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Abstract 

Evaluation studies were conducted to determine if ground-penetrating radar 

(GPR) could be used to noninvasively map subsurface phenomena that affect the 

variability of crop yields in two physiographic regions of Tennessee. GPR technology 

offers great potential to agricultural researchers for noninvasive mapping of the various 

subsurface features found within these geological regions. 

Calibration data were collected at three survey locales containing soils similar to 

those found in the main research areas. GPR survey methodologies within each region 

were developed, and optimal system settings were obtained. Primary subsurface features 

of interest to the study were also mapped and methodologies of interpreting the features 

from GPR imagery were evaluated using a "blind test". Results of the "blind test" 

indicated a relatively high degree of accuracy and repeatability. 

Geographic information systems (GIS) were used as a tool to geographically join 

the GPR data to crop yield values from four primary research plots. Statistical analyses 

were then performed to determine the correlation between the two types of data. 

Correlation coefficients indicated that interpretations from GPR imagery were capable of 

describing a great deal of the spatial variability observed in the crop yield trends. 

Furthermore, results from the Least Squares Means analysis revealed a yield potential 

pattern of the soils that each GPR interpretation represented. 

Recommendations were made concerning survey procedures, equipment, and 

interpretation methodologies. Difficulties encountered are also discussed along with 

suggested solutions. Finally, the direction of future research in the area of GPR in site-

specific farming (SSF) is discussed, and recommendations for this research are presented. 
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Chapter 1 

Introduction and Objectives 

Trends in Production Agriculture 

Many of the yield increases obtained in production agriculture over the last 

several decades have been achieved by identifying and adjusting producer-controlled 

factors that limit plant growth. In the past, a producer treated large production fields as a 

single entity. A field was limed at a constant rate, fertilized at a constant rate and 

herbicides and pesticides were also applied at constant rates throughout an entire 

production area. One problem exists, however, when treating fields as one homogeneous 

unit: most production fields consist of two or more soil types with differing crop yield 

potentials. 

Producers are now able to map large production fields into the different soil types 

or yield potential regions that exist and treat those regions accordingly. These new 

methods of farming, which include grid-soil sampling, computerized field mapping, 

variable rate applications, and crop yield monitoring, are collectively called site-specific 

farming (SSF). 

Recent advancements in computer and electronic technologies appear to be a 

main factor spurring many of the newest trends in production practices. The increase in 

speed and storage capabilities of computers and the advent of more user-friendly 

mapping software packages are allowing producers to use personal computers (PCs) in 



many areas of the production process that were once thought impossible. Farmers not 

only use their PCs as farm record keeping devices, but also now have the capabilities of 

mapping an entire farm into specialized production areas. 

The evolution of the Global Positioning System (GPS) as a quick and accurate 

positioning system has also had a great impact on the direction of today's farming 

practices. Many of the SSF concepts that are gaining widespread usage implement the 

GPS system within a latticework of other technologies. One example of this is the 

variable rate application of fertilizers and pesticides. Variable rate controllers implement 

GPS to determine precise locations within a field where specified volumes of material 

should be applied. Another example of GPS technologies in production agriculture is the 

widespread use of grain yield monitors . Yield monitors use the GPS system to record 

precise locations within a field as the harvester simultaneously records yield values that 

correspond with the locations. Once these data are downloaded from the yield monitor, 

the data can be plotted into color-coded yield maps using a variety of available software 

packages. These maps may supply spatial information that assists producers in making 

decisions concerning future production inputs. 

Numerous studies have determined that SSF practices may result in lower 

production inputs and equal or in some cases greater production outputs than 

conventional farming practices. The focus of future research in these areas is now turning 

to the development of new methods of determining the factors that influence the usage of 

SSF practices. 
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Technology Overview 

Environmental concerns and the efficient use of monetary inputs are driving 

forces toward precision applications in production agricultural operations. To reduce 

environmental impacts and optimize the use of inputs, SSF practices must utilize today's 

cutting edge technologies for its implementation. Technologies such as Ground-

Penetrating Radar (GPR), GPS, and Geographic Information Systems (GIS) have been 

made possible by the many advancements in the computer and electronics industries. 

Each of these technologies have been previously applied and proven in disciplines other 

than agriculture. 

GPR has been used in a variety of di sc iplines to detect subsurface features or 

foreign objects. For example, Collins et al. , (1989) used GPR technology to detect and 

map an irregular bedrock surface under glaciated terrain. The GPS has been implemented 

in areas such as fleet management, air traffic control, and wildlife monitoring. 

Geographic information systems, a computer based data information system that is 

capable of managing spatially variable data has been successfully used in urban planning 

and environmental modeling. 

Global Positioning System 

The problems associated with navigation and determination of precise positions 

have been researched throughout time. Ancient peoples used stars as navigational 

benchmarks; however, meteorological events such as rain or cloud cover prevents that 

method from being practical. Other navigational systems such as LORAN and DECCA 

,., 
.) 



have become available in recent years. These systems consist of a ground-based network 

of low-frequency transmitters; however, they have a limited area of coverage and are 

unable to determine positions as precisely as GPS (Stafford and Ambler, 1994). 

The NA VSTAR (NAVigation Satellite Timing And Ranging) GPS is a space 

based navigational and positioning system developed, operated, and maintained by the 

US Department of Defense (DoD). Now fully operational, the system is capable of 

providing an unlimited number of users a means of determining precise position, 

velocity, and time on a world wide continuous basis in all weather conditions (Rupert and 

Clark, 1994). 

The GPS consists of three primary segments (space, control, and user), all of 

which work together to make the system function to its fullest capacity. The space 

segment is comprised of twenty-four satellites orbiting the earth at approximately 20,000 

km on six different orbits. The satellites transmit signals on two different frequencies. 

One signal is known as the Ll (1575.42 MHz), the other signal is called L2 (1227.60 

MHz). These two signals are known as carriers and have impressed upon them a course 

acquisition (C/A) code (on Ll) or a precise (P) code (on L2), and a broadcast message 

which includes ephemeris and satellite health data. Each satellite weighs approximately 

860 kg in orbit and is 5.1 min length with the solar panels extended (Hum, 1989). 

The operational control segment consists of seven different stations throughout 

the world whose function is to accurately track the satellites. These control stations 

provide tracking and ephemeris data; they are also capable of correcting errors in the 

satellite clocks, and monitoring the general health and status of each satellite (Rupert and 

Clark, 1994). The user segment is composed of the combination of people and their 
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receivers tracking satellites to receive information required for position determination 

(Rupert and Clark, 1994). 

Basic CPS Operation 

Precise locations on earth are calculated by trilateration of the satellites. A 

synchronized pseudo-random code is generated both by the orbiting satellites and by 

receivers on the ground. Since the codes are synchronized, the time it takes for the 

satellite signal to reach the receiver can be computed. From that time, using the speed of 

light (299792458 mis), a distance or range to the satellite is calculated. A microprocessor 

within the GPS receiver then uses these computed distances to satellites to trilaterate a 

position in either two dimensions (latitude and longitude) or three dimensions (latitude, 

longitude, and altitude) on earth (Hum, 1989). 

Precision and Differential Correction 

Though GPS position locations are more accurate than any previous system 

offered, there are still rather large errors associated with the system. When used 

autonomously, or in the stand-alone mode, GPS is accurate to approximately 12-m 

circular error probable (CEP). When used with a base station and differentially corrected, 

accuracy may be improved to 2 to 5-m CEP (Johnson et al., 1992). The three factors that 

are considered to contribute the most to low precision in GPS data are listed below. 
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1. Satellite Clock and Receiver Errors: Though satellites are equipped with 

atomic clocks, they may still show small variations. Receivers can also round 

off mathematical computations or suffer electrical interference that leads to an 

erroneous determination. Hum ( 1989) states that these two factors alone may 

add up to as much as two meters error in calculated positions. 

2. Ionospheric and Atmospheric Errors: The ionosphere, which is a band of 

negatively charged particles that encompasses the earth at approximately 130 

to 200-m altitude, can cause errors in the system by slowing down the pseudo 

random code generated by the satellites. If the code does not maintain the 

speed oflight, receiver calculations will contain errors. The earth ' s 

atmosphere or meteorological events are also capable of delaying the code. 

According to Hurn (1989), these errors may add up to 3.5 m of error to 

positions. 

3. Selective Availability (S/ A): S/ A is the intentional addition of errors by the 

US DoD in the satellite orbit information. This error is added to prevent 

hostile forces from using the system in times of war. Because of the large 

amount of civilian use of GPS , S/ A is being restricted to reduce the system 

accuracy to no more than 100 m. Special military GPS receivers are able to 

decode information on both the L 1 and L2 signals even if S/ A is turned on. 
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In agricultural applications such as precision farming, accurate positions are a 

must. Therefore, due to the positioning errors associated with timing, S/ A, and the 

ionosphere, an alternative way to achieve sufficient accuracy is necessary. The method 

used to acquire positional data accurate enough for precision farming is the Differential 

Global Positioning System (DGPS). The Differential Global Positioning System is the 

technique of using two GPS receivers to collect positional data. One receiver (the base 

station) is set up at a known point. The second receiver (the rover) is used to move 

throughout the area to record data points. By comparing the data received by the base 

station to its known location, the error is estimated and eliminated. The error message is 

then transmitted to the rover unit, allowing the rover to correct its own location. 

Two methods of accomplishing differential correction are: 

1. Real Time DGPS : Real Time DGPS refers to correcting the positions as the 

original data are being collected. When applying real time DGPS, the user has 

several options on how to receive the correction signal: 

• Having a separate base station and the transmission equipment needed 

to send the correction signal to the rover unit. 

• Subscribing to a commercially available DGPS service. Several 

companies offer a subscription of DGPS correction signals valid for a 

determined area, and charge a fee for this service. 
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• Use the Coast Guard Beacon signal. The US Coast Guard transmits 

DGPS signals at no charge to the user. One disadvantage of using the 

Coast Guard Beacon for differential correction is that the rover unit is 

restricted to areas where the beacon signal will reach, which are 

confined to coastal areas and navigable waterways. 

2. Post-Processed DGPS : Post processing involves correcting the GPS data after 

it has been collected. The most common form of post processing data is to 

contact a local base station and download correction codes that correspond 

with the time stamp on the uncorrected GPS data that is to be corrected. Post-

processed DGPS positions are just as accurate as real-time DGPS data; 

however, this type of data will often have limitations in agricultural 

applications because users most often need to know their position while they 

are in the field and not after they have left. 

Geographic Information Systems 

A GIS is a computerized system designed to store, process, and analyze spatially 

varying data. The major components of a GIS include a user interface, system/database 

management capabilities, database creation/data entry capacity, spatial data manipulation 

and analysis packages, and display/product generation functions (Evans et al. , 1995). A 

GIS can store, manipulate, and retrieve any data that contain a geographic or location 

reference. Therefore, data used in a GIS database must contain some reference of its 

location such as an address or geographical coordinates. 
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Much of the research involving the use of GIS in SSF practices has used software 

produced and distributed by the Environmental Systems Research Institute (ESRI) '. 

ESRI, which produces the GIS software ARC/INFO TM , PC ARC/INFO TM , and 

Arc View™ define GIS as the only system that permits spatial operations on data. Spatial 

operations are queries that can only be answered using the geographic coordinates and 

the listed attributes of the data (ESRI, 1995). Star and Estes (1990) list five aspects of 

data that a GIS is capable of defining: 

I. Location: A location refers to the geographic reference of the data ( an 

address, ZIP Code, or coordinates). 

2. Condition: A GIS can be used to find locations that satisfy a certain condition. 

For example, a yield value range that exists on a soil with a slope lower than 

5% and a soil depth less than 50 cm. 

3. Trends: A GIS is capable of determining trends in areas by looking at 

differences in the data over time. 

4. Patterns: A GIS is able to reveal patterns in data sets. 

5. Modeling: A GIS may be used to answer hypothetical "What if' questions. 

For example, what happens if a toxic substance seeps into groundwater 

reservoirs? 

Projects 

Generally when working with GIS software, each individual data set (i.e. , data 

from a particular production field) is termed a project. A project contains both the 

geographical reference points of the data and the attribute information that coincides with 

1 The use of brand names does not imply endorsement of these products by The University of Tennessee. 
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those points. Every GIS project should consist of five essential elements (Star and Estes, 

1990): 

1. Data acquisition: The process of identifying and collecting the data required 

for the project. 

2. Pre-processing: The manipulation and processing of the data in order that it 

will conform to the GIS format. 

3. Data management: Consistent methods of data entry, update, deletion, and 

retrieval. 

4. Data manipulation and analysis : Allows operators to work with the database 

and derive new information from the data. 

5. Product generation: The generation of thematic maps, graphics, and statistical 

reports from the information in the database. 

Ground-Penetrating Radar 

GPR Basics 

Ground-penetrating radar is a broadband, impulse radar system that has been 

specifically designed to penetrate earthen materials (Doolittle, 1987). Images are formed 

by short electromagnetic pulses emitted from the radar antenna. When the pulse reaches 

an electrical interface (i.e., a change in electrical properties) in an earthen material, some 

of the energy is reflected back while the rest proceeds forward. A receiving unit inside 

the radar antenna detects the reflected signals, and the time difference between 

transmission and detection is recorded in nanoseconds (nS). A continuous scan of the 



electrical interfaces within the medium is then displayed on an output screen as the 

antenna is simultaneously pulled across the surface. 

The relative dielectric constant ( cr) of a material is a measure of how well that 

material stores an electrical charge. Air has a cr of 1 while the cr of water is 81 . As listed 

in table 1.1, other materials have cr that range somewhere in between that of air and 

water. Since the cr of water is equal to 81 , the primary factor affecting the average cr of a 

soil profile is water content. 

There are two separate methods of determining the average cr of soil : the common 

depth point (CDP) method and the two way travel time (TT) method. The CDP method 

requires the use of two antennas being operated on a relatively flat surface. One antenna 

is used as the transmitter and the second is used as the receiver. The two antennas are 

then pulled away from a common point in equal distance increments. This method allows 

the velocity of the wave moving through the soil to be calculated by triangulation. When 

using this method, the antenna separation is set to zero (Ulrikson, 1982). 

The TT method of calculating average cr requires that the depth of an object or 

reflector within the soil column be known. As the antenna passes over the known 

reflector, the TT is recorded by the receiver in nanoseconds. Using the known depth to 

the reflector and the TT value, an average cr for the soil can be calculated using equation 

1.1. 
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where 

(eq. 1.1) 

(ns I m) 2 

a= 
43.56 

cr = overall relative dielectric constant of the medium 
ns = two way travel time of radar wave in nanoseconds 
m = distance in meters 

Overall accuracy and maximum probing depth of GPR are determined by the 

relative cr of the geologic material over which the unit is being operated, and by the 

frequency of the antenna being used. Mediums with highly conductive properties such as 

wet, saline, or high clay content soils produce poor images. However, mediums with 

lower conductive properties such as sand and other coarse grained materials produce 

much sharper images (The Finnish Geotechnical Society, 1992). 

Maximum probing depth of the antenna is a function of the frequency or 

wavelength (A) generated by the antenna. Antennas that transmit high frequencies (500 to 

1000 MHz) are capable of resolving very distinct electrical changes within a medium; 

however, these high frequency models are not able to probe very deep within the 

medium. Antennas that transmit at lower frequencies (100 to 300 MHz) lack the 

resolution of the higher frequency models but possess the ability to penetrate to deeper 

depths. 
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TABLE I. 1: Approximate dielectric constant ( cr) of various-earth materials (GSSI , 
1982). 

Material 

Air 

Pure Water 

Sea Water 

Granite 

Sand, dry 

Sand, saturated (fresh water) 

Silt, saturated (fresh water) 

Clay, saturated (fresh water) 

Average soil 

Approximate Dielectric Constant, cr 

13 

81 

81 

8 

4-6 

30 

8 - 12 
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Justification for Research 

In the past, site-specific soil mapping studies (Palmer, 1997; Franzen and Peck, 

1995) have used the grid method of sampling to focus primarily on the chemical 

characteristics of the soil (e.g. , pH, N, P, and K concentrations, and Base Saturation) with 

less attention given to the physical properties of the soil that may limit plant growth such 

as shallow bedrock and other root-restrictive soil layers. One reason these physical 

properties have been somewhat overlooked is that previously the soil had to be physically 

altered for observation, which most often tended to be both a costly and labor intensive 

venture. Furthermore, extensive disturbance of a naturally occurring soil may limit plant 

growth by altering the soil structure, porosity, and hydraulic conductivity. 

With precision farming and yield monitoring becoming more popular with 

producers, new and innovative methods are needed to define the subsurface features that 

affect agricultural production lands. Various types of soil and rock probes are today's 

standard instruments used for detecting bedrock and layers of high density within a soil 

profile. Though these instruments can detect the depth to these restrictive layers with a 

relatively high degree of accuracy, they are only capable of acquiring data at specific 

points, with subsequent questionable data interpolation between points. Because of the 

limited amount of non-continuous data that may be taken by these intrusive instruments, 

this project was devised to evaluate GPR as a means to continuously collect the 

subsurface data required to correlate crop yields with subsurface phenomena. 
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Objectives 

The primary objective of this project was to evaluate the ability of GPR to 

nonintrusively detect subsurface features that affect the productive capacities of 

agricultural production fields . Specific objectives included: 

1. Systematically interpret the characteristics of GPR images obtained from research 

plots, and 

2. Statistically compare the interpreted characteristics of GPR images with yield data 

collected from the research plots. 
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Chapter 2 

Review of Literature 

Soil Variability in the Research Areas 

As defined by Brady (1990), soil is a "naturally occurring body composed of 

mineral and organic materials and living forms in which plants grow." Miller (1990) cites 

five factors that are involved in the soil formation process: 

1. Parent material : all soils are developed from weathered rocks, volcanic ash 

deposits, or accumulated plant residues. Those materials are called parent 

materials. They influence soil formation by their different rates of weathering, 

their nutrient content for plant use, and their particle size. 

