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ABSTRACT 

Due to the swivel construction, the structural redundancy of cable-stayed bridge is reduced, 
and its seismic vulnerability is significantly higher than that of non-swirling construction structure and 
its own state of formation. Therefore, it is particularly important to study the damage changes of each 
component and stage system during the swivel construction of cable-stayed bridge under different 
horizontal earthquakes. Based on the construction of Rotary Cable-stayed Bridge in Haxi Street, the 
calculation formula of damage exceeding probability is established based on reliability theory, and 
the damage calibration of cable-stayed bridge components is carried out, and the finite element 
model of cable-stayed bridge rotating structure is established. The vulnerable parts of the main tower 
and the stay cable components of the cable-stayed bridge are identified and the incremental dynamic 
analysis is carried out. Finally, the seismic vulnerability curves of the main tower section, the stay 
cable and the rotating system are established. The results of the study show that the vulnerable 
areas of the H-shaped bridge towers are the abrupt changes in the main tower section near the 
upper and lower beams, and the vulnerable diagonal cables are the long cables anchored to the 
beam ends and the short cables near the main tower. At the same seismic level, the damage 
exceedance probability of main tower vulnