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ABSTRACT 

As the public’s demand for portable access to personal health information continues to expand, wearable devices 

are not only widely used in clinical practice, but also gradually applied to the daily health management of ordinary fam-

ilies due to their intelligence, miniaturization, and portability. This paper searches the literature of wearable devices 

through PubMed and CNKI databases, classifies them according to the different functions realized by wearable devices, 

and briefly describes the algorithms and specific analysis methods of their applications and made a prospect of its de-

velopment trend in the field of human health. 
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1. Introduction

Wearable devices, also known as wearable bi-

osensors, can collect the original physiological pa-

rameters of the population, and then process them 

into health digital information that users can easily 

understand for health monitoring, such as heart 

rate, blood pressure, blood oxygen saturation, blood 

sugar and continuous monitoring of body tempera-

ture, etc. At the same time, the wearable device can 

also collect related indicators such as steps, activity 

category, posture, activity trajectory, sleep moni-

toring and energy consumption. Wear it on different 

parts of the human body according to the needs of 

users and the functions achieved by the device. The 

common wearing position and information trans-

mission and storage process are shown in Figure 1. 

Compared with the early wearable devices, the 

wearable devices in recent years have been more 

lightweight, refined and fashionable in design. At 

the same time, as people’s demand for mobile 

health increases, higher requirements are also 

placed on the performance of wearable devices. In 

order to better understand the application status of 

different wearable devices in health-related fields, 

this paper adopts the literature tracking method, and 

uses the PubMed and CNKI databases to search the 

literature in the past ten years using the keyword 

“wearable device”. Since this paper only studies the 

application of wearable devices in the field of hu-

man health, research in the fields of industry, edu-

cation and military is excluded. The searched doc-

uments are classified by the application fields of 

wearable devices involved in the literature and the 
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specific sensors and related algorithms used by the 

devices and summarises the relevant key technolo-

gies involved in the daily application of wearable 

devices, analyzes its possible problems, and sum-

marizes the development trend of smart wearable 

devices in the field of human health. 

Figure 1. Flow chart of common wearing positions and data transmission and storage of wearable devices. 

2. Application Status

This paper uses the PubMed database to search 

the literature in the past ten years using the keyword 

“wearable device”, a total of 552 literature (exclud-

ing 908 review literature), through the statistical 

summary of the wearable devices used in the litera-

ture, according to the wearable device. The func-

tions and application fields realized by wearable 

devices can be divided into the following catego-

ries. 

2.1. Entertainment and leisure 

Products such as smart glasses, wireless head-

sets and VR helmets are typical leisure and enter-

tainment wearable devices, which occupy most of 

the wearable device market. In addition to the beau-

tiful appearance, its core technology mainly lays in 

the battery life of the device, wireless communica-

tion technology and human-computer interaction 

effects. Generally, such wearable devices will com-

bine multimedia applications such as cameras, vid-

eos, and music, and are mainly used for users 

to browse pictures, web pages, etc., and typical 

commercial products such as Google glass, Baidu 

Eye, Emotiv helmet, Apple watch, etc. 

2.2. Motion detection class 

Most sports detection wearable devices 

have built-in barometers, three-axis acceleration 

sensors and gyroscopes, which can detect the num-

ber of steps, distance, calorie consumption, activity 

type and posture during exercise. Due to the great 

instability of the signal during the movement, the 

sensitivity of the sensor and the accuracy of the al-

gorithm have high requirements. Commercial 

wearable devices using different sensors are be-

coming more and more widely used, and the hottest 

one is in the field of motion analysis and activity 

monitoring of inertial measurement devices[1]. Gen-

erally speaking, the filter, peak and valley detection 

and frequency domain adaptive threshold functions 

of sports wearable devices can make the device 

show strong stability for different users and envi-

ronments. However, in most cases, few researchers 

have established a mathematical model of the rela-

tionship between sensor signals and activity detec-

tions. 

Step count 

Step counting is the basic function of motion 

detection wearable devices, and the step counting 

function is mainly realised based on MEMS. 