2. Climate: the climate is a dominant factor in soil formation because of the 

effects of precipitation and temperature. 

3. Living organisms: the biota helps soi l develop by decomposing organic matter 

and forming weak acids that dissolve minerals better than pure water. 

4. Topography: topography influences soil formation, primarily due to its 

association with temperature and water. 

5. Time: time interrelates the above factors in soil formation. Under ideal 

conditions for development, a soil profile can develop within 200 years. 

Under less favorable conditions, it might take several thousand years for this 

development. 
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A great amount of variability is often present in soil profiles within a matter of 

meters (Brady, 1990). One of the more notable variations is the difference in available 

nutrient levels within the soils. Several different factors are involved in determining the 

amount of available nutrients that a particular soil may contain. One of those determining 

factors is the type of parent material that the soil was derived from. For example, a soil 

formed from limestone sediments will generally have higher residual nutrient levels than 

that of a soil derived from sandstone sediments. Regional climates also have an effect on 

the amount and type of nutrients present. Generally regions that are relatively warm and 

receive a large amount of annual rainfall will incur leaching of nutrients from the topsoil 

into the subsoil, where they are no longer available for plant uptake due to fixation by 

other elements. 

Numerous studies exist that have concentrated on comparing soil nutrient levels 

with crop yields. Barbosa (1996) related variably applied nitrogen with yields on com 

and found that as the amount of nitrogen applied increased, so did crop yields. Palmer 

(1997) related yield values of cotton with phosphorus levels and found that the lowest 

average yields were found in soil mapping units that coincided with low phosphorus 

levels (between 6 and 9 ppm). 

Another form of variability within production fields that is sometimes overlooked 

is that of the morphological traits found under the surface of the soil. Common variations 

found in soil morphological properties include differences in soil depth and depths to 

specific soil horizons. These morphological features often have a large impact on the 

ability of the soil to produce crops by determining how water and nutrients move through 

the soil, and ultimately become available for plant uptake. 
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The morphological feature of key importance in the geographic region of the 

Loess Uplands of West Tennessee (Figure 2.1) is the fragipan. Figure 2.2 illustrates a 

fragipan , which is a soil horizon that meets a set of field criteria that include brittleness, 

tendency to slake in water, evidence of pedogenesis, presence of prisms arranged in a 

horizontal plane separated by vertical streaks, and high bulk density compared with that 

of overlying horizons (Rhoton et al., 1996). Rhoton et al. (1996) also state that in terms of 

plant production, no individual property is more important than the ability of fragipan 

horizons to restrict the depth of plant root penetration and water movement. 

Soils of the Loess Uplands of West Tennessee consist primarily of Alfilsols, and 

approximately 55% of the highly erosive uplands are underlain by fragipans (Tyler et al. , 

I 99 I). Accelerated erosion is thought to have been occurring on the highly erosive areas 

since the first settlers began cultivating the region in the early 1800' s. To compound the 

detrimental effects of erosion, the presence of fragipans makes the accelerated erosion 

particularly detrimental to the productive capabilities of the soils (Tyler et al. , 1991 ). 

For example, in a three-year study of erosion and productivity of soils containing 

a fragipan, a slightly eroded site (59 cm) stored an average of 30% more water than a 

moderately eroded site (43 cm) and 72% more water than a severely eroded (20 cm) site. 

Also, the moderately eroded area stored approximately 58% more water than the severely 

eroded area (Rhoton et al. , 1996). In another study of the relationship between the depth 

of a fragipan and crop growth, Tyler et al., (1991) found that as the depth to the fragipan 

layer decreased, rooting depth was restricted and crop yields of soybeans and com were 

lowered significantly. 
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Figure 2.1: Schematic of the Cumberland Plateau and Loess Uplands Physiographic 
Regions of Tennessee. 
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Figure 2.2: Photo taken from within a soil pit of a fragipan horizon occuring below 
approximately 60-cm depth. 
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Although erosion has the potential to detrimentally affect soil fertility by removal 

of nutrients, this problem can often be solved with proper chemical amendments on soils 

that do not contain a fragipan. However, on soils containing fragipans, erosion and the 

loss of soil-water storage capacity caused by the decrease in topsoil thickness can be a far 

more serious problem that cannot be easily ameliorated. In these cases, fragipan horizons 

generally exert a greater influence on the productivity of the soil, limiting plant-root 

accessibility to water and nutrients stored above the fragipan. Rhoton et al. (1996) 

suggests some form of conservation tillage, not as a means to ameliorate the problem, but 

as a means to control the problem for future production. Furthermore, in addition to 

reducing the loss of topsoil , the use of conservation tillage practices on shallow fragipan 

soils may also act as a form of soil-water conservation. However, if erosion is so severe 

that the fragipan horizon represents the surface, it may be more cost effective for 

producers to simply take the affected area out of production totally. 

Shallow bedrock beneath production areas may also retard plant-rooting depth 

and reduce the water holding potential of a soil. The morphological feature of key 

importance in the geographic region of the Cumberland Plateau of Middle Tennessee 

(Figure 2.1) is shallow soils underlain by sandstone bedrock. Figure 2.3 illustrates the 

shallow depth at which bedrock can occur on the Cumberland Plateau. 

Because precipitation is generally lower during the growing season than for the 

remainder of the year, and because the soils of the Cumberland Plateau are generally 

shallow, moisture stresses to plants are frequent. Schumann (1984) determined that the 

plants most affected by moisture stress on the Cumberland Plateau are those with a 

limited root system or plants growing where soils are shallow, which is widespread. 
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Figure 2.3: Photo of shallow sandstone bedrock that is typical of the Cumberland Plateau 
Physiographic Region. 
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Although most soils on the Cumberland Plateau exhibit relatively similar textural 

properties, the agricultural potential of the soils varies greatly. This was found to be 

primarily due to the differences in depth and stone content, which were closely related to 

the gradient of slope (Schumann, 1984). 

In the past, farmers had a limited amount of information on the variability of soils, 

and even fewer options in managing this variability. Farmer methods of planting, 

fertilizing, and spraying were designed to apply at uniform rates throughout a field. 

Today, due to the numerous advancements in computer and electronic equipment, 

agricultural machinery is being designed to take into account the natural variability 

within a field and treat areas according to recommendations from soil tests. GPS and GIS 

technologies are now being researched to be used in conjunction with agricultural 

equipment to allow farmers and agronomists to manage their fields in accordance with 

the variability and yield potentials of the soils. 

GPS in Site-Specific Farming Applications 

When using GPS for SSF applications, it is almost a must to differentially correct 

for positional errors. Researchers and producers alike are using GPS as a tool to 

determine spatial variability (yield, nutrient, soil type, and pest occurrence) and prescribe 

treatment according to those specific variables. For this reason, the more accurate the 

system used to describe the variability, the more practical use it will have for producers. 

Many publications exist that have researched GPS technology as related to its use 

in agricultural operations. Harrison et al. (1992) states that location determination is 
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arguably the most important data input for SSF management, and that GPS is capable of 

providing that information. Also, after a series of yield mapping tests using DGPS 

attached to combines, Auernhammer et al. (1994) concluded that DGPS allows yield 

mapping with a sufficient precision for current farming practices. 

The GPS has also seen widespread usage in the area of spatially variable fertilizer 

and pesticide applications. When implementing spatially variable applicators, the desired 

application rate may change often and significantly. Due to these changes in output 

throughout a field, some method of precise location determination is needed. Schueller 

and Wang (1994) state that the location methods often used in spatially variable 

applications include dead reckoning, electromagnetic (radio or microwave) trilateration, 

or GPS. They also state that discussions with many agronomists and engineers indicate 

that GPS has the greatest potential for the variable-rate control of fertilizers and 

pesticides. Furthermore, in a study testing laser, radio, microwave, and GPS positioning 

techniques, Stafford and Ambler (1994) concluded that GPS had the best potential as an 

agricultural location system for spatially variable operations. 

GIS in Site-Specific Farming Applications 

Information that may lead to the maximization of yields and the minimization of 

inputs is what producers and researchers expect when utilizing GIS technologies in SSF 

applications. The ability of a GIS to query and manipulate data according to its attributes 

and geographic location may lead producers to a better understanding of the variability in 
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yields, nutrients, and soil type, and how to overcome that variability through SSF 

practices. 

Perhaps the most common use of GIS in SSF applications is the production of 

yield maps that are georeferenced using real-time DGPS coordinate data. Another 

common application of GIS in agriculture is the map overlay (Evans et al. , 1995). For 

example, soil type maps and nutrient maps are overlaid to generate individual sub-areas 

with distinguishing soil properties in a field. Crop simulators can then be applied to each 

unique sub-area to study crop yield distribution. 

Some of the more important roles for GIS in agriculture are data base functions 

used for record keeping and for comparing management decisions (National Research 

Council, 1997). A GIS is capable of storing data of farm inputs and outputs in a spatial 

format. For instance, data on crop rotation, yield, soil type, and fertilizer and pesticide 

applications are capable of being stored and displayed in a GIS. The National Research 

Council (1997) also states that a GIS has the potential to enhance other components of 

SSF such as yield monitoring and farm based research (i.e., crop modeling) as well as 

provide a better record keeping device for producers. 

Current research in the agricultural industry is implementing this technology due 

to the ability of a GIS to map and model spatially varying information of numerous 

variables associated with SSF practices. Some examples of these variables include: yield 

potential regions, soil nutrient levels, soil types, crop pest occurrence, subsurface 

phenomena, plant population, and ground water integrity. 

In discussing the capabilities and limitations of GIS technology for SSF, Evans et 

al. (1995) indicates that GIS is a very useful tool for handling spatial data, but that its ro le 
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in precision farming should not be exaggerated. They cite that the main limitations of 

GIS, as pertaining to precision farming , are its lack of basic analytical tools ( e.g., spatial 

interpolation routines), and the difficulties in linking data with other software packages 

(e.g., crop simulation models). However, according to the National Research Council 

(1997), the lack of analytical tools in GIS packages are rapidly changing as several 

vendors are developing fully functional GIS programs intended for use on PCs. They also 

state that this should lead to GIS software and hardware systems that are more user 

friendly and less expensive. 

GPR Applications in Agriculture 

Computer processing of GPR data can be used to generate economical and 

detailed two- and three-dimensional maps of subsurface conditions. These maps are 

capable of showing variations in the depths to soil horizons and summarizing the 

composition of soils for detailed soil maps. Perhaps the main reasons GPR has been 

implemented in agricultural soil reconnaissance are its speed of operation and its ability 

to gather large quantities of continuous, high-resolution subsurface data. 

In agricultural applications the cost of inputs are often a major concern to 

producers and researchers alike. When compared to conventional methods of collecting 

subsurface data for agricultural research, GPR has proven to be less time consuming and 

more cost effective. For example, when comparing GPR technologies to conventional 

soil surveying methods, Doolittle and Collins (1995) found that GPR was more 

economical and less likely to miss subsurface data than conventional methods. Doolittle 
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(1982) also compared conventional soil reconnaissance cost with GPR methods and 

found that GPR could reduce the costs of fieldwork by 70%, while increasing 

productivity by 210%. 

Another advantage GPR possesses over conventional soil reconnaissance methods 

is its ability to collect subsurface data continuously and noninvasively. Conventional 

intrusive methods of collecting subsurface data include probes, augers, spades, and often 

times backhoes. When comparing GPR to each of these intrusive instruments, the 

intrusive tools require more man-hours and provide less complete data sets. Furthermore, 

the conventional methods can be less accurate due to obstructions that may be 

encountered above the feature that is of primary interest. For example, when comparing 

GPR technology with the use of manual rock probes to determine depths to sandstone 

bedrock on the Cumberland Plateau of Middle Tennessee, Hamlett (1995) found GPR to 

be more consistent than the rock probe. This was in large part due to large rock fragments 

or "floaters" suspended within the soil column that inhibited the probe from reaching 

solid stone. Hamlett ( 1995) also concluded that deposits of mudstone were capable of 

inhibiting the penetration of the rock probe, therefore misrepresenting the actual depth to 

solid sandstone bedrock. 

GPR has also been used to characterize soil map units in conjunction with 

physical data obtained by soil scientists in the coarse grained soils of Florida (Doolittle, 

1982). From these characterizations, Doolittle (1982) found that GPR was capable of 

detecting, determining the depth, and tracing the lateral extent of subsurface horizons. He 

found that the compositions of soil horizons could be determined by observing the 

variations in the strength or intensity of the reflected signals along interfaces. 
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To date, GPR technologies have also been used to provide the following 

information to agricultural researchers : 

1. Subsurface information used to update and refine existing county soil surveys 

(Schellentrager et al. , 1988). 

2. Detection of spatial variability in depth and lateral extent of argillic horizons 

and water tables (Truman et al., 1988). 

3. Determination of microvariability in spodic and argillic horizons in a 

representative Atlantic Coast Flatwoods area (Collins and Doolittle, 1987). 

4. Information used to map soil horizons, permeable zones, clay lenses, organics, 

water tables, and specific soil types (Benson and Glaccum, 1979). 

5. Geotechnical information involving soil cementation (hard pans), soil/rock 

interfaces, and geological fractures and bedding planes (Benson and Glaccum, 

1979). 
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Chapter 3 

Materials and Methods 

GPR Equipment Summary 

The GPR unit used in this study was the Subsurface Interface Radar (SIR) 

System-lOA designed and manufactured by Geophysical Survey Systems, Inc. (GSSI) of 

North Salem, NH, USA. The System-I 0A mainframe consisted of a 486SLC Cyrix 

motherboard with an 80387 math coprocessor. The coprocessor used a 20-MHz Motorola 

DSP 56001 digital signal processor for high speed signal processing. To save the data for 

later analysis in the laboratory, each data file was written to an internal 2.3-GB, 8-mm 

tape drive, which provided a permanent record for archiving and transport. 

Manual inputs to the mainframe were controlled by an industry standard AT 

keyboard and a hand held file marker switch that could be attached either to the antenna 

or to the radar mainframe. Inputs from the marker switch placed marks at user 

determined locations within the GPR data files . These marks were later used to determine 

the precise location within the field the antenna was located, and they were also used in 

distance and surface normalization procedures on each data file during lab analysis . 

Three antenna models (200, 500, and 900 MHz) were available for this study. 

Overall, GPR antennas range in center frequencies from 10 to 1000 MHz. Lower 

frequency antennas such as the 100- or 200-MHz models have a much greater depth of 

penetration than the higher frequency models. Though the lower frequency antennas 
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penetrate deeper into a medium, they lack the ability to resolve distinct changes within 

the mediums that the antennas of the high frequency range are capable of resolving. 

The subsurface information pertinent to this project (i .e. , soil regions containing 

restricting layers of high density, parent material or bedrock interfaces) required a 

moderate penetration depth from the antenna to be used. Furthermore, a high degree of 

resolution was not needed to distinguish these layers from other layers within the soil 

profile. Due to this nature of the data required, a 200-MHz center frequency antenna 

(Model 5106) was chosen for this research project. 

For data collection in the field, the radar system was powered by two-deep cycle 

marine 12-VDC batteries. The batteries were wired in parallel to provide longer life to 

the system and were converted to alternating current (AC) by a Model PV 1200 FC 

Tripp-Lite DC/ AC Power Inverter that provided a constant 110-V AC. According to 

Bouldin (1997), this power configuration could allow the system to run for approximately 

eight hours under optimal field conditions. While collecting the data, a standard VGA 

color monitor was used to view the radar data files . 

Due to the number and overall length of the research transects, a method other 

than manually dragging the radar antenna was needed. For stability and maximum 

mobility in the field, the radar mainframe, power system, and VGA monitor were loaded 

into a trailer that was towed by a small tractor. The radar antenna was connected to the 

rear of the towed trailer at approximately 1.5-m apart. The length of 1.5 m provided a 

sufficient distance from the trailer so that the metal in the trailer did not affect the radar 

signal (Figure 3.1). With the tractor operated in low range, 
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Figure 3 .1: Tractor and trailer configuration used to transport GPR mainframe and power 
source equipment and tow GPR antenna during data collection. 
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2nd gear, radar data collection and mobility within the field were accomplished to a 

satisfactory degree. 

Data Analysis Hardware and Software 

Once in the lab, the raw GPR data files were downloaded from the 2.3-GB tapes 

to a I-GB file server drive using RADAN III software. From that file server the data were 

then capable of being accessed by a 200-MHz desktop workstation with 32 MB of RAM 

and 3 GB of hard disk space. RAD AN for Windows was the primary software package 

used to analyze the radar data files. Once the files had been downloaded, each was 

surface normalized using RADAN for Windows to insure proper file length and file size 

and also to allow for other processing and filtering techniques. 

The crop yield data collected at both research sites were handled by the 

Arc View™ GIS software package that is manufactured by the Environmental Systems 

Research Institute (ESRI) of Redlands, CA, USA. ARCVIEW is a Windows based 

software package that accepts vector based data and is capable of using the entire 

polygon model. Arc View™ was chosen for this project due to its ability to display data 

and create thematic maps. 
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GPR interpretations were statistically compared to crop yield trends using SASR 

for Windows. The SASR programs written for these statistical comparisons can be found 

in Appendix B, and involved the following steps: 

Step 1 Calculation of the Pearson Correlation Coefficient for each plot 

Step 2 Calculation of the Least Squares Means for each soil code 

Research Plot Design and Layout 

There were a total of four primary research plots used for GPR data collection in 

this research project. The location of each plot was determined by the research team for 

its possible ability to show high degrees of variation in subsurface phenomena. Two 

research plots were located at the Plateau Experiment Station, on the Cumberland Plateau 

of Middle Tennessee, and two research plots were located at the Milan Experiment 

station, which is located in the Loess Uplands of West Tennessee. 

