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Spatial distribution of physical and chemical variables and macroinvertebrate composition, structure
and functional aspects were investigated in five microhabitats available (Ranunculus acquatilis+
Ranunculus sardous, Spirogyra sp., Juncus effusus, and unvegetated littoral sediments and central
sediments) in a temporary pond near Rome during spring 2004. The central sediments were found to
differ greatly from the other substrates. They were characterized by higher nutrient contents (total P,
total N), organic matter and organic C, and silt and clay in the sediments, and lower dissolved oxygen
content and lower pH in the water. Species richness and densities of total macrofauna showed the
lowest values in central sediments and the highest ones in submerged macrophytes (Ranunculus spp.)
and emergent vegetation (Juncus effusus). Oligochaeta Tubificidae, some Nematoda (Dorylaimus spp.),
and Chironomidae Tanypodinae (Procladius sp. and Psectrotanypus varius) and Chironominae
(Chironomus plumosus group) characterized the central sediments, whereas Ephemeroptera and most
of the Odonata and Coleoptera species were commonly found in submerged macrophyte beds. Some
species of Coleoptera and Hemiptera (Hygrobia hermanni, Helochares lividus, Berosus signaticollis and
Gerris maculatus) were mainly found in the algal substratum, and some Nematoda species (Tobrilus spp.
and Aporcelaimellus obtusicaudatus), Oligochaeta Enchytraeidae, young larvae of Sympetrum and Diptera
Ceratopogonidae in littoral sediments. Juncus effusus appeared to be mainly colonized by Chironomidae
Orthocladiinae (Psectrocladius sordidellus group and Corynoneura scutellata) and Tanytarsini
(Paratanytarsus sp.). Central sediments also favoured high abundances of collector-gatherers, burrowers
and drought resistant forms with passive dispersal, whereas Ranunculus spp. hosted mainly scrapers,
shredders, swimmers+divers and active dispersal forms without any resistant stages to desiccation.
Juncus plants were mostly colonized by collector-filterers and by organisms capable of both active
dispersal and surviving desiccation. Littoral sediments and algae showed similar functional
organization and intermediate features between central sediments and submerged macrophyte beds.
All these results demonstrate that microhabitat characteristics play a crucial role in selecting
macroinvertebrate taxa according to their environmental requirement, feeding mechanism, movement
and resistance to drought. Moreover, our study confirms the role of submerged and emergent
vegetation in maintaining high biodiversity and suggests that all microhabitats should be considered to
provide both an exhaustive collection of species for pond management and conservation and basic
insights into the functioning of pond communities.

© 2009 Elsevier GmbH. All rights reserved.

1. Introduction

a high number of species of which some are rare and threatened,
together with a variety of (unique) flora and fauna. Scientific

The three recent European Pond Workshops, hosted in Geneva
(2004), Toulouse (2006) and Valencia (2008), and the European
Pond Conservation Network (E.P.C.N., 2007) demonstrated that
the importance of pond biota as a biodiversity resource is growing
all over Europe. There has been a considerable increase in
awareness of the importance of ponds as habitats able to support
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research into these ecosystems is, therefore, of the utmost
importance. Ponds are globally recognized as being particularly
important for amphibian (Beebee, 1997; Beja and Alcazar, 2003),
macroinvertebrate (Collinson et al.,, 1995; Oertli et al., 2002;
Nicolet et al., 2004) and aquatic plant conservation (Grillas and
Roché, 1997; Linton and Goulder, 2000), contributing highly to
freshwater biodiversity at a regional level.

Ponds, and particularly those of temporary character, are
aquatic habitats with multiple constraints relating to their great
abiotic variability, but this offers to species with particular
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adaptations many opportunities to succeed (Schwartz and
Jenkins, 2000). For organisms inhabiting temporary waters,
drought is the principal constraint, which is even greater because
of its unpredictability with alternating dry and wet phases, which
vary from year to year, especially in the Mediterranean region
(Grillas and Roché, 1997). Their survival strategies adopted to
cope with fluctuations in environmental conditions involve
resistant stages, dormant parts, and life-cycle flexibility
(Williams, 1985). These adaptations represent the driving factors
in structuring biological assemblages in wetlands with different
hydroperiod lengths (Wellborn et al., 1996).

