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ABSTRACT 

Restriction fragment length polymorphism (RFLP) and microsatellite molecular markers 
were used to map two soybean nodulation genes, enod2 and leghemoglobin (lbc3). In 
addition, a high annealing temperature DNA amplification fingerprinting (DAF) method 
was developed for DNA fingerprinting of soybean cyst nematode (SCN), Mychorrizae, 
aphid, centipedegrass, and bermudagrass samples. 

Recombinant inbred lines (RILs) as well as an F2 segregating population of soybean 
Glycine max (L. Merr) facilitated the mapping of two expressed sequence tags (EST) 
involved in early nodulation and subsequent nitrogen fixation in soybean. For the early 
nodulin gene enod2, the parents of RILs, Minsoy and Noirl, showed a polymorphism (5.5 
vs. 5.9 kb) after EcoRV digestion. RFLP patterns of 42 RILs were analyzed using the 
MAPMAKER program linking enod2 to the seed coat color gene, /, with a distance of 11.1 
cM on linkage group U3 of RIL map. Enod2 and/ are located close to Rhg4, a soybean 
cyst nematode (SCN) resistance gene, and a locus for seed coat hardness. The molecular 
marker pAl 10 and seed coat color were used to integrate enod2 on an F2 segregating 
population (72 plants) generated from a cross between cultivar Bragg and G. soja (Sieb and 
Zucc), PI468.397. Enod2 was mapped in the same order as on the RIL map but 18.5 cM 
from the I locus. A microsatellite from the 5' region of enod2B was mapped in the same 
position, demonstrating that enod2B and not enod2A was mapped. An RFLP for lbc3 
(leghemoglobin) segregated independently from enod2 and the nts-1 supemodulating locus 
suggesting that in soybean, symbiotically significant loci (including rjl, Rj2, and rj6) are 
not clustered. 

To overcome potential problems caused by mismatch priming and secondary DNA 
structure and taking advantage of high primer-template ratios used in DAF reactions, 
annealing temperature of 55°C were used with single short arbitrary oligonucleotide as well 
as mini-hairpin primers to provide high resolution DNA profiles of soybean. Initially, high 
annealing temperatures for three arbitrary octamer primers in polymerase chain reaction 
(PCR) were tested for DNA fingerprinting of two soybean cultivars, Minsoy and Noirl. 
Fifteen PCR programs differing in levels of annealing temperature (47, 55, and 60°C), 
denaturation, annealing, and extension time (30, 60, and 120 second), and presence/ 
absence of extension step (+/- 72°C) were tested. The number of bands (amplification 
products) ranged from 7 (Program 10) to 51 (Program 3). The average ramping 

V 



temperature for heating and cooling were calculated 1.42 and 1.27 sec!°C, respectively. 
Intensity of the silver-stained bands in a 10% polyacrylamide gel was high for the most 
PCR programs. Program 15, DAF-15, (95°C/30 sec, 55°C/120, and 72°C/30 sec) 
generated a complex DNA fingerprinting profiles for tested primers in Minsoy and Noirl. 
These profiles contained an average of 42 sharp and highly intense bands using both 
octamer primers 8-4 and 8-8 for DNA amplification. Using high annealing temperature 
increased stringency of primer-template annealing, avoided potential mismatching and 
hybrid molecule formation, and consequently improved reproducibility of DNA 
fingerprinting. 

Newly-developed high annealing temperature DAF was used successfully and detected 
markers linked to the enod2 gene and analyzed DNA fingerprinting of soybean cyst 
nematode (SCN), Mycorrhizae, aphid, centipedegrass, and bermudagrass samples. RFLP 
patterns of 41 homozygous F2 individuals for enod2 gene were set into two bulks of 26 
and 15 with RFLP patterns identical to their parental patterns Bragg and G. soja, 
respectively. Screening of the bulks B and S with 31 primers resulted in detection of four 
polymorphic bands using primers HpC29 and HpC30 and DAF-15 program. Due to low 
number of polymorphic bands in the B and S bulks, sub-pools were generated and 
screened. B 1 and S 1 sub-pools were tested with total 196 primers of which 32 were used 
for screening of sub-pools B3 versus S2. Primers Hp30, HpC22 and HpC30 generated 1, 
1 and 4 polymorphic markers, respectively, in the B3 vs. S2. The major screening was 
focused on the B 1 versus S 1 sub-pools which resulted in screening of 196 mini-hairpin 
and unstructured primers of which a set of 9 primers detected 20 polymorphic bands. 
Primer HpD25 generated polymorphic bands with 920B 1, 320B 1, 220S 1, and 185B 1 base 
pairs which were reliable and reproducible. These bands are promising bands for further 
analysis such as cloning and generating SCAR markers in the region of genome containing 
the enod2 gene. 

Key Words: nitrogen fixation, RFLP, recombinant inbred lines, integration mapping, 
annealing temperature, PCR, DNA fingerprinting, arbitrary primers, soybean. 

Abbreviations: RFLP, restriction fragment length polymorphism; SCN, soybean cyst 
nematode; RILs, recombinant inbred lines; CHS, chalcone synthase; Q1L, quantitative trait 
locus; lbc3, leghemoglobin gene; DAF, DNA amplification fingerprinting; PCR, 
polymerase chain reaction 
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Part 1 

Introduction to Legume-Bacterium Symbiosis 
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Nitrogen (N) is one of the limiting factor in plant growth and development affecting crop 
production, food, and ultimately the fate of the human population and societies. 
Traditionally, agronomically significant N come from soil fertility (mineralization, 
deposits, etc.), organic manure, rain water (especially after thunderstorms), fertilizer 
application and symbioses. Atmospheric nitrogen can be converted to ammonia through 
the energy-demanding Haber-Bosch process for nitrogen fertilizer production. Nitrogen 
can also be fixed naturally through either non-biological (like photochemical) reactions 
and lightening or biological (like microbial nitrogenase reduction) mechanisms. 
Biological nitrogen fixation is carried out by free living, associated, or symbiotic 
diazotrophic eubacteria. The association of plants and a variety of nitrogen-fixing 
organisms is responsible for reducing 120 million tons of atmospheric N2 to ammonia 
each year. Symbiotic N2 fixation is the consequence of plant-microbe interactions 
leading to formation of specialized plant organ, the nodule, either in roots or stems. 

Nodule formation occurs in plants of the family Leguminoseae interacting symbiotically 
with nodulating bacteria of the genera Rhizobium, Bradyrhizobium, Azorhizobium, and 
Sinorhizobium. Other than legume plants, there is a symbiotic relationship between 
Rhizobium and the plant genus Parasponia (Trinick, 1979), as well as between 
filamentous Frankia (Baker and Mullin, 1992; Simonet et al., 1990) and members of the 
genera A/nus, Casuarina, and Elaeagnus (Mullin et al., 1990). 

Legume-bacterium symbiosis provides a model to investigate the mechanisms of 
interaction between the plant and the bacteria. In this symbiosis, atmospheric nitrogen is 
reduced by the bacterial nitrogenase enzyme to ammonia, a nitrogen source for the plant, 
while the plant provides carbon compound in the form of sugars and carboxylic acids 
such as malate and succinate for the bacteria (Mellor and Werner, 1990). Success of 
symbiosis depends on compatibility of the bacterium and the plant and development of 
several steps involving preinfection, infection and nodule initiation, and nodule function 
(Rolfe and Gresshoff, 1988). 

The Preinfection Stage 

The onset of plant-bacteria interactions begins with exudation of plant flavonoid-type 
compounds (e.g., luteolin, genestein, naringenin, and daidzein) in the rhizosphere as 
chemoattractants (Dixon and Lamb, 1990; Sutherland et al., 1989; Halverston and 
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Stacey, 1986; Lynn and Chang, 1990; Peters and Verma, 1990) inducing bacterial 
nodulation (nod) genes (Freiberg et al., 1997; Orgambide et al., 1996; Philip-
Hollingsworth et al., 1995; Caetano-Anolles et al., 1988; Zaat et al., 1988, Kosslak et 
al., 1987). After chemotaxis, rhizobia attach to root hairs through two steps (Dazzo et 
al. 1984; Smit et al., 1987). It was believed that plant lectins bind to bacterial surface 
polysaccharides facilitating the attachment (Smit et al., 1987; Hirsch, 1992). However, 
recent studies indicated that this was not the case and flavonoids such as daidzein, 
coumestrol, and naringenin were dominant compounds in exudates of infected common 
bean (Bolanos-Vasquez and Werner, 1997). the concentration of these flavonoids were 
markedly enhanced after inoculation by bacteria. Attachment happens either via cellulose 
fibrils or fimbriae (Vesper and Bauer, 1986). Entry of bacteria occurs at the growing 
root hair tip because the cell wall is thinner and expanding. Root hair deformation and 
curling occur within 6-18 hour in response to bacterial nod gene products (Kondorosi, 
1992; Hollingsworth et al., 1990; Lerouge, et al., 1990; Schmidt et al., 1988). 

Bacterial nod genes in fast-growing (Rhizobium spp.) and in slow-growing 
(Bradyrhizobium spp) rhizobia are located on a large plasmid, sym plasmid, and 
chromosome, respectively. Flavonoids, isoflavonoids, and chalcones are the inducers of 
nod genes in fast-growing species, while in slow-growing species, nod genes are 
induced by isoflavones (Sanjuan et al., 1994: Stacey et al., 1993; Kondorosi, 1992; 
Gyorgypal et al., 1991; Sadowsky et al., 1991; Peters and Verma, 1990). 

Previously, bacterial nodulation genes (nod, no/, and noe) were characterized into two 
groups: (a) the "common" nod.ABC/ J genes which were thought to be essential for 
nodulation to occur, and (b) host specific genes (hsn) which were found only in specific 
strains determining the host range of bacterium. Mutations in the nod.ABC completely 
arrested nodulation including root hair curling, cortical cell division, and infection 
threads formation (Long, 1989). In contrast, mutation in hsn genes, such as the nod/ 
and nod.I show only a slight delay or lessening in nodulation (Kondorosi et al., 1985). 

The "common" nod genes have been detected in all rhizobia and are functionally 
comparable from one Rhizobiwn species to another (see Kondorosi, 1991; Fisher and 
Long, 1992). The regulatory nod.D gene product found in all bacteria acts together with 
the flavonoids inducing other nodulation genes (Franssen et al., 1992; Long 1989). 
Host specificity is controlled by plant flavonoids, bacterial lipo-chitin oligosaccharides, 
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LCOs (the product of common and hsn/nod genes), and possibly plant lectins (Spaink et 
al., 1995; Bloemberg et al., 1995; Diaz et al., 1995). The eventual signal for nodule 
initiation is the result of an interplay of "common" and host-specific nodulation genes 
(Stacey, 1995) producing glycolipid molecules which initiate cell division and infection 
cascades in the host plant by yet unexplained mechanisms. These signal molecules are 
commonly called Nod factors (Figure 1-1) involved in root hair deformation (Had), hair 
curling (Hae), and onset of cortical cell division (Ced) which establish nodule initiation 
(Noi). 

Recently, it has been shown that NodC is responsible for biosynthesis of rhizobial 
lipochitin oligosaccharides, LCOs, (Kamst et al., 1997). Different Rhizobium species 
produce different length of the LCO which can influence their activities on host plant. 
This indicates that NodC contributes to the host specificity. Furthermore, Nod.A proteins 
of R. meliloti and R. tropici determine the N-acylation of nod factors by different fatty 
acids (Debelle et al., 1996). This allelic variation of common nodA gene is an indication 
of host range specificity. In addition, NodB is a chitooligosaccharide deacetylase which 
is required for infection and nodulation of alfalfa (Roche et al., 1996). The recent 
studies suggest that variation in nodABC is a genetic mechanism in signaling variation 
which controls the host range. 

The Nod factors was first characterized in Rhizobium meliloti (Lerouge et al., 1990). 
The structure of this molecule consists of a chitin-like glucosamine backbone which is 
either acylated or sulfated. Host specificity of the Nod factors in different rhizobia is 
controlled by the number of glucosamine residues differing in the length and extent of 
the saturation of fatty acid, acylation and sulfation of side chain. For example, Nod 
factor for Bradyrhizobiumjaponieum, a soybean symbiont, contains a pentaglucosamine 
backbone, but not sulfated, and a 2-O-methyl fucose on the reducing end (Stacey et al., 
1995). The Nod factor molecule is controlled by nodABC and other specific nod genes 
(Spaink, 1992; Hirsch, 1992). It was postulated that the action of nod factor is involved 
in association with a lectin receptor (Lugtenberg et al., 1991). The specificity of the 
action depends on the structure of the individual Nod factor including length and 
saturation of the acyl side chain and the structure of the side groups. In addition, other 
rhizobial molecules which are important in the nodulation process are 
lipooligosaccharides (LPS), exopolysaccharides (EPS), and capsular polysaccharides 
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(CPS). These cell surface molecules are involved in the bacteria-legume signaling and in 
the infection process. 

The Infection and Nodule Formation Stage 

After root hair curling, rhizobia enter the root hair through an infection thread. 
Successful formation of infection thread appears to require an involvement of 
Rhizobium nod, ndv, lps, and exo genes (Denarie and Cullimore, 1993). The exo and 
lps gene products are involved in biosynthesis of exopolysaccharides (EPS) and 
lipopolysaccharides (LPS), respectively (Finan et al., 1985; Dylan et al., 1986). 
Bacteria ndv mutants exhibit decreased mobility and increased phage sensitivity (Dylan 
et al., 1986). Rhizobial acidic EPS is essential for N2 fixation in indeterminate nodules, 
e.g., alfalfa or pea, but is not important in determinate nodules, e.g., soybean, 
Phaseolus, or Lotus. (Borthak:ur et al., 1986). LPS synthesis also affects nodule 
development except in R. meli/oti deficient in LPS which induce N2-fixing nodules on 
alfalfa and white clover (Blauenfeldt et al., 1994; Caetano-Anolles and Gresshoff 1992; 
Clover et al., 1989). Furthermore, lps mutants of R. leguminosarum bv. viciae induce 
nodules on pea or vetch although they are Fix- (non-nitrogen fixing) because the bacteria 
are not released from the infection threads (Brewin et al., 1990; Priefer, 1989). Different 
responses to exo and lps in determinate and indeterminate nodules have not been 
explained yet. 

The host plant but not the rhizobial strain is responsible for the type and morphology of 
the nodule. In general, the nodules contain infected, uninfected cells , parenchyma, 
endodermis, and vascular bundles (Gresshoff and Delves, 1986). Indeterminate and 
young determinate nodules maintain a zone of cell division. 

After formation of the nodule primordium, a persistent nodule meristem is initiated in 
indeterminate, e.g., pea, clover, alfalfa, or vetch, unlike determinate, e.g., soybean, 
mungbean, or common bean, nodules (Figure 1-2). A primordium is formed from cells 
of the root outer cortex and inner cortex in determinate and indeterminate nodule species, 
respectively. Infection threads are broader and penetrate a longer distance in 
indeterminate (elongate) vs. determinate (spherical) nodules. Infection threads in both 
types of nodules grow towards the nodule primordium and bacteria are released into the 
plant cells, enclosed by a plant membrane called peribacteroid or symbiosome membrane 
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(Roth et al., 1988). The rhizobia Nod factor, NodRm-1 and NodRlv, can induce 
cortical cell division leading to formation of nodule on alfalfa seedlings (Truchet et al., 
1991). It seems unlikely that a large and complex molecule like the sulphated glycolipid 
NodRm-1 can diffuse across plant membrane. In addition, formation of spontaneous 
nodules in alfalfa (Truchet et al., 1989; Joshi et al., 1991) suggests that an independent 
signal other than Nod factor is responsible for cortical cell division and nodule 
formation. Nodulation in the absence of Rhizobium (Nar) phenotype is dominant, 
heritable, and caused by an alfalfa gene (Caetano-Anolles et al., 1992). The gene 
product could be involved in a signal transduction started with perception of the Nod 
factor in nodule development. The morphogenic signal in the infected roots is 
transduced from the root hair to the cortical cells leading to cell division. This signal may 
involve a change in the membrane potential and Ca2+ levels. After addition of Nod 
factor, root hair membrane depolarize rapidly (Ehrhardt et al., 1992), vacuoles change 
their shape, and cytoskeletal rearrangements occur within root hair cells (Allen et al., 
1991). Cortical cell division and root hair curling in soybean roots is also induced by 
purified common nod factor at nM concentration or lower level (Stacey et al., 1995). 

Plant hormones as an endogenous growth regulators can also function as signals for 
morphogenesis. Application of plant hormones such as cytokinin induced cortical cell 
division in soybean, cowpea, and alfalfa (Bauer et al., 1985) whether these are 
specially involved in nodule initiation is not clear. Cytokinin is also responsible for 
formation of bacteria-free nodules on alfalfa roots (Long and Cooper, 1988). Bacteria 
can also produce auxins, gibberellins, and cytokinins. Addition of flavonoids stimulates 
IAA production in R. meliloti (Prinsen et al., 1991). Treatment with nod-gene inducing 
flavonoids produce different cytokinin in R. meliloti suggesting that cytokinin 
production may be NodD regulated while nodA, B, C, or D mutants in B. japonicum 
still produce cytokinins (Taller and Sturtevant, 1991 ). Application of auxin transport 
inhibitors on the alfalfa roots led to endogenous hormone imbalance causing cell 
divisions, formation of psuedonodules, and expression of early nodulins (Hirsch et al., 
1989). 

Nodule Function and N2 Fixation 

In indeterminate nodules, the nodule meristem results in central nodule tissues 
consisting of infected and uninfected cells, peripheral vascular bundles, and nodule 
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parenchyma (Hirsch, 1992).ln determinate nodules, the first cell division occurs in the 
hypodermal region of the root and later in the pericycle and inner cortex. Eventually, 
these dividing tissues come together forming the central nodule tissues (Rolfe and 
Gresshoff, 1988). Rhizobium and Bradyrhizobium will differentiate into bacteroids after 
release into infected host cells. Fixation of atmospheric nitrogen begins in the bacteroid 
state by nitrogenase which may represent up to ten percent of the soluble bacteroid 
protein (Werner, 1992). 

Nitrogenase is a two component-metalloenzyme encoded by rhizobial nif genes 
(niftl,D,K). Both components, an iron-containing (Fe) protein and a molybdenum-iron 
(MoFe) protein, are required for the nitrogen reduction. Substrate binding sites and 
reduction resides in the MoFe domain while an ATP binding site is in the Fe domain 
(Dean and Jacobsen, 1992). After reduction of nitrogen, ammonium (Nf4) is exported 
through bacteroid and peribacteroid membranes into the host cell cytoplasm. Then, the 
ammonium is biosynthesized by enzymes such as, glutamine synthetase, glutamate 
synthase, aspartate aminotransferase, and asparagine synthetase (Werner, 1992) to 
provide the "building blocks" for common metabolites such as amino acids, nucleotides, 
vitamins, and secondary products. 

Nitrate Inhibition of Nodulation 

Although the number of nodules per plant and nodule morphology is genetically 
controlled (Fujita et al, 1991), the root nodule symbiosis is inhibited by high 
concentration of nitrate in the soil (see Carroll and Mathews, 1990). This suppresses 
accumulation of rhizobia on root hairs, root hair curling, infection thread formation, and 
nodule development (Streeter, 1988). In soybean, similar effects on root hair 
deformation, bacterial attachment, and infection thread formation have been 
demonstrated (Carroll and Mathews, 1990). Application of 4 mM nitrate in the soil 
caused reduction in the nodule mass per plant and in bacterial nitrogenase activity as well 
(Carroll et al., 1985a). Nitrate inhibition can be explained with nitrite toxicity, 
carbohydrate, and oxygen deprivation in the nodule. Soybean mutants capable of 
nodulation in the presence of high nitrate concentration suggests a link between the 
deregulation of control over nodule number and the nitrate inhibition of nodulation 
(Carroll et al., 1985a and b: Carroll and Mathews, 1990). 
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Autoregulation of Nodulation 

In general, plants control and optimize the formation of nodules through a single and 
responsive mechanism. This suppresses nodule formation in younger parts of the root 
where once a number of nodules has formed (see Gresshoff, 1993; Gresshoff et al., 
1989; Caetano-Anolles and Bauer, 1988; Carroll et al., 1985; Olsson et al., 1989). 
Removal of nodule from both soybean (Caetano-Anolles and Gresshoff, 1991c) and 
alfalfa (Caetano-Anolles and Gresshoff, 1991 b, c) showed different responses in both 
time and space. In soybean, new nodules emerged in the region of original nodulation 
on the primary root where the original bacterial inoculum was applied. This indicates 
that soybeans arrest some nodule primordia during early nodule ontogeny. In alfalfa, in 
contrast to soybean, after nodule excision, nodules emerged in young root tip regions 
where it was expected to be the site of new nodule formation. These results were 
confirmed by histological studies which showed that soybean roots harbored abundant 
early nodulation stages (Mathews et al, 1989; Gerahty et al., 1992) compared to alfalfa 
with only a small number of immature nodule primordia (Caetano-Anolles and 
Gresshoff, 1991 b, c ). 

Autoregulation blocks nodule formation in a soybean cultivar, Bragg, but not in its 
supemodulating mutant, nts (Carroll and Mathews, 1990). It appears that the number of 
infection events in the parental and the mutant is the same but the nodule formation is 
blocked in the parental type while deregulated in the mutant (Carroll and Mathews, 
1990). Supemodulation was suppressed when shoot extracts from wild type injected 
into mutant nts (Gresshoff et al., 1988). This regulatory suppressor in wild type was 
shown to be systemic by using split root system study (Olsson, et al., 1989) suggesting 
that the autoregulation inhibitor in the wild type regulates nodule formation and growth. 

Legume Nodulation Mutants 

To study the nodule symbiosis required genetic analysis of the bacteria and the plant. 
Using transposon mutagenesis and gene isolation a set of nodulation and nitrogen 
fixation genes in bacteria was characterized. The function of some of these genes 
involved in the synthesis of the nod factors in Rhizobium meliloti has been defined 
(Verma, 1992; Truchet et al., 1991; Lerouge et al., 1990). 



Several symbiotic legume mutants have been developed that are either supernodulating 
or non-nodulating (see Caetano-Anolles and Gresshoff, 1991). In soybean, nodulation 
mutants were developed by using ethyl methane sulfonate (EMS) chemical mutagenesis 
(Carroll et al., 1985a). The non-nodulating and supernodulating mutants are controlled 
by single Mendelian recessive genes (Caetano-Anolles and Gresshoff, 1991). The non-
nodulating mutants, nod49, nod772, (Carroll et al., 1986) and rjl (Williams and Lynch, 
1954) are in the same complementation group while the non-nodulating mutant nodl39 
formed a new class (Carroll et al., 1986). In all non-nodulating mutants root hair 
deformation did not occur and only few subepidermal cell divisions with no infection 
threads (pseudoinfection) were observed. In nod] 39 even pseudoinfections did not 
occur, suggesting that the block in nodulation for nod49, nod772, and rjl is at a later 
stage than in nod] 39. The roots genotype of mutants nod49 and nod] 39 controlled the 
shoot genotype by using grafting experiment of parental and mutant root and shoot 
stocks exchange (Mathews et al., 1992; Delves et al., 1986). 

The supernodulating mutant can form three to forty times more nodules than the wild 
type and is nitrate tolerant (Carroll et al., 1985a, b). It also forms more lateral roots than 
the wild type due to possibly hormone imbalance in the mutant. Both the mutants and 
the wild type grow at similar rate when there is no inoculation and nitrate is used as the 
nitrogen source (Carroll and Mathews, 1990). The nts mutant showed supernodulating 
phenotype when its shoots were grafted on the parental, Bragg, root stocks while 
parental shoots on the mutant rootstocks gave normal nodulation phenotype (Delves et 
al., 1987a, b). In contrast to soybean, pea autoregulation of nodule number is controlled 
by the root in supernodulating nod3 (Carroll and Mathews, 1990),.but also the shoot 
(see Sagan and Gresshoff, 1996). 

Other supernodulating mutants have been developed using the same procedure as in 
soybean by Carroll et al in 1985. Supernodulating mutant in bean (Phaseolus vulgaris) 
shared most properties with the soybean mutant (Buttery and Park, 1989; Park and 
Buttery, 1997). Other soybean supernodulating mutants were developed by chemical 
mutagenesis in Elgin cultivar (Buzzell et al., 1990) and Enrei cultivar (Akao and 
Kouchi, 1992) as well as Williams (Gremaud et al., 1989). EMS mutagenesis on faba 
bean seed induced a supernodulating phenotype having 3 to 5 times more nodules than 
the wild type (Due, 1995). A hypernodulation phenotype was recovered from 
mutagenized M2 population of Lotus japonicus, a legume model, and designated as 
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Nod++ (Szczyglowski et. al., 1998). In pea, nodulation phenotype of plants supplied 
with N14+ was similar to that reported for supernodulating mutants (Waterer et al., 
1992). All these mutants shows Mendelian single locus inheritance for nodulation. 

The Nodulin Concept 

'Nodulin genes' was first defined as nodule-specific genes expressed during nodule 
development (Legocki and Verma, 1979, 1980) but molecular evidence has shown the 
expression of nodulins in other plant organs such as the flower (Nap and Bisseling, 
1990). Thus the nodulin genes define as plant genes which are differentially and 
temporally expressed or enhanced during nodule development and nitrogen fixation 
process (Figure 1-3). Almost 200 nodulin genes have been identified from different 
legumes so far. 

Nodulin genes that are expressed in the early stage of nodule development, preinfection, 
infection, and cortical cell division, are named early nodulin (ENOD) genes. The 
majority of nodulin genes expressed around the onset of nitrogen fixation are late 
nodulin (NOD) genes which are involved in specific biochemical pathways (Verma, 
1992). 

A set of legume nodulin cDNA clones has been isolated from soybean, Glycine max, 
(Franssen et al., 1987; Kouchi et al., 1990; Delauney and Verma, 1988; Nirunsuksiri 
and Sengupta-Gopalan, 1990; Sandal et al., 1987; Thummler and Verma, 1987; Fortin 
et al., 1987; Fuller et al., 1983; Katinakis and Verma, 1985; Lee et al. 1983; Legocki 
and Verma, 1979 and 1980), pea, Pisum sativum, (Scheres et al., 1990; Nap, 1988; 
Tingey et al., 1987; Govers et al., 1986) clover, vetch, Vicia sativa (Moreman et al., 
1987) faba bean, Viciafaba, (Perlick et al., 1996 and 1997; Kilster et al. 1994), alfalfa, 
Medicago sativa, (Dickstein et al., 1988), lupin, Lupinus luteus, ( Konieczny et al., 
1988), Medicago truncatula (Wilson et al., 1994), Sesbania rostrata (Goormachtig et al., 
1995; Strittmatter et al., 1989) winged bean (Manen et al., 1991), French bean, 
Phaseolus vulgaris, (Lara et al., 1983) and Lotus japonicus. In general, expression of 
early nodulin genes has been used to study the mode of action of Nod factors and the 
early signal exchange between the plant and bacteria. Soybean early nodulin GsENOD2, 
one of the most studied nodulin, has been characterized in detail (Franssen et al., 1987, 
Gloudemans et al., 1987). This early nodulin function is not related to the infection 
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process because its expression occurs in soybean pseudonodules which lack intracellular 
bacteria and infection threads (Franssen et al., 1987). Different lipo-chitin 
oligosaccharide (LCO) molecules from soybean symbionts were tested for soybean 
ENOD2 mRNA expression. A cooperative action of at least two LCO molecules, an 
active and a non-specific LCO, were found to be sufficient for induction (Minami et al., 
1996). Furthermore, alfalfa early nodulin MsENOD2 was expressed in the R. meliloti 
e:xo mutant induced nodules which devoid of infection threads (Dickstein et al., 1988). 
Therefore, early nodulin ENOD2 function is not associated with infection process but it 
is involved in nodule development and organogenesis. ENOD2 transcripts of soybean 
and pea accumulate in the nodule parenchyma as well as in cells surrounding the 
vascular bundle connecting the nodule with the root central cylinder (van de Wiel et al., 
1990). In the Part 2 of this dissertation, ENOD2 will be discussed in detail. 

In contrast to the enod2 gene, other early nodulin gene expression studies have shown 
that they might play a role in infection process. The pea early nodulin PsENOD5 gene 
encoding a proline-rich protein (van de Wiel et al., 1990) and the PsENOD7 gene are 
expressed in infected cells during nodule maturation (Kozik et al., 1996; Franssen et al., 
1992). Another pea early nodulin PsENOD5 gene is expressed in the infected cells, and 
is also detectable at low level in the invasion zone (van de Wiel et al., 1990). The early 
nodulin VfENOD-GRP3 transcript was detected predominantly in the interzone 11-111 
region of faba bean root nodule (Kuster et al., 1995). 

The early ENOD40 mRNA accumulates in the nodule pericycle of the vascular bundle at 
40 hours after inoculation with either purified or chemically synthesized 
lipochitooligosaccharide (LCO) Nod factors (Minami et al., 1996). Expression of 
French bean ENOD40 is comparable with soybean ENOD40 and occurs in the root 
pericycle, nodule perimordia, pericycle of vascular bundles, and uninfected cells of 
mature nodules (Papadopoulou et al., 1996). First expression of the early nodulin 
GmENOD55 occurs after release of bacteria in plant cells and is restricted to the infected 
cell type (Blank et al. , 1993). 

Whether nodulins are essential for nodulation and function is still an open question. 
Many may be lateral responses, rather than causes. For example, in M . sativa, 
MsENOD12 transcript was localized in the epidermis of infected roots (Journet et al., 
1994). Similarly, Transcription of M. truncatula ENOD12 occurs 3 to 6 hours after 
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inoculation in a zone of differentiating root epidermal cells which is located close to the 
growing root tip ahead of the infection zone (Pichon et al., 1992). Genetic analysis of 
this gene in F 1 and F2 revealed a null allele in several off springs which were similar to 
wild-type parents in viability, nodule development, nodule structure, and nitrogen 
fixation efficiency suggesting that MsENOD12 is not required for symbiotic nitrogen 
fixation (Csanadi et al., 1994). 

Those nodulins with known functions are mostly late nodulins which participate in 
nodule metabolism. An exception regarding known function is the early nodulin 
peroxidase in Medicago truncatula, Mtripl, which is expressed in the pericycle of 
uninoculated roots (Cook et al., 1995). In soybean, many late nodulin genes such as 
Ngm-20, Ngm-21, Ngm-23, Ngm-24, Ngm-26, Ngm-44, Ngm-56, Ngm-93, sucrose 
synthase (Ngm-100), uricase (Ngm-35), and leghemoglobin have been characterized. 

Function of the nitrogen-fixing nodule depends on the expression of the late nodulins 
involved in nitrogen and carbon nodule metabolisms. The expression of leghemoglobin 
(Lb) facilitate oxygen diffusion in the host cell and is essential for effective symbiosis 
(Appleby, 1984; Wittenberg and Wittenberg, 1990). leghemoglobin is suggested to be a 
symbiotic molecule in the way that the globin moiety is encoded be the host plant and the 
heme moiety is made by the bacteria (Lee and Verma, 1984). Supporting this idea, a 
Rhizobium mutant defective in heme biosynthesis resulted in non-functional 
leghemoglobin (Nadler, 1981). In contrast, a similar mutant in Bradyrhizobium 
japonicum induced effective nodules in soybean (Guerinot and Chelm, 1985) suggesting 

that some plants can synthesize leghemoglobin at low level to maintain nodule function. 
Recent studies have shown that the heme precursor was synthesized in the plant cells 
while the subsequent heme biosynthesis steps are completed by the bacteria (Sangwan 
and O'Brian, 1991). This suggests that heme biosynthesis is spatially separated between 
the two partners. 

Several studies have shown that leghemoglobin is located in the cytoplasm of the 
nodule's infected cells, but not inside peribacteroid membrane compartment (Robertson 
et al., 1984; Nguyen et al., 1985). Only low level of leghemoglobin may be expressed 
in the uninfected cells of soybean (VandenBosch and Newcomb, 1988) although other 
data tend not to support this finding (Kouchi et al., 1990). Expression ofleghemoglobin 
in infected cells maintains the oxygen concentration at a level that is not toxic to the 
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bacterial nitrogenase inside the bacteroid. Thus, leghemoglobin is considered as a 
defense molecule against nitrogenase toxicity (Verma et al., 1990). At least four 
leghemoglobin genes are expressed at slightly different times of nodule formation 
indicating developmental control (Jensen et al., 1988). 

