRU was recently introduced by Cho et al (2014) to
merge thememory state and hidden state into a single
hidden state and combine the input and forget gates
into an update gate. Since GRUs have fewer para-
meters, convergence is achieved quicker than LSTMs;
nevertheless, GRUs contain sufficient gates and states
for long-term memory retention (e.g. Werbos 1990).

Despite significant progress in the development
of RNNs, limited studies have been focused on the
application of them in watershed modeling studies.
Kratzert et al (2018) is among the first studies that
modeled the rainfall–runoff process using the LSTM
for the contiguous United States (CONUS) and com-
pared the results with the well-known Sacramento
soil moisture accounting (SAC-SMA) model. An
excellent application of the LSTM, so-called entity-
aware-LSTM, is proposed by Kratzert et al (2019)
with a capability for intelligent learning of catch-
ment similarities as a feature layer. More recently,
Feng et al (2020), tested a flexible procedure based on
the LSTM, namely data integration, to simulate dis-
charge across the CONUS. Their result revealed that
the LSTM performed well in mountainous or snow-
dominated regions while it is less capable for the
regions with low discharge volumes and inter-annual
storage variability. Jiang et al (2020) proposed a deep
learning (DL) architecture by identifying physical
approaches such as temporal dynamic geoscientific
models as RNN layers to enhance AI geoscientific
awareness. Their illustrative case of runoff modeling
across the conterminous US demonstrates that the
physics-aware DLmodel has enhanced runoff predic-
tion accuracy and robust transferability for inferring
unobserved processes. In addition, Feng et al (2021)
proposed a novel DL input-selection ensemble model
that couples methods with different input options
and integrate different datasets such as satellite-based
soil moisture product to improve streamflow mod-
eling robustness in data scares regions. Their pro-
posed ML model proved to be the best available tool
for ungauged basin applications. Concurrently, Rah-
mani et al (2021) developed an LSTM architecture as
a basin-centric lumped daily stream water temper-
ature model, which was trained over 118 data-rich
basins with no major dams in the conterminous US.
Their results indicated that strong relationships exist
between basin-averaged forcing variables, catchment
attributes, and stream water temperature that can be
simulated by a single model trained by data on the
continental scale.

Most of the aforementioned studies viewed RNNs
as a deterministic function, and as a result direct
optimization (without complexity control) of these
algorithms may lead to mediocre results due to

uncertainty. One reason for this is, the parameter
(weight) estimation involves inversion of a non-
linear system (here catchment system) from noisy
data which typically is ill-posed (e.g. Casdagil 1989,
Haykin and Principe 1998). In this situation, noises
might exist within observations and measurements
that are referred to as data uncertainties (also called
aleatoric uncertainty, see Kiureghian and Ditlevsen
2009). In addition, there are many situations where
uncertainties arise from the RNN structure choice
and model parameters. This is referred to as model
uncertainty or epistemic uncertainty. The stand-
ard approach to tackling ill-posed problems (both
aleatoric and epistemic uncertainties) is by means
of applying Bayesian approaches to modeling pro-
cess. To best of our knowledge, very few studies
have addressed the uncertainties in the RNNs sim-
ulations. For example, Zhu et al (2021) investig-
ated two strategies to couple an LSTM with Gaus-
sian processes (GPs) for drought forecasting. They
used LSTM to parameterize a GP as well as a Gaus-
sian post-processor. Inspiring by Kendall and Gal
(2017), Fang et al (2020) used Monte Carlo dro-
pout (MC-dropout) to simulate soil moisture and the
associated uncertainty across CONUS. Their result
revealed that MC-dropout provides a good estima-
tion of predictive error in reproducing soil moisture
dynamics recorded by the soil moisture active passive
mission.

The current study used vanilla RNN, LSTM, and
GRU to predict daily rainfall–runoff time series of
a nonlinear and complex coastal plain drainage sys-
tem. The motivation to use these models is related
to the fact that these networks are properly set up
with slightly different to form a regression model for
time series prediction problems. The layers in the
RNN networks are utilized to model the relationship
between rainfall–runoff using the Bayes information
of the weights updated following a heuristic approach
to adjust and update the number of iterations of the
RNNs. The goal is to develop such practical vari-
ational Bayesian inference to reason about uncer-
tainty in rainfall–runoff simulation.Here, we coupled
RNNs with variational Bayesian inference that is
applied before RNN’s weight parameters, mathem-
atically equivalent to an approximation to the prob-
abilistic GP model (marginalized over its covariance
function parameters; see Damianou and Lawrence
2013). This probabilistic view of RNN simulation
offers confidence bounds for watershed simulation
analysis that hydrologists would rely on to analyze the
data and make reliable simulation. The RNNs res-
ults were eventually compared with the well-known
SAC-SMA model to determine the degree of RNN
simulation success compared to a conceptual rainfall–
runoff transformation model. We would like to stress
that no simplifying assumptions are made on the
use of variational dropout inference, and that the
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results derived are applicable to any network architec-
ture that makes use of dropout exactly as it appears
in rainfall–runoff applications. We showed that the
dropout objective, in effect, minimizes the Kullback–
Leibler (KL) divergence between an approximate dis-
tribution and the posterior of a GP (marginalized
over its finite rank covariance function parameters).

The current study is organized as follows. In
section 2, the study area and the data are discussed.
This follows with a description of the RNN set up,
variational Bayesian dropout approach, and the pro-
posed RNNs design for the study region. Section 3
presents the results of streamflow simulation, para-
meter sensitivity, robustness and feature ranking,
and uncertainties. Finally, the conclusions and future
work are presented in section 4.