Microdistribution of macroinvertebrates is well known in
rivers and lakes where most results indicate that environmental
aspects, including the heterogeneity of habitats, are generally
mainly responsible for the spatial distribution of taxa in these
waters. Particularly for running waters, stream hydraulics
(Statzner and Higler, 1986; Brooks et al, 2005) and land
use (Resh et al., 1988) are the major determinants of benthic
invertebrate zonation patterns. On the contrary, composition and
abundance of aquatic plants (Waters and San Giovanni, 2002),
substrate heterogeneity (Heino, 2000), depth, granulometry
composition and oxygen content (Heino, 2000; Brinkhurst,
2002) seem to govern macroinvertebrate distribution in lakes. In
contrast, relatively few studies have addressed the spatial
distribution of the entire macroinvertebrate communities in
ponds and wetlands (Oertli, 1995; De Szalay and Resh, 2000;
Van der Meutter et al., 2008), or have been limited to only one
taxonomic group (Fairchild et al., 2003; Bazzanti et al., 2008). In
particular, three recent studies have dealt with the distribution of
macroinvertebrate taxa, their size structure and functional
aspects (Della Bella et al., 2005; Solimini et al., 2005; Bazzanti
et al., 2009) in different mesohabitats (sensu Pardo and Armitage,
1997) of twenty-one temporary and permanent ponds in Central
Italy. The results of the above-mentioned literature highlight that,
in spite of their small size, ponds cannot be considered as uniform
systems with homogeneous environmental and biological char-
acteristics. In fact, they can offer biota a great heterogeneity
of micro/mesohabitats. Despite the ubiquity of these temporary
environments, much still remains unknown regarding the
distribution of invertebrates in different microhabitats of ponds.

During the spring 2004, a study of a temporary pond in a
nature reserve near Rome was carried out with the following
aims:

e to evaluate the environmental differences of the five available
microhabitats;

e to explore the spatial variation of the macroinvertebrate
community within the pond and which abiotic variables
regulate its composition, structure and functional aspects.

2. Study area and methods
2.1. Study area

The temporary pond studied (coded as T35 and locally named
DOGANA) is located (Fig. 1) in the Presidential Nature Reserve of
Castelporziano (about 20km southwest of Rome), which
encompasses a relatively undisturbed area of about 6000 ha and
contains more than 160 temporary and permanent ponds. The
Reserve is dominated by a Mediterranean climate characterised
by dry and hot summers and mild winters. For a more detailed
description of the study area, see Bazzanti et al. (1996, 2000,
2003). The study pond was of autumnal (fall) origin (autumnal
ponds, sensu Wiggins et al. 1980) and the length of its
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Fig. 1. Map of Castelporziano Presidential Estate with indication of temporary
pond T35.

hydroperiod depends on rainfall, which usually peaks in autumn
and spring. In the study year (2004), the wet phase of the pond
lasted about 310 days. At the time of sampling, the surface area
and maximum depth of the pond were about 2600 m? and 72 cm,
whereas riparian tree and aquatic vegetation covers were about
1-5% and 30-40% of the pond surface area, respectively.

2.2. Sampling and laboratory methods

At the end of April 2004, we sampled macroinvertebrates using
a dip net (opening 25 x 35 cm?, mesh size 280 um) for 1 m sweep
in five available microhabitats (Ranunculus acquatilis+R. sardous,
Spirogyra sp., Juncus effusus, littoral sediments, central sediments,
the latter two unvegetated and very homogeneous in appear-
ance). The net was dragged through and pushed into the
sediments for about 5cm in each microhabitat. This dip net
samples macroinvertebrates from wetlands efficiently (Cheal
et al., 1993) and the results have been also considered for
quantitative studies to compare densities from different sites and/
or ponds (Batzer et al., 2004; Geoffrey et al., 2003; Della Bella
et al., 2005; Bazzanti et al., 2008). Ten replicates were collected in
each microhabitat for a total of 50 biological samples. We
sampled the macroinvertebrates in a period of the year, which
is generally characterized by the highest richness of species
(Bazzanti et al., 1996). The material was preserved in 10%
formaldehyde solution to which we added Bengal Rose stain to
facilitate the identification of organisms. Individuals were
identified according to their lowest taxonomic possible level
and assigned to different feeding categories and habits following
Merritt and Cummins (1996) and Cummins and Wilzbach (1985),
and to the four groups according to the different survival
strategies of animals to drought reported in Wiggins et al.
(1980). Clear explanations of the Wiggins et al. (1980) groups
can also be found in Bataille and Baldassarre (1993) and Schneider
and Frost (1996). Clingers were not considered because they are
typically found in running water or in rocky littoral zones of lakes
(Merritt and Cummins, 1996). For an example of functional trait
assignation to taxa see Bazzanti et al. (2009).