Uricase, a key enzyme in the ureide biosynthetic pathway for assimilation of ammonia, 
is the second most abundant late nodulin in the cytoplasm of root nodules. Soybean 
nodule uricase with 35 kDa molecular weight, Ngm-35, is encoded by a gene totally 
different from those for root and leaf uricase. Using a cDNA clone as probes in 
Southern hybridizations, several fragments homologous to uricase were identified in 
soybean suggesting the existence of a small number of genes (Nguyen et al., 1985). The 
soybean n-uricase is localized in the peroxisomes of the uninfected cells (Bergmann et 
al., 1983). 

Another late nodulin with known function is glutamine synthetase (GS) which is 
involved in nitrogen assimilation. Multiple glutamine synthetase isoenzymes exist in 
legume plants suggesting the presence of multigene family expression (Dunn et al., 
1988; Hirel et al., 1987; Tingey et al., 1987). In French Bean, Phaseolus vulgaris, 
different subunits of glutamine synthetase ranging from 41 to 45 kDa has been identified 
(Bennett et al., 1989). Two types of glutamine synthetase exist in the root nodules of 
which one is expressed as a nodule-specific (GS-n) and the other whose expression is 
enhanced significantly during symbiosis (Forde and Cullimore, 1989). Both types of the 
glutamine synthetase isoforms expression are increased before bacterial nitrogenase 
activity (Dunn et al., 1988; Padilla et al., 1987). 

Sucrose synthase (SS), a late nodulin, is involved in the flow of carbon to nodule and 
bacteroid metabolism. A soybean nodule-specific cDNA clone encoding the sucrose 
synthase subunit with 100 kD molecular weight has been isolated and characterized 
(Morell and Copeland, 1985). Based on partial sequence analysis, there is 73% 
homology at amino acid level between soybean nodule and maize sucrose synthase 
(Thummler and Verma, 1987). Soybean nodule sucrose synthase is inactivated after 
incubation with free heme suggesting that free heme regulates the activity of the sucrose 
synthase and the metabolism of the carbon (Thummler and Verma, 1987). 
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It was shown that the expression of some late nodulins was regulated in different ways 
to maintain a balance of metabolites. For example, nodule sucrose synthase activity 
increased rapidly during nodule development and decreased as the leghemoglobin 
degradation occurred during senescence (Thummler and Verma, 1987). The uricase and 
sucrose synthase mRNA levels are increased 5-6 and 4- fold, respectively, when 
soybean callus was exposed to 4% oxygen concentration. In contrast, the 
leghemoglobin c3, nodulin-22, and nodulin-44 mRNAs were not expressed in response 
to neither atmospheric nor low oxygen levels (Xue et al., 1991). Expression of early N-
75 and N-38 nodulins occurred within 7 days while late leghemoglobin and N-24 were 
expressed by 10 days after inoculation (Kouchi et al., 1990). The late nodulin GmN-56 
gene, expressed at the onset of nitrogen fixation together with leghemoglobin and other 
late nodulin, encodes a protein homologous to isopropylmalate synthase and homocitrate 
synthase (Kouchi and Hata, 1995). 

Some of the nodulin genes are associated with peribacteroid (a symbiosome) membrane 
(PBM) where fixed nitrogen (ammonia) is transported into host cell cytoplasm. The 
soybean late nodulins Ngm-24, Ngm-25, Ngm-26, highly expressed and members of a 
gene family, are not immunoprecipitated with antibody to the soluble fraction of nodules 
suggesting that these proteins are associated with membrane (Richter et al. 1991). 
Nodulin 26 is an integral symbiosome and ion channel protein which transports both 
cations and anions (Weaver et al., 1994). This nodulin shares high sequence homology 
with several proteins characterized in other plants and species suggesting a similar role 
and common ancestor for this nodulin. Recently, it was found that water crossed the 
soybean NOD 26 of root nodule symbiosome membrane with a single channel pathway, 
while larger solutes such as formamide and glycerol appeared to cross the membrane by 
a pathway different from the one for water (Rivers et al., 1997). 

Expression of the nodulin is induced under stimuli other than bacterial Nod factors. The 
early nodulin gene SrENOD2 from Sesbania rostrata was inducable after cytokinin 
application (Dehio and de Bruijn, 1992). Upon application of auxin transport inhibitor, 
the early nodulin ENOD2 was expressed in alfalfa nodules (Hirsch et al., 1989). Nodule 
metabolites can also affect expression of some nodulins involved in nodule metabolism. 
Expression of soybean glutamine synthetase localized in the cytoplasm of the infected 
cells of nodule is increased after external application of ammonia (Hirel et al., 1987). 
Activity of glutamine synthetase was elevated after ammonia application on the Trifolium 
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roots (Reynolds et al., 1990). In contrast, Phaseo/us vu/garis glutamine synthetase gene 
expression was not responsive to externally supplied ammonia (Cock et al., 1990). It 
appears that glutamine synthetase expression is regulated in many ways depending on 
different isoforms, legume species, and physiological condition in legume plants. 

The Genetics of Nodulins 

Study of nodulin gene promoters in transgenic legumes has identified a number of cis-
regulatory elements essential for nodule specific expression. Significant DNA elements 
were identified in soybean enod2B gene promoter (Lauridsen et al., 1993). Activity of 
GUS under enod2B promoter was found in both determinate Lotus and indeterminate 
Trifolium nodules. A positive and a qualitative element were identified by deletion and 
hybrid promoter analysis in L. corniculus (Figure 1-4). 

The soybean leghemoglobin, lbc3, promoter studied in transgenic Lotus corniculatus 
plants contains a strong positive element (SPE), a weak positive element (WPE), an 
organ specific element (OSE), and a negative element (Figure 1-5). Two conserved 
motifs, CTCTT and AAAGAT, within the organ-specific-element are important for its 
function (Ramlov et al., 1993). The function of cis-elements was further studied by their 
interaction with transcription factors. A nodule-specific nuclear protein, NA T2, was 
identified that interacted with two AT-rich DNA sequences in the weak positive element 
(Jensen et al., 1988). In addition, the NA T2 binding site fused to a -139 lbc3 promoter 
could activate the construct (Laursen et al., 1994). The A-T rich DNA elements with the 
ability to bind to trans-acting factors have been identified in the soybean GmN-23 and 
French bean glutamine synthetase, gln-g, (Forde et al., 1990; Jacobsen et al., 1990). 
These trans-acting factors were found in nodule extracts, but also in roots and leaves. 
Biochemical and DNA analysis of some of these factors showed functional relationships 
with human nuclear proteins, HMO 1, (Jacobsen et al., 1990) suggesting that chromatin 
structure might be an important controlling factor for organ-specific expression. 
Furthermore, a rhizobial trans-acting factor has been identified that interacts with DNA 
sequences in the promoter regions of Sesbania rostrata leghemoglobin gene (Welters et 
al., 1990). It is yet unclear, how this bacterial protein traverse the multiple bacterial and 
plant membranes. Based on deduced amino acid sequences and homology studies in the 
data base, a possible function has been defined for some nodulin genes. For example, 
using differential hybridization, a cDNA clone of GsENOD2 was isolated from a 
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Figure 1-4. Promoter elements of soybean enod2B gene. 
PE, positive elements; possible tissue specific element. 
CT, cell type containing conserved sequences of CTCTI 
and AAAGAT. TSS, transcript start site. 
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Figure 1-5. Schematic representation of the cis-regulatory elements in the soybean lbc3 
promoter. SPE: strong positive element; WPE: weak positive element; OSE: organ 
specific element; NE: negative element. This figure reproduced from Stougaard et al., 
1990. 
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soybean nodule library. Amino acid sequence analysis showed that this gene is a 
hydroxyproline-rich cell wall protein (Franssen et al., 1987). The other early nodulin 
genes such as PsENOD3 and PsENOD14 are assumed to be proteins involved in metal 
transport based on their amino acid sequences (Scheres et al., 1990). 

The alfalfa late nodulin gene Nms-25 was expressed 9 days after inoculation similar to 
the leghemoglobin time of expression suggesting a similar regulation. The protein 
deduced from cDNA sequence contained a signal sequence which might direct the 
protein into the symbiosome membrane (Kiss et al., 1990). This gene consists 13 exons 
and 12 introns of which most of exons are similar to each other suggesting exon-
shuffling. The promoter region contains the common promoter elements of plant genes 
(Vegh et al., 1990). 

The GmN-23 nodulin promoter contains two positive distal (PE-A, -320 to -298) and 
proximal (PE-B, -257 to -165) enhancer elements. In PE-A and PE-B, two 12-bp 
sequence motifs are found to be core of the enhancer elements, InvA and InvB, 
respectively. The nodule-specific trans-acting factor binding site NA T2 is present in PE-
A (Jorgensen et al., 1991). 

Leghemoglobin (Lb) proteins are encoded by a gene family in the legumes. In soybean, 
at least four major Leghemoglobin genes have been identified, Lba, Lbcl , Lbc2 , and 
Lbc3 (Lee et al., 1983). Furthermore, Leghemoglobin psuedogenes and truncated genes 
exist in the soybean (Brisson and Verma, 1983). However, it is unknown whether these 
different Leghemoglobins have different roles in the nodule. Indeed, their function in 
nitrogen fixation is only verified by biochemical studies with isolated bacteroids. As yet 
there is no leghemoglobin-defective mutant, altered in Lb itself. Perhaps the multi-gene 
nature prevents such phenotype. 

Molecular Mapping 

The purpose of mapping is to isolate and determine the function of a gene of interest. In 
addition, co-segregation study of a locus and a gene with known-function and already 
mapped on the genetic linkage map may result in function determination of the locus 
under study. Molecular mapping can also be used for saturation of a region with 
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molecular markers which in turn provides useful information for anchoring BAC and 
Y AC clones containing DNA sequences for other genes in the same region of genome. 

In plants, there are numerous genes and it is a tedious task to correlate genes with 
functions. One of the approach for gene isolation is map-based cloning strategy in 
which, first, a mutant impaired in the biological process in question is induced. Then, 
the gene suffered the mutation is mapped using molecular markers which should be 
close to the target gene (Gresshoff and Landau-Ellis, 1994; Gresshoff, 1993). The next 
step is to analyze the complex genome and clone a large DNA fragment bearing the gene 
of interest. This can be done by cloning genomic fragments into yeast artificial 
chromosome (YAC) or bacterial artificial chromosome (BAC) and screen them with the 
help of tightly linked molecular markers (Funke and Kolchinsky, 1994). Finally, 
complementation of mutant can be conducted by tranformation of the mutant with the 
isolated gene to regain original wild-type phenotype. The advantage of this strategy over 
ambiguous biochemical approaches is that one can be sure that the isolated gene is really 
involved and essential in the biological activity. Therefore, the initial requirement for 
map-based cloning is to construct a genetic linkage map conferring the distance and 
order of genetic markers on the chromosome. 

Furthermore, molecular mapping provides information regarding DNA markers that are 
linked to a trait which is important for plant and animal breeders. This linked marker 
would be a useful tool for selection of the trait in the early stage of growth saving time 
and money for the breeders. This approach is called marker-assisted breeding. 

Other benefits of molecular mapping are to determine genetic linkage of quantitative trait 
loci, OTLs, (Keim et al., 1990), pedigree mapping (Shoemaker et al., 1994), and 
integration mapping (Shoemaker and Specht, 1995; Ghassemi and Gresshoff, 1998). In 
QTL mapping, number and frequency of alleles and loci involved in the trait can be 
estimated as well as contribution of each locus in total variation for the trait. Pedigree 
mapping assists the breeders to not only determine the genotype of an individual but also 
to evaluate the genetic composition of entire population. 

Integration mapping refers to mapping a locus on a genetic linkage map using molecular 
and conventional markers from another genetic linkage map. Some of the new genetic 
linkage maps have been saturated through a concept called "synteny" mapping. In this 
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approach, one can use the information of markers from one map and integrate to the 
other. This concept can be applied not only within a given species but also between 
species or even between genera and organisms. 

Molecular Genetic Linkage Map in Soybean 

Most of the genetic linkage maps in eukaryotes have been constructed based on the 
restriction fragment length polymorphism (RFLP) approach. In recent years, many 
molecular markers generated by polymerase chain reaction (PCR) have been added to 
the present genetic linkage maps. These PCR-based molecular markers consist of 
randomly amplified polymorphic DNA, RAPD, (Williams et al., 1990; Welsh and 
McClelland, 1990), DNA amplification fingerprinting, DAF, (Caetano-Anolles et al., 
1991d), microsatellite or simple sequence repeat, SSR, (Jeffreys et al., 1985; Cregan et 
al., 1994), and amplified fragment length polymorphism, AFLP, (Vos et al., 1995). In 
addition, there are morphological and isoenzyme markers on the present genetic linkage 
maps. 

In soybean, several genetic linkage maps have been constructed by several groups in the 
University of Utah (Lark et al., 1993; Mansur et al., 1996), the Iowa State University 
(Shoemaker and Specht, 1993), the Pioneer Hi-Bred International Inc. (Webb et al., 
1995), and the Northern Arizona University (Keim et al., 1997). These maps were 
generated based on an initial cross between parents which might be either intra- or inter-
species, G. max vs. G. max or G. max vs. G. soja, respectively. The disadvantage of 
inter-species cross is that recombination rate is lower than intra-species cross due to lack 
of complete chromosome pairing in parts of genome during meiosis division. 

The soybean genetic linkage map constructed in the University of Utah (Figure 1-6) 
consists of 35 linkage groups and 377 markers covering about 2,000 centiMorgans (cM) 
and is expected to define another 1,000 cM of the genome (Mansur et al., 1996). This 
map was developed from a recombinant inbred line population consisted of 284 F7-
derived lines generated from single seed descent of a cross between Minsoy, PI27890, 
and Noirl, PI290136 (Mansur et al., 1993). 

A genetic linkage map developed in the Northern Arizona University consists of 840 
markers and 28 linkage groups covering 3441 cM of the soybean genome, Figure 1-7, 
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Figure 1-6. Soybean genetic linkage map constructed in the University of Utah. This figure is 

reproduced from Mansur et al., 1996. 
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Figure 1-7. Soybean genetic linkage map constructed in the Northern Arizona University. This figure is 
reproduced from Keim et. al., 1997. 
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(Keim et al., 1997). The markers include 165 RFLP, 25 RAPD, and 650 AFLP markers 
of which AFLP markers were very useful markers to saturate the genetic linkage map. 
This map was developed initially based on the RFLP markers from a 300 RIL 
population generated from a cross between BSRll0 X PI437.654. Then, the map was 
saturated further with AFLP markers based on a 42 RIL subset. 

Molecular Genetic Linkage Maps in Other Legumes 

In this part, examples of genetic linkage maps constructed on other legumes such as 
alfalfa (Kiss et al., 1993), common or French bean (Nodari et al., 1993), pea (Weeden 
et al., 1996), lentil (Weeden et al., 1992), chickpea (Simon and Muehlbauer, 1997), 
azuki bean (Kaga et al., 1996), and Lotus japonicus (Jiang and Gresshoff, 1997) are 
reviewed. 

A genetic map of alfalfa, Medicago sativa, has been constructed using morphological, 
isozymes, RFLP, and RAPD markers (Kiss et al., 1993). Mapping was conducted on 
138 F2 segregating individuals obtained from one self-pollinated F1 plant. More than 
1,000 genetic markers were mapped to eight linkage groups corresponding to the eight 
chromosomes of alfalfa. The alfalfa genome size is about 550 cM, and the physical 
equivalent of 1 cM is 1,500 kb. More than 20 nodulin genes have been mapped 
including ENOD2, ENOD12, Nod-22, Nod-25, leghemoglobin, glutamine synthase, 
and ineffective nodulation, in6. The later, a recessive Mendelian locus, was mapped on 
linkage group 7 and linked to two RFLP markers (Kiss et al., 1993). 

In pea, a genetic linkage map (Figure 1-8) consisting of eight linkage groups with more 
than 500 classical, isozyme, RFLP, AFLP, and SCAR markers has been constructed 
(Weeden et al., 1996). About 30 nodulation genes, sym, have been identified by 
mutagenesis (Due and Messager, 1989; Kneen et al., 1994; Sagan et al., 1994). These 
genes are randomly distributed on the eight pea linkage groups except for sym2, sym5, 
syml 9, nod3, and a major leghemoglobin locus which are clustered on the linkage 
group I (Temnykh et al., 1995; Weeden et al., 1990). The late nodulin genes such as 
glutamine synthetase, leghemoglobin, and P sNOD6 have been also described 
(Kardailsky et al., 1993; Nap, 1988; Tingey et al., 1987). 

In common or French bean (Pha.seolus vulgaris, 2n=2x=22) an RFLP-based genetic 
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linkage map (Figure 1-9) has been developed consisting of 15 linkage groups and 152 
markers covering more than 800 cM (Nodari et al., 1993). The markers include 115 
RFLP, 7 isozyme, 8 RAPD, 2 morphological loci, and 19 known genes as well as one 
virus resistance gene. The map was constructed from an F2 segregating population. 

In chickpea (Cicer sp.) a genetic map consisting 9 morphological, 27 isoenzyme, 10 
RFLP, and 45 RAPD markers covering 550 cM has been developed (Simon and 
Muehlbauer, 1997). This genetic linkage map containing 10 linkage groups representing 
chickpea eight chromosomes generated from a segregating population of an interspecific 
cross between C. arietinum and C. reticulatum. Comparison of this map with those from 
pea and lentil revealed that the chickpea map has 5 regions with the similar gene orders 
found in pea genetic linkage map. There is less similarity between the pea and the lentil 
genetic linkage maps which is consistent with the evolutionary distances between 
genomes of these three genera. 

In azuki bean, Vigna angularis, a genetic linkage map has been developed with 132 
markers consisting 108 RAPD, 19 RFLP, and 5 morphological markers (Kaga et al., 
1996). This map bears 14 linkage groups covering 1250 cM and was constructed based 
on an F2 segregating population of an interspecific cross between azuki bean and its 
wild type, V. nakashimae. A comparison of the genetic linkage maps of azuki bean, 
mungbean, and cowpea using 20 common RFLP markers showed that some of the 
markers belong to the same linkage groups of the respective maps suggesting that some 
of the genomic regions are conserved among the three Vigna species (Kaga et al., 
1996). 

Recently, Lotusjaponicus has been considered as the model legume plant because of its 
advantages such as small genome size (about 400 Mb/haploid genome), self-fertile 
diploid (2n=l2), short generation period, easy emasculation and cross hybridization 
(Jiang and Gresshoff, 1997), and high frequency of regeneration and transformation 
(Stiller and Gresshoff, 1997). Primary classical and genetic linkage map of this model 
legume (Figure 1-10) consists of 9 linkage groups containing more than 50 molecular 
and phenotypical markers covering more than 350 cM (Jiang and Gresshoff, in press). 
This map has been constructed based on mostly DNA amplification fingerprinting 
(OAF) markers screened in a F2 population of 100 individuals resulted from a cross 
between Gifu and Funakura ecotypes. 
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Outline of Dissertation 

The objective of this study was to map two soybean nodule-specific genes, an early 
enod2 and a late leghemoglobin, on the soybean genetic linkage map using RFLP 
technology, integration mapping, microsatellite marker, bulked segregant analysis 
(BSA), and DNA amplification fingerprinting (DAF) approaches. First, RIL population 
was considered for mapping the enod.2 and leghemoglobin because this map contains 
several hundreds of molecular markers and gives the better linkage estimation. Second, 
using flanking markers on the genetic linkage map for enod2, I mapped this gene on a 
F2 segregating population generated in the Plant Molecular Genetic lab, University of 
Tennessee, Knoxville. Since this gene mapped in an interesting soybean genome 
containing soybean cyst nematode (SCN) resistance gene, I used DAF molecular marker 
and BSA to saturate the enod2 region and detect molecular markers linked to enod2 
gene. However DAF marker generated a controversy of irreproducibility of the results. 
Thus, I developed a high annealing temperature DAF to increase reproducibility and 
reliability of DAF markers and I could apply this high stringency of DAF to a variety of 
organisms such as soybean, mungbean, bermudagrass, centipedegrass, garlic, and 
human. 

During the end of last decade, RH.,P technology had been extensively used to construct 
a genetic linkage map in plants. The term RFLP, restriction fragment length 
polymorphism, is defined as the differences in molecular weight of homologous 
fragments of restriction enzyme-digested genomic DNA of two genetically distinct 
individuals. Several reasons might be involved in generating the differences such as 
base pair changes, rearrangement of DNA sequence, and/or insertion/deletion events at 
the restriction site. These differences may be codominant and inherited in a simple 
Mendelian fashion. Once a difference for the gene of interest was detected between 
parental genotypes, the location of the gene on the genetic map can be determined by 
cosegregation study of the gene and other markers on the map. 

In addition to RFLP, a microsatellite marker was used to determine which of the two 
copies of the enod.2 gene was mapped. Since only one of the genomic clone contains a 
microsatellite motif, (AT) 17, cosegregation of microsatellite and RFLP markers in 
parental, RJL, and segregating individuals were studied. 
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In this study two soybean recombinant inbred line (RIL) and F2 segregating population 
were used. The significance of RIL population is its immortality and one can reproduce 
and share the plant materials and DNA indefinitely because of near homozygosity of the 
lines. In addition, there is more chance of segregation and recombination in RIL 
population due to several meiosis events during the inbreeding process. It has been 
shown that the proportion of recombination among self-pollinated inbreds is about twice 
the rate observed in F2 segregating population (Haldane and Waddington, 1931) 
resulting in decrease of linkage errors for target gene and marker association in RIL 
population compared to F2 or backcross populations. 

To assure the reliability of the mapping, the integration mapping concept was used to 
determine the location of the e,wd.2 gene on the genetic linkage map of an F2 segregating 
population generated at the University of Tennessee, Knoxville, from a cross between 
Glycine max cultivar Bragg and G. soja, PI468.397. In this approach, markers flanking 
the gene on the genetic linkage map were used to study the cosegregation patterns of the 
flanking markers and the gene in the F2 population and integrate the mapping 
information from one to another population (Figure 1-11) 

Bulked segregant analysis (BSA; Michelmore et al., 1991) was used to link additional 
molecular markers to the e,wd.2 gene. This methodology has the advantage of reducing 
identification of unlinked markers to the target region. BSA has been used successfully 
to link molecular markers to resistance genes in different crop species such as lettuce 
(Michelmore et al., 1991), onion (de Vries et al., 1992), common bean (Miklas et al., 
1993), and tomato (van der Beek et al., 1994). 

In BSA strategy two DNA bulks from individuals segregating in a population are 
pooled. Each pool consists of individuals which differ for a specific phenotype, 
genotype, or individuals at either extreme of a segregating population for a quantitative 
trait locus (QTL). There is a minor chance that polymorphism appears for a region 
unlinked to the target locus because many individuals are pooled to generate the bulks. 

The two bulk DNA can be screened for detection of polymorphic markers using any 
molecular marker technology such as RFLP, RAPD, AFLP, microsatellite, and DAF. 
Upon detection of polymorphism between parents and the two bulks, the percentage of 
recombination can be determined in the segregating individuals to determine genetic 
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Figure 1-11. Integration mapping approach in soybean. Information obtained from 
enod2. gene mapping on the RIL population (at the left) was used to determine flanking 
markers (at the middle). Using this information and cosegregation analysis of flanking 
markers for the enod2, this gene was mapped on the F2 population. 
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distance between molecular marker and the target locus. To integrate this information 
onto a genetic linkage map, cosegregation of the molecular marker and other molecular 
markers on the map can be studied. 

To accomplish saturation of the genomic region, DNA amplification fingerprinting, 
DAF, (Caetano-Anolles et al., 1991d) methodology was approached. This PCR-based 
DNA amplification, a powerful technique to generate molecular markers linked to a gene 
of interest, applies very short arbitrary primers (ranging from 5 to 10 bases), low 
template DNA concentration, polyacrylamide gel electrophoresis (PAGE), and silver 
staining visualization. First, a robust and high annealing temperature DAF was 
developed by manipulating the annealing temperature and time period of denaturation, 
extension, and annealing steps. Then the two pools of template DNA were screened 
with arbitrary octamer and hairpin primers. 

DNA amplification fingerprinting was tested in addition to soybean for a variety of 
organisms, such as soybean cyst nematode (SCN), mycorrhizal fungi, aphid, 
bermudagrass, and centipedegrass to show the universal applications of the DAF. 
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Molecular markers are defined as markers at the DNA level or protein level (allozymes) 
which can be generated through different techniques. These molecular markers are used 
to map a gene of interest, (see Gresshoff and Landau-Ellis, 1994), to facilitate gene 
isolation, differentiate genotypes, tag a phenotype of interest for breeding purposes, 
provide evolutionary relatedness and diversity of a given organism at different 
systematic classifications, and solve forensic cases. 

A genetic map can be constructed by the study of cosegregation of phenotypic and/or 
molecular genetic marker in segregating F2 or recombinant inbred line populations. 
Independent segregation of markers indicates that these markers are on two 
chromosomes or on one chromosome with 50 percent recombination rate in that 
chromosome region. In contrast, linkage of markers concludes that these markers are on 
the same chromosome. The distance between two markers is determined by the rate of 
recombination events in region. A complete genetic map requires several hundred 
markers to cover the entire genome. Order of genetic markers is determined in a large 
population because many recombination events are needed to obtain statistical support 
for a distance of about 5 cM apart. Construction of physical map is required for 
determination of genetic order of loci less than 1 cM apart. [ One cM (centimorgan) is 
equal to one percent of recombination]. 

Genetic analysis of quantitative trait loci (QTLs) is possible by genomic mapping 
approach where phenotypic effects can be correlated with segregating molecular markers 
to map the QTL on a genetic map. Using synteny mapping, in cereal crops such as rice, 
maize, and sorghum, some important agronomic traits (large seeds and day length 
insensitivity) have been associated independently with QTLs (Paterson et al., 1995). 
Hence, important genes for a QTL can be mapped in a less characterized species by 
reference to the markers on the map of a more characterized species. 

Molecular marker technologies have been used widely in genotype differentiation of a 
vast varieties of organisms. Crop cultivar identification allows farmers to be assured that 
cultivars introduced for sale are of correct genotypes. Traditionally, morphological 
markers provided identification of varietal genotype and purity. However, molecular 
markers reveal genetic differences more quickly and accurately, eliminating effects of the 
environment. This provides significant advantages in reliability and discrimination 
reducing time and cost. Molecular markers are also used for plant variety protection to 
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maintain inbred parents of hybrids as trade secrets, to screen varieties sold by competitor 
breeders, seed producers, and farmers who sell their excess of seeds for replanting. 
This protection provide assurance for private investment to continue their efforts into 
breeding programs. 

Application of molecular markers to diversity question may concern artificial or 
cultivated populations including accessions, collections, germplasm and breeding lines. 
DNA markers can resolve how many different genetic classes are present and the genetic 
similarities among them, how much diversity is present in those classes and their 
evolutionary relationships with wild types. In plant breeding programs, study of genetic 
relationship is useful because it provides more efficient parental selection (Anderson et 
al., 1993). 

Marker-assisted selection enhances the efficiency of selection for a trait of interest. 
Exotic germplasm is one of the most important source of genes with highly qualitative 
effects on traits such as disease and stress resistance. These kinds of genes can be 
transferred with crossing and backcrossing to the desired cultivar. Molecular markers 
availability in marker-breeding approach provides an increase in the use of exotic 
germplasm and consequently widening the gene pool for breeding programs (see Allen, 
1994; Shoemaker et al., 1994)). 

Types of Molecular Markers 

There are three classes of molecular markers: (1) hybridization-based markers, (2) 
arbitrary-primed PCR and other PCR-based markers, and (3) sequence targeted and 
single locus PCR. 

Class 1. Hybridization-Based Molecular Markers 

RFLP 

This class consists of restriction fragment length polymorphism, RFLP, (Botstein et al., 
1980) technology in which genomic DNA is digested with restriction enzyme which 
cleave the DNA at specific sequences. Subsequently, different length of DNA is 
generated in different genotypes if a change in DNA sequence is generated by point 
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mutation, insertion, deletion, or/and DNA rearrangement at restriction site of one 
genotype. The digested DNA can be separated by agarose gel electrophoresis and 
transferred to Nylon or nitrocellulose membranes. The polymorphisms in genotypes can 
be detected upon hybridization where a radioactive-labeled DNA probe forms a double-
stranded DNA with homologous DNA on the membrane. Autoradiography is used to 
visualize the RFLP on an X-ray film. The membrane is reusable for other hybridizations 
after washing off the DNA probe. One of the advantages of a RFLP markers is their 
codominant nature. The technology is easy and reproducible and there is no need for 
DNA sequence information. However, there are disadvantages such as low number of 
data points, high cost, need for large amount of DNA, and lack of automation (also 
phospho-imager usage can help). There are so many references of RFLP available in 
data bases that it is impossible to five a comprehensive review here (see Shoemaker and 
Olson, 1993; Landau-Ellis et al., 1991). 

Mini and Microsatellite Probes 

Minisatellite or microsatellite probes can also be used to generate variable number of 
tandem repeats (VNTR). This technique is a derivative of RFLP analysis but differs in 
the type of hybridization probe applied to detect DNA polymorphisms. The probe 
creates complex banding patterns recognizing multiple genomic loci simultaneously. 
Each of these loci is characterized by an array of tandemly DNA repeats which occur in 
different numbers at different loci. (Weising and Kahl, 1998) 

Two types of multilocus probes are mainly used. The first type is a cloned DNA 
fragment or synthetic oligonucleotide which is complementary to tandem repeats of a 
sequence about 10 to 60 base pair long called minisatellite. This approach was first used 
for DNA fingerprinting thirteen years ago (Jeffreys et al., 1985a, b). Minisatellites have 
been cloned from many organisms such as rice (Winberg et al., 1993), Arabidopsis 
(Tourmente et al., 1994), tomato (Broun and Tanksley 1993 and 1996), and fungus 
(Meyer et al., 1991). The second type of probe is a short oligonucleotide which is 
complementary to tandem repeats of about one to five base pairs called microsatellite, 
simple sequence repeats (SSRs), or short tandem repeats (STRs). Both minisatellite and 
microsatellite have been used for fingerprinting of numerous animal, plant, and fungal 
species (see Rosewich and McDonald 1994; Weising et al., 1995). 

66 



Class 2. PCR-based Molecular Markers, Arbitrary Primers 

In this class of molecular markers, PCR-based techniques use arbitrary or semi-arbitrary 
primers for amplification of DNA. One of the great advantages of class 2 is the lack of 
need for sequence information from the genome under study. There are different 
approaches in this class varying in stringency of the PCR conditions, sequence and 
length of the primers, and the way of fragment separation and visualization. 

Arbitrarily-primed PCR (AP-PCR) is a powerful technique that generates fingerprints of 
genome under conditions where the primers will anneal the template DNA even when 
the matching is imperfect. Amplification of genomic DNA results in multiple 
amplification products from loci distributed throughout the genome. Based on the 
specific amplification conditions, product separation, and detection technique, the 
arbitrary primer amplification methods were termed randomly amplified polymorphic 
DNA (RAPD; Williams et al., 1990), arbitrarily primed PCR (AP-PCR; Welsh and 
McClelland, 1990), or DNA amplification fingerprinting (OAF; Caetano-Anolles et al., 
1991). These techniques are different in the length of primers used, the primer-to-
template ratios, and the way that amplification products are detected and resolved. These 
techniques have been used for gene mapping, taxonomy, phylogenetics, clinical 
epidemiology, and detection of mutations in cancer. 

RAPD Marker 

RAPD markers have been extensively used for more than 3,000 cases in mapping traits 
in segregating populations and near isogenic lines, mapping traits using bulk segregant 
analysis, generating genetic linkage maps, saturating regions of a genome with markers, 
and fingerprinting of genetic materials. In addition, RAPD analysis has been applied for 
measurement of genetic distances between individuals, germplasm analysis, and 
evaluating parental contributions in backcrosses. 

RAPD marker application requires an optimization particularly for DNA, magnesium, 
and primer concentration, cycling conditions, and the type and amount of thermostable 
DNA polymerase. Factors that affect reproducibility of RAPD profiles within and 
between laboratories are DNA quality and concentration, type of thermocycler, primer 
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quality and concentration, magnesium concentration, type of DNA polymerase, and 
pipetting accuracy. 