The research team selected the specific locations of the research plots located at 

the Milan Experiment Station by first closely examining com yield data collected from 

fields A6 and A 7 during the 1997 growing season. The plot locales were then situated 

within these fields at locations that most exemplified large variations in yield values. 

Figure 3.2 shows the corn yield data for 1997 and the layout of the research plots within 

fields A6 and A 7. 

Since there were no previous yield data to use in determination of plot layout, the 

specific locations of the research plots located at the Plateau Experiment were selected 

after several conversations with station personnel who were familiar with the productivity 
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Figure 3.2: Corn yield results obtained in fields A6 and A7 at the Milan Experiment 
Station and locations of the GPR data collection grids ( coordinates are in State Plane 
1927 projection). 
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trends of several sites on the station. Field Hl3 (plot 2) and field H14 (plot 1) were then 

chosen as research plots due to the station personnel pointing out these fields as having a 

high degree of variability in yield and depth to sandstone bedrock in specific areas . 

Once the site locales were determined, each plot was laid out using a Pentax 

Model PTS Total Station electronic surveying device for maximum precision of transect 

spacing. The data collection transects were marked by placing survey flags every 10 m 

along the length of the plots and every 5 m along the width. The plots located on the 

Milan Experiment Station had dimensions of 60 m by 120 m; however, due to pre-

existing field boundaries, the plots located at the Plateau Experiment Station had to be 

shortened to dimensions of 40 m by 100 m. 

After the transects were completed, topographic data were taken on the two plots 

located at the Plateau Experiment Station. The topographic data were acquired at each 

survey flag using the Pentax Model PTS Total Station, which automatically downloaded 

the data in the field to a Hewlett Packard Calculator. These data were later used in the lab 

to simulate topographical surface maps of the two plots. No topographical data were 

acquired at the Milan Experiment Station due to the limited amount oftime the research 

team had on the plots. However, slope data was extracted from a previously developed 

topographical data set that was generated with a Total Station survey instrument 

(Barbosa, 1996). 
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GPR Data Collection Summary 

Calibration Data Collection 

As shown in Figure 3.3, calibration data sets for thi s project were collected at 

three different sites within Tennessee. Two of the sites (The Milan Experiment Station, 

Milan, TN, and Ames Plantation, Grand Junction, TN) were in the Loess Uplands 

physiographic region of the state. The third site (The Plateau Experiment Station, 

Crossville, TN) was located in the Cumberland Plateau physiographic region that runs 

roughly north and south through Eastern Middle Tennessee. Each of the locales was 

chosen for its similarity to the soil profiles that would be encountered in the subsequent 

research plots. The primary goals in collecting the calibration data sets were to identify 

the reflective characteristics of the targeted soil layers, and to obtain the optimal antenna 

settings for each of the physiographic regions. 

The first calibration data were taken at the Ames Plantation in an area known as 

the Centennial Field on July 22 and 23 , 1997. Two antenna models were used to collect 

these data sets. A 300-MHz (GSSI Model 3105) and a 200-MHz (GSSI Model 5106) 

antenna were used to collect data along identical transects. Both antennas were used in an 

effort by the research team to determine which frequency was best suited to collecting 

subsurface data in West Tennessee soils. 

Calibration processes used at this site consisted of dragging the antenna over a 

buried PVC pipe that generated a hyperbolic form in the GPR image. From the logged 

depth to the PVC pipe, a suitable cr for the soil was calculated using equation 1.1. Once 
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the cr had been calculated, depths to the Loess/ Alluvium interface that underlies the 

Centennial Plot could be interpreted in the lab using the radar images. 

Also of primary interest to the Ames Plantation calibration data set was the 

generation of 3-D imagery. To accommodate the generation of 3-D GPR images, these 

data were collected at approximately 1-m intervals throughout the plot. The research 

team tested this method of data presentation to determine if 3-D imagery would allow for 

more accurate interpretations of data in subsequent research plots. 

Calibration data acquired at the Milan Experiment Station were obtained in field 

N47. Dr. Donald D. Tyler chose the site locale for these data over an area in the field 

where a fragipan was present. Not only was a fragipan present, but due to differences in 

topography, the fragipan was discontinuous. The transect at this location was situated to 

provide a data set showing soil with no fragipan present, and to provide data showing the 

presence of a fragipan . The length of the transect line was 45 m, with flags placed every 5 

m. 

Calibration data acquired on the Cumberland Plateau were obtained on the Clyde 

York 4-H Camp, which borders the Plateau Experiment Station. These data sets were 

primarily collected to determine optimal antenna settings and to identify targeted soi I 

layers of the region. However, these data were also used to assist the management of the 

Clyde York 4-H Camp in determining the feasibility of a proposed site for septic tank fill 

lines. 

Data were collected along a 90-m transect that followed the proposed path of the 

fill lines. Survey flag spacing were positioned at 10-m intervals along the transect, and 

the transect was replicated four times using a 200-MHz (GSSI Model 5106) antenna. A 
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standard rock probe was used for physical calibration purposes. Again, equation I . I was 

used to calculate a suitable cr for the area. 

Blind Test Data Collection 

Since GPR data can be easily altered, and because interpretation can be very 

subjective, a blind test was designed by the research team to insure accuracy of GPR 

interpretations. The blind test that was proposed for this project entailed using the same 

radar parameter settings that were used in the calibration data sets. The data were 

collected by someone other than the primary researcher, with the primary researcher 

having no knowledge of the data files other than which physiographic region the data 

were obtained in. The primary researcher had to then be able to identify or distinguish 

whether a particular feature existed in the image (Yes or No), and if the feature did exist, 

the physical depth to that feature(+/- 5.0 cm to 150-cm depth). Also, to further insure 

accuracy of the blind test, the primary researcher had to also be able to train another 

individual to interpret the data in a similar manner. This individual had to have an 

understanding of and some experience with analyzing GPR imagery . The data were 

presented to the trained party in the same manner as they were to the primary researcher. 

Thus, the trained party should have determined relatively the same results. 

The length of the blind test transects were 55 m. The interpretation interval within 

each image was 5 m, marked by the GPR operator using the hand-held switch that places 

marks within the data file . Physically measured ground truth data points were also 

gathered at 5-m intervals along each transect. 
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Cumberland Plateau Physiographic Region 

Of the blind test data obtained on the Cumberland Plateau, four different transects 

were surveyed with the GPR and each transect was replicated four times. Since bedrock 

usually occurs at or above 150 cm in most areas on the Cumberland Plateau, there were 

no data files where bedrock was not present. This portion of the blind test primarily 

focused on the identification of the bedrock interface and the depth to that interface. 

Loess Uplands Physiographic Region 

Of the blind test data obtained in the Loess Physiographic Region; there were also 

four separate transects, replicated four times each. Unlike the transects on the 

Cumberland Plateau; however, this test consisted of three 55-m transects and one 110-m 

transect. Since no individual soil property is more important than the ability of fragipan 

horizons to restrict the depth of plant root penetration and water movement (Rhoton et al. , 

1996), the blind test in the Loess physiographic region focused on the occurrence of a 

fragipan. Each transect was ground truthed by Dr. Donald D. Tyler, using a standard 5-

cm bucket auger. 

Initially the ground truth depth measurements were to be used in statistical 

comparisons of the blind test GPR interpretations. However, upon processing and 

inspection of the GPR imagery collected at the Milan Experiment Station, this method 

was found to be unfeasible . Though the GPR operator could discern when he was or was 

not viewing an image that represented a fragipan, all reflectors in the images were 

relatively flat . The flat reflectors observed within the GPR images representing the area 

containing a fragipan disagreed with ground truth interpretations made by Dr. Donald D. 
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Tyler, which revealed a relatively high degree of variability in depth to the uppermost 

boundary of the fragipan horizons. 

Due to these findings, the blind test design was amended to test the interpreter on 

his ability to determine, by the characteristics of the image, if a fragipan was present and 

not take into account the precise depth of the fragipan. The GPR data used for this blind 

test were the same data collected for the original design. The data were prepared for the 

blind test by cutting and/or reversing sections of data from each original file and 

renaming that data under different filenames. The renamed files were then presented to 

the interpreter. A total of 20 GPR files were presented to the interpreter. Each file 

contained five markers (100 total points), at which the interpreter made the distinction 

between: 

1 = no fragipan present 

2 = transition zone (area of convergence of non-pan and fragipan horizons) 

3 = fragipan horizon present 

Main Research Plot Data Collection 

The main research plots of this project were located at two different University of 

Tennessee experiment stations. The two research plots located at The Plateau Experiment 

Station had dimensions of 40 m by 100 m. The two plots located at The Milan 

Experiment Station had dimensions of 60 m by 120 m. Survey transect spacing for all 

research plots was 5 m along the 40 and 60-m edges, and 10 m along the 100- and 120-m 

edges. 
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The GPR data collected at the Plateau Experiment Station were collected on April 

2, 1998 using a 200-MHz (GSSI Model 5106) antenna. These data were collected using a 

Massey Ferguson Model 290 tractor with a small towed flat bed trailer. The trailer was 

used to stabilize the GPR mainframe and power source equipment, and also to give the 

unit mobility within the field. The 200-MHz antenna was attached to the rear of the trailer 

and was aligned at approximately 0.50 m from the flag markers while being pulled along 

each transect. 

Each transect was sampled twice (along each side of the transect flags) with the 

GPR unit. The first replication for each transect began at the south end of each plot 

heading in a northeasterly direction with the second replication starting at the end of the 

first and heading in the reverse direction on the opposite side of the survey flags. This 

method of sampling was used for both research plots located at the Plateau Experiment 

Station. 

Data sets were collected at the Milan Experiment Station on June 17 and 18, 

1998. These data were also collected using a 200-MHz (GSSI Model 5106) antenna. Data 

collection techniques were generally identical to those used at the Plateau Experiment 

Station. Each transect was sampled twice in the method already explained. 

Data collection at this site began on the southern most point of the plots heading 

in a northwesterly direction, with subsequent files reversing direction on the opposite side 

of the survey flags. Data obtained at this site employed the same mobilization techniques 

as the data acquired at the Plateau Experiment Station; however, due to differing soil 

conditions, GPR system settings were not the same. 
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Research Plot Image Interpretations 

Plateau Experiment Station 

GPR data were collected on the primary research plots located at the Plateau 

Experiment Station on April 2, 1998. Interpretations of these GPR data were made using 

the same methodology implemented while interpreting the blind test data that were also 

gathered on the Cumberland Plateau. GPR system settings used while collecting these 

data were also very similar to those used in the blind test data collection. However, due to 

small changes in soil-water content and site location, gain levels had to be slightly 

adjusted at each site. As with transects 3 and 4 in the blind test data, the bedrock surface 

within the research plots was interpreted at the solid interface underlying the broken 

reflectors. 

GPR interpretations of the research plots revealed a high degree of variability in 

depth to the bedrock interface. Of the two plots, plot 1 contained the largest area of soils 

that were shallow due to the bedrock surface. An area in the northwest region of plot 1 

constituted the majority of shallow soils in that plot; however, the eastern edge of the plot 

was also shallow at the very ends of the transects (Figure 3.4). Also, prior to the GPR 

survey, station personnel had pointed out a general area of the plot that coincided with the 

interpreted shallow region in the northwest section, as having historically low yields as 

compared to the rest of the field . Low yields were also observed in that section of the 

field when yield values were recorded as the research team harvested the snap bean crop. 
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Figure 3 .4 : Interpreted depth of soil above sandstone bedrock observed on research plot 1 
at the Plateau Experiment Station (coordinates are in State Plane 1927 projection). 
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Interpretations of the bedrock surface-underlying plot 2 also revealed variability 

in terms of depth to the bedrock interface. Again, these data were interpreted at the solid 

interface underlying the broken reflectors in the soil. Figure 3 .5 illustrates the depth of 

the bedrock surface-underlying plot 2 as interpreted from GPR imagery. 

Milan Experiment Station 

GPR data were collected on surveyed research plots located within fields A6 and 

A 7 of the Milan Experiment Station on June 17 and 18, 1998. These data were collected 

along the survey flag transects using the same methodologies that were implemented 

while collecting data at the research site located on the Cumberland Plateau. 

Two complete data sets were collected from both of the research plots located in 

fields A6 and A 7. One data set was collected with the radar range set to 60-nS depth 

penetration. In other words, any impulse data were recorded that took 60 nS or less to 

return to the receiving unit within the antenna. The second data set was collected at 40 

nS. The research team varied the range settings in an effort to generate two distinctly 

different sets of GPR data. 

The data collected at the 40-ns setting showed greater detail in the upper portions 

of the images and gave the research team a means by which to view small discrete 

changes in the medium. The data collected at the 60-nS setting rendered a less detailed 

image of the medium, but allowed the research team to view the lateral characteristics of 

the image with greater ease. 
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Figure 3. 5: Interpreted depth of soil above sandstone bedrock observed on research plot 2 
at the Plateau Experiment Station (coordinates are in State Plane 1927 projection) . 
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Further processing (stacking) of the data collected at 60 nS brought the majority of each 

data file into one viewable screen. This allowed the research team to classify the various 

patterns that were viewable within the images without having to wait for the data to scroll 

across the monitor. 

Milan Plot Classifications 

The GPR imagery collected from fields A6 and A 7 were very similar to the blind 

test data collected from field N47, in that the reflectors were basically flat, and that the 

characteristics and intensities of the reflectors varied laterally. Therefore, the research 

team keyed upon the changing characteristics to interpret the data files into classes based 

upon specific characteristics. 

Five different classifications were found within the GPR data collected from plot 

1. Each of these classifications was then assigned a value or "soil code", ranging from 1 

to 5. The interpretation of each soil code was based first upon the type of primary 

reflectors present in the image. Since there were only two types of primary reflectors (flat 

and irregular) observed in plot 1, the other basis for interpretation became the intensity of 

whichever reflector was present. 

Soil codes 1, 4, and 5 all had flat reflectors (Figures 3.6 and 3.7). The reflectors 

were generally the same width, and occurred at the same depth throughout each file in 

which they were present. However, the intensities of the reflections in the lower portions 

of the data files varied laterally across the image. Since the intensity and signal noise 

found in the lower sections of the image are directly related to what the waveform 
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Figure 3.6: GPR image acquired in research plot 1 at the Milan Experiment Station 
illustrating interpreted "plot 1 soil codes" 1 and 4. 
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Figure 3.7: GPR image acquired in research plot 1 at the Milan Experiment Station 
illustrating interpreted "plot 1 soil codes" 2, 3, and 5. 
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encounters in the upper portion of the image, it was justifiable to classify these intensities 

separately. 

The other type of primary reflector present in plot 1 had characteristics totally 

unlike that found in soil codes 1, 4, and 5. These reflectors were much more irregular in 

the upper portions of the images, and did not remain flat throughout the length of the data 

files . However, like the flat reflectors, this irregular type also contained areas of varying 

signal intensities. Soil codes 2 and 3, which contained the irregular reflectors, were 

classified separately due to the differences in intensity of the reflectors found in the upper 

portions of the images (Figure 3.7). 

The GPR data collected from plot 2 were interpreted in the same manner as the 

data collected from plot 1. However, unlike the imagery obtained in plot 1, these data 

contained three primary types of reflectors (flat, irregular, and sloping). Therefore, seven 

different image types (soil codes) were identified from plot 2. 

Soil codes 1, 5, 6, and 7 all contained reflectors that were flat, while soil code 2 

contained irregular reflectors, and codes 3 and 4 contained sloping reflectors in the upper 

portions of the images (Figures 3.8 and 3.9). Again, the separations were made within 

primary reflector types due to the intensity and signal noise observed in the lower 

portions of the imagery. 
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Figure 3.8: GPR image acquired in research plot 2 at the Milan Experiment Station 
illustrating interpreted "plot 2 soil codes" 2, 5, and 6. 

51 



0 0 0 0 0 0 
0 = = = = = =en ... N M "I' i.n u:, C 

.. ' C") 
Q) 

"C 
0 
() 

'i5 
(/) 

' t v 
Q) 

"C 
0 
() 

'i5 
(/) 

+ 
f 
I',. 
Q) 

"C 
0 
() 

'i5 
(/) 

i 
t ..-
Q) 

"C 
0 
() 

'i5 
(/) 

+ 
Figure 3.9: GPR image acquired in research plot 2 at the Milan Experiment Station 
illustrating interpreted "plot 2 soil codes" 1, 3, 4, and 7. 

52 



Crop Yield Data Collection 

Plateau Experiment Station 

Snap bean yield data were collected on plots 2 and 1 at the Plateau Experiment 

Station on August 10 and 19, 1998 respectively. Vegetable crops and beef cattle 

productions are the primary areas researched at the Plateau Experiment Station. 

Therefore, the necessary equipment to conduct on the go yield collection was not 

available to the research team. To compensate for the lack of "high-tech" equipment, the 

research team designed a method to collect the yield data using a PixAll one-row bean 

picker pulled by a Massey Ferguson Model 290 tractor (Figure 3.10). 

Since the picker was capable of harvesting only one row at time, the design 

included collecting the beans in buckets as they fell from the conveyer belt onto the 

platform. To mark the area represented by one bucket, a member of the research team 

placed a survey flag in the center of the row when beans began falling in the bucket. 

When a bucket became full , it was replaced by an empty one, and another flag was placed 

in the row at that point. When the picker reached the end of a row and beans ceased to 

fall into the last bucket, a final flag was placed at that point. Each bucket was then 

weighed using calibrated electronic scales. 

The center point of each area within the rows represented by survey flags was 

georeferenced using a Trimble AgGPS Model 132 receiver. These data were collected in 

real-time DGPS mode by subscribing to a commercially available base station that 

automatically corrected errors in the data as it was being collected. 
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Figure 3 .10: Tractor and Pixall bean picker used to collect snap bean yields at the Plateau 
Experiment Station. 
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By converting the distances measured between survey flags from latitude and 

longitude to meters, an area representing the yield weight for each bucket could be 

calculated in the lab. Once an area and weight were established, yield values were 

calculated in a spreadsheet to kilograms per hectare. 

