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Abstract: The state of Rhode Island (RI) has established its greenhouse gas (GHG) emissions reduc-
tion goals, which require rapidly acquired and updatable science-based data to make these goals
enforceable and effective. The combination of remote sensing and soil information data can estimate
the past and model future GHG emissions because of conversion of “low disturbance” land covers
(e.g., evergreen forest, hay/pasture) to “high disturbance” land covers (e.g., low-, medium-, and
high-intensity developed land). These modeled future emissions can be used as a predevelopment
potential GHG emissions information disclosure. This study demonstrates the rapid assessment of
the value of regulating ecosystems services (ES) from soil organic carbon (SOC), soil inorganic carbon
(SIC), and total soil carbon (TSC) stocks, based on the concept of the avoided social cost of carbon
dioxide (CO2) emissions for RI by soil order and county using remote sensing and information from
the State Soil Geographic (STATSGO) and Soil Survey Geographic Database (SSURGO) databases.
Classified land cover data for 2001 and 2016 were downloaded from the Multi-Resolution Land
Characteristics Consortium (MRLC) website. Obtained results provide accurate and quantitative
spatio-temporal information about likely GHG emissions and show their patterns which are often
associated with existing urban developments. These remote sensing tools could be used by the state
of RI to both understand the nature of land cover change and likely GHG emissions from soil and
to institute mandatory or voluntary predevelopment assessments and potential GHG emissions
disclosures as a part of a climate mitigation policy.

Keywords: CO2; climate change; emissions; environment; law; mandatory; policy; social costs

Climate change mitigation requires information that quantifiably links development
to the amount of GHG emissions. Remote sensing analysis can be combined with soil
information databases to track development over time and estimate likely GHG emissions.
This provides important benchmark information about the impact of development on
GHG emissions while also identifying potential hotpots for GHG emissions which may
be associated with future development. Rhode Island’s goal of achieving net-zero GHG
emissions by 2050 requires quantitative information to both evaluate soil-associated GHG
emissions and to access the potential impact of future developments. Public information
disclosures of past and/or future GHG emissions are one possible method to reduce future
emissions. These disclosures could be associated with regulatory or reputational impacts
that change development behavior to limit GHG emissions.
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1. Climate Change Planning and Soil Information Gaps for the State of Rhode Island

The state of Rhode Island seeks to achieve net-zero GHG emissions by 2050 (The 2021
Act on Climate Bills n.d.) and manage its C emissions as part of the 2016 Rhode Island
Greenhouse Gas Emissions Reduction Plan (Rhode Island Greenhouse Gas Emissions
Reduction Plan 2016). These efforts are important contributions to the Paris Agreement
(United Nations 2015) and the United Nations Sustainable Development Goals (SDGs)
(Keestra et al. 2016), but are challenging to achieve given a relatively short time period
and insufficient information available to enable implementation. Successful reduction in
GHG emissions relies on rapid assessment of sources and sinks of these emissions from
various sources, including soil under various land uses (Mikhailova et al. 2021b). The
ecosystem services/disservices (ES/ED) framework is a useful valuation tool, which can
be combined with remote sensing analysis to conduct an economic analysis of ES/ED and
land use change (Liu 2014). Ecosystem services can be described as either provisioning
(providing raw materials, such as food), regulating (benefiting humans through natural
processes, such as C sequestration), or cultural (providing non-material human benefits,
such as recreation) (Mikhailova et al. 2020). Provisioning ES have historically been given
more weight when valuing a natural resource such as soil, but as global climate change
has continued to alter Earth’s ecosystems, the regulating ES/ED related to soil C (e.g., C
sequestration, etc.) have increasing importance (Mikhailova et al. 2019a, 2019b).

Rhode Island’s “2021 Act on Climate” bills (The 2021 Act on Climate Bills n.d.) outline
various “responsibilities and oversights relating to assessing, integrating, and coordinating
climate change efforts”, many of which involve soil resources within the state (e.g., food
security, ecosystems, emission reductions, etc.). Pedodiversity of RI (soil type composition
of the state) defines the soil regulating ES/ED potential with regards to its ability to store
or release CO2, and vulnerability of soil resources to climate change (Table 1, Figure 1)
(Mikhailova et al. 2021a; Wright and Sautter 1988). There are three soil orders in the state
of RI, all of which belong to the category of slightly weathered soils but have different
soil C storage and vulnerability to climate change. Entisols (13% of the total state area),
found mostly along the coastlines and in the southern portion of RI, are “embryonic”
soils with limited soil C storage capacity. Inceptisols (75% of the total state area) are also
relatively “young” soils with low C content. Because of their large area extent in the state,
RI selected Inceptisols as the State Soil (soil series name: Narragansett) for its high value in
provisioning ES (e.g., silage, corn, hay, and vegetables) (Natural Resources Conservation
Service n.d.). Histosols (12% of the total state area) are organic soils, which can become a
hotspot of CO2 emissions upon disturbance (e.g., land cover change, etc.) (Mikhailova et al.
2021c). Subaqueous soils are also found in the state and provide many types of ES/ED
(Bradley and Stolt 2003). The state of Rhode Island is one of the most densely populated
states in the U.S., which significantly impacted the use of its soils and subsequent loss of
soil C (so called “land-use legacy”).

Table 1. Soil diversity (pedodiversity) is expressed as taxonomic diversity at the level of soil order and ecosystem service
types in Rhode Island (U.S.A.) (adapted from Mikhailova et al. 2021a).

Stocks Ecosystem Services

Soil Order General Characteristics and Constraints Provisioning Regulation/
Maintenance Cultural

Slightly Weathered

Entisols Embryonic soils with ochric epipedon x x x
Inceptisols Young soils with ochric or umbric epipedon x x x
Histosols Organic soils with ≥20% of organic carbon x x x
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Figure 1. General soil map of Rhode Island (U.S.A.) (Latitude: 41◦ 09′ N to 42◦ 01′ N; Longitude: 71◦

07′ W to 71◦ 53′ W) (based on data from (Soil Survey Staff, Natural Resources Conservation Service,
United States Department of Agriculture 2021a; The United States Census Bureau 2018).