RAPD analysis offers advantages such as lack of need for prior DNA sequence 
information, radioactive material, and expensive equipment other than a thermocycler 
and a transilluminator. Arbitrary primers are universal and work for any genome 
resulting multiplex detection of polymorphisms. In addition, a RAPD test is simple and 
requires only small amount of genomic DNA (30 ng). 

Despite many advantages of RAPD markers, there are some limitations. Reproducibility 
is one of disadvantages of RAPD markers and has been a subject of considerable 
discussion (Skroch and Nienhuis, 1995). In case of genome mapping, a proper 
statistical method should be used to determine and confinn segregation ratios of 3:1 in 
an F2 or 1: 1 in a backcross population. 

RAPD is not an appropriate technique when two genomes with extremely small 
difference in their genomes are being compared. In general, RAPD is not able to detect a 
single mutation or a very small deletion. However, this technique can identify efficiently 
dispersed differences constituting a significant portion of the genomes. In near-isogenic 
lines generating from several backcross containing 1-10% of the donor genome, RAPD 
can be efficiently used to detect marker linked to segments of donor genome. 
Furthermore, RAPD can be applied for bulked segregant analysis to identify markers 
closely linked to a trait or a gene of interest (Michelmore et al., 1991 ). 

RAPD tends to underestimate genetic distances between more distantly related 
individuals particularly in inter-specific comparisons (Powell et al., 1996). Therefore, in 
taxonomic studies above the species level, RAPD should be used with caution. Similar 
mobility of an incorrect band is another problem which can be overcome by using 
Southern hybridization for further verification. This is seldomly done. 

Randomly amplified microsatellite polymorphism (RAMPO) 

RAMPO is relatively a new technique which is based on the combination of a PCR-
based, RAPD, and a hybridization-based, RFLP, techniques (Richardson et al., 1995; 
Cifarelli et al., 1995; Ender et al., 1996). In the first step, a genomic DNA is amplified 
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using an arbitrary decamer primer and RAPD fingerprinting. In the second step, a 
labeled simple sequence repeat (SSR), called also microsatellite, oligonucleotide serves 
as a probe to detect complementary sequences upon Southern hybridization on the 
RAPD fragments. In the last step, positive hybridized RAPD fragments are cloned and 
sequenced to analyze the nature of the simple sequence repeats. 

Advantages and Disadvantages 

Advantages of RAMPO are high discriminatory potential, versatility of application to 
DNA of various complexity and origin, rapid screening of a genome, and excellent 
reproducibility. In contrast to RFLP, there is no need for neither sequence information 
nor laborious cloning. 

RAMPO application in chickpea cultivars (Cicer arietinum) produced 35 detectable 
hybridization signals using 38 microsatellite probes and 14 different restriction enzymes 
(Sharma et al., 1995). Oligonucleotide probes complementary to all possible 
microsatellites of the mono, di, tri, and tetranucleotide repeats, e. g. [Alts, [ATG]6, 
[AAG]6, [GTG]6, [GGA T]4, and [AAAC]4, were used to screen Eco RI and HindIII-
restricted Arabidopsis and yeast DNA by southern analysis (Depeiges et al., 1995). 
Only 9 out of 49 probes generated clear fingerprints indicating that different results 
obtained with chickpea and Arabidopsis are most likely due to differences in the size and 
complexity of the two genomes. 

Level of polymorphism and pattern complexity detected by DNA fingerprinting with 
both mini- and microsatellite probes depends on population or species under study and 
its reproductive biology such as selfing, outcrossing, apomixis, and vegetative 
propagation. The sequence of probe used for hybridization is also important for levels of 
polymorphism. 

The RAMPO discriminatory potential has suggested its use in fingerprinting of human 
and other species. Unrelated individuals as well as first order relatives could be 
differentiated with an individual-specific fingerprint (Jeffreys et al., 1985a, b; 1991), 
consequently, paternity and forensic testing became the first application areas for DNA 
fingerprinting. The stability of fingerprints made this technique highly useful for 
identification and differentiation of banana (Kaemmer et al., 1992), Achillea, a 
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micropropagated plant, (Wallner et al., 1996), Rubus, an apomictic plant, (Kraft et al., 
1996), and asexually propagating phytopathogenic fungi (Morjane et al., 1994; Sastry et 
al., 1995). In vegetatively propagated plants, this fingerprinting technique fulfills 
maximum variation between cultivars, minimum variation within cultivars, stability over 
time, and independence from environmental factors. In contrast, in sexually outcrossing 
propagated plants, fingerprints are usually variable within cultivars. 

The RAMPO fingerprinting have been also used to study genetic relatedness between 
organisms (Kaemmer et al., 1995) and genetic diversity among and within populations 
(Piquot et al., 1996) using the extent of band sharing between individuals. Furthermore, 
high sensitivity of the RAMPO enabled its use for linkage analysis and genome mapping 
with rapidly screening of the genome with few probes in human (Wells et al., 1989) and 
fungi (Romao and Hamer 1992). 

Disadvantages of RAMPO are relatively complex experimental protocol, need of higher 
amount of DNA compared to PCR-based techniques. In RAMPO, there is insufficient 
allelic information provided by multilocus banding patterns. Hence, banding pattern is 
considered as dominant marker. Mutation rate is an additional problem in genetic 
mapping of human. Mutation in minisatellites occurs at rates from 0.5-1 % per gamete 
and generation (Jeffreys et al., 1991), but can be as high as 5% (Jeffreys et al., 1989). 
Another disadvantage is considerable proportions of nonparental bands observed in 
plants (Rogstad 1994) and fungi (DeScenzo and Harrington 1994). More serious 
problem for mapping is the tendency of mini- and microsatellite-derived fingerprint 
bands to occur in clusters contrast to the much shorter PCR-detected microsatellites (Bell 
and Ecker 1994). Clustering of fingerprints in pea occurred for four (GAA)s 
polymorphic bands and mapped to the same linkage group within (Dirlewanger et al., 
1994), while in tomato, (GATA)4 bands formed several clusters in certain linkage 
groups (Arens et al., 1995). Moreover, clustering has happened in other organisms such 
as dog (Jeffreys and Morton 1987) and swan (Meng et al. , 1990). 

AP-PCR Markers 

Four types of changes can be distinguished in comparison of particular DNA fingerprint: 
(1) new bands in a particular sample or loss of bands; (2) molecular change of amplified 
fragments reflected by change in the mobility of bands; (3) increase in intensity of a 
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band; (4) decrease in intensity of a band. These changes can indicate polymorphic 
markers for mapping or somatic mutations in comparison of normal and tumor tissue. 
AP-PCR can detect changes such as allelic losses or gains and deletion or insertion 
mutations which occur in neoplasms (Perocho et al., 1995). This molecular marker has 
potential to study tumor development and progression and possibly provides clues for 
the understanding of carcinogenesis. Tumor-specific genetic changes can be easily 
detected by comparing DNA fingerprints of normal and tumor tissue from the same 
individual. Such polymorphic bands resulted from somatic mutations have been cloned 
and characterized. 

AP-PCR has been also used for RNA fingerprinting which brings an exciting area to 
study differential gene expression (Welsh et al, 1995; Suzuki et al., 1995; Ralph et al., 
1993; Wada-Kiyama et al., 1992). A 5' anchor primer such as oligo (dT)CA is used for 
reverse transcription and an arbitrary primer for priming the second strand cDNA (Liang 
and Pardee, 1992). RNA arbitrarily primed PCR (RAP-PCR) can provide a complex 
molecular phenotype reflecting changes in the abundance of hundreds of RNA species 
under different conditions. Differential gene expression occurs at different biological 
situations such as different types of tissues and cells, and cells responding to growth 
factors, hormones, stress, heterologous expression of particular genes. RNA 
fingerprints can be compared from different treatments to conclude regulation of the 
gene under study. Differentially-expressed DNA fragments can be isolated, cloned, and 
characterized 

In RAP-PCR, fingerprinting of total cellular RNA is achieved by synthesis of first-
strand cDNA using an arbitrary primer. Using a thermostable DNA polymerase, 
synthesis of second-strand is initiated at the sites where the arbitrary primer finds the 
best matches. Weaker matches at one end of the amplified sequence can be compensated 
for by very good matches at the other end. A collection of molecules flanked at their 3' 
and 5' ends by the exact sequence and complement of the arbitrary primer is resulted 
after these two steps. These strands serve as template for high stringency PCR 
amplification resulting in RNA fingerprinting similar to genomic DNA fingerprinting. 
Open reading frames are found in about 30% of products because the primers are 
internal to the transcripts. Difference in intensity of the RAP-PCR products is due to 
different ratio of RNA abundance. Intensity of different bands within the same 
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fingerprint varies independently while the intensity of a band between fingerprints might 
be proportional to the concentration of its corresponding template sequence. 

Differential gene expression can be studied with other methods of which there are two 
major categories, subtractive hybridization (Aasheim et al., 1994) and differential 
screening (Maser and Calvet, 1995). Each one has its strengths and weaknesses. One of 
the problems with subtractive hybridization is that abundant genes hybridize faster and 
to a greater rate of completion than low abundant genes. Thus, many regulatory genes 
that are in low abundance can not be detected due to low completion rate of 
hybridization. RAP-PCR, in contrast, leads to partial abundance normalization and 
consequently rare transcripts can be sampled. Another problem of subtractive 
hybridization is that transcripts which do not show significant differences can be easily 
missed. However, using an improved version called represential difference analysis, 
RDA, might overcome this problem (Lisitsyn et al. , 1993). 

In differential screening (Maser and Calvet, 1995), radioactive probes made from cDNA 
of two cell types are used to screen a cDNA library prepared from one of the two cell 
types. Usually, clones from the library hybridize to one or the other but not to both 
probes. Similar to subtractive hybridization, low abundance messages do not provide 
enough probe signals to allow favorable hybridization. An alternative approach for AP-
PCR for detecting differentially expressed genes is based on differential hybridization of 
complex cDNA probes to dot blot clones (Bernard et al., 1996). 

DAF Markers 

DAF is initiated by a template screening phase including primer-template-enzyme 
interactions (Figure 2-1 ). In the first round of reaction, annealing of a single arbitrary 
primer to complementary sequence of DNA template generates single-stranded 
amplification products which contain palindromic termini causing template-template 
interactions and formation of hairpin loops and duplexes. In the second round, the 
primer has to recognize and displace these structures and allow enzyme anchoring and 
primer extension. DNA strands containing complementary inverted sequence for the 
primer can be successfully amplified. Different species of amplification products tend to 
establish and equilibrium in subsequent rounds of amplification while the rare duplexes 
of primer-template are transformed into amplification products. 
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1) First round annea ling with short arbitrary pr imer -
2) Extension of primed reg iions 

S' .. 3 ' ... 
3) Anneal ing of pr imer to fi rst round exten sio n products 

S' 3' . 
4) Reverse synthesis on opposite strand using short primer as start 

---
Ampllcon A Ampllcon 8 Amp llcon C 

none 

_ General DAF reaction for productio n of mul tiple arb itra ry am plicon profiling .. 
(I nverted primer sequence exits at each end of the ampl icon. Amplicons diffe r in size and 
sequence composi tion) . 

Figure 2-1. General DAF reaction. 
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The mass ratio between primer and the template is one of the most important variable in 
the amplification reaction providing adjustment for the overall stringency of the 
amplification reaction. One of the major differences in DAF and RAPD is the ratio of 
primer-to-template which is 5-50,000 and 1, respectively. Length of the arbitrary primer 
is also important in influencing the rate of mismatch priming in the amplification 
reaction. 

Three types of DAF can be used to generate fingerprints: (1) short or mini-hairpin 
primed DAF, (2) arbitrary signature from amplification products (ASAP), and (3) 
template endonuclease cleaved multiple arbitrary amplicon profiling (tecMAAP). 
Arbitrary primers containing hairpin loop structure at their 5' termini can be used for 
fingerprinting of any type and complexity of genome (Caetano-Anolles and Gresshoff, 
1994) lowering some of the potential limitations of the fingerprinting reaction. In ASAP, 
original amplification products generated by PCR are again subjected to PCR 
amplification using new primers (Caetano-Anolles and Gresshoff, 1996). The primers 
for ASAP are either mini-hairpin or primers that their sequence differ significantly from 
those used to generate initial amplification prcx:lucts. In tecMAAP, DNA template is first 
subjected to endonuclease digestion and then amplified one or more arbitrary primer 
(Caetano-Anolles et al., 1993). These three DNA fingerprinting techniques are used for 
a variety of templates including whole genome, plasmids, cloned DNA, and PCR 
products resulting in increased levels of polymorphisms. Amplification products are 
separated on a polyacrylamide gel and visualized by a silver staining procedure (Figure 
2-2). 

DAF- Mini-hairpin Primers 

Use of very short primers 5-6 base in DAF produces relatively simple banding patterns 
that resemble those generated in RAPD analysis. This is due to existence of palindromic 
termini in the amplification products causing formation of hairpin loops and 
subsequently lowering primer annealing efficiency. Using stable mini-hairpin primers 
with a loop of 3-4 base at 5' end and a 2 base stem, complication of primer-template 
interaction can be minimized (Caetano-Anolles and Gresshoff, 1994). Stability of 
structure is based on the existence of a hairpin-tum region determined by the helical 
motif of the stem region, the loop-closing sequence, and stacking of a loop B form 
structure (Hirao et al., 1994). Mini-hairpin primers, HP-NNN, can be synthesized by 
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Figure 2-2. A DAF profile for human and grass samples. PCR was run for human DNA 
(F. G., Farshid Ghassemi) and grass samples (WCT, 34, and 37) using an octamer 
primer (OcB49) under high annealing temperature (55°C) condition which is discussed 
in Part 4 of this dissertation. DNA fragments were separated on a 10% polyacrylamide 
gel and stained with silver. 
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adding an arbitrary 3 bases core containing one of 64 possible sequence at 3' end of a 
constant mini-hairpin sequence. In amplification process, the core region and 
either the 3' terminal palindrome or the loop of the mini-hairpin structure are important 
but not the 5' palindromic sequence. This suggests that the hairpin structure remains in 
tight conformation and does not form a duplex with the template (Figure 2-3). 

The advantage of these primers is to interfere with formation of hairpin loop structure in 
the amplification products increasing efficiency of primer-template annealing (Caetano-
Anolles and Gresshoff, 1994). Thus, these primer can generate reliable DNA 
fingerprinting profiles from small template molecules such as plasmids, cloned DNA, 
and PCR products. In addition, annealing of mini-hairpin primers are influenced by 
secondary structure of DNA and interaction between amplicon termini. 

DAF-ASAP 

This kind of DNA amplification fingerprinting is based on the reamplification of PCR 
fingerprints using mini-hairpin or standard arbitrary primers (Caetano-Anolles and 
Gresshoff, 1996). ASAP is a two-step process which additional amplification of initial 
preselected amplicon is scanned with a substantially different primer than the one used 
for the first step of amplification. 

Specific primers can be designed to amplify particular target sequences or interspersed 
repetitive sequences in the genome. Primers complementary to simple sequence repeats 
present in microsatellite loci can generate a simple profile by reamplification of DNA 
fingerprints. The advantage of this approach is that microsatellite loci are codominant 
and highly polymorphic regions with multiple allelic forms. 

Another approach is to use a primer complimentary to sequence repeats anchored with 
arbitrary 5' or 3' sequences (Zietkiewicz et al., 1994; Wu et al., 1994; Meyer et al., 
1993). One limitation of this approach is that the primer anneals both the sequence 
repeats and unrelated arbitrary sequences resulting in DNA profiles with relatively high 
complexity and it is difficult to interpret the co-dominant loci (Weising et al, 1995). It is 
possible to obtain a simple DNA amplification profile representing only microsatellite 
loci and codominant markers by using primers which are anchored at their 5' termini 
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Structure of linear and mini-hairpin DAF primers 
W~d0' h'.1'.1'.1'P/-4ffi'Jl&'J-"//4WE#P'#Pff .1"#0@'##&o/# &' $ r003 

A. linear primer: 

5'-GTAACGCC-3' 

[ try to prevent internal homology or high AT content ] 

B. mini-hairpin primer: 

G 
A,,. 'C-G-5 1 

I 
A G-C-G-C-C-3' 'A,,. 

. Structure of linear and minihairpin primer 8-4 and HPlO, respectively. (The 
mini-hairpin will close early during ramping and will not be a major determinant in 
annealing. However, the nature of the hairpin affects the amplificati on pattern. We believe 
that the hairpin requires the presence of at least one "A" residue to permit bending an d 
stacking) 

Figure 2-3. Structure of linear and mini-hairpin primers. 
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with degenerate nucleotide and high stringent amplification conditions to avoid mismatch 
priming. 

The ASAP analysis was used to generate markers linked to soybean supernodulating 
locus, nts-1, a trait that segregates as a single recessive Mendelian locus (Caetano-
Anolles and Gresshoff, 1996; Kolchinsky et al., 1997). This approach was coupled 
with bulk segregant analysis to find markers associated with nts-1 to screen soybean 
yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC) libraries 
and anchor initial contigs for positional cloning strategy. After excision of the bands 
from gels, cloning, and sequencing (Men and Gresshoff, 1998; Weaver et al., 1994), 
two polymorphic DNA converted to a sequence-characterized amplified region, SCAR, 
(Men and Gresshoff, 1998; Jiang and Sink, 1997; Grattapaglia et al., 1996) to use for 
screening a large number of F2 segregating population. One molecular marker was 
linked to supernodulating gene with 26 cM away from nts-1 locus. ASAP analysis with 
only a few number of primers identified several markers associated with target gene 
despite the extremely conserved sequence of the nts-1 region. 

DAF- tecMAAP 

DNA amplification fingerprinting is generated with enzymatic digestion of DNA 
template or amplification products. This increases the information contents such as 
number of bands and polymorphisms produced by a particular primer. These MAAP 
markers are dominant and can be used for construction of genetic linkage maps, 
sequence-tagged markers, and positional cloning approaches. 

Detection of polymorphic DNA is enhanced in comparison of closely related organisms 
of various origin with pretreatment of endonuclease digestion of template DNA. Mutants 
and their wild types are easily distinguished by using this technique. Several MAAP 
markers linked to EMS-induced soybean supernodulating mutant, nts-1 , isolated from 
Bragg cultivar (Caetano-Anolles et al., 1993). After screening only 19 primers, 42 
polymorphisms were found between nts-1 mutant and Bragg cultivar indicating that 
either restricted DNA template is an extremely sensitive technique or EMS mutagenesis 
is able to induce more extensive DNA alteration than previously expected. 
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One of the limitation of MAAP is that digestion of DNA template sometimes causes both 
disappearance and appearance of bands. Disappearance of bands can be easily explained 
by cleavage at restriction sites destructs the primer annealing target sites but appearance 
of new bands is unexpected. These bands might be amplified from those amplicons 
which are normally hidden by the secondary structure of DNA template. Alternatively, 
digestion of DNA might cause the extending primer to jump to another template during 
amplification to produce a hybrid product (Paabo et al., 1990). Furthermore, new bands 
could arise from a change in the amplification reaction because not all possible 
amplicons are actually amplified (Arnheim and Erlich, 1992). 

The tecMAAP can be used as a tool in exploration of specific genome regions. In 
isolation of a given gene, this technique allows us to directly land on the locus or at least 
close enough to target gene. In subsequent step, the target gene can be identified using a 
cloned DNA fragment. This approach of gene isolation is independent of molecular 
maps and genome size. After cloning and sequencing, a MAAP marker can also provide 
an anchor for chromosome walking, marker-assisted breeding, bulk segregant analysis, 
and distinction of closely related organisms, cell lines, and individuals. 

Amplified Fragment Length Polymorphism (AFLP) 

AFLP is based on the combination of DNA restriction with endonucleases and 
subsequent PCR amplification (Vos et al., 1995; Zabeau and Vos, 1993). In the first 
step, genomic DNA is restricted with two endonucleases, a frequent and a rare cutter. 
The frequent cutter generates small fragments which are in the optimal size for 
amplification and separation on the gels. The rare cutter limits the number of fragments 
to be amplified. In the second step, the ends of the restricted fragments are ligated to 
double-stranded adopters. Restriction site and adopter sequences serve as primer sites 
for AFLP amplification. There are also additional selective bases at the 3' end of primers 
which allow amplification of only a subset of restriction fragments. In the last step, 
those fragments with complementary sequences for the restriction site and selective 
nucleotides at the 3' end are amplified and generate DNA fingerprints which can be 
separated on denaturing polyacrylamide gels. 

AFLP for small-size genome organisms, such as bacteria and fungi, uses only 2 
selective bases for each primer. For organisms with complex genomes, it requires more 
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than 2 selective bases as well as an additional preamplification step which uses only 
common primers lacking the selective bases to generate optimal primer selectivity and 
increase the amount of template. 

AFLP fragments can be detected by labeling one of the two primers by phosphorylating 
the 5'end with polynucleotide kinase. In addition, other methods of labeling cab be 
applied. The reason for labeling one fragment is that if two strands are labeled, doublets 
will be detected because of slightly different mobility of the two fragments on the 
sequencing gels. 

AFLP is a technique can be used for different kind of organisms and complexity. The 
great advantage of AFLP over other random fingerprinting techniques, such as RAPD, 
AP-PCR, and DAF, is high rate of reproducibility and reliability of fingerprints. A 
limited number of AFLP primers can generate a large number of primer combinations 
which in turn amplify a unique set of fragments. 

Arbitrary Sequence Oligonucleotide Fingerprinting (ASOF) 

ASOF is a combination of PCR- and hybridization-based techniques using miniature 
arrays of oligonucleotide bound to a solid surface as probes (Beattie et al., 1995). 
Genomic DNA is amplified by PCR to generate a set of random amplification products 
using one of the arbitrary-primed amplification techniques such as RAPD, AP-PCR, and 
DAF. Alternative choice for genomic DNA is to prepare a set of sequence tagged site 
(STS) fragments using targeted multiplex PCR. 

The genomic DNA fragments are labeled and then hybridized to a genosensor array 
containing several hundred to few thousand arbitrary oligonucleotide probes. 
Polymorphic DNA can be determined by differences in the hybridization fingerprints of 
different individuals. These differences are caused by either sequence variations within 
the priming sites or variations within amplified sequences that hybridized to arrayed 
probes. 

ASOF is different from RAPD, AP-PCR, and DAF in analysis of DNA fragment by 
hybridization fingerprinting not gel electrophoresis. Based on the statistical estimation, 
number of polymorphisms detected by ASOF is much greater than other techniques. A 
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great advantage of ASOF is that after determination of which arbitrary sequence probes 
provide reproducible results for a given genome, a genosensor can then be fabricated 
with those informative probes to analyze a large number of samples. 

Class 3. PCR-based Molecular Markers, Known Sequence 

In this class of molecular markers, PCR is used to amplify a specific single locus target 
which requires prior knowledge of the target sequence. Three sources of target 
sequences in animal and plants are chloroplast, mitochondrial, and nuclear genomes. 
DNA sequences contain phylogenetic and frequency information and are very important 
for ecological and evolutionary investigations. Although, sequencing is laborious and 
insufficient polymorphisms are detected, with new sequencing techniques, single pass 
sequencing of EST may yield sufficient polymorphism to allow mapping. A number of 
PCR-based techniques, such as CAPS, GBA, and SSR, can be used to screen markers 
easily. 

Cleaved Amplified Polymorphic Sequence (CAPS) 

In CAPS analysis or sometimes referred as PCR-RFLP, amplification products are 
digested with endonucleases to produce restriction site polymorphisms (Konieczny and 
Ausubel 1993; Williams et al., 1991). There are several advantages for CAP markers. 
First, size of restricted and unrestricted of amplification products can be adjusted 
arbitrarily by proper placement of the PCR primers. Second, CAPS markers are co-
dominant, i.e., a heterozygous genotype contains both cleaved and uncleaved fragments 
inherited from its parental genotypes. Third, CAPS technique requires only small 
amount of DNA which can be isolated in plant from a portion of a single leaf using a 
rapid DNA isolation protocol. Fourth, the technique is simple and robust because an 
application product is always obtained. Fifth, CAPS markers can be assayed relatively 
fast and have the potential for automation. 

This approach has been used for gene mapping in Arabidopsis and DAN fingerprinting 
in bacteria. A set of 18 primer pairs were designed to generate CAPS markers in both 
Columbia and Landsburg ecotypes of Arabidopsis thaliana. Amplification products 
were restricted with a set of endonucleases to detect specific patterns for the ecotypes. 
After detection of polymorphisms, only 28 F2 individuals were required to map 
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confidently a gene to one of the ten Arabidopsis chromosome. A set of 74 CAPS marker 
have been added to the genetic linkage map using recombinant inbred lines recently 
developed from Columbia x Landsburg cross. 

Recently, CAPS markers were used to do fingerprinting in strains of the human bacterial 
pathogen Staphylococcus epidermidis (Calderwood et al., 1996). Seven pairs of primers 
corresponding to 5 sequenced bacterial genes were designed to amplify DNA from 33 
strains. Amplification products were digested with endonucleases resulted in detection 
of seven polymorphisms. Classification of strains was consistent with epidemiologic 
information as well as with classification based on the pulsed field gel electrophoresis. 

DNA fingerprinting of bacterial strains using CAPS approach is technically simpler and 
more reproducible and informative than previously used techniques such as biotyping, 
antimicrobial sensitivity profiles, serotyping, multilocus electrophoresis, plasmid 
profiles, ribotyping, and pulse field gel electrophoresis. The CAPS approach can be 
readily used for DNA fingerprinting of individuals, strains, or any organism of which 
DAN sequence information is available. Alternative methods for bacterial DNA 
fingerprinting is PCR-based DNA amplification using arbitrary primers which was 
previously discussed. 

Genetic bit analysis (GBA) 

OBA is a non-radioactive single-base sequencing method which can be used in detection 
of a single nucleotide polymorphism of known sequences. The OBA relies on the robust 
ability of DNA polymerase to differentiate single nucleotide differences in a way that is 
automatable and simple to apply (Nikiforov et al., 1994; Nikiforov and Rogers, 1995). 
First, Target DNA sequence is amplified by PCR using one exonuclease-resistant primer 
per set of primer pairs. Then, a single-stranded DNA template produced by exonuclease 
digestion is hybridized to a pre-synthesized GBA primer immobilized in the well of a 
microtiter plate. Using biotinylated or fluoroseinated ddNTPs and the Kienow fragment 
of DNA polymerase, the OBA primer is extended and then detected using enzyme-
linked immunoassay (ELISA) colorimetry. Finally, sample genotypes are determined 
after analysis of colorimetric data 
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Microsatellite or Simple Sequence Repeats (SSR) Markers 

SSR is based on the amplification of variable number of tandem repeats (VNTR), also 
called microsatellite or short tandem repeat (STR), loci using primers that are flanking 
and complementary to a conserved regions of the SSR loci (Jeffreys et al., 1988). This 
allows to amplify the entire SSR locus resulting in PCR products which are different in 
size based on the number of repeated DNA motifs present in the SSR locus (see Cregan 
et al., 1994). The repetitive DNA units are only 2 to 5 base pairs in length, such as 
(AT)17, (TAA)22, etc. The high rate of polymorphism is as a result of differences in the 
number of such short repeat motifs. The occurrence frequency of a short repeat such as 
(CA)n>IO is about 50,000 times in human genome. After PCR using 32P-labeled 
nucleotide or end-labeled primer, amplification products are separated on a sequencing 
gel and visualized by autoradiography (Beckman and Soller, 1990). Alternatively, a 
non-radioactive method can be used for visualization of amplified microsatellite loci by 
silver staining of polyacrylamide gels (Ghassemi and Gresshoff, 1998). Amplification 
products differed even in one repeat can be differentiated on a sequencing gel. For 
example, two genotypes with different number of repeats, (AT)17 vs. (AT)1s, generates 
amplification products with 2 bases different in length. 

SSR loci are quite abundant in a variety of plant species, such as soybean, rice, 
Brassica, mango, avocado, and coca. SSR markers are co-dominant and used for 
genetic mapping and DNA fingerprinting. SSR markers might be a useful tool in genetic 
analysis of important crops such as tomato and wheat in which genetic variations are 
low. 
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Part 3 

The Early enod2 and the Leghemoglobin (lbc3) Genes Segregate 
Independently from Other Known Soybean Symbiotic Genes 
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Abstract 

Recombinant inbred lines (RILs) as well as an F2 segregating population of soybean 
Glycine max (L. Merr) facilitated the mapping of two expressed sequence tags (EST) 
involved in early nodulation and subsequent nitrogen fixation in soybean. For the early 
nodulin gene enod2, the parents of RILs, Minsoy and Noirl, showed a polymorphism 
(5.5 vs. 5.9 kb) after EcoRV digestion. RFLP patterns of 42 RILs were analyzed using 
the MAPMAKER program linking enod2 to the seed coat color gene, /, with a distance 
of 11.1 cM on linkage group U3 of RIL map. Enod2 and/ are located close to Rhg4 , a 
soybean cyst nematode (SCN) resistance gene, and a locus for seed coat hardness. The 
molecular marker pAl 10 and seed coat color were used to integrate enod2 on an F2 
segregating population (72 plants) generated from a cross between cultivar Bragg and 
G. soja (Sieb and Zucc), PI468.397. Enod2 was mapped in the same order as on the 
RIL map but 18.5 cM from the I locus on the TN map. A microsatellite from the 5' 
region of enod2B was mapped in the same position, demonstrating that enod2B and not 
enod2A was mapped. An RFLP for lbc3 (leghemoglobin) segregated independently 
from e nod2 and the nts-1 supernodulating locus suggesting that in soybean, 
symbiotically significant loci (including rj J, Rj2, and rj6) are not clustered in soybean. 

Introduction 

Genetic properties of both bacteria (e. g., Rhizobium, Bradyrhizobium) and host plants 
are essential for the development of nitrogen-fixing root nodules. Plant control of 
nodulation was confirmed by the isolation of symbiotically altered mutants (see 
Gresshoff, 1993; Caetano-Anolles and Gresshoff, 1991) and by the demonstration of 
nodule-specific or nodule-enhanced proteins, namely nodulins, such as leghemoglobin, 
uricase or glutamine synthase (Verma and Delauney, 1988). Such nodulins are classified 
into early and late ncx:lulins based on their temporal sequence of induction. Early ncx:lulin 
genes are expressed during infection and ncx:lule morphogenesis (Gloudemans and 
Bisseling, 1989) and may shed light on events related to cell division, hormonal 
responses, and plant defense mechanisms as well as the signal transduction chain 
connecting ncx:l-factor recognition and nodule initiation. Late nodulin gene expression is 
correlated with the onset of nitrogen fixation (Govers et al., 1985, 1987) and reveals 
information about carbon/nitrogen metabolism and transport, symbiosome membrane 
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transport, functions related to the maintenance of the intracellular symbiosis, and oxygen 
regulation and transport. 

ENOD2, one of the first discovered early nodulins, was initially characterized in 
soybean (Franssen et al., 1987). The gene product is a hydroxy-proline rich cell wall 
protein with molecular weight of 75,000 daltons, and has the alternative label of GmN-
75 nodulin. It was postulated to be involved in the oxygen barrier inside of legume 
nodules (Pawlowski and Bisseling, 1996, Long, 1996), although there is no evidence 
for ENOD2 function other than the localization of the protein. Indeed no difference was 
observed in the level of the enod2 protein and mRNA of alfalfa nodules under different 
concentrations of oxygen (Hunt et al., 1995). Two soybean genomic clones, enod2A 
and enod2B, of 16 kb and 25 kb were isolated from a soybean genomic library in 
lambda charon 35 (Franssen et al., 1990). These two clones contained no introns and 
were identical in their coding domains but differed in the 5' regions. The deduced amino 
acid sequences revealed two pentapeptide proline-rich repeats (PRO-PRO-GLU-TYR-
GLN and PRO-PRO-HIS-GLU-LYS) which were similar to pentapeptide repeats of a 
soybean proline-rich protein designated SbPRPl (Hong et al., 1987). The strong 
conservation of coding sequence suggests recent gene duplication, genome 
tetraploidization, or functional restriction. 

Using a soybean enod2 cDNA as a probe, homologous enod2 sequences were isolated 
from pea (Govers et al., 1987), white clover, bird's foot trefoil, vetch (Moreman et al., 
1987), alfalfa (Dickstein et al., 1988), common bean (Sanchez et al., 1988) and 
Sesbania rostrata (Strittmatter et al., 1989). The major difference among mRNAs from 
different plants was predominantly in the length of the gene. 