Once these calculations had been made, the yield values were then matched to the 

correct latitude and longitude coordinates. These processing steps formatted the data to a 

sufficient level that the values could then be imported into the GIS software, and be used 

to generate yield maps of the plots. 

Milan Experiment Station 

Com yield data collected on fields A6 and A 7 at the Milan Experiment Station 

were collected on September 16 and 17, 1997. Since much of the research conducted at 

the Milan Experiment Station involved no-till research on row-crop cultivars, the 

necessary equipment was available to collect the data using tried and proven yield data 

collection methods. A John Deere Model 4425 combine implemented with a four-row 

com header was used to harvest the crop. The combine was equipped with an AgLeader 

2000 yield monitor inside the cab, and a GPS receiver was installed on the combine to 

transmit positional data to the yield monitor. Data from the GPS receiver and the yield 

monitor were recorded every second, and were written to a PCMCIA data card for 

archiving. 

The yield monitor used in this study was the AgLeader 2000, which is 

manufactured by AgLeader Technology Inc. of Ames, IA. To determine yield rates, a 

load sensor device located just past the top of the clean-grain elevator measured the mass 
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flow rate of the grain. The mass flow rate was calculated by quantifying the force 

resulting from the grain impacting the load sensor. In addition, grain moisture was 

electrically measured during harvest with an on-board moisture sensor. 

The GPS equipment used to georeference the yield data for this project was the 

Trimble AgGPS Model 122 receiver manufactured by Trimble Navigation. All data were 

collected using real-time DGPS. The correction signal used to correct these data was 

received from the Coast Guard Beacon located in Memphis, Tennessee (details explained 

in Chapter 1 ). 
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Chapter 4 

Results and Discussion 

Calibration Data Results 

Ames Plantation 

Results of the calibration data acquired at the Ames Plantation site included: 

1. Determination of the average cr for the soil using equation 1.1. 

2. Analysis of 3-D GPR imagery. 

3. Analysis of the CDP method of calculating average cr . 

Calibration processes used at the Ames Plantation site consisted of dragging the 

antenna over a buried PVC pipe that generated a hyperbolic form in the GPR image 

(Figure 4.1). From the known depth of the PVC pipe, a cr of 13 was calculated for the soil 

using equation 1.1. Once the cr had been calculated, depths to targeted soil horizons that 

occurred beneath the surface of the Centennial Plot were interpreted in the lab using the 

radar images (Figure 4 .1). 

The research team tested the 3-D method of data presentation at the Ames 

Plantation site in an effort to determine if 3-D imagery would allow for more accurate 

interpretations of data in subsequent research plots. Figure 4.2 is a 3-D GPR image of the 

Centennial Plot generated in the RADAN for Windows software. 
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Figure 4.1: GPR image showing hyperbolic reflection of PVC pipe and depths of the 
loess/alluvium interface and the coastal plains interface. 
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0.00 

Figure 4.2: Three-dimensional GPR image of the Centennial Plot (Ames Plantation, 
Grand Junction, TN). 
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Analysis of this imagery revealed the 3-D method of displaying data using the 

RADAN for Windows software to be difficult to interpret. These difficulties were 

primarily due to file size. To convert the 2-D files to 3-D images, the file size had to be 

drastically reduced to conform to the maximum number of scans allowed per 3-D file by 

the software. When the images were shortened to conform to the size required, the image 

characteristics became distorted and difficult to see. Another problem associated with 

interpreting the data was the inability of the software to rotate or zoom in and out while 

displaying the image. Due to these inefficiencies, the research team focused on 2-D 

imagery throughout the remainder of the study. 

The Common Depth Point (CDP) method of determining the average CJ of the soil 

was also tested at the Ames Plantation site. Results of these data indicated the CDP 

method of determining average CJ to be just as accurate as using equation 1.1 . However, 

since ground truth measurements were acquired in most cases and because the research 

team didn't have access to a second antenna at all times, equation 1. 1 was used to 

determine the average CJ when the depth of a specific interface within the GPR imagery 

was required. 

Plateau Experiment Station 

Calibration data taken at the Plateau Experiment Station were ac.quired on the 

grounds of the Clyde York 4-H Camp. These data sets were primarily collected to 

determine optimal antenna settings (Table 4.1) and to identify targeted soil features of the 

Cumberland Plateau physiographic region. 
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TABLE 4.1: GPR calibration settings for Plateau Experiment Station data acquisition. 

200 MHz Antenna Model #5106 
Settings 

Range 
Number of Gain Settings 
Gain Settings 

Samples per scan 
Vertical IIR Low Pass Filter 

Vertical IIR High Pass Filter 

Value 

40 nS 
5 
15.0 
32.0 
45.0 
53.0 
54.0 
512 

N=2 
F = 1000 MHz 

N=2 
F = 100 MHz 

TABLE 4.2: GPR calibration settings for Milan Experiment Station data acquisition. 

200 MHz Antenna Model #5106 
Settings 

Range 
Number of Gain Settings 
Gain Settings 

Samples per scan 
Vertical IIR Low Pass Filter 

Vertical UR High Pass Filter 

61 

Value 

60 nS 
5 
11.0 
43.0 
60.0 
63 .0 
66.1 
512 

N=-2 
F = 1000 MHz 

N=2 
F = 100 MHz 



From the GPR data files collected at the Clyde York 4-H Camp, the research team 

was able to view GPR imagery of a sandstone bedrock surface. At many of the points 

within these files , the bedrock surface exemplified a high degree of variation in physical 

depth . Figure 4.3 is a GPR image collected at the Clyde York 4-H Camp that illustrates 

the variation of depth to the sandstone bedrock surface observed in these data. Again, 

equation 1.1 was used to calculate the average cr of the soil. 

Milan Experiment Station 

Calibration data collected at the Milan Experiment Station were collected in field 

N4 7 on October 1, 1997. Prior soil pits located in field N4 7 confirmed that no fragipan 

was present on an upland Memphis soil series but that a fragipan was present on a side-

slope Grenada soil series. The GPR transect was laid out over an area that covered both 

the Memphis and Grenada soils. GPR data were acquired along this transect that allowed 

the research team to view an image that could be associated with fragipan characteristics. 

Observation of these data files revealed that the characteristics of the images changed 

dramatically at a point that coincided with the transition between the two soil series 

(Figure 4.4). 
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Figure 4.3: GPR image collected on the grounds of the Clyde York 4-H Camp, 
illustrating the variation of depth to the sandstone bedrock interface. 
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Figure 4.4 : GPR image collected in field N47 of the Milan Experiment Station illustrating 
the change in lateral characteristics that coincide with the occurrence of a fragipan. 
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Blind Test Results 

Plateau Experiment Station 

The ground truth measurements and the GPR interpretations that were logged for 

each blind test transect located at the Plateau Experiment Station are listed in Appendix 

A 1. Out of the four transects surveyed, the bedrock surface in transects 1 and 2 proved to 

be more difficult to interpret. These images contained reflections in the upper portions of 

the imagery that were discontinuous and broken. The depth interpretations of the bedrock 

surface were often made at these discontinuous reflectors in transects 1 and 2 due to their 

similarity to the reflections that represented bedrock in the calibration data sets. 

The bedrock interface in transects 3 and 4; however, were more continuous and 

thus were interpreted more accurately from GPR imagery. Results from a linear 

regression model (Table 4.3) illustrate that the continuous reflection within the GPR 

images represents the actual bedrock surface. The broken reflections observed in the 

upper portions of the GPR images from transects 1 and 2, that did not agree with ground 

truth measurements, appear to be pieces of weathered rock suspended in the soil profile 

(Figure 4.5). Though these pieces of rock or "floaters" were detectable with GPR 

imagery, they did not impede the penetration of the rock probe used to ground truth the 

data. 

Transect 3 ground truth measurements agreed to+/- 5 cm with GPR 

interpretations at seven out of the ten observation points (70%), while transect 4 ground 

truth measurements agreed to+/- 5 cm with GPR interpretations at eight out the ten 
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observation points (80%). Linear regression results indicated an r2 value equal to 0.93 for 

transect 3, while the r2 value of transect 4 was equal to 0.97 (Table 4.3). 

To further insure accuracy and to determine if interpretation results were 

repeatable, a second individual was also required to interpret the blind test data. The 

interpretations made by the second individual were then compared to those of the primary 

interpreter. Results of that comparison were similar to those determined by the primary 

interpreter. Out of 40 observation points, the second individual ' s interpretations agreed to 

within+/- 5 cm of the primary interpreters' interpretations 33 times (82.5%). 

Milan Experiment Station 

Results of the blind test conducted at the Milan Experiment Station revealed that 

the primary interpreter was capable of determining, by the lateral characteristics of the 

images, the difference between an upland Memphis soil series, a Grenada soil series, and 

an area of transition between those two series. Ground truth data revealed that no 

fragipan was present on the Memphis soils, but that in most cases a fragipan or fragic 

characteristics were found on the Grenada soils. 

Table 4.4 lists the results of the statistical comparison of the ground truth data and 

the primary interpreters' results. These data revealed that the GPR interpretations agreed 

with ground truth data at 95 out of the 100 data points (95% ). As illustrated by the bold 

numbers in Appendix A2, each data point where the data did not agree, represented a 

disagreement in the location of the transition zone. Though the areas representing the 

transition zones in the GPR files generated very similar images, ground truth 
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measurements did not agree with GPR imagery in areas of the transition zone at all times, 

which explained the errors in interpretations. 

These data were also tested for accuracy and repeatability by presenting the GPR 

data files to a second individual for interpretation. Comparisons of the primary 

interpreters' results and the results obtained by the second individual showed that they 

agreed at 97 out of the 100 points (97%) (Table 4.4). A list of all of these interpretations 

can be found in Appendix A2. 

TABLE 4.3: Blind test results from the Plateau Experiment Station Site. 

Linear Regression Output 

Transect # Primary Interpreter r2 

1 0.139 

2 0.523 

3 0.934 

4 0.975 

% Agreement of Secondary Interpreter 

100% 

80% 

90% 

60% 

TABLE 4.4: Blind test results from the Milan Experiment Station Site. 

Linear Regression Output 

Transect # Primary Interpreter r2 % Agreement of Secondary Interpreter 

1 - 20 0.925 97% 
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Figure 4.5: GPR image illustrating "floaters" encountered above the solid sandstone 
surface during the blind test at the plateau research site. 
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Crop Yield Results 

The average bean yields obtained in each plot located at the Plateau Experiment 

Station are listed in Table 4.5. The overall yield trend observed in plot 1 at the Plateau 

Experiment Station is illustrated in Figure 4.6, while the overall yield trend observed in 

plot 2 is illustrated in Figure 4.7. 

The overall yield result of fields A6 and A 7 at the Milan Experiment Station and 

the relative locations ofresearch plots 1 and 2 are shown in Figure 3.2. The average com 

yield obtained in these fields was 8221 kilograms per hectare. 

TABLE 4.5: Snap bean yield data obtained on plot 1 and plot 2 at the Plateau Experiment 
Station Site. 

Plot No. 

2 

Plots 1 and 2, Plateau Experiment Station 

No. of observations 

409 

387 

CV% 

29.12 

19.14 

69 

Average Yield 

9209 kg/ha 

9165 kg/ha 
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Figure 4.6: Snap bean yield trends observed in plot 1 at the Plateau Experiment Station. 
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Statistical Comparison of GPR Interpretations to Crop Yields 

Though the images generated in the Arc View™ GIS software revealed trends in 

the GPR interpretations that were similar to crop yield data, statistical comparisons were 

needed to validate those trends. Before statistical analyses were conducted on these data, 

each data set was first examined for any discrepancies in the data. These discrepancies 

included incorrect positioning data, and false yield values generated during yield 

collection. 

Plateau Experiment Station 

Plot I 

Results of the comparison between the soil data and crop yield values obtained in 

plot 1 revealed a Pearson Correlation Coefficient of 0.49. According to the Experiment 

Station statistician, this was "fair" for biological data that was taking into account only 

one variable (i.e., soil depth) for comparisons (Saxton, 1998). Perhaps the most 

significant data rendered from the statistical analysis were the Least Squares Means (i.e. , 

mean yield per soil code). The Least Squares Means and the Coefficient of Variance 

values for each soil code from plot 1 are listed in Table 4.6. The SASR output from these 

data files are also listed in Appendix D 1. 

Plot 2 

Statistical analysis of the data obtained in plot 2 revealed a trend much like that 

found in plot 1. The Pearson Correlation Coefficient of plot 2 was found to be 0.30, 
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which was slightly lower than the coefficient found in plot I. Observations of the Least 

Squares Means revealed a similar trend as well. The Least Squares Means and 

Coefficient of Variance values for each soil code in plot 2 are also listed in Table 4.6. 

Milan Experiment Station 

Plot 1 

Figure 4.8 shows the GPR interpretation grid and Figure 4.9 illustrates the yield 

trends observed in plot I at the Milan Experiment Station. Statistical analyses of these 

data revealed a Pearson Correlation Coefficient of 0.74. Observations of the Least 

Squares Means for each soil code also revealed a correlative pattern in the data. Table 4.7 

lists the Least Squares Means and Coefficient of Variance values for each interpreted soil 

code found in plot 1. The SASR output from these data files can be found in Appendix 

D2. 

Plot 2 

Results of the statistical analysis of the data in plot 2, which contained seven 

different identified soil codes, revealed slightly less correlation to yield trends than was 

found in the plot 1 data. Figure 4.10 shows the GPR interpretation grid and Figure 4.11 

illustrates the yield trends observed in plot 2. Statistical analyses of these data revealed a 

Pearson Correlation Coefficient of 0.60. Table 4.8 lists the Least Squares Means and 

Coefficient of Variance values obtained for each of the seven soil codes that were 

identified in plot 2. 
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TABLE 4.6: Statistical significance of Least Squares Means data obtained in plots I and 
2 at the Plateau Experiment Station Site. 

Plot# 

2 

Statistical Data Per Soil Depth Code 
Soil Code Average Yield 

1 (0.00 - 0.90 m) 
2 (0.90 - 1.35 m) 
3 (1.35 m +) 

1 (0.00- 0.90 m) 
2 (0.90 - 1.35 m) 
3 (1.35 m +) 

a 5346 kg/ha 
b 8356 kg/ha 
c 10557 kg/ha 

a 7682 kg/ha 
b 9120 kg/ha 
c 9749 kg/ha 

* Soil codes with same letters are not statistically different (P>0.05). 
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CV% 

44.51 
29.95 
19.98 

21.64 
18.79 
15.80 



TABLE 4. 7: Statistical significance of Least Squares Means data obtained on plot 1 at the 
Milan Experiment Station Site. 

Statistical Data Per Soil Code 
Plot# Soil Code Average Yield CV% 

1 
1 *a 6025 kg/ha 34.83 
2 *a 5146 kg/ha 66.24 
3 *b 8598 kg/ha 19.77 
4 *b 8284 kg/ha 28.14 
5 c 11987 kg/ha 8.68 

* Soil codes with same letters are not statistically different (P>0.05). 

TABLE 4.8: Statistical significance of Least Squares Means data obtained on plot 2 at the 
Milan Experiment Station Site. 

Statistical Data Per Soil Code 
Plot# Soil Code Average Yield CV% 

2 
1 **a 7468 kg/ha 22.35 
2 **b 6213 kg/ha 35.29 
3 C 2008 kg/ha 101.86 
4 *d 9665 kg/ha 12.78 
5 **ab 7280 kg/ha 26.71 
6 *d 9916 kg/ha 15.85 
7 e 12803 kg/ ha 8.76 

* Soil codes with same letters are not statistically different (P>0.05) . 
** Soil codes 1 and 2 are not statistically different from soil code 5 (P>0.05), but soil 
codes 1 and 2 are statistically different (P<0.05). 
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Figure 4.8: GPR grid from plot 1 (Milan Experiment Station) illustrating the 
interpretations of each data point. 
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Figure 4.10: GPR grid from plot 2 (Milan Experiment Station) illustrating the 
interpretations of each data point. 
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Discussion 

Plateau Experiment Station 

Statistical analysis of the crop yield values and GPR depth interpretations 

obtained at the Plateau Experiment Station yielded soil information that may be valuable 

to both producers and researchers. From the limited amount of data obtained during this 

project, it appears that the average yields per soil depth code obtained from the Least 

Squares Means analysis might also be viewed as the yield potential of soils meeting the 

specified depth criteria. For example, soils of 0.00 - 0.90-m depth could be considered 

low, soils of 0.90 - 1.35-m depth could be considered medium, and soils of 1.35 m and 

deeper could be considered high yield potential areas. 

This subsurface information obtained from GPR could greatly benefit vegetable 

crop producers of the Cumberland Plateau by allowing them to quickly and 

nondestructively determine the soil depth of production fields. Large areas found to be 

less than 1 m deep could be identified using GPR and taken out of production. By taking 

these areas of low yield potential out of production, producers could greatly increase the 

yield potential of the fie lds they are farming, thus maximizing outputs while reducing the 

costs of seed, fertilizer, and pesticides. 

This information might also benefit research conducted at the Plateau Experiment 

Station. For example, vegetable crop variety tests could be greatly improved by 

implementing GPR mapping to determine the yield potential of research tracts based on 

the depth of the soil above bedrock. Non biased yield trials could then be conducted in 

soils of homogeneous yield potentials. Thus the variations found between the different 

varieties would be more realistic and beneficial. 

80 



Milan Experiment Station 

Though the GPR images collected at the Milan Experiment Station exhibited 

characteristics that allowed them to be classified into separate codes, future research is 

needed to determine what soil characteristics the images represent. From the limited 

amount of data collected in fields A6 and A 7, it appears that the characteristics used as 

criteria to classify the GPR imagery may directly represent characteristics found within 

the soil as well. Those soil characteristics appear to be specific soil series and/or areas 

within a soil series classified into subcategories due to differences in the depth of 

fragipan horizons. 