This “land-use legacy” was used in quantifying a contemporary C balance for the
Northeast Region of the U.S., including RI (Lu et al. 2013). Moreover, “legacy” effects
of previous human activities resulted in the destruction of coastal wetlands by filling
(EPA—United States Environmental Protection Agency 2016b). This “land-use legacy”
has important implications for soil C, food security, vulnerability of natural systems, and
“redressing past environmental and public health inequities” as it is mandated in the Rhode
Island’s “2021 Act on Climate” bills (The 2021 Act on Climate Bills n.d.).

Rhode Island’s “2021 Act on Climate” bills require that an updated plan to reduce
greenhouse gasses be completed by 31 December 2022, which will likely include more
stringent recommended actions to reduce emissions compared to the 2016 greenhouse gas
reduction plan (Rhode Island Greenhouse Gas Emissions Reduction Plan 2016). Previ-
ous research on agricultural and forest-based ecosystem services for RI identified several
challenges, including high proportion of private land ownership (90%), and difficulties in
accessing tradeoffs when comparing the impact of policies on multiple ecosystem services
(Liu et al. 2013). Reduction in GHG emissions requires accurate spatio-temporal informa-
tion about emissions, which can be also used to develop soil-related GHG information
disclosure policies. Information disclosure is a tool frequently used in emissions reduction
strategy commonly applied to toxic emissions (Cohen and Viscusi 2012). Information
disclosure has been proven to be effective in reducing pollution, politically more practical
than new regulations (or legislation) (Cohen and Viscusi 2012), and more cost-effective to
the government compared to designing and application of new regulations (Cohen 2001).
Information disclosures can be voluntary or mandatory with or without government in-
volvement (Cohen and Viscusi 2012). Additionally, there are private information disclosure
programs, which can rate organizations based on various types of disclosures and provide
a third-party assessment (Cohen and Viscusi 2012). There are various types of disclosure
information (e.g., at the facility or firm level, product labels) (Cohen and Viscusi 2012).

The United States Environmental Protection Agency (U.S. EPA) adapted informa-
tion disclosure to report GHG emissions (EPA—United States Environmental Protection
Agency n.d.). EPA’s Greenhouse Gas Reporting Program (GHGRP) requires reporting
of GHG emissions from large GHG sources covering 41 categories (e.g., lime manufac-
turing, cement production, etc.), which can be displayed as an interactive website, data
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highlights, and downloadable data files (EPA—United States Environmental Protection
Agency n.d.). According to EPA, “these data can be used by businesses and others to track
and compare facilities’ greenhouse gas emissions, identify opportunities to cut pollution,
minimize wasted energy, and save money. States, cities, and other communities can use
EPA’s greenhouse gas data to find high-emitting facilities in their area, compare emissions
between similar facilities, and develop common-sense climate policies” (EPA—United
States Environmental Protection Agency n.d.).

The hypothesis of this study is that the spatial and temporal analysis of RI’s pedo-
diversity integrated with land cover change analysis will provide actionable information
to help develop the new greenhouse gas emission’s reduction plan by 31 December 2022.
Our study will use the current plan, formulated in 2016 (Rhode Island Greenhouse Gas
Emissions Reduction Plan 2016), to show how soil and land cover analysis can be used to
identify and update emission sources (e.g., hotspot of CO2 emissions associated with land
cover change), and to evaluate how land cover change has and can impact greenhouse gas
emissions, which could be used to develop various GHG information disclosure policies to
enhance the state’s climate change planning efforts.

The specific objective of this study was to assess the value of SOC, SIC, and TSC in
the state of RI (USA) and its change in the past 15 years based on the social cost of C (SC–
CO2) and avoided emissions provided by C sequestration, which the U.S. Environmental
Protection Agency (EPA) has determined to be $46 per metric ton of CO2, applicable for
the year 2025 based on 2007 U.S. dollars and an average discount rate of 3% (EPA—United
States Environmental Protection Agency 2016a). Our calculations provide estimates for the
monetary values of SOC, SIC, and TSC across the state and by different spatial aggregation
levels (i.e., county) using the State Soil Geographic (STATSGO) and Soil Survey Geographic
Database (SSURGO) databases and information previously reported by Guo et al. (Guo
et al. 2006). Classified land cover data for 2001 and 2016 were downloaded from the
Multi-Resolution Land Characteristics Consortium (MRLC) website (Multi-Resolution
Land Characteristics Consortium—MRLC n.d.).

2. Accounting for Soil Regulating Ecosystem Services in the State of Rhode Island

This study used both biophysical (science-based, Figure 1) and administrative
(boundary-based, Figure 1) accounts to calculate monetary values for SOC, SIC, and
TSC (Tables 2 and 3). Although, this framework was used primarily in accounting for soil
regulating ES, it could be adapted for GHG emissions information disclosures associated
with the past, current, and future emissions. The table was enhanced by the addition of the
“time” column, which can be used to categorize the types of GHG information disclosures
(e.g., past, current, and future) (Table 2).

Table 2. A conceptual overview of the accounting framework used in this study (adapted from Groshans et al. (2019)),
which can also be used for greenhouse gas (GHG) emissions information disclosure for climate mitigation policy.