It is possible that ENOD2 represents a pericycle-specific protein whose expression is 
increased during early nodulation. The protein has similarity to other cell wall proteins, 
some of which expressed during lateral root induction or plant defense responses (Lamb 
et al., 1989). Expression of the enod2 is initiated in cells at the base of the nodule and 
ultimately in the nodule parenchyma, uninfected cells that surround the infection zone 
(Allen et at., 1991; Kouchi et al., 1989, van de Wiel et al., 1990). Enod2 gene 
expression occurred in empty nodules on alfalfa roots induced by exopolysaccharide-
deficient (Exo-) mutant of Rhizobium meliloti which lacked infection threads and 
intracellular bacteroids (Dickstein et al., 1988). Application of auxin transport inhibitors 
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such as NPA and TIBA, resulted in empty nodule-like structures which expressed 
enod2 (Hirsch et al., 1989). Alfalfa variants which formed nodules in the absence of 
Rhizobium (NAR) also expressed enod2 (Truchet et al., 1989). The protein therefore is 
expressed independently of bacterial infection and indeed may be reflective of pericycle 
cell proliferation. Sesbania rostrata enod2 (SrEnod2) was expressed after exogenous 
application of cytokinins to roots and stems (Dehio and de Bruijn, 1992). 

Molecular mapping of nodulation-related genes may permit the determination of 
function, if complete co-segregation with mutant loci is observed. With an increasing 
database containing both QTL and single gene loci associated with agronomic 
parameters, it is likely that nodulin genes with secondary function are revealed (Mansur 
et al., 1996). Furthermore, knowledge obtained from mapping may allow the discovery 
of related mechanisms of a multigene family (possibly with different, but related 
function) and an elucidation of evolutionary relatedness in syntenic linkage groups. 

Most mapping is done in segregating F2 populations, but these have the disadvantage of 
being finite (see Landau-Ellis et al., 1991; Keim et al., 1990; Weeden et al., 1990). 
While ample supplies of DNA can be collected, eventually they run out. Recombinant 
inbred lines (RILs), through single seed descent, fix homozygosity in genomic regions, 
resulting in (more or less) stable seed lines, to be shared indefinitely by the scientific 
community. Such RILs derived from F7 seed are available for soybean (Lark et al., 
1993; Mansur et al, 1993a/b and 1996) and Lotus japonicus (Jiang and Gresshoff, 
1997). RILs also have the advantage that living tissue can be harvested, permitting 
physical mapping using high molecular weight DNA derived from protoplasts (Funke et 
al., 1993) or the isolation of telomeres, satellites, or related chromosomal regions 
(Kolchinsky and Gresshoff, 1995). 

Of course, most parents used to make RILs do not differ in all desired phenotypic 
properties. Hence a strategy of map-integration is used, in which molecular markers 
associated with a mutant locus (i.e., nts-1, Landau-Ellis et al., 1991) were mapped in a 
specific cross close to an RFLP marker (pA381), which then in turn was found on the 
RIL map (Filatov and Gresshoff, 1997, submitted). Thereby, the mutant locus was 
transferred by association through map integration. We tested this approach here, 
attempting to confirm conserved marker order and mapping distances for the region 
around the enod2 gene. Furthermore, we wanted to evaluate the hypothesis developed 
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from mapping in pea that symbiotically important genes are clustered (as on 
chromosome 1 of pea, Weeden et al., 1990). 

Materials and Methods 

Parent plants of the Utah soybean (Glycine max L. Merr) RIL population, Minsoy and 
Noirl cultivars, and RIL plants (at F12) were grown in an environmentally-controlled 
greenhouse. Unifoliolates and young trifoliolates [0.5 g (FW)] were harvested and 
immediately placed in liquid nitrogen. Average DNA yield was 100 µgig FW measured 
by DNA fluorometer (Model TKO 100, Hoefer Scientific Instruments, San Francisco, 
USA). After DNA isolation (Dellaporta et. al., 1983), samples from parents were 
digested with seven restriction enzymes, Bell, Bglll, Dral, EcoRI, EcoRV, Hindlll, 
and Taql using buffers recommended by the manufacturer. Restricted genomic DNA (5 
µg/lane) was electrophoresed on 0.9% agarose gels and then blotted onto Zeta Probe 
Nylon membranes by vacuum blotting (Sambrook et al., 1989). 

Enod2 cDNA cloned in pUC18 (confirmed by partial DNA sequencing), provided by 
Ton Bisseling (Wageningen, Netherlands), was isolated (Sambrook et al., 1989) and 
restricted with Pstl. Following the isolation of the enod2 insert, Southern blot 
hybridization was carried out with 32P-labeled (Boehringer Mannheim Random Primer 
Labeling Kit) enod2 probe and parental DNA blots. After detection of polymorphisms in 
the parents, Southern hybridization was carried out for 42 RILs. 

Parents of the F2 population for this map integration were G. max cultivar Bragg and the 
ancestral soybean G. soja, PI468.397. These were previously used to map the 
supernodulation gene, nts-1, (Landau-Ellis et al., 1991). DNA samples from these 
parents were digested with six restriction nucleases, namely, DraI, EcoRI, EcoRV, 

Hindlll, Taql, and Xbal. Parental crosses were made and verified as described by 
Landau-Ellis et al. (1991) using morphological and RFLP markers. After detection of 
polymorphisms in parents, Southern hybridization was carried out for 88 F2 plants 
generated from a cross between Bragg and PI468.397. Inheritance of RFLP banding 
patterns of e nod2 in the RILs and the F2 population was determined with two 
independent Chi Square tests. 
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The MAPMAKER program (Lander et. al., 1987) was used to map enod2 and lbc3 in 
the RIL and the F2 populations. In the case of the F2 population, cosegregation of 
enod2, pA 110 molecular marker, and seed coat color([) of 72 plants was studied. 

The lbc3 gene was cloned in pARlO as a 3.5-kb BamHl fragment carrying a 2-kb 5' 
region of the lbc3 gene (provided by Dr. Jens Stougaard, Aarhus, Denmark). After 
detection of RFLP with Taql restriction of Minsoy and Noirl, 226 RILs were screened 
for RFLP patterns. 

Cosegregation of RFLP marker and microsatellite marker in parental materials, RIL, and 
F2 populations was studied to determine which enod2 copy we mapped. The 
microsatellite represents 17 repeats of AT from nucleotide 866 through nucleotide 900 in 
the 5' upstream region of the genomic enod2B clone of cultivar Wayne. PCR conditions 
for amplification of the microsatellite marker were: 6 min/ 95°C and 35 times of 30 sec/ 
95°C, 1 min/ 47°C, and 2 min/ 72°C in an Ericomp Twin Block thermocycler (San 
Diego, CA, USA). The PCR reaction mix contained 50 ng DNA template, 1 mM Mg2+, 

0.15 µM of each 3' and 5' primers, 100 µM of each dNTP, 0.1 µL of 3,000 Ci/mmol a-
32p dA TP, lx PCR buffer (50 mM KCl, 10 mM Tris-HCl pH 8.3, 1 % Triton X-100), 
and 1 unit Taq DNA polymerase (Perkin Elmer, Roche Molecular System, Inc., New 
Jersey, USA). Each sample (3.5 µL) was added to 3.5 µL stop solution (95% 
formamide, 20 mM EDTA, 0.05% bromophenol blue, and 0.05% xylene cyanol FF) 
before loading in a 6% acrylamide sequencing gel containing 8M urea. The 
polymorphism was detected by autoradiography as well as silver staining. All photos of 
autoradiographs were taken by Alpha Innotech IS-1000 digital imaging system, San 
Leandro, CA, USA. 

Results 

Restriction fragment length polymorphisms (RFLPs) derived from Southern 
hybridizations probed with a 600-bp Pstl fragment of the enod2 clone (pENOD2) with 
digested genomic DNA from Minsoy (M), Noirl (N) (Figure 3-lA), and their RILs 
(Figure 3-2), were detected. In most cases, the two or more copies of enod2 were 
consistent with the ancient tetraploidy nature of soybean (Polzin et al., 1994; Singh and 
Hymowitz, 1988) and the fact that two related but distinct genomic clones were 
available. However, a few faint bands were detectable stemming presumably from 
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Figure 3-1. Autoradiograph of Southern hybridization for enod2, pAl 10, and lbc3 
probes. A, Minsoy (M) and Noirl (N) probed with ENOD2 cDNA clone (pENOD2). 
Two copies of enod2 loci were detected in most cases. Restriction fragment length 
polymorphism (RFLP) from EcoRV restriction (5.9 vs. 5.5 kb) indicated by arrows, 
was used for screening recombinant inbred lines (RILs). B, Bragg (B) and G. soja (S) 
probed with pENOD2. RFLP from EcoRV restriction (5.9 vs. 5.5 kb) and 
monomorphic band (7.5 kb), indicated by arrows, was used for screening F2 
individuals. C, Bragg (B) and G. soja probed with flanking marker pAl 10. RFLP from 
Xbal restriction (12.0 vs. 6.0 kb) and monomorphic band (8.5) was used for screening 
F2 population. D, autoradiograph of Taql restriction (3.0 vs. 2.6 kb) was used for 
screening RILs. 
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Figure 3-2. Segregation of restriction fragment length polymorphism (RFLP) for enod2. 
A, EcoRV restricted DNA of Minsoy, Noirl, and recombinant inbred lines (RILs) was 
probed with pENOD2 clone. Top row labels the RFLP patterns (Mor N type); numbers 
are the same as original ones obtained from the University of Utah. B, EcoR V 
restriction of the parents of two populations (RIL and F2) and some of the RILs and F2 
individuals. Those F2 individuals with either 5.9- or 5.5-kb bands were scored as B and 
S type patterns, respectively. Heterozygotes possessed all three bands and were scored 
as H. 
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similarity of enod2 to other cell-wall-protein genes. Four RFLPs were detected from 
restriction with EcoRI, EcoRV, TaqI, and Bg/11. In the case of EcoRV, the sizes of 
polymorphic bands were 5.9 and 5.5 kb for Minsoy and Noirl, respectively. A 
monomorphic band was observed at 7.5 kb. Identical RFLP patterns for enod.2 (5.5 vs. 
5.9 kb) and lbc3 (3.0 vs. In most cases, the two or more copies of enod2 were 
consistent with the ancient tetraploidy nature of soybean (Polzin et al., 1994; Singh and 
Hymowitz, 1988) and the fact that two related but distinct genomic clones were 
available. However, a few faint bands were detectable stemming presumably from 
similarity of enod2 to other cell-wall-protein genes. Four RFLPs were detected from 
restriction with EcoRI, EcoRV, TaqI, and BglII. In the case of EcoRV, the sizes of 
polymorphic bands were 5.9 and 5.5 kb for Minsoy and Noirl, respectively. A 
monomorphic band was observed at 7 .5 kb. Identical RFLP patterns for enod.2 (5.5 vs. 
5.9 kb) and lbc3 (3.0 vs. 2.6 kb) in Minsoy and G. soja may indicate common origin in 
this region; likewise, Noirl and Bragg also share common patterns. 

Although several RFLPs were detected with other enzymes, none of them (but Eco RV) 
were clearly codominant which is valuable to distinguish heterozygous segregants. 
Inheritance of the enod2 RFLP was studied using a Chi Square test to examine whether 
the observed RFLP banding patterns in RILs were consistent with an expected 1: 1 
Mendelian ratio (Table 3-1 ). No significant differences between expected and observed 
values indicated that this RFLP was inherited as a single locus. 

We used the MAPMAKER program to analyze the data for enod.2 segregation. enod2 
was mapped to linkage group U3 (Mansur et. al., 1996) (Figure 3-3A). Flanking are 
two molecular markers of K401 b and BL T24 with 7.4 and 7 .3 cM distance, 
respectively. In addition, enod2 is linked to the "/" gene encoding seed coat color at 
11.1 cM distance (LOD score of 6. 34 ). The "I" gene was postulated to encode chalcone 
synthase genes (CHS) or modulators of their activity (Wang et. al., 1994). This central 
gene of isoflavone/flavone biosynthesis (Estabrook and Sengupta-Gopalan, 1991) is 
important for plant pigmentation, plant disease response (phytoalexins), and nod-gene 
inducer biosynthesis (Kosslak et al., 1987; Sutherland et al., 1990). Further analysis 
revealed strong interactions between the enod2 region and a region on linkage group 
U16 close to the molecular marker pA401 to explain quantitative variation for 
agronomically important traits such as yield and pod filling period (Dr. Gordon Lark, 
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Character RFLP pa tterns Observed values Expected va lues Mendelian ratios Calcu lated chi squares Ta ble chi sq ua r es 

enotl2 RIL population M 25 20.5 
N 16 20.5 1.560 3.840 a= 5% NS 
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H 47 -14 2 
s 15 22 3.2 17 5.991 a= 5% NS 
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Figure 3-3. Linkage maps of enod2 and lbc3 genes. 
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personal communication). The enod2 gene was located in a region close to the Rhg4 
gene, a soybean cyst nematode (SCN) resistance gene (Weisemann et al., 1992; Yazdi-
Samadi et al., 1996, Webb et al., 1995; Concibido et al., 1994; Matson and Williams, 
1965) and a QTL for seed coat hardness (Keim et al., 1990). 

The flanking RFLP marker pAl 10 and seed coat color were used to integrate enod2 onto 
an F2 segregating population map (Shoemaker and Olson, 1993). The results of 
Southern blots probed with the enod2 clone for parental materials, Bragg and G. soja, 
PI468.397 (Figure 3-lC) , and F2 individuals showed an inheritance pattern consistent 
with expected 1 :2: 1 Mendelian ratio (Table 3-1 ). Since F2 seed coat color phenotypes 
were distinguishable only after seed formation, F 3 seed coat color was scored as yellow 
(Bragg pattern), gray-brown (heterozygote pattern), and black (soja pattern) with a ratio 
of 16: 57: 18, respectively. F2 segregants probed with the pAl 10 clone revealed a 
polymorphism of 6 vs. 12 kb (Bragg vs. PI468.397) after Xbal restriction and 
segregation of 15:41:17 (Bragg, heterozygote, and soja pattern, respectively). 
Significant differences for expected vs. observed ratio were found neither seed coat 
color nor for pAl 10 (Table 3-1). Cosegregation study of enod2, pAl 10, and seed coat 
color of 72 F2 individuals resulted in integration of enod2 on the Iowa and TN G. max x 
G. soja partial map in the same order as on the RIL map, but 18.5 cM from the/ locus 
(Figure 3-3A). The numerical differences are within the expected range of error caused 
by differences parents and sample sizes. 

To check the hypothesis of clustering of nodulation genes, one soybean leghemoglobin 
gene, lbc3, was hybridized to Taql restricted genomic blot of Minsoy, Noirl, and 226 
RILs (Figure 3-lD). An RFLP for lbc3 was mapped at the end of linkage group U31 
(Fig. 3-3B) and segregated independently from the enod2 locus. 

The enod2 RFLP marker and the microsatellite marker cosegregated in the RIL 
population, and the F2 population (Figure 3-4) indicating that the enod2 RFLP which 
we mapped was the enod2B copy. The size of single sequenced repeat (SSR) 
polymorphic bands were 184 vs. 189 bp in Minsoy vs. Noirl and 165 vs. 264 bp in 
Bragg vs. G. soja, respectively. We note with interest the 99-bp size difference in Bragg 
and G. soja, suggesting perhaps that enod2B is transcriptionally inactive and that the 
monomorphic fragment (7.5kb) contained the functional enod2A copy. 
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Discussion 

We mapped the enod2B gene on the linkage group U3 of Utah map in a region of 
soybean genome that seems to contain a number of genes encoding monogenic or 
polygenic traits (QTL) which may be associated with cell wall proteins, e.g., seed 
hardness (Keim et al., 1990), pod filling period, and soybean cyst nematode resistance 
genes (Weisemann et al., 1992; Webb et al., 1995). Furthermore, enod2 was linked to 
the / gene which encodes seed coat color and affects chalcone synthase (CHS) gene 
expression (Wang et al., 1994). 

Seed hardness in soybean is a quantitative trait locus (QTL) which is encoded by three 
genes affecting germination rate, viability, and quality of stored seed (Kilen et al., 1978; 
Rolston, 1978; Potts et al., 1978). This trait has been genetically analyzed with 72 
RFLP markers (Keim et al., 1990). Five independent RFLPs were associated with seed 
hardness trait. However, a major portion of variation (32%) was explained by the 
genomic region containing the/ locus. 

In our study, the enod2. gene was mapped near the/ locus with a distance of 11.5 cM on 
the RIL map (Utah) and 18.5 cM on the G. max x G. soja map (TN). It is possible that 
this genomic region is specialized for genes controlling cell wall components. The 
ENOD2 protein is similar to another class of structural cell wall proteins in soybean, 
namely hydroxyproline-rich glycoproteins (HRGPs). An example of this class of 
protein is the extensins which are localized in palisade, epidermal and hourglass cells of 
soybean seed coat (Cassab and Varner, 1987). The enod2 gene is expressed in cortical 
cells of nodule which has been postulated to contain the variable oxygen barrier. Shape 
and size of these cells may be factors in regulating 02 permeability (Layzell et al., 
1993). Thus, the enod2 gene product, being a hydroxyproline-rich cell wall protein, 
might be a specific structural protein which plays a role in generating small intercellular 
spaces in cortical tissue. However, no differences were observed in levels of the 
ENOD2 protein and ENOD2 mRNA under different concentrations of oxygen subjected 
to alfalfa nodules, weakening the hypothesis of ENOD2 involvement in oxygen barrier 
(Hunt et. al., 1995). Exogenously applied cytokinins induced the Sesbania rostrata 
enod2 gene (SrEnod2) expression in root and stem nodules (Dehio and de Bruijn, 
1992). The SrEnod2 was also induced in tumors generated by wild-type Agrobacteriwn 
twnefaciens, but not by A. twnefaciens mutant of cytokinin biosynthesis. 
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The I locus was linked to two RFLP markers BL T24 and BL T65 with recombination 
rates of 4.4% and 4.0%, respectively. Gene order was determined as BLT24- I- BLT65 
(Weisemann et al., 1992). The two molecular markers must also be linked to Rhg4, 
soybean cyst nematode (SCN) race 3 resistance gene, since this gene had been tightly 
linked to the/ locus with 0.35% recombination rate (Matson and Williams 1965; Webb 
et al., 1995). In another study, two independent RFLP markers, pA32 and pA85, were 
found to be associated with SCN race3 resistance (Concibido et al., 1994). These two 
markers contributed 51.7% of the total variation in race 3 SCN disease response, with 
pA85 accounting for 21.4%. It was mapped with a distance of 10.9 cM from the I locus 
on linkage group A of the USDNiowa soybean map (Figure 3-3). 

The I gene seems to be involved in the distribution of anthocyanin pigments (reviewed 
in Palmer and Kilen, 1978). When a dominant I allele is present, production of 
anthocyanin is inhibited in the epidermal layer of the developing seed coat resulting in 
yellow seed color. In yellow-coated seed(/) activity of chalcone synthase (CHS) was 7-
to 10-fold less than in the pigmented (i/i) seed coats. Chalcone synthase mRNA was 
barely detectable in seed coats carrying the/ allele. Association of CHS and I locus was 
further confirmed with detection of multiple restriction site polymorphisms in genomic 
DNA blots of the CHS gene family in near-isogenic lines of I locus (Wang et al., 1994). 

Although the order of the enod2 map is the same in all the maps, the differences in 
distance might be due to different parents, environmental effects during recombination, 
or experimental error. Sequence analysis of the enod2B genomic clone of cultivar 
Wayne revealed a microsatellite (AT) of 17 repeats between nucleotide 866 and 
nucleotide 900 (about 2 kb upstream from the A TG start site for enod2). This single 
sequence repeat (SSR) was detected by PCR primers and detected a polymorphism 
between Minsoy and Noirl. Mansur et al. (1996) mapped this enod2 associated SSR to 
9.3 cM from I, confirming our RFLP based data. Of special interest is the larger size 
difference of the enod2B SSR found between Bragg and G. soja, 165 and 264 bp, 
respectively. We do not know whether this region is involved in gene control. 

The second copy of the enod2 gene (represented by the 7 .5 kb monomorphic EcoR V 
fragment) seems to be highly conserved in G. max cultivars (Minsoy, Noirl, and 
Bragg) and wild-type G. soja. We postulate that it maps in a homeologous region of 
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soybean. It would be of value to test whether both loci are actively involved in 
expression of ENOD2. 

In pea, sym cluster 1 on chromosome 1 consists of glutamine synthetase, 
leghemoglobin genes, sym-2 (strain specificity), sym-5 (low nodule number), sym-18 
(strain specificity and late flowering), and sym-19 (non-nodulating mutant). In soybean, 
Rj2, controlling ineffective nodulation, was integrated from the classical genetic map 
onto the USDNiowa map (Polzin et al., 1994) in a cluster of disease resistance QTLs 
(Kanazin et al., 1996). However, an RFLP for one of the leghemoglobin genes (lbc3) 
segregated independently from the enod2B locus, and the nts-1 supernodulation locus 
mapped on linkage group Hof the USDNiowa map; Landau-Ellis et al., 1991, (Table 
3-2). Two loci for p34 protein kinase (cdc2) were mapped onto separate linkage groups 
(U20 and U25), as was the region of the supernodulation locus nts-1 (U23- close to 
pA381) (Filatov and Gresshoff, 1997, submitted). Moreover, nodl39 (rj6) and nod49 
(rjl) (non-nodulating mutants) as well as nod49 and nts-1 (supernodulating mutant) 
segregated independently (Table 3-2) suggesting that in soybean, symbiotically 
significant loci are not clustered 
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Table 3-2. Linkage and genetic data for soybean symbiosis and 
symbiosis-related genes. 

Gene Symbol Function Linkage Group 

cdc2-M P34 protein U20 
kinase 

cdc2-N P34 protein U25 
kinase 

pA381-pPV Supernodulation U23 
(nts-1 region) mutant 

enod.2 cell wall protein U3 

lbc3 02 carrier protein U31 

Rj2 ineffective Iowa 
nodulation Linkage Group J 

rjl non-nodulation Chromosome 3 

rj6 non-nodulation Segregates 
independently 

from rjl and nts-1 
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Part 4 

High Annealing Temperature Using Short Arbitrary Primers 
Provides Robust and High Resolution DNA Amplification Fingerprinting 
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Abstract 

To overcome potential problems caused by mismatch priming and secondary DNA 
structure, and taking advantage of high primer-template ratios used in DNA 
amplification fingerprinting (DAF) reactions, annealing temperature of 55°C were used 
with single short arbitrary oligonucleotide as well as mini-hairpin primers to provide 
high resolution DNA profiles of soybean (Glycine max L. Merr.). Initially, high 
annealing temperatures for three arbitrary octamer primers in polymerase chain reaction 
(PCR) were tested for DNA fingerprinting of two soybean cultivars, Minsoy and Noirl. 
Fifteen PCR programs differing in annealing temperature (47, 55, and 60°C), 
denaturation, annealing, and extension time (30, 60, and 120 second), and 
presence/absence of an extension step ( +/- 72°C) were tested. The number of scorable 
bands (amplification products) after 10% PAGE and DNA silver staining ranged from 7 
to 51. The average ramping temperature for heating and cooling were calculated 1.42 
and 1.27 sec/°C, respectively. Intensity of the silver-stained bands in a 10% 
polyacrylamide gel was high for the most PCR programs. Program 15 (95°C/30 sec, 
55°C/120, and 72°C/30 sec) generated a complex DNA fingerprinting profiles for tested 
primers in Minsoy and Noirl. These profiles contained an average of 42 sharp and 
highly intense bands using both octamer primers 8-4 (5'GTAACGCC3 ') and 8-8 
(5'GAAACGCC3') for DNA amplification. Using high annealing temperature increased 
stringency of primer-template annealing, avoided potential mismatching and hybrid 
molecule formation, and consequently improved reproducibility of DNA fingerprinting. 

Introduction 

Since the development of polymerase chain reaction, PCR, (Saiki et al., 1985; Mullis et 
al., 1986; Mullis and Faloona, 1987) DNA amplification has been widely used for 
variety of purposes such as, direct cloning from genomic or cDNA (Rashtchian et al., 
1992a), in vitro mutagenesis of DNA (Rashtchian et al., 1992b), prenatal diagnosis of 
genetic diseases, analysis of RNA transcript structure (Frohman et al., 1988), 
differential display of RNA (Liang and Pardee, 1992), direct sequencing of genomic 
DNA (Gyllensten and Erlich, 1988) or cDNA (Ohara et al., 1989), molecular maker 
mapping, and DNA fingerprinting using arbitrary primers (Williams et al., 1990; Welsh 
and McClelland, 1990; Caetano-Anolles et al., 1991, Vos et al., 1995). 
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DNA fingerprinting has been used for forensic cases, cultivar identification (Hu and 
Quiros, 1991), development of genetic linkage map (Reiter et al, 1992; Jiang and 
Gresshoff, 1997), gene tagging (Paran et al., 1991; Martin et al., 1991), pedigree 
analysis (Welsh et al., 1991; Caetano-Anolles et al, 1995), analysis of genetic diversity 
and relationships (Stiles et al., 1993; Wilde et al., 1992; Prabhu et al., 1997), and 
evolution and ecological genetic studies (Arnold et al., 1991; Hadrys et al., 1992). 

DNA fingerprinting using arbitrary primers depends on several factors including DNA 
concentration, PCR buffer components (Caetano-Anolles et al, 1994; Blanchard et al., 
1993), length and GC content of the primer (Williams et al., 1990), magnesium 
concentration (Caetano-Anolles et al, 1993), type of bacterial thermostable DNA 
polymerases (Bassam et al., 1992; Schierwater and Ender, 1993; Aldrich and Cullis, 
1993), and PCR program. 

DNA Factor 

DNA concentration should be in the range of certain critical concentration of genomic 
DNA to generate reproducible results. Below the required range, DNA profiles consist 
of incomplete amplification products and are not reproducible (Williams et al., 1993). 
Using excessive DNA concentration usually produces a low quality DNA fingerprinting 
profile with poor resolution and smears. It is best to perform a serial dilution of each 
genomic DNA to identify the useful rang of DNA concentrations. The range of DNA 
concentration recommended for OAF and RAPD is 0.01-2 and 0.2-1 ng/µL, 
respectively (Bassam and Bently, 1994). The increased range of OAF is presumed to 
stem from the higher primer concentration. Indeed the primer/template ratio of OAF 
seems to permit a widened "window" of activity such as use of shorter primers (even 5 
mers occasionally work) and higher annealing temperatures (this study), cf. Williams et 

al., 1990, who stated above 45°C, RAPD products can not be obtained. 

Thermocycler Factor 

DAF and other PCR-based DNA fingerprinting techniques are sensitive to thermal 
conditions (Ramping) of the thermocycler. DNA amplification profiles sometimes vary 
between different thermocyclers and units of the same model even set to identical cycling 
parameters. In some machines the temperature is different in the cells located in the 
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interior part than those in the vicinity of the thermal block; such instruments should be 
avoided. This problem can be overcome by measuring the actual ramping temperature, 
the time required for heating or cooling in a given range of temperature, in the reference 
machine using a data logger or strip chart recorder. Then, this profile can be used to set 
the other thermocycler to such cycling parameters. 

Primer Factor 

Another important factor in DNA fingerprinting is quality and concentration of the 
primer. Commercial primers usually provide consistent results but storage for a long 
period of the time results in decrease in the quality of the primer. This is especially after 
frequent thaw and freeze cycles. It is recommended to thaw the primer completely before 
use and mix it with the reaction mixture very well to provide homogenous PCR 
condition. Primer purity may be assessed by running 20% PAGE and silver staining 
(Caetano-Anolles et al., 1994) 

Magnesium Factor 

Magnesium is a co-factor for enzymatic activity of all DNA polymerases, such as 
AmpliTaq and Stoffel (PE Inc.) . These two types of enzymes have different 
requirements for magnesium (Mg+2) concentration. Low concentration of Mg+2 
generates low number of amplification products while excess of Mg+2 ions produces 
non-specific amplification products. Hence, the Mg+2 concentration should be optimal 
in the amplification reaction. Magnesium concentration is also optimal for DNA 
templates of different complexity. Thus, 1 ng of E. coli DNA behaves differently than 1 
ng of soybean DNA amplified with the same primer and Mg+2 concentration. 

Other Factors 

Other factors such as choice for DNA polymerase and pipetting accuracy affect DNA 
fingerprinting profiles in different techniques. It is well known that the activity of 
thermostable DNA polymerases varies considerably depending on their origin (Bassam 
et al., 1992; Schierwater and Ender, 1993). Two types of DNA polymerases, Taq 
polymerase and Stoffel fragment, are used for DNA amplification fingerprinting. Stoffel 
fragment is a truncated derivative of native form which lacks the 5'-3' exonuclease 
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activity. This form shows better thermostability and more magnesium tolerance than the 
native one (Bassam et al., 1992). In addition, the Stoffel fragment generates more 
reproducible DNA fingerprinting profiles compare to Taq polymerase. However, the 
size distribution of amplification products tends to be lower molecular weight when 
Stoffel fragment is used. For more satisfactory results, it is better to compare the two 
enzymes side-by-side. 

PCR-based DNA fingerprinting techniques are very sensitive to pipetting error and 
changes in PCR conditions and components leading to irreproducible banding patterns 
(Levi et al., 1993; Caetano-Anolles et al., 1992). Pipetting of a small amount of 
volumes, especially under 3 µL, can be a source of errors resulting in inconsistent 
amplification products. It is recommended to dilute various stock solutions to a 
concentration that would allow pipetting of 5 µL or more. In addition, one problem 
might be inaccuracy of the pipette itself which can be solved by regular service and 
adjustments. 

Annealing Temperature 

Polymerase chain reaction is a complex and dynamic process of kinetic and 
thermodynamic reactions which are changed by relative concentrations and activities of 
all components during each cycle. In an arbitrary-primed DNA amplification, the 
success of reaction depends on the reliable and simultaneous primer annealing at many 
locations of the DNA template. Using short primers between 8 and 12 nucleotides 
accomplishes the success of reaction. However, use of a short arbitrary primer has a 
disadvantage of imperfect events of annealing, called mismatching, between primer and 
template. It is well-known that primers in PCR can initiate amplification after annealing 
to template sequences which are not perfectly complementary. The mismatches are most 
common at the 5' end although they can occur at any nucleotide position in the primer-
template complex (Somer and Tautz, 1989; Kwok et al., 1990; Huang et al., 1992; 
Caetano-Anolles et al., 1992). 

It is shown that as the cycle number in a DAF reaction increased, secondary DAF of 
primary products is possible through the "opening" of otherwise conciled primer sites 
by increased template leads. Hybrid molecules, especially stemming from repeated 
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eukaryotic DNA regions may produce novel templates possibly not found in parental 
profiles. 

It is possible to minimize mismatching by using stringent PCR conditions favoring 
perfect annealing. This can be achieved by coupling high annealing temperature and low 
primer, enzyme, and buffer ion concentrations. Nevertheless, rare mismatching events 
still occur under high stringent conditions, only less frequently and less predictably 
resulting in amplification products which are present in one experiment but are absent in 
other identical reactions. These rare mismatches and consequent amplification are due to 
low efficiency interaction of primer and template in early thermocycling reaction and 
thereafter amplification will continue and complete with high efficiency. 

One of factors which determines stringency of the PCR condition is annealing 
temperature of primer and DNA template which differs in DAF (30°C) and RAPD (35-
450C) techniques. In general, RAPD thermocycling programs use standard PCR 
conditions but with lower annealing temperature. A typical RAPD program is as 
follows: an initial high denaturing temperature at 94°C for 5 min followed by 35 cycles 
of 94°C for 1 min, 45°C annealing step for 1 min, and 72°C extension step for 2-3 min. 
At the end of cycling, a single final extension step of 72°C for 5-10 min is usually used. 

In DAF, the extension step is omitted and a typical program is as follows: an initial 
denaturing temperature of 95°C for 5 min followed by 35 cycles of 96°C melting step for 
1 sec and 30°C annealing step for 1 sec. At the end of cycling, a single final extension 
step of 72°C for 5 min is usually used. 

We report here a high annealing temperature (55°C) DAF for soybean DNA samples to 
obtain robust amplification products and improved banding pattern resolution. 