2. Methodology

2.1. Study area and data
The Cape Fear River Basin (CFRB) is the largest
basin in North Carolina (NC), USA, with an area of
>9000 square miles. Major tributaries of this basin
include the Deep River, the Haw River, the North-
east Cape Fear River, the Black River, and the South
River. These river systems converge toward the coastal
region to form a 30 mile-long estuary before flow-
ing into the Atlantic Ocean at the Cape Fear. The
Cape Fear supplies water to some of the fastest-
growing counties in the US; roughly one in five
North Carolinians gets their drinking water from
the Cape Fear, including residents of Greensboro,
Fayetteville, and Wilmington. The focus of this study
is on the northeast portion of CFRB which drains
1714.70 square miles (4441.1 km2) of CFRB, receives
about 53.8 in year−1 of precipitation on average, has
a wetness index of 593.72 and is about 19% fores-
ted (figure 1). The Northeast Cape Fear River rises
about 1 mile southeast of Mount Olive, NC inWayne
County and approximately 10 mi (16 km) south of
Goldsboro and then flows south to the Cape Fear
River at Wilmington, NC. On its course, it flows
past Albertson, Hallsville, and Chinquapin. In Pen-
der County near the Atlantic coast, it passes along the
west side of Angola Swamp and Holly Shelter Swamp.
It joins the Cape Fear River on the north end ofWilm-
ington, forming an estuary that emerges at Cape Fear.
The lower 50 mile (80 km) of the river is tidal.

In this study, daily streamflow records were
retrieved from Daymet gridded dataset (Gauge num-
ber: 02108000) at the Northeast CFRB near Chin-
quapin in NC during 1980–2014. The collected data
contains catchment aggregated (lumped) meteorolo-
gical forcing data and observed 24 h daily stream-
flow. All catchment attributes used in this study were
derived from gridded data products (Addor et al
2017) that include precipitation, short wave down-
ward radiation, maximum and minimum temperat-
ure, and humidity. We employed the Daymet dataset

since it has the most accurate spatial resolution (1 km
grid resolution) as a basis for calculating the catch-
ment averages and all available meteorological input
variables.

2.2. RNNmethods
RNNs are sequence-based models for time series data
prediction (e.g. Gal and Ghahramani 2016a). The
model’s input is a sequence of data where at each time
step a simple neural network (RNN unit) is applied
to a single dataset, as well as to the network’s out-
put from the previous time step. RNNs are power-
ful tools that showed excellent performance for many
modeling and prediction tasks. Here we implemen-
ted vanilla RNN, LSTM, and GRU architectures. The
training process of the three RNNs were adapted
using BPTT, a procedure similar to the classical back
propagation (BP; Werbos 1990). The training pro-
cesses are as follows: First, the output values of hid-
den cells were calculated according to the forward
calculation method. Second, the error values of hid-
den layer were calculated on the basis of BP of time
step and network structure. Furthermore, the gradi-
ents of each weight were computed according to the
corresponding error terms. Finally, the weight coef-
ficients were updated by adaptive moment (Adam;
Kingma and Ba 2014) estimation algorithm. Similar
to a BP neural network, the number of iterations was
one of the main criteria affecting the model perform-
ance. The mathematical functions of vanilla RNN,
LSTM, and GRU architectures are compared with the
SAC-SMA model that are explained with respect to
their mathematical function in supporting informa-
tion section).

2.3. Variational Bayesian dropout with a Gaussian
prior
Bayesian probability theory offers mathematically
grounded tools to reason about model uncertainty
(e.g. Gal and Ghahramani 2016a). Indeed, by extend-
ing the mathematically grounded theory of RNNs
with Bayesian theory, both epistemic and aleatoric
uncertainties present in the data and the model can
be captured.With this, not only comparable perform-
ance to current state-of-the-art results in rainfall–
runoff simulation can be reached, but also the quality
of the predictions can be assessed by their predict-
ive uncertainty. Variational Bayesian methods are a
family of techniques for approximating intractable
integrals arising in Bayesian inference and machine
learning. They are typically used in complex statist-
ical models consisting of observed variables as well as
unknown parameters and latent variables. As typical
in Bayesian inference, the parameters and latent vari-
ables are grouped together as unobserved variables.
Variational Bayesian methods are primarily used for
two purposes: (a) to provide an analytical approxim-
ation to the posterior probability of the unobserved
variables, in order to do statistical inference over these
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Figure 1. The Northeast CFRB located in NC with a slope of >50% in upland and a gentle slope in the downstream portion.

variables; (b) to derive a lower bound for the mar-
ginal likelihood of the observed data (i.e. themarginal
probability of the data given the model, with mar-
ginalization performed over unobserved variables).
This is typically used for performing model selec-
tion, the general idea being that a higher marginal
likelihood for a given model indicates a better fit of
the data by that model and hence a greater prob-
ability that the model in question was the one that
generated the data. Variational Bayesian inference (or
MC-dropout) is a practical approach for approxim-
ating inference in large and complicated models (Gal
and Ghahramani 2016b). Here, we argue that the use
of dropout (and its variants) in RNNs can be inter-
preted as a variational Bayesian approximation of a
well-known probabilisticmodel: the GP as stressed by
Rasmussen andWilliams (2006). Asmentioned in the
introduction section, a GP is a distribution over func-
tions fully specified by a mean and covariance func-
tion (marginalized over its covariance function para-
meters; see Damianou and Lawrence 2013). Thus, the
posterior predictions of a GP are weighted averages of
the observed data where the weighting is based on the
covariance and mean functions.

There are two main types of uncertainties in
Bayesian modeling: epistemic (model uncertainty)
and aleatoric (data uncertainty). The intrinsic ran-
domness of the data generation process is described
by aleatoric uncertainty which cannot be explained
by collecting further observations or data samples.
This type of uncertainty is the result of unknowns
that refers to the notion of randomness, that is, the
variability in the outcome of modeling. Due to the
model inputs, there is no way of finding the exact
output of a concrete evaluation as there will be a

certain amount of variance in the result. The aleatoric
uncertainty has two types: homoscedastic and het-
eroscedastic (Kendall and Gal 2017). Homoscedastic
uncertainty is invariant to different inputs, meaning
it remains consistent regardless of inputs. Heterosce-
dastic uncertainty, on the other hand, changes over
different inputs to a model. In other words, for some
inputs, it could output more noisy results compared
to when the other inputs are given. In order to cap-
ture the aleatoric uncertainty, we would have to tune
the observation noise variance. As mentioned before,
homoscedastic uncertainty will output the constant
observation noise for all input data point and there-
fore the observation noise variance is constant for all
input parameters, whereas in the case of heterosce-
dastic uncertainty it will vary according to their defin-
ition. In other words, in heteroscedastic uncertainty
the observation noise variance depends on the input
parameters and can be estimated as a model output.
As a result, heteroscedastic models are helpful when
someparts of the observation spacemight have higher
noise levels than others (e.g. low flow values).

