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By using the Liouville - Stekloff method asymptotic estimates for the zeros of the relativistic 
Hermite polynomials ~ i ~ )  are derived. 
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1. INTRODUCTION 

The wave functions of the quantum relativistic harmonic oscillator in configuration 
space have been shown [I] to be expressable by means of a one-parameter family 
of polynomials { H ~ ~ ) ) ~ = ~ ,  called Relativistic Hermite Polynomials (RHP): 

tf $"(ti r ,  p;  N) = exp i; exp ( - m ~ t ) 2 - " ~ ' a " ~ ~  H ~ ~ ) ( x ) ,  

where the following notation has been used: 

2mc2 
f (2, P ;  N )  = - arctan 

W 

In the preceding formulas n is the principal quantum number, w is the frequency 
of the oscillator and p the momentum. 
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76 P. NATALINI AND S. NOSCHESE 

The RHP reduce to the well-known classical Hermite polynomials in the non- 
relativistic limit ( N  - oo) and the dimensionless real parameter N must be greater 
than 112 because of the square integrability of the wavefunction. 

B. Nagel has shown the existence of a connection between these polynomials and 
the well known Gegenbauer polynomials in [3]. 

In this paper we will obtain asymptotic estimates for the zeros of the Relativistic 
Hermite Polynomials. Our result is Proposition 11. 

The RHP satisfy a certain differential equation which can be transformed, by a 
change of variables, into a differential equation to which it is possible to apply the 
Liouville-Stekloff procedure [2]. This method will give an asymptotic representation 
of the solutions which allows us to use Dicomi's method [4]. 

For sake of completeness we will give a brief description of both methods. 

2. A RESULT DUE TO F.G. TRICOMI 

In paper [4], F.G. Tricomi proved the following result: 

Proposition 1. Suppose the continuous function f ( x )  admits (uniformly with 
respect to x), the asymptotic representation: 

where the functions gk(x)  are differentiable m-k+l times in a neighborhood of a 
point xo which is a simple zero of the function go(x)  (gO(xo)  = 0 ,  gh(xo) # 0 ) .  
Suppose further that g,(x) E C1 in the same neighborhood. Then Vc > 0 and for 
JpI less than a suitable S > 0 ,  the equation f = 0 is satisfied at least by a value xg 
such that: lxz - xol < 6 ,  and the following expansion holds: 

where the cofficients wo, w l ,  W Z ,  . . . are rational functions of the values: 

and ore determinated by the system: 

0 = Glo + Goiwo 
0 = Gzo + G o ~ w l +  G I I W O  + Gozwi 
0 = G30 + Goiwz + G i i w i  + ~ G O P O W I  + G Z I W O  + G12wi + Go3w: 
. . . . . . . . . . . . . . . . . . . . * . . . . . . . . . , . . . , . , . , . . . , . . . , , . . . . . . , . , . ~  

(see [dl, for the general equation). 
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ASYMPTOTICS FOR THE RHP ZEROS 77 

Remark. Note that we have written gk(x) in place of gk(x, q) in order t o  simplify 
the notation; nevertheless the method also works in the case when the functions gk 
depend on the parameter q. In the following we deal with this more general case. 

The first expression for the wk are given by: 

Note that formula (2) provides an asymptotic estimate for a zero xt; of the 
function f in terms of the zero xo of go , provided that the representation (1) is 
known. 

3. THE LIOUVILLE - STEKLOFF METHOD 

In a book by ErdClyi [2], a procedure can be found, due to Liouville and Stekloff, to  
approximate the zeros of solutions of a certain differential equation. Such a method 
can be summarized as follows. 

Let's consider the ODE: 

where X -r oo. 
Here, x is a' real variable, a 5 x _< b, p(x) is positive and twice continuosly 

differentiable, and r(x) is continuous, for a 5 x 5 b. 
New variables, E and q,  are introduced by the substitutions 

which carry the interval a 5 x 5 b into a < [ < P and the differential equation (5) 
into 

where 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
à
 
d
e
g
l
i
 
S
t
u
d
i
 
d
i
 
R
o
m
a
 
L
a
 
S
a
p
i
e
n
z
a
]
 
A
t
:
 
0
7
:
3
4
 
7
 
M
a
y
 
2
0
1
0



78 P. NATALINI AND S. NOSCHESE 

is a continuous function of 5, cr 5 4 5 P 
It is well known that solutions of (6) satisfy the Volterra integral equation: 

q(E) = c~ cos XE + c2 sin XE + sin A(( - t)p(t)q(t; N ,  n) dt (7) 

where a 5 y 5 ,B and cl ,  c2 are arbitrary. Note that q(E) and cl cos X[ + c2 sin XE 
have the same value, and the same derivative, at = y. 