Materials and Methods 

Plant materials consisted of two soybean, Glycine max L. (Merr), cultivars Minsoy and 
Noirl which were grown in greenhouse under controlled conditions. Genomic DNA 
from young leaves was isolated according to Dellaporta et al. (1983). Concentration of 
DNA was measured in a TKOlO0 Fluoremeter (Hoeffer Scientific Instruments, San 
Francisco, CA). 
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Two template soybean DNA samples, Minsoy and Noirl, and three arbitrary octamer 
primers, 8-4 (5'GTAACGCC3'), 8-8 (5'GAAACGCC3'), and 8-9 (5'GTTACGCC3'), 
were tested. Several of the programs were compared in parallel to each other for the 8-4 
primer. Original DAF (Caetano-Anolles et al., 1991) program (P#3) in an Ericomp 
thermocycler was used as a control. 

DNA quantification 

After DNA isolation, the working DNA concentration was prepared as follows: 

1. Measure the DNA stock dissolved in water using a Hoefer Fluorimeter Model 
TKlO0. 
2. Dilute the DNA to a level of 50 ng/µL and, then, measure it the same way as in step 
1. 
3. Repeat the step 2 but to a level of 25 ng/µL 
4. Dilute the material from step 3 twenty-five fold to a working concentration of the 
DNA template of 1 ng/µL. 

DNA Amplification 

Polymerase chain reaction (PCR) was carried out in MJ Research and Ericomp 
thermocyclers (San Diego, CA). Reaction was run in a 20 µL total volume consisting 
0.15 ng/µL template DNA, 3 µM primer, 0.2 units/µL of AmpliTaq Stoffel fragment 
DNA polymerase (PE, Norwalk, CT), 200 µM of each deoxynucleotide triphosphate, 
1.25 mM MgC!i and Stoffel buffer (10 mM KCl, 10 mM Tris-HCI; pH 8.3) when 8-
mer primers were used. In case of mini-hairpin primers we used 4 mM MgSO4 and 
TTNKlO buffer (10 mM KCl, 4 mM (NH4)2SO4, 0.1 % Triton X-100, 20 mM Tris-
HCl; pH 8.3). Amplification was carried out in 500 µL plastic tubes, suited for the 
Ericomp wells. Amplification volume was overlaid with mineral oil (Mallinckrodt, 
U.S.P.). 
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PCR Programs 

Fifteen PCR programs used in this study differed in levels of annealing temperature (30, 
47, 55, and 60°C), denaturation, annealing, and extension time (30, 60, 120 seconds), 
and presence/absence of extension step ( +/- 72°C) to increase stringency of DAF. P#3 
and N-DAF, the original DAF programs with annealing temperature of 30°C for 1 sec 
and melting temperature of 95°C for 1 sec in Twin-Block (Ericomp, San Diego, CA) and 
MJR thermocyclers, respectively, were used as controls. Four programs, 7, J, 8, and 3, 
had 30°C annealing temperature but differed in their ramping times of annealing and 
melting temperature change, and the presence/absence of a 72°C extension step. Six 
programs designed with 47°C annealing temperature considered the effect of different 
ramping times for annealing, melting, and the absence/presence of the 72°C extension 
step. In addition, four programs differing in melting time and absence/presence of a 
72°C extension step were used with 55°C annealing temperature for 120 sec. Annealing 
temperature of 60°C for 120 sec was used as the extreme temperature limit for DNA 
amplification. 

Total amplification time, number of detectable bands, and intensity of the bands were 
recorded for each program. Cooling and heating (ramping) for each range of temperature 
in the experiments were also recorded. 

Gel Separation 

Denaturing polyacrylamide gels were prepared in MiniProtean II gel rigs from BioRad 
Inc. To do so, the following recipe of 10% acrylamide gel was used. 

Acrylamide 39.2 g 
PDA 0.8 g 
Urea 40g 
TBE (lOx) 40mL 
Glycerol 20mL 
distilled water as needed 
Total: 400mL 
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Gels were loaded with a two-fold dilution from the amplification mix. At times 
amplification mixes needed to be as is, at other times dilution was needed. We suggest 
that extensive staining in upper gel regions can be reduced by dilution. Also make sure 
at all times that all chemicals are properly dissolved. Urea crystals, for example, become 
nearly invisible before they are properly in solution. Undissolved urea crystals will ruin 
a gel. 

The following steps were used to run a gel: 

1. 150 µL of fresh 10% ammonium persulfate and 15 µL of TE MED were added to 10 
mL gel solution (4°C) while stirring. 
2. Gel solution was loaded in gel rigs using 10-mL syringe and syringe filter (Millipore 
type), and then, a 13-well comb was inserted in each gel. 
3. After >30 minutes, the gel rigs were prerun in lx TBE buffer in cold room at 300 V 
(PowerPac 300, BioRad Inc.) for 15 minutes. 
4. Before loading the samples, wells were cleaned thoroughly twice using a syringe. 
[this step is important to get nice bands]. 
5. 3 µL of sample (amplification products) was added to 3 µL of loading buffer in a 
microtiter plate and then, each two wells were cleaned again before loading the samples. 
In addition, 3 µL of twenty-fold dilution of 90 ng/µL molecular weight marker (Bio 
Ventures, Inc.) was loaded. 
6. The gels were run at room temperature at 300 V (PowerPac 300, BioRad Inc.) for 35 
minutes. 
7. Then, the gels were fixed in 7 .5 % acetic acid for 10 minutes while shaking. 
8. The gels were washed three times with deionized water while shaking. 
9. Silver staining was carried out by adding 300 µL of 37 % formaldehyde to 200 mL of 
0.1 % silver nitrate solution just before pouring on the gels. Staining took 20 minutes 
while shaking. 
10. Meanwhile, developer, 3 % sodium carbonate solution (200 mL), was prepared and 
chilled to 8-10°C while stirring. 
11. The silver solution was discarded in a waste bottle and then the gels were rinsed in 
deionized water for 5 seconds. 
12. 150 µL of 0.4% sodium thiosulfate and 600 µL of 37% formaldehyde were added 
to chilled developer while stirring. 
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13. The developer was poured while the gels were shaking vigorously for first 30 
seconds and then they were shaken gently until majority of the bands had appeared. 
14. The developing process was stopped with cold 7.5 % acetic acid for 3 minutes after 
pouring off the developer. The gels were washed for 10 minutes while shaking. 
15 To avoid either possible bending or cracking of the gels, we suggest that keep the 
gels in anti-cracking solution (10 % acetic acid, 35 % ethanol, and 1 % glycerol) for >60 
minutes. 
16. The gels were hung off the metal bench top by magnets to dry out for several hours. 
17. Dried gels are kept in photo albums for future reference. We have kept gels for 6 
years without fading. Failure to rinse gels properly may produce urea crystals in the 
form of beautiful webs across the gel. While artistically attractive, such problems should 
be avoided. Dried gels can be used to isolate indicative DNA bands as described by 
Weaver et al (1994). Dried gels also can be used for presentation directly on an overhead 
projector, usually under a glass plate to prevent warping. Recently, an improved 
technique has been used for cloning of a band excised from wet gels of DAF, AFLP, 
and differential display RT-PCR (Men and Gresshoff, 1998) 

Results and Discussion 

Total time for each of the fifteen PCR programs and number of the bands on the 
polyacrylamide gels were recorded (Table 4-1). Intensity and sharpness of the bands for 
DNA fingerprinting profile were evaluated (Table 4-1; Figures 4-1 and -2). Effect of 
time course of each step, addition of an extension step, ramping, and annealing 
temperature are discussed in the following sections. 

Total time for programs ranged from 85 (original N-DAF program) to 313 (Program 2) 
minutes. It appeared that total time had an effect on the low intensity of the bands in 
programs N, 7, 8, and 6, indicating that time was not sufficient to complete 
amplification products. Although intensity of the bands was low in Program 10 as well, 
this was probably due to the too high annealing temperature, 60°C, which did not 
allowed the template and primer to interact. When extension steps of 72°C for 30 sec and 
72°C for 60 sec were added to the Programs 7 and 8, respectively, designated as 
Programs J and 3, the intensity of the bands was increased showing that the extension 
step was useful to obtain further amplification products in programs with 30°C annealing 
temperature (Table 4-1). In contrast, Programs 4, 5, 11, 12, and 9, lacking the 
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Programs Denaturation ------- Annealing Temperature ------- Extension ToLal Time Result Summary 
Temperature TemperaLUre 

No. of Total Intensi ty of 
95°C 3o·c 47°C 55°C 60°C n·c Min Bands Bands 

P# 3 1 I - - - - 160 46 high 

N-DAF I I - - - - 085 32 low 

FG-DAF7 30 30 - - - - 123 42 low 

FG-DAF(J) 30 30 - - - 30 159 52 high 

FG-DAF8 60 60 - - - - 160 38 low 

FG-DAF3 60 60 - - - 60 214 40 low 

FG-DAF6 30 - 30 - - - 114 37 low 

FG-DAF4 60 - 60 - - - 145 46 high 

FG-DAF5 120 - 120 - - - 221 41 high 

FG-DAF2 120 - 120 - - 120 313 42 high 

FG-DAFII 30 - 120 - - - 166 41 high 

FG-DAFl4 30 - 120 - - 30 205 50 high 

FG-DAFl2 30 - - 120 - - 160 43 high 

FG-DAFl5 30 - - 120 - 30 200 42 high 

FG-DAF9 120 - - 120 - - 213 48 high 

FG-DAFl3 30 - - 120 - 120 256 48 high 

FG-DAFIO 120 - - - 120 - 211 07 low 
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Figure 4-1. Polyacrylamide gels for 15 PCR programs using 8-4 (5'GTAACGCC3') 
primer for soybean DNA template cultivar Minsoy. P# 3 (shown in both panels) and N-
DAF are the original DAF program run in twin-block Ericomp and MJR thermocyclers, 
respectively. 
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Figure 4-2. Polyacrylamide gels for 15 PCR programs using 8-4 (5'GTAACGCC3') 
primer for soybean DNA template cultivar Noirl. P# 3 (shown in both panels) and N-
DAF are the original DAF program run in twin-block Ericomp and MJR thermocyclers, 
respectively. 
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extension step but having high annealing temperature and longer cycling time, generated 
bands with high intensity. This is probably due to an increase in the time of annealing 
and/or melting steps (Table 4-1) providing enough time for template-primer interaction 
and consequent generation of sufficient amplification products. Total number of the 
bands was high for all programs, ranging from 32 to 52 except for Program 10 with 
annealing temperature of 60°C which showed only 7 bands on average. Number of total 
bands changed from 42 to 52 when a 72°C/ 30 sec extension step was added to the 
Program 7. A similar conclusion, an increase in number of bands from 38 to 51, came 
from addition of extension step to the Program 8 with 30°C annealing temperature (Table 
4-1) indicating a positive effect of extension step on increase of number of bands. 
However, addition of extension step in Programs 5 and 11 with 47°C annealing 
temperature generating Programs 2 and 14, respectively, did not apparently increased 
the number of the bands (Table 4-1 ). A similar conclusion came from the programs with 
55°C annealing temperature, i.e. Programs 12 vs. 15 and 9 vs. 13 (Table 4-1). However 
the general quality such as sharpness and low level of background was apparently 
improved in the programs with extension step, i.e., 2, 14, 13, and 15 programs 
(Figures 4-1 and -2). 

To examine the effect of annealing temperature on the total number of bands, the average 
number of bands was calculated 46, 49, and 45, and 7 over the 30°C, 47°C, 55°C, and 
60°C annealing temperatures, respectively (Table 4-2). The original program in twin-
block thermocycler (P# 3) and N-DAF in MJR machine containing identical cycling 
steps but differed in ramping showed 46 and 32 bands, respectively. Based on 
theoretical expectation, low annealing temperature, i.e. 30°C, should generate more 
bands than the higher annealing temperature. However, this is not the case here where 
average of the number of bands for 30°C, 47°C, and 55°C generated 46, 49, and 45, 
respectively, indicating that annealing temperature apparently did not affect the average 
number of bands (Table 4-2). Obviously, these conclusions are based on the subjective 
evaluation rather than objective and empirical analysis. 

Ramping for cooling and heating rates were determined for the MJR thermocycle (Table 
4-3) as well as in a twin-block thermocycler where the original DAF program, P#3, was 
run. The average of cooling and heating rates for MJR machine was 1.27 and 1.42 
sec!°C, respectively. Cooling and heating ramps in the control machine, twin-block 
thermocycler, 2.15 and 1.65 sec!°C, respectively, were much longer than the MJR 
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Table 4-2. Effect of annealing temperature on generation of total bands in 15 programs. 
P# 3 and N-DAF, the original DAF programs with annealing temperature of 30°C for 1 
sec and melting temperature of 95°C for 1 sec in Twin-Block (Ericomp, San Diego, CA) 
and MJR thermocyclers PT200, respectively, were used as controls. 

Annealing Temperature Average Number of 
(OC) Program Bands 

30 P#3 as control 46 

30 N-DAF as control 32 

30 7,J,8,and3 46 

47 6, 4, 5, 2, 11, and 14 44 

55 12, 15, 9, and 13 45 

60 10 07 
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Table 4-3. Ramping of cooling and heating for the high annealing temperature DAF 
programs used in the MJR machine. Ramping of cooling and heating for the original 
DAF program, P#3, in a twin-block thermocycler (Ericomp) were 2.15 and 1.65 

seconds/1 ·c, respectively. 

Range (°C) 6." C Time (sec) seconds / 1 • C 
Coolin 
95-60 35 51 1.31 
95-55 40 55 1.37 
95-47 48 60 1.25 
95-30 65 75 1.15 

Average 1.27 
Heatin 
72-95 23 41 1.78 
60-95 35 45 1.29 
55-95 40 47 1.17 
47-95 48 50 1.04 
30-95 65 53 0.81 
55-72 17 40 2.35 
47-72 25 43 1.72 
30-72 42 49 1.17 

Average 1.42 
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thermocycler. This might explain why the P#3 generated high intensity and more 
numerous bands than the similar program, N-DAF, in the MJR machine (Figures 4-1 
and -2; Table 4-2). This indicates that thermocycler ramping is a major factor in 
successful DNA amplification, and that each program in a new machine should be 
adapted to the original program to generate reproducible DNA amplification profiles, not 
only in terms of maximum and minimum temperatures, but also ramping rates. 

When DNA amplification profiles of the original DAF, P#3, and other programs with 
annealing temperature of 30°C, i.e., N-DAF, 7, J, 8, and 3, were compared, only 
program J showed comparable profiles with high intensity and number of bands (Fig. 4-
1 and -2). This might be due to presence of 30 sec extension step in J compared with N-
DAF, 7, and 8 which lack an extension step. However, program 3 did not generate a 
comparable profile although it had an extension step, but with twice longer melting, 
annealing, and extension times (60 sec each). This might be the reason for the failure of 
program 3. One might speculate that longer time periods especially for melting 
temperature, lowered the efficiency of the Stoffel fragment DNA polymerase enzyme. 
Contrasting this reasoning, Program 2, with 120 sec for each step, showed an 
interesting DNA amplification profile (Figure 4-1), indicating that longer melting 
temperature alone may not the cause for problem with the Program 3. 

Comparing the programs with 47°C annealing temperature, there was a consistent trend 
between the quality of DNA profiles and the annealing temperature time courses. The 
intensity (from low to high) and the number of bands (from 37 to 46) increased when 
the annealing period increased from 30 (Program 6) to 60 seconds (Program 4). Even 
the subjective quality of the DAF profile from the Program 4 was improved further 
when the 60 sec annealing period was modified to 120 sec for Program 5 (Figures 4-1 
and -2). Modification of melting time appeared not to affect the quality of the DAF 
profiles as shown for Program 5 vs. 11 (Figure 4-2). Addition of extension step in 
Program 11 generated a DAF profile with an average of 50 bands with high intensity in 
Program 14. Thus, the addition of extension step increased the quality of DAF profile in 
programs with 47°C as well as those with 30°C annealing temperature. 

To increase the stringency of the DAF conditions, four programs (12, 15, 9, and 13) 
were tested with 55°C annealing temperature which all showed high quality and high 
number of bands, ranged from 42 to 48, DAF profiles (Figures 4-1 and -2). However, 
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Program 15 generated more consistent results in terms of quality, sharpness, intensity, 
and resolution. This consistency might be due to an extra extension step (compared to 
Programs 12 and 9) and shorter melting temperature (compared to Program 9). 

New Programs with other Primers 

Several of the new programs were tested using arbitrary octamer primers other than 8-4 
(5'GTAACGCC3'), i. e., either primer 8-8 (5'GAAACGCC3') or 8-9 
(5'GTTACGCC3'). Primer 8-4 was also run in parallel to the other primer as control. 

The original DAF program, P#3, in a twin-block was run as a control using Minsoy and 
Noirl templates and two 8-4 and 8-9 primers (Figure 4-3A). Each of the two templates 
and primers were equally mixed prior to PCR to test whether either primers or templates 
are working by comparing the mixture and the normal DNA fingerprinting profiles. For 
example, if the Minsoy DNA is contaminated with an amplification inhibitor, the mix 
reaction will amplify the Noirl template because the inhibitor is diluted in the mix and 
the DAF profile of the mix tends toward profile of Noirl alone. This is also true for 
testing whether the primers either are contaminated or degraded. Since the primer is used 
for both template, failure or incomplete amplification can be judged by comparison of 
mix and individual DAF profiles. 

Primer 8-9 showed the same quality of banding pattern as primer 8-4 except for the 
Noirl template which generated a lower number of bands and low intensity of the 
bands. This might be due to a lower template concentration of Noirl compared to 
Minsoy because the quality in mixture profile was between Minsoy and Noirl profiles. 
This suggests that Minsoy template concentration could "compensate" the Noirl 
concentration. 

Program J was run using the 8-8 primer and showed almost similar quality of DAF 
profile as primer 8-4 (Figure 4-3B). The same conclusion can be reached, when 
Programs 8, 3, 14, and 15 were tested using primers 8-4 and 8-8 (Figures 4-4, -5B, 
and -6B) indicating that these programs work with different primer sequences. For 
further confirmations, Programs 11 and 9 were tested against primer 8-9 (Figures 4-5A 
and 4-6A). Although the quality and number of the bands were poor in primer 8-9 
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Figure 4-3. Polyacrylamide gels for original DAF, P# 3, (Panel A) and J (Panel B) 
programs using 8-4 (5'GTAACGCC3') and 8-8 (5'GAAACGCC3'), 8-9 
(5'GTTACGCC3') primers for soybean DNA template cultivars of Minsoy (M) and 
Noirl (N). MN is a mixture of Minsoy and Noirl and 4,8 or 4,9 are a mixture of 
primers 8-4 and 8-8 or 8-4 and 8-9, respectively, which were combined with equal 
volumes in a single reaction. 
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Figure 4-4. Polyacrylamide gels for programs 8 (Panel A) and original 3 (Panel B) 
using 8-4 (5'GTAACGCC3') and 8-8 (5'GAAACGCC3') primers for soybean DNA 
template cultivars of Minsoy (M) and Noirl (N). MN and primer mixture as in Figure 4-
3. 
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Figure 4-5. Polyacrylamide gels for Programs 11 (Panel A) and 14 (Panel B) using 8-4 
(5'GTAACGCC3') and 8-8 (5'GAAACGCC3'), 8-9 (5'GTTACGCC3') primers for 
soybean DNA template cultivars of Minsoy (M) and Noirl (N). MN and primer mixture 
as in Figure 4-3. 
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Figure 4-6. Polyacrylamide gels for Programs 9 (Panel A) and 15 (Panel B) using 8-4 
(5'GTAACGCC3') and 8-8 (5'GAAACGCC3'), 8-9 (5'GTTACGCC3') primers for 
soybean DNA template cultivars of Minsoy (M) and Noirl (N). MN and primer mixture 
as in Figure 4-3. 
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compared to 8-4, the amplification was successful and generated an acceptable DAF 
profile. 

In summary, Program# 15, (95°C/ 30 sec, 55°C/ 120 sec, 72°C/ 30 sec) resulted in 
sharp, high intensity, and large number of amplification products while running at high 
stringency annealing temperature. However, alternative programs are suggested 
(Programs 13, 9, and 12). Because the PCR is a very complex phenomenon to which 
many factors make a contribution, it is still possible to improve more the high annealing 
temperature DAF by manipulating other components of the reaction. 
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Part 5 

Applications of DNA Amplification Fingerprinting 
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In this part I will demonstrate applications of DNA amplification fingerprinting (DAF) in 
identification of linked markers to enod.2 gene using bulked segregant analysis (BSA) 
and DNA fingerprinting of soybean cyst nematode (SCN), mycorrhizal fungus, aphids, 
centipedegrass, and bermudagrass. 

Bulked segregant analysis (BSA) 

Genetic linkage map of soybean enod2 gene discussed in Chapter 3 revealed that this 
gene is located in an interesting region of genome in approxity of / gene and most 
importantly of soybean cyst nematode (SCN) resistance gene. BSA, a method of choice 
for tagging a gene and saturating a genomic region of interest, is explained here to 
identify DAF markers linked to the enod2 gene and to provide additional molecular 
markers in the genome containing this gene. 

BSA is been widely used since its first introduction (Michelmore et al., 1991) and is 
based on the comparison of two bulks (pools) of DNA generated from a segregating 
population. Each bulk is originated from individuals which have identical genotypes for 
gene or trait of interest but different for other genes. The two bulks are then screened 
with one or more molecular marker techniques such as RFLP, RAPD, DAF, and AFLP 
to detect polymorphic marker genetically linked to the gene of interest. Linkage between 
polymorphic marker and the target gene is confirmed and measured by using the 
individuals in segregating population of which the bulks were originated. 

Study of cosegregation of the linked marker with other markers already mapped to a 
genetic linkage map results in mapping of the gene. In addition, molecular markers 
linked to the gene provides a starting point for map-based cloning of the gene. 
Furthermore, a linked marker would be a useful tool for the plant and animal breeders in 
marker-assisted breeding programs. 

The BSA approach has been used in construction of genetic linkage map and saturation 
of a region of interest sparsely populated with markers not only in plant kingdom but 
also in animal kingdom including human. Any segregating population such as F2 and 
advanced backcross population can be used in BSA. Using a F2 population provides the 
greatest genetic window for the target locus while a greater focus around the locus is 
allowed when backcross population is considered for BSA. In a F2 population, 
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heterozygous individuals are excluded from the analysis allowing a rapid identification 
of molecular markers from both parents. If the target locus is dominant, heterozygous 
and homozygous dominant genotypes can not be distinguished in the F2 generation and 
have to be pooled. Therefore, only molecular markers associated in cis with the 
dominant target locus can be detected. In addition, analysis of F3 individuals can be 
used to identify and exclude heterozygous genotypes for the target locus. 

The BSA approach has been used in variety of plants for identification of markers linked 
to resistance genes to golden mosaic virus in common bean (Miklas et al., 1996), leaf 
rust in wheat (Williams et al., 1997), Rhynchosporium in barley (Barua et al., 1993), 
nematode in peanut (Garcia et al., 1996), virus x (Jong et al., 1997) and virus Y 
(Hamalainen et al., 1997) in potato, downy mildew in lettuce (Michelmore et al., 1991), 
Leveillula in tomato (Chunwongse et al., 1997), Phytophtora in strawberry (Haymes et 
al., 1997), scab in apple (Koller et al., 1994), tristeza virus in citrus (Gmitter, et al., 
1996), Rhizomania in sugar beet (Giorio et al., 1997), and Melaspora in Populus 
(Cervera et al., 1996). Many of these resistance genes in peanut, sugar beet, tomato, 
potato, wheat, strawberry, and Populus have been successfully mapped. 

The BSA facilitated saturation of a region of the genome conferring supernodulation 
(nts-1) locus of soybean using DAF markers (Kolchinsky et al., 1997). In addition to 
nts-1, two ineffective nodulation phenotypes, nod49 and nod139, in soybean were 
analyzed using BSA and DAF markers (Caetano-Anolles et al., 1995). Then, the linked 
markers were confirmed by analysis of individuals in the segregating population and 
some of the markers were converted to sequence-characterized amplified regions 
(SCARs). These markers would be useful in high density mapping and in linking to 
cloned soybean DNA from bacterial and yeast artificial chromosome (BAC and YAC) 
libraries. 

In pea, ineffective nodulation, sym31, mutation was linked to DAF markers using BSA 
approach (Men et al., 1988, submitted). Three DAF markers were tightly linked to 
sym3 l gene and two of them flanking the gene were converted to sequence characterized 
amplified region (SCAR) which provides a tool for positional cloning of the sym3 l 
gene. 
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Quantitative trait loci (QTLs) controlling seed color in pea was mapped on four different 
genomic regions using BSA, molecular markers, and selection of distributional extremes 
(McCallum et al., 1997). The BSA was more efficient than near isogenic lines (NILs) in 
finding eight RAPD markers linked to the dwarf gene in Brassica napus (Foisset et al., 
1995). Three dwarfing genes in oat were mapped on different chromosomes using BSA 
and RFLP markers (Milach et al., 1997). Sex types in asparagus were studied by BSA, 
RAPD and SCAR (Jiang and Sink, 1997). Two RAPD markers linked to male type gene 
converted to SCAR markers for scoring female and male types in the mapping 
population. OTLs for growth and wood quality in Eucalyptus grandis (Grattapaglia et 
al., 1996) and growth habit in apple (Hermat et al., 1997) were mapped using BSA and 
RAPD markers. 

In addition to plants, the BSA approach has been applied for genetic mapping and 
linkage analysis of a target gene in other organisms. In fungus, metalaxyl insensitivity in 
P hytophthora inf es tans was analyzed and found to be linked to RAPD and RFLP 
markers (Fabritius et al., 1997). In chicken, the dominant white locus was mapped 
using microsatellite markers and BSA (Ruyter et al., 1997). White phenotype in the 
axolotl of salamanders was linked to RAPD markers using BSA approach (Voss and 
Shaffer, 1996). 

As reviewed briefly here, the BSA approach has been used for genetic analysis of a 
wide range of traits such plant resistance genes, supemodulation, ineffective nodulation, 
seed color, sex type, dwarf phenotype, and QTLs for wood quality and growth habit. 
All these examples can be identified by phenotype contrast to enod2 gene which is the 
subject of this section. 

Here, a novel case is presented for identification of a DAF marker to the enod2 gene 
which does not condition any phenotype except that based on the deduced amino acid 
sequences it is suggested that the gene encodes a cell wall protein in the inner cortex of 
soybean nodule. 

Materials and Methods 

Parents of the segregating F2 population were G. max cultivar Bragg, and the ancestral 
soybean G. soja, PI468.397. DNA samples from these parents were digested with 6 
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restriction nucleases, namely, Dral, EcoRI, EcoRV, Hindlll, Taql, and Xbal. Parental 
crosses were made and verified as described by Landau-Ellis et al. (1991) using 
morphological and RFLP markers. After detection of polymorphisms in parents, 
Southern hybridization was carried out for 88 F2 plants generated from a cross between 
Bragg and G. soja. Mendelian inheritance (1: 2: 1 ratios) of RFLP banding patterns of 
enod2 in the F2 population was confirmed with Chi Square test. 

Since the enod2 gene does not have a phenotype, homozygous individuals including 
recessive and dominant genotypes could only be identified by their RFLP patterns in the 
F2 population. Hence, those F2 individuals with RFLP patterns identical to homozygous 
parental patterns, Bragg and G. soja, were considered as bulks Band S, respectively. 

DNA from each individual of two bulks was extracted and quantified separately as 
discussed in Chapter 3. Then, each DNA diluted at least twice followed by subsequent 
quantification to reach to a working concentration of 2 ng/µL. At the end, equal volume 
of DNA from each individual was mixed thoroughly to make working DNA 
concentration of bulks B and S for PCR. 

Two bulks of DNA were initially screened for polymorphic bands using mini-hairpin 
and decamer primers and original DAF program, P# 3, as discussed in Chapter 4. After 
development of high annealing (55°C) temperature DAF, two bulks were screened 
further for identification of polymorphic bands using mini-hairpin and unstructured 
primers. 

In addition, three sub-pools from B bulk (B 1, B2, and B3) and two sub-pools from S 
bulk (S 1 and S2) were randomly generated from either 7 or 8 F2 individuals each. Then, 
B 1 versus S 1 and B 3 versus S2 were screened for detection of polymorphic bands 
using mini-hairpin and unstructured primers and high annealing temperature DAF (DAF-
15) program. 

Results and Discussion 

RFLP patterns of 41 homozygous F2 individuals for enod.2 gene were set into two bulks 
of 26 and 15 with RFLP patterns identical to their parental patterns Bragg and G. soja, 
respectively (Table 5-1). Bulks B and S were primarily screened for identification of 
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Table 5-1 . RFLP patterns for enod2 in a F2 population. 

RFLP patterns of homozygous individuals for enod2 gene in a F2 segregating 
population generated from a cross be tween cultivar Bragg and the ancestral soybean G. 
soja, PI468.397. B (26 individ uals) and S (15 individuals) are RFLP patterns identical to 
Bragg and G. soja, respective ly. There were 47 heterozygous individuals which are not 
shown here. 

Order Plant# RFLP Order Plant# RFLP Order Plant# RFLP 
Pattern Pattern Pattern 

0 1 2 s 15 36 B 29 62 s 
02 3 B 16 38 B 30 63 B 
03 5 s 17 40 B 31 68 B 
04 7 s 18 4 1 B 32 70 B 
05 11 s 19 43 s 33 71 B 
06 13 B 20 44 B 34 74 B 
07 15 B 21 46 s 35 76 s 
08 19 s 22 47 B 36 79 s 
09 21 B 23 50 s 37 80 B 
10 26 s 24 52 B 38 81 B 
11 29 B r _) 55 B 39 83 s 
12 31 B 26 57 B 40 86 s 
13 33 B 27 59 B 4 1 88 B 
14 34 B 28 61 s 
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polymorphic markers using 76 mini-hairpin and unstructured primers and original DAF 
program (P#3) run in a twin-block thermocycler (Table 5-2). A total of 59 polymorphic 
bands were detected but due to inconsistency and irreproducibility of DNA amplification 
stemmed from low annealing temperature (30°C) and mismatch of primer and template, 
the bulks were screened further using high annealing temperature 55°C (DAF-15) 
program run in the MJR thermocycler. 

Screening of the bulks B and S with 31 primers resulted in detection of four 
polymorphic bands using primers HpC29 and HpC30 and DAF-15 program (Figure 5-
1). Due to low number of polymorphic bands in the B and S bulks, sub-pools were 
generated and screened. 

Results of randomly-selected sub-pools B 1, B2, B3, S 1, S2 are shown in Table 5-3. 
B 1 and S 1 were tested with total 196 primers of which 32 were used for screening of 
sub-pools B3 versus S2 (Table 5-4). Primers Hp30, HpC22 and HpC30 generated 1, 1 
and 4 polymorphic markers, respectively, using DAF-15 program (Table 5-4; Figures 5-
2 and -3). 

The major screening was focused on the B 1 versus S 1 sub-pools which resulted in 
screening of 196 mini-hairpin and unstructured primers (Table 5-4) of which a set of 9 
primers detected 20 polymorphic bands (Table 5-5; Figures 5-3, through -6). Primer 
HpD25 generated polymorphic bands with 920B 1, 320B 1, 220S 1, and 185B 1 base 
pairs which were reliable and reproducible (Figure 5-6). Although a large number of 
primers (196), different programs (P#3 and DAF-15), and different bulks and sizes 
(Table 5-3) were used to detect polymorphic bands linked to the enod2 gene, only a 
portion of primers could detect 30 polymorphic bands. Some of these bands failed to 
reproduce in subsequent amplification due to either the complex nature of amplification 
or the size of bulks. However, four polymorphic bands generated from HpD25 were 
reamplified in second amplification indicating that these bands are promising bands for 
further analysis such as cloning and generating SCAR markers in the region of genome 
containing the enod2 gene. 

154 



,_. 
v-, 
v-, 

Table 5-2. Results of primary screening of primers for the enod2 gene in bulked segregant analysis (BSA) using original DAF. 
' Bulks Band S generated from 26 and 15 F2 individuals with RFLP patterns identical to homozygous parental patterns, Bragg 

and G. soja, respectively. Primer sequences are listed in the appendix. Class I is presence versus absence of polymorphic band 
while Class II and Class III are presence of bands with different intensities. 