For example, the soil codes that represented the lowest average yield values were 

soil code 2 in plot 1 and soil code 3 in plot 2. Though the GPR characteristics were 

different, when the locations of these codes were compared to soil classification maps 

(Barbosa, 1996), both codes 2 and 3 coincided very closely with soils classified as 

Collins soil series. Least Squares Means analysis revealed the average yield for soil code 

2 in plot 1 to be 5146 kg/ha. The average yield observed for code 3 in plot2 was 2008 

kg/ha. 

Observations of the soil classification map also revealed a pattern within a 

specific soil series. For example, the yields associated with soil code 1 in both plots 

coincided with soils classified as Loring series with a relatively shallow fragipan (30 - 76 

cm). The GPR characteristics of soil code 1 were very similar in both plots 1 and 2. The 

Least Squares Means analysis revealed an average yield of 6025 kg/ha in the code 1 soils 

of plot 1, and 7 468 kg/ha in the code 1 soils of plot 2. 
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Soil code 5 in plot 1 and code 7 in plot 2 had extremely similar GPR 

characteristics. When compared to the soil classification maps, these codes coincided 

very closely with soils classified as Loring series. However, codes 5 and 7 fell in areas 

classified as having no fragipan present above 92-cm depth. Least Squares Means 

analysis revealed the average yield for code 5 to be 11987 kg/ha and the average yield for 

code 7 to be 12803 kg/ha. 

These data were also tested to determine if the differences of the Least Squares 

Means were statistically different (P>0.05). This analysis revealed that the average yield 

found in soil codes 1 and 2 in plot 1 were not statistically different (P=0.0946). This test 

also determined that soil codes 3 and 4 in plot 1 were not statistically different 

(P=0.7207). 

Results of the data from plot 2 were different. Soil codes 4 and 6 were not 

statistically different (P=0.6538). Furthermore, soil code 1 was not significantly different 

from soil code 5 (P=0.7305), and soil code 2 was not significantly different from soil 

code 5 (P=0.0632). However, soil codes 1 and 2 were significantly different (P=0.0328). 

Each of these soil codes, average yields, and the probable soil series for each soil code 

are listed in Table 4.9. 
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TABLE 4. 9: Probable soil series (Barbosa, 1996) and yield potentials of selected soil 
codes interpreted from GPR data obtained at the Milan Experiment Station. 

Probable Soil Series Per Soil Code 

Plot# Soil Code Avg. Yield Probable Soil Series 

1 
1 *a 6025 kg/ha Loring, 5-8% slope (fragipan 30 - 50 cm) 
2 *a 5146 kg/ha Collins/Falaya/Waverly, 0-2% slope 
3 *b 8598 kg/ha Transition Zone 
4 *b 8284 kg/ha Loring, 2-5% slope (fragipan 50 - 76 cm) 
5 c 11987 kg/ha Loring, 2-5% slope (no pan above 92 cm) 

2 
1 **a 7468 kg/ha Loring, 2-5% slope (fragipan 50 - 76 cm) 
2 **b 6213 kg/ha Loring, 5-8% slope (fragipan 50 - 76 cm) 
3 C 2008 kg/ha Collins/Falaya/Waverly, 0-2% slope 
4 *d 9665 kg/ha Transition Zone 
5 **ab 7280 kg/ha Loring, 2-5% slope (fragipan 0 - 30 cm) 
6 *d 9916 kg/ha Grenada, 0-2% slope (fragipan 76 - 92 cm) 
7 e 12803 kg/ha Loring, 2-5% slope (no pan above 92 cm) 

* Soil codes with same letters are not statistically different (P>0.05). 
** Soil codes 1 and 2 are not statistically different from soil code 5 (P>0.05), but soil 
codes 1 and 2 are statistically different (P<0.05). 
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Chapter 5 

Recommendations 

Data Collection 

Environmental Conditions 

Over the span ofthis project, several environmental conditions were encountered 

that temporarily prohibited the use of the GSSI SIR-lOA radar mainframe. Extreme hot 

or cold conditions had the potential to cause the internal tape drive to drag or stop 

working completely, thus halting data collection for extended periods of time. Wet 

weather was also a primary factor that contributed to down time and extended overnight 

stays in the research areas. 

Reduction of this down time would not only increase the amount of data obtained, 

but could also reduce the costs ofresearch, by limiting time in the field. To overcome 

these limitations, a new method of transport for the mainframe and power source should 

be developed that would protect the GPR unit from the environment, while still providing 

mobility within the field. One approach would be to enclose the rear section of a four or 

six wheel all terrain vehicle (A TV) and install the GPR equipment within the enclosure. 

Several commercial models are presently available that possess the room and field 

mobility to accommodate the GPR mainframe and power source with minimal alterations 

to the structure of the vehicle. 
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Survey Techniques 

One of the most substantial benefits of using GPR is the ability of the system to 

collect large amounts of continuous subsurface data. Theoretically, the entire subsurface 

of a large production field could be mapped using GPR in less than one day, thus greatly 

reducing the time and costs of manual subsurface data acquisition. 

Implementing the above mentioned A TV with a DGPS receiver could effectively 

reduce time in the field while increasing GPR' s ability to collect large amounts of data. 

Furthermore, research time could be reduced in the area of data processing through 

implementation of the DGPS. Much lab time was spent processing the positional data 

acquired for the GPR grids with the Pentax Total Station survey instrument. DGPS 

positional data could replace the total station data and would require little or no 

processing at all. 

By programming the DGPS and GPR to simultaneously log data points at preset 

distance increments, much of the processing required to join crop yield data to GPR 

interpretations would be eliminated. Furthermore, a design of this nature would reduce 

time in the field by eliminating the need to survey precise grids with the Total Station 

survey instrument. Elimination of the survey grid's preset boundaries would also be 

beneficial by allowing for expansion of the research area if data from other areas of the 

field are needed. 
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GPR Data Interpretation 

The data obtained during the blind test gave much insight into the subjective 

nature of GPR interpretations. The data obtained at the Plateau Experiment Station were 

interpreted at discreet points in the GPR imagery that represented the surface of 

sandstone bedrock. Analyses of the interpretations made by the primary interpreter and 

the secondary interpreter revealed that discreet depth interpretations were not always 

repeatable (82.5% repeatability). 

The blind test data obtained at the Milan Experiment Station did not take into 

account discreet depth interpretations. These data were interpreted as image 

classifications (1 , 2, or 3), which took into account the laterally occurring trends in the 

GPR data files . Analyses of the interpretations made by the primary interpreter and the 

secondary interpreter revealed the interpretations to be more repeatable than discreet 

measurements (97% repeatability). 

Image classification might be more beneficial than discreet depth measurements 

in terms of correlating GPR imagery to crop yield trends as well . Though soil depth is a 

primary factor affecting the yields of most crops, this is the case only if the shallow soil 

represents an area large enough that the plant root system could not overcome stresses by 

migrating into areas of deeper soils. 

This trend was observed in plot 1 on the Plateau Experiment Station. The largest 

area represented by soils of less than 0.90-m depth generated the lowest yields of either 

plot. However, there were discreet measurements of soils that were shallower, but that 

revealed higher yields because those areas of the plot were surrounded by deeper soils 

that the root systems had the potential to reach. 
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Using point source sampling (i.e. , discreet depth measurements) to correlate GPR 

data and crop yield trends may never be statistically proven to a high degree. To 

determine the true correlative trends of these data, the GPR data should be interpreted by 

classifications that represent a specific soil type or soil condition that is known to affect 

crop yields. 

Crop Yield Data Collection 

In conducting research that compares GPR imagery to crop yield trends, accurate 

yield and positional data are a necessity. Though the yield data collected for this project 

fit those criteria at both research locales, a more automated method is needed for future 

data collection at the Plateau Experiment Station. 

The design used to collect yield data at the Plateau Experiment Station required a 

minimum of eight people and two days to collect data from a plot of approximately one-

acre. Implementation of technologies similar to those used at the Milan Experiment 

Station may be one approach to solving this problem. However, that approach would 

require new equipment and a great deal of capital investment. A simple and cost effective 

method of reducing data collection time would be to implement the Pixall bean picker 

with a DGPS receiver. Positional data and yield data could then be acquired for the flag 

locations simultaneously, thus reducing time in the field to one day. 
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Future Research 

The initial groundwork phase of correlating GPR imagery with crop yields has 

been accomplished through the results observed in this research project. Future research 

is now needed in the area of automation in data collection and processing stages. The first 

phase of future research should be to conduct a study involving the most prevalent soil 

units encountered in a specific test area. An in depth study of the soil units and the 

characteristics of the GPR imagery produced by these units should be conducted. Results 

of this research might lead to documented image characteristics that are known to 

represent a specific soil unit or soil condition. These images could then be catalogued to 

compare with future GPR data. 

The next phase of future research could then turn to automating the data 

processing through pattern recognition programs. Using the catalogued images, programs 

could be written that would allow a computer to interpret much larger quantities of GPR 

data than researchers are presently capable of handling. 

This type of research would be very beneficial to future GPR use in site-specific 

agricultural applications. With the capacity to interpret large amounts of data, entire 

production fields could be mapped and correlated to yield trends while expending a 

minimum of man-hours and cost to the research institute. 
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Chapter 6 

Summary and Conclusions 

The primary objective of this project was to evaluate the ability of GPR to 

nonintrusively detect subsurface features that affect the productive capacities of 

agricultural production fields. Completion of this goal was based on the following 

secondary objectives: 

1. Identify soil morphological features within GPR imagery that are known to 

effect crop yields. 

2. Systematically interpret the characteristics of GPR images obtained from 

primary research plots, and 

3. Statistically compare the interpreted characteristics of GPR images with 

georef erenced yield data. 

The first objective was to identify soil features in the respective research areas 

that were known to effect crop yields. This objective was accomplished at the Ames 

Plantation, the Milan Experiment Station, and the Plateau Experiment Station during the 

calibration data collection phase. At these research sites, GPR was used to successfully 

identify coastal plains sediments, a loess/alluvium interface, a fragipan, and sandstone 

bedrock. 

Calibration and system settings obtained during calibration stages of data 

collection were later used at both the Plateau Experiment Station and the Milan 

Experiment Station research sites during data collection from the primary research plots. 
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The calibration data were used for visual comparison with plot data and the system 

settings were used to decrease time spent calibrating the instrumentation before data 

collection in each physiographic region. 

The second objective included systematically interpreting the characteristics of 

the GPR data collected from the primary research plots. This objective was accomplished 

at both research sites. Interpretations made at the Plateau Experiment Station consisted of 

discreet depths of the interface that represented sandstone bedrock. These discreet depth 

interpretations were then separated into depth classes (1 = 0.00 - 0.90 m, 2 = 0.90 - 1.35 

m, and 3 = 1.35 m and deeper). 

The data collected from the research plots located at the Milan Experiment Station 

were systematically classified into soil codes based on the laterally occurring 

characteristics present in the GPR imagery. Plot 1 consisted of five classified soil codes, 

while seven different soil codes were identified from the data collected in plot 2. 

When the GPR interpretations were statistically compared to the georeferenced 

yield data, results indicated a fair degree of correlation between the data. However, 

analyses of the Least Squares Means (average yield per interpreted soil code) generated 

perhaps the most significant statistical data. These statistical comparisons may represent a 

new method of determining the soil factors that influence the usage of SSF practices. 

They also represent a foundation for future research in these areas. 

Throughout the study GPR was used to effectively and nonintrusively identify 

soil features that correlated with crop yield trends. Future GPR research in the area of 

SSF applications should now focus on greater automation. Greater automation in the 

areas of data collection and data processing would not only decrease time and money 
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spent in research, but might also allow GPR to be used in other agricultural applications. 

Those applications could include countywide soil surveys, or the mapping of potential 

production lands before an area is cleared for production. 
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Appendix A 1 : 

Crossville Blind Test 
Comparison 

GPR File# Flag# Ground Truth Primary Interpretation Secondary Interpretation 
File 1 F1 0.74 0.38 0.35 

F2 0.72 0.70 0.69 
F3 0.60 0.59 0.58 
F4 0.70 0.68 0.67 
F5 0.53 0.52 0.52 
F6 0.84 0.70 0.69 
F7 0.55 0.52 0.52 
F8 0.43 0.45 0.45 
F9 0.78 0.61 0.60 

F10 0.66 0.65 0.64 
File 2 F1 0.50 0.40 0.41 

F2 0.50 0.48 0.23 
F3 0.53 0.50 0.49 
F4 0.55 0.55 0.56 
F5 0.65 0.64 0.64 
F6 0.29 0.48 0.47 
F7 0.48 0.49 0.49 
F8 0.32 0.31 0.74 
F9 0.44 0.40 0.38 
F10 0.55 0.50 0.50 

File 3 F1 0.32 0.30 0.28 
F2 0.36 0.38 0.39 
F3 0.26 0.32 0.26 
F4 0.55 0.55 0.55 
F5 0.61 0.62 0.63 
F6 0.80 0.83 0.83 
F7 0.80 0.98 0.96 
F8 0.87 0.81 0.81 
F9 0.63 0.65 0.65 
F10 0.31 0.33 0.31 

File4 F1 0.14 0.14 0.15 
F2 0.23 0.22 0.38 
F3 0.19 0.15 0.47 
F4 0.35 0.34 0.56 
F5 0.44 0.43 0.43 
F6 0.84 0.80 0.64 
F7 0.86 0.81 0.81 
F8 0.79 0.80 0.80 
F9 0.65 0.72 0.73 

F10 0.30 0.38 0.38 
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Appendix A2: 

Milan Blind Test 
Comparisons 

File# Flag# Ground Truth GPR Primary Secondary 
Image Interpretation Interpretation 

File 1 1 nip memphis memphis memphis memphis 
2 charact. @ 1.06 transition transition transition 
3 charact. @ 1.06 greneda greneda greneda 
4 charact. @ 1.20 greneda greneda greneda 
5 transition greneda greneda greneda 

File 2 1 n/p memphis memphis memphis memphis 
2 transition transition transition transition 
3 pan@ 1.06 Greneda greneda greneda 
4 pan @0.74 Greneda greneda greneda 
5 pan @0.64 Greneda greneda greneda 

File 3 1 nip memphis memphis memphis memphis 
2 nip memphis memphis memphis memphis 
3 nip greneda transition transition transition 
4 n/p greneda greneda greneda greneda 
5 n/p greneda greneda greneda greneda 

File 4 1 pan @ 0.50 greneda greneda transition grenada 
2 pan @ 0.50 greneda greneda greneda greneda 
3 pan @ 0.61 greneda greneda greneda greneda 
4 pan@ 0.71 greneda greneda greneda greneda 
5 pan @ 1.01 greneda greneda greneda greneda 

File 5 1 pan @ 1.01 greneda greneda greneda greneda 
2 pan@ 0.71 greneda greneda greneda greneda 
3 pan @ 0.61 greneda greneda greneda greneda 
4 pan@ 0.50 greneda greneda greneda greneda 
5 pan@ 0.50 greneda greneda greneda greneda 

File 6 1 n/p memphis memphis memphis memphis 
2 n/p memphis memphis memphis memphis 
3 n/p memphis memphis memphis memphis 
4 n/p memphis memphis memphis memphis 
5 charact. @ 1.06 memphis memphis memphis 

File? 1 n/p memphis memphis memphis memphis 
2 n/p memphis Transition transition transition 
3 n/p greneda greneda greneda greneda 
4 nip greneda greneda greneda · greneda 
5 n/p greneda greneda greneda greneda 

File 8 1 nip greneda greneda greneda greneda 
2 n/p greneda greneda greneda greneda 
3 n/p greneda greneda greneda greneda 
4 nip memphis Transition transition transition 
5 n/p memphis memphis memphis memphis 

File9 1 pan @ 0.50 greneda greneda greneda greneda 
2 pan@ 0.61 greneda greneda greneda greneda 
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3 pan@ 0.71 greneda greneda greneda greneda 
4 pan@ 1.01 greneda greneda greneda greneda 
5 pan @ 1.06 greneda greneda greneda greneda 

File 10 1 n/p memphis memphis memphis memphis 
2 nip memphis memphis memphis memphis 
3 nip memphis memphis memphis memphis 
4 n/p memphis memphis memphis memphis 
5 nip memphis memphis memphis memphis 

File 11 1 pan @0.71 greneda greneda greneda 
2 pan @0.96 greneda greneda greneda 
3 transition greneda greneda greneda 
4 charact. @ 1.20 greneda greneda greneda 
5 charact. @ 1.06 greneda greneda greneda 

File 12 1 n/p memphis memphis memphis memphis 
2 n/p memphis memphis memphis memphis 
3 n/p memphis memphis memphis memphis 
4 nip memphis memphis memphis memphis 
5 n/p memphis memphis memphis memphis 

File 13 1 transition transition greneda greneda 
2 pan @ 1.06 greneda greneda greneda greneda 
3 pan@ 1.01 greneda greneda greneda greneda 
4 pan@ 0.71 greneda greneda greneda greneda 
5 pan @ 0.61 greneda greneda greneda greneda 

File 14 1 disturbed soil Greneda greneda greneda 
2 pan @0.64 Greneda greneda greneda 
3 pan @0.74 Greneda greneda greneda 
4 pan@ 1.06 Greneda greneda greneda 
5 transition transition transition greneda 

File 15 1 n/p memphis memphis memphis memphis 
2 n/p memphis memphis memphis memphis 
3 n/p memphis memphis memphis memphis 
4 transition transition memphis memphis 
5 pan@ 1.06 Greneda transition transition 

