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AI TURNS FIFTY: REVISITING ITS ORIGINS

Roberto Cordeschi & Department of Philosophical and Epistemological Research,
University of Rome ‘‘La Sapienza,’’ Italy

& The expression ‘‘artificial intelligence’’ (AI) was introduced by John McCarthy, and the
official birth of AI is unanimously considered to be the 1956 Dartmouth Conference. Thus, AI
turned fifty in 2006. How did AI begin? Several differently motivated analyses have been proposed
as to its origins. In this paper a brief look at those that might be considered steps towards Dart-
mouth is attempted, with the aim of showing how a number of research topics and controversies
that marked the short history of AI were touched on, or fairly well stated, during the year immedi-
ately preceding Dartmouth. The framework within which those steps were taken was the develop-
ment of digital computers. Earlier computer applications in areas such as complex decision
making and management, at that time dealt with by operations research techniques, were important
in this story. The time was ripe for AI’s intriguingly tumultuous development, marked as it has
been by hopes and defeats, successes and difficulties.

As is well known, the 1956 summer Dartmouth Conference on AI was pre-
ceded by a preparatory document dated August 31, 1955, whose authors
were John McCarthy, Marvin Minsky, Nathaniel Rochester and Claude
Shannon. The meeting’s aim was to examine ‘‘the conjecture that every
aspect of learning or any other feature of intelligence can in principle be
so precisely described that a machine can be made to simulate it,’’ as one
reads in the document (McCarthy et al. 1955). Some of the main pioneers
in computer programming were present at Dartmouth, such as Allen New-
ell, Arthur Samuel, Oliver Selfridge, and Herbert Simon. After Dartmouth,
the historical centers of AI research would be formed: at Carnegie-Mellon
University with Newell and Simon, at MIT with Minsky, and at Stanford
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University with McCarthy. In England, Alan Turing’s legacy was taken up by
Donald Michie at Edinburgh, before AI research spread to other European
countries and around the world.

Differently motivated analyses of the origins and developments of AI
have been suggested (see McCorduck 1979; Crevier 1993; Cordeschi
2002; Mirowski 2002). In the present paper some less well-known contribu-
tions and events that precede the Dartmouth Conference are investigated,
with the aim of showing how earlier attempts in mechanizing intelligence
raised several questions which were to become controversial and much
debated issues in AI research over the following years.

MACHINE INTELLIGENCE

Developments in computability theory dating back to Alan Turing in
the 1930s and in early computer science in the 1940s are well known and
investigated (see, e.g., the syntheses by Hodges [1983], and Davies
[2000]). Given this background, I shall deal with the following in this sec-
tion: which features of the computer made people think of it as an intelli-
gent machine, even though it is so different from the structure of the
human brain? I think these features were effectively summarized by Claude
Shannon, one of the four proponents of the Dartmouth Conference, in his
1950 seminal article on chess programming.

Machines of this general type [i.e. general-purpose digital computers] are
an extension over the ordinary use of numerical computers in several ways.
First, the entities dealt with are not primarily numbers, but rather chess posi-
tions, circuits, mathematical expressions, words, etc. Second, the proper
procedure involves general principles, something of the nature of judge-
ment, and considerable trial and error, rather than a strict, unalterable com-
puting process. Finally, the solutions of these problems are not merely right
or wrong but have a continuous range of ‘‘quality’’ from the best down to
the worst. We might be satisfied with a machine that designed good filters
even though they were not always the best possible (Shannon 1950: 256).

The first feature mentioned by Shannon transforms the computer from
a calculator (capable of performing standard arithmetic functions) into a
symbol manipulator or general-purpose machine (i.e., a machine perform-
ing a large variety of tasks, not simply numerical ones). The second feature
endows the computer with the ability to make a decision or a choice from
among different alternatives, using a trial-and-error procedure based on
previously obtained results. The third feature concerns the ability of the
computer to deal with complex problem domains, in which the combina-
torial explosion of the alternative solutions to a problem (think of the
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game of chess) make it necessary to devise procedures, or strategies, that
give place to a ‘‘good filter,’’ not necessarily an optimum one, in the selec-
tion of different alternatives. These abilities of computers provided a back-
drop to the Dartmouth preparatory document, and would always be judged
to be important in the next decade.

The last two features Shannon alluded to (trial and error and satisfac-
tory-filter procedures) are made possible in computer programming by a
particular kind of instruction, conditional branching, which states that, if
a given condition has been satisfied, then a certain sequence of instructions
must be performed; otherwise, another sequence must be performed. To
quote Shannon again:

The computer operates under the control of a ‘‘program’’. The program
consists in a sequence of elementary ‘‘orders’’. . . . [A] type of order
involves a decision, for example: C291, 118, 345. This tells the machine
to compare the contents of box 291 and 118 [in memory]. If the first is
larger, the machine goes on to the next order in the program. If not, it
takes its next order from box 345. This type of order enables the machine
to choose from alternative procedures, depending on the results of pre-
vious calculations (Shannon 1950: 264).

A conditional branching instruction (or ‘‘order’’) is such commonplace
in programming techniques that it may appear dull to insist on it, as well as
on the aforementioned computer features.1 But if we followed a suggestion
of Hofstadter (1979), and were to go back to the time when this was actually
first observed in computers, we might realize why there was the feeling that
the notion of ‘‘program’’ was more general and powerful than one could
suppose.

The EDSAC machine, fully realizing those features of computers, had
just been built by Maurice Wilkes’s group at the Cambridge Mathematical
Laboratory, when Anthony Oettinger, the pioneer of machine translation at
that time in Cambridge, wrote two of the early ‘‘intelligent’’ programs, both
running on EDSAC. These programs were able to modify their perform-
ance on the basis of obtained results, i.e., to exhibit a simple learning ability
(Oettinger 1952).

One of these programs, the Shopping Program, simulated the behavior
of a child sent on a shopping tour. The task was to learn where to buy cer-
tain articles in a simulated world of different shops. The program hunted
for the article requested by going from shop to shop in a random fashion,
until it came to the desired one, and storing in its memory the shop’s
location. When the same article was required, the program went directly
to the right shop, without further searching. Moreover, the program was
endowed with a certain ‘‘curiosity,’’ as Oettinger put it, in its random
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search, it stored in its memory other non-requested articles, so that when it
had a specific request for one of these articles, it was able to go directly to
the right shop without further searching. Needless to say, the simple learn-
ing ability of this program (a kind of rote learning) is crucially based on
conditional branching instructions.

Oettinger’s approach to machine intelligence was influenced by three
articles that he mentions, published in the immediately preceding years.
The first was the aforementioned article by Shannon, the other two were
written by Turing and Wilkes, and concerned ‘‘mechanical thought,’’ that
is, the alleged intelligence of the new digital machines.

Turing’s article, ‘‘Computing Machinery and Intelligence,’’ went on to
become one of the best-known and most frequently mentioned texts in
AI literature, both for its profound insights which anticipated future devel-
opments in computing machines and for what Turing called the ‘‘imitation
game’’ (Turing 1950). There were three participants in the game: a man, a
woman, and an interrogator. The latter, by asking the most varied questions
and receiving the answers in a standard form on two different terminals,
had to guess which was the man and which the woman. Turing imagined
that, in giving his answers, the man would try to fool the interrogator, while
the woman would try to help him. He proposed, therefore, to substitute a
machine for the man, in fact, a general-purpose digital computer, and to
see how it would manage in the game, i.e., to what extent it would manage
to fool the interrogator. Would the latter, Turing wondered, be mistaken in
identifying his fellow players ‘‘as often’’ as when a man, and not a machine,
played the game? He intended this question, posed as it is ‘‘in relatively
unambiguous words,’’ to replace the more popular but misleading one,
‘‘can machines think?’’ (p. 433).

Wilkes, referring to the imitation game in his article ‘‘Can machines
think?,’’ maintained that, to believe seriously that one could ‘‘simulate
human behavior’’ using a computer, it would be necessary to design a ‘‘gen-
eralized ‘learning’ program,’’ i.e., a program able to learn any subject cho-
sen by the programmer—a very distant goal, given the performance of the
programs that had been devised so far (Wilkes 1951).

Oettinger held that his programs provided at least partial responses to
the requirements set by Turing and Wilkes. Far as they were from manifest-
ing the ‘‘generalized’’ ability to learn indicated by Wilkes, these programs
still managed to improve their performance in certain specified and well-
defined tasks. They would have been able, therefore, to pass at least
‘‘restricted versions,’’ as he put it, of the imitation game. Oettinger thus
seems to be the first to interpret the imitation game as a sufficiency test (a
‘‘criterion,’’ he called it) in evaluating the performance of individual pro-
grams in well-defined domains. Notice that it is in this ‘‘restricted’’ version,
not in the ‘‘generalized’’ one put forward by Wilkes (and probably closer to
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Turing’s insights), that the imitation game, known as the Turing test, would
become popular afterwards among the AI community. This gave rise to dif-
ferent interpretations of the validity of the test, and also to certain misun-
derstandings, up to the controversial Loebner Prize.2

Oettinger pointed out some central issues regarding the new-born com-
puter simulation of intelligent behavior. Computers, he said, could simu-
late certain functions of the brain, not its physical structure. Thus ‘‘Turing’s
criterion’’ could only be used to test the functional correspondence between
computer and brain (Oettinger 1952: 1261). There are many ways of phy-
sically realizing certain brain functions. A program able to learn by con-
ditioning could be ‘‘synthesized,’’ as he put it, as a physical structure or a
‘‘special machine’’ different from EDSAC (pp. 1261–62). However a ‘‘uni-
versal digital computer’’ like EDSAC has the interesting feature of being
able, ‘‘when provided with a suitable program, to mimic arbitrary machines
in a very general class’’ (p. 1243). It is precisely with this feature of compu-
ters, clearly stated here, that one could hope to grasp universality as a dis-
tinctive feature of the human mind.

Oettinger observed how the non-numerical (i.e., symbolic) nature of
computers should appeal to those who, ‘‘like psychologists and neurophy-
siologists, are interested in [their] potentialities . . . as models of the struc-
ture and functions of animal nervous systems’’ (p. 1244), thus explicitly
introducing the issue of computers modeling organism behavior—a crucial
issue, as we shall see in the next section. Further, his interpretation of the
conditional branching instruction would have been particularly engaging
for many of them. As seen previously, Shannon described conditional
branching as a procedure giving the machine the ability of deciding or choos-
ing between different alternatives, based on previously obtained results.
Oettinger emphasized that this procedure was crucial for his own pro-
grams, because it allowed them ‘‘to organize new information meaningfully
and to select alternative modes of behavior on the basis of this organis-
ation’’ (p. 1247).

As can easily be seen, a branching instruction or ‘‘order’’ is merely
EDSAC’s ability to simulate the behavior of an analogue feedback-
controlled device. But it was Rosenblueth et al. (1943) who stressed the
discriminative abilities of these devices, which justified the psychological
language of ‘‘choice,’’ ‘‘purpose,’’ and so forth. As Marvin Minsky observed,
cybernetics provided ‘‘a sufficiently concrete (i.e., technical) foundation for
the use of mentalistic language as a constructive and powerful tool for
describing machines’’ (Minsky 1968: 2). And both the utility and the legit-
imacy of using mental language to describe the behavior of machines is an
issue later debated in the philosophy of AI (see Cordeschi 2002).

An invitation to use with caution psychological terms suggested by con-
ditional branching, such as ‘‘decision’’ or ‘‘discrimination,’’ let alone
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‘‘thought,’’ came from a further article by Wilkes. On the one hand, Wilkes
recognized the importance of conditional branching instructions in the
design of learning programs, like those Oettinger had just implemented
on EDSAC, since ‘‘they give the machine a power of discrimination.’’ On
the other hand, he pointed out that the use of those psychological terms
might be simply metaphorical, and that ‘‘the use of the word think in con-
nection with [branching instructions] would be justifiable only if the use of
a convenient technical term were thereby secured’’ (Wilkes 1953: 1232).

To conclude, it would seem that Oettinger, in reviewing the features of
his (admittedly simple) programs, raised some of the issues then far
debated among philosophers, psychologists, and AI researchers. His very
definition of machine intelligence in connection with a program ‘‘capable
of performing functions which, in living organisms, are considered to be
the result of intelligent behavior’’ (Oettinger 1952: 1251) seems to antedate
the definition of AI given by the authors of the Dartmouth preparatory
document, i.e., to make ‘‘a machine behave in ways that would be called
intelligent if a human were so behaving’’ (McCarthy et al. 1955).3

STEPS TOWARDS DARTMOUTH, I: SIMULATING INTELLIGENT
FUNCTIONS ON COMPUTERS

The second of the aforementioned articles by Wilkes was published as a
reprint in the Computer Issue, a special issue of the Proceedings of the IRE
(Institute of Radio Engineers), published with the collaboration of the
PGEC (the IRE Professional Group on Electronic Computers) in October
1953. This special issue provides excellent evidence of results in computer
design and technology achieved in the 1950s. Wilkes’s article was followed
by one by Shannon, ‘‘Computers and Automata,’’ a review of computer per-
formances comparable to those of humans (Shannon 1953), and by a long
series of articles describing digital computers in all their aspects, as regards
both software and hardware. In several of these articles there were glimpses
of the advantages stemming from the imminent spread of transistors,
which, by replacing the cumbersome and unreliable vacuum tubes, would
characterize second-generation computers.

The building and dissemination of computers in the United States and
Europe was strongly sponsored by government and industry. In the United
States, IBM had already supported Howard Aiken’s projects in the 1940s.
Starting from the 1950s, almost at the same time as Ferranti was completing
the Mark 1 computer in England, IBM began producing the type 701 com-
puter, which was carefully described in the Computer Issue. This was the first
in a series of electronic general-purpose, stored-program computers which
would be used for both theoretical research aims and government and
industrial applications. As a researcher at IBM, Nathaniel Rochester, then

264 R. Cordeschi
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one of the proponents of the Dartmouth Conference, was responsible
for the logical organization of the type 701, and wrote the first assembly
program for it. In 1952, the first checkers program by Arthur Samuel,
the author of the opening article for the Computer Issue, was run on this
computer.

This and other programs were illustrated by Shannon in his article in
the Computer Issue, including Oettinger’s programs and the checkers pro-
gram by Christopher Strachey, who had published a report in 1952. Other
programs were able to play games fairly well: the program by D.W. Davies
for tic-tac-toe, which ran on a DEUCE computer, and that for nim, running
on the NIMROD electronic computer, built by Ferranti. In 1954, Samuel
completed the implementation of the first learning checkers program on
an IBM 704 computer, later on acknowledged as a milestone in machine
learning research. Newell and Simon were designing computer chess stra-
tegies, then turning to logic theorem proving: their hand simulation of
Logic Theorist was completed in December 1955 (its first proof was printed
by a Johnniac computer in August 1956). Early computer simulations of
perceptual tasks had been developed by Oliver Selfridge and Alfred Uttley.
Computer simulation of neural nets, stemming from the seminal work by
McCulloch and Pitts (1943), were in progress, in particular by Farley and
Clark (1954), and by Rochester and some co-workers (including John
Holland), regarding Donald Hebb’s theory of learning and concept forma-
tion. In turn, both Minsky and McCarthy were dealing with several issues
concerning machine intelligence.4

The latter experiments are alluded to or mentioned in the Dartmouth
preparatory document of August 1955. But another important event took
place around that time: the symposium on ‘‘The Design of Machines to
Simulate the Behavior of the Human Brain,’’ sponsored by the PGEC at
the IRE National Convention held from March 21–24, 1955. The panel
members were McCulloch, Oettinger, now at Harvard, Rochester, and Otto
Schmitt, a biologist and an eclectic figure of science. John Mauchly, Marvin
Minsky, Walter Pitts, and Morris Rubinoff were among the invited discus-
sants.5 The transcripts of this less-known symposium are enlightening. They
are a unique inventory of the main issues involved in the building of intel-
ligent machines, of methodological approaches, ambitions, and difficulties
that would move to the forefront during the following decade, and in some
cases even in more recent times.

Among the issues dealt with at the symposium, I could mention analog
vs. digital computation, creativity in computers (based on Gödel’s undecid-
ability results), pattern recognition (Selfridge ‘‘unfortunately wasn’t unable
to be here,’’ said Rochester, and described his early experiments), and
distributed memory (in a brief discussion with McCulloch, Minsky claimed
his scepticism about models with distributed memory, and rejected, as
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suggested by McCulloch, that a good example of such models would be a
machine equipped with simple self-organizing abilities such as William Ross
Ashby’s homeostat). Leaving aside these albeit interesting topics, I would
like to focus in more detail on some other points here.

One of the main issues dealt with at the symposium was the possibility
of using computers for different aims, and what might be the ‘‘the neuro-
physiologists’ contribution’’ to the building of machines reproducing brain
functions. In his talk ‘‘Contrasts and Similarities’’ (McCulloch et al. 1956:
242–242), Oettinger distinguished two approaches in simulating human
brain functions by computers, which, ‘‘although related, are far from being
identical.’’ The aim of the first, more engineering-based approach is the
building of efficient machines per se, as aids in human intellectual tasks;
the aim of the second, a more theoretically oriented approach, is the
understanding of the human brain and behavior. Here is probably the first
clearly formulated statement of a distinction between two approaches in
machine intelligence, which was to become canonical in the AI community.

In the former, the more engineering-based case, the aim of simulation
is to build computers that effectively duplicate or amplify human mental
abilities. One might ask to what degree knowledge of the brain could be
useful to the machine designer in this case. Oettinger’s claim was that this
issue is a controversial one. The designer might try to solve many comput-
ing and control problems using abilities in which the computer excels, e.g.,
speed and accuracy of computation, eventually trying to join these abilities
with those in which human brain excels, e.g., degree of freedom, adapta-
bility to new situations, and so forth. But in any case, simulation deals with
brain functions, not with brain structure.

More clearly than in his 1952 article, Oettinger pointed out here that
most successful simulations of living functions had usually been achieved
not by ‘‘following the example of nature,’’ but by using structures and
means not used by living organisms, thus attaining also superior perfor-
mances of living functions: ‘‘for example, while the flight of birds undoubt-
edly stimulated man’s urge to fly, human flight was achieved by significantly
different means’’ (this is an example, by the way, which would become
popular in the AI community afterwards). As for digital computers, on
the one hand, their structural features are different from those of the
human brain (Oettinger mentioned here John von Neumann’s estimates
regarding the reliability of the components of brain and computer), on
the other hand, computers successfully perform arithmetic operations
using processes different from those of humans, and it can be expected
that ‘‘many machines of the future will continue to have only a functional
resemblance to living organisms.’’

In the second case, the more theoretical one, the aim of simulation is quite
different in Oettinger’s view: Computers are tools for testing hypotheses

266 R. Cordeschi
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regarding brain functions, i.e., they can be used as neurological and psycho-
logical models, as already stressed by him in his 1952 article. For Oettinger,
two distinct cases are possible here. First, one has a theory of brain functions
stated in mathematical form, such as Bush and Mosteller’s theory of conditioned
learning (Bush and Mosteller 1955). In this case, the computer can be used as
in ordinary engineering applications, to solve differential equations, to obtain
numerical values of functions, and so forth. Second, one has a theory stated so
to speak in verbal form, as Hebb’s theory of learning and concept formation.
Hebb (1949) introduced the notion of ‘‘cell assemblies,’’ or nets of neurons
strongly connected through excitatory synapses. As a result of repeated co-
activation of constituent neurons, cell assemblies develop, as stated by Hebb’s
well known postulate.6 In this case, Oettinger concluded, ‘‘the digital com-
puter may be programmed to simulate the neuron network with its environ-
ment,’’ with the aim of testing Hebb’s theory, as shown by the simulation
program illustrated by Rochester at the symposium, which I mentioned among
the early attempts in simulating neural nets.

Rochester presented a set of simulation experiments on an IBM 701 in
his talk ‘‘Simulation of Brain Action on Computers’’ (McCulloch et al. 1956:
242–244). To put it briefly, a first simulation of cell assembly theory seemed
to show that Hebb’s postulate was not sufficient: co-activated neurons did
not spontaneously develop cell assemblies. Further simulation experiments
were carried out, based on a modification of Hebb’s theory proposed by
‘‘one of Hebb’s students,’’ as Rochester said at the symposium without men-
tioning him (it was, in fact, Peter Milner). Then a network of 63 simulated
neurons, each connected to about eight others, was considered, and simu-
lation tests of a revised version of Hebb’s theory were in progress at the
time with better results.7 Rochester summarized the role of these simula-
tion experiments.

FIGURE 1 The methodological cycle proposed by Rochester in 1955, where the computer is used to test
Hebb’s cell assembly theory (McCulloch et al. 1956).
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If the model which represents the theory works as [Hebb] says it should,
the experiment gives support to the theory. Of course it could not prove
that the theory correctly represents living nets. On the other hand, if
the model does not work as expected it might force modifications in
the theory (see McCulloch et al. 1956: 249).

This exemplifies a general computer modeling methodology, here
explicitly stated for the first time in the framework of the nascent AI, which
would become pervasive in brain and behavioral sciences up to our time.8

Figure 1 shows the methodological cycle illustrated by Rochester at the sym-
posium, which includes the process of model testing and revision through
computers. It goes from formulating the model as a computer simulation
of a theory of brain functions, to determining the implications of the
model, to testing them, and finally to using data to prove, disprove, or mod-
ify the model, or the theory itself.

Rochester’s simulation methodology was positively evaluated by AI pio-
neers concerned with the aim of realistic simulation of human behavior by
computers, such as Newell and Simon. They believed that a brain or beha-
vioral theory stated as a computer simulation model was, in general, the
best alternative both to verbal (qualitative) descriptions of the theory, such
as that originally given by Hebb (1949), and to mathematical (quantitative)
statements, such as that by Bush and Mosteller (1955), mentioned also by
Oettinger at the symposium (Newell and Simon 1963: 396–397). As to the
latter, given the complexity of the human behavior, ‘‘we have a greater
chance of building a theory by way of the computer program than by a
direct attempt at mathematical formulation’’ (Simon and Newell 1956:
81). As to verbal descriptions of the theory, substituting a verbal description
with a computer program, or model, could bring to light inconsistencies
and lacunae of the theory, as demonstrated by Rochester. According to
Newell and Simon, to formulate a theory of human behavior in terms of
a computer program is to state an information processing theory (IPT).

At the symposium, Rochester pointed out how Hebb made the attempt,
in his theory, to bridge the gap between psychology and neurophysiology.
For Rochester, computer simulation could contribute to this aim. In his
view, the relationship between the two disciplines is summarized as shown
in Figure 2, in which several intermediate levels are considered between
them. What is called Theorem A in Figure 2 is an assumption about the
behavior of neurones, which does not contrast with established neurophy-
siology. This assumption, which might be identified with Hebb’s postulate,
is alleged to imply Theorem B, which might be seen as relating to a less
microscopic level, that of concept formation, based on the development
of cell assemblies. In turn, Theorem B is alleged to imply something regard-
ing behavior, which here is called Theorem C, and can be tested against
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what Rochester call ‘‘Established Psychology.’’ Although quite vaguely for-
mulated,9 this multilevel image of the relationships between psychology
and neurophysiology makes it clear that computer simulation was intended
to test the ‘‘transition from Theorem A to Theorem B,’’ as Rochester put it,
thus reducing the gap between psychology and neurophysiology in Hebb’s
theory. As seen previously, it is this very transition that initially failed to
be proved by simulation, so making it necessary to modify Hebb’s original
postulate.

These brief statements by Rochester about neurophysiology implicitly
touched on the issues of levels of explanation and the role of neurophysiol-
ogy—this time not as a contribution to computer design, but as a level of
explanation of behavior in its relationship to computer science, an issue
far debated in the philosophy of AI. According to Newell and Simon, for
example, IPT level could be seen as a less microscopic level than both The-
orem A and Theorem B levels. The theoretical hypotheses and constructs
involved in the latter, e.g., Hebb’s cell assemblies, are neurological—albeit
‘‘neurological in a broad sense,’’—as admitted by Newell and Simon (1963:
396). IPT hypotheses and constructs, e.g., elementary information pro-
cesses, are at a more abstract level, actually an intermediate level between
neurophysiological microlevel and behavioral macrolevel (for Rochester,
presumably the ‘‘Established Psychology’’ level). This more abstract level
is a new level, and concerns AI as a science of the mind: it is the level of
building and testing models of human behavior through the newborn heu-
ristic programming. It is at this level that simulation provides a functional
test of the theory.

Notice that the relationship between neural net simulation and IPT
simulation was stated by Simon during the early stages of heuristic
programming. In the first place, Simon distinguished two uses of computer
simulations: on the one hand, to build machines ‘‘imitating the human
processes only when this proves the most efficient way to do the job’’ (this

FIGURE 2 Different levels in Hebb’s theory according to Rochester (McCulloch et al. 1956).
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is ‘‘the goal of ‘artificial intelligence,’’’ as he put it), and on the other hand,
to understand ‘‘the human mind by imitating it.’’10 In the second place,
Simon observed that the latter use of computer simulation could be classi-
fied according to its ‘‘closeness . . . to, or its remoteness from, underlying
physiological processes’’ (Simon 1961: 111). Thus, ‘‘the goal . . . in simulat-
ing complex human behavior [through IPTs] is the same as the goal in
simulating neural nets: we wish to explain behavior’’ (p. 113). But the first
kind of simulation, that of IPTs, is at a more abstract level than the latter
(he mentions here, among others, Farley and Clark, Rochester, and Frank
Rosenblatt’s Perceptron): IPTs say very little about the underlying neuro-
physiological processes that occur in the central and peripheral nervous
systems, although the hope is that it would be possible to explain the latter
by reducing them to the former at their more fundamental level (see
Cordeschi 2007 for further details).

To conclude, as effectively observed by Pitts at the 1955 Western Joint
Computer Conference, in the field of computer simulation there were
people like Farley, Clark, Selfridge, and Dinneen who were ‘‘imitating the
nervous system,’’ and people like Newell who preferred ‘‘to imitate the hier-
archy of final causes traditionally called the mind."11 Contrary to his con-
clusion (‘‘it will come to the same thing in the end, no doubt’’), the gap
between the two trends in computer simulation was to become wider.

STEPS TOWARDS DARTMOUTH, II: EMBODYING FLEXIBILITY
IN COMPUTERS

At the 1955 symposium, questions raised by Otto Schmitt in his talk
‘‘The Brain as a Different Computer’’ (McCulloch et al. 1956: 244–246)
were much debated. As a biologist, he stated contrasts between the ordinary
digital computer and the biological brain from a point of view different
from Oettinger’s. For Schmitt, computers should imitate the flexibility of
reasoning usually shown by humans in order to be good simulators of brain
functions. Thus, computers would have to use a kind of loose or ‘‘grey
logic,’’ as he put it, not the rigid, bivalent, or ‘‘black-and-white logic’’ that
presently characterizes them. This would allow computers to grasp ill-
defined and abstract concepts, as well as to exploit the incomplete, conflict-
ing, or partially inappropriate knowledge commonly available to humans in
real life, e.g., in problem solving or decision-making situations.

These rather vague statements took on a slightly more specific form in
the discussion that followed Schmitt’s talk. The issue could be so stated:
how can common-sense knowledge be embodied into computer programs,
as regards both complex and real-time human decision making? As to
complex decision making, Schmitt judged, in replying to Oettinger, that
programmers should seriously consider how to embody in programs those
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flexibility-based features of the brain, not only when the aim is ‘‘a realistic
simulation of brain behavior’’ (as Oettinger put it in the discussion) but
also when the aim is building efficient machines, as aids in human intellec-
tual tasks, i.e., ‘‘as tool[s] to do something for [us]’’ (again Oettinger). Even
in the latter case, Schmitt concluded,

It is necessary to abandon the idea of perfectly correct, uniformly logical
solutions in any machine which is to arrive at generally appropriate quick
solutions to complex problems when provided only with sketchy, conflicting,
and partially inappropriate information and instructions (see McCulloch
et al. 1956: 247).

This is also true as to situations regarding quick, real-time decisions, as
in Schmitt’s example of a driver who might have to decide on exceeding
established speed limits, given a particular road situation—this and anal-
ogous examples are presently proposed as instances of situated actions in
AI. This decision is easy to make for a human, but it would be most difficult
for a rigidly programmed computer. Thus the programmer should give the
machine ‘‘a great deal of tradition and factual information, and some per-
sonal opinion,’’ and an ability to revise its conclusions, a move not allowed
in classic logic-based reasoning.

The strength of the human brain in this [real time] situation lies in the
human’s ability to make a decision promptly and forcibly on the basis of
inadequate evidence, to carry through on the basis of these decisions as
though they were axiomatic—unless forced to modify them—and to be
successful at doing all this (ibid.).

In Table 1, I sum up certain contrasts between ordinary computers and
brains according to Schmitt. For him, the former should be equipped with
information and procedures that would imitate those of the latter, in order
to be effectively used both in the realistic simulation of the human behavior
and in efficient complex problem solving by machines.

Based on these contrasts, Schmitt wondered: ‘‘Suppose that you wan-
ted . . . to insert the knowledge of what ‘democracy’ is into a computer:

TABLE 1 Computers (left) and Brains (right): Contrasts in Schmitt’s View

Determinacy vs. Indeterminacy
‘‘Purely digital’’ computations vs. ‘‘Statistical,’’ ‘‘distributed’’ computations
‘‘Black and white’’ logic vs. ‘‘Grey’’ logic
Logical reasoning vs. Common-sense (knowledge-based) reasoning
‘‘Systematic,’’ fully-informed procedures vs. ‘‘Non systematic,’’ partially informed procedures
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would it not be impossible? It would certainly be very difficult . . . .’’
Oettinger was more optimistic.

With computers it seems to me that we are able in principle, by the use of
appropriate programming or designing of structure, to build in one swoop
the whole background of explicit existing knowledge (see McCulloch et al.
1956: 249).

This seems a prelude to the future debate on how to embody abstract con-
cepts in computer programs, and on the very possibility of grasping the back-
ground of explicit knowledge by them: an issue regarding what will be called
the knowledge representation problem in AI. How to get a computer with
common sense has been at the core of McCarthy’s and Minsky’s research,
albeit from different points of view, since the very beginning of AI.

Some of the contrasts in Table 1 were stated quite vaguely and even
improperly. Consider, for example, the contrast between a ‘‘systematic’’
(i.e., computer programmed) and ‘‘non-systematic’’ (i.e., sketchily
informed) search for complex-problem solution. Non-systematicity seems
to include some kind of random elements of a not clearly specified
nature—an issue touched on in the Dartmouth document, which, as with
the transcript of the symposium, includes a brief discussion of some search
procedures including randomness, such as the Monte Carlo method
(McCarthy et al. 1955). But randomness apart, as Schmitt put it,

. . . with feedback checks of results, you can, in general outguess the sys-
tematic machine and can do it at lesser cost. Probably, it is by this kind
of process that we get answer to difficult problems: we go to a point known
to be in the vicinity of a solution, and then feel about and lash out blindly
until we chance upon a solution (see McCulloch et al. 1956: 248).

One should notice that computer programs began to be capable of
such non-systematic search procedures. Schmitt’s vaguely defined non-
systematic machine, able to get answers to problems ‘‘with feedback checks
of results,’’ is precisely the machine equipped with ‘‘considerable trial and
error, rather than a strict, unalterable computing process,’’ described by
Shannon in his aforementioned 1950 paper. At the time, Newell and
Simon, with Clifford Shaw, were experimenting on such a procedure in
Logic Theorist, as a particular problem-solving procedure (actually, a heu-
ristic one) ‘‘obtaining a feedback of the results [of a choice] that can be
used to guide the next step’’ towards the solution (Newell et al. 1957: 121).
It was a similar procedure that Oettinger had experimented with in his
learning programs, albeit in a much simpler form. Schmitt seems to share
here the idea that computers were machines following logically unalterable
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procedures, and thus not capable of modifying their behavior under differing
circumstances.

I believe . . . —he claimed—that we are taking an unbalanced view of the
problem, based on the phenomenal success of the large digital machines,
and are thereby depriving ourselves of a tremendous complementary devel-
opment of more brain-like machines (see McCulloch et al. 1956: 245).

Notice that similar claims of ‘‘more brain-like machines’’ were made by
those whose aim was to oppose the self-organizational ability of earlier
neural nets, such as Rochester’s, to the alleged inflexible performance of
computer programs. Schmitt’s criticism, however, is directed not solely
towards simulation programs, imitating ‘‘the hierarchy of final causes tra-
ditionally called the mind,’’ but also towards neural net simulation ‘‘imitat-
ing the nervous system,’’ to use Pitt’s words again. Thus what Schmitt called
‘‘more brain-like machines’’ were not neural net systems, as opposed to
computer programs. As a biologist and a biophysicist, Schmitt was well
aware of earlier work in self-organizing and neural net systems, to begin
with Nicolas Rashevsky, Asbhy, McCulloch, and Rochester himself (to men-
tion those he mentions). But he seems to judge those systems as sharing
with ordinary digital computers the same bivalent logic, based on ‘‘black-
and-white’’ units. Thus, for Schmitt ‘‘more brain-like machines’’ seem prim-
arily to be machines endowed with a non bivalent logic, a ‘‘grey logic’’
indeed. Nothing enables us to speculate that Schmitt, when speaking of
such a grey logic, was thinking to a kind of fuzzy logic as we intend it pre-
sently. Rather, he seems to allude to a notion of biological computation,
characterized by analog and statistical information transmission, as can
be seen in his own description of the real nervous system.

Contrary to Schmitt’s conclusions, on the one hand, later self-organizing
system research would try to grasp certain nervous system computational
features he pointed out, and on the other hand, the ‘‘sketchy, conflicting,
and partially inappropriate information and instructions’’ he alluded to as
characterizing human problem solving would become the core of computer
programming in the field of complex decision making. Let us see the latter
point in further detail.

Another symposium is a case in point here, the one sponsored by the
PGEC at the March 1956 IRE National Convention, thus a few months
before the Dartmouth Conference. It was one of the first meetings devoted
to ‘‘The impact of computers on science and society’’ (Astin et al. 1956),
and most speakers came not only from the academic world but primarily
from government and industry. The impact of computers on science con-
cerned engineering, physics, chemistry and biology, as well as human
sciences. The impact on society concerned different computer applications
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in data processing, mainly in industry and government, e.g., in manage-
ment, defense, and welfare. It would seem that the discussions on the
ability of new machines to simulate human decision processes are here con-
verging on an applied research field: how ‘‘to seek more effective techni-
ques and devices to assist us in managing and arriving at best solutions
to our complicated and varied problems’’ (p. 143).

At the symposium, speakers agreed on the current limits of computers
as to this goal, but also on the fact that computer capabilities were either
underestimated or not fully appreciated, so that the computer was ‘‘a
new tool with great and still unrealized potential.’’12 A common claim
was that, up to the time, computers had been firstly considered as large
calculating machines, useful in business applications (i.e., in ‘‘computa-
tions concerning money’’), but less in those areas, regarding government
and industry, in which complex data processing and optimisation
procedures are involved. The following tasks were at the center of the
various talks

. information classification and retrieval

. optimization in complex decision making

. planning

At the time, the prevalent techniques in assisting humans in such tasks
were borrowed from operation research (OR, in the sequel). Computers
played an important role in this field starting from World War II at least,
and OR was explicitly mentioned at the symposium, as well as its difficulty
in dealing with data processing and complex activities involving information
processing and planning.

In the symposium the interaction between OR and AI can be vividly
seen at its germinal stage. It is not by chance that the newborn expression
‘‘artificial intelligence’’ is used here perhaps for the first time publicly
before the Dartmouth Conference. It was used by John Mauchly—one of
the builders of ENIAC along with Prosper Eckert—in his talk at the sym-
posium, in dealing with the issue raised by David Sayre, at the time at
IBM and one of the authors of FORTRAN with John Backus. The issue
concerned decision-making procedures in complex problem solving and
planning (scheduling of production, control of traffic in airline systems,
and so forth).

As is well known, the expression ‘‘artificial intelligence’’ was introduced
by John McCarthy in the 1955 document proposing the Dartmouth Confer-
ence. Sayre’s name was present on the list, attached to the document, of the
people whom the organizers of the conference believed might be potential
participants, as interested in the AI research program. At the symposium,
Sayre touched on the issue of machine intelligence, speculating about a
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way to endow a machine with what he called ‘‘something that approaches
intelligence.’’

I would envisage placing a machine in an environment which it can affect
by its actions and from which the consequences of actions are feed back
to it. It would begin with a procedure that had been given to it, but it
would at the same time execute neighboring procedures and test out by
its interaction with its environment whether one of the neighboring pro-
cedures might be more successful than the one it had executed; after
enough favorable evidence it would adopt this procedure (see Astin et al.
1956: 157).

This kind of machine might have satisfied certain of the criteria ques-
tioning the flexibility requirements of computers, and appears to be
endowed with that ‘‘self-improvement’’ ability which characterizes the ‘‘truly
intelligent’’ machine alluded to in the Dartmouth document (McCarthy
et al. 1955). Sayre, however, explicitly related such an intelligent machine
to decision making in OR, when he suggested that complex activities or
tasks, such as the aforementioned problem solving and planning, required
‘‘a rather different technique of machine use than we have yet developed.’’
Given that no ‘‘exact procedure’’ had been evolved for solving these pro-
blems, the issue at point was ‘‘how to cause a machine, which has been
given a fairly exact procedure, itself to amplify and correct it, constantly
producing better and better procedures’’ (Astin et al. 1956: 149). These
‘‘fairly exact’’ or ‘‘inexact’’ procedures were underlined by Mauchly as a
mark of machine intelligence.

It is certainly true that many of us are interested in what has been given the
name ‘‘artificial intelligence.’’ This is indeed a field in which a great deal is
going to be done, and there will be much influence on the future applica-
tions if we are successful in some of the endeavors which [Sayre] described
as coming under ‘‘inexact’’ rules, procedures, and applications (see Astin
et al., 1956: 155).

The point at issue here is the ability of computers to make decisions,
simulating human problem-solving procedures, in order to assist humans
in complex information processing, planning, and decision making. At
the time, it was Simon who would have pointed out the limits of OR tech-
niques in dealing with such complex situations, where information is sket-
chy, and procedures do not guarantee optimization in decision making.
Developments of new, AI-based programming techniques were promptly
applied in the field of management and decision making, where economics
and psychology seemed to converge. As Simon viewed it:
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AI was born in the basement of the Graduate School of Industrial Admin-
istration at Carnegie Mellon University, and for the first five years after his
birth, applications to business decision making (that is OR applications)
alternated with applications to cognitive psychology (Simon 1997: 5).

This is a personal view of the origins of AI, but it effectively points out
the role of early AI in evolving new techniques in data processing. Briefly,
for Simon, the model of the decision maker is not the omniscient econ-
omic man, the Homo oeconomicus of classic economics, who maximizes his
choice as predicted by the game theory. Endowed as he is with an ideal
rationality, economic man is assumed to be fully informed on the problem
domain or environment, as complex as this may be. In fact, this model is an
extreme idealization too far removed from the actual decision maker who is
commonly dealing with complex, usually ill-structured problem domains,
about which he is poorly informed. Another, more realistic model was pro-
posed by Simon, that of the ‘‘administrative man.’’ This deals with both
computationally complex and real-life problems, and endowed as he is with
a kind of ‘‘bounded rationality,’’ as Simon put it, is usually unable to max-
imize his choice, so using ‘‘satisficing’’ decision procedures, finally called
heuristics. To put it a bit crudely: disciplines initially involved in using these
two different models of decision maker were, on the one hand, OR, based
on common linear programming and probability theory techniques, and,
on the other hand, AI, based on the new born heuristic programming. I
sum up Simon’s oppositions in different views of decision making in
Table 2. Briefly, in Simon’s view it was OR’s failure in dealing with more
human-like problem solving procedures that was the major cause of its early
divorce from early AI (for details, see Cordeschi 2007).

To conclude, both Schmitt’s ‘‘sketchy, conflicting, and partially inappro-
priate information and instructions’’ and Mauchly’s ‘‘‘inexact’ rules, proce-
dures, and applications’’ seem to state requirements then met by early-AI
heuristic, often human-like, rules or procedures. Regarding the previously
mentioned areas concerned with management and complex decision mak-
ing and planning, the background in which those requirements were
initially met is the theory of the administrative man, developed by Simon
starting from the 1940s.

TABLE 2 Simon’s Oppositions in Decision Making

economic man vs. administrative man
omniscience vs. partial information
ideal rationality vs. bounded rationality
maximising vs. satisficing
mostly well-structured problems vs. mostly ill-structured (real-life) problems
linear programming (OP) vs. heuristic programming (AI)
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CONCLUSION

On the thresholds of the Dartmouth Conference, and against the
backdrop of the spread of early large digital computers, several issues were
raised that would influence both future research areas and future contro-
versies in AI. In summary, I would mention the following:

. how to use non-numerical, i.e., symbolic, programming in the simulation
of human abilities by machines

. how to state different uses of computers: on the one hand, in realistic
simulations of organism behavior and, on the other, in efficient engineer-
ing and management applications

. how to state the theory-model relationship within non-numerical com-
puter simulation, given empirical facts and theoretical hypotheses regard-
ing the brain or behavior

. how to justify the role of neurophysiology, having identified different
levels of investigations—behavior processes and brain processes—both
considered, however, as functional levels

. how to embody knowledge in computers, and what kind of logic would
be useful, first regarding real-life situations

. how to relate decision making and OR with newborn AI techniques—
apparently more capable of dealing with complex and ill-structured prob-
lem domains

Heuristic programming has been the case in point here. Logic Theorist
has been considered the first heuristic program. Although it played an
important role at the Dartmouth Conference, programs different in com-
plexity, from Oettinger’s to Samuel’s above all, included procedures that
could be called heuristics. Advances in earlier heuristic programming, also
seen as a promising approach in data management and complex decision
making, are among the most relevant causes that made program simulation
of human behavior prevail over distributed, self-organizing, and neural net
approaches. These began to be rapidly and diffusely seen as a more brain-
like style of computation, in particular when AI—as a new science of the
mind—was suggested to be a level of behavior explanation autonomous
from the nervous system level (or levels).

Two years after Dartmouth, at the 1958 Teddington Symposium, the
aforementioned opposition between imitators of the mind and imitators
of the brain was definitively stated by Minsky, in his review of earlier
advances in heuristic programming (see Cordeschi 2002: 187–189). Minsky
(1959) opposed hierarchic systems, ‘‘dealing with rather clear-cut syntactic
processes involving the manipulation of symbolic expressions’’ to
‘‘‘network’ machines,’’ endowed with fairly simple self-organizational
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capabilities. He claimed his disaffection from the latter, if ‘‘really sophisti-
cated behavior’’ is to be simulated. Moreover, it would not have been sur-
prising if, once presently unknown nervous system mechanisms of
intelligent activities had been identified, ‘‘the remaining heuristic theory
would not be very different from the kind concerned with the formal or
linguistic models.’’ At the moment, it might be thus worthwhile, Minsky
concluded, to devote major efforts to heuristic programming, or what
‘‘some of us call ‘artificial intelligence’.’’
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ENDNOTES

1. But notice that they had already been pointed out by Charles Babbage in reference to his ‘‘analytic
machine.’’

2. See http:==www.loebner.net=Prizef=loebner-prize.html.
3. Cf. also the definition of the goals of AI given by the editors of Computers and Thoughts a decade

later: ‘‘To construct computer programs which exhibit what we call ‘intelligent behavior’ when
we observe it in human beings’’ (Feigenbaum and Feldman 1963: 3). Also, see Minsky (1968: v):
AI is ‘‘the science of making machines do things that would require intelligence if done by men.’’

4. It should be recalled that Minsky’s original interests were aimed precisely at neural nets and self-
organizing systems. In 1951, he, along with a former classmate, Dean Edmons, and thanks to finan-
cing obtained by George Miller, had built a machine consisting of a net of forty-plus artificial neu-
rons (actually, vacuum tubes) linked randomly. The machine learned a path through a maze by
means of a reinforcement rule. This machine is mentioned by Minsky under the name of SNARC
(Minsky 1987: 76). Minsky himself recalls how this experience helped convince him of the difficulty
in capturing the nature of intelligence using machines of the sort, essentially self-organizing ran-
dom nets.

5. The original transcripts, edited by the speakers, were published later; see McCulloch et al. (1956).
6. This was to become known as the ‘‘Hebb rule’’ among the connectionists up to our time (but see

Cordeschi 2002: 216–218).
7. Further simulation experiments on the faster IBM 704 computer dealt successfully with a very much

larger net of 512 neurons (Rochester et al. 1956).
8. This machine simulation methodology has its own ancestors, see Cordeschi (2002). See also Webb

(2001) for a general discussion.
9. This point does not appear further developed in the later article by Rochester et al. (1956).

10. This distinction, already stated by Oettinger at the 1955 symposium, was to become canonical in the
AI community up to our days. At the time, it reflected the double nature of the newborn heuristic
programming, as both an efficient and human-like programming technique (see Cordeschi 1996).

11. Quoted by Simon and Newell (1962).
12. The computers referred to were above all the ILLIAC and the SEAC computers.
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