Primer IIPs 53 HPJ\46 HPA 47 HPJ\ 48 IIPA 49 I-IPJ\42 HPA ~3 
( rerun) 

D s D s u s D s D s D s D s 

# of monomor- 51 51 58 58 52 52 43 43 . 65 65 41 41 
phic bands 

Class I 

Class II , 

+0.7 - - +0.71 +0.7 - +>1.0 - +0.8 -
Class Ill +0.6 - +0_68 - - +0.8 +0.05 -

-1-0.2 -
+0. 1 -

Gel 5 - 30 - 95 5 - 30 - 95 5 - 30 - 95 5 - 30 - 95 5 - 30 - 95 5 - 30 - 95 5 - 30 - 95 
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phic bands 
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Class III 
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HPA 56 HPA57 
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HPA 58 HPA59 

I3 s I3 s 

68 68 53 53 
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HPA 45 I-IPA 60 
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+0 .2 -
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IIPA 61 
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51 51 
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Primer HPB 10 HPB I I HPB 12 HPB 13 
( rerun) 

' B s I3 s B s B s 
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Figure 5-1. Silver-stained 10% polyacrylamide DAF gels for two bulks B and S using 
55°C annealing temperature DAF. Band S were generated from 26 and 15 F2 individuals 
with RFLP patterns identical to homozygous parental patterns, Bragg and G. soja, 
respectively. Mini-hairpin primers were Hpl0 (5'GCGAAGCCTG3'), Hp30 
(5'GCGAAGCCTT3'), Hp31 (5'GCGAAGCCAG3'), HpC28 (5'GCGAGAGCTGA3'), 
HpC29 (5'GCGAGAGGT AC3'), HpC30 (5'30GCGAGAGCT A T3'). MM is moleculr 
marker ranged from 0.1 to 1.0 kb. 
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Table 5-3. Plant# of F2 individuals in sub-pools of B(26) and S(1 5) bulks. 

Sub- 1 2 3 4 5 6 7 8 
pools 
Bl 33 40 41 59 71 80 88 -
B2 13 21 44 47 55 - 68 70 
B3 29 34 36 38 52 57 63 74 
Sl 05 26 46 61 62 76 79 -
S2 02 07 1 t 19 43 50 83 86 
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Table 5-4. Bulks and sub-bulks ofF2 individuals for the soybean enod.2 gene. These are 
based on the banding patterns identical to Bragg (B) and G. soja (S) screened with mini 
hairpin and unstructured (octamer and decamer) primers. A subset of the bulks were 
randomly selected and designated as Bl, S1, B3, and S2. 

Bulks Number of Number of Number of Number of 

Individuals Mini Hairpin Unstructured Total Primers 

Primers Primers 

B 26 25 6 31 
s 15 

Bl 7 106 90 196 
S1 7 
B3 8 32 - 32 
S2 8 
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Figure 5-2. Silver-stained 10% polyacrylamide DAF gels for sub-pools B 1, S 1, B3, and 
S2 along with parents Bragg (Br) and G. soja (SO) using 55°C annealing temperature DAF. 
Primers Hp 10 and Hp30 as in Figure 5-1. MM is moleculr marker ranged from 0.1 to 1.0 
kb. 
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Figure 5-3. Silver-stained 10% polyacrylamide DAF gels for sub-pools B 1, S 1, B3, and 
S2 along with parents Bragg (Br) and G. soja (SO) using 55°C annealing temperature DAF. 
Primers used for amplification were HpC22 (5'GCGAGAGCTIT3') and HpC30 
(5'GCGAGAGCT AT3'). MM is rnoleculr marker ranged from 0.1 to 1.0 kb. 
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Table 5-5. Size of polymorphic bands (base pairs) resulted from screening of BSA for the 
enod2 gene using octamer (Oc) and mini-hairpin (Hp) primers and high annealing 
temperature DAF (DAF-15) prgram run in a MJR thermocycler. B and S are bulks 
generated from pooling 26 and 15 F2 individuals. Bl, Sl, B3, and S2 are sub-pools as in 
Table 5-3. 

Primer Polymorphic Band Primer Polymorphic Band 

HpC29 230B HpC30 185S 
225S 180B 

Hp30 520B3 HpC22 190S2 

HpC30 290B3 OcA13 290Bl 
280S2 
250B 
240S2 

OcA43 330Bl OcB7 300Bl 
295Sl 
290Sl 
285Bl 

OcB19 120Bl OcB38 190Sl 
185Bl 
120Sl 

HplO 390Bl Hp30 510Bl 
330Bl 470Sl 

HpC22 180Bl HpD25 920Bl 
170S1 320Bl 

220Sl 
185Bl 
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Figure 5-4. Silver-stained 10% polyacrylamide DAF gels for sub-pools B 1 and S 1 using 
55°C annealing temperature DAF. Octamer primers were OcA 38 (5'GCCCGGTI3') , 
OcA43 (5'GCCCGGGG3'), OcA13 (5'GCCCGCAC3'), OcB2 (5'GCAGGCCT3'), 
OcB4 (5'GCAGGCCA3'), and OcB7 (5'GCAGGCTG3'). MM is moleculr marker ranged 
from 0.1 to 1.0 kb. 
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Figure 5-5. Silver-stained 10% polyacrylamide DAF gels for sub-pools B 1 and S 1 using 
55°C annealing temperature DAF. Octamer primers were OcB 11 (5'GCAGGCGG3'), 
OcB12 (5'GCAGGCGA3'), OcB13 (5'GCAGGCAC3'), OcB19 (5'GCAGGTCG3'), 
AND OcB25 (5'GCAGGTGC3'). MM is moleculr marker ranged from 0.1 to 1.0 kb. 
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Figure 5-6. Silver-stained 10% polyacrylamide DAF gels for sub-pools B 1 and S 1 using 
55°C annealing temperature DAF. B' l and B"l are second and third amplification 
reactions for B 1 bulk, respectively . Mini-hairpin primers were Hp 10 
(5'GCGAAGCCTG3' ), Hp54 (5'GCGAAGCTTT3') , and HpD 2 5 
(5'GCGATAGCTGC3'). Polymorphic bands for HpD25 at 920Bl, 320Bl , 220Sl , and 
185B 1 are reproducible. MM is moleculr marker ranged from 0.1 to 1.0 kb. 
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DNA Fingerprinting 

I used DAF technique for fingerprinting of not only plant DNA but also nematode, aphid 
and Mycorrhi zae fungus DNA. The purposes of DNA fingerprinting were race 
distinction of soybean cyst nematode (SCN), type differentiation of aphids, isolate 
analysis of Mycorrhizae fungus, analysis of genetic stability of centipedegrasses, and 
commercial DNA fingerprinting of bermudagrasses. 

Race Distinction of SCN 

Question. Can DAF differentiate SCN races? 

Soybean cyst nematode is one of the most widespread disease in the north central and 
southeastern regions of the USA which is responsible for the largest loss in the yield 
than any other soybean disease (see Yazdi-Samadi et al., 1996). The purpose of this 
study was to differentiate three major SCN races 3, 14, and 5 using single arbitrary 
primers and DAF technology. 

DNA extraction was conducted on the egg mass of each race using small scale DNA 
isolation procedure (Yoon et al., 1991). Initial screening was performed for the SCN 
races 3 and 14 using 27 octamer and decamer primers. Total polymorphic bands were 
75 of which 38 and 37 bands detected in the races 3 and 14, respectively. Average of 
polymorphic bands/primer was obtained 2.8 with average size 197 .5 base pairs. 

Primer screening was further conducted for the races 3, 14, and 5 using 13 primers of 
which 5 primers could detect 12 polymorphic bands (Table 5-6; Figures 5-7 to 5-9). 

Conclusions 

Primer 8-9 generated four polymorphic bands which could differentiate race 5 from the 
races 3 and 14. In all cases except for primer 8-27 which differentiate the race 3 from 
races 14 and 5, polymorphic bands were present in the races 3 and 14 but absent in the 
race 5 vice versa. This indicates that the races 3 and 14 are genetically related more 
closely than the race 5. 
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Table 5-6. Results of polymorphic bands (base pairs) detected in soybean cyst 
nematode (SCN) races 3, 14, and 5 using single arbitrary primers and 
original DAF method. 

Primer Sequence Race 3 Race 14 Race5 

8-8 5'GAAACGCC3 - - 140 

' 180 
8-9 5'GTIACGCC3' 70 70 -

- - 80 
155 155 -

, 

- - 160 

8-25 5'CGTGGTGG3' - - 210 
205 205 -
180 180 -
130 130 -

8-27 5'CCTCGTGG3' 190 - -

8-31 5'CCTGGTGC3' 230 230 -
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Figure 5-7. Silver-stained 5% polyacrylamide DAF gels for SCN races 3, 14, and 5 using 
original DAF program. Sequence of the 8-25, 8-26, 8-30, 8-3, 8-8, and 8-4 primers are 
listed in the appendix. MM, moleculr marker consists of seven bands 0.1, 0.2, 0.3, 0.4, 
0.5, 0.7, and 1.0 kb. 
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Figure 5-8. Silver-stained 5% polyacrylamide DAF gels for SCN races 3, 14, and 5 using 
original DAF program. Sequence of the 8-31, 8-4, 8-1, 8-9, and 10.6f primers are listed in 
the appendix. MM, moleculr marker consists of seven bands 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 
and 1.0 kb. 
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Figure 5-9. Silver-stained 5% polyacrylamide DAF gels for SCN races 3, 14, and 5 using 
original DAF program. Sequence of the 8-27, 8-28, and 8-16 primers are listed in the 
appendix. MM, moleculr marker consists of seven bands 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 
1.0 kb. 
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DNA Fingerprinting of Mycorrhizal Fungi 

Question. Can DAF be used as a distinctive tool for DNA fingerprinting 
of Mycorrhizae-associated loblolly pine roots? 

In collaboration with Dr. E. G. O'Neill and R. A. Brewer at Oak Ridge National 
Laboratory (ORNL), loblolly pine (Pinus taeda L.) mycorrhizal roots infected by 
ectomycorrhizal fungi, and fruiting bodies of mycorrhizal fungus Telophora terrestris 
Pers. were collected and their DNAs were extracted. Several strains including some 
unknown fungi arising from stock cultures due to either contamination or mutation were 
compared (Gresshoff et al., 1998). DNA from mycorrhizal roots, pine needles, fungal 
cultures and fruiting bodies were extracted and quantified. Primer 8-4 (GT AACGCC) 
effectively amplified the DNA samples using P#3 in a twin-block thermocycler 
(Ericomp). Additional octamer, decamer, and mini-hairpin primers which can be used 
for DAF are listed as 8-4, 8-5, 8-6, 10.6e, 10.6i, Hp 10, and HpA33. 

Comparison of mycorrhizal roots and needles showed different DNA amplification 
profiles (Figure 5-10). Some bands from fungal culture did not find in mycorrhizal roots 
suggesting either DNA competition or the true inoculum resulting in the mycorrhizal 
roots is not identical with the tested fungal culture. DNA amplification competition has 
been previously investigated in mixtures of DNA in symbiotic Azolla-Anabaena tissues 
(Eskew et al., 1993) 

Conclusions 

The results of this study indicate that DAF can be used to differentiate mycorrhizal tissue 
and fungal isolate. The fungal-specific band at 210 base pairs can be excised and cloned 
(Men et al., 1998; Weaver et al., 1994) and generate a SCAR marker as an additional 
tool for analysis of mycorrhizal samples. 
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Figure 5-10. Silver-stained 10% polyacrylamide gels of DNA amplification fingerprinting 
using original DAF program and 8-4 primer (5'GT AACGCC3') for mycorrhizal tissue of 
loblolly pine and ectomycorrhizal fungal tissues. Lane 3, fruiting body of Telophora 
terrestris; lane 3*, mycorrhizal roots; lane 9*, loblolly pine needles; lane M, mixture of 

roots from different sources; lane 2, loblolly pine roots free of mycorrhizae; lane 7 and 9, 
unknown fungal isolates; lane 10, mycorrhizal root infected by a fungus. Molecular size is 
shown on the right. 
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DNA Amplification Fingerprinting of Aphid 

Question. Can DAF be a choice of molecular marker for aphid DNA 
fingerprinting? 

In collaboration with Dr. C. Niblett, University of Florida, 19 different types of aphids 
were studied to conduct DNA fingerprinting. DNA extraction was performed for each 
aphid type using small scale DNA isolation procedure (Yoon et al., 1991). After 
quantitation, DNA of each type was diluted twice and quantified to obtain working 
concentration of 1 ng/µL. An octamer primer, OR30 (5'GTCCAAGA3'), was used to 
amplify the aphid's DNA in a twin-block thermocycler (Ericomp). 

Conclusions 

The aphid DNAs were effectively amplified for 15 samples but failed to amplify the 
samples 18 and 19 (Figure 5-11). The two remaining samples showed incomplete 
amplification with several bands. Failure and incomplete amplification might be arisen 
from either indigenous contaminant which is present in some of the aphid samples or 
general experiment errors for DAF. Indeed, additional step for DNA purification and 
consideration for sample replications might be useful to overcome these failures. 

DNA Amplification of Bermudagrass 

Question. Does DAF differentiate "off-type" and commercial cul ti vars of 
bermudagrasses? 

Bermudagrass ( Cynadon spp) is a warm-season grass that is widespread throughout the 
southern region of the USA. This type of grass consists of several species of which one 
is a sterile triploid (3n=27). Several cultivars have been developed from this triploid 
through clonal propagation and are of great economic importance in turf industry 
especially for golf courses. Recently, off-type patches have been observed in the golf 
courses causing sever problems and millions of dollars in loss. The purpose of using 
DAF was to provide a tool to distinguish off-types from standard turf grass samples. 

Samples from not only from different states in the USA but also from around the world, 
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e.g., Australia, Philippines, and Singapore, were sent to our lab, Plant Molecular 
Genetic, to be analyzed. DNA was extracted from leaf samples using a modified 
protocol developed originally by Dellaporta et al. (1983). After twice dilution and 
subsequent quantification, DNA of off-types and standards were amplified using high 
annealing temperature program (DAF-15) in a MJ Research PT200 thermocycler. 
Standard samples, Tifway 1(34), Tifway II (35), and Tifdwarf were obtained from Dr. 
E. Elsner, Athens, Georgia. Tifway II is a radiation-induced mutant> of Tifway I and 
hence is closely related. 

Here two examples are given to demonstrate applications of DAF in testing turf grass 
samples. In first case, two samples A2 and B4 were contaminated with an off-type 
which had a course-leaf. DNA was extracted from course, fine, and a mix of course and 
fine leaves. DAF was conducted for these samples along with standard samples using an 
octamer primer 8-9 (5'GTTACGCC3'). Results of a 10% silver-stained polyacrylamide 
gel showed no differences between course and fine leaves (Figure 5-12A). Furthermore, 
DAF profiles were identical for A2, B4, and Tifway I indicating that either these two 
samples were the same as Tifway or the primer used in this study was not able to 
exclude these two samples. This primer could differentiate Tifway I and Tifway II by 
presence of a band (230 bp) which is absent in Tifway II (Figure 5-12A). Several 
polymorphic bands also were distinctive between Tifway I -Tifway II and Tifdwarf 
(Figure 5-12A). 

In second case, a sample (MB) was analyzed to determine whether it was a Tifway I. 
The sample and the standard DNAs were amplified in replications using a mini-hairpin 
primer Hp-10 (5 'GCGAAGCCTG3 '). Results of polyacrylamide gel revealed that MB 
DAF profiles were different from Tifway I in a polymorphic band at 430 bp. Another 
distinctive band which amplified with high intensity in MB was observed at 220 bp (5-
12B). 

Conclusions 

DAF was used to provide informative DNA fingerprinting for the off-type and 
commercial cultivars. Each sample was amplified and run in replication to avoid 
experimental errors. Newly-developed high annealing temperature at 55°C provided a 
robust and reliable DAF profiles in this study. 
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Figure 5-12. Silver-stained 10% polyacrylamide gels of DAF for unknown bermudagrass 
and standard cultivars using 55°C annealing temperature DAF and an octamer primer 8-9, 
5'GTTACGCC3', (Panel A) and a mini-hairpin primer Hp 10, 5'GCGAAGCCTG3', 
(Panel B). A2, B4, and MB are unknown samples. Standard samples are TI (Tifway I), 
TI! (Tifway II), and Td (Tifdwarf). Mix is the mixture of course and fine leaves found in 
the both A2 and B4 samples. This mixture was used for DNA extraction and amplification. 
A'2, B'4, TI, and MB' are duplication and MB" is the triplication of amplification. 
Moleculr marker ranged from 0.1 to 1.0 kb is shown on the right 
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Genetic Stability in Centipedegrasses 

Question. Can DAF detect mutation induced under different 
environmental conditions? 

To determine genetic stability of different centipedegrasses including Tennessee Hardy 
(TH) which has tolerated extreme cold temperature of -17 to -31. Vegetative propagates 
of this cultivar and another cultivar, Oklawn (OK), were transplanted from 300 m to 600 
m elevation and grown for 30 years. DNA fingerprints for these two and other cultivars 
have been previously studied (Weaver et al., 1995). 

In this study, DNA was extracted from Tennessee Hardy grown in Knoxville (THK), 
Tennessee Hardy grown in plateau (THP), Oklawn grown in Knoxville (OKK), 
Oklawn grown in plateau (OKP), Common, Centennial (Cent), Tennessee Tuff (TTf), 
A-320, A-321, A-322. DNA samples were amplified using two octamer primers 8-4 
(5'GTAACGCC3') and 8-8 (5'GAAACGCC3').in an oven thermocycler (Bios, New 
Haven, CT) for 35 cycles of 20 seconds at 96°C and 20 seconds at 30°C. Amplification 
products were separated in 10% polyacrylamide silver-stained gels 

DAF profiles of TH from both elevations (TI-II( and THP) showed no difference when 
primer 8-8 was used (Figure 5-13A). However, DAF profiles for OK amplified with the 
same primer exhibited a change in DNA fingerprint profiles (Figure 5-13A) indicating 
that natural selection was in process. Cultivars Com. Cent., and TTF were differentiated 
from each other using primer 8-8 (Figure 5-13A). Using primer 8-4, all cultivar DNA 
fingerprints showed different banding patterns (Figure 5-13B). 

Conclusions 

The two cultivars TH and OK grown at different elevation for 30 years exhibited 
different results indicating different genetic stability rates in these two cultivars. It is 
possible that TI-II( and THP are also under natural selection but the primers used in this 
study were not able to differentiate THP and TI-II(, 
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Figure 5-13. Silver-stained 10% polyacrylamide gels of DNA amplification fingerprinting 
using 55°C annealing temperature DAF and primer 8-8, 5'GAAACGCC3', (Panel A) and 
8-4, 5'GTAACGCC3', (Panel B) for centipedegrass samples, THP (Tennessee Hardy 
grown in plateau) TilK (Tennessee Hardy grown in Knoxville), OKP (Ok.lawn grown in 
plateau), OKK (Oklawn grown in Knoxville, Com. (Common), Cent. (Centennial), TfF 
(Tennessee Tuff), A-320, A-321, A-322. 
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Concluding Remarks 

Bulked segregant analysis (BSA) was developed as a rapid approach for tagging a gene 
using molecular markers (RFLP, RAPD, DAF, and AFLP), and for saturating 
previously mapped regions with new molecular markers, and mapping a gene by 
targeting a specific region and anchoring it to a detailed genetic linkage map. 

Prior to introduction of the BSA, near-isogenic lines (NIL) differing in the target gene 
was a method of choice to target molecular markers to a region (Young et al., 1988). 
Generating NILs is time-consuming particularly in species with slow maturation and 
tedious backcrossing. In contrast, BSA allows efficient mapping without need for 
several crosses and screening of many individuals to find a linked marker to the target 
locus. The efficiency of BSA can be determined by the frequency at which linked 
markers are identified. 

I used BSA to detect DAF markers linked to the enod2 gene and provide additional 
markers in the genomic region. Although the ratio of polymorphic markers (0.1) 
detected in this study were far below the average (1.5) found in the other studies, four 
DAF markers were detected and found to be reproducible in different amplifications. 
These markers can be either mapped directly in the population or mapped after being 
cloned, sequenced and converted to SCAR markers. 

I used DAF successfully and effectively for DNA fingerprinting of SCN, Mycorrhizae, 
aphid, centipedegrass, and bermudagrass samples. This success indicates that DAF is a 
ubiquitous technique which can be used for any kind of organism and any size of 
genome. 
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In this dissertation I have tried to show how molecular markers such as RFLP, 
microsatellite, and DAF can facilitate mapping a gene of interest and saturating a region 
of genome around the same gene with molecular markers as well as applications of DAF 
markers in different organisms. The development of molecular marker technology has 
greatly provided researchers working in plant genetics and evolution with an immense 
supply of genetic markers which enhances construction of genetic linkage maps and 
marker-assisted breeding programs. The plant and animal breeders have the ability to tag 
any trait or region of the genome. This has been accelerated by development of nucleic 
acid automation as well as rapid isolation procedures of nucleic acids at very early stage 
of growth or even from seeds in case of plant. 

In this study, two expressed sequence tags (EST), the enod2 and lbc3 genes, involved 
in early nodulation and subsequent nitrogen fixation in soybean, respectively, were 
mapped in recombinant inbred lines (RILs) as well as an F2 segregating population of 
soybean Glycine max (L. Merr). The enod2 map location was near the seed coat color 
gene I locus with a distance of 11.5 cM on linkage group U3 of the RIL map (Utah) and 
18.5 cM on the G. max x G. soja map (TN). Enod2 and I are located close to Rhg4, a 
soybean cyst nematode (SCN) resistance gene, and a locus for seed coat hardness. The 
molecular marker pAll0 and seed coat color were used to integrate enod2 on an F2 
segregating population generated from a cross between cultivar Bragg and G. soja (Sieb 
and Zucc), PI468.397. Enod2 was mapped in the same order as on the RIL map but 
18.5 cM from the I locus on the TN map. A microsatellite from the 5' region of enod2B 
was mapped in the same position, demonstrating that enod2B and not enod2A was 
mapped. An RFLP for lbc3 (leghemoglobin) segregated independently from enod2 and 
the nts-1 supernodulating locus suggesting that in soybean, symbiotically significant loci 
(including rjJ, Rj2, and rj6) are not clustered in soybean. 

To saturate the enod2 region of the soybean genome, DAF marker was used to detect 
linked markers to the enod2 gene. However, due to mismatch priming and secondary 
DNA structure in original low annealing temperature DAF, a high annealing temperature 
of 55°C was developed to overcome these potential problems. Fifteen PCR programs 
differing in annealing temperature (47, 55, and 60°C), denaturation, annealing, and 
extension time (30, 60, and 120 second), and presence/absence of extension step ( +/-
720C) were tested. These programs were tested for three arbitrary octamer and two 
soybean cultivars, Minsoy and Noirl. The number of scorable bands (amplification 
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products) after 10% PAGE and silver staining ranged from 7 to 51. The average 
ramping temperatures for heating and cooling were calculated 1.42 and 1.27 seconds/°C, 
respectively. Program 15 (95°C/30 sec, 55°C/120, and 72°C/30 sec) generated a 
complex DNA fingerprinting profiles for tested primers in Minsoy and Noirl. These 
profiles contained an average of 42 sharp and highly intense bands using both octamer 
primers 8-4 (5'GTAACGCC3') and 8-8 (5'GAAACGCC3') for DNA amplification. 
Using high annealing temperature increased stringency of primer-template annealing, 
avoided potential mismatching and hybrid molecule formation, and consequently 
improved reproducibility of DNA fingerprinting. 

I used this high annealing temperature DAF and bulk segregant analysis (BSA) approach 
to detect DAF markers linked to the enod2 gene and provide additional markers in the 
genomic region. Although the ratio of polymorphic markers (0.1) detected in this study 
were far below the average (1.5) found in the other studies, four DAF markers were 
detected and found to be reproducible in different replications of amplifications. These 
markers can be either mapped directly in the population or mapped after being cloned, 
sequenced and converted to SCAR markers. Furthermore, I used DAF successfully for 
DNA fingerprinting of soybean cyst nematode (SCN), Mychorrizae, aphid, 
centipedegrass, and bermudagrass samples. This success indicates that DAF is a 
ubiquitous technique which can be used for any kind of organism and any size of 
genome. 

Future plan for the polymorphic markers detected for enod2 using BSA approach would 
be reamplification of bands, cloning, sequencing, and development of SCAR markers 
for the enod2 region. These potential SCARs might be a useful tool for anchoring BAC 
and YAC clones containing the enod2 region and ultimately isolation of interesting 
genes, e. g. race 3 nematode resistance gene, which are located in this region of soybean 
genome 

Molecular marker techniques such as AFLP, RAPD, AP-PCR, and DAF can detect a 
large number of polymorphic markers using a quick and relatively simple laboratory 
procedures which is directly accessible to the researchers in different disciplines. The 
speed of detection has been recently accelerated by development of automation and 
oligonucleotide arrays, also called DNA chips. 
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Fabricated arrays of oligonucleotides or even longer DNA probes can be used to screen 
rapidly a large number of samples including genomic DNA, sequence tag sites (STSs), 
expressed sequence tags (ESTs), and rnRNA. A bulk of labeled cDNA or rnRNA can be 
hybridized to an array of arbitrary probes to generate a hybridization fingerprint in which 
each rnRNA may bind to few specific site within the array, called differential display 
(DD) on a chip. Fingerprinting and expression of rnRNA can be studied directly by 
immobilizing probes corresponding to known gene sequence. It is possible to prepare a 
series of genosensors containing unique probes for each coding sequence. For example, 
in near future it is possible to represent all 100,000 human genes in a series of 
genosensors to analyze gene expression. 

Hybridization fingerprints are digitally interpreted by computer which allows a rapid 
access to comprehensive sequence information. Recently, a new flowthrough sensor 
consisting of rnicrochannel glass or porous silicon has been used. In this design, 
hybridization occurs in a three-dimensional volumes of silicon dioxide or channel array 
glass instead of 2-dimensional surface. Compared to flat surface, binding capacity per 
hybridization cell will increase about 100-fold causing improved detection sensitivity. 
Further improvement of flowthrough genosensor can still increase the speed of DNA 
fingerprinting and gene expression analysis. 
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LOCUS 
DEFINITION 
ACCESSION 
NID 
KEYWORDS 
SOURCE 

ORGANISM 

REFERENCE 
AUTHORS 
TITLE 
JOURNAL 

REFERENCE 
AUTHORS 

TITLE 

JOURNAL 
MEDLINE 

COMMENT 
FEATURES 

source 

Appendix A 

GMENOD2A 30 72 bp DNA 
Soybean ENOD2A gene for Ngm- 75 . 
Xl6875 
gl8575 
ENOD2A gene; Ngm-75; nodulin. 
soybean. 
Glyc 1 oe max 
Eukaryotae; mitochondrial eukaryotes 
Charophyta /Ernbryophyta group; Err.bryo 
Magnoliopsida; Rutanae; Sapindales; 
Glycine . 
l (bases l to 3072) 
Franssen , J. 
Direct Submission 

i?LN 22-MAR-1995 

Viridiplantae ; 
hyta; ~agnol iophyta; 
abaceae; Papilionoideae ; 

Submitted (ll - OCT-1989) Franssen H. J. , Department of Molecular 
Biology, Agricultural Unive rsity, Dreyenlaan 3, 6703 'lA Wageningen , 
The Netherlands 
2 (bases l to 3072) 
Franssen , H.J. , Thompson, D.V., Idle r,:<., :<ormeL! .. nk. , R ., van Kammen,A. 
and Bisseling , T. 
Nucleotide sequence of two soybean E~OD2 early nodulin genes 
encoding Ngm- 75 
Plant Mol. Biol. 14 (1) , 103- ~06 (1990) 
91 322 4 83 
For early nodulin (N- 75) mRNA,partia l eds see . 