Time

STOCKS FLOWS VALUE

Biophysical
Accounts

(Science-Based)

Administrative
Accounts

(Boundary-Based)
Monetary Account(s) Benefit(s) Total Value

Soil Extent: Administrative Extent: Ecosystem Good(s) and
Service(s): Sector: Types of Value:

Composite (Total) Stock: Total Soil Carbon (TSC) = Soil Organic Carbon (SOC) + Soil Inorganic Carbon (SIC)

Past
This study: 2001, 2016, Change

(e.g., post-development
disclosures)

Current (e.g., status)

Future
(e.g., pre-development

disclosures)

Environment:

The social cost of carbon
(SC-CO2) and avoided

emissions:

- Soil orders (Entisols,
Inceptisols, Histosols)

- State (Rhode Island)
- County
(5 counties)

- Regulating (e.g.,
carbon sequestration)

- Carbon
sequestration

- $46 per metric ton of CO2
(2007 U.S. dollars with an
average discount rate of 3%
(EPA—United States
Environmental Protection
Agency 2016a)
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Table 3. Soil diversity (pedodiversity) by soil order (taxonomic pedodiversity) and county in Rhode Island (U.S.A.) based
on Soil Survey Geographic (SSURGO) Database (2020) (Soil Survey Staff, Natural Resources Conservation Service, United
States Department of Agriculture 2021a).

County
Total
Area

(km2) (%)

Degree of Weathering and Soil Development

Slight

Entisols Inceptisols Histosols

2016 Area (km2), (% of Total Area)

Bristol 61 (2%) 17 (29%) 39 (63%) 5 (8%)
Kent 435 (16%) 46 (11%) 336 (77%) 53 (12%)

Newport 258 (10%) 99 (38%) 146 (57%) 13 (5%)
Providence 1055 (40%) 53 (5%) 854 (81%) 148 (14%)
Washington 842 (32%) 122 (14%) 604 (72%) 116 (14%)

Totals (%) 2651 (100%) 337 (13%) 1979 (75%) 335 (12%)

The present study estimates monetary values associated with stocks of SOC, SIC, and
TSC in RI based on reported contents (in kg m−2) from Guo et al. (2006). Values were calcu-
lated using the avoided social cost of C (SC-CO2) of $46 per metric ton of CO2, applicable
for 2025 based on 2007 U.S. dollars and an average discount rate of 3% (EPA—United States
Environmental Protection Agency 2016a). According to the EPA, the SC-CO2 is intended
to be a comprehensive estimate of climate change damages. Still, it can underestimate
the true damages and cost of CO2 emissions due to the exclusion of various important
climate change impacts recognized in the literature (EPA—United States Environmental
Protection Agency 2016a). Area-normalized monetary values ($ m−2) were calculated
using Equation (1), and total monetary values were summed over the appropriate area(s)
(noting that a metric ton is equivalent to 1 megagram (Mg) or 1000 kilograms (kg), and SC
= soil carbon):

$
m2 =

(
SOC/SIC/TSC Content,

kg
m2

)
× 1 Mg

103 kg
×

44 Mg CO2
12 Mg SC

× $46
Mg CO2

(1)

Table 4 presents area-normalized contents (kg m−2) and monetary values ($ m−2) of
soil C, which were used to estimate stocks of SOC, SIC, and TSC and their corresponding
values by multiplying the contents/values by the area of a particular soil order within a
county (Table 3). For example, for the soil order Inceptisols, Guo et al. (2006) reported a
midpoint SOC content of 8.9 kg m−2 for the upper 2-m soil depth (Table 4). Using this SOC
content in equation (1) results in an area-normalized SOC value of $1.50 m−2. Multiplying
the SOC content and its corresponding area-normalized value each by the total area of
Inceptisols present in RI (1979 km2, Table 3) results in an SOC stock of 1.76 × 1010 kg
(Table 5) with an estimated monetary value of $2.97B (Table 6).

Table 4. Area-normalized content (kg m−2) and monetary values ($ m−2) of soil organic carbon (SOC), soil inorganic carbon
(SIC), and total soil carbon (TSC = SOC + SIC) by soil order based on data reported by Guo et al. (2006) for the upper 2 m of
soil and an avoided social cost of C (SC-CO2) of $46 per metric ton of CO2 (2007 U.S. dollars with an average discount rate
of 3% (EPA—United States Environmental Protection Agency 2016a).

Soil Order

SOC Content SIC Content TSC Content SOC Value SIC Value TSC Value

Minimum—Midpoint—Maximum Values Midpoint Values

(kg m−2) (kg m−2) (kg m−2) ($ m−2) ($ m−2) ($ m−2)

Slightly Weathered

Entisols 1.8–8.0–15.8 1.9–4.8–8.4 3.7–12.8–24.2 1.35 0.82 2.17
Inceptisols 2.8–8.9–17.4 2.5–5.1–8.4 5.3–14.0–25.8 1.50 0.86 2.36
Histosols 63.9–140.1–243.9 0.6–2.4–5.0 64.5–142.5–248.9 23.62 0.41 24.03
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Land use/land cover change in RI between 2001 and 2016 was analyzed using classi-
fied land cover data from the Multi-Resolution Land Characteristics Consortium (MRLC)
(Multi-Resolution Land Characteristics Consortium—MRLC n.d.). Changes in land cover,
with their associated soil types, were calculated in ArcMap 10.7 (ESRI—Environmental
Systems Research Institute n.d.) by comparing the 2001 and 2016 data, converting the land
cover to vector format, and unioning the data with the soils layer in the Soil Survey Geo-
graphic (SSURGO) Database (Soil Survey Staff, Natural Resources Conservation Service,
United States Department of Agriculture 2021a).

Table 5. Midpoint soil organic carbon (SOC) storage by soil order and county for the state of Rhode Island (USA), based on
the areas shown in Table 3 and the midpoint SOC contents shown in Table 4.