The solutions of (7) can be obtained by successive approximations in the form 

where 

Y 

If Ip(E)I 5 A, by using the induction method, it can easily be proved that 

and in the case of a finite interval (a, /3) it follows that (8) is uniformly convergent, 
and is an asymptotic expansion of q(5, A )  as X + oo. 

4. APPLICATION TO THE PROBLEM 

The RHP have been shown [l] to satisfy the following second order differential 
equation 

where 

The explicit expression of these polynomials is the following [I]: 

where 
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ASYMPTOTICS FOR THE RHP ZEROS 

Here we will study the distribution of zeros of the RHP: these zeros describe the 
nodes of the wave functions of the quantum relativistic harmonic oscillator. 

In order to study the distribution of zeros of the RHP, we start by inserting the 
following change of variable [5]: 

in the differential equation (9), which gives us the form: 

where 
(1 - N)x2 + n2 + 2nN + N - 1 

S(x; N, n) = 
N ( 1 +  X ~ / N ) ~  

The zeros of y,(- H ; ~ ) )  coincide with the ones of u,. Moreover if S(z; N,  n)  < 0, 
un has, at  most, two zeros that are symmetric with respect to the origin. So we 
are interested in the relevant case S(x ;  N,  n) > 0 and hence [5]: 

Here, we observe that the equation (11) can be written in the following form: 

where 

and 

This allows us to  apply the Liouville-Stekloff method [ 2 ] .  Therefore we introduce 
the new variables [, 77 by the following substitution: 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
à
 
d
e
g
l
i
 
S
t
u
d
i
 
d
i
 
R
o
m
a
 
L
a
 
S
a
p
i
e
n
z
a
]
 
A
t
:
 
0
7
:
3
4
 
7
 
M
a
y
 
2
0
1
0



80 P. NATALINI AND S. NOSCHESE 

carrying the differential equation (12)  into 

where 
1 p" 5 pI2 r p ( ~ , ( )  = -- - -- - - - - ( N -  1 ) N t a n 2 ( -  N .  
4 p 2  1 6 p 3  p  

That is: 

Clearly zeros 0f.u are obtained by taking the tangent of zeros of q .  Therefore we 
will study the zero distribution with respect to the variable q .  

The solutions of (13)  satisfy the Volterra integral equation: 

q(<;  N ,  n )  = cl cos d a (  + c2 sin d m ~  

Notice that if n  is even, c2 = 0 and if n  is odd, cl = 0. The solutions of (14)  can 
be obtained by successive approximations in the following form [2]: 

c1(N,  n )  ] 
v 2 ( t ; N , n )  = - 

A; 
sin An (t - t ) p ( N ,  t )  sin i , ( t  - s ) p ( N ,  s) cos Ans ds dt  

O i o 
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ASYMPTOTICS FOR THE RHP ZEROS 81 

C t 

c l (N '  n, / sin An ( (  - t ) p ( N ,  t )  / sin h (1 - r ) p ( N l  r )  773(<; N ,  n )  = - 
A: 

0 0 

x / sin An ( r  - s )p (N ,  s )  cos Ans ds dr dt 

0 

( i n  A - t ) ~ ( N t )  sin Ant dt,  771(t ;  Nl n )  = - 
An 

0 

e t 

C 2 ( N 1  n, /sin An(< - t ) p ( N l  t )  /sin An(t - s )p (N ,  s) sin Ans ds dt ,  772(t; N ,  n )  = - 
A?, 

0 0 

Therefore in both cases we can write the asymptotic representation in the following 
form: 

where the functions gr are differentiable m - e + 1 times in a neighbourhood of 
every simple zero of the function go.  

If n is even: 

go(<; N ,  n )  = qo(<; N ,  n )  = el ( N ,  n )  cos An< = N aN+:n-3 H ~ ~ ) ( o )  cos Jm< 
and 
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P. NATALINI AND S.  NOSCHESE 

Choosing k E N and k 5 9, since J n w  - n ( n  3 m), we obtain n simple 
symmetric real zeros tn,l, . . . , of go a11 satisfying I [ n , i  ( < 5 for i = 1,  . . . , n. 

If n is odd: 

so((; N,  n)  = qo(J; N,  n)  = c2(N, n) sin Ant 

Z N + Z ~ - 3  n(2N + n - 1) ( N )  = N  4 

N J ~ N  
Hn-,(O) sin d m i ,  

and 

And, similarly as above, we choose k E N and k 5 9. 