File 16 1 transition greneda greneda greneda 
2 charact. @ 1.20 greneda greneda greneda 
3 charact. @ 1.06 greneda greneda greneda 
4 charact. @ 1.06 transition transition transition 
5 n/p memphis memphis memphis memphis 

File 17 1 pan @ 1.01 greneda greneda greneda greneda 
2 pan@ 0.71 greneda greneda greneda greneda 
3 pan @ 0.61 greneda greneda greneda greneda 
4 pan@ 0.50 greneda greneda greneda . greneda 
5 pan @ 0.50 greneda greneda transition greneda 

File 18 1 n/p memphis memphis memphis memphis 
2 n/p memphis memphis memphis memphis 
3 n/p memphis memphis memphis memphis 
4 n/p memphis memphis memphis memphis 
5 nip memphis memphis memphis memphis 

File 19 1 n/p memphis memphis memphis memphis 
2 n/p memphis Transition transition transition 
3 n/p greneda greneda greneda greneda 
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1 
2 
3 
4 
5 

4 nip greneda greneda greneda greneda 
5 n/p greneda greneda greneda greneda 

File 20 transition transition transition transition 
pan@ 1.06 Greneda greneda greneda 
pan @0.74 Greneda greneda greneda 
pan @0.64 Greneda greneda greneda 

disturbed soil Greneda greneda greneda 
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Appendix B : 

SAS Program 

data one; 
input lat long soilcode yield; 

cards; 

proc corr; 
var yield soilcode; 

run; 
proc plot; 
plot yield*soilcode; 

run; 
proc mixed covtest; 
class soilcode; 
model yield=soilcode; 
repeated /type=sp(sph)(lat long); 
lsmeans soilcode/ pdiff; 

run; 
proc sort; by soilcode; 
proc univariate plot normal; by soilcode; 
var yield; 

run; 
proc freq data=one; 
tables yldcode*soilcode/measures chisq; 

run; 
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Appendix C: 

Figure 

2.1 
2.2 
2.3 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
3.10 
4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
4.10 
4.11 

Date 

4/98 
4/98 
6/98 
6/98 

Raw Data File Names 

Figures 

Raw File 

Corel 8 Drawing 
Photograph 
Photograph 
Photograph 
a6 a7.APR 
Corel 8 Drawing 
pot_2.APR 
dmp_2.APR 
plot 1 \AO 1.DZT 
plot 1 \Al2.DZT 
plot 2\AOl.DZT 
plot 2\AlO.DZT 
Photograph 
CentStack\A4.DZT 
CentStack.DZT 
4-H Camp\P13.DZT 
PrelimPan.DZT 
BTData\D4r.DZT 
pot_2.APR 
dmp_2.APR 
plotylds.APR 
plotylds.APR 
plotylds.APR 
plotylds.APR 
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File Name 

Dump 
Potato 
Pltl 60ns 
Plt2 60ns 

ProcessedFile Name 

Fig2_1.CDR 
Fig2_2.BMP 
Fig2_3.BMP 
Fig3_1.BMP 
Fig3_2.BMP 
Fig3_3.CDR 
Fig3_ 4.BMP 
Fig3_5.BMP 
Fig3_6.BMP 
Fig3_7.BMP 
Fig3_8.BMP 
Fig3_9.BMP 
Fig3_10.BMP 
Fig4_1.BMP 
Fig4_2.BMP 
Fig4_3.BMP 
Fig4_ 4.BMP 
Fig4_5.BMP 
Fig4_6.BMP 
Fig4_7.BMP 
Fig4_8.BMP 
Fig4_9.BMP 
F ig4:.J O .BMP 
Fig4_1 l.BMP 
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Appendix D 1 : 

Statistical Output from Plot 1, Plateau Experiment Station 

Plot 1 

Variable 

SOILCODE 
YIELD 

20:07 Friday, March 12, 1999 

Correlation Analysis 

N 

409 
409 

2 ' VAR ' Variables: SOILCODE YIELD 

Mean 

2 . 40342 
205 .76211 

Simple Statistics 

Std Dev 

0 . 56973 
59.92216 

Sum 

983 . 00000 
84157 

Minimum 

1 .00000 
43.02907 

Maximum 

3.00000 
333.21999 

Pearson Correlation Coefficients / Prob> IR I under Ho: Rho=O / N 409 

SOILCODE 

YIELD 

SOILCODE 

1 . 00000 
0.0 

0 .49577 
0.0001 

Plot 1 

The MIXED Procedure 

Class Level Information 

YIELD 

0. 49577 
0 . 0001 

1 .00000 
0.0 

20: 07 Friday, 

Class 

SOILCODE 

Levels Values 

3 1 2 3 

REML Estimation Iteration History 

Iteration Evaluations 

0 
1 

Objective 

3628.8708988 
3628.8708988 

Criterion 

0.00000000 

Convergence criteria met. 

Covariance Parameter Estimates (REML) 

Cov Parm Estimate 

SP(SPH) 2.00000000 
Residual 2711 .1802565 

Model Fitting Information for YIELD 

Description 

Observations 
107 

Value 

409 .0000 

March 12, 1999 2 



Res Log Likelihood 
Akaike ' s Information Criterion 
Schwarz ' s Bayesian Criterion 
-2 Res Log Likelihood 
Null Model LAT Chi-Square 
Null Model LAT DF 
Null Model LAT P-Value 

Tests of Fixed Effects 

-2187.52 
-2189.52 
-2193.53 
4375.049 

0.0000 
1 . 0000 
1 . 0000 

Source NDF DDF Type III F Pr> F 

SOILCODE 2 406 67 .18 0 . 0001 

Least Squares Means 

Effect SOILCODE LSMEAN Std Error DF t 

SOILCODE 1 119.42618788 12 . 62858628 406 9.46 
SOILCODE 2 186.85642456 3.59310203 406 52 . 00 
SOILCODE 3 235.64071182 3 .85961071 406 61 . 05 

Differences of Least Squares Means 

Effect SOILCODE SOILCOD Difference Std Error OF -
SOILCODE 2 -67.43023667 13.12979717 406 
SOILCODE 1 3 -116.2145239 13.20521815 406 
SOILCODE 2 3 -48.78428727 5.27323212 406 

Pr> It I 

0 . 0001 
0 . 0001 
0 . 0001 

t Pr > It I 

-5 . 14 0.0001 
-8.80 0.0001 
-9 . 25 0 . 0001 

Plot 1 20:07 Friday , March 12, 1999 

- - --- -- -- ------------ - ------- - ------- SOILCODE=1 

Variable=YIELD 

N 
Mean 
Std Dev 
Skewness 
USS 
CV 
T:Mean=O 
Num ·= 0 
M(Sign) 
Sgn Rank 
W: Normal 

Moments 

17 
119.4262 
53 . 15303 
1 . 229735 
287668.3 
44 . 50701 
9.263947 

17 
8.5 

76 . 5 
0.882359 

Sum Wgts 
Sum 
Variance 
Kurtosis 
css 
Std Mean 
Pr>ITI 
Num > O 
Pr>=IMI 
Pr>=ISI 
Pr<W 

Lowest 
43.02907( 
54.32732( 
72.48056( 
86.63793( 
95 . 28121( 

Univariate Procedure 

17 100% Max 
2030.245 75% Q3 
2825.244 50% Med 
1.894934 25% Q1 
45203.91 0% Min 

12.8915 
0.0001 Range 

17 Q3-Q1 
0.0001 Mode 
0.0001 
0 . 0344 

Extremes 

Obs 
16) 
10) 

8) 
7) 
9) 

Highest 
123.8679( 
124.4546( 
171.6567( 
214.509( 

255 . 0895( 
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Obs 

Quantiles(Def =5) 

255.0895 
123.8679 
109 . 8269 
95.28121 
43.02907 

212.0604 
28 . 58672 
43.02907 

6) 
2) 

15) 
1 ) 

17) 

99% 
95% 
90% 
10% 
5% 
1% 

255.0895 
255.0895 

214.509 
54.32732 
43.02907 
43.02907 
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Stem Leaf 
2 6 
2 1 

7 
1 0001122222 
0 579 
0 4 

.... + .... + . .. . + .... + 
Multiply Stem.Leaf by 10**+2 

# 

1 
1 

10 
3 
1 

Normal Probability Plot 

Boxplot . . 
0 

+ . . + .. + 
I 
0 

275+ • + 
I * +++++++++ 
I ++++*+++++ 
I *+***+*+** * 
I *++*+*+**+ 

25+ ++++*++++ 
+----+•-• •+•• ··+··•·+•· •-+•••-+----+----+ .... + .... + 

·2 · 1 0 +1 +2 
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Plot 1 20:07 Friday, March 12, 1999 4 

SOILCODE=2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 

Univariate Procedure 

Variable=YIELD 

Moments Ouantiles(Def=5) 

N 210 Sum Wgts 210 100% Max 313.3469 99% 288 . 369 
Mean 186.8564 Sum 39239.85 75% 03 232.8727 95% 264 .1575 
Std Dev 55.96169 Variance 3131.711 50% Med 191.4257 90% 253 . 8339 
Skewness -0.22283 Kurtosis . Q. 92645 25% 01 138.0089 10% 108.6839 
USS 7986746 css 654527.6 0% Min 58.91038 5% 96 .81856 
CV 29.94903 Std Mean 3. 861724 1% 71 .22251 
T:Mean=O 48.38679 Pr>ITI 0.0001 Range 254.4365 
Num ·= O 210 Num > 0 210 03-01 94.86379 
M(Sign) 105 Pr>=IMI 0.0001 Mode 58.91038 
Sgn Rank 11077 .5 Pr>= ISI 0.0001 
W:Normal 0.950262 Pr<W 0.0001 

Extremes 

Lowest Obs Highest Obs 
58.91038( 19) 277.8088( 140) 
69.50962( 69) 287.2835( 100) 
71 . 22251 ( 64) 288. 369 ( 121 ) 
73.28518 ( 4) 304.0207( 207) 
81.96845( 195) 313.3469( 104) 

110 



Statistical Output from Plot 2, Plateau Experiment Station 

Plot 2 

Variable 

YIELD 
S0ILCODE 

20: 15 Friday, March 12 , 1999 

Correlation Analysis 

2 'VAR ' Variables: YIELD 

Mean 

Simple Statistics 

Std Dev 

S0ILC0DE 

Sum N 

387 
387 

204.01995 
2.17313 

39 . 04396 
0.59227 

78956 
841 .00000 

Minimum 

54 . 26687 
1 . 00000 

Pearson Correlation Coefficients I Prob> IR I unde r Ho: Rho=0 / N 

YIELD 

300 

275 

250 

225 

200 

175 

YIELD 

S0ILCODE 

Plot of YIELD*SOILC0DE. 

,B 
,A 
"A 
, A 
, B 

' "A 
,D 
, B 
, B 
, B 
"D 
,D 
,A 
, B 
,A 

YIELD SOILCODE 

1. 00000 0.30087 
0.0 0.0001 

0.30087 1. 00000 
0 . 0001 0 . 0 

Plot 2 20:15 Friday, March 

Legend : A= obs, B = 2 obs, etc. 

A 

B 
B 
C 

B 
G 
C 
C 
0 
I 
G 
K 
H 
J 
N 
L 
p 
N 
L 
I 
p 
p 
G 
H 
F 
H 
A 

111 

Maximum 

299.24186 
3.00000 

387 

12, 1999 2 

B 
A 
B 
C 
D 
D 
H 
G 
L 
G 
H 
B 
I 
E 
C 
A 
A 
I 
C 
D 

C 
A 



150 

125 

100 

75 

50 

C C 
,A E A 

A 
,A A A 

A 
C 

,D B 
,A 
,A 
, B A . 

A 

A 
A 
A 

' s·ttttf f f f ffffffffffftfttttttftfffffffft ·ttffffffffffffffffffffffffffffffffffff ·t 
1 2 3 

SOILCODE 

Plot 2 

The MIXED Procedure 

Class Level Information 

Class Levels Values 

SOILCODE 3 1 2 3 

20:15 Friday, March 12 , 1999 3 

REML Estimation Iteration History 

Iteration Evaluations 

0 
1 

Objective 

3173.2402493 
3173 . 2402493 

Criterion 

0.00000000 

Convergence criteria met. 

Covariance Parameter Estimates (REML) 

Gov Parm Estimate 

SP(SPH) 2.00000000 
Residual 1376 . 9121565 

Model Fitting Information for YIELD 

Description 

Observations 
Res Log Likelihood 
Akaike's Information Cr i terion 

11 2 

Value 

387.0000 
-1939.49 
-1941. 49 



Effect 

SOILCODE 
SOILCODE 
SOILCODE 

Schwarz's Bayesian Criterion 
-2 Res Log Likelihood 
Null Model LRT Chi-Square 
Null Model LAT OF 
Null Model LAT P-Value 

Tests of Fixed Effects 

-1945.44 
3878 . 985 

0.0000 
1 .0000 
1 . 0000 

Source NDF DDF Type III F Pr> F 

SOILCODE 2 384 21.68 0.0001 

Least Squares Means 

SOILCODE LSMEAN Std Error OF t 

1 171.87600142 5.86709501 384 29.29 
2 203.54479284 2.39523151 384 84.98 
3 217 .10215763 3.58724656 384 60 . 52 

Differences of Least Squares Means 

Pr> It I 

0.0001 
0.0001 
0 . 000 1 

Effect SOILCODE _SOILCOD Diff ere nce Std Error OF t Pr > It I 

SOILCODE 1 
SOILCODE 1 
SOILCODE 2 

2 
3 
3 

- 31.66879142 
-45.22615621 
- 13 . 55736479 

113 

6.33718691 384 -5.00 
6.87685552 384 - 6 . 58 
4.31340607 384 - 3.14 

0 . 0001 
0 . 0001 
0 . 0018 



Plot 2 

SOILCODE=1 

20:15 Friday, March 12 , 1999 4 

Univariate Procedure 

Variable=YIELD 

Mom ents Ouantiles (Def =5 ) 

N 40 Sum Wgts 40 100% Max 234 .7058 99% 234 . 7058 
Mean 171 . 876 Sum 6875.04 75% 03 195.5364 95% 231 . 2991 
Std Dev 37.18814 Variance 1382 . 958 50% Med 174.5013 90% 220. 7351 
Skewness -0 . 28342 Kurtosis -0 . 71704 25% 01 149.7873 10% 115.9859 
USS 1235590 css 53935.35 0% Min 103.27 5% 106 . 5846 
CV 21 . 63661 Std Mean 5.879961 1% 103.27 
T:Mean=O 29 . 23081 Pr>ITI 0.0001 Range 131 .4358 
Num ~= 0 40 Num > 0 40 03-01 45.7491 
M(Sign) 20 Pr>=IMI 0.0001 Mode 103.27 
Sgn Rank 410 Pr>= ISI 0.0001 
W:Normal 0.943374 Pr<W 0.0628 

Extremes 

Lowest Obs Highest Obs 
103. 27 ( 36 ) 218. 779 ( 15) 

105 . 2369( 40) 222 . 6912 ( 23) 
107.9322( 39) 229 . 4748( 10) 
114 . 3551 ( 1 ) 233 . 1234 ( 21) 
117.6167( 30) 234 . 7058( 17) 

Stem Leaf # Boxplot 
23 35 2 I 
22 39 2 I 
21 459 3 I 
20 2 1 I 
19 223477 6 +-- .. -+ 
18 0157 4 I 
17 13456 5 *--+- - * 
16 17889 5 I 
15 79 2 + - ---- + 
14 3 
13 3 1 
12 122 3 
11 48 2 
10 358 3 

--- -+ -- --+----+ - -- - + 
Multiply Stem.Leaf by 10**+1 

11 4 



Plot 2 

SOILCODE=1 

Univariate Procedure 

20 : 15 Friday, March 12, 1999 5 

Variable=YIELD 

235+ 
Normal Probabi lity Plot 

****+ 
*++ 

+*+ 
+++* 

++*** 
+++** 

*** 
+* + 

**+ 

+*+ * 
*+* 

105 * ++* * 
+- - - -+- - - -+ - - - -+- - - -+- - - -+- - - - +- - - -+- - - -+- - - -+- - - -+ 

-2 - 1 0 +1 +2 

Plot 2 

SOILCODE=2 

Univariate Procedure 

20:15 Friday, March 12, 1999 6 

Variable=YIELD 

Moments Ouantiles(Def=5) 

N 240 Sum Wgts 240 100% Max 299 . 2419 99% 285 .7258 
Mean 203 . 5448 Sum 48850.75 75% 03 230 . 3548 95% 259 . 7461 
Std Dev 38.26462 Variance 1464 . 181 50% Med 204 . 2674 90% 246 . 6516 
Skewness -0 . 63904 Kurtosis 1.789413 25% 01 181 . 1064 10% 161 . 0117 
USS 10293255 css 349939 .4 0% Mi n 54.26687 5% 145 . 7749 
CV 18 . 79912 Std Mean 2.469971 1% 64 . 96534 
T:Mean=O 82.40777 Pr>ITI 0 . 0001 Range 244.975 
Num ·= O 240 Num > 0 240 03 -01 49.2484 
M(Sign) 120 Pr>= IMI 0.0001 Mode 54.26687 
Sgn Rank 14460 Pr>=ISI 0.0001 
W:Normal 0.965819 Pr<W 0.0010 

Extreme s 

Lowest Obs Hi ghest Obs 
54.26687( 195) 280.2436 ( 65) 
58.95575( 167) 281 . 3283 ( 127) 
64 . 96534( 174) 285 . 7258 ( 137) 
86.92463( 232) 285 . 9554 ( 138) 
105.7994( 21) 299 . 2419 ( 67) 