Location /Qualifiers 
1. .3072 
/organism="Glycine rr.ax " 
/strain="Wayne " 

misc feature 
/db xref= " taxon:3847" 
1048 .. 3049 

misc feature 

promoter 

precursor RNA 

sig_peptide 

CDS 

mat_peptide 

/note= " Homo logy region wit!"l GmE:NOD 2B " 
1557 .. 1571 
/note= "AGGA box " 
1604 .. 1608 
/note= "TATA box " 
1630 .. 2832 
/note= 11 transc~ipt '1 

1653 .. 1728 
/note= "put.signal peptide (AA - 25 co - 1) " 
1653 .. 2582 
/note= "pre-pro polypeptide (AA -25 co 284) " 
/codon start=l 
/db xref= " PID:g.l..8...5.l..li " 
/db-xref="SWISS-PROT: 0 08297 " 
/translation= ")ITSVUYSLLLLLi.,GVVI LTTPVLANLKPRFFYEPPP:EKPPTY 
EPPPFYKPPYYPPPVHHPPPEYQPPHEKTPPEYLPPPHEKPPPEYLPPHEKPPPEYQP 
PHEKPPHENPPPEHQPPHEKPPEHQPPHEKPPPEYEPPHEKPPPEYQPPHEKPPPEYQ 
PPHEKPPPEYQPPHEKPPPEHQPPHEKPPEHQPPHEKPPPEYQPPHEKPPPEYQPPQE 
KPPHEKPPPEYQPPHEKPPPEHQPPHEKPPPVYPPPYEKPPPVYEi?PYEKPPPVVYPP 
PHEKPPIYEPPPLEKPPVYNPPPYGRYPPSKKN " 
1729 .. 2579 
/note= "mature peptide (AA 1- 284)" 

BASE COUNT 
ORIGIN 

1020 a 731 C 405 g 916 t 

Figure A-L Complete sequence of enod2A genomic clone. 
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1 ggatccttac acaggccaga catccccaag t.t.ctcaaar.a ac;acaaattt ggtt:gt :ct:t 
61 ttcttaatat ttcacaggga gatgttctgt cttttgattt ggggatttca tttagcacat 

121 aacaaacagt taacaaaatt tcgccccacc aaaaagatgt tgcactagaa ctcaacatag 
181 tagctacaac taattctgta aaagttctgt tctttctttc agctttaccg ttcatttcag 
241 gtgaatatgg agcagttgtt t:.catgtatga tt.ccatgcaa attataaaac tcattaaaca 
301 aactggaatc atactctgtg cc:.ct.at.cac ttcgaagtt.t ctt:.aattttc ttattgaatt:. 
361 gattttcaat ttctgttaca aataacttaa acatgtcaag cgcttcactt ttatttttca 
421 taagatatac atatatatat aatcagagca gtcatcaata aaagtgataa aatatcgttt. 
481 tccatttctg gtcaacgttc catcaaattc acatatatca gaatgtatta aatccaatgg 
541 ctcagattct ttaactactg atttttgtga :t::tt:agtt att:tagatt gactgcaaaa 
601 aacacacttt tcaaagtgat ttgaagatag ctt::ggaata aaacctaagt tactcatatt 
661 agatatgcaa cgactattta tatgacaaag tc:agaatgc cagaattaaa atcacacagc 
721 atgtaagcag aaggagaaac c.ttat:.aor.a : caagattca atc.t.gaacac. gccatcagtg 
781 gcgtaccctt tccctacaaa c.accccat:.c t:ggtcaaag caaataaatc tgcacctatg 
841 gtctgagtaa acccagcctt gtt.:aaaaga aaaccagaaa ccagattctt tctcatctct 
901 ggagtatgca tcacatcttt gagaatcaaa gr.c:.ct::cag aggtaaactt cagttcaaca 
961 tctccagttc tagcaacagt agtggtgtgg gaatcaccca acaacacttt cttattttca 

1021 acattcgtgt atgtt:taaa catagcatga -:cc. t. tac.act tgtat::tttt ttttgtttta 

1081 gtttctatac t.taaaaattc tg:tttatta :.ttttacgcc c.tagc.:.:.t.cr. agcaa tctaa 
1141 aactgatata aaatagaagt ataacgacta aaacac.aaaa aaaaaaaatt gtataaaaaa 
1201 taaagcatat agctttcatt catatataag aactaaact.q aaataccagt gtaagtataa 
1261 gaactaatcg ataaattaag ccaaattaag ggtacatatt atttttaaga aaattaggcc 
1321 gggtatatat ttttaaaaag gact:.atacac :atgtgacga tagaaataat aggtatgtag 
1381 atgtatgtta agtattttct aatgtgtttt ttact::tctc tatcacactt gttattttct 
1441 cactattttt ttctcttgtt tctctgttat tttcactc::a aaactggagt aatatgttta 
1501 tgactacaac acattttgac atgacttagg attaacatat attatgataa aataactaaa 
1561 gattgataac cttgatagaa aagcttctca tgtctcctct:. ccctataagt agtttcccat 
1621 tgttatcact tttcatcagc acaagc::aag acatgacttc tgtactacac tactcactcc 
1681 tgctgctcct gcttggagtg gtgatt:.ctca ccactccagt gctagctaat ttgaagccac 
1741 gcttcttcta tgagcctcct ccaatt:.gaga aaccccccac c::atgaacct ccaccatt.tt. 
1801 ataagccccc atactaccca ccaccagtgc accaccctcc accagagtac caaccacccc 
1861 atgaaaaaac accacctgag tatctacctc ctcctcatga gaaaccacca ccagaatacc 
1921 tacctcctca tgagaaaccg ccaccagaat accaacctcc tcatgagaaa ccaccccatg 
1981 agaatccacc accggagcac caaccacctc atgagaagcc accagagcac caaccacctc 
2041 atgagaagcc accaccagag tatgaaccac ctcatgagaa accaccacca gaataccaac 
2101 cacctcatga gaagccacca ccagaatacc aaccacctca tgagaaacca ccaccagaat 
2161 accaaccacc tcatgagaag ccaccaccag agcaccaacc acctcatgag aagccaccag 
2221 agcaccagcc acctcatgag aagccaccac cagagcatca accacctcat gagaaaccac 
2281 caccagaata ccaacctcct caagaaaagc caccacatga aaaaccaccg ccagaatacc 
2 341 aacctcctca tgaaaagcca ccaccagaac accaacctcc ccatgaaaag ccaccaccag 
2401 tgtacccacc cccttatgag aaaccaccac cagtgt:.atga acccccttat gagaagccac 
2461 ccccagtagt gtatccacct cctcatc;aga aaccacccat ttatgagcca ccgccattgg 
2521 agaagccacc ggtctacaat cccccacci:.c. atggccgcta tccaccatcc aagaaaaact 
2581 aataaccact tgcctgcgtc acatgtt:tg gtcta.ctcaa acttagacct gccctttgtc 
2 641 atataaagct ttttgtttct gtttaac;atc tcaagtacaa tatgtccctt ctgcatgcac 
2701 tacttcttca aaataaaggc tt:.tatgccta tgtatc1atac ~ctact.:.taa ttctcctttc 
2 7 61 accatcgata ttgtaatgtc aac:actagt gtgggtttat ctatggc:at aataagtttt 
2821 tctttgtgtt tacttatgaa tc:.tr.gr.:.::.t taattgcatg cc.aaaaac.tg gcaaaaacat. 
2881 atataattct gttcgtacat gttttatt tt atgaacttca taagtaccgg taaagcaatg 
2 941 ataatgtgta aagttgcttg gtctatatat atgtttaaat acacatatct ctaaaccgtc 
3001 aatgagaaat actctctgta cctgtttatt caacttggaa aactaaacca cataat.aaac 
3061 caattattaa tc 

Figure A-1 (continued) 
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LOCUS 
DEFINITION 
ACCESSION 
NID 
KEYWORDS 
SOURCE 

ORGANISM 

REFERENCE 
AUTHORS 
TITLE 
JOURNAL 

REMARK 
REFERENCE 

AUTHORS 

TITLE 

JOURNAL 
MEDLIN£ 

REFERENCE 
AUTHORS 
TITLE 
JOURNAL 

COMMENT 
FEATURES 

source 

GMENOD2B 4584 bp DN A 
Soy bean ENOD2B gene for Ng m- 75. 
Xl6876 
gl85 78 
ENOD2B gene ; Ngm- 75; nodu lin . 
soybean. 
Gl ycl oe .,,ax 

?LN 17 - F'EB- 1997 

Eukaryotae; mitochondr i al eu~aryotes; Vi r i d : p la nc e; 
Charophyta/Embryophyta group ; Embryopnyta ; Magnol ophyta ; 
Magnoliopsida ; Rutanae; Sapindales; cabaceae; ?ap lionoideae; 
Glycine . 
1 (bases 1 to 2992) 
Franssen , J . 
Di rec t Submission 
Submitted (ll - OCT - 1989) ,ranssen H. J ., Cepartment of Molecular 
Biology , Agricultura l ~niversity , Dreyenlaan 3 , 6703 HA Wage n ingen , 
The Netherlands 
revised by (3] 
2 (bases 1 to 2992) 
F ranssen , H. J. , Thompson,D.V ., idler , '<., Kor meli nk,:<. ., van Kammen , A. 
and Bisseling , T. 
Nucleotide sequence of :~o soybean ENC D2 early nodulin genes 
encoding Ngm-75 
?lant Mol. Biol. 14 (1), 103 - 106 (i990) 
91322483 
3 (bases 1 co 4584) 
Lauridsen , ? . 
Direct Submission 
Submitted (12-FEB-1992) Lau r idsen , ? . , !ns::itu tion Dep t . of 
Molecular Biology, University of Aarhus, GCJsta v 'tlieds Vej 10 , 
DK - 8000 Aarhus C, Denmar k · 
For early nodulin (N-75) mRNA , ~ar:ial eds see . 

Location /Qualif:ers 
1 .. 4584 
/organism= "Glycine max " 
I straln= " 1Na yne 0 

old_sequence 
/db xref="t a xon : 3 84 7 " 
1 . . 1592 

misc s ignal 

/citation= [ l] 
/replace= 1111 

3088 .. 310 1 
/note= "AGGA box " 

TATA_signal 3 134 . . 3138 
p r im_t r anscript 3160 .. 4362 

gene 

CDS 

sig_peptide 

mat peptide 

BASE COUNT 
ORIGIN 

61 
121 
18 1 
241 
301 
361 

162 3 a 

aagcttgaca 
tatgtaattt 
gaaatgtttt 
gtctcttaca 
ttaaatttca 
taataaa.act 
attggtattt 

/ gene= " ENOD2B " 
3160 .. 4362 
/gene= " ENOD2B " 
3183 .. 4112 
/gene= " ENOD2B " 
/codon start=l 
/product= " Ngm- 75 , nodulin " 
/db xref="?ID: glll.22..9. " 
/db-xref= " SWISS - ?ROT:~• 
/ trans lation= " MTSVL HYS LLLLLLGW! LTT?VLANLKPRFF YEPP?IEKPPTY 
EPPPFYKPPYYPPPVHHP PPEYQPPHEKTP?EYLPPPHEKPPPEYL?PHEKPPPEYQP 
PHEKPPHENPPPEHQPP~EK?PE HQPPHEKPPPEYEPPHEKPPPEYQPP HE KPPPEYQ 
PPHEKPPPEYQPP HEKP PPEHQPP~EKP?E~QPPHEKPP?EYQPP~EKPP?EYQPPQE 
KPPHEKPPPEYQPPHEK?P PEHQPPHEKP?PVYPPPYEKP??VYEPPYEKPPPVVYPP 
PHEKPPIYEPPPLEKPPVYNPPPYGRY??SKKN " 
3183 .. 3257 
/gene= " ENOD2B " 
3258 .. 4109 
/gene= "ENOD2B " 
/product= " Ngm- 75, nodulin " 

835 c 573 g i5 5J t 

aaagataaat gctttgtggg gtggcgtagc 
atgtaatggg gtggtcactc ctac;;tgac~g 
gctttttcga aaagaacaaa aaatccttaa 
ttgaattggg gttgaattat taaagaagaa 
atcatttat:: agtttaat::: ttataaatca 
cttctaaaaa cataataaaa t taataacta 
atttttgt tt ttttttt.tt. c r.aaattcaca 

gtcttcatgc agcaatggtt 
tcctctgtgt tatgattaat 
gttcacccca tttgtaaata 
atctcaacta cttat.:tatt 
cttttctaaa tattaaaata 
aaataaataa atta tttttt 
t:cttttact tatgttttaa 

Figure A-2. Complete sequence of enod2B genomic clone. 
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421 tagacaaaaa ctgatttgta acaaaagaLt aatnaatgac. tgacgtttaa gtttggtggt 
481 cagaatattt atttagtgtg tatatttgta aaaagggc;ta aagttcaaag tggttc;agca 
541 cttttttgtc ttaaaaagtc tcttatggc;a cat.aacaaac caaatgggat aaatttacat 
601 ttttttttat ttatatagta ttttctttta gagacaaatt attcgaggca ctccatacac. 
661 tgagtgcgaa tatttttttc atccaaaatt ttaactttgg ttaatcacat tat.aaaat.at 
721 tagccttttt tattaaacta aacttccgtt agtaggacaa tttttccttt gttaaaacaa 
781 caaaatttag gcaaaagact aaaagagtaa ttcaaccacc ttaaaataca gaataatcgt 
841 cattaaataa aattaatagt aatacatata tatatatata tatatatata tatatatata 
901 attattaagt tgtttaaatt tcaacttttc attt::aatca aaatgacatg cataatatat 
961 gttaatcaga aaattaataa tttaaaatat aataaattca ttcacatata taatattaat 

1021 taaaatatta aaatacatct taacaactta ataatttatt atatgcgtaa ttgtgacaat 
1081 ttcaagcaat taatgttatt atttttaatt aataac.c.aaa gttttattgt catacattgt 
1141 tagcctccat gtataagaaa actattcctt :aacctataa aaaactatca ttaaaatatt 
1201 ttttaagata attattataa aaatcaacaa acc.tac.taat aatatatgat tcaataataa 
1261 tatataaaat ctttgcatct aacataaatt ataataatat tacaattttt tcctttaaat 
1321 caattttaca ttttaaaaaa tcaaattaaa ttcatatccg actattgctg cgcatgatag 
1381 gctctaaaag accatcccat tcagatatta atatcttatt caacgttaat ctgtgttctg 
1441 ttagattcca aagattccag tgaatagtga tggctaagaa cagtttc ttg acctttcgct 
1501 aacaagcaag cctacctata caagctccaa ttattttctt ttttgaggat tgctccattt 
1561 attttcaaaa gattagttaa car.atcactt. cc.ccgacaaa acataca,tgc atctaaatgt 
1 621 ggcagcatgc taaagttttg gtgaggc:at agtaaaatat gaaataaaga tttgaagttt 
1681 cagcccaata taaaaaaaaa ar. taat tee:-. tctqaaatga aaagagtatc aaagaagata 
1741 taatcagtaa aatctttttc ataagcattg atctggatac atcaacttt g atgcgttgga 
1801 aatactgtgc tcaagtttga cagcaattct tggaattttt tcgccacaac agaagctcca 
1861 gacgattatg atttatgacc ttatatgatg ttagttacgt gaaagtaatt agaatcgcat 
1921 ttgctaacta ttagcaattt ttt:tcttaa gc:aac.qr:aa gtgacagaat ct:aggtct:: 
1981 tataatttga acctgtggcg gt::;gaactc:q tacu.catgt gctgaaaaga acttgatatt 
2041 tttttaaggg aaataatata tar.caac.gct cctaagtcct aaacttca tc ttctttggca 
2101 gctaaattta ctttaaaaag aaataagatt aaataJcttt ttcttacaag aaaatatatt 
2161 taattattaa ttgttaagtt taacgtcttt ttatacattt atttgtttta aattc::agtc 
2221 atctttttaa cataattcca ac.cac.c.tac.:. agt:ttactt ttataaacaa taaaacataa 
2281 ttaattttca gattaaaaaa tagatac;aag i:.t.:-.t.ttaatt gttttttatt atcaaatttc 
2341 aattttaaca tattttataa tagataaaat ga.a r. ::gc.aac aaattaatga ttgaccttat 
2401 agataagtaa tttagccaac aac::.:::.c.::.a g~attaaatt gatagaaaaa ttaagctata 
2 4 61 tttggggggg gggggggtca agt:taatga aqttaaagtt cattgaatat atttg taaaa 
2521 aaagataaag ggtttaaggt ctaatagaga taatatt.taa ggacttaatt aattatttga 
2581 tctttatact tgtatttttt ttctgtttta qtttccatac ttaaaaattc tgttttatta 
2 641 tttttacgcc ttagttttct agcaat.ct.aa aactgatata aaataqaagt ataacgacta 
2701 aaacataaaa aaaaaaaatt gtac. aaaaaa taaagcatat agctttcatt catac·ataag 
2761 aactaaactg aaataccagt gtaagtataa gaactaatcg ataaattaag ccaaattaag 
2821 ggtacatatt atttttaaga aaattaggcc gggtatatat ttt.taaaaag gactatacac 
2881 tatgtgacga tagaaataat aggtatgtag atgtatgtta agc.attttct aatgtgc.ttt 
2 941 ttactttctc tatcacactt gt.t.att.t.t.Ct. cactattttt ttctcttgtt tctctgtt.at 
3001 tttcactcta aaactggagt aatatgttta tgactacaac acac.tttgac atgacttagg 
3061 attaacatat attatgataa aataac:aaa gattgataac cttgataaag aagctt.ctca 
3121 tgtctcctct ccc~agt agtt.tcccat :gttatcact tc.tcatcagc acaagctaag 
3181 acatgacttc tgtactacac c.actcact.cc tgctgctcct gcttggagtg gtgattctca 
3241 ccactccagt gctagctaat ttgaagccac gcttctc.cta tgagcctcct ccaattgaga 
3301 aaccccccac ctatgaacct ccaccatttt. ataagccccc atact.accca ccaccagtgc 
3361 accaccctcc accagagtac caaccaccc:: a.tgaaaaaac accacctgag tatctacctc 
3421 ctcctcatga gaaaccacca ccagaat.acc tacctcctca tgagaaaccg ccaccagaat 
3481 accaacctcc tcatgagaaa ccacc::catg agaa. t::cac:: accggagcac caaccacctc 
3541 atgagaagcc accagagcac caac:::ac::t.c a:.qagaagcc accaccagag tatgaaccac 
3601 ctcatgagaa accaccacca gaa:-.a::cc.1a.c cacctcatga gaagccacca ccagaatacc 
3 661 aaccacctca tgagaaac::a ccaccac;aa.t .:1ccc1accac:: tcatgagaag ccaccaccag 
3721 agcaccaacc acctcatgag aagccaccac; a.gcac::agcc acctca c.gag aagccaccac 
3781 cagagtatca accacctcat gagaaaccac caccagaata ccaacctcct caagaaaagc 
3841 caccacatga aaaaccaccg c::agaatacc aacct.c::tca tgaaaagcca ccaccagaac 
3901 accaacctcc ccatgaaaag ccaccaccag t.gtacccacc cccttatgag aaaccaccac 
3961 cagtgtatga acccccttat gagaagccac ccccagtagt gtatccacct cct.catgaga 
4021 aaccacccat ttatgagcca ccgccattgg agaagccacc ggtctacaat cccccacctt 
4081 atggccgcta tccaccatcc aagaaaaact aat.aaccact c.gcctgcgtc acatgttttg 
4141 gtctactcaa acttagacct gccctttgtc atataaagct ttctgtttct gtttaagatc 
4201 tcaagtacaa tac.gtccctt ctgcatgcac t.actcc:.cca aaataaaggc tttatgccta 
4 2 61 tgtataatac tctactttaa ttctcctt.:c accatcgata ttgtaatgtc aactactagt 
4321 gtgggt ttat ctatggctat aataagtttt tctttgtgtt t~atgag tctttgtttt 
4381 taattgcatg ctaaaaattg gcaaaaacat atataattct gttcgtacat gttttatttt 
4441 atgaacttca taagtaccgg taaagcaatg ataatgtgta aagttgcc.tg gtctatatat 
4 501 atgtttaaat acacatatct ctaaaccr.gt caatgagaaa tactctcttg taccttgttt 
4 561 attcaacttg ggagactaaa ceca 

Figure A-2 (continued) 
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Appendix B 

Table B-1. Segregation patterns for enod2, seed coat color, and molecular marker pAllO 
in a soybean F2 population generated from a cross between Glycine max, cultivar Bragg 
and the ancestral soybean G. soja, PI468 .397. B, S, and Hare patterns identical to Bragg, 
G. soja, and heterozygous patterns. Bl, Y, and V are black, yellow, and varigated seed 
coat colors, respectively. 

Plant enod2 S3a:! pA1 10 Plant enod2 Soo:l pA110 Plant enod2 Soo:l pA1 10 

# Coat # Coat # Coat 
Color Color Color 

01 H V H 02 s Bl - 03 B V H 
04 H V H 05 s Bl H 06 H V -
07 s Bl - 08 H Bl s 09 H V H 
1 0 - V B 1 1 s Bl H 1 2 H V s -
1 3 B V H 1 4 H V H 1 5 B V -
1 6 H V s 1 7 H V B 1 8 H V H 
1 9 s Bl H 20 H V s 21 B V -
22 H V - 23 H V s 24 H V H -25 H V - 26 s Bl s 27 H V --28 H V - 29 B V - 30 H V -
31 B V B 32 H V H 33 B y B 
34 B y B 35 H V H 36 B y B 
37 H V H 38 B y H 39 H y H 
40 B V B 41 B y B 42 H V -
43 s Bl H 44 B y B 45 H V B 
46 s Bl - 47 B V - 48 H V B 
49 H Bl s 50 s Bl s 51 H V H 
52 B y B 53 H V B 54 H V -
55 B y H 56 H V s 57 B V H 
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Table B-1 (continued) 

Plant enod2 Sero pA110 Plant enod2 Sero pA110 Plant enod2 Seoo pA110 

# Coat # Coat # Coat 

Color Color Color 

58 H V s 59 B V 60 - Bl H 
61 s Bl s 62 s Bl s 63 B V H 
64 H y H 65 H V H 66 H V -
67 H V H 68 B V B 69 H V H 
70 B V H 71 B V H 72 H V H 
73 H V H 74 B V H 75 - V B 
76 s Bl s 77 H V H 78 H V H 
79 s Bl s 80 B V s 81 B y B 
82 H V H 83 s Bl H 84 H V H 
85 H y s 86 s Bl s 87 H V H 
88 B V H 89 H V H 90 H y H 
9 1 H V -
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Appendix C 

Table C-1. List of 10-, 9-, 8-, 7-, 6-, 5, 4, and 3-mer primers in the Plant Molecular 
Genetics, The University of Tennessee, Knoxville, TN. 

N ame Sequence Code Other names 
/ 

8 - 1 GAGCCTGT RQJE 8 . 6 a, 385 
8 - 2 CCTGTGAG LODI 8 . 6b, 388 
8 - 3 AACGGGTG .-·6NMB 8 . 6c, KS159l 
8 - 4 GTAACGCC IMBR 8 . 6d, KS359l 
8 -5 GACGTAGG NF ME '8 . 6e, i<S259l 
8 - 6 GATCGCAG LJ:-<E 8. 6f, i\S459l 

-8-7 CTAACGCC ·IMBQ 8.6g 
8 - 8 GAAACGCC IMBE 8.5h 
8 - 9 GTTACGCC IMFR 8.6i 
8-10 GTATCGCC IMPR 8 . 6j 
8-11 GTAAGGCC INER 8.6k 
8 - 12 GTAACCCC II3R 8 . 61 
8 -13 GT.l\.ACGGC JMBR ·8 . 6m 
8-14 GTAACGCG MMBR, 8 . 6n 
8-15 TTCGTGCC IOMS 8.60 
8-16 ACCCA.ACC IBIH 8.6p 
8-17 TGGTGAGG NERO 8 . 6q 
8-18 AGCGGAC.;; DEML 8 .6r 
8-19 TGCGTCC.:;. DKMO 8 . 6s 
8-20 -;,.,ATGCAGC JDOB 8 .7a , .:\0 59 
8-21 GCTGGTGG NROJ 8 .7b, 883 
8-22 GAGGGTGG NRNE 8.7c, Gl / 
8-23 CCGAGCTG OJEI 8 . 7d , 33 11/ 6 
8-24 CCTGGT GG NROI G.7e 
8 -25 CGTGGTGG NROM . 8. 7 f 
8-26 CCAGGTGG NRLI 8 .7g 
8-27 CCTCGTGG NRKI 8.7h 
8-28 CCTGCTGG NQOI 8 . 7i 
8-29 CCTGGAGG NEOI 8.7j 
8-30 CCTGGTCG MROI 8 . 7'.< 
8 - 31 CCTGGTGC JROI 8 . 7 _ 
8-32 CAGCTCGG NKJD 8 . 7m 
8-33 CGCACGTC KMDM 8 . 7n 
8-34 GCAGGCCA DJLJ 8.7o 
8 -35 GCCGGCTA FJMJ ·3. 7:;:, 
8 -3 6 GCAGGTGC JRLJ 8 . 7c_ 
8-37 GGGAGCTG OJEN 8 . 7 r 
8-38 CGCGAAGG NBMM 8 . 7s 
8 -39 CGCCGTCA DRIM 8.7 t 
8-40 AAACTCAG LKHB 8 . 3a 
8 - 41 CTGGACTA FHNQ 8 .Sb 
8-42 CGCGGCCA DJMM 8.9a , L60, L60' 
8 - 43 AGCTTGTC KOQL 8. Sa, I..5 9 
8 -4 4 ATATCGCC IMP:? 8 .S c 
8 -4 5 GGACCCGC JIHN 8 . 9b, G4 
8-46 GGGGGGGG NNNN 8 . l 0 a , Sl 
8-47 GCCCGCCC IJIJ 8.1 0b, 33 
8-48 CGCGCCGG NIMM 8 . 10c, G3 

206 



Table C-1 (continued) 

Name S€quence Code / Other names 
' .. , .......... __ , __ 

3.7a GCT / 

Qg 
4 . Sa ACGT ?-.E 
4 . Sb CTGT RQ.- '.:: 785 
4 . 7a TTGT SR 
4 . 10a GCGC MM 
5. 0a TATAT ?Pt 
5. 2a GATAT PPg 
5. 4a AATGC JP a .\ 025,3iL 11 / 2 0 
5 . 4b CTTGT RSC A0 28 
5. 4c GGTAT :?Rg 
5. 4d TATGG NPt 
5.4e TTTGG ;'/St 
5. 4f GGTTT SRg 
5. 6a CCTGT RQc 332ll / 2 0 ,::; 7g 4 
5. 6b AGCTG OJa 361 1/ 6 
5. 6c TGCTG OJt 37 L / 6 . 
5. 6d ACCTG Oia a sL / 6 
S.6e AGGTG ONa 3911 / 6 
S.6f AGCAG LJa 31011 / 6 
5. 6g AGCTC KJa 31111 / 6 
5.6h CAGCT QLc 
5 .8a ACGCC IMa 
6.Sa G'AATGC JPS 
6 . 6a GCCTGT ?..QC 3331- / 20 
6. 6b CCTGTG OOI 3361-/2 0 
6 . 6c AACGCC IME 
6.7a GAGCTG OJ:: 3511 / 5 
7 . Sa TAACGCC IMEc 
7 . 6a AGCCTGT RQC'a 33411 / 20 
7 . 6b CCTGTGA :::RQc 3371 1/2 0 
7 . 7a CGAGCTG OJ'Ec 34- l / 6 
7 . 7b GGAGCTG OJ::g 
7 . 7c CCAGCTG OJDc 
7.7d CGTGCTG OJRc 
9 . 8a GCCGAGCTG OJEig 32 l l/ 6 
9 . 10a CGGCGGCGG NJMNc 32 
9 . 10b GCCGCCGCC IMJi g G2 
10 . Sa AATGCAGCTG OJCOB A64 6 
10 . 6a AGTCAGCCAC '.-i E.,KL AOJ 
10 . 6b AATCGGGCTG OJNKB .\ 0 4 
10.6c AGGGGTCCTG OIRNL .;os 
10.6d GA.A.ACGGGTC KNMBE - A0 7 
10.6e GTGACGTAGG NFMER .\ 0 8 
10.6f GTGATCGCAG LJKER AlO 
10.6g CA.ATCGCCGT RIMPD .\l l 
10 . 6h TCGGCGATAG LPMNK Al2 
10.6i TCTGTGCTGG NQOOK >..14 
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Table C-1 (continued) 

10 . 6j TTCCG;..ACCC r::==rs ,~.: 5 
10 . 6k ACGCAGCG;..A 3MLJ":-i ·.;:. 5 
10 . 61 GACCGCTTGT RSJ":~ .4.:.. 7 
10 . 6m AGGTGACCGT R2: C:.?2.. ' . .'""'i..!.. '.J 

10 . 6n CAAACGTCGG NK..i.'1ED ' . .-. :: 
10 . 60 GTTGCGATCC IPMOR .4-2 0 
10 . 7a CAGGCCCTTC KQ2:ND AOl 
10 . 7b TGCCGAGCTG o·iiro 1 1 / ,.. A02, 31~- 0 

10 . 7c GGTCCCTGAC HOI!<:N .\ 0 6 
10 . 7d GGGTAACGCC IMBR.N A09 
10.7e CAGCACCCAC :iIHJD AlJ 
10 .7 f ACCCGAGCTG OJEIH 
10 . 7g TCCCGAGCTG OJZ I:< 
1 0 .7h AGCCGAGCTG OJEIL 
1 2. 6a AATGCAGCTGGC JOJDOB A728 
1 2. 7a CGTGCCGAGCTG OJEIOM 
15. 6a GAGCTGGGTA.ACGCC 
15. Ba TAGCTGGCCGAGCTG 
17.4a GAAATCACTCCCAATTA R2 
1 7. 4b AATACGACTCACTATAG RJ 
21. Sa CTCATAAGGGGGTTCATACAC El 82 
21.Sb ACACCACCTGAGTATCTACCT ."-.2 77 
21 . Sa GGTGTCCTGGGTGGGGGGGG 
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Table C-2. List of series A, B, and C for octamer (8-mer) and mini-hairpin primers in 
the Plant Molecular Genetics, The University of Tennessee, Knoxville, TN. 

PRIMER SERIES I CODE GCCCGGGA IA44 IGCAGGTTT 1822 I 
Octamer. A GCCCGGAC A45 GCAGGTTG 1823 i 
G CCC G-bll:!tl GCCCGGAT A46 IGCAGGTTA !824 i GCCCGCCC A1 IGCCCGGAG A47 GCAGGTGC 1825 I GCCCGCCT A2 GCCCGGAA IA48 IGCAGGTGT \826 I GCCCGCCG A3 GCCCGACC IA49 GCAGGTGG \827 I 
GCCCGCCA A4 GCCCGACT IASO GCAGGTGA l828 I 
GCCCGCTC As GCCCGACG IA51 GCAGGTAC 1829 I GCCCGCTT A6 1830 I GCCCGACA A52 GCAGGTAT I 
GCCCGCTG A7 GCCCGATC A53 GCAGGTAG 1831 I GCCCGCTA A8 GCCCGATT AS4 GCAGGTN... l032 I 
GCCCGCGC A9 GCCCGATG ASS GCAGGGCC 1833 I GCCCGCGT A10 . GCCCGATA \AS6 GCAGGGCT 1834 I GCCCGCGG A 11 GCCCGAGC AS7 GCAGGGCG 1835 I 
GCCCGCGA A12 GCCCGAGT . AS8 \GCAGGGCA \836 I 
GCCCGCAC A13 GCCCGAGG A59 lGCAGGGTC 1837 I 
GCCCGCAT A14 GCCCGAGA A60 GCAGGGTT 1838 I 
GCCCGCAG A1S GCCCGAAC A61 GCAGGGTG \839 I 
GCCCGCAA A16 GCCCGAAT A62 GCAGGGTA 1840 I 
GCCCGTCC A17 GCCCGAAG IA63 GCAGGGGC 1841 I 
GCCCGTCT A18 GCCCGAAA A64 GCAGGGGT l042 I 
GCCCGTCG A19 GCAGGGGG 1843 I GCCCGTCA A20 PRIMER SERIES CODE GCAGGGGA \844 I 
GCCCGTTC A21 Octamer. 8 IGCAGGGAC l845 I 
GCCCGTTT A22 GCAGG-bll:!tl IGCAGGGAT \846 I GCCCGTTG A23 GCAGGCCC 81 IGCAGGGAG 1847 I 
GCCCGTTA A24 GCAGGCC':' 182 GCAGGGAA 1848 I 
GCCCGTGC A25 GCAGGCCG 83 GCAGGACC 1849 I 
GCCCGTGT IA26 IGCAGGCCA 84 GCAGGACT l0so I 
GCCCGTGG A27 IGCAGGCTC 85 jGCAGGACG l8s1 I 
GCCCGTGA IA28 GCAGGCTT 86 GCAGGACA IBS2 I 

IGCCCGTAC IA29 GCAGGCTG 87 GCAGGATC \8S3 I 
IGCCCGTAT A30 GCAGGCTA j88 GCAGGATT \854 I 
GCCCGTAG A31 GCAGGCGC IB9 GCAGGATG j855 I 
GCCCGTAA A32 GCAGGCGT 1s1 o GCAGGATA 1856 I 
GCCCGGCC A33 GCAGGCGG 811 IGCAGGAGC j857 I 
GCCCGGCT A34 GCAGGCGA 812 \GCAGGAGT Issa I 
GCCCGGCG A35 GCAGGCAC 813 IGCAGGAGG l8S9 I 
GCCCGGCA A36 GCAGGCAT 814 \GCAGGAGA l860 I 
GCCCGGTC A37 GCAGGCAG 815 GCAGGAAC l861 I 
GCCCGGTT A38 GCAGGCAA 816 GCAGGAAT ·1 8s2 I 
GCCCGGTG A39 GCAGGTCC r817 GCAGGN...G l863 I 
GCCCGGTA A40 GCAGGTCT 818 GCAGGAAA l864 I 
GCCCGGGC IA41 GCAGGTCG 1819 I I 
GCCCGGGT · jA42 GCAGGTCA \820 I I 
GCCCGGGG . \A43 IGCAGGTTC 1821 I I 
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Table C-2 (continued) 

PRIMER SERIES CODE CCGAGGGA IC44 IGATCGTTT 1022 I 
Octamer. C 

I 
CCGAGGAC IC45 IGATC:GT'!'G l023 I 

CCGAG-~ CCGAGGAT C46 GATCGTT.~ i024 I 
CCGAGCCC 1c1 CCGAGGAG IC47 GATCGT GC 1025 I 
CCGAGCCT C2 !CCGAGGAA IC48 IG.;\.TCGTGT 1026 ! 
CCGAGCCG C3 CCGAGACC C49 IGATCGTGG l027 I 

I 

CCGAGCCA C4 CCGAGACT cso G.;\.TCGTGA ID28 I 
CCGAGCTC cs CCGAGACG CS1 GATCGTAC l029 i 
CCGAGCTT C6 CCGAGACA CS2 GATCGTAT l030 I 
CCGAGCTG C7 CCGAGATC CS3 GATCGTAG 1031 ! 
CCGAGCTA C8 CCGAGAT T C54 GATCGTAA l032 I 
CCGAGCGC C9 CCGAGATG CS5 G.;\.TCGGCC l033 I 
CCGAGCGT C10 CCGAGATA IC56 G.;\.TCGGCT 1034 I 
CCGAGCGG C11 CCGAGAGC ICS7 IG.;\.TCGGCG lo3s I 
CCGAGCGA lc12 CCGAGAGT CS8 G.;\.TCGGC.;\. l036 I 
CCGAGCAC IC13 CCGAGAGG ICS9 GATCGGTC ID37 I 
CCGAGCAT C14 CCGAGAGA C60 GATCGGTT l038 I 
CCGAGCAG C15 CCGAGAAC !C61 GATCGGTG !D39 I 
CCGAGCAA C16 CCGAGAAT lcs2 IGATCGGTA !D4o I 
CCGAGTCC C17 CCGAGAAG C63 GATCGGGC 1041 I 
CCGAGTCT C18 CCGAGAAA C64 GATCGGGT ID42 I 
CCGAGTCG C19 I GATCGGGG l043 I 
CCGAGTCA C20 PRIMER SERIES CODE !GATCGGGA lo44 I 
CCGAGTTC C21 IOctamer. D I GATCGGAC l045 I 
CCGAGTTT C22 iGATCG-~ I GATCGGAT l046 I 
CCGAGTTG C23 IGATCGCCC 101 GATCGGAG l047 I 
CCGAGTTA C24 GATCGCCT 102 GATCGGAA l048 I 
CCGAGTGC C25 GA'!CGCCG 03 GATCGACC l049 I 
CCGAGTGT C26 GATCGCCA ID4 GATCGACT loso I 
CCGAGTGG C27 !GATCGCTC IDS GATCGACG l051 I 
CCGAGTGA C28 IGATCGCTT !06 GATCGACA l052 I 
CCGAGTAC C29 IGATCGCTG [07 IGATCGATC l053 I 
CCGAGTAT C30 GATCGCTA Joa GATCGATT l054 I 
CCGAGTAG C31 GATCGCGC 09 GATCGATG loss 
CCGAGTAA IC32 GATCGCGT 1010 \GATCGATA l056 
CCGAGGCC IC33 GATCGCGG 011 GATCG;i..Gc j057 
CCGAGGCT C34 GATCGCGA 012 !GATCGAGT loss I 
CCGAGGCG \C35 GATCGCAC 013 IGATCGAGG l059 I 
CCGAGGCA C36 GATCGCAT 014 IGATCGAGA !060 I 
CCGAGGTC C37 \GATCGCAG 015 -!GATCGAAC l061 I 
CCGAGGTT C38 GATCGCAA rE)16 IGATCGAAT ID62 I 
CCGAGGTG C39 GATCGTCC 1011 IGATCGAAG l063 I 
CCGAGGTA C40 GATCGTCT 018 IGATCGAAA 1064 I 
CCGAGGGC IC41 GATCGTCG 019 
CCGAGGGT C42 GATCGTCA 020 
CCGAGGGG C43 GATCGTTC 021 
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Table C-2 (continued) 