County
Total SOC

Storage
(kg) (%)

Degree of Weathering and Soil Development

Slight

Entisols Inceptisols Histosols

Total SOC Storage (kg), (% of Total)

Bristol 1.16 × 109 (2%) 1.39 × 108 (12%) 3.44 × 108 (30%) 6.82 × 108 (59%)
Kent 1.08 × 1010 (16%) 3.68 × 108 (3%) 2.99 × 109 (28%) 7.43 × 109 (69%)

Newport 3.93 × 109 (6%) 7.90 × 108 (20%) 1.30 × 109 (33%) 1.85 × 109 (47%)
Providence 2.88 × 1010 (43%) 4.22 × 108 (1%) 7.60 × 109 (26%) 2.08 × 1010 (72%)
Washington 2.25 × 1010 (34%) 9.77 × 108 (4%) 5.38 × 109 (24%) 1.62 × 1010 (72%)

Totals (%) 6.72 × 1010 (100%) 2.70 × 109 (4%) 1.76 × 1010 (26%) 4.69 × 1010 (70%)

3. Soil Carbon Regulating Ecosystem Services and Land Cover Change in the State of
Rhode Island

Based on avoided SC–CO2, the total estimated monetary mid-point value for TSC in
the state of RI was $13.4B (i.e., 13.4 billion U.S. dollars, where B = billion = 109), $11.3B for
SOC (84% of the total value), and $2.1B for SIC (16% of the total value). Previously, we
have reported that among the 48 conterminous states of the U.S., RI ranked 48th for TSC
(Mikhailova et al. 2019a), 48th for SOC (Mikhailova et al. 2019b), and 46th for SIC (Groshans
et al. 2019).

3.1. Storage and Value of SOC by Soil Order and County for Rhode Island

Soil orders with the highest midpoint monetary value for SOC were Histosols ($7.91B),
and Inceptisols ($2.97B) (Tables 5 and 6). The counties with the highest midpoint SOC values
were Providence ($4.85B), Washington ($3.80B), and Kent ($1.82B) (Tables 5 and 6). Providence
has the largest area occupied by Histosols (Table 3), which has a high SOC midpoint content
(140.1 kg m−2; Table 4) and therefore a corresponding high monetary value of $4.85B
(Table 6).

Table 6. Monetary value of soil organic carbon (SOC) by soil order and county for the state of Rhode Island (USA), based on
the areas shown in Table 3 and the area-normalized midpoint monetary values shown in Table 4.

County
Total

SC-CO2
($)

Degree of Weathering and Soil Development

Slight

Entisols Inceptisols Histosols

SC-CO2 ($)

Bristol 1.96 × 108 2.35 × 107 5.79 × 107 1.15 × 108

Kent 1.82 × 109 6.20 × 107 5.04 × 108 1.25 × 109

Newport 6.63 × 108 1.33 × 108 2.19 × 108 3.11 × 108

Providence 4.85 × 109 7.13 × 107 1.28 × 109 3.50 × 109

Washington 3.80 × 109 1.65 × 108 9.07 × 108 2.73 × 109

Totals 1.13 × 1010 4.55 × 108 2.97 × 109 7.91 × 109
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3.2. Storage and Value of SIC by Soil Order and County for the State of Rhode Island

Soil orders with the highest midpoint monetary value for SIC were: Inceptisols
($1.70B), and Entisols ($276M, where M = million = 106) (Tables 7 and 8). The counties with
the highest midpoint SIC values were Providence ($838M), Washington ($667M), and Kent
($349M) (Tables 7 and 8). Like SOC data, SIC is typically extrapolated with soil depth and
can be overestimated by soil survey data (Groshans et al. 2019).

Table 7. Midpoint soil inorganic carbon (SIC) storage by soil order and county for the state of Rhode Island (USA), based on
the areas shown in Table 3 and the midpoint SIC contents shown in Table 4.

County
Total SIC
Storage
(kg) (%)

Degree of Weathering and Soil Development

Slight

Entisols Inceptisols Histosols

Total SIC Storage (kg), (% from Total)

Bristol 2.92 × 108 (2%) 1.39 × 108 (29%) 3.44 × 108 (67%) 6.82 × 108 (4%)
Kent 1.08 × 1010 (16%) 3.68 × 108 (11%) 2.99 × 109 (83%) 7.43 × 109 (6%)

Newport 3.93 × 109 (10%) 7.90 × 108 (38%) 1.30 × 109 (60%) 1.85 × 109 (3%)
Providence 2.88 × 1010 (40%) 4.22 × 108 (5%) 7.60 × 109 (88%) 2.08 × 1010 (7%)
Washington 2.25 × 1010 (32%) 9.77 × 108 (15%) 5.38 × 109 (78%) 1.62 × 1010 (7%)

Totals (%) 1.25 × 1010 (100%) 1.62 × 109 (13%) 1.01 × 1010 (81%) 8.04 × 108 (6%)

Table 8. Monetary value of soil inorganic carbon (SIC) by soil order and county for the state of Rhode Island (USA), based
on the areas shown in Table 3 and the area-normalized midpoint monetary values shown in Table 4.

County
Total

SC-CO2
($)

Degree of Weathering and Soil Development

Slight

Entisols Inceptisols Histosols

SC-CO2 ($)

Bristol 4.95 × 107 1.43 × 107 3.32 × 107 2.00 × 106

Kent 3.49 × 108 3.77 × 107 2.89 × 108 2.17 × 107

Newport 2.12 × 108 8.10 × 107 1.25 × 108 5.40 × 106

Providence 8.38 × 108 4.33 × 107 7.34 × 108 6.08 × 107

Washington 6.67 × 108 1.00 × 108 5.20 × 108 4.74 × 107

Totals 2.12 × 109 2.76 × 108 1.70 × 109 1.37 × 108

3.3. Storage and Value of TSC (SOC + SIC) by Soil Order and County for Rhode Island

Soil orders with the highest midpoint monetary value for TSC were Histosols ($8.05B),
and Inceptisols ($4.67B) (Tables 9 and 10). Histosols contributed 60% to the total social cost
of total soil carbon. The counties with the highest midpoint TSC values were Providence
($5.69B), Washington ($4.47B), and Kent ($2.17B) (Tables 9 and 10). These rankings are
the same as for SOC and reflect the dominant contribution of SOC to TSC in the State.
Histosols contributed the largest proportion of the potential total social costs in almost all
counties except for Newport County. Providence County had the largest proportion of the
potential total social costs in the state with Histosols as a major potential hotspot.