On the other hand, Epistemic uncertainty res-
ults from a lack of data that is potentially avail-
able, i.e. a larger number of observations is able to
explain this kind of uncertainty. To capture epistemic
uncertainty in the RNNs, we included a Gaussian
prior distribution over its weights, W∼N (0,σ) as
a Bayesian neural network (BNN). BNN margin-
alizes RNNs’ weight parameters by averaging over
all possible weights and it replaces the deterministic
RNNs’ weight parameters with distributions. Due to
Bayesian inference, given a dataset X= {x1, . . . , xN}
(e.g. rainfall, temperature etc) and Y= {y1, . . . , yN}
(e.g. streamflow), the posterior over weights
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is p(W|X, Y). The model likelihood would be
p(y| fw (x)) which fw (x) denotes the random out-
put of the BNN. Assuming the likelihood as a Gaus-
sian with {µ : fw (x)} and {σ : observation noise},
we have p(y|fw (x)) =N

(
fw (x) ,σ2

)
. However, it is

challenging to compute the exact posterior inference
as the marginal probability p(Y|X) cannot be assessed
analytically, but it can be approximated. To do this,
several approximations proposed by various stud-
ies (Graves 2011, Blundell et al 2015, Hernandez-
Lobato et al 2016, Gal and Ghahramani 2016a). In
these approximate inference techniques, the posterior
p(W|X, Y) is fitted to a simple distribution q∗θ (W).
This proposes an optimization task as an alternat-
ive to the intractable problem of averaging over all
weights in the BNN. In other words, rather than
optimizing the parameters of the original RNN, we
considered to optimize the parameters of a simple
distribution.

During the training process, dropout randomly
drops some nodes to avoid them from too much
co-tuning (see Gal and Ghahramani 2016a). During
testing period, the dropout would be performed to
generate random predictions by sampling from the
approximate posterior. This approach is equivalent
to finding a simple distribution q∗θ (W) which min-
imizes the KL divergence to the true model posterior
p(W|X, Y). Based on Jordan et al (1999), the minim-
ization objective is presented as follows:

L(θ,p) =− 1

N

N∑
i=1

logp(yi| f
Ŵi (xi))+

1− p

2N
||θ||2

(1)

where, N and p denote the number of data points
and dropout probability respectively, i is the sampled
masked model weights Ŵi ∼ q∗θ (W), and θ is a set
of simple distribution parameters that need to be
optimized. For a Gaussian likelihood, the negative
log likelihood can be further simplified (Kendall and
Gal 2017):

− logp
(
yi
∣∣∣ f Ŵi (xi)

)
∝ 1

2σ2

∥∥∥yi − f Ŵi (xi)
∥∥∥2 + 1

2
log σ2.

(2)

As a result, the predictive variance can be approxim-
ated as:

Var(y)≈ σ2 +
1

T

T∑
t=1

f Ŵt(x)Tf Ŵt (xt)− E(y)TE(y)

(3)

where E(y)≈ 1
T

T∑
t=1

f Ŵt (x). The term σ2 in the pre-

dictive uncertainty corresponds to the intrinsic
noise in the data, while the second term explains
the model parameter uncertainty. To capture
the aleatoric uncertainty, the observation noise
parameter σ should be tuned. As we mentioned
above, homoscedastic aleatoric uncertainty assumes
the observation noise is constant for every input

data. However, it can vary with input in heteros-
cedastic aleatoric uncertainty. Thus, we decided to
perform the heteroscedastic (rather than homosce-
dastic) model uncertainty assessment as it is import-
ant once some inputs or data potentially having more
noisy outputs than others (e.g. low flow values), so
we can make it data-dependent and estimate it as a
function of data:

LRNN (θ) =
1

N

N∑
i=1

1

2σ(xi)
2 | |yi − f(xi)| |2

+
1

2
log σ(xi)

2
. (4)

To capture both epistemic and heteroscedastic aleat-
oric uncertainties, we turn heteroscedastic RNN
(equation (4)) into a Bayesian RNN by placing a dis-
tribution over its weights. To do so, we draw model
weights from approximate posterior Ŵi ∼ q(W) to
compute a model output including predictive mean

and variance
{(

ŷ, σ̂2
)
= fŴ (x)

}
. As a result, the

minimization objective induces as follows:

LBRNN (θ) =
1

N

N∑
i=1

1

2σ̂2
i

| |yi − ŷi| |2 +
1

2
log σ̂2

i . (5)

For numerical stability, we train the network to pre-
dict the log variance, s= log σ̂2

i , for σ
2
x , as the loss

avoids a potential division by zero. In this procedure
s is implicitly learned by the regression task. We also
applied an exponential mapping to regress uncon-
strained scalar values and exp(−st)would have a pos-
itive domain which is valid as a variance.

LBRNN (θ) =
1

2N

N∑
i=1

[
exp(−si)(yi − ŷi)

2
+ si
]
. (6)

The term si plays a regularization role to prevent
unreservedly decreasing of the exp(−si) during the
training. To summarize, the predictive uncertainty
in the combined model can be approximated as
follows:

Var(y)≈ 1

T

T∑
t=1

ŷ2t −

(
1

T

T∑
t=1

ŷt

)2

+
1

T

T∑
t=1

σ̂2
t (7)

where
{
ŷt , σ̂2

t

}T
t=1

denotes a set of T sampled out-

puts: ŷt, σ̂2
t = f Ŵt (x) for randomly masked weights

Ŵt ∼ q(W). The performance criteria comparing dif-
ferent RNN-Bayesian dropout is presented in sup-
porting information section.