At about 10-15 cm from the bottom of each microhabitat we
registered (10 replicates) some water characteristics (pH, con-
ductivity, dissolved oxygen) by electronic meters. Sediment
characteristics, such as organic matter, organic carbon, total
phosphorus and total nitrogen contents, and granulometric
composition, were also measured by laboratory analysis, accord-
ing to Cummins (1962), Gaudette et al. (1974), Marengo and
Baudo (1988), and Bremner (1965), respectively. Environmental
data of the study pond are reported in Table 1.
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Mean values and range (in parenthesis) of environmental variables (10 replicates) in the five microhabitats of the study pond.
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Microhabitat environmental variable

LS

Cs

A

SM

J

Conductivity (uscm™1')
Dissolved oxygen (mg L")

pH

Organic C (%)
Total N (%)
Total P (g Kg™')

87.2 (82.7-90.4)
7.6 (7.2-8.7)
8.1 (6.8-8.9)
0.39 (0.24-0.55)
0.06 (0.04-0.10)
0.15 (0.11-0.20)

90.1 (89.9-90.5)
6.6 (6.0-7.7)
7.6 (7.5-7.9)
1.24 (0.46-1.73)
0.18 (0.12-0.29)
0.61 (0.28-0.87)

81.1(72.1-92.4)
9.5 (8.1-10.9)
9.3 (8.2-10.2)
0.35 (0.15-0.68)
0.06 (0.03-0.10)
0.22 (0.13-0.89)

89.6 (88.4-90.8)
7.8 (7.0-9.4)
9.1 (8.7-9.5)
0.25 (0.18-0.61)
0.05 (0.03-0.09)
0.17 (0.10-0.32)

92.6 (91.7-93.5)
6.3 (5.7-6.9)
8.7 (8.3-9.2)
0.36 (0.13-0.53)
0.05 (0.03-0.07)
0.24 (0.11-0.29)

Organic matter (%) 3.1 (2.0-4.4) 10.5 (3.5-13.4) 4.1 (2.9-6.6) 2.0 (1.0-4.0) 3.5 (2.1-4.6)
Sand (%) 80.9 (73.0-87.8) 27.9 (11.2-74.4) 73.1 (57.9-84.8) 85.7 (74.2-92.2) 79.2 (71.0-92.2)
silt (%) 9.3 (6.2-11.3) 28.5 (11.6-36.8) 13.7 (7.6-22.1) 7.1 (3.8-13.8) 10.6 (4.0-17.0)
Clay (%) 9.8 (6.1-16.2) 436 (14.0-56.1) 14.0 (10.2-22.1) 7.3 (4.5-12.1) 10.1 (4.0-15.2)

LS=Littoral sediments, CS=Central sediments, A=Algae (Spirogyra sp.), SM=Submerged macrophytes (Ranunculus spp.), ]=Juncus effusus. Sampling was carried out at the

end of April 2004.
2.3. Statistical treatment of data

Differences between microhabitat characteristics were esti-
mated by one-way ANOVA and the post hoc Tukey test. The
Spearman rank coefficient of correlation (rs) was adopted to
discover relationships among variables. Non-Metric Multidimen-
sional Scaling (N-MDS) was performed on the similarity matrix
based on the Bray-Curtis similarity coefficient (Clarke and
Warwick, 1994) in order to summarize variations among sites
and to elucidate environmental gradients taking environmental
variables into account. Canonical Correspondence Analysis (CCA)
was adopted to correlate abiotic characteristics and taxa (or
functional group) abundances of the different microhabitats. Taxa
present only in a replicate of a microhabitat and in very low
densities (1 individual) were considered rare and excluded from
the counts. Before the analyses, absolute data were log (x+1)
transformed, while relative data were arcsin,/p transformed,
in order to stabilize the variance (Sokal and Rohlf, 1973). We
performed our statistical analyses with Statistica (version 5),
PRIMER 5 (version 5.2.0) and CANOCO 4.0 for Windows (ter Braak
and Smilauer, 1998) software.

3. Results
3.1. Microhabitat environmental variables

Non-Metric Multidimensional Scaling (N-MDS) performed on
physical and chemical data (Fig. 2) showed a clear separation
of the central sediments from other substrates according to a
gradient of decreasing total P and N, organic matter and C, silt and
clay contents and increasing of the sand component. Along this
gradient dissolved oxygen and pH in the water also increased. A
second separation can be observed between algae and other
substrates according to higher pH, and silt+clay and dissolved
oxygen contents in the former microhabitat.

3.2. Macroinvertebrate-microhabitat associations

A total of 11,554 individuals belonging to 9 high zoological
groups and to 63 lower taxa (mostly genera/species) of macro-
invertebrates were recorded during the study (Table 2). The
number of taxa was significantly lower in central sediments than
in other substrates (ANOVA: F445=30.4; p < 0.001; Tukey test: at
least p < 0.05 for all comparisons). Densities of total fauna (Fig. 3)
showed lower values in central sediments and algae and higher
densities in submerged macrophytes and Juncus (ANOVA:
F445=19.7; p <0.001; Tukey test: at least p < 0.05).
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Fig. 2. Non Metric Multidimensional Scaling (NMDS) performed on the physical
and chemical data of the different microhabitats (sampling was carried out at the
end of April 2004) of the temporary pond T35. Arrows indicate environmental
gradients according to rs between site scores and abiotic variables (significance at
least of p<0.05). DO=dissolved oxygen. LS=Littoral sediments, CS=Central
sediments, A=Algae (Spirogyra sp.), SM=Submerged macrophytes (Ranunculus
spp,), J=Juncus effusus.

CCA, performed on high zoological group densities and
environmental characteristics (Fig. 4 and Table 3), indicated
an environmental gradient determined by nutrients and
granulometry composition of the sediments along the first axis,
and a second one along the second axis in relation to conductivity
and oxygen content in the water. The plot give an immediate idea
concerning the preferences of Oligochaeta and Nematoda
for central sediments, whereas Odonata, Ephemeroptera and
Coleoptera were commonly found in submerged macrophytes,
Diptera Chironomidae in Juncus, Hemiptera in littoral sediments
and algal substratum, and Diptera Ceratopogonidae in both
littoral and central sediments. The results of this analysis on the
high taxonomic groups appeared to be strongly affected by which
substratum their higher densities occurred in and give only a
preliminary description of the relationships between fauna and
environmental variables. To obtain a more precise picture on this
relationships a detailed analysis on lower taxa was therefore
necessary.

CCA (Fig. 5 and Table 3) performed on lower taxa densities
shows the same environmental gradients and gives a more
detailed description of the relationships between taxa,
microhabitats and environmental variables. Taxa characterizing
less oxygenated, silty, and nutrient rich central sediments were
the chironomids Chironomus plumosus group, Psectrotanypus
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Table 2
List and presence (+) of macroinvertebrate taxa collected in the five microhabitats
of the study pond T35.

TAXA Code LS s A SM ]
Turbellaria

Rhabdocoela undet. Rha <* * T T T
Nematoda

Aporcelaimellus obtusicaudatus (Bastian) ~ Aobt + + + +
Dorylaimida undet. Dor + + + + +
Dorylaimus stagnalis (Dujardin) Dsta + + + +
Mononchus sp. Mon + + + +
Tobrilus diversipapillatus (Daday) Tdiv + +

T. stefansky (Micoletzky) Tste + it

Tobrilus sp. Tob + + +
Oligochaeta

Naididae undet. Nai * * % T T
Tubificidae undet. Tub + + + + +
Enchytraeidae undet. Enc + + +
Lumbricidae undet. Lum +

Hydracarina

Eylais tantilla Koen +
Hydracna skorikowi Piersig +
Ephemeroptera

Cloeon dipterum (Linnaeus) Cdip + + + +
Odonata

Ischnura elegans (Van der Linden) +

Lestes barbarus (Fabricius) Lbar + + + + +
Sympetrum fonscolombei (Sélys) Sfos +

S. sanguineum (Muller) Ssan + +
Sympetrum sp. Sym T

Hemiptera

Corixa punctata (Illiger) Cpun + + + + +
Sigara lateralis (Leach) Slat + + +
Notonecta sp. Not +
Anisops sardeus Herrich-Schaeffer +
Gerris maculatus Tamanini Gmac + +

Plea minutissima Leach Pmin + + +
Coleoptera

Brychius sp. Bry + + +
Peltodytes sp. +
Hygrobia hermanni (Herbst) Hher + + + + +
Agabus bipustulatus (Linnaeus) Abip + + +
Agabus nebulosus (Forster) Aneb + + + +
Coelambus confluens (Fabricius) +

Laccophilus minutus (Linnaeus) Lmin + + + +
Hydroglyphus pusillus (Fabricius) Hpus +

Hydroporus pubescens (Gyllenhal) Hpub + + +
Hyphydrus aubei Gangibauer Haub + + + +
Berosus signaticollis (Charpentier) Bsig + + +
Helochares lividus (Forster) Hliv + +

Coelostoma sp. Coe + + + +
Diptera

Anopheles maculupennis Meigen + + +
Culex martinii Medschid +

Monopelopia sp. +
Labrundinia longipalpis (Gtgh) +
Zavrelimyia sp. Zav + +
Macropelopia sp. Mac + + + +
Procladius sp. Pro + + + + +
Psectrotanypus varius (Fabricius) Pvar + +
Corynoneura scutellata (Winnertz) Cscu + + + +
Isocladius sylvestris (Fabricius) Isyl + + + +
Limnophyes sp. Lim + +
Psectrocladius sordidellus gr. Psor + + + +
Orthocladiinae sp. 1 +

Orthocladiinae sp. 2 +
Orthocladiinae sp. 3 Ort + +
Orthocladiinae sp. 4 +
Micropsectra sp. Mic + +
Paratanytarsus sp. Par + + + +
Chironomus plumosus gr. Cpl +

Microtendipes pedellus gr. +

Dicrotendipes lobiger gr. +
Polypedilum nubifer (Skuse) +
Ceratopogonidae undet. Cer + + + + +
Diptera alia Alia + + + +
Number of taxa 38 16 37 42 36

Microhabitat codes are reported as in Table 1. Taxon codes are reported only for
taxa used in Fig. 5.

varius and Procladius sp., Oligochaeta Tubificidae and the
nematode Dorylaimus spp. The submerged vegetated area, in
which pH and oxygen content showed intermediate values

B Ceratopogonidae
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Fig. 3. Mean densities (ind m—2) of zoological groups in the studied microhabitats
of the temporary pond T35. Microhabitat codes are reported as in Fig. 2. The group
“Alia” (Hydracarina and Diptera alia) was not represented because of its very low
densities in all microhabitats.
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Fig. 4. Canonical Correspondence Analysis (CCA) biplot of environmental-high
zoological group relationships of the temporary pond T35. DO=dissolved oxygen,
cond=conductivity, OM=organic matter, N, P and C=total nitrogen, total
phosphorus and organic carbon contents, respectively. Tur=Turbellaria,
Nem=Nematoda, Oli=0Oligochaeta, Eph=Ephemeroptera, Odo=Odonata, Hem=
Hemiptera, Col=Coleoptera, Chi=Chironomidae, Cer=Ceratopogonidae, Alia=
Hydracarina, Diptera alia. Microhabitat codes are reported as in Fig. 2.

between algal sites and central sediments, hosted mostly some
chironomid Othocladiinae (especially Psectrocladius sordidellus
group), the odonates Lestes barbarus, Sympetrum foscolombei,
the heteropteran Plea minutissima, the coleopterans Agabus
bipustulatus, Hyphydrus aubei, Oligochaeta Naididae, and the
ephemeropteran Cloeon dipterum. The heteropteran Notonecta
sp., the coleopteran Brychius sp., and especially the chironomids
Corynoneura  scutellata, Iocladius sylvestris, Psectrocladius
sordidellus group and Paratanytarsus sp. characterized in high
abundances the Juncus stand in which higher conductivity and
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Table 3

Summary of Canonical Correspondence Analyses (CCA) performed on high zoological group, low taxa and functional group abundances and environmental variables of the

temporary pond T35.

CCA (high zoological groups)

Axes 1
Eigenvalues 0.106
Zoological group-environment correlations 0.874
Cumulative percentage variance

number of zoological group data 32.9
number of zoological group-environment relation 65.3
CCA (low taxa)

Axes 1
Eigenvalues 0.283
Taxa-environment correlations 0.925
Cumulative % variance

number of taxa data 141
number of taxa-environment relation 37.1

CCA (functional groups)

Axes 1
Eigenvalues 0.069
Functional group-environment correlations 0.836
Cumulative % variance

number of functional group data 33.2
number of functional group-environment relation 65.0

2 3 4

0.028 0.012 0.007

0.756 0.607 0.432
416 453 475
82.6 89.9 943

2 3 4

0.210 0.087 0.062

0.891 0.787 0.757
246 28.9 32.0
64.6 76.0 84.2

2 3 4

0.020 0.008 0.004

0.701 0.563 0.559
429 465 483
83.9 91.0 945

For all three analyses: overall CCA was significant at p=0.001, CCA axis 1 at p=0.001 (Monte Carlo test).
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Fig. 5. Canonical Correspondence Analysis (CCA) biplot of environmental-low
taxa relationships of the temporary pond T35. DO=dissolved oxygen, cond=con-
ductivity, OM=organic matter, N, P and C=total nitrogen, total phosphorus and
organic carbon contents, respectively. Taxon codes are reported as in Table 2,
microhabitat codes as in Fig. 2.

lower oxygen content were found. Finally, littoral sediments and
algal sites appeared to partially overlap the CCA graphic because
of their reciprocal closeness along the pond perimeter. The plot of
axes 1-3 of the same CCA (the figure is not reported here) allows,
however, to distinguish the littoral sediments characterized by
lower pH and oxygen content from the well oxygenated algal
sites. The first microhabitat hosted the exclusive presence of the
chironomid Limnophyes sp. and the coleopteran Hydroglyphus
pusillus, and higher densities of the nematodes Tobrilus spp.
and Aporcelaimellus obtusicaudatus, Oligochaeta Enchytraeidae,
young odonate larvae belonging to Sympetrum sp. and Diptera
Ceratopogonidae, whereas algal mats were mostly colonized by
the hemipterans G. maculatus and the coleopterans Hygrobia
hermanni, Helochares lividus and Berosus signaticollis.

3.3. Functional organization-microhabitat associations

Also the abundances of functional groups showed substantial
differences among the study microhabitats, which seemed to
contain one or two dominant functional groups (Fig. 6). In almost
all the microhabitats, predators, sprawlers+climbers and Groups
1 and 4 of Wiggins et al. (1980) were found to be the most
abundant groups. CCA (Fig. 7 and Table 3), performed on
percentage data of functional feeding groups, habits and
Wiggins et al. (1980) groups considered together, showed that
environmental characteristics of central sediments favoured
collector-gatherers, burrowers and Group 1 of Wiggins et al.
(1980), whereas Ranunculus spp. hosted high percentages of
scrapers, swimmers+divers and Groups 3 and 4 of Wiggins et al.
(1980). Juncus was mostly colonized by collector-filterers,
whereas littoral sediments showed higher proportion of Group 2
of Wiggins et al. (1980). Littoral sediments and algae showed
intermediate functional features between central sediments and
submerged macrophyte beds.

4. Discussion
4.1. Environmental features of the five microhabitats

To date, the research of the abiotic characteristics of temporary
ponds has been generally limited to few works (Zacharias et al.,
2007). As regards their temporal variations, Arle (2002) and
Angélibert et al. (2004) reported that in temporary ponds most
physical and chemical features widely fluctuate both seasonally
and diurnally. Podrabsky et al. (1998) recorded a high degree of
variation of abiotic factors among interpool habitats. Moreover,
Ktosowski and Jabtoniska (2009) recorded significant physical and
chemical differences in both water and sediments between
several types of phytocoenoses in widely fluctuating water bodies.
Finally, Magnusson and Williams (2006) found that spatial and
temporal variations were of greater importance than biological
factors (including food-web manipulations) for shaping the
environmental characteristics of these intermittent ponds. Our
study indicates that great physical and chemical differences
occurred also within the same pond. These differences were
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Fig. 6. Mean percentage composition (calculated from number of individuals) of
functional groups (functional feeding groups in upper panel, habits in middle
panel and Wiggins groups in lower panel) in the different microhabitats of the
study pond T35. Microhabitat codes are reported as in Fig. 2.
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Fig. 7. Canonical Correspondence Analysis (CCA) biplot of environmental-
functional group relationships of the temporary pond T35. DO=dissolved oxygen,
cond=conductivity, OM=organic matter, N, P and C=total nitrogen, total
phosphorus and organic carbon contents, respectively. CF=Collector-filterers,
CG=Collector-gatherers, SH=Shredders, SC=Scrapers, PR=Predators. SK=Skaters,
SP+CL=Sprawlers + Climbers, SW+DI=Swimmers + Divers, BU=Burrowers. Groups
1-4=Groups of Wiggins et al. (1980). Microhabitat codes are reported as in Fig. 2.

related to photosynthetic activity of vegetation, granulometric
composition of the sediments, rate of sedimentation and decom-
position of organic matter within the pond. As regards the
granulometric composition, central sediments showed higher
abundances of silt and clay, whereas the other substrates were
found to mostly have a sandy texture. Temporary ponds are
subject to a complete drying out of the soil, which means they are
exposed to air for one or more times in a year. This process can
cause a faster mineralization of organic matter and a marked
fractioning of the coarse component of the soil (Bazzanti et al,,
2000; Tavernini et al., 2005), which associated to the concave
morphology of the basin, favours fine-sediment accumulation in
the centre of the pond.

4.2. Macroinvertebrate-microhabitat associations

The lowest taxonomic richness and abundances of the
macroinvertebrate community were registered in a unvegetated
central zone and these results are consistent with those of other
authors (Schramm and Jirka, 1989; Beckett et al., 1992; Olson
et al., 1995) for shallow lakes. Therefore, in this microhabitat very
fine sediments, higher values of nutrients, and lower oxygen
content tend to reduce faunal diversification and abundance
compared to the other substrates. These abiotic characteristics
well reflect the ecological requirements of some Nematoda
(Dorylaimus spp.), Oligochaeta Tubificidae, and chironomid larvae
belonging to C. plumosus group, P. varius and Procladius sp.
(Wiederholm, 1980; Fittkau and Roback, 1983; Pinder and Reiss,
1983; Abebe et al., 2006).

Compared to central sediments, the littoral unvegetated zone
seems to offer better conditions for organisms showing amphi-
bian or semiaquatic conditions of life, such as Oligochaeta
Enchytraeidae (Brinkhurst, 1963) and the chironomid Limnophyes
sp. (Cranston et al., 1983). This substrate seems also to favour
invertebrates living in sandy texture of sediments, such as the
nematodes Tobrilus spp. and A. obtusicaudatus (Abebe et al., 2006)
or some insects needing to reach the littoral in order to become
adults through pupation of mature larvae, such as the dipteran
Ceratopogonidae (V.M. Glukhova, Zoological Institute of
St. Petersburg, pers. comm.). In a study on three vegetation types,
Oertli (1995) found a high density of Ceratopogonidae larvae on
Thypha latifolia stems, but his study excluded unvegetated
sediments. Only a taxonomic identification to genera or species
level could explain the different preferences of this dipteran
family for some microhabitats.

Larval and adult insects belonging to several orders and
families, however, mostly dominated the two vegetated sub-
strates, which showed distinct differences between them. In
general, the influence of macrophytes on the composition and
abundance of macroinvertebrate taxa of lentic environments is
well known and several authors (Beckett et al., 1992; Harper et al.,
1997; Waters and San Giovanni, 2002) have highlighted the
determinant role of the vascular macrophytes in providing
many benefits, such as good oxygenation and greater stability
of sediments, a more diversified environment, abundant food
coming from senescent plants and algal peryphyton development.
Van der Meutter et al. (2008), exploring differences in some
macroinvertebrate families living in three vegetation types in
ponds, recorded a preference of Baetidae and Coenagrionidae
larvae for submersed macrophytes. We obtained similar results
in our pond, where Odonata, and particularly L. barbarus and
S. fonscolombei, appeared to be strictly associated to the two
Ranunculus species. According to some authors (Osborne and
Samways, 1996; Foote and Rice Hornung, 2005), these insects
seem to select ponds where they can lay their eggs according to
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the availability of sunny shores and to the high morphological
habitat complexity provided by the presence of abundant
vegetation, in which larvae can avoid predation and find abundant
prey. Also the ephemeropteran C. dipterum seemed to be strongly
dependent on submerged vegetation where this species is
favoured by the availability of food in the form of senescent
vegetation and/or algal peryphyton (see discussion on feeding
functional groups). In spite of their wide distribution in the study
pond, some hemipteran and coleopteran species also seemed to
prefer submerged macrophytes (Williams and Feltmate, 1992;
Fairchild et al., 2003) where they could find prey and good oxygen
conditions in order to lay their eggs (Merritt and Cummins, 1996).
Finally, some Oligochaeta Naididae appeared associated to this
vegetated substrate where they benefit from lower risk of
predation and higher food resources represented by algal
periphyton (Dvofak and Best, 1982).

As regards the emergent vegetation, our finding that chironomid
larvae numerically dominated in Juncus is an interesting record,
which has already been reported by Benke et al. (1999) for Juncus
and Van der Meutter et al. (2008) for Phragmites and Thypha. In
particular, in our samples, Orthocladiinae (P. sordidellus group and
C. scutellata) and Tanytarsini (Paratanytarsus) were greatly abundant
in Juncus effusus where they act as miners (Coffman and Ferrington,
1996), finding vascular tissues of plants as food and refuge from
predation (Nocentini, 1985; Wrubleski, 1999). Moreover, Juncus
plants possess tissues with greater structural stability, allowing
some macroinvertebrates to climb on them, and providing a great
quantity of organic matter, which accumulates and serves as a food
source (Dvorak and Best, 1982; Parsons and Matthews, 1995; Varga,
2001). In particular, P. sordidellus seems to have more advantages
than other chironomid taxa because it better resists drops in water
levels (Evans et al., 1999) typical of the littoral zones where Juncus is
abundant. Finally, we found the exclusive presence of the two
hemipterans Notonecta sp. and A. sardeus in Juncus plants because
they can simultaneously find protection against predators (i.e.
aquatic birds) and act as predators on small invertebrates (Williams
and Feltmate, 1992). In synthesis, the wide range of food resources
and the better environmental conditions, such as greater habitat
stability, good refuge from predation, high quantity of organic
matter coming from both emergent and submerged macrophytes,
are the major driving factors behind the increase in species richness
and densities of macroinvertebrate communities in ponds.

Finally, in our pond filamentous algal mats showed high
taxonomic richness but low densities of macroinvertebrates.
In spite of the fact that algae generally constitute a good source
of food for macroinvertebrates (Hart and Lovvorn, 2003), their
lower densities compared to those observed in macrophytes can
be probably attributed to the production by algae of substances,
which can reduce growth determining even the death of some
invertebrates (Porter, 1973) and to the higher availability of food
(algal periphyton, senescent and living tissues) in macrophyte
beds rather than in filamentous algae. However, the limited
published data concerning this matter makes it difficult for us to
formulate further hypothesis regarding the preference of macro-
invertebrates for this substrate.

4.3. Functional group-microhabitat associations

The functional aspects have generally been little investigated in
aquatic lentic systems (i.e., Dvorak and Best, 1982; Heino, 2000), and
very few data are available for ponds, especially in the Mediterra-
nean area. These data generally deal with the phenological
sequences (Bazzanti et al., 1996, Culioli et al., 2006), differences
between temporary and permanent ponds (Bazzanti and Della Bella,
2004), relationships with wet phase duration (Gascon et al., 2008)

and vegetation cover (Céréghino et al., 2008), and distributional
organization in mesohabitats (Bazzanti et al., 2009).

As regards the distribution of functional feeding groups in our
pond, shredders (taxa belonging to several taxonomic groups) and
predators (i.e. some species of Coleoptera and Hemiptera and all
Odonata) showed similar abundances everywhere, with the excep-
tion of central sediments where they occurred in lower percentages,
probably due to the low availability of coarse particulate organic
matter (CPOM) and available prey therein. Differently, collector-
gatherers, such as Chironomus larvae, Nematoda and Oligochaeta
Tubificidae, dominated in central sediments where they can find
great quantities of small-sized organic matter (FPOM) as food
(Merritt and Cummins, 1996; Heino 2000). On the contrary, scrapers
(i.e. C. dipterum, some Naididae and chironomid species) were found
to be dominant in submerged macrophytes which, as already
mentioned, provide abundant growth of algal peryphyton which live
on them (Brittain, 1982; Merritt and Cummins, 1996). Finally,
collector-filterers (i.e. the chironomids Paratanytarsus sp., Micro-
tendipes sp. and Dicrotendipes sp., and all Culicidae) were mostly
associated to Juncus plants where the higher conductivity probably
produces high quantities of algal seston on which they fed (Bazzanti
and Della Bella, 2004).

As regards the habit traits, submerged macrophytes, algae and
littoral zone hosted mostly swimmers+divers (i.e. some Hemi-
ptera and Coleoptera taxa), which generally swim among plants
and algae (Merritt and Cummins, 1996), whereas spawlers+clim-
bers (i.e. Ephemeroptera and Odonata) were found mostly on
submerged macrophytes, Juncus, and algae in which they are well
adapted to moving on the three-dimensional-shaped vegetation
(Crowder and Cooper, 1982; Hargeby, 1990). Differently, bur-
rowers (Oligochaeta Tubificidae, Nematoda and sedentary Chir-
onomidae) were typically found in soft central sediments
(Minshall, 1984; Beckett et al., 1992).

The distribution of Wiggins et al. (1980) groups in the five
studied microhabitats seems to be particularly interesting
because no data exist on this matter, except for a recent work
on mesohabitats in ponds (Bazzanti et al., 2009). Resident (or
passive colonizers) organisms (mostly Oligochaeta and Nemato-
da), belonging to Group 1, are commonly found in central
sediments, where they are well adapted to resisting desiccation
through eggs, larvae and adults (entire or pieces) (Wiggins et al.,
1980; Williams, 1985; Williams, 1987). Group 2, which contains
active dispersal animals with oviposition dependent on water and
can resist desiccation through eggs, larvae and adults (i.e. some
coleopterans and chironomid Ortocladiinae), seems to colonize
mostly littoral sediments and Juncus probably because they need
living near the pond margins and on emergent plants in order to
lay their eggs. On the contrary, Group 3 (i.e. part of Odonata
species), which needs no water for oviposition and can resist
desiccation and Group 4 (such as larvae and adults of Coleoptera
and Hemiptera, larvae of Ephemeroptera and most of the
chironomids) represented by mobile elements, which possess no
way of resisting desiccation, are mostly hosted in submerged
vegetation. The elements of this group are considered as cyclic
colonizers (Williams, 1987) living in temporary ponds during the
water phase where they prey and migrate as adults in permanent
habitats to avoid desiccation.

5. Concluding remarks

Our study demonstrates that microhabitats play a driving role
in the spatial distribution of macroinvertebrate assemblages and
their functional groups in ponds, and more particularly our data
show:
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e substantial differences between the five microhabitats studied
indicating that they can provide to macroinvertebrates
different resources related to physical and chemical character-
istics, food types and feeding mechanisms, type of movements
and resistance to drought;

e the higher number of macroinvertebrate taxa and their
densities occurring in the macrophyte beds confirm the role
of submerged and emergent vegetation in maintaining high
biodiversity compared to the other substrate types;

e the presence of some taxa, which appeared to be exclusively
related to a specific microhabitat or which were more
abundant in some microhabitats than in others, suggests that
all microhabitats present in a pond have to be sampled for an
exhaustive collection of macroinvertebrates and highlights the
importance of the knowledge of species microdistribution in
pond management and conservation because a high micro-
habitat diversity can support a high faunal diversity.

Data on microdistribution of macroinvertebrate taxonomic and
functional organization are therefore not only vital for biodiver-
sity conservation purposes and for monitoring water quality in
ponds but also for providing a basic ecological understanding of
pond functioning. These points constitute a fundamental step in
conservation management of ponds, which can be considered as
“reservoirs” of species, which tend to favour the (re-)colonization
of neighbouring water bodies more or less affected by anthro-
pogenic pressure.
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