It should be noted that Histosols only comprise 14% of the total land area for Provi-
dence County (Table 3), despite having such a large potential contribution to the social cost
of carbon. Inceptisols made the second largest contribution to the potential total social costs
in all counties with a total TSC storage percentage within each county ranging from 32% to
39% across the counties. The potential total social costs associated with Inceptisols were
greatest in Providence ($2.01B) and Washington ($1.43B) counties. In contrast, Entisols had
a limited contribution in total TSC storage percentage within each county which ranged
from 2% to 24% across the counties.
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Table 9. Midpoint total soil carbon (TSC) storage by soil order and county for the state of Rhode Island (USA), based on the
areas shown in Table 3 and the midpoint TSC contents shown in Table 4.

County
Total TSC

Storage
(kg) (%)

Degree of Weathering and Soil Development

Slight

Entisols Inceptisols Histosols

Total TSC Storage (kg), (% from Total)

Bristol 1.46 × 109 (2%) 2.23 × 108 (15%) 5.41 × 108 (37%) 6.94 × 108 (48%)
Kent 1.29 × 1010 (16%) 5.88 × 108 (5%) 4.71 × 109 (37%) 7.56 × 109 (59%)

Newport 5.18 × 109 (6%) 1.26 × 109 (24%) 2.04 × 109 (39%) 1.88 × 109 (36%)
Providence 3.37 × 1010 (42%) 6.76 × 108 (2%) 1.20 × 1010 (35%) 2.11 × 1010 (63%)
Washington 2.65 × 1010 (33%) 1.56 × 109 (6%) 8.46 × 109 (32%) 1.65 × 1010 (62%)

Totals (%) 7.97 × 1010 (100%) 4.31 × 109 (5%) 2.77 × 1010 (35%) 4.77 × 1010 (60%)

Table 10. Monetary value of total soil carbon (TSC) by soil order and county for the state of Rhode Island (USA), based on
the areas shown in Table 3 and the area-normalized midpoint monetary values shown in Table 4.

County
Total

SC-CO2
($)

Degree of Weathering and Soil Development

Slight

Entisols Inceptisols Histosols

SC-CO2 ($)

Bristol 2.46 × 108 3.77 × 107 9.12 × 107 1.17 × 108

Kent 2.17 × 109 9.97 × 107 7.94 × 108 1.27 × 109

Newport 8.75 × 108 2.14 × 108 3.44 × 108 3.17 × 108

Providence 5.69 × 109 1.15 × 108 2.01 × 109 3.56 × 109

Washington 4.47 × 109 2.65 × 108 1.43 × 109 2.78 × 109

Totals 1.34 × 1010 7.31 × 108 4.67 × 109 8.05 × 109

3.4. Land Use/Land Cover Change by Soil Order in Rhode Island from 2001 to 2016

Rhode Island experienced changes in land use/land cover (LULC) over the 15-year
period from 2001 to 2016 (Table 11, Figure 2). Changes varied by soil order and original
LULC classification, with most soil orders experiencing area losses in “low disturbance”
LULC classes (e.g., evergreen forest, hay/pasture) while gaining in the areas of “developed”
LULC classes.

Table 11. Land use/land cover (LULC) change by soil order in Rhode Island (USA) from 2001 to 2016.

NLCD Land Cover Classes
(LULC)

2016 Total
Area by LULC

(km2)
Change in Area, 2001–2016 (%)

Degree of Weathering and Soil Development

Entisols Inceptisols Histosols

2016 Area by Soil Order, km2

(Change in Area, 2001–2016, %)

Barren land 20 (−9.19%) 8.46 (−9.65%) 11.73 (−8.67%) 0.26 (−16.91%)
Woody wetlands 313 (−0.38%) 28.54 (−0.20%) 114.97 (-0.13%) 169.24 (-0.57%)

Shrub/Scrub 16 (128.58%) 2.85 (163.82%) 12.33 (126.76%) 0.44 (39.32%)
Mixed forest 421 (−0.23%) 38.90 (−0.65%) 352.78 (−0.20%) 29.31 (0.02%)

Deciduous forest 810 (−4.98%) 45.54 (−11.29%) 669.41 (−4.94%) 94.86 (−1.94%)
Herbaceous 48 (10.08%) 11.92 (4.44%) 35.39 (11.65%) 0.73 (37.93%)

Evergreen forest 115 (−1.30%) 17.66 (−2.71%) 93.79 (−1.04%) 3.72 (−1.05%)
Emergent herbaceous wetlands 25 (−6.65%) 7.13 (−3.86%) 6.93 (−10.25%) 11.19 (−6.06%)

Hay/Pasture 77 (−8.46%) 16.77 (−3.95%) 59.43 (−9.41%) 1.24 (−19.00%)
Cultivated crops 16 (23.72%) 4.31 (19.09%) 11.41 (25.51%) 0.26 (25.64%)

Developed, open space 183 (7.51%) 27.29 (1.57%) 142.43 (7.85%) 12.81 (18.13%)
Developed, medium intensity 278 (4.41%) 52.02 (4.59%) 222.43 (4.29%) 3.83 (8.88%)

Developed, low intensity 222 (4.34%) 43.54 (1.07%) 172.25 (5.06%) 6.55 (7.91%)
Developed, high intensity 106 (6.60%) 32.09 (8.06%) 73.60 (5.90%) 0.41 (21.45%)
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The most dramatic increases in developed land areas occurred in Providence, Kent,
and Washington counties, which are all in the eastern part of the state and geographically
closest to the urban center of Providence, the state capital of RI. More detailed spatial
and temporal analyses of land cover can identify critical locations of soil C regulating
ecosystem services at risk. This information can be used to meet various objectives aimed
at greenhouse gas emissions reductions outlined by the “2021 Act on Climate” bills (The
2021 Act on Climate Bills n.d.), including: “inclusion in procedures and public metrics
for periodic measurement, not less frequently than once every five (5) years, of progress
necessary to meet these targets and for evaluating the possibility of meeting higher targets
through cost-effective measures.” Remote sensing analysis allows rapid assessment on a
yearly basis if needed.
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4. Significance of Results for Rhode Island’s Climate Change Planning