I I I GCG.A.AAGC-GGG lhpA43 \ IGCGACAGC-TTC lho821 I 
I PRIMER SERIES I CODE GCGAA..;.GC-GGA lhpA44 I GCGAC.:\GC-T':'T lho822 I 
!Mini-hairoin. ho A GCGAAAGC-GAC lhoA45 I IGCGACAGC-TTG !ho823 I 

GCG,½AGC-NNN GCGAJ>..AGC-GAT hoA46 I IGCGACAGC-TTA lho824 I 
I 

GCGAAAGC-CCC hoA1 I GCGAAAGC-GAG hoA47 I IGCGACAGC-TGC lhoB25 I 
GCGAAAGC-CCT hpA2 I GCGAJ>..AGC - GAA lhoA48 L GCGACAGC-TGT jhp826 I 
GCGAAAGC-CCG hoA3 GCGAAAGC-ACC lhoA49 I GCGACAGC-TGG lhoB27 I 
GCGAAAGC-CCA hpA4 GCGAAAGC-ACT hpASO I GCGACAGC-TGA lho828 I 

GCGAAAGC-CTC hoA5 GCGAAAGC-ACG lhpAS1 I GCGACAGC-TAC lhoB29 I 
GCGAAAGC-CTT hpA6 GCGAAAGC-ACA hpAS2 I GCGACAGC-TAT lhp830 I 
GCGAAAGC -CTG hoA7 GCG.AAAGC-ATC hpAS3 I GCGACAGC-TAG iheB31 . I 
GCGAAAGC-CTA hpA8 GCG.AAAGC-ATT hpAS4 i lGCGACAGC-TAA lho832 I 
GCGAAAGC-CGC . hpA9 GCGAAAGC-ATG hpASS I GCGACAGC- GCC lhoB33 I 
GCGAAAGC -CGT hoA10 GCGAAAGC-ATA hpAS6 I GCGAO.GC-GCT jhp834 I 
GCGAAAGC-CGG hoAl1 GCGAAAGC-.i\.GC hoAS7 I GCGACAGC-GCG lhp835 I 
GCGAAAGC - CGA hpA12 GCGAAAGC-AGT tipAS8 I GCGACAGC-GC.?i. lho836 I 
GCGAAAGC-CAC hoA13 GCGAAAGC-AGG hpAS9 I GCGACAGC-GTC !hoB37 I 
GCGAAAGC -CAT hpA14 GCGAAAGC-AGA lhpA60 I GCSACAGC-GTT lhp838 i 
GCGAAAGC -C.A.G hpA15 GCGAAAGC-AAC hpA61 I GCGACAGC - GTG lhoB39 I 
GCGAAAGC-CAA hoA16 GCG.AAAGC-AAT lhoA62 I GCGACAGC-GTA ihoB40 I 

GCGAAAGC-TCC hoA17 . GCGAAAGC-AAG hpA63 I GCGACAGC- GGC lhoB41 I 
I 

GCGAAAGC-TCT hpA18 GCGAAAGC-AAA hpA64 I GCGACAGC - GGT jhp842 I 
GCGAAAGC-TCG hoA19 I GCGACAGC - GGG lho843 I 
GCGAAAGC-TCA hoA20 I PRIMER SERIES I CODE I GCGACAGC - GGA lho844 I 
GCGA.l\AGC-TTC hpA21 Mini-hairpin. hoB I GCGACAGC - GAC iho845 I 
GCGAAAGC-TTT hpA22 I GCGAQ.GC-NNN I GCGACAGC-GAT lhoB46 · I 
GCGAAAGC -TTG hoA23 ! GCGACAGC -CCC jhp81 I GCGACAGC-GAG lho847 I 
GCGAAAGC-TTA hoA24 GCGACAGC-CCT hoB2 11 GCGACAGC-GAA I hp848 I 
GCGA.Af..GC-TGC hpA25 GCGACAGC-CCG lhp83 I GCGACAGC-ACC jhp849 I 

GCGAAAGC-TGT hoA26 GCGACAGC-CCA hp84 I GCGACAGC-ACT !hoBSO I 
GCGAAAGC-TGG hpA27 GCGACAGC-CTC hoBS I GCGACAGC - ACG iho851 I 
GCGAAAGC-TGA hpA28 GCGACAGC-CTT lhpB6 I GCGACAGC - ACA ihoB52 I 
GCGAAAGC-TAC hpA29 GCGACAGC-CTG lhp87 I GCGAC\GC -.i\.TC )ho853 I 
GCGAAAGC-TAT hoA30 GCGACAGC-CTA ho88 I GCGAC.:\GC-ATT !hp854 I 

GCGAAAGC - TAG hpA31 I GCGACAGC-CGC hp89 I GCGACAGC-ATG jhp855 I 
GCGAAAGC-TAA hpA32 I GCGACAGC-CGT hp810 I GCGACA.GC-ATA !ho856 I 
GCGAAAGC-GCC hoA33 I GCGACAGC-CGG hp811 I GCGACAGC-AGC lho857 I 
GCGAAAGC - GCT hoA34 I GCGACAGC-CGA lhoB12 I GCGAO,GC-.i\.GT lhoBS8 I 
GCGAAAGC - GCG hoA35 I GCGACAGC-CAC lhp813 I GCGACAGC-AGG )ho859 I 
GCGAAAGC-GCA hpA36 GCGACAGC-CAT hp814- ! GCGACAGC-AGA \hp860 I 
GCGAAAGC -GTC hoA37 GCGACAGC-CAG hp815 GCGACAGC - 1\AC lho861 I 
GCGAAAGC -GTT hoA38 GCGACAGC-CAA lhoB1s I GCGACAGC - AAT ihoB62 I 
GCGAAAGC-GTG hpA39 I GCGACAGC-TCC lhp817 i GCGACAGC - A.AG I ho863 I 
GCGAAAGC - GTA hoA40 GCGACAGC-TCT hoB18 GCGACAGC-AAA lho864 I 
GCGAAAGC - GGC hpA41 ! GCGACAGC-TCG lhp819 I I 
GCGAAAGC-GGT hoA42 I GCGACAGC-TCA lho820 I I 
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Table C-2 (continued) 

I PRIMER SERIES I CODE I GCG_;1..GAGC - GGA lhpC44 \GCGAV,.GC-TTT jhpO22 I 
Mini-hairpin. hpC I GCGAGAGC-GAC I hpC45 GCGATAGC-TTG 1hoO23 I 
GCGA~GC-NNN I GCGAGAGC- GAT hpC46 GCGATAGC-TTA 1hoO24 ! 
GCGAGAGC - CCC !hpC1 j GCGAGAGC-GAG lhpC47 GCGATAGC-TGC lhoO25 I 
GCGAGAGC-CCT hpC2 I GCGAGAGC-GAA hpC48 GCGAT.:\GC-TGT !hpO26 I 
GCGAGAGC-CCG hpC3 \ GCGAGAGC-A.CC lhpC49 GCGATAGC-TGG \ho027 I 
GCGAGAGC-CCA hpC4 I GCGAGAGC-ACT lhpCSO GCGATAGC-TGA jhpO28 I 
GCGAGAGC-CTC hpCS I GCGAGAGC-ACG hpC51 GCG_;1..TAGC-TAC lhpO29 I 

I 

GCGAGAGC-CTT hpC6 GCGAGAGC-ACA hpC52 GCGATAGC-TAT lhpO30 I 
GCGAGAGC-CTG hpC7 GCGAGAGC-ATC hpC53 GCGAT.i;.GC-TAG lhoO31 I 
GCGAGAGC-CTA hoC8 GCGAGAGC-ATT hoCS4 GCGATAGC-TAA lhpO32 I 
GCGAGAGC-CGC hoC9 GCGAGAGC-ATG lhpCSS GCGATAGC-GCC lhoO33 I 

I 

GCGAGAGC-CGT hpC10 GCGAGAGC-ATA \hoC56 GCGATAGC-GCT ihpO34 I 
GCGAGAGC-CGG hpC11 . GCGAGAGC-AGC hoC57 )GCGATAGC-GCG ihoO35 I 
GCGAGAGC-CGA hpC12 GCGAGJ..GC-AGT \hoCS8 IGCGATAGC-GCA lhoO36 I 
GCGAGAGC-CAC hoC13 GCGAGAGC-AGG \ tipCS9 )GCGATAGC-GTC )hoO37 I 
GCGAGAGC-CAT hpC14 I GCGAGAGC-AGA hoC60 GCGATAGC-GTT lhpO38 I 
GCGAGAGC-CAG hpC15 GCGAGAGC-AAC hpC61 GCGATAGC-GTG lhoO39 I 
GCGAGAGC-CAA hpC16 GCGAGAGC-AAT hoC62 GCGATAGC-GTA lhpO40 I 
GCGAGAGC-TCC hpC17 GCGAGAGC -AAG I hpC63 GCGATAGC-GGC ihoO41 I 
GCGAGAGC-TCT hpC18 GCGAGAGC-AAA hoC64 GCGATAGC-GGT hoO42 I 
GCGAGAGC-TCG hoC19 GCGATAGC-GGG \hoO43 I 
GCGAGAGC-TCA hpC20 PRIMER SERIES CODE GCGATAGC - GGA lhpO44 I 
GCGAGAGC-TTC hpC21 Mini-hairpin. hpc:) IU GCGATAGC GAC hpO45 I 
GCGAGAGC-TTT hpC22 GCGAJ:AGC-NNN GCGATAGC-GAT lhoO46 I 
GCGAGAGC-TTG hpC23 GCGATAGC-CCC hoO1 GCGATAGC-GAG )hoO47 I 
GCGAGAGC-TTA lhoC24 \ GCGATAGC-CCT lhpO2 GCGATAGC-GAA lhoO48 I 
GCGAGAGC-TGC hpC25 1: GCGATAGC-CCG lhpO3 !GcGATAGc-Acc I 
GCGAGAGC-TGT hpC26 i GCGATAGC-CCA \hoO4 IGcGATAGc-AcT lheoso I 
GCGAGAGC-TGG hpC27 I GCGATAGC-CTC hpO5 IGCGATAGC-ACG lhoO51 I 
GCGAGAGC-TGA \hoC28 \ GCGATAGC-CTT hpO6 IGCGATAGC-ACA ihoO52 I 
GCGAGAGC-TAC hpC29 GCGATAGC-CTG hoO7 GCGATAGC-ATC ihoO53 I 
GCGAGAGC-TAT hpC30 GCGATAGC-CTA lhpO8 GCGATAGC-ATT \hpO54 I 
GCGAGAGC-TAG hoC31 GCGATAGC-CGC hoO9 GCGATAGC-ATG hoO55 I 
GCGAGAGC-TAA hoC32 I GCGATAGC-CGT jhp010 GCGATAGC-ATA hpO56 I 
GCGAGAGC GCC hpC33 GCGATAGC-CGG hpO11 GCGATAGC-AGC lhoO57 I 
GCGAGAGC-GCT ihoC34 GCGATAGC-CGA hpO12 GCGATAGC-AGT \ho058 I 
GCGAGAGC-GCG hoC35 I GCGATAGC-CAC !hp013 GCGATAGC-AGG lhpO59 I 
GCGAGAGC-GCA hoC36 GCGATAGC-CAT hpO14 GCGATAGC-AGA lhpO60 I 
GCGAGAGC-GTC hpC37 . GCGATAGC-CAG hoO15- GCGATAGC-AAC hpO61 I 
GCGAGAGC-GTT hpC38 GCGATAGC-CAA. hoO16 GCGATAGC-AAT hpO62 I 
GCGAGAGC-GTG hpC39 GCGATAGC-TCC hpO17 GCGATAGC-AAG hpO63 I 
GCGAGAGC-GTA hpC40 GCGATAGC-TCT hpO18 GCGATAGC-AAA hoO64 
GCGAGAGC-GGC hpC41' GCGATAGC-TCG l hpO19 
GCGAGAGC-GGT hpC42 I GCGATAGC-TCA hpO20 I 
GCGAGAGC GGG hoC43 I GCGATAGC-TTC hoO21 I 
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Table C-3. List of mini-hairpin primers in the Plant Molecular Genetics, The University 
of Tennessee, Knoxville. 

- all mini hairpin primers used coontained the stem-loop GCGAAGC---
ftimtc Haircin Ia~ 
HP8 GCT HP53 TIC HP80 ATC 
HPlO CTG HP54 TIT HP81 ATT 
HP28 CTA HPSS TTA HP82 ATA 
HP29 CTC HP56 TGC HP83 AGC 
HP30 CTI HP57 TGT HP84 AGT 
HP31 CAG HP58 TGA HP85 AGA 
HP32 CCG HP59 TAC HP86 AAC 
HP33 CGG HP60 TAT 
HP34 CAC HP61 TA.G 

HP35 CGC HP62 TAA 
HP36 CCC HP63 GCC 

. • 

HP37 CGT HP64 GCG 
HP38 CCT HP65 GCA 
HP39 CAT HP66 GTC 
HP40 CGA HP67 GTT 
HP41 CCA HP68 GTA 
HP42 CAA HP69 GGC 
HP43 GTG HP70 GGT 
HP44 ATG HP71 GGA 
HP45 TTG HP72 GAC 
HP46 GGG HP73 GAT 
HP47 AGG HP74 GAG 
HP48 TGG HP75 GAA 
HP49 TCC HP76 ACC 
HPSO TCT HP77 . ACT 
HP51 TCG HP78 ACG 
HP52 TCA HP79 ACA-
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Table C-4. List of octamer primers obtained for Oak Ridge National Laboratory; OR 
pnmers . 

.. : : .Co~c..t- s~\!? 
I 

r·Jo. p 0. S\~ 1 , 2 , 3 \ P IJ S 6 , 7, 8 1.,j N o . Pas 11 2 I 3 l Pas 6',7,3 

1 AAATGGAC '.~CATTT :.:-_:; \ 3 3 GAAT GGAC IJ GTCC)., 7TC 

2 AA TTGG ,\C GTCCAATT · '2.. 34 GATT GGAC GT CC A f\ TC 
3 AAGTGGAC GTCC~CTT 3, 35 GAGT GGAC GTCC'\CTC 
1 AACTGGAC GTCCAGTT "'"-; 36 GACTGGAC GTCCAGTC 
5 ATATGGAC GTCCATAT -ti 37 GTATGGAC GTCCATAC 
6 AmGGAC GTCCAAAT -t 38 GmGGAC GTCCAAAC 
7 ATGTGGAC GTCCA CAT '( 3 9 GTGTGGAC GTCCACAC 
8 ATCTGGAC GTCCAGAT '5 4 0 ~· GTCTGGAC GTCCAGAC 
9 AGATGGAC GTCCATCT 9 4 1 GGATGGAC GTCCATCC 
10 AGTTGGAC GTC CAf\CT IQ 42 GGTTGG AC GTCCA.l\CC 
1 1 AGGTGGAC GTCCACCT \\ 43 GGG:GGAC GTCCACCC 
1 2 AGCTGG/"'t GTCCAGCT \"2. '14 GG(TGG AC GTCCAGCC 
1 J ACATGGAC GTCCATGT \) 45 GCATGGAC GTCCATGC 
1 '-~ ACTTGGAC GTCCAAGT ,.., 46 GC1TGGAC GTCCAAGC 
1 5 ACG:SGAC GTCC.A. CGT ~" '1 4 7 GCGTGGAC G1CCACGC 
1 ti ACCTGG;\C GTCCAGGT ,:; 48 GCCTG.G AC GTC::AGGC 
1 / TAATGGAC GTCCATTA o 49 CAA1GGAC GTCC..\TTG 
1 TATfGGAC GTCCAJ\ T f\ -1'b so CATTGGAC GTCCAATG 
1 9 TAGTGGAC GTCCACT 1\ \i S 1 C1\GTGGAC GTCCACTG 
?O TACTGGAC GTC C\ GTA t,0 52 CACTG GAC GTCC...\GTG 
2 1 TTATGGAC GTCCA T A i\ ~- 2.1 53 CTATGG AC GTCCATAG 
22 mTGGAC GTCCAAAA --2c. 54 CTTTGGAC GTCCAAAG 
23 TTGTGGAC GTCCA CAA ?..'3 5 5 CTGTGG AC GTCCACAG 
24 TTCTGGAC GTCCAGAA -:.~ S 6 CTCTGG AC GTCCAGAG 
25 TGATGGAC GTCCATCA :J,._7 57 CGATGG AC GTCCATCG 
25 TGTTGGAC . GTCC;.\,<\CA ~ / 5 8 CGTTGG AC GTCCAACG "-'=' 

27 TG GTG.GAC GTCC.\CCA VJ 59 CGGTGG AC GTCCACCG 
28 TGCTGGAC GTCCA C~CA -z.~ 60 CGCT GG..:,C GTCCi\GCG 
29 TCATGGAC GTCCA TGA 2-'1 6 1 CCATG GAC GTCCATGG 
30 TCTTGGAC GTCCAAGAJO 6 2 CCTTGGAC GTCCAAGG 

1 TCGTGGAC GTCCACGA 31 G3 CCGTGG /).,C ,::;rcc;i.cGG 
32 TCCTGGAC GTCCA(jGA 3Z.. 64 CCCTGG AC GTCC;.\GGG 
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Table C-5. List of series A to N decamer (10-mer) primers obtained from Operon 
Technology Inc. 

I 0 1 i, 0 ,v i C ,I ,y O l a GI, .J . ; .'I ,. Operon 10-m er Kits 

E.1c:1 '.<it contain, twenty :O·m~r ;:mm•ri. J5 list•d below, .,nd c-::r.tain;1 0.5 O.D. 1.o!"c,ox. 15 i< )l:n ) :,~r :i.:o•. ".'h e list ?r:c~:, 
5150.00 !J~r ki~ 

KIT A 
code 
CC'A.Jl 
CC'A.J2 
OPA-u, 
CPA-;).; 
CPA--15 

:GT :! 

5' to 3' 
CAC:CCCTTC 
TGCCGAGCTC 
ACTCAGCCAC 
. .\A TCC:GC.G 
AGGCGTCTTG 

OP9..J[ c:TiCGC7CC 
CPB-u2 TGA TCCCTC: 
OPB-u'.l CA TCCCCCTG 

;t OJTS.Ql G:::;ACiC:AGT 
Cr'll..'.l5 TGCGCCCTiC 

KIT C 
CPC.Jl TTCG>.C::C.-\G 
CPC-02 CTGACCCC7C 
CPC-03 GGGCG7CTTT 
OPC-04 CCGCATC:-AC 
Ol?C-05 CA TCACCCCC 

KlT D 
OPD--01 ACCCCGA>.CC 
OPO-02 GGACCCAACC 
OPO.fJ3 GTCCCCG,CA 
CPQ.j)4 TCTC::TGAGG 
CPO.JS TGAGCGGACA 

:<IT c 
Ol"'.....01 CCCAAGGTCC 
OC'E..J2 GGTG:CGGAA 
OPE-03 CCAGA iGCAC 
Ol?::-04 G,GACA rec: 
OPE--05 TCAC'.:GACCT 

KIT F 
OPF--Ot ACGCA TCGG 
OP'F--0'2 G>.G::::A TCCCT 
OPfil3 CCTGA TCACC 
OI'F•14 CG7GA TCACG 
Cl'F.JS CCGAA TT CCC 

(ode 5· to J' 
CC'A--.16 GGTCCCCAC 
C!'A-07 GAAACGGZ."'7G 
OPA•18 CTGACC.-AGG 
CPA.J9 GCCiAACGCC 
CPA-,0 GTCATCGCAC 

CPB--06 TCCTCTCCCC 
,+CPS-()7 G::::TG.ACG(:AG 

OPll-08 CTCC.-'.CAC:::;:::: 
CP"...,.J9 TG::::GGGACTC 
CPS-10 CTCCTCGGAC 

CPC~16 c.i.,1.cGGAC'C 
OPC~i GTCCCCACCA 
Ol'C-08 TGGACcc:::;-;-c 
C PC '19 C'CACCCTCC 
Ol'C-,0 TCTCTCC::::TC 

C PD.J.:O ACCTGAACC:..~ 
CPD4i7 Ti'C:.:LlCGGG 
CPD-'J8 GTC7CCCCCA 
OPD-<.:9 CCTCGACAC 
CPD-i0 GGTCTAC\.C: 

C P<cs JI\ AACACCC:::-:'C 
C P!::~17 AGA TCCAGCC 
OPE~8 TCACCACGG7 
OPE-)9 CTTCACCCGA 
OP::- ,0 C.ACCAGG7GA 

OPFJJ6 G(;GAA TTCGC 
CCGA TA TCCC 

CPF-08 CCGATATCGC 
CPF-0'.:l CC.A.ACC77CC 
C PF-10 C::::AAGCT;'GG 
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c-:c:e 
C l?A- 11 
CPA- i2 
CPA- iJ 
CPA·\~ 
OC'A-iS 

'i' ::, 3' 
CA.A rc:::::~c:-
TCGG::GA TAC 
c,.1.c::,:.c::::::Ac 
1CTC7GC:-GG 
ncc::r-.;..cc:: 

CPO- , l G7 ACACCCC7 
crs.;2, CC77GACCCA 
CC'9-\3 T7CCCCCCC. 
CPS·\ '4 TCCGCTGGC 
CPS-15 CCAC:GiCTT 

OPC-\1 A . .A.ACCTG:cc 
Cl?C,,1 TGTC..\TCCCC 
C PC-13 . .1.,1.ccc-:-c::::-:-c 
CPC-H TGCC7CCTC 
Cl'C -t5 C.ACGCA 7CAC 

OPIJ- i 1 ..,_c:::ccCA T7G 
Cl?C-11 CAC:::7 A TCC 
O PC-13 GGGGTGACCA 
O PD- \ -l C77CCCCAAG 
O PC-.iS CA rcc::,cc 

C PE- \ l GACTC7C.-'-.GG 
c rs. 12 TT ATCGCCCC 
CPS -t:3 (CCGAT:-CC(: 
C PE-\-. TCCC'.GCTGAG 
CPE-\5 . .>..C::C.-\C.-'.AC:: 

·cr,. 11. TTCCTAC:cc 
OPF- ll _.1.cc:;r ACCAG 
OPF-13 GCCGG'-.G.:.A 
CPF- \4 TCCTCCACC 
CPF·lS CCAC,AGC::: 

:'X.e 5· :o :;· 
CPA-16 AGCCACCGAA 
CPA-t7 CACCGC77G7 
CPA-18 ACC'i'CACCCT 
CPA-19 C.....V.CC7CCC 
CPA-;:Q GTTGCGA7CC 

OPB-,6 T7TGCCC:'.:::::A 
CPS-, i . .1.C::::::::,,.,ACCAC 
Cf'B-lll CCACACC>-G7 
OP:H~ .->.CCCCCCA.AG 
CP'S-:O C:ACCCITAC 

OPC-,6 C.KAC'C::::AC 
GPC-1 7 TTC:::CCCC.AG 
CPC-i.8 7G.AC7C~.::TC 
CPC-t9 G77C.:::C.-\C::C 
c rc . .o ACiTCGC::::.AC 

CPD-,6 .->.CCCC::::T A.-l,C 
CPD-i 7 -, ,-1 CCCAC::G 
cre-;s GACAGCCAAC 
C PB-\9 CTCCCCACil 
OPC-:0 .KCCGGTC.-\C 

CPE-, o GGTGACCTC 
cPE-,7 c . .i.c.cc:::::-;-
cp,;;.1s CCAC7CC.ACA 
c?=:- \9 .i.c::c:::c ,.1. ,c 
CPE·,0 AAG:C7GACC 

Cl'F-16 GCAGTACGG 
Cl?F-17 AACCCCGG.AA 
OP'f·i3 TTCCCGGG77 
CPF·i9 CCTG ACACC 
CPF·c.0 GGTCT.-\CAGG 



Table C-5 (continued) 

:<!T G 
coc::e ;· to 3' c<:x:1e s· :o j' ,-..x:1~ - :a j' ,occ ) :o 
CPC-01 CTAC:::.::::ACCA OP~6· CiCC::::-A..ACC CPG-i1 rcc:::crc::7 crc-~o ACCG7CC"CC 
CPG-0:? GGCAGGAGC Ol'G-')7 C.AACC7C::G:::: CPC-i1 CACC7CACGA. CPG-i7 AC:::; AC::GAC." 
OPC-m GAGCC::TCCA .;1- OPG.JS TCACG7CCAC CPG-i.3 C7C7CC::.::::CA CPC -,3 C::C-:-C.AIG7G . OPG.J4 AGCGTGTCTG C PG-.)1 CTCACGTCAC CPG·~~ GG.AiGAGACC CPC-;9 C7C..\C~:'.:~A 
OPG-OS CTCAGACGGA OPG- i0 AC:CCCC7CT C PC- , 5 AC7GGGAC7C C PC-,0 TC7CCCTCAG 

KlT H 
OPH-01 GGTCGGA.GAA OPH-<ln ACGCATCCCA 0 1':-i-\ l CTTCCGCAC7 CP:-:-16 7C'CAGC':'CG 
OPH.J2 TCGGACGTGA Ol?H--Oi CTCC..l..TCC.C 0Pn-i2 ACCC(;C.A ,CT OPH-,7 CACTC7C::7C 
OPH-03 AGACCiCCAC OPH..()8 GA,<.AC,.,..CCCC OPH-13 GACCC::: . .1. c..:.c C:P:-!-i8 GMTC::GC::A 
OPH-04 C:'..':..UCTCGCC CPH.J9 TGTA.GCGGG OP~-.~ ACLlG::.iCG CPH-!9 CTCACCAG~C 
OPH.JS AGTCCiCCCC CPH-itJ CCTACGTCAG OPH-i5 AAlGGCGCAG C P:-t-20 GGCAGA.O .. TC 

KIT I 
CP(-01 .-\CCTGGACA.C CPI"'".6 AAGGCGGCAG OPl-\1 ACATGCCGTG OP!-16 7C7CC:G:::C=:" 
OPT-02 GGAGGAGAGG OPI--07 GI.GCGACA.AG CP!-i:! ACAGCCC.ALl CP!-\7 GGTG:7GA7G 
CPl-03 CAG..UGCCCA CP!-08 TTTCCCCG:::T OPI-13 Ci"CGCG:::TCA OP!-i8 TC::'.:CCACC::-:-
CPI-04 CCGCCTAGTC OPl-09 TGGAGAGCAG OI'I-H TCACG~:::CC7 CPI-19 A.A rc~c.::.:::AC 
OPI-05 Tc:TC:::..ACCG CP!-10 AC.V..CGCCAC GPl-15 TC..>,, TC::CACG CP!-.Q . .\..AAC7:::~:::::~ 

!<IT J 
01']'-0i CCCGGCATA.A CPf-Oi TCGTICCGCA CPHl ACTC::TG:GA OPJ-16 C7c::T7AG.:::~ 
OPJ-02 CCCG7TGGG.A Of'J•J7 CCTGCCACA .CI'/-12 C7C~::C7C::-7 OPJ-17 AC~.::~crrc 
CPJ--U TCTCCCCTTC CPJ-08 CATACCGTGG Cl'J-,3 CCACACTACC OPJ-i8 iCGTCGCAGA 
CPJ-04 CCCAACACCG OI'f-<l9 TCACCCC.AC c,1.c::::ccc.:..,c OPJ- i9 GGACAC::.ACT 
CPJ..')5 CCCAiC:'.:GG OI'H0 .AACC::C:CAC~ CPJ- iS TCT AC::.ACGG Cf'T-~0 AAC~(:~C:C"r~ 

KIT:< 
CP.<.Jl CA.TTCGACCC QP!(.;,(, c,.,..ccrrrc::c Cl'l<-it AATGCCCCAG OPK-i6 GAGCG7CGAA 
CP!<.-02 GTCTCCGC..l..A CP!<.-07 AC::'.GAGCA.AC CPK-1: TGGCCCiCAC OVK-17 cc:: ,1,,cc:-c-;-c 
QPK-0:, CCAGC!TAGG OP!<-08 CA.AC.K,GGG 0l'l< -i3 GG'T'TGiACCC CPK-,8 CCTAGiCGAG 
OI'l<-04 cc::cccAA.Ac OI' l<..J9 CC:::T A CCGA C CP!< -i -l CCCCC7ACAC C'Pl<-i9 CACACGCG:'.:A 
OP!<-s'JS TCTGiCCAC(: OPJ<- i0 GTCCAACG7C OPK-15 CC::TCCC.1-.A CP!<-lO C7GiCGCGAC 

KlT L 
OPLllt GGCATGACCT OPt.J6 GA~A . .l..GAG CPl.-il ACGATGAGCC CPL-,6 ~C~CCAC~ 
CPT • .J2 TCGCCGTCAA O Pt--17 ACCCCGCMC OPL-12 c:::cccc-;-. ...cr CPL-,7 ACCCTGACCC 
OPL--03 CCACCACCTT OPt--18 AGCAC....'7"CCA CPt-,3 ACCG.::CTCCT C f't-18 .KCACC::..i..cc 
OPl,-04 GACTGCAC.K 0 Pl.-v9 TGC::AGAGiC CPt.- i4 CiG.A.CAGGG C PL-i9 GACiGG7CAC 
OPL--05 ACCCACGCAC OI't-i0 TCG::ACATC:: CPt-15 .-V.CACAGGGC CPL-l0 TCGTCGA.CC..l.. 

,UT~ 
CPM-01 G7TGG7GG;:7 Ol?M-1>6 CTCGGC."ACT OPM -11 G7CCAGGTG CPM- i6 C7AAC:::ACCC 
CP!,l-02 ACAACGCCTC OPM- 07 CCC.GAGG. CP!l.l- ,1 C:::.::::AC:'..':TTCC CPM- ,i lCAC7CC:::~c; 
C P!,!- tl3 CC~ATCAG OPM-08 TC7GTTCC~C CPM- \ J GGTG G7C . ..\...AG CPM- lll CACCA TCCGT 
OP~l- 04 CCCCCTTC7C OI'M- 09 GTCTTGCGGA CPM-1~ ACGG7CGT7C OPM- 19 cc.0.c::::::,1. 
CP~ l- 05 CCGAACCTGi CPM- 10 TCTCGCGCAC C PM- !5 GACC:ACCAC O PM• 20 AGG7CTTCGG 

KIT N 
Ol'N-Ol C7CACG.i'GG OPN.\½ CAC..l.CCCACA :+- CPN-i! Tccc::::.:::.4...AA CI'N- \6 A..,.:.GCG.ACGC 
OPN--02 ACCAGC:::GC..l.. O PN-07 CACCCCACAC :,/ .CPN- l: C:..>,,CACAC."CC Ol'N-17 C.A T7GGCG.AC 
OPN--03 G::7i ACTCCCC Ol?N.;;s ACCTC.ACCTC Cl'N-~J .... ccGTCAGC OPN-13 CG7 c.,:... C.::-7 CA 
CPN--0~ CACCCACCCA ; CPN~J9 TGCCGGC7TG Ol'N-1.:! TCCTCC~CCT OPN-i9 G7CCG7A.C7G 
CPN-05 AGCA.ACGCC -'+- O l'N-i0 ACAAGC::;:;C CI'N-iS C.ACCGAC7Gi C l'N-.0 C C7GCTC CG'T 
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