Determination of four sulfonamides residues in prawn by ultrasoundassisted matrix solid phase dispersive extraction combined with precolumn derivation high performance liquid chromatography-

fluorescence

Xie Jin, Zhang Hongfeng, Hu Guoyuan, Pen Rongfei, Luo Xiaoyan, Pan Xinhong, Yu Hong Physical and Chemical Laboratory, Guangzhou Center for Disease Control and Prevention, Guangzhou Guangdong, 510440, China

Abstract:

Objective To establish a method for the simultaneous determination of four sulfonamides residues in prawn, including sulfadiazine, sulfathiazole, sulfamerazine and sulfamethazine, by ultrasound-assisted matrix solid phase dispersion extraction coupled with pre - column derivation high performance liquid chromatography(HPLC). Methods Through the optimization of extraction conditions, ethyl acetate was selected as the extraction agent and florisil as the solid dispersion agent, and the sulfonamides in prawn were extracted with the method ultrasound-assisted matrix solid phase dispersion. The sulfonamides were pre-column derived by fluorescamine and detected by HPLC-fluorescence method. Results All sulfonamides showed good linearity in the concentration range of 2-100µg/L, with the correlation coefficient>0.999. The limit of detection and limit of quantification was 0.5 and 2μ g/kg, respectively. The spike recoveries of blank prawn samples were 84.4%-93.9% at two levels of 2 and 20μ g/kg, with the relative standard deviation(n = 3)less than 7.7%. Conclusion The method is simple, time-consuming and high precision, which meets the requirements of residue analysis.

Keywords: Ultrasound-assisted matrix solid phase dispersion; Pre-column derivation; High performance liquid chromatography; Prawn; Sulfonamides

China Library Classification No.: R115 Document identification code: A

Article No.: 1004-1257 (2020)09-1200-05 DOI:10.13329/j.cnki.zyyjk.2020.0321

Fund Project: Guangdong Medical Science and Technology
Research Fund Project (a₂019060); guangzhou
Health Science and technology project
(20191a₀11065)

About the author: Xie Jin, female, technician in charge, mainly engaged in physical and chemical inspection.

Correspondence Author: zhanghongfeng, technician in charge, e-mail: zhang hongfeng@126.com

Sulfonamides (SAS) are a class of drugs containing p-aminobenzenesulfonamide structure. They are commonly used broadspectrum antibiotics. Because of its broad antibacterial spectrum. It is widely used in aquaculture because of its strong curative effect [1-2]. People often eat animal derived food with sulfonamides residues, which may cause the gradual accumulation of sulfonamides in the

body, and its harm is mainly manifested in bacterial resistance. drug Allergy. Hematopoiesis disorder. Carcinogenesis and hormone like effects [3-4]. Therefore, different countries have set limits on SAS [5-6]. The residual concentration of veterinary drugs in aquatic products is very low, the sample matrix is complex, and there are many interfering substances, so it is difficult to separate from the sample. Purify the residue. Therefore, the separation of samples. Purification is the most time-consuming and labor-intensive step in the analysis of veterinary drug residues. Matrix solid phase dispersion (MSPD)was proposed by Baker et al. [7] for extraction. This method saves time by purifying drug residues in food samples. Save effort. Rapid and efficient, it is more and more used in the residue analysis of aquatic products [8-13]. The detection methods of SAS residues mainly include enzyme-linked immunosorbent assay [14]. Gas chromatography mass spectrometry [15]. High performance liquid chromatography [16-17]. High performance liquid chromatography tandem mass spectrometry [13, ^{18]}. Capillary electrophoresis ^[19-20], etc. Enzyme linked immunosorbent assay is mainly used for large-scale screening work, generally not for quantification, which is prone to false positives; although chromatography-mass gas spectrometry has high sensitivity and specificity, it needs to methylate sulfonamides, and the operation is more complex. In recent years, it has been basically no longer used. High performance liquid chromatography Ultraviolet Detection Method and capillary electrophoresis method have low sensitivity and poor specificity, especially in low concentration detection, the sample matrix interference is large, so it is difficult to accurately carry out qualitative performance confirmation; high liquid chromatography tandem mass spectrometry overcomes these problems, but the price of

liquid chromatography-mass spectrometry is expensive, which is not conducive popularization. Method 2 in the agricultural standard adopts post industry derivatization fluorescence detection [21], which has high sensitivity. The reproducibility is good, but it needs a special post column derivatization system to achieve. Therefore, we established a pre column derivatization fluorescence method to detect sulfa drugs in shrimp. An analytical method for the simultaneous determination of four SAS drug residues in shrimp was established by using Florisil as solid-phase dispersant and ethyl acetate as extraction solvent, extracting by ultrasonic assisted matrix solidphase dispersion and detecting by fluorescence amine precolumn derivatization fluorescence method. The accuracy of this method. The sensitivity is high and the operation is simple. The quantitative limit of the four SAS is $2\mu G/kg$, suitable for rapid detection of large quantities of aquatic samples.