Rhode Island’s “2021 Act on Climate” bills require that an updated plan to reduce GHG
be completed by 31 December 2022, which will likely include more stringent recommended
actions to reduce emissions compared to the 2016 greenhouse gas reduction plan (Rhode
Island Greenhouse Gas Emissions Reduction Plan 2016). Our study used the current plan,
formulated in 2016 (Rhode Island Greenhouse Gas Emissions Reduction Plan 2016), to
show how soil and land cover analysis can be utilized to identify and update emission
sources (e.g., hotspot of CO2 emissions associated with land cover change) and to evaluate
how land cover change has and can impact GHG emissions. This study provides important
information for some of these strategies in the following ways:
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2016 Greenhouse Gas Emissions Reduction Plan

GHG Sources and Projections: Current GHG profile

Currently, only land/land use is included in the RI’s GHG profile in “other” category
(3% of the total GHG emissions) (Rhode Island Greenhouse Gas Emissions Reduction Plan
2016). Pedodiversity concepts (Table 12) can be used to refine this category by showing soil
C storage, its value, and potential GHG emissions hotspots. Pedodiversity of RI (“portfolio-
effect”) is defined by three soil orders (Entisols, Inceptisols, and Histosols) with Histosols
being a hotspot of SOC storage valued at $7.91B (70% of total SC-CO2 associated with
SOC). Soil inorganic carbon is mostly found in the soil order of Inceptisols (80% of the
total SC-CO2 associated with SIC). Pedodiversity can be quantified and valued at various
administrative levels (e.g., state, county, property, etc.) to develop cost-effective GHG
reduction strategies.

Table 12. Distribution of soil C regulating ecosystem services in the state of Rhode Island (USA)
by soil order (photos courtesy of USDA/NRCS (Soil Survey Staff, Natural Resources Conservation
Service, United States Department of Agriculture 2021b). Values are taken/derived from Table 3,
Table 6, Table 8, and Table 10.

Soil Regulating Ecosystem Services in the State of Rhode Island

Degree of Weathering and Soil Development

Slight (100%)

Entisols
13%

Inceptisols
75%

Histosols
12%
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NLCD Land Cover Classes 
(LULC) 

Degree of Weathering and Soil Development 
Slight 

Entisols Inceptisols Histosols 
Area Change, km2 (SC-CO2, $=USD) 

Developed, open space 0.42 ($0.91M) 10.4 ($24.46M) 1.97 ($47.23M) 
Developed, medium intensity 2.28 ($4.96M) 9.15 ($21.59M) 0.31 ($7.50M) 

Social cost of soil organic carbon (SOC): $11.3B

$455.99M $2.97B $7.91B

4% 26% 70%

Social cost of soil inorganic carbon (SIC): $2.1B

$276.37M $1.70B $137.29M

13% 80% 6%

Social cost of total soil carbon (TSC): $13.4B

$731.40M $4.67B $8.05B

5% 35% 60%

Sensitivity to climate change

Low Low High

SOC and SIC sequestration (recarbonization) potential

Low Low Low

Note: Entisols, and Inceptisols are mineral soils. Histosols are mostly organic soils. M = million = 106; B = billion
= 109.

Monetary values of soil C can be interpreted using the concepts of “avoided” and
“realized” social costs, where “avoided” social cost refers to the benefits of sequestered
soil C, and “realized” soil cost refers to damages resulting from CO2 emissions. “Realized”
social cost is the maximum potential cost that would occur if all stocks of sequestered
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soil C were released to the atmosphere as CO2. These costs vary within the state and at
the county level. Information in Table 12 can be also used to determine possible GHG
mitigation pathways in RI’s soils, which is somewhat limited because of “portfolio-effect.”
Entisols and Inceptisols are relatively young soils with limited recarbonization potential.
Histosols are often protected soils because of their high soil C content and association with
wetland environments.

Mikhailova et al. (2021b) proposed a methodology for identifying “realized” social
costs of C because of soil disturbance (e.g., conversion from forest to development), which
can be analyzed using remote sensing (land cover change). This type of analysis was
performed for the state of RI and can be used not only to identify the active sources of
greenhouse gas emissions but also use it to model future projections of GHG emissions
because of land cover change. Results reported in Tables 13 and 14 show that all soil
orders within the state of RI experienced increases in developed land with corresponding
realized social costs of C with soil orders of Inceptisols and Histosols having the highest
realized social costs. Providence County had the highest increases in developed areas and
corresponding realized social costs (53% from state total) and most likely associated with
developments near existing urban areas (Figure 3). It should be noted that the largest
contribution to the “realized” social cost of C for Providence County was from the soil
order of Histosols ($42.9M) which only occupy 14% of the total land area in the county
(Table 3). Histosols are commonly associated with wetland areas which can be protected
from development at the state and federal levels. Wetland areas provide additional ecosys-
tem benefits beyond the soil carbon storage, which can include providing unique habitats
for a range of plant and animal species.

Table 13. Increases in developed land and maximum potential for realized social costs of C due to complete loss of total soil
carbon of developed land by soil order in Rhode Island (USA) from 2001 to 2016. Values are derived from Tables 4 and 11.

NLCD Land Cover Classes
(LULC)

Degree of Weathering and Soil Development

Slight

Entisols Inceptisols Histosols

Area Change, km2 (SC-CO2, $ = USD)

Developed, open space 0.42 ($0.91M) 10.4 ($24.46M) 1.97 ($47.23M)
Developed, medium intensity 2.28 ($4.96M) 9.15 ($21.59M) 0.31 ($7.50M)

Developed, low intensity 0.46 ($1.00M) 8.30 ($19.60M) 0.48 ($11.55M)
Developed, high intensity 2.39 ($5.20M) 4.10 ($9.68M) 0.07 ($1.73M)

Totals ($155.0M) 5.56 ($12.1M) 31.9 ($75.3M) 2.83 ($68.0M)

Note: Entisols and Inceptisols are mineral soils. Histosols are mostly organic soils. M = million = 106.