2.4. RNNs design for the Northeast Cape Fear River
Basin
We developed streamflow simulation for the North-
east CFRB based on the theory of a conceptual hydro-
logic model combined with RNNs. As illustrated in
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Figure 2. The proposed RNN workflow and structure for daily streamflow simulation across the Northeast Cape Fear Basin.

figure 2, various RNNs were constructed and coupled
with a variational Bayesian approach. We used a one-
layer RNN network that contained a cell/hidden state
length ranging from 1 to 100. We added dropout
approach ranging from 10% to 70%. The hyper-
parameters include sequence length of meteorolo-
gical data map series, batch size, and the optim-
izer that compared with the learning curve. To fully
capture the spatio-temporal variability and dynam-
ics of streamflow data patterns, we decided to keep
the sequence length of data constant at 365 d (indic-
ates a complete water year). In the traditional hydro-
logic modeling approach, the number of iteration
steps defines the total number of model evaluations
performed during calibration (given an optimization
algorithm without a convergence criterion). The cor-
responding term for RNNs is so-called epoch. One
epoch is defined as the period in which each training
sample is used once to update the model parameters
(e.g. if the dataset contains of 1000 training samples
and the batch-size is 10, one epochwould equal to 100
iterations; number of training samples divided by the
number of samples per batch). In each iteration, 10
of the 1000 samples were taken without replacement
until all 1000 samples were used once. This makes,
each time-step of the discharge data to be simulated
exactly once. This is similar to one iteration in a tra-
ditional hydrologic model calibration, with a signific-
ant difference of generating every sample independ-
ently (e.g. Kratzert et al 2018). To reduce anomalies
in the data, all input features (the meteorological for-
cing variables) as well as the output (the discharge)
data were normalized by subtracting the mean and

dividing by the standard deviation (Minns and Hall
1996, LeCun et al 2012). Themean and standard devi-
ation were calculated only for the calibration period.
In the test period, the outputwas retransformed using
the normalization parameters obtained from the cal-
ibration period.

This study divided the streamflow data into three
subsets, referred to as training, validation, and test
datasets. The training period is so important to get
a good actual result because a small division of data-
set in training period can lead to (a) a much shorter
period of data that is used for the actual weight
updates and (b) a high risk of overfitting to the short
validation period (Kratzert et al 2018). In addition,
RNNs with a low number of hidden units are quite
sensitive to the initialization of their weights. It is thus
recommended to repeat the calibration task several
times with different random seeds and select the best
performingmodel realization (Bengio 2012).Weused
the first 20 years of the 30 year calibration period as
training data (01 January 1980 to 31 December 1999)
while the last 10 years for validation and hyperpara-
meter tuning (01 January 2000 to 31December 2009).
The first two subsets are used to derive the networks
parametrization (calibration in the context of hydro-
logic simulation) and the remainder of data to dia-
gnose the actual performance (validation in the con-
text of hydrologic simulation).

3. Results and discussion

Similar to continuous conceptual hydrological mod-
els, we used meteorological forcing data to update
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a number of values in the internal cell states. In
addition, there are cell states in the RNN networks
which can be interpreted as storage capacity often
used in hydrologic modeling setup. Updating of
internal cell states (or storages) is regulated through
a number of gates: the first gate regulates the stor-
ages depletion, the second one regulates storage fluc-
tuations, and the third gate regulates the storages
outflow (especially for the LSTM and GRU net-
works). Each of these gates includes a set of adjustable
parameters that are exploited during the calibra-
tion. Updates of the cell states, during the valid-
ation period, only rely on the input at a specific
time-step and the states of the last time-step (given
the learned parameters of the calibration period).
Unlike hydrological models, RNNs does not ‘know’
the law of mass conservation and the equations gov-
erning storage and movement of water within the
principal compartments of a drainage system (e.g.
evapotranspiration (ET) or infiltration/percolation,
runoff, etc.). RNN networks must learn these phys-
ical phenomenon and laws purely from the data
structure and patterns. We performed a trial-and-
error process to tune hyperparameters and derive
the best values. We first begin presenting our res-
ults by presenting hyperparameter tuning proced-
ure and uncertainty assessment. This is followed
by the analysis of the results, demonstrated in the
following sections.

3.1. Hyperparameter tuning
To get the best simulation result, hyperparameter val-
ues need to be tuned for each network. We per-
formed a trial-and-error process to tune the para-
meters and derive the best hyperparameter values.
The tuning result of some hyperparameters includes
sequence length of streamflow data map series, batch
size, and the optimizer. Among three RNNs, vanilla
RNN has the least dependencies with only short-term
dependencies of 10 or less time steps. The reason is
that this network has vanishing or exploding gradi-
ents issues which reveals itself in an error signal dur-
ing the backward pass of the network training that
either grows against infinity or diminishes towards
zero. This thus limit vanilla RNN ability to learn long-
term temporal dependences. However, when we look
at rainfall–runoff relationships at a catchment scale,
there are different processes that are interconnected.
These relationships including evapotranspiration, the
dynamics of depletion and replenishment of water
storage in a lowland area, etc that are highly nonlin-
ear and extremely complex as they are interrelated to
various sub-processes involved in a hydrologic cycle.
Therefore, the interdependencies of rainfall–runoff
processes are well above 10 d (ten-time step in our
daily streamflow simulation) as stated elsewhere (see
Kratzert et al 2018). To ensure a high-precision pre-
diction result, we assumed that the number of train-
ing epochs and the number of hidden layers ranging

from 1 to 100 for all networks. All other boundary
conditions of modelling e.g. input data (meteorolo-
gical forcing data), batch size, and the number of one
input sequence were kept identical.