5 .  ASYMPTOTIC ESTIMATES FOR THE ZEROS OF THE RHP 

Here we apply Tricomi's method 141 (since the hypotheses are clearly satisfied) to 
obtain an asymptotic representation of any order of accuracy for all the zeros of 71 
and therefore of { H ! ~ ~ ) ( z ) }  in terms of the zeros of these functions go .  

That is : Vc > 0, Vh E N and Vh 5 9 if n is odd ( h  5 9 if n is even), the 
equation ~ ( t ;  N ,  n)  = 0 is satisfied by a value s.t. Ig - <,h I < 6 where 

1 + h r )  , if n is even, 
F,h = 

if n is odd, 

and the following expansion holds: 

where 

W o  = - 91 (ti ; N,  n)  
!?L(tk ; N ,  n)  ' 
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ASYMPTOTICS FOR THE RHP ZEROS 83 

Since the zero distribution of the RHP is symmetric, we will only show how to 
apply the method for positive z. 

To compute the explicit expression of wo and wl for in both cases of n odd or 
even, let us consider the zero (,h of go((; N ,  n) s.t. VE > 0 Ig - tk 1 < E .  

5.1. Case n even 

-Xncl(N, n), if h is even, 

s b ( t 3  = 
Xn cl ( N ,  n) if h is odd, 

g l ( (  N n) = c ~ ( N ,  .in - ~ ) P ( N ,  t)  cos ~ . . t  dt,  

0 

I k ( 9 t h r )  

c l (N,  n) J cos2 X,tp(N, t )  dt,  if h is even, 
0 

gl(r,h) = 
* ( $ + h ~ )  

-cl(N, n) 5 cos2 Xntp(N, t )  dt, if h is odd. 
0 

Therefore we obtain: 

' ( 4 t h ~ )  

weven - - 
0 - " / cos2 Antp(N, t )  dt. 

Xn 
0 

Moreover we have: 

k ( $ t h " )  

-cl(N, n)Xn J sin Ant cos Xntp(N, t )  dt, if h is even, 

!?i(€,h) = 
0 

X l ; ; ( $ t h s )  
cl (N,  n)Xn J sin Ant cos Xntp(N, t )  dt,  if h is odd, 

0 
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84 P. NATALINI AND S. NOSCHESE 

Finally the following expression is obtained: 

& ( * + h r )  & ( Q + h r )  

weven - 
1 _ -- I J cos2 ~ . t p ( ~ , t )  dt sin ~ , t  cos A,.,~P(N, t)dt 

An 
0 0 

(16) 
* ( 4 + h ~ )  t 

+' J cos A n t p ( ~ , t )  J sin An(t - s)p(N, a) cos Ans dadt. 
An 

0 0 

5.2. Case n odd 

Anc2(N,n), i fh i seven,  
sh(€,h) = 

-Ancz(N, n),  if h is odd, 
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ASYMPTOTICS FOR THE RHP ZEROS 

5 
-c2(N,n)$sin2Xntp(N,t)dt ,  i fh iseven,  

0 

h n  
7 

c2(N, n) ĵ sin2 L t p ( N ,  t) dt, if h is odd. 
0 

Therefore we obtain: 

Furthermore: 

gi((; i, n) = c2(N, n) in  cos A,,(( - t)p(N, t) sin Ant dt, 

0 

E 
c2(N, n)Xn $ sin Ant cos Xntp(N, t )  dt if h is even, 

s:(€:) = 0 

5 
-c2(N, n)Xn S sin Ant cos Antp(N, t)  dt, if h is odd, 

0 

C t 

rz(<) = c2(N, n) J sin A,(< - t ) p ( ~ ,  t )  J sin An(t - ~ ) P ( N ,  s ) s i n ~ n s d s d t  

0 0 

e t 
-cz(N, n) $ sin Xntp(N,t) $ sinXn(t - s)p(N, s) sin Ans ds dt, if h is even, 

sz(<,h> = 0 0 

E t 
cz(N, n) S sin Antp(N, t) S sin Xn(t - s)p(N, s) sin X,s ds dt if h is odd, 

0 0 
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86 P. NATALINI AND S. NOSCHESE 

Finally we obtain: 

Returning to the original variable x, we can lastly proclaim the following result: 

Proposition 2. For all the zeros of the n t h  (n  even) RHP, we can write the 
asymptotic estimate: 

- 1 n ., = f i t a n  [-(- + hn) + w ~ v e n l  
A n  2 

A n  + weven L] A?, + 0 ($) . (19) 

For all the zeros of the n- th  (n  odd) RHP, we can write the asymptotic estimate: 
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