Stem Leaf # Boxplot 
29 9 I 
28 0166 4 I 
27 466 3 I 
26 0235 4 I 

115 



25 0145788999 10 
24 1123333335556667778 19 
23 00002223356777888899 20 +-- -- -+ 
22 001112333346668899 18 
21 0001112222333344455556678999 28 
20 000122222344444455556666789 27 * - -+ - - * 
19 0012244556667777789999 22 
18 001111112233334455566667778899 30 +- - - - -+ 
17 111223567777888999 18 
16 000222445677889 15 
15 0689 4 
14 3577788 7 
13 78 2 
12 347 3 
11 
10 6 0 

9 
8 7 0 
7 
6 5 1 0 
5 49 2 0 

----+----+----+--- -+----+----+ 
Multiply Stem.Leaf by 10**+1 

Plot 2 20:15 Friday, March 12 , 1999 7 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SOI LCODE=2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Variable=YIELD 

295+ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

175+ 
I 
I 
I 
I 
I 
I 
\+ 
I 
I 
I 
I 

55+* 

+++ 

Univariate Procedure 

Normal Probability Plot 

**** 
**** 

***+ 
****+ 

***+ 
***+ 

+** 
+** 

*** 

++* 
+*** * 

+** 
++** 

**** 
**** 

+----+----+----+----+--- -+----+----+-- --+----+ ---- + 
-2 -1 0 +1 +2 

Plot 2 

SOILCODE=3 

20 : 15 Friday, March 12, 1999 8 

Variable=YIELD 

N 
Mean 
Std Dev 
Skewness 
USS 
CV 
T:Mean=O 
Num A= O 
M(Sign) 
Sgn Rank 
W:Normal 

Moments 

107 
217 .1022 
34 . 32084 
-0.87344 
5168128 

15.80861 
65.43319 

107 
53 . 5 
2889 

0.930796 

Sum Wgts 
Sum 
Variance 
Kurtosis 
css 
Std Mean 
Pr>\T\ 
Num > 0 
Pr>=\M\ 
Pr>=\S\ 
Pr<W 

Lowest 
117.9187( 
118 .4293( 
129 . 6645( 

Univariate Procedure 

Quantiles(Oef=5) 

107 100% Max 276-3574 
23229.93 75% Q3 241 .5035 

1177 .92 50% Med 226.3796 
0.484155 25% Q1 192 . 1436 
124859.5 0% Min 117.9187 
3.317921 

0.0001 Range 
107 Q3-Q1 

0.0001 Mode 
0.0001 
0.0001 

Extremes 

Obs Highest 
2) 266 . 0533( 

12) 266.3237 ( 
10) 269.8248( 

117 

158 .4387 
49.35995 
117. 9187 

Obs 
71) 
77) 
91) 

99% 
95% 
90% 
10% 

5% 
1% 

272.7683 
262.3917 
254.6598 
171 . 1226 
149.8264 
118 .4293 



133 . 6215( 
145.8249( 

13) 272.7683( 
22) 276.3574( 

118 

48) 
50) 



Appendix D2: 

Statistical Output from Plot 1, Milan Experiment Station 

The SAS System 

Variable 

YIELD 
SOILCODE 

20:20 Friday, March 12, 1999 

Correlation Analysis 

2 'VAR' Variables: YIELD 

Mean 

Simple Statistics 

Std Dev 

SOILCODE 

Sum N 

169 
169 

135.79763 
3. 11243 

54 . 80628 
1.70235 

22950 
526.00000 

Minimum 

9.20000 
1 .00000 

Maximum 

237.60000 
5.00000 

Pearson Correlation Coefficients / Prob > IRI under Ho: Rho=O / N 169 

YIELD SOILCODE 

YIELD 1. 00000 0.74416 
0.0 0.0001 

SOILCODE 0.74416 1 . 00000 
0.0001 0.0 

The SAS System 20:20 Friday, March 12, 

The MIXED Procedure 

Class Level Information 

Class Levels Values 

SOILCODE 5 1 2 3 4 5 

REML Estimation Iteration History 

Iteration Evaluations Objective 

1329.2808921 
1329.2808921 

Criterion 

Cov Parm 

SP(SPH) 
Residual 

0 
0.00000000 

Convergence criteria met. 

Covariance Parameter Estimates (REML) 

Estimate Std Error Z Pr> IZI 
2.00000000 

1100.4871791 121 .52847861 9 .06 0.0001 

Model Fitting Information for YIELD 

119 

1999 3 



Description 

Observations 
Res Log Likelihood 
Akaike's Information Criterion 
Schwarz's Bayesian Criterion 
-2 Res Log Likelihood 
Null Model LRT Chi -Square 
Null Model LRT OF 
Null Model LRT P-Value 

Tests of Fixed Effects 

Value 

169.0000 
-815 . 346 
-817.346 
-820.446 
1630.693 

0.0000 
1 . 0000 
1. 0000 

Source NDF DDF Type III F Pr> F 

SOILCODE 4 164 73 .64 0.0001 

Least Squares Mean s 

Effect SOILCODE LSMEAN Std Error OF t Pr> It I 

SOILCODE 96.81176471 4 . 64523196 164 20.84 0 . 0001 
SOILCODE 2 82.80434783 6.91717201 164 11 .97 0.0001 
SOILCODE 3 137.11000000 10 .49041076 164 13.07 0.0001 
SOILCODE 4 132 . 68846154 6.50587657 164 20.40 0.0001 
SOILCODE 5 191 .30338983 4 .31 883376 164 44.30 0.0001 

Differences of Least Squares Means 

Effect SOILCODE -SOILCOD Difference Std Error DF t Pr > /t I 

SOILCODE 2 14.00741688 8.33219351 164 1 . 68 0 . 0946 
SOILCODE 3 -40.29823529 11 .47287662 164 -3. 51 0 . 0006 

The SAS System 20:20 Friday, March 12 , 1999 

Differences of Leas t Squares Means 

Effect SOILCODE -SOILCOD Difference Std Error OF t Pr> /t I 

SOILCODE 1 4 -35.87669683 7.99403590 164 -4.49 0 . 0001 
SOILCODE 1 5 -94 .49162512 6 . 34275217 164 -14.90 0.0001 
SOILCODE 2 3 -54.30565217 12 .56566698 164 -4 . 32 0 . 0001 
SOILCODE 2 4 -49 .88411371 9.49598329 164 -5 . 25 0 . 0001 
SOILCODE 2 5 -108.4990420 8 . 15472830 164 -13.31 0 . 0001 
SOILCODE 3 4 4.42153846 12 .34403289 164 0 . 36 0 . 7207 
SOILCODE 3 5 -54 . 19338983 11 .34464821 164 -4 . 78 0 . 0001 
SOILCODE 4 5 -58.61492829 7 . 80888949 164 -7 . 51 0.0001 

The SAS System 20:20 Friday, March 12, 1999 

4 

5 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SOILCODE=1 - - - - · - - - - - · - - - - - - - - - - - - - - - - - - - - - - - - - - -

Variable=YIELD 

N 
Mean 
Std Dev 

Moment s 

51 Sum Wgts 
96 .81176 Sum 
33 .71482 Variance 

Univariate Procedure 

51 
4937 . 4 

1136.689 
120 

100% Max 
75% 03 
50% Med 

Quantiles(Def=5) 

172.4 
118.5 
104 . 6 

99% 
95% 
90% 

172.4 
149 .8 
129.9 



Skewness -0.1748 Kurtosis -0.44387 25% 01 72.2 10% 44.7 
USS 534832.9 css 56834 . 45 0% Min 33 5% 39 . 7 
CV 34.82513 Std Mean 4.721019 1% 33 
T:Mean=O 20 . 50654 Pr>ITI 0.0001 Range 139 . 4 
Num - = O 51 Num > 0 51 Q3-Q1 46 . 3 
M(Sign) 25 . 5 Pr>=IMI 0.0001 Mode 67.2 
Sgn Rank 663 Pr>=ISI 0.0001 
W:Normal 0.950417 Pr<W 0.0569 

Extremes 

Lowest Obs Highest Obs 
33( 42) 134.5 ( 22) 

39.2( 37) 135.2 ( 17) 
39.7( 41) 149.8 ( 23) 

41 ( 40) 165.8 ( 45) 
43.2( 36) 172.4( 51) 

Stem Leaf # Boxplot 
17 2 I 
16 6 I 
15 0 I 
14 I 
13 0045 4 I 
12 2667 4 I 
11 234556789 9 +----- + 
10 1344556668 10 * * 
9 56 2 + 
8 0028 4 
7 238 3 +- - - - -+ 
6 0377 4 
5 
4 013555 6 
3 39 2 

- ---+-- - -+----+-- --+ 
Multiply Stem.Leaf by 10**+1 

The SAS System 20:20 Friday, March 12, 1999 6 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SOILCODE=1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Variable=YIELD 

175+ 
I 
I 
I 
I 
I 
I 

105+ 
I 
I 
I 
I 
I 
I 

Univariate Procedure 

Normal Probability Plot 

*** 
+++ 

+*+**** 

*****+ 
**++ 

*** 
*** 

+++ 
+++* 

+++* * 
+***** 

+*+ 
*++ 

35+ * *++* 
+- - -- +--- -+----+ - ---+ - - -- +-- - -+- -- -+----+ ---- +--- - + 

-2 -1 0 +1 +2 

121 



The SAS System 20:20 Friday, March 12 , 1999 7 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SO I LCODE =2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Univariate Procedure 

Variable=YIELD 

Moments Quantiles(Def=5) 

N 23 Sum Wgts 23 100% Max 171. 7 99% 171 . 7 
Mean 82.80435 Sum 1904.5 75% Q3 128 . 3 95% 158.9 
Std Dev 54.84681 Variance 3008.172 50% Med 76 . 7 90% 155 . 9 
Skewness 0 . 021316 Kurtosis -1.47533 25% 01 22 . 9 10% 11 . 2 
USS 223880.7 css 66179.79 0% Min 9.2 5% 10 .8 
CV 66.23663 Std Mean 11.43635 1% 9 . 2 
T:Mean=O 7.240452 Pr>ITI 0.0001 Range 162.5 
Num ~= O 23 Num > O 23 Q3-Q1 105.4 
M(Sign) 11. 5 Pr>= IMI 0.0001 Mode 9.2 
Sgn Rank 138 Pr>= ISI 0.0001 
W:Normal 0.91288 Pr<W 0.0456 

122 



Extremes 

Lowest Obs Hi ghest Obs 
9 . 2 ( 19) 135.7 ( 2 ) 

10.8( 16) 138 . 7 ( 7) 
11 . 2 ( 20) 155 . 9 ( 3) 

13( 14) 158 . 9( 6) 
15.9 ( 17) 171. 7( 23) 

Stem Leaf # Boxplot 
16 2 1 I 
14 69 2 I 
12 367869 6 +-----+ 
10 8 1 I 
8 8 1 + I 
6 287 3 *-----* 
4 880 3 I 
2 3 1 +- ----+ 
0 91136 5 

---- +---- +-- - -+ -- - -+ 
Multiply Stem.Leaf by 10**+1 

Normal Probability Plot 
170+ 

I 
I 
I 

90+ 
I 
I 
I 

10+ 

* +++ 
+*++ 

++*** 
+*+** 

++++* 

+++ * 
+*++* 

+---- +- - - -+- - --+--- -+----+----+-- -- +----+ - ---+--- -+ 
-2 -1 0 +1 +2 

The SAS System 20:20 Friday, March 12, 1999 8 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SOI LCODE=3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Variable=YIELD 

Moments 

N 10 
Mean 137.11 
Std Dev 27.11168 
Skewness 1 .644178 
USS 194606.9 
CV 19. 77367 
T:Mean=O 15.99236 
Num ·= 0 10 
M(Sign) 5 
Sgn Rank 27.5 
W:Normal 0.774218 

Sum Wgts 
Sum 
Variance 
Kurtosis 
css 
Std Mean 
Pr>ITI 
Num > O 
Pr>=IMI 
Pr>=ISI 
Pr<W 

Lowest 
116.2 ( 

Univariate Procedure 

auantiles(Def=5) 

10 100% Max 198.7 99% 198.7 
1371 . 1 75% Q3 147.4 95% 198.7 

735.0432 50% Med 124.2 90% 183.7 
2 . 105179 25% Q1 121. 4 10% 116. 3 
6615.389 0% Min 116.2 5% 116 .2 
8.573466 1% 116.2 

0 . 0001 Range 82.5 
10 Q3-Q1 26 

0.0020 Mode 121. 4 
0 .0020 
0 . 0074 

Extremes 

Obs Highest Obs 
8) 125.6( 6 ) 
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116. 4( 
121 . 4( 
121 .4( 
122.8( 

Stem Leaf 
19 9 
18 
17 
16 9 
15 
14 7 
13 2 
12 1136 
11 66 

3) 
4) 
1 ) 
2) 

----+----+-- --+ ---- + 

132.5( 
147 .4 ( 
168. 7( 
198 .7( 

# 

4 
2 

Multiply Stem.Leaf by 10**+1 

7) 
5) 
9) 

10) 

Boxplot 
0 

+- - - - -+ 
+ 

* * 

Normal Probability Plot 
195+ 

I 
I 
I 

155+ 
I 
I 
I 

115+ 

++++ 
+++ * 

++++ * 
*++*+ * * 

*+++ 

+*++ 

* ++++ 
++++ 

+++ 

+----+----+----+----+----+----+--- -+-- --+- --- +- ---+ 
-2 -1 0 +1 +2 
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The SAS System 20:20 Friday, March 12, 1999 9 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SOI LCODE=4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Univariate Procedure 

Var i able=YIELD 

N 
Mean 
Std Dev 
Skewness 
USS 
CV 
T:Mean=O 
Num · = O 
M(Sign) 
Sgn Rank 
W:Normal 

Moments Quantiles(Def=5) 

26 Sum Wgts 
132 . 6885 Sum 
37.33307 Variance 
-0 . 96756 Kurtosis 
492605 . 9 css 
28 .13588 Std Mean 
18 . 12284 Pr>ITI 

26 Num > O 
13 Pr>=IMI 

175.5 Pr>=ISI 
0 . 909545 Pr<W 

Lowest 
41 .9 ( 
47.4( 
82.2( 
94.9( 
99.8( 

Stem Leaf 
16 45666589 
14 0837 
12 1001158 
10 020 
8 25 
6 
4 27 

26 100% Ma x 
3449.9 75% Q3 

1393.758 50% Med 
0 . 530573 25% Q1 
34843.95 0% Min 
7.321617 

0.0001 Range 
26 Q3-Q1 

0 . 0001 Mode 
0.0001 
0.0264 

Extremes 

Obs 
26) 
23) 
19) 
12) 
8) 

Highest 
166.4( 
166.4( 
175.3( 
177 .5( 
178 . 8( 

# 
8 
4 
7 
3 
2 

2 

Obs 

---- +---- +- ---+- --- + 
Multiply Stem . Leaf by 10**+1 

1) 
10 ) 
4) 

17 ) 
20) 

Normal Probability Plot 

178.8 
164 . 6 
136 . 3 
109 . 9 
41.9 

136.9 
54.7 

166.4 

Boxplot 
+ - - - - - + 

· -- +-- * 
+ - - - - - + 

170+ ****+++* * * 
I ****+++ 
I * *****+ 

110+ **+++ 
I +*+*+* 
I +++++ 

50+ ++++* * 
+- - - - +- - --+----+----+-- - -+--- -+-- - -+- -- -+ - - -- +----+ 

-2 -1 0 +1 +2 

99% 
95% 
90% 
10% 

5% 
1% 

178.8 
177 .5 
175.3 
82 . 2 
47 . 4 
41.9 

The SAS System 20:20 Friday, March 12, 1999 10 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SO I LCODE =5 - - - - - - - - - - - - - - - - - - - - - - - - - - · - - - - - - - - - - -

Univariate Procedure 

Variable=YIELD 

Moments Quant i les(Def=5) 

125 



N 59 Sum Wgts 59 100% Max 237.6 99% 237.6 
Mean 191 . 3034 Sum 11286 . 9 75% Q3 199.3 95% 214 . 3 
Std Dev 16.61238 Variance 275.971 50% Med 193 . 2 90% 208.6 
Skewness -0 . 62433 Kurtosis 1 . 529013 25% Q1 187 . 2 10% 165.6 
USS 2175229 css 16006.32 0% Min 146.3 5% 154.4 
CV 8.683785 Std Mean 2.162747 1% 146.3 
T:Mean=O 88.45389 Pr>ITI 0.0001 Range 91 . 3 
Num ~= O 59 Num > O 59 Q3 -Q1 12 . 1 
M(Sign ) 29.5 Pr>= IMI 0. 0001 Mode 193. 4 
Sgn Rank 885 Pr>=I S I 0.0001 
W:Normal 0.936259 Pr<W 0.0058 

Extremes 

Lowest Obs Highest Obs 
146 . 3( 42) 209.4( 19) 
148.7( 41) 212.7( 11 ) 
154.4( 27) 214.3( 44) 
155.3( 28) 217( 17) 
162.9( 25) 237.6( 21) 
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Statistical Output from Plot 2, Milan Experiment Station 

The SAS System 

Variable 

YIELD 
SOILCODE 

20:27 Friday , March 12, 1999 

Correlation Analysis 

2 'VAR ' Variables: YIELD 

Mean 

Simple Statistics 

Std Dev 

SOILCODE 

Sum N 

169 
169 

138.75385 
4.48521 

53 .16391 
2.16879 

23449 
758.00000 

Minimum 

0 
1 .00000 

Maximum 

239.40000 
7 .00000 

Pearson Correlation Coefficients/ Prob> jRj under Ho: Rho=O / N 169 

YIELD SOILCODE 

YIELD 1 .00000 0 .60460 
0.0 0.0001 

SOILCODE 0.60460 1. 00000 
0.0001 0 .0 

The SAS System 20:27 Friday , 

The MIXED Procedure 

Class Level Information 

Class Levels Values 

SOILCODE 7 1 2 3 4 5 6 7 

REML Estimation Iteration History 

Iteration Evaluations 

0 

Objective 

1245 . 1305708 
1245. 1305708 

Convergence criteria met . 