In this study, we first explored the influence of
number of iterations and hidden cells on the simula-
tion’s accuracy. The performances of different para-
meters and recurrent networks are shown in figures 3
and 4 for calibration and validation periods, respect-
ively. The results suggested that the accuracy of RNN
simulations enhanced when the number of iterations
increased over time. It is interesting to note that,
an increase in the number of maximum iterations
does not significantly enhance model precision when
the number of maximum iterations reaches a cer-
tain limit. The same results can be interpreted for the
effect of hidden cells numbers on themodel perform-
ance. Here, we assumed that BPTT training method
uses forward and backward algorithms to calculate
the output value and the error of each hidden cell,
respectively. The network weights were continuously
updated to reduce errors and bias in simulation.

Initial weights of the network were set as random
values, and a gradient-based Adam optimizer was
used to adjust the network weights. After the model
training reaches a certain limit, increasing the number
of iterations was no longer significant for the model
improvement (model met the convergence criteria).
The influence of hidden neurons on model precision
has always been a key problem in the RNN setting
because they can influence the error on the nodes to
which their output is connected. The minimal error
reflects better network stability, while higher error
reflects worst stability. The optimal number of hidden
neurons can be estimated by a trial-and-errormethod
which costs time but is more efficient to reach high
accuracy.

With respect to each model performance, the
vanilla RNN network performed a few simulations
with acceptable precision (NSE > 0.7) compared to
the LSTM and GRU models. Figure 3 shows that the
performance of LSTM model is significantly influ-
enced by the number of iterations; thereby an increase
in the number of hidden neurons did not significantly
improve model precision when the number of hid-
den cells exceeded 30. Although, the influence of hid-
den nodes on the accuracy of the GRU simulation is
not obvious for the results, our analysis showed that
if the number of hidden nodes is less than 20, the
GRU network requires more iterations to converge
and ensure precise simulation (see figure 3). Among
the three networks, GRU required less hidden layers
which conveys the fact that the convergence of the
GRUnetwork is quicker than the other two. Addition-
ally, reasonable values of other criteria (KGE, TRMSE
and ROCE) revealed that the GRU simulations was
satisfied the full suite of high flow, low flow, andwater
balance objectives against other algorithms. The high
flows are more representative of direct runoff in a
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Figure 3. Performance surface diagram of different RNNs in the calibration period. One epoch is equal to one forward pass and
one backward pass of all the training data. To find optimal number of epochs, the performance metrics of train and test data were
calculated for each epoch with different number of maximum epochs and hidden cells. This prevents the network from overfitting
and provided an approximated range of epochs to start with.

river system while the low flow related to long-term
sustainability of streamflow records that controlled by
the interaction of baseflow with riparian ET during
extended dry periods. Therefore, during periods of
low precipitation and high PET (low flow periods),
the water draining to the river system may be lim-
ited and that maybe lost to ET; nevertheless, GRU did
quite a good job by adequately simulating the base-
flow events.

In order to evaluate the actual performance of
various RNN networks, we ran the trained models
for 4 year of the test period (01 January 2010 to 31
December 2013). As illustrated in figure 4, vanilla
RNN reached an unreliable result during the test

period. In fact, the vanilla RNN was unable to per-
form well for a long sequence because of the gradient
vanishing/exploding problem. Contrary to the vanilla
RNN, LSTM and GRU allowed the model to pre-
serve the sequence information; thereby performed
better during testing period. Although LSTM proved
to be robust when compared with the vanilla RNN,
its computational complexity is a burden due to addi-
tional weight matrices. The GRU recurrent structure
reduced these computational complexities of LSTM
by combining the input and forget gates of LSTM
into a single update gate and combining the hidden
and cell states into a single hidden state. Compared
to the LSTM and vanilla RNN, GRU proved to be
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Figure 4. Performance surface diagram of different RNNs in the validation period.

superior in accounting for the fluctuations in a time
series data and understanding of catchment processes
purely from data patterns that control its hydrolo-
gical input-state-output behavior. More specifically,
theGRUalgorithm achieved an average of 65% accur-
acy for the NSE value as evident in the top-right
corner (red surface area) of the performance optimiz-
ation surface in figure 4 with a number of hidden cells
and number of epochs >20.

We believe that the effect of maximum iterations
on model precision is crucial and should be given
more attention when establishing these RNN net-
works. Nevertheless, the effect of hidden nodes on
model precision is less significant. However, in the
process of training streamflow data, RNN algorithms
automatically learned the hidden information in the

data and made it more resilient to errors and out-
liers. As the amount of streamflow records increased,
the prediction accuracy of these networks was further
improved. Most importantly, a sequence of hidden
states and a sequence of predictions, which determ-
ine the input-to-hidden weight matrix, defined how
much importance to accord to both the present input
and the past hidden state. In this study, the error that
the present input and the past hidden state generated
returned via backpropagation that used to adjust their
weights until error did not go any lower.

In order to assess the robustness of networks and
interpret the networks performance distinctly, the
probability density function (PDF) of various per-
formance metrics compared during calibration and
validation periods. As illustrated in figure 5, the NSE
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Figure 5. PDFs for various metrics during calibration and validation periods.

of vanilla RNN, LSTMandGRUare, respectively 0.61,
0.65 and 0.72 during calibration period. But the cor-
responding values in the validation periods are 0.41,
0.58 and 0.64.

3.2. Variational Bayesian uncertainty assessment
RNNs with network weights were treated as ran-
dom variables with an appropriate defined likelihood
function. Approximating the posterior distribution
over the weight matrices with a Gaussian prior (with
one component fixed at zero and small variances) led
to a flexible optimization objective. Optimizing this
objective was identical to performing a new variant
of MC-dropout in the respective RNNs. In the new
MC-dropout variant, we repeated the traditional dro-
pout mask (naïve dropout) at each time step for both
inputs, outputs, and recurrent layers (drop the same
network units at each time step). This is in contrast to
the existing MC-dropout techniques where different
dropout masks are sampled at each time step for the
inputs and outputs alone (no dropout is usedwith the
recurrent connections).

We first performed MC-dropout with predefined
dropout rates and tested various rates afterwards. We
then noticed that although model diversity can be
increased with higher dropout rates, it can come at
a cost of reduced accuracy, which was undesirable.
Therefore, it seems there is a fundamental trade-off

between model diversity and the accuracy of indi-
vidual models in the MC-dropout. Thus, we treated
dropout rate as an hyperparameter chosen based on
the maximum likelihood estimation (MLE) for the
validation data. At the testing period (inference), dro-
pout was activated to allow randomly sampling from
the approximate posterior (stochastic forward passes;
referred to as MC-dropout). In our case, dropout
rate of ≈0.3 was an optimal value for accurate daily
streamflow predictions and uncertainty estimation.
The probability plots for aleatoric uncertainty (inher-
ent noise in data), epistemic uncertainty (model
structure uncertainty), and the total uncertainty are
presented in figure 6. The probability plots visually
showed the quality of each uncertainty-estimating
component. To estimate the uncertainty, we fol-
lowed different simulations strategies. For example,
we ran pre-trained models 200 times to generate 200
simulation time series (based on the weighted pos-
terior distribution) and then used those 200 sim-
ulations to compute both epistemic and aleatory
uncertainties.

An ideal uncertainty estimate would produce a
CDF that is identical to a 1:1 plot (black dash-lines).
As illustrated in figure 6(a), if we only consider inher-
ent noise, the uncertainty would be over-estimated
in both GRU and LSTM (figure 6(a)). Considering
only the aleatory term of uncertainty is not enough
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Figure 6. Calibration performance plots of the RNNs with respect to three uncertainty estimates: (a) data noise
(σ2

x; inheret noise or aleatoric uncertainty ), (b) network weight uncertainty (σ
2
MC-dropout), and (c) combined uncertainty (σ2

comb).

for quantifying the overall uncertainty. As we men-
tioned, epistemic uncertainty refers to the deficien-
cies by a lack of knowledge or data. Therefore, the
accuracy of models that calibrated based on insuffi-
cient data (which cannot represent the whole features
and patterns contributing to rainfall–runoff process),
would be decreased during the inference stage con-
sequently increases the uncertainty in simulations.
On the other hand, the variational Bayesian infer-
ence or MC-dropout lies below the 1:1 line toward
the right end, which means that the model is over-
confident, and the predictive errors occurred less than
anticipated (figure 6(b)). Hence, the pattern indicates
that MC-dropout alone over-estimated the uncer-
tainty toward the error range (too little uncertainty).
However, the combination of epistemic and aleatoric

uncertainty
(
σ2
comb = σ2

x +σ2
MC-dropout

)
of the GRU

simulation was closer to the one-to-one line than
any other network. Thus, we perform a procedure
to address both issues that contribute to simulation
uncertainty which are random noise inside the meas-
urements and the uncertainty that comes from the
lack of the data which is resulted inmodel parameters
tuning.

In the LSTM and vanilla RNNs simulations, there
was a slightly larger gap between σ2

comb and the 1:1
line than σ2

x , but it was similar to the GRU regard-
ing the σ2

MC-dropout. Variational Bayesian inference can
improve performance by implicitly learning attenu-
ation of systematic noise in the data.

When Gaussian random noise was included to
the models, estimated uncertainties increased sig-
nificantly. This reflects the fact that the proposed
aleatory data noise scheme effectively estimated ran-
dom noise (see figure 6(c)). It is interesting to note
that both LSTM and vanilla RNN were unable to
formulate and predict uncertainty during high flow
records, although the resulting predictive uncertainty
may depend heavily on the non-linearity in data and

model prior. The standard deviation of variational
Bayesian can be mitigated by adding more supervised
data. Based on these experiments, it seems uncer-
tainty estimation results have a statistically signi-
ficant improvement for all three RNN simulations.
Although, GRU was more efficient in capturing the
total uncertainty (the combination of epistemic and
aleatoric terms) in predictions (close to the 1:1 dash-
line) while vanilla RNN and LSTM underestimated
the uncertainty and showed under-confident results.
These results suggested that it is important to address
model predictive uncertainty using σ2

comb, whereas
using either σ2

x or σ
2
MC-dropout alone would result in an

over-estimation of the error.
MC-dropout can be seen as a proxy to perform

stochastic forward pass through the RNN models,
where each weight row is dropped with probability
determined by the magnitude of the data. Gaussian
noise was added to data which were not dropped. The
noise has a Gaussian distribution with zero mean and
the variance was reckoned via MLE. RNNs were used
to train the noise data tominimize the likelihood loss.
It was also assumed that the mean and variance of
the data uncertainty depended on climate data as the
input variables. The estimated mean was equal to the
mean of residuals between the observed data and the
regression value of data. The variance indicated how
much the residual between the data and the regres-
sion value fluctuates above or below the mean over
time. High noise in simulation might reflect the fact
that the data might obey other single probabilistic
distributions or mixed distribution of multiple single
distributions.

To validate the accuracy of simulations, P-factor,
R-factor, and TUI (see supporting information) were
used to compare the results. The width of the
confidence interval is one of the most commonly
used evaluation indices for addressing model uncer-
tainty. The lower the width of the interval, the
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Figure 7. 95PPU ranges of simulated daily streamflow using the RNNs and SAC-SMA. Red dots, blue and dark shaded area
denote observed data, epistemic 95PPU band, and 95PPU for the combination of epistemic and aleatoric uncertainties(
σ2
comb = σ2

x +σ2
MC-dropout

)
, respectively. No uncertainty assessment has been implemented for the SAC-SMA.

better the simulation effect can be obtained. Our
experimental results showed that the total 95% con-
fidence interval (σ2

x +σ2
MC-dropout) can appropriately

bracket observed streamflow records in all three
algorithms (figure 7). A comparison among differ-
ent models revealed that the GRU narrowed the 95%
uncertainty interval indicating a higher perform-
ance and lower uncertainty and errors in simulation.
The blue shaded area also illustrates the 95% pre-
dictive uncertainty (95PPU) of the epistemic uncer-
tainty, while the aleatoric term could be computed by
differentiating the total and epistemic uncertainties
(σ2

x = σ2
comb −σ2

MC-dropout).