Common step-counting detection algorithms mainly 

include peak detection algorithm[2], dynamic 

threshold detection algorithm, zero-rate correction 

algorithm, autocorrelation algorithm and combina-
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tion of two or more algorithms. Other time- and 

frequency-based methods, such as fourier transform 

and wavelet transform, can utilize the walking cycle 

to achieve accurate step size detection. Studies have 

shown that commercial fitness wearable devices are 

less accurate in evaluating activity intensity than 

research-grade accelerometers[3]. Winfree et al.[4] 

evaluated Fitbit and found that Fitbit’s assessment of 

exercise intensity has a low accuracy rate. The team 

also used Actiongraph GT3X algorithm combined 

with Bayesian classifier to improve Fitbit Flex, re-

ducing the error rate to 16.32%. Tao et al.[5] made a 

review on a variety of pedometer APPs based on the 

Android system. The results show that the accuracy 

of step counting function of fitness APP is related to 

the actual walking speed and device placement. In 

general, a pedometer worn on the hip or foot is more 

accurate than a pedometer worn on the wrist or 

measured with a smart phone. Toth et al.[6] conducted 

a comparative analysis of 8 pedometers on the 

market (StepWatch, ActiPAL, Fitbit Zip, Yamax 

Digi-Walker SW-200, New Living Style NL-2000, 

Actiongraph GT9X, Fitbit Charge and Fitbit AG) 

using 14 different pedometer methods, and found 

that StepWatch has the highest pedometer accuracy. 

Various calibration methods can be used to improve 

the accuracy of the pedometer function of wearable 

devices, such as personalizing settings based on a 

single user and detecting the minimum walking du-

ration before activating the pedometer function[7]. 

Energy expenditure 

The functions of wearable devices are gradu-

ally diversified, and calorie consumption is one of 

the focuses of consumers. Generally speaking, the 

measurement of energy expenditure (EE) includes 

direct measurement method and indirect meas-

urement method, which can be represented by ox-

ygen calorific value, respiration entropy, etc., and 

different formulas are used to calculate EE ac-

cording to body mass, exercise time, speed, dis-

tance, etc. Among them, the double-labeled water 

method and the gas metabolism analysis method 

are called the “gold standard” for evaluating 

EE, but they are both expensive and inapplicable. 

Health-related smart wearable devices mostly use 

MotionX technology, which uses 3D accelerome-

ters to identify motion patterns and convert them 

into identifiable energy consumption[8]. 

Currently, there is no single technique that can 

accurately quantify EE under free-living condi-

tions, but multiple methods can be combined to 

improve accuracy, such as heart rate, acceleration 

measurements, and step counts. Pande et al.[9] de-

veloped an initial linear regression model based on 

neural network and bagging regression tree, and 

the correlation between the EE measured by 

the barometer data and the actual EE measured by 

the gold standard calorimeter (COSMED K4b2) 

can reach 96%. Shcherbina et al.[10] selected 60 

volunteers to accept the evaluation of 7 devices in 

different states. The experiment showed that Apple 

Watch 3 had the lowest overall error rate, Samsung 

gear S2 has a high error rate, all devices have an 

error rate of more than 20%. Most wrist-worn de-

vices perform poorly on EE measurements during 

laboratory activities. The device is poor in meas-

uring EE during laboratory activities. Some re-

searchers compared three commercial sports 

watches (Suinto Ambit2, Garmin Forerun-

ner920XT and Polar V800), and found that the 

calculation accuracy of the EE value of the device 

depends on the exercise intensity, and the error 

rate of the three devices is higher under 

high-intensity exercise[11]. The accuracy of outdoor 

activity EE detection using wearable devices is 

still low, and more effective motion detection sen-

sors and algorithms need to be developed[12]. 

Activity track and motion classification 

Human activity recognition systems can be 

roughly divided into two categories: (1) Sys-

tems based on computer vision; (2) systems based 

on acceleration sensors[13]. Various sensors can be 

used to improve the performance of the recognition 

system, such as RGB sensors, depth sensors (Kinect, 

etc.), and inertial sensors. Traditional motion recog-

nition mainly follows the pattern shown in Figure 

2[1]. 
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Figure 2. Traditional motion recognition development sys-

tem. 

Mooney et al.[14] evaluated two devices, Finis 

Swimsense® and Garmin SwimTM, The algorithms 

of both devices can accurately assess different 

strokes, but there are individual differences in ac-

curacy (professional athletes have higher accuracy 

than amateurs). Kanoga’s team[15] used the EMG 

control system to identify motion through surface 

EMG, and found that compared with the traditional 

motion recognition algorithm, the armband-type 

surface EMG device has stronger performance for 

short-term use, but it is not suitable for long-term 

use. Commercial smart wearable devices mostly use 

GPS sensors to realize the positioning function, 

cooperate with three-axis sensors to realize the 

identification of different motion modes (climbing, 

walking, cycling, etc.), and use third-party applica-

tions to display dynamic motion trajectories in real 

time. 

2.3. Human health monitoring and medical 

applications 

Wearable devices can not only provide 

short-term physiological data, but also realize 

long-term and continuous human monitoring under 

different conditions, which can provide a cer-

tain basis for clinical decision-making[16,17]. Jo-

vanov[18] found that 10 patients with chronic dis-

eases who were intervened by wearable health 

monitoring devices had a significant decrease in 

average weight after 3 months, and their physical 

activity level and health status were significantly 

improved. Voss et al.[19] used Google glass to inter-

vene in children with autism spectrum disorders, 

and taught children to recognize and express emo-

tions through interventions such as pictures and au-

dio from wearable devices. Clinical studies have 

found that wearable device-guided digital home 

therapy can improve current levels of care. 

Sleep monitoring 

In general, polysomnography (PSG) is used as 

the gold standard for assessing sleep, but it is only 

suitable for clinical and laboratory research settings 

and requires professional operation. Actigraph is 

generally used in non-lab environment; this device 

can be worn all day, converts the collected physio-

logical signals into digital signals and exports them 

through a three-axis accelerometer, etc. However, 

Actigraph has certain defects and cannot identify 

the sense of motion in a static state[20]. 

Gautam et al.[21] classified the human body da-

ta collected by the built-in accelerometer of 

smart-phones based on the Kushida algorithm, sta-

tistical functions and hidden Markov models, and 

differentiated between sleep and wakefulness. 

Meltzer et al.[22] evaluated the sleep monitoring ef-

fect of Fitbit Ultra in 63 adolescents and children. 

The experiment proved that compared with PSG, 

Fitbit Ultra overestimated the total sleep time and 

sleep efficiency in normal mode, and the opposite 

in sensitive mode. Therefore, in clinical practice, 

this device cannot replace traditional PSG and 

needs to be used with caution. Xie et al.[23] con-

ducted a variety of functional evaluations on 

the best-selling and best-reviewed products on the 

market through a meta-analysis. In terms of sleep 

monitoring, these wearable devices achieved rela-

tively high accuracy, with an average absolute per-

centage error of 0.11 and the difference between 

different devices is small. Previous studies have 

found that only using motion sensors to identify 

sleep states will produce large errors, and it is easy 

to classify resting and awake states as sleep states. 

Therefore, it is recommended to use multiple sen-

sors to detect sleep. The introduction of new algo-
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rithms and parameters to evaluate sleep states may 

have better results[20]. 

Atrial fibrillation detection 

Atrial fibrillation is the most common ar-

rhythmia disease, and is prone to complications 

such as arterial embolism, pulmonary embolism, 

cardiac insufficiency, and sudden cardiac death. 

Therefore, early prediction and timely treatment of 

atrial fibrillation are of great significance in reduc-

ing the incidence of stroke and other vascular em-

bolic diseases[24]. 

Common atrial fibrillation detection devices 

are mainly clinical ECG, implantable ECG equip-

ment and portable wearable ECG measurement de-

vice. Photoplethysmography (PPG) is the most 

common wearable technology used to detect cardiac 

function. Usually, the data from the PPG sensor is 

processed by the beat frequency detection algorithm, 

which generally includes data pre-processing, 

waveform extraction, peak and valley detection, and 

the classification of the interval between beats[25]. A 

new framework was proposed to distinguish atrial 

fibrillation from other types of heartbeats by com-

bining an improved frequency slice wavelet trans-

form with a convolutional neural network, con-

firming that it is possible to accurately identify 

atrial fibrillation from short-term signals[26]. There 

is also a portable ECG measurement device used in 

conjunction with ECG equipment. Fan et al.[27] used 

the “palm ECG” E-U08 device to remotely monitor 

the patient’s ECG outside the hospital and feed 

it back to the doctors in the hospital in real time. 

The detection rate is significantly higher than that 

of traditional 12-lead ECGs. William et al.[28] com-

pared the Cartier mobile heart monitor with lead 

ECG in 52 patients, and confirmed that clinicians 

could improve the accuracy and efficiency of atrial 

fibrillation detection with the aid of equipment. The 

Kardia Band (KB), the first approved smart-watch 

accessory released by AliveCor, detects atrial fi-

brillation by recording single-lead ECG signals[29], 

and later released the Kardia Mobile 6L ECG de-

vice that can use six leads. The Study Watch can 

record, store and display ECG waveforms, but this 

watch can only be used for laboratory research and 

cannot provide user data access[30]. 

Atrial fibrillation is a serious arrhythmia phe-

nomenon, accompanied by various complications, 

and is the main cause of various heart diseases such 

as myocardial infarction. Atrial fibrillation is a se-

rious arrhythmia phenomenon, accompanied by a 

variety of complications, is the main cause of myo-

cardial infarction and other heart diseases, in order 

to realize automatic atrial fibrillation detection in 

small wearable devices, sophisticated sensors and 

algorithms are required, and the technical require-

ments are relatively high. 

Fall detection 

Identifying falls and initiating early warning 

can effectively reduce related morbidity and mor-

tality. Clinical testing is limited in time and space, 

and the equipment used is cumbersome. The fall 

detection function implemented by wearable devic-

es is not prone to signal errors in practical applica-

tions, and is the most practical. 

General wearable devices are mostly based on 

three-axis devices such as accelerometers, gyro-

scopes and magnetometers, as well as multi-sensor 

fusion detection and video-based detection. Some 

studies have used machine learning methods to dis-

tinguish falls from normal states. Commonly used 

methods include k-NN, least squares, support vector 

machines, Bayesian decision-making, dynamic time 

warping, and artificial neural networks[31]. There are 

also studies using statistical analysis to extract sig-

nal features to identify fall trends. Generally speak-

ing, the risk of falling has individual differences, 

which has a great relationship with age, body 

weight, etc., and the environment in which it is lo-

cated also has a great influence on it. 

Analysis methods based on biomechanical 

models need to extract specific features, and the 

final model performance depends on the specific 

model structure and input data. Aicha et al.[32] com-

pared the traditional biomechanical model and its 

proposed deep learning neural network model, and 

found that the latter’s fall risk prediction accuracy 
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was significantly higher. 

In addition to the type and number of sensors, 

the placement of the sensors also has a great impact 

on the detection effect. The Özdemir group[33] 

summarized the number of sensors, subjects, sensor 

placement, sensor combination, classification algo-

rithm and performance, the study found that simply 

reducing the number of sensors will reduce the de-

tection accuracy, and the sensor using the k-NN 

algorithm is placed at the waist to achieve a sensi-

tivity of 99.96%. 

Blood sugar test 

Diabetes is usually diagnosed and managed by 

continuous glucose monitoring (CGM) equipment. 

CGM can effectively control blood sugar and re-

duce insulin dosage in patients with type 2 diabetes 

mellitus[34]. In general, CGM provides input to a 

mathematical model that predicts fluctuations 

in blood glucose concentration over time. This al-

gorithm relies on input from factors such as dietary 

intake, activity, and emotion that affect glucose 

metabolism, but is based on deep learning and sup-

port vector machines. The method can disregard 

these inputs and can predict the blood glucose 

change in patients with type 1 and type 2 diabetes 

for 60 minutes[35,36]. Bonn et al.[37] found that the 

intervention of the smart-phone APP combined with 

the GTX3X human exercise energy monitoring in-

strument in patients with type 2 diabetes can signif-

icantly improve the patient’s exercise volume and 

glucose and lipid metabolism indicators. Mhaskar et 

al.[38] used deep neural network to evaluate blood 

glucose in groups, and the results showed that 

compared with shallow network, the detection ef-

fect of deep neural network was better. There are 

few products for wearable devices to detect blood 

sugar, which is still an area to be studied and ex-

plored. 

3. Key technologies 

There are many kinds of wearable devices on 

the market, and the realization of different functions 

depends on different technical support, such as the 

sensors used in the device itself, external data re-

ceiving equipment, wireless communication tech-

nology and data storage platform. 

The sensors used in wearable devices are 

mainly divided into motion transmission sen-

sors, biological sensors and environmental sensors, 

including gyroscopes, accelerometers, magnetome-

ters, photoelectric sensors, barometric altimeters, 

and temperature sensors. Its human-computer in-

teraction is different from ordinary smart devices. It 

is a direct and sufficient interaction method, mainly 

including voice interaction, tactile interaction, and 

consciousness interaction. At the same time, be-

cause wearable devices involve a wide range of 

fields, large amounts of data, and diverse applica-

tion groups, it is necessary to use artificial intelli-

gence to optimize the devices and platforms. Wire-

less communication technology is the link between 

users and devices, enabling data communication 

and information sharing between users, between 

users and devices, and between devices. Commonly 

used communication technologies now mainly in-

clude near field communication technology, Blue-

tooth and wireless network technology. Users can 

transmit data to the cloud platform for subsequent 

viewing, use and sharing through wireless commu-

nication technology with low energy consumption. 

Compared with the traditional human-computer 

interaction mode, the application of virtual reality 

and augmented reality in the wearable field pays 

more attention to the actual feeling of human senses. 

The way to obtain information is no longer lim-

ited by time and space, and virtual screens may be-

come a visual supplement for human-computer in-

teraction. 

4. Conclusions 

Most of the traditional wearable devices are 

devices based on research institutions or medical 

places guided by special personnel, providing re-

al-time visual physiological data for specific users. 

As people pay more attention to health, the concept 

of smart medical care is more deeply rooted in the 

hearts of the people. Due to the limited medical re-
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sources, wearable devices also mean the transfor-

mation to the field of individual medical applica-

tions. It must develop in the direction of more in-

formatization, digitization and intelligence[39]. Due 

to the development of technologies such as sensors, 

external data receiving devices, wireless communi-

cation technology and data storage platforms used 

in the device itself, in addition to the ordinary mo-

tion detection function, most smart wearable devic-

es currently have certain human health management 

functions and the reliability of the detection data is 

high.  

However, the popularization of smart wearable 

devices still faces a series of problems and chal-

lenges (Table 1). The development of Internet 

technology has made people not only have high 

requirements for device signal reliability, long-term 

stability and comfort, but also require data. There is 

also more attention to privacy protection, and it is 

necessary to continuously improve the algorithms 

for processing signals and analyzing data[42,43].

Table 1. The application status of wearable devices 

Application field Key Technology  Problem exists Possible solution 

Motion and attitude 

change detection 

Three-axis accelerome-

ter 

Different devices have 

large differences in de-

tection accuracy and poor 

device sensitivity; com-

mercial devices are less 

effective than re-

search-level devices 

Consider machine learning, 

unified calibration methods, 

etc. 

Energy estimation 

Algorithms for resting 

energy expenditure and 

active energy expendi-

ture 

There is currently no 

single technique that 

perfectly quantifies the 

energy expenditure asso-

ciated with physical 

activity under free-living 

conditions 

Various complementary meth-

ods are recommended (heart 

rate, accelerometer measure-

ments, pedometer-measured 

steps, etc.)[39] 

Cardiovascular 

disease detection 
photoelectric sensor 

There are a lot of false 

positive events 

Rhythm detection technolo-

gy[40], etc. 

Fall detection 
Three-axis accelerome-

ter 

The accuracy is not high 

in real-life scenarios 

Consider algorithm improve-

ments[41] (k-NN classifier, least 

squares, etc.); 

Consider device wearing posi-

tion (waist, ankle, etc.) 

Sleep monitoring motion sensor 

There is a large error in 

distinguishing sleep 

states 

Use multi-sensor detection 

 

Most wearable devices are not very independ-

ent, and need corresponding terminal APP support. 

At the same time, the portable characteristics also 

require the miniaturization and integration of the 

sensors of the wearable device, and also require the 

device to have a certain battery life. Due to different 

application fields, there is still a lack of unified 

standards for general smart wearable devices. Alt-

hough there are many types of wearable devices on 

the market with complex functions, however, there 

is still a lot of controversy about the application of 

special groups (the elderly, children and pregnant 

women, etc.). 

Although there are many challenges, the de-

velopment of portable smart wearable devices 

has become a major trend. With the development of 

technology, the hardware technology of the device 

(processor, battery technology, etc.), software sys-

tem (user-centric more accurate algorithms, etc.), 

cloud services (personalized services, etc.) will 

achieve a certain degree of performance improve-

ment, and the user experience will also be signifi-

cantly enhanced. At the same time, with the devel-

opment of 5G technology[44], the application of 

communication Internet technology will be more 

in-depth, providing technical supplements for the 

scarce medical resources in the post-epidemic era. 
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This trend will promote the cross-integration of ex-

pertise in more fields, promote the coordinated de-

velopment of various industries, and will also create 

a healthier and safer application environment for 

smart wearable devices. 
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