Table 14. Increases in land development (LULC: developed open space, developed medium intensity, developed low
intensity, and developed high intensity) and maximum potential for realized social costs of C due to complete loss of total
soil carbon of developed land by soil order and county in Rhode Island (USA) from 2001 to 2016.

County

Total
Area Change

(km2)
(SC-CO2, $ = USD)

Degree of Weathering and Soil Development

Slight

Entisols Inceptisols Histosols

Developed Area Increase between 2001 and 2016 (km2)
(SC-CO2, $ = USD)

Bristol 1.22 ($4.42M) 0.27 ($0.58M) 0.88 ($2.07M) 0.07 ($1.78M)
Kent 9.28 ($33.6M) 1.79 ($3.89M) 6.93 ($16.4M) 0.55 ($13.3M)

Newport 3.22 ($8.71M) 1.20 ($2.59M) 1.97 ($4.64M) 0.06 ($1.47M)
Providence 19.2 ($83.7M) 1.01 ($2.19M) 16.4 ($38.7M) 1.78 ($42.9M)
Washington 7.94 ($26.1M) 1.83 ($3.96M) 5.76 ($13.6M) 0.36 ($8.57M)

Totals 40.8 ($157.0M) 6.10 ($13.2M) 31.9 ($75.3M) 2.82 ($68.0M)

Note: Entisols and Inceptisols are mineral soils. Histosols are mostly organic soils. M = million = 106.
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Figure 3. The total dollar value of mid-point total soil carbon (TSC) storage value for newly “devel-
oped” land covers (open space, low, medium, and high intensity) from 2001 to 2016 in Rhode Island
(U.S.A.) based on a social cost of C (SC-CO2) of $46 per metric ton of CO2 applicable for the year 2025
(2007 U.S. dollars with an average discount rate of 3% (EPA—United States Environmental Protection
Agency 2016a)).

Policy and Implementation: Land Use Conservation

Description of Mitigation Option: “Land use conservation strategies preserve natural
systems and environments that provide carbon dioxide “sinks”, helping to reduce the
state’s net GHG footprint. Strategies include protecting existing forest acreage, reforesta-
tion, conservation of riparian buffers, enhanced forest management programs (on both
private and public lands), reductions in soil erosion to minimize losses in soil C storage,
coastal wetland protection (e.g., blue C), and enhanced urban tree canopies (Rhode Island
Greenhouse Gas Emissions Reduction Plan 2016).” Strategies include:

- Protecting existing forest acreage: Table 11 of our study provides total area measure-
ments of land covers in RI including mixed forest, deciduous forest, and evergreen
forest. Between 2001 and 2016, total area of mixed forest decreased by 0.23%, total area
of deciduous forest decreased by 4.98%, and total area of evergreen forest decreased
by 1.30%. For each land cover, our data shows the types of soil found and the change
between the years 2001 and 2016. For example, in mixed forests, area (soil order
Entisols) decreased by 0.65%.

- Reforestation: The data in Table 11 of our study also provides spatial analysis of RI’s
land cover types and the changes that have occurred between 2001 and 2016. This
analysis helps identify the regions of the state where reforestation efforts may be most
needed. Total area of mixed, deciduous, and evergreen forests decreased between
2001 and 2016 by 0.23%, 4.98%, and 1.30% respectively. These changes indicate that
deciduous forests have been most impacted by development and suggest that this
forest type can be one of the focuses of reforestation efforts.
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- Conservation of riparian buffers: The spatial analysis provided in our study’s land
cover maps shows land cover around bodies of water where riparian buffer zones
are found. Mixed forest is a dominating land cover type surrounding open water
in RI. Woody wetlands are also found in many of the buffer zones around water
bodies (Figure 2). Additionally, the soil map of RI shows the soil types found in
the riparian buffer zones. Inceptisols are the dominant soil order of RI, though, in
the more southern regions of the state, Histosols can be found near some water
bodies (Figure 1). Our study shows that Histosols have the greatest total SOC storage
(Table 9) as well as the greatest sensitivity to climate change and social cost of SOC
(Table 12). This analysis indicates a need for greater conservation of riparian buffers
where these Histosols are found. Mixed forests and, to an even greater extent, woody
wetlands are the most important target areas for riparian buffer conservation. With
this information, the state can identify the buffers around wetlands with the most
potential for C release and seek to concentrate protection efforts in those regions.

- Enhanced forest management programs (on both private and public lands): Spatial
information indicates the regions of the state covered in various forest types. Land
cover changes of RI show that between 2001 and 2016 the state has seen an increase
in high, medium, and low intensity development, and a decrease in mixed and de-
ciduous forests as development continues to spread. Table 11 of our study quantifies
these changes and indicates that high intensity development has increased by 6.60%,
medium intensity development has increased by 4.41%, and low intensity develop-
ment has increased by 4.34%. Greatest of all is the increase in developed open space:
from 2001 to 2016 there has been a 7.51% increase in this “land cover”. Using this data,
RI’s policymakers may be better able to identify areas (e.g., areas surrounding the city
of Providence, etc.) that require particular attention.

- Reductions in soil erosion to minimize losses in soil C storage: Table 5 of our study
shows the total SOC storage of Entisols, Inceptisols, and Histosols across the five
counties of RI. In all five counties, Histosols had the greatest SOC storage, adding up
to 70% of the state’s SOC storage in total. Table 11 of our study indicates that between
2001 and 2016, Histosols total area decreased as development increased. Using our
study’s data, areas with the greatest amount of at-risk C storage can be most stringently
protected. In this case, Providence and Washington counties are shown to contain the
greatest total area of Histosols, and therefore should be considered the most important
areas to reduce soil erosion caused by development (Table 3).

- Coastal wetland protection: Our study found that Histosols are often found in wet-
land areas of RI, and “are carbon-rich sources of greenhouse gas emissions”. This
means that protecting these soils should be a priority when the state is planning
overall wetland protection measures. Table 11 of our study indicates that woody
wetlands decreased by 0.38% and emergent herbaceous wetlands decreased by 6.65%
between 2001 and 2016. In these areas, Histosols area decreased by 0.57% and 6.06%,
respectively. These findings, along with an understanding that Histosols contain the
greatest C storage and therefore pose the greatest threat in terms of C emissions, will
help policymakers protect them from developments.

Mitigation Policy Considerations: “Scenario modeling results indicate that achieving
the Resilient Rhode Island GHG targets could likely require no net future loss of forest or
cropland. Policymakers could aim to align future local and state conservation policies with
this broader goal, and adoption of a “no net-loss of forests” policy, which other states in
the region have endorsed, could be explored.”

- Table 11 of our study indicates losses of mixed forest (−0.23%), deciduous forest
(−4.98%), evergreen forest (−1.30%), and hay/pasture land cover (−8.46%) between
2001 and 2016. This shows that the goal of a “no net-loss of forests” policy was,
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between those years, unsuccessful. Cultivated cropland in the state increased by
23.72% during that time, indicating that that goal was achieved.

- Our study identifies Histosols as the soil order most sensitive to climate change and
therefore the greatest emissions threat (Table 12). This data suggests that RI should
allocate the greatest protective measures to areas rich in Histosols when pursuing the
climate change mitigation, and that the state should anticipate the greatest emissions
in those regions as the climate warms up.

- Our study contributes to the mitigation effort and quantifies the expected damages
as CO2 is released from soil (Table 2). It also helps with resilience as cities in RI can
begin budgeting for the cost of these damages. With these calculations, the state can
carefully analyze which land covers and soil regions should receive the most stringent
protections from development.

- Table 11 in this study quantifies the degree of weathering and soil development across
different land covers, including forests. In mixed, deciduous, and evergreen forests,
areas of soil orders of Entisols and Inceptisols were decreased between 2001 and 2016.
Area of Histosols was also decreased except for a 0.02% increase in Histosols in mixed
forests during that time. Knowing this data will be critical to accurately determining
the impact of forest loss in RI. This contributes to the goal of avoiding C loss in forests.

5. Conclusions

This study demonstrated the application of spatial analysis tools to generate the data
necessary to quantify soil C stocks, their value, and dynamics at the state level to be used
in conjunction with RI’s GHG emissions reduction plan. The total estimated monetary
mid-point value for TSC stocks in the state of RI was $13.4B (i.e., 13.4 billion U.S. dollars
(USD), where B = billion = 109), $11.3B for SOC stocks, and $2.1B for SIC stocks. Soil orders
with the highest midpoint value for SOC were Histosols ($7.9B), and Inceptisols ($2.9B).
Soil orders with the highest midpoint value for SIC were Inceptisols ($1.7B), and Entisols
($276M, where M = million = 106). Soil orders with the highest midpoint value for TSC
were Histosols ($8.1B), and Inceptisols ($4.7B). The counties with the highest midpoint SOC
values were Providence ($4.85B), Washington ($3.80B), and Kent ($1.82B). The counties with
the highest midpoint SIC values were Providence ($838M), Washington ($667M), and Kent
($349M). The counties with the highest midpoint TSC values were Providence ($5.69B),
Washington ($4.47B), and Kent ($2.17B). Rhode Island has experienced land use/land cover
(LULC) changes between 2001 and 2016 with most maximum potential “realized” social
cost of carbon (C) of $157M with soil orders of Inceptisols ($75.3M) and Histosols ($68.0M)
contributing the largest share of the total realized value. The counties that have exhibited
the most development (e.g., Providence, Kent, and Washington) are those nearest the urban
center of Providence, RI. Most soil orders have experienced losses in “low disturbance”
land covers (e.g., evergreen forest, hay/pasture) and gains in “high disturbance” land
covers (e.g., low-, medium-, and high-intensity developed land). Histosols are a high-risk
C “hotspot” that contributes over 70% of the total estimated sequestration of SOC in RI
while covering only 12% of the total land area. Spatial analysis offers a rapid temporal
assessment of soil C regulating ES/ED using pedodiversity and land cover concepts, which
can be used to design soil- and land-cover specific, cost-efficient policies to manage soil C
regulating ES/ED in the state of RI at various administrative levels. Although this study
was focused on identifying past realized social cost of C, these techniques can also be
used to generate an information disclosure of potential GHG releases (including associated
social costs) for proposed developments.

Analysis of past development impact may inform locations where future development
may occur. Similar land cover analysis based on satellite remote sensing and soil information
databases could be used to develop information disclosures of potential GHG emissions.
This information disclosure before a development could be used in either a voluntary or
required process to estimate the social cost of carbon before initiating a development. This
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disclosure could in some cases stop a proposed development or cause a statutory cost for
proceeding with a development. If voluntary, this disclosure could benefit a developer,
because in the cases of development with little social cost of carbon, a project could be
“labeled” as low carbon impact which could be used as part of a sustainable branding
initiative since the benefit of carbon disclosures is worldwide and not just local (Cohen
and Viscusi 2012). There are many possible benefits to developers who provide voluntary
disclosures (e.g., reputational, advantage in the marketplace, greater potential for public
partnerships). As climate change awareness and impact increase, the marketplace may favor
companies that document their efforts to minimize GHG emissions through information
disclosures. This study suggests methods that would enable developers to compare different
potential development or redevelopment projects to minimize GHG emissions which they
may disclose to provide a competitive advantage. While this study has focused on land
cover and soils analysis, it may be possible to enhance these methods by incorporating other
factors (e.g., climate, land management intensity, etc.) (Duro et al. 2014).
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