1 Materials and methods

1.1 Instruments and reagents

1200 liquid chromatograph: Agilent equipped with quaternary pump. Fluorescent detector. Column temperature box. Autosampler, chromatographic column. Vortex mixer (German IKA company). Ultra pure water machine (American millipore company). Centrifuge (Shanghai Feige company). High speed centrifuge (sigma, Germany). Rotary evaporator (Japan eyela company). Ultrasonic cleaner (Ningbo Xinzhi company), sulfadiazine (SD). Sulfathiazole (st). Sulfamethylpyrimidine (SM₁). Sulfamethazine (SM₂)standard (German Dr. Ehrenstorfer company): purity \geq 98%, fluoroamine (Shanghai TCI company): purity ≥ 99%, methanol. Acetonitrile. Acetic acid is chromatographically pure (TE dia company of the United States), and n-hexane. Ethyl acetate.

Acetone and magnesium sulfate are analytically pure (Guangzhou Reagent Factory). Florisil (60~100 mesh) is burned at 650°C for 5 hours. Before use, it is placed overnight in a 130°C oven. After cooling, it is stored in a dryer for standby. The water used is ultra pure water.

1.2 Preparation of standard solution

(1)Preparation of standard stock solution. Accurately weigh the standard and dissolve it in methanol to a volume of 100 mg/L stock solution, and store it under -20°C for 3 months. (2)Preparation of standard working solution. Dilute the standard stock solution with methanol to the corresponding concentration, and store it below 4°C. (3)Preparation of fluoroamine. Weigh 0.04 g fluoroamine standard sample and dissolve it in acetone to form 0.04% derivative reagent. Store it under 4°C for 1 month.

1.3 Method

1.3.1 Chromatographic conditions

Chromatographic column: Xterra C18 (150 mm \times 2.1 mm, 3.5 μ m. Waters, USA), mobile phase: acetonitrile/2% acetic acid aqueous solution (30/70, v/v), flow rate: 0.6 mL/min; column temperature: 40°C, injection volume, 20 μ L.

1.3.2 Sample handling

Weigh 5 g (accurate to 0.01 g) of minced meat that has been ground and mixed evenly, add 1 g of Florisil and 15mLof ethyl acetate into a 50mLplugged centrifuge tube, vortex mix for 2 minutes, then add 3 g of anhydrous magnesium sulfate, vortex mix for 0.5 minutes, ultrasonic dispersion extraction for 10 minutes, and centrifugation at 4500 rpm/min for 5 minutes (centrifugation radius =16.5 cm). Transfer the supernatant to a 100mLpear shaped bottle. Continue to add 15mLof ethyl acetate to the remaining samples and repeat the above

operations. The combined supernatant is rotated and evaporated to dryness at 40°C. Add 2mLof mobile phase to the pear shaped bottle to dissolve the residue on the inner wall, add 6mLof n-hexane twice, shake for 1 min, leave it still for layering, discard the n-hexane layer, transfer the lower solution to a 1.5mLcentrifuge tube, and centrifuge for 2 min at 10000 RPM/min (centrifuge radius =5 cm). Transfer 0.5mLof the lower solution to the sample bottle, add 0.2mLof 0.04% fluoroamine solution, mix for 10 s, and pass 0.45μM filter membrane, let the filtrate stand for 40 minutes for HPLC determination.