Criterion 

0.00000000 

Covariance Parameter Estimates (REML) 

March 12 , 

Gov Parm Estimate Std Error Z Pr> IZI 

SP(SPH) 2.00000000 
Residual 702.23166700 78 .02574078 9.00 

Model Fitting Information for YIELD 

Description 

Observations 
Res Log Likelihood 

127 

Value 

169 . 0000 
-771 .433 

0.0001 

1999 3 



Akaike's Information Criterion 
Schwarz's Bayesian Criterion 
-2 Res Log Likelihood 
Null Model LRT Ch i -Square 
Null Model LRT OF 
Null Model LRT P-Value 

Tests of Fixed Effects 

Source NDF DDF Type III 

-773.433 
-776.521 
1542.867 

0.0000 
1 . 0000 
1 . 0000 

F Pr> F 

SOILCODE 6 162 85 . 70 0.0001 

Least Squares Means 

Effect SOILCODE LSMEAN Std Error OF t Pr> itl 

SOILCODE 1 119.15161290 4 .75947838 162 25.03 0.0001 
SOILCODE 2 99. 12727273 7.98994634 162 12.41 0.0001 
SOILCODE 3 32. 65714286 7.08233046 162 4 . 61 0 . 0001 
SOILCODE 4 154 . 18000000 8.37992641 162 18.40 0.0001 
SOILCODE 5 116.76785714 5 . 00796390 162 23.32 0.0001 
SOILCODE 6 158 . 36904762 4.08898540 162 38.73 0.0001 
SOILCODE 7 204.40303030 4.61299767 162 44 . 31 0.0001 
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Differences of Least Squares Means 

Effect SOILCODE - SOILCOD Difference Std Error OF t Pr > It I 

SOILCODE 1 2 20.02434018 9 . 30010091 162 2 . 15 0 . 0328 
SOILCODE 1 3 86.49447005 8 .53299708 162 10. 14 0.0001 
SOILCODE 1 4 -35 .02838710 9 . 63720920 162 -3.63 0.0004 
SOILCODE 1 5 2.38375576 6.90885930 162 0.35 0.7305 
SOILCODE 1 6 -39 . 21743472 6.27474589 162 -6.25 0 . 0001 
SOILCODE 1 7 -85 . 25141740 6.62815072 162 -12 . 86 0.0001 
SOILCODE 2 3 66 . 47012987 10 . 67701490 162 6.23 0 . 0001 
SOILCODE 2 4 -55 . 05272727 11.57853225 162 -4.75 0.0001 
SOILCODE 2 5 -17. 64058442 9.42968424 162 -1 .87 0.0632 
SOILCODE 2 6 -59.24177489 8 . 97546902 162 -6.60 0.0001 
SOILCODE 2 7 -105.2757576 9.22599534 162 - 11 .41 0.0001 
SOILCODE 3 4 -121.5228571 10.97189917 162 -11. 08 0.0001 
SOILCODE 3 5 -84.11071429 8.67404791 162 -9.70 0.0001 
SOILCODE 3 6 - 125.7119048 8.17797080 162 -15 . 37 0.0001 
SOILCODE 3 7 - 171.7458874 8.45216850 162 -20.32 0.0001 
SOILCODE 4 5 37.41214286 9.76231884 162 3.83 0 . 0002 
SOILCODE 4 6 -4.18904762 9 .32432133 162 -0 . 45 0.6538 
SOILCODE 4 7 -50.22303030 9.56571556 162 -5 . 25 0.0001 
SOILCODE 5 6 -41 .60119048 6.46525359 162 -6.4_3 0.0001 
SOILCODE 5 7 -87.63517316 6.80877741 162 -12 . 87 0.0001 
SOILCODE 6 7 -46.03398268 6.16437743 162 - 7.47 0.0001 
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4 

5 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SOI LCODE=1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Univariate Procedure 

Va r iable=YIELD 

Moments Quantiles(Def=5) 
128 



N 
Mean 
Std Dev 
Skewness 
USS 
CV 
T:Mean=O 
Num ' = O 
M(Sign) 
Sgn Rank 
W:Normal 

31 Sum Wgts 31 100% Max 171 .6 
119 . 1516 Sum 3693. 7 75% 03 138.6 
26.63275 Variance 709.3032 50% Med 110 . 8 
0 . 448442 Kurtosis -0.42833 25% 01 104 . 1 
461389 .4 css 21279 . 1 0% Min 70.2 
22.35198 Std Mean 4.783383 
24.90949 Pr>JT J 0.0001 Range 101 .4 

31 Num > O 31 03-01 34 . 5 
15.5 Pr>= JMI 0 . 0001 Mode 70 . 2 

248 Pr>=JSJ 0.0001 
0.941281 Pr<W 0 .1074 

Extremes 

Lowest Obs Highest Obs 
70.2( 13) 158.2( 30) 
76.2( 18) 160.2( 27) 
84 .7( 10) 166( 16) 
92 . 7( 12) 166.3( 21) 
95 . 9 ( 11 ) 171 . 6 ( 28) 

Stem Leaf # Boxplot 
17 2 1 I 
16 066 3 I 
15 18 2 I 
14 3 1 I 
13 09 2 +-- - -- + 
12 2356 4 
11 01114 5 * • + ••• 
10 01456679 8 +- - - - -+ 

9 36 2 
8 5 1 
7 06 2 

----+----+----+----+ 
Multiply Stem . Leaf by 10**+1 

175+ 
I 
I 
I 
I 

125+ 
I 
I 
I 
I 

75+ * ++*+ 

Normal Probability Plot 

+***** 
+***** 

******** 

* * *++ + 
** ++++ 

*+++ 

+----+----+----+ --- -+----+----+--- -+-- -- +---- +- ---+ 
-2 -1 0 +1 +2 

99% 171. 6 
95% 166.3 
90% 160.2 
10% 92.7 

5% 76.2 
1% 70.2 
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- - - - - - - - - - - - - - - - · · - - - - - - - - - - - - - - - - - - - SOILCODE=2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - · · - - - - · - - -

Univariate Procedure 

Variable=YIELD 

Moments Ouantiles(Def=5) 

N 11 Sum Wgts 11 100% Max 153 . 1 99% 153. 1 
129 



Mean 99.12727 Sum 1090.4 75% Q3 127.3 95% 153. 1 
Std Dev 34 .97745 Variance 1223.422 50% Med 93.8 90% 135 . 4 
Skewness -0 . 06769 Kurtosis - 1 .1 6368 25% Q1 66.6 10% 61 .2 
USS 120322.6 css 12234.22 0% Min 43.3 5% 43.3 
CV 35.2854 Std Mean 10.5461 1% 43.3 
T:Mean=O 9 .399426 Pr>I TJ 0.0001 Rang e 109 . 8 
Num ·= 0 11 Num > 0 11 Q3 -Q1 60 . 7 
M(Sig n) 5.5 Pr>=JM J 0.0010 Mode 43.3 
Sgn Rank 33 Pr>=IS J 0.0010 
W:No rmal 0.965711 Pr<W 0.8231 

Extremes 

Lowest Obs Highest Obs 
43.3 ( 1 ) 118 . 6( 8) 
61 .2( 3) 124 . 2( 7) 
66 .6( 4) 127.3( 11 ) 
77.5( 2) 135.4( 10) 
89.4( 5) 153 .1 ( 9) 
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Stem Leaf 
14 3 
12 475 
10 9 

8 94 
6 178 
4 3 

- - . -+- - - - +- - - -+- - - -+ 
Multiply Stem.Leaf by 10**+1 

# 
1 
3 
1 
2 
3 

Normal Probability Plot 

Boxplot 
I 

+- - - - -+ 

* - -+- - * 
+- - - - - + 

150+ ++++*+ 
I *+*+++* 
I +*+++ 
I +++*+* 
I *+++*+* 

50+ *++++ 
+---- +----+----+-- -- +----+-- -- +-- --+----+ ---- +---- + 

-2 -1 0 +1 +2 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SOI LCODE=3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Univariate Procedure 

Variable=YIELD 

N 
Mean 
Std Dev 
Skewness 
USS 
CV 
T:Mean=O 
Num ·= O 
M(Sign ) 
Sgn Ran k 
W: Normal 

Moments 

14 Sum Wgts 
32 . 65714 Sum 

33.2655 Variance 
0.657699 Kurtosis 
29316.56 css 
101.8629 Std Mean 
3.67323 Pr>ITI 

12 Num > O 
6 Pr>=IMI 

39 Pr>=IS I 
0.856675 Pr<W 

Lowest 
0( 
0 ( 

1 .3 ( 
4 .7( 
9.8 ( 

Stem Leaf 
8 4 
6 356 
4 6 
2 6 
0 00150039 

14 100% Max 
457.2 75% Q3 

1106 . 593 50% Med 
-1 .20875 25% Q1 
14385 . 71 0% Min 
8.890579 

0 . 0028 Range 
12 Q3 -Q1 

0 . 0005 Mode 
0 . 0005 
0.0269 

Extremes 

Obs Highest Obs 
13) 55.7( 
12) 62 . 7( 
8) 75 .4( 
7) 76.3( 
5) 93.5( 

# 
1 
3 
1 
1 
8 

----+----+---- +----+ 
Multiply Stem.Leaf by 10**+1 

131 

Quant i les(Def=5) 

93 . 5 99% 93 . 5 
62 .7 95% 93.5 

15.95 90% 76 . 3 
4.7 10% 0 

0 5% 0 
1% 0 

93 . 5 
58 

0 

2) 
10) 
6) 
3) 
1 ) 

Boxplot 
I 

+- - - - -+ 

+ 
* 



90+ 
I 

50+ 
I 

10+ 

Normal Probability Plot 

* *+ +*++ 
++ *+++ 

++++++* 
* *+* +*+ * * * 

++*+++ 

+-- -- +---- +- - -- +- - - -+---- +-- - -+- - - -+--- -+- - -- +--- - + 
-2 -1 0 +1 +2 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SOILCODE=4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Univariate Procedure 

Variable=YIELD 

Moments Quantiles (Def=5) 

N 10 Sum Wgts 10 100% Max 176 99% 176 
Mean 154. 18 Sum 1541.8 75% Q3 166.8 95% 176 
Std Dev 19. 69911 Variance 388.0551 50% Med 161 . 95 90% 173 . 75 
Skewness -1.02824 Kurtosis -0 .05063 25% Q1 148 .1 10% 120.75 
USS 241207.2 css 3492.496 0% Min 118. 1 5% 118 . 1 
CV 12.7767 Std Mean 6.229407 1% 118. 1 
T:Mean=O 24.75035 Pr>IT I 0 .0001 Range 57.9 
Num A= O 10 Num > O 10 Q3-Q1 18 . 7 
M(Sign ) 5 Pr>=IM I 0.0020 Mode 118. 1 
Sgn Rank 27.5 Pr>=IS I 0 . 0020 
W:Normal 0.872222 Pr<W 0.1014 

Extremes 

Lowest Obs Highest Obs 
118. 1 ( 6) 163.2( 9) 
123 . 4 ( 10) 165.1( 7) 
148.1 ( 8) 166.8( 4) 
148 . 9 ( 5) 171. 5( 2) 
160 . 7 ( 3) 176( 1 ) 
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Stem Leaf # Boxplot 
17 26 2 I 
16 1357 4 +- - - - - + 
15 + 
14 89 2 +- - - - - + 
13 I 
12 3 I 
11 8 0 

---- +-- - -+----+ - -- - + 
Multiply Stem . Leaf by 10**+1 

175+ 
I 
I 

145+ 
I 
I 

115+ 

Normal Probability Plot 
+* +++ * 

* • +*++*+ 
+++++ 

*++*+ 
+++++ 

+++++ * 
+++++ * 

+-- --+ --- -+----+--- -+----+----+ - - - -+----+ - - - -+ - ---+ 
-2 -1 0 +1 +2 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SOILCODE=5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Univariate Procedure 

Variable=YIELD 

Moments Ouantiles(Def=5) 

N 28 Sum Wgts 28 100% Max 192.8 99% 192.8 
Mean 116. 7679 Sum 3269.5 75% 03 141 . 6 95% 171. 2 
Std Dev 31 .18928 Variance 972.7712 50% Med 106.5 90% 155 .1 
Skewness 0.578859 Kurtosis -0.19223 25% 01 95.65 10% 75.9 
USS 408037.3 css 26264 . 82 0% Min 67 . 2 5% 72.5 
CV 26.7105 Std Mean 5.89422 1% 67.2 
T:Mean=O 19 . 81057 Pr> ITI 0 . 0001 Range 125.6 
Num · = 0 28 Num > O 28 03-01 45 . 95 
M(Sign ) 14 Pr>=IM I 0 . 0001 Mode 67 . 2 
Sgn Rank 203 Pr>=ISI 0.0001 
W: Normal 0.954797 Pr<W 0 . 2888 

Extremes 

Lowest Obs Highest Obs 
67 . 2( 5) 150.4( 16) 
72 . 5 ( 6) 154.9( 21) 
75 . 9 ( 13) 155. 1 ( 22) 
84 . 8( 1 ) 171 .2( 23) 
88 . 6( 12) 192.8( 26) 
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Stem Leaf 
19 3 
18 
17 
16 
15 055 
14 47 
13 459 
12 0 
11 17 
10 033567 
9 5569 
8 59 
7 26 
6 7 

- - - -+- - - -+- - - -+- - - -+ 
Multiply Stem .Leaf by 10**+1 

# 

3 
2 
3 
1 
2 
6 
4 
2 
2 

The SAS System 

Boxplot 
I 
I 
I 
I 
I 

+- - - - -+ 

+ 

+-----+ 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SO I LCODE=5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Variable=YIELD 

195+ 

Univariate Procedure 

Normal Probability Plot 

**+ 
* +*+ 

**+* 
**++ 

***+ 
+*+ 

+++** 
+***** 

65+ * ++++ 

* +++ 
++++ 

+++ 
++ 

+- - - -+- - - -+- - - -+- - - -+- - - -+- - - -+- - - -+- - - -+- - - -+- - - -+ 
-2 - 1 0 +1 +2 
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· · - · · - - · · - - · - - - - - · - - - - - - · · - · · · - · · - - - - SO I LCODE =6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Univariate Procedure 

Variable=YIELD 

N 
Mean 
Std Dev 
Skewness 
USS 
CV 
T:Mean=O 
Num · = O 
M(Sign) 
Sgn Rank 
W:Normal 

Moments 

42 Sum Wgts 
158.369 Sum 

25 .10292 Variance 
0 . 827768 Kurtosis 

1079228 css 
15 . 8509 Std Mean 

40.88562 Pr>ITI 
42 Num > O 
21 Pr>=IMI 

451.5 Pr>=ISI 
0.93559 Pr<W 

Lowest 
108 . 7( 
122.7( 
124 . 2( 
124 .4 ( 
124.7( 

Stem Leaf 
23 8 
22 5 
21 
20 
19 
18 028 
17 1125788 
16 23333556 
15 14666678 
14 27788 
13 136 
12 34456 
11 
10 9 

42 100% Max 
6651 . 5 75% 03 

630 . 1568 50% Med 
2 . 218024 25% 01 
25836.43 0% Min 
3.873465 

0 . 0001 Range 
42 Q3 -Q1 

0.0001 Mode 
0.0001 
0.0271 

Extremes 

Obs 
1 ) 

36) 
30) 
18) 
42) 

Highest 
179.7 ( 
182.4( 
187.5( 
224.9( 
238.4( 

# 
1 
1 

3 
7 
8 
8 
5 
3 
5 

Obs 

- - - -+- - - -+- - - -+ - - - -+ 
Multiply Stem.Leaf by 10**+1 

Ouantiles(Def=5) 

21) 
37) 
33) 
34) 
40) 

238.4 
171 

157.4 
146 . 8 
108 .7 

129 .7 
24.2 

163.2 

Boxplot 
0 
0 

+- .. - -+ 

* - - +- - * 
+ - . . . -+ 

0 

99% 
95% 
90% 
10% 

5% 
1% 

238.4 
187.5 
179.7 
124.7 
124.2 
108.7 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SOILCODE=6 - - - - - - - - - - - - - - - - - · · · · · - - - · - · - - - - - - - - - -

Variable=YIELD 

235+ 
I 
I 
I 

Univariate Procedure 

Normal Probability Plot 
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Variable=YIELD 

I 
I 
I 
I 
I 
I 
I 
I 
I 

105+ 

+*** 

++++ 

++++ 
++++ ** 

+**•**** 

+*++ 
+-- -- +--- -+-- --+- --- +--- -+----+----+ -- --+----+- -- -+ 

-2 - 1 0 +1 +2 
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Univariate Procedure 

Moments Ouant iles(Def=5) 

N 33 Sum Wgts 33 100% Max 239.4 99% 239.4 
Mean 204.403 Sum 6745.3 75% 03 214.6 95% 234.5 
Std Dev 17.91364 Variance 320.8984 50% Med 204.3 90% 230.2 
Skewness -0.15529 Kurtosis 0.043607 25% 01 195 . 3 10% 184. 7 
USS 1389029 css 10268 . 75 0% Min 164.8 5% 168 . 9 
CV 8.763881 Std Mean 3.118364 1% 164.8 
T:Mean=O 65.54816 Pr>JTI 0.0001 Range 74.6 
Num ·= O 33 Num > O 33 03-01 19.3 
M(Sign) 16.5 Pr>=JMI 0.0001 Mode 164.8 
Sgn Rank 280.5 Pr>=ISI 0 . 0001 
W:Normal 0.975659 Pr<.W 0.7088 

Extremes 

Lowest Obs Highest Obs 
164.8 ( 23) 228.8( 28) 
168 . 9 ( 1) 230.2( 8) 
173 . 6( 2) 232.2( 21) 
184 . 7( 13) 234.5( 10) 
185.5( 27) 239.4( 20) 
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