As shown in figure 7, the streamflow simulations
follow a recurrent pattern for almost every water year.
This allowed the RNNs to learn the data patterns and
performed accurately. The 95PPU intervals bracketed
most of the observed flows in each RNNmodel. Sum-
mary results and the performances of different RNNs
employed in this research with respect to the total
uncertainty and each individual term are provided
in table 1. As shown, 95PPU band for the vanilla
RNN and LSTMmodels bracketed >97% of observed
data (P-factor) while GRU captured 84% of observa-
tions. In addition, GRU provided better estimation
for the average width of the total and each individual
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Table 1. Uncertainty performance metrics for the RNNs and the SAC-SMA with respect to epistemic and aleatoric uncertainties and
their combination.

Vanilla RNN LSTM GRU

Uncertainty source P-factor R-factor TUI P-factor R-factor TUI P-factor R-factor TUI

Epistemic 0.77 0.51 1.52 0.55 0.28 1.96 0.52 0.26 2.00
Aleatoric 0.95 0.70 1.36 0.87 0.54 1.60 0.67 0.30 2.22
Total 0.98 1.14 0.86 0.97 0.80 1.22 0.84 0.55 1.53

term of uncertainty band (R-Factor). With respect to
each individual term of uncertainty, we found that
the aleatoric (σ2

x) was slightly larger than epistemic
(σ2

MC-dropout) uncertainty in all simulations.
The TUI values of each individual uncertainty

terms and their combination showed that GRU sim-
ulated streamflow with less uncertainty compared to
the other two. In addition, GRU required less iter-
ations than other networks and was able to model
rainfall–runoff dynamical processes appropriately.
This network was capable of predicting daily stream-
flow data from meteorological observations with
accuracy comparable to a well-established SAC-SMA
hydrologic model. GRU also converged quicker, and
its recurrent networks were relatively faster than oth-
ers. This is mainly because the GRU model directly
uses all hidden states without control, and presents
fewer computational parameters compared to the
LSTM and vanilla RNN. Furthermore, GRU uses the
hidden state to transfer information and it is capable
of learning both short- and long-term dependencies
with two gates, a reset gate and update gate. The reset
gate helps GRU to capture short-term dependencies
in time series data while the update gate can capture
long-term dependencies in time series data. It is inter-
esting to note that, the optimization results obtained
by parameter adjustment for different rainfall–runoff
data and learning networks can be different. There-
fore, care should be exercised in using the results
obtained from the GRU. Regarding the accuracy, the
GRU showed fewer negative outliers and thus seems
to be more robust network.

Focusing on the flow duration curve (FDCs)
(see figure 8), all RNN networks precisely simulated
streamflow fluctuations (high and low flows). FDC
analysis further revealed that both high- and low-
flow segment estimations were skillfully captured by
both GRU and LSTM.High- and low- flow signatures
in the streamflow hydrograph reflect respectively, as
‘fast’ and ‘slow’ runoff response/processes associated
with impervious area runoff, surface runoff, inter-
flow, and baseflow (see Yilmaz et al 2008 for further
information). However, the flow exceedance probab-
ility curves associated with all three RNNs seem to be
sensitive to extremely low flow events. The midseg-
ment FDCs for all three RNNs as well as the SAC-
SMA model do not seem to have a steep slope which
reflect a catchment system with moderate to slow
behavior and more sustain rainfall–runoff response.

Overall, FDCs commonly used to indicate and clas-
sify watershed functioning. It also summarizes the
catchment’s ability to produce runoff values of differ-
ent magnitudes. FDCs seem to be relatively insens-
itive to moderate and somewhat high flow events
while very sensitive to low flow fluctuations (baseflow
contribution).

The low-flow segment of the FDC contains
information related to long-term sustainability of
streamflow that is controlled by the interaction of
baseflow with riparian ET during extended dry peri-
ods. Riparian area of the study catchment is covered
by extensive alluvial and nonalluvial forested wet-
lands and wide floodplains. This causes substantial
fluctuations in low flow values in which RNNs and
SCA-SMA simulations were tempered by this hetero-
geneity. Since RNNs (as well as SAC-SMA) do not
deal with physical processes (soil moisture, evapo-
transpiration, complexities in storage capacity, etc) of
the catchment system, it seems computing low flow
events when shallow aquifer is the primary contrib-
utor to river discharge (see Samadi et al 2017), is
especially challenging for both RNNs and SAC-SMA
models.

Like SAC-SMA, RNNnetworks have no exponen-
tial outflow function and thus the simulation value
can be easily dropped to minuscule numbers or even
zero. Our strategy for improving low flow simulations
was to introduce an additional parameter and limit
the simulated streamflow by greater than zero values,
but to the minimum observed flow. This simple solu-
tion led to better FLV values for all RNNs used in this
research, although other metrics such as NSE, were
practically unaltered. Performance results of all the
models are presented in table 2.

Regarding the SAC-SMA simulation (see
figure 8), it seems the model was capable of simulat-
ing intermediate streamflow while relatively under-
estimated and overestimated low flow and high flow
events, respectively. SAC-SMA uses a lumped fashion
to calibrate soil moisture states and the basin’s rel-
ative permeability. These states introduce as several
key basin’s factors into the model such as interflow,
evapotranspiration, and percolation. It seems hydro-
logic variables such as loss (due to dense vegetation)
and soil moisture have a strong control on rainfall–
runoff processes and mechanism in the study region.
These factors determine catchment wetness condi-
tions and ET process. Thus, runoff magnitude might
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Table 2. Accuracy metrics of the SAC-SMA and RNN models.

Model NSE KGE TRMSE ROCE FHV FMS FLV

Calibration SAC-SMA 0.79 0.82 0.29 0.027 −13.14 −10.68 27.19
Vanilla RNN 0.71 0.83 0.32 0.03 1.30 −13.77 −3.64
LSTM 0.73 0.83 0.32 0.005 0.45 −24.45 −30.45
GRU 0.79 0.86 0.29 0.019 −4.64 −28.26 −14.77

Validation SAC-SMA 0.77 0.79 0.28 0.112 −17.88 −0.89 39.19
Vanilla RNN 0.68 0.84 0.3 0.01 4.00 −1.49 −6.72
LSTM 0.77 0.87 0.28 0.034 3.18 −18.95 −16.32
GRU 0.8 0.89 0.25 0.003 −0.43 −14.8 −3.2

Note: Bold values indicate the best performance.

Figure 8. FDCs as diagnostic metrics to assess the performance of daily streamflow simulation modelled by the RNNs and
SAC-SMA.

abruptly increase when catchment initial abstrac-
tion threshold was exceeded. In addition, catchment
response time to rainfall showed significant vari-
ability in different seasons and years. It is interest-
ing to note that in the coastal plain catchments a
shallow aquifer system contributes continuously to
the river system particularly during dry periods (see
Samadi et al 2017). These contributions make surface
and subsurface interactions and parametrization, as
well as simulation mechanism itself a challenging

task as discussed in Amatya and Jha (2011) and
Samadi et al (2018).

4. Conclusion

This study examined multiple RNN algorithms for
daily streamflow simulation and discussed how epi-
stemic and heteroscedastic uncertainty can be quanti-
fied using a variational Bayesian approximation. Des-
pite the challenges associated with a complex coastal
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plain simulation, both GRU and LSTM appear to
be the best tools to obtain comparable performances
with the SAC-SMAmodel. Both algorithms provided
the potential ability to simulate rainfall–runoff pro-
cesses. Although, controversy regarding the use of
these recurrent networks persists, we were able to
improve the modeling performances in terms of data
and model structure uncertainty. Nevertheless, we
were less successful at improving low flow simulation
(FDC low segment). There is some evidence that this
challenge may be related to inherent fluctuations in
the low flow data particularly with regard to riparian
storage mechanism and shallow aquifer contribution
to the river system (see Samadi et al 2017, 2018).
This can be also interpreted as proof that the stream-
flow prediction error is stronger in some portions of
timeseries where the networksmay behave chaotically
due to more ill-behaved data. The data noise uncer-
tainty estimation is accustomed by data due to RNN
data-driven nature. Thus, it makes data noise uncer-
tainty estimation vulnerable to bias during training
period. This observation shows an intrinsic limitation
to any purely data-driven approach that data patterns
and fluctuations may not be able to reveal rainfall–
runoff variability. This obstacle could potentially be
diminished by the future integration of the knowledge
process-based models with an appropriate observa-
tion noise distribution. For example, process-based
models could be constructed to determine several fea-
tures based on physical relationships/attributes (run-
off generation mechanism, flow resistance factors,
travel time, etc) that were not adequately represen-
ted in the training data. How to appropriately couple
physical attributes with different classes/structures of
RNNs is still an open question (Karpatne et al 2017,
Shen et al 2018). In addition, other approaches such
as Stein variational gradient descent training (Liu and
Wang 2016, Mo et al 2018) can be included to the
RNN structure as a powerful approximate inference
algorithm by making parametric assumptions about
the form of data distribution. This can enhance the
performance of observation uncertainty estimation,
as well as the distinction between network weight
uncertainty data noise.

We also performed an intercomparison analysis
with continental scale RNN studies to evaluate the
modeling performances developed in our site-specific
study. In terms of simulation performances, both
LSTM and GRU models employed in this research
more accurately simulated the streamflow values
(NSE > 0.77) than over 50% of the catchments/case
studies investigated by (Kratzert et al 2019, Feng et al
2020, Jiang et al 2020). In our case, both GRU and
LSTM algorithms provided the potential ability to
simulate a complex yet nonlinear rainfall–runoff pro-
cess across a coastal plain drainage system. Focus-
ing on a local catchment, we were able to improve
the model performance in terms of data uncertainty

and model structure uncertainty, although we were
less successful at improving LSTM and GRU simula-
tions for low flow modeling (FDC low segment). In
this region, shallow water tables may severely restrict
the amount of water recharging to the river system
during low flow events. Shallow aquifers along with
poor natural drainage created an excessive soil water
condition that is difficult for recurrent networks to
understand and capture their dynamics and interac-
tion. The quantity of water in the shallow aquifer sys-
tem affects the variable source area involved in the
generation of saturation overland flow and thismech-
anism can cause the recurrent networks to behave
chaotically during low flow events.

Another difficulty that concerned us was the gen-
eralization of both GRU and LSTM predictive uncer-
tainty to domain shift where time series data come
with missing patterns. In this case, it is important to
measure ‘if the network knows what it knows’. For
instance, if a network trained on a set of stream-
flow data but is evaluated on a completely differ-
ent dataset, then the network should output high
predictive uncertainty as inputs from a different
dataset that would have different pattern than the
training data. However, the choice of the likeli-
hood function and the probability distribution of the
data should perceive further attention in the future.
Often, the assumption of a Gaussian distribution is
valid in a catchment simulation problem where the
rainfall–runoff processes follow a linear approach.
For nonlinear rainfall–runoff simulation, the limit-
ation of Gaussian distribution assumption for the
likelihood function could be potentially enhanced
with a proper noise distribution. We acknowledge
that both LSTM and GRU simulations can be made
more efficient by using more robust Bayesian infer-
ence such as Bayesian Model Averaging (BMA) with
fixed and flexible prior distributions (see Samadi et al
2020) and/or Markov Chain Monte-Carlo optimiz-
ation methods (Duane et al 1987) addressing both
aleatoric and epistemic uncertainties. As always, we
invite dialogue with geoscience, engineering, and
data science communities interested in related DL
simulation problems.
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