2 Results and discussion

2.1 Selection and optimization of chromatographic conditions

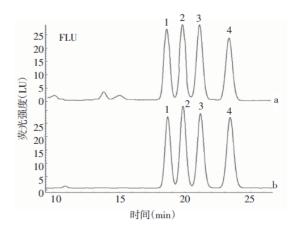
2.1.1 Optimization of mobile phase

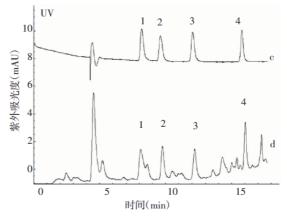
Methanol was selected for this study. Water, acetonitrile and other commonly used solvents were tested in different proportions. When methanol and water are used as the mobile phase, the derivatives of the four SAS cannot be completely separated, and the peak shape is poor. SAS is an amphoteric substance with strong polarity, which is easy to cause peak deformation. Therefore, the acidic mobile phase is used to suppress the ionization of SAS. In this experiment, effect of different the concentrations of acetic acid in the mobile phase on the separation effect was studied, using 1.0% respectively. 2.0% and 3.0% (V/V) acetic acid, the result is that 1.0% acetic acid has tailing phenomenon, while other concentrations are well separated, and the peak shape is symmetrical. Considering that too strong acidity will reduce the life of chromatographic column filler, 2.0% acetic acid is finally selected as the best concentration for ion inhibition.

2.1.2 Selection of detector and detection

wavelength

In this study, the detection effects of two detectors, namely fluorescence detector (Flu) and ultraviolet detector (UV), were investigated. Because many compounds in aquatic products are absorbed in the ultraviolet region, they have poor selectivity and are easy to cause interference, which increases the difficulty of purification. The sulfonamides are first derived, and the fluorescence detector is used for detection, which has strong selectivity and high sensitivity, and can simplify the purification process. Therefore, the fluorescence detector is selected for detection in this experiment.


The maximum excitation wavelength of the fluorescence spectra of four sulfonamides is 405 nm, and the maximum emission wavelength is about 495 nm. Therefore, determine λ ex=405 nm, λ em=495 nm is the detection wavelength. See Figure 1.


2.2 Optimization of sample extraction conditions

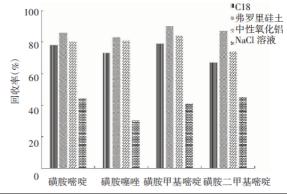
2.2.1 Selection of extraction solvent

SAS belongs to amphoteric compounds with weak polarity, and ethyl acetate is selected. Dichloromethane. Methanol and acetonitrile were used as extraction solvents. Four kinds of SAs with a concentration of 10 µg/kg were added to the minced meat respectively, mixed well, kept in the dark for 2 h, and then 30 mL of extraction solvent was added twice for extraction to compare the extraction effect. Among them, the extraction efficiency of methanol is low, and the average recovery is less than 75%; acetonitrile. The recoveries of ethyl acetate and dichloromethane were more than 80%. However, due to the high boiling point of acetonitrile. The rotary evaporation time is long and explosive, and there is also the problem of dehydration, which increases the steps and

difficulty of sample pretreatment, and the reproducibility is poor. When ethyl acetate and dichloromethane are extracted, the extraction efficiency is high and there are few impurities. Due to the toxicity of dichloromethane, ethyl acetate was selected as the extraction solvent in this study.

Ultraviolet Absorbance UVA
Time

Note: flu fluorescent detector; UV - ultraviolet detector; A-standard sample of fluorescence method; B-fluorescence shrimp addition chromatography; C-uv standard sample; D-ultraviolet shrimp addition chromatography; 1-sulfadiazine (SD); 2-sulfathiazole (st); 3-sulfamethylpyrimidine (SM1); 4-sulfamethazine (SM2).


Figure 1 UV detector and fluorescence detector chromatograms of four sulfonamides

2.2.2 Selection of extraction method and dispersed phase

Generally, the extraction method is homogenization. Vortex oscillation. Ultrasonic vibration. Matrix solid-phase dispersion, etc. The homogenized sample can completely extract the drugs from the tissue by ultrasonic method, but it is easy to produce cross contamination. If the vortex oscillation combined with ultrasonic extraction method is used, it is found that the sample minced meat will agglomerate, and the SAS extraction is insufficient. This is because the protein content in the muscle tissue of aquatic products is as high as 10% to 30%. The added organic solvent will denature the protein, thus wrapping the sample tissue and poor dispersion, preventing further extraction, resulting in low recovery. Adding dispersed phase into minced meat can increase the specific surface area of the sample improve the extraction efficiency. Ultrasonic extraction (UAE) uses the energy generated by ultrasound to transfer from the outside to the inside, so that the solution forms bubbles to enhance the chemical reaction. At the same time, the high-frequency oscillation of ultrasound can disperse the solid sample, increase the contact area between the sample and the solvent, improve the mass transfer rate, and improve the extraction efficiency. In this study, matrix dispersion extraction and ultrasonic assisted extraction are combined. The specific steps are to add dispersion phase (agent) and ethyl acetate vortex vibration to the minced meat until the minced meat sample becomes loose, add anhydrous magnesium (mgso₄)to remove water and some water-soluble impurities, and finally ultrasonic extraction.

Using ethyl acetate as the extraction solvent, four dispersed phases (agents) (C18) were investigated. Floric silica. Neutral alumina and nacl solution) on the recovery of SAS spiked. Add a certain amount of dispersed phase (agent) to the spiked sample, and then add ethyl acetate

for ultrasonic extraction. It was found that when sodium chloride (nacl) solution was used as dispersant, the sticky minced meat was easy to gel and become elastic gelatinous. This is because the salt soluble protein in fish meat will dissolve after adding salt, and the fish meat will become a very viscous sol [22]. When the other three solid dispersants are selected, the dispersibility is better. Compared with the spiked recovery rate, Florisil has the highest recovery rate. See Figure 2.

Sulfadiazine
Sulfathiazole
Sulfamethylpyrimidine
Sulfamethazine
Floric silica
Neutral alumina
Nacl solution
Rate of recovery

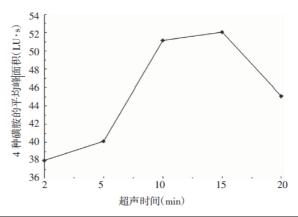
Figure 2 Effect of different dispersants on the recoveries of four sulfonamides

2.2.3 Quality of dispersed phase

The amount of dispersed phase depends on the amount of sample. The content of oil and protein in the sample and the properties of the target substance. If the dosage is too small, the dispersity is not enough, and if the dosage is too large, the target will be adsorbed and lost. The effect of using ethyl acetate as the extraction solvent on the sensitivity when using different masses of Florisil (0.5, 1, 2, 5 and 10 g) as the solid phase dispersant was compared. It is found

that the sensitivity will be lost after the addition of Florisil exceeds 1g, which may be due to the adsorption of SAS. Therefore, its dosage is determined to be 1 g.

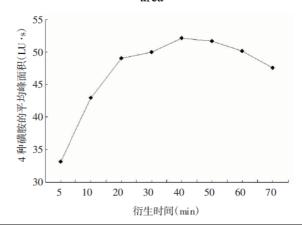
2.2.4 Ultrasonic extraction time


Sufficient ultrasonic time can improve the extraction and enrichment effect, but because ultrasonic will generate heat, SAS is thermally unstable, and too long ultrasonic time may cause SAS decomposition and reduce sensitivity. After adding the extraction solvent and dispersed phase to the spiked sample, the vortex was mixed evenly, and different ultrasonic times (2, 5, 10, 15 and 20 min respectively) were investigated, other conditions remain unchanged. In the first 10 minutes, the response of the four SAS increased gradually with the extension of ultrasonic time, and decreased after 15 minutes. Therefore, the ultrasonic time in this experiment is 10 min. See Figure 3.

2.3 Determination of derivatization conditions

Fluoroamine is a fluorescent reagent, which has specificity for primary aliphatic amines and aromatic amines. It combines with sulfonamides to produce high fluorescence effect and selective phosphor, which has excitation emission spectrum characteristics, while fluoroamine and its hydrolysates have no fluorescence. **Taking** advantage characteristic, SAS was used in this study for fluorescence detection after fluorescence amine pre column derivatization, which avoided excessive purification steps sample processing and eliminated matrix interference.

The optimization of derivation conditions is mainly to optimize the derivation time. If the time is too short, the reaction is incomplete, and the time is too long, the unstable SAS derivatives will decompose. By comparing the


derivatization times of 5, 10, 20, 30, 40, 50, 60 and 70 min, it was found that the reaction was not complete before 40 min, and the peak areas of the four SAs remained basically unchanged between 40 and 50 min, reaching equilibrium, and the area of sulfanilamide tends to decrease after 50 min. See Figure 4.

Average peak area of four sulfonamides

Ultrasonic time

Figure 3 Effect of ultrasonic time on sulfonamide peak area

Average peak area of four sulfonamides

Derivation time

Figure 4 Effect of derivation time on peak area of sulfonamide

2.4 Linear range of the method, detection limit and quantitation limit

Take 0.5 mL of SAs mixed standard working solution with concentrations of 2.5, 20, 50 and 100 μ g/L, respectively, add 0.2 mL of 0.04% fluorescamine solution and mix for 10 s,

and let stand for 40 min for HPLC analysis. Take the peak area as the ordinate and the corresponding concentration as the abscissa to perform linear regression analysis and draw a calibration curve. When the signal-to-noise ratio (S/N) is 3, calculate the lowest limit of detection (LOD), signal-to-noise ratio (S/N) The lower limit of quantitation (LOD) was calculated at 10. The four SAs had a good linear relationship between 2 and 100 μ g/L, the LOD was 0.5 μ g/kg, and the LOQ was 2 μ g/kg. See Table 1.

2.5 Recovery and precision

prawn samples without four SAS drugs were tested. The sample pretreatment is the same as that in section 1.3.2. The addition amount of four SAS is 2 and $20\mu g/kg$, repeat the experiment for 3 times at each addition level, and calculate the recovery and relative standard deviation (*RSD*). The spiked recoveries of the four SAS in the sample are between 84.4% and 93.9%, and the *RSD* (n=3) is between 3.7% and 7.7%, indicating that the accuracy and precision of the method are good and meet the requirements of trace analysis. See Table 2.

The recovery and precision of spiked

Table 1 Linear regression equation and correlation coefficient of SAS working curve

Chemical	Lincor aquation	Correlation	Datastian limit(ug/leg)	Limit of	
compound	Linear equation	coefficient r	Detection limit(μg/kg)	quantitation(µg/kg)	
SD	Y=5.902X+17.554	0.9992	0.5	2	
ST	Y=6.241X+11.184	0.9998	0.5	2	
SM_1	Y=6.541X+7.720	0.9993	0.5	2	
SM_2	Y=6.220X+8.062	0.9997	0.5	2	

Note: SAS - sulfonamides; SD sulfadiazine; st sulfathiazole; SM_1 Sulfamethylpyrimidine; SM_2 - sulfamethazine. Table 2 Standard addition recovery and relative standard deviation of SAS (n=3)

Chemical	Addition	Recovery	Precision RSD	Addition	Recovery	Precision RSD
compound	$amount(\mu g/kg)$	rate (%)	(%)	$amount(\mu g/kg)$	rate (%)	(%)
SD	2	93.9	5.5	20	92.1	3.7
ST	2	84.4	7.7	20	86.2	5.8
SM_1	2	90.9	5.7	20	91.5	4.9
SM_2	2	87.1	6.9	20	86.8	4.6

Note: SAS - sulfonamides; SD sulfadiazine; st sulfathiazole; SM1.Sulfamethylpyrimidine; SM2-Sulfamethazine; RSD - relative standard deviation.

3 Conclusion

An ultrasonic assisted solid phase dispersion extraction Precolumn Derivatization High performance liquid chromatography method was established for the determination of four SAS in shrimp. Through the screening and optimization of experimental conditions, the extraction solvent was determined. Dispersed phase. Derivatization conditions and chromatographic conditions. Compared with the

traditional method, this method has the advantages of simple sample processing method. It has the advantages of fast, high extraction efficiency, less solvent consumption, no special equipment, low cost of adsorbent and easy popularization and application. It is suitable for the determination of SAS residue in shrimp, and also suitable for the rapid detection of large quantities of aquatic samples.

The author declares that there is no actual or potential conflict of interest in this article

References

- [1] Zeng Zhenling. Veterinary medicine manual [M]. Version 2. Beijing: Chemical Industry Press, 2012: 101-111
- [2] Li junsuo, Qiu Yueming, Wang Chao. Veterinary drug residue analysis [M]. Shanghai: Shanghai Science and Technology Press, 2002: 232
- [3] Zhang Changbao, Wang Maojian, Ren Liqiang, etc. Research Progress on metabolism and residues of sulfa drugs in aquatic animals [J]. Qilu fisheries, 2008, 25 (10): 59-61
- [4] Zhang Jianyong. Veterinary drug residue monitoring and animal food safety and hygiene [J]. Chinese Journal of veterinary medicine, 2001, 35 (4): 60-61
- [5] Lin Weixuan. National regulations on pesticide and veterinary drug residues in food [M]. Dalian: Dalian Maritime publishing house, 2001: 1309
- [6] Ministry of agriculture of the people's Republic of China. Maximum residue limits of veterinary drugs in foods of animal origin: announcement of the Ministry of agriculture of the people's Republic of China No. 235 appendix 2[eb/ol] (2002-12-24)[2019-10-21]. Http://www.moa. Gov.cn/gk/tzgg ____ 1/gg/200302/t₂0030226__59300. Htm.
- [7] BARKER SA, LONG AR, SHORT CR.Isolation of drug residues from tissues by solid phase dispersion[J]. J Chromatogr A, 1989, 475(2): 353-361.
- [8] Yin Yi, Zheng Guangming, Zhu Xinping, et al. Rapid determination of fish by dispersive solid phase extraction/gas chromatography mass spectrometry. 16 polycyclic aromatic hydrocarbons in shrimp [J]. Journal of analysis and testing, 2011, 30 (10): 1107-1112
- [9] Yin Yi, Zhu Xinping, Zheng Guangming, et al. Application of matrix solid phase dispersion and solid phase extraction in the determination of diethylstilbestrol residues in aquatic products

- [J]. Analytical testing technology and instruments, 2011, 17 (4): 211-216
- [10] Wu Shihui, Chen kunci, Dai Xiaoxin, et al. Determination of chlorophenylguanidine residues in aquatic products by dispersive solid phase extraction/high performance liquid chromatography [J]. Journal of analysis and testing, 2011, 30 (12): 1356-1361
- [11] KISHIDA K, FURUSAWA N.Matrix solidphase dispersion extraction and highperformance liquid chromatographic determination of residual sulfonamides in chicken[J]. J Chromatogr A, 2001, 937(1-2): 49-55.
- [12]ZHAO DD, LIU XY, SHI WR, et al.Determination of cypermethrin residues in crucian carp tissues by MSPD/GC-ECD[J]. Chroma- tographia, 2011, 73(9-10): 1021-1025. [13]Guo Mengmeng, Li Zhaoxin, Tan Zhijun, et al. Determination of eight penicillin residues in aquatic products by dispersive solid phase extraction/Liquid chromatography tandem mass spectrometry [J]. Journal of analysis and testing, 2011, 30 (9): 969-975
- [14] NURIA PN, ESTER GI, ANGEL M, et al.Development of a group-specific immunoassay for sulfonamides application to bee honey anal-ysis[J]. Talanta, 2006, 71(2): 923-933.
- [15] REEVES VB. Confirmation of multiple sulfonamide residues in bovine milk by gas chromatography-positive chemical ionization mass spec-trometry[J]. J Chromatogr B, 1999, 723(1-2): 127-137.
- [16] Chen Zhengui, Zhan chunrui, Guo Ping, et al. Study on Simultaneous Determination of 13 Sulfonamides Residues in aquatic products by high performance liquid chromatography [J]. Food science, 2007, 28 (10): 448-451
- [17]Zhang Yan, Wu yinliang. Determination of sulfonamides residues in animal meat tissues by solid phase extraction high performance liquid

chromatography [J]. Chromatography, 2005, 23 (6): 636-638

[18] CAI ZX, ZHANG Y, PAN HF, et al. Simultaneous determination of 24 sulfonamide residues in meat by ultraperformance liquid chromatography tandem mass spectrometry [J]. J Chromatogr A, 2008, 1200(2): 144-155.

[19] FUH MR, CHU SY. Quantitative determination of sulfonamide in meat by solid-phase extraction and capillary electrophoresis[J]. Anal Chim Acta, 2003, 499(1-2): 215-221.

[20] Zuo Yanli, sun Hanwen, Wei Lijing. Determination of sulfonamides residues in soil and sediment by rapid solvent extraction capillary electrophoresis [J]. Analytical laboratory, 2012, 31 (2): 62-66

[21] Ministry of agriculture of the people's Republic of China. Determination of sulfonamides residues in aquatic products by liquid chromatography: Announcement No. 958 of the Ministry of agriculture of the people's Republic of China-12-2007 [EB/OL] (2007-12-29)[2019-10-21]. Http://www.moa. Gov.cn/nybgb/2008/de q/201806/t20180609 ___6151543. Htm.

[22] Li Zhaojie. Aquatic product chemistry [M]. Beijing: Chemical Industry Press, 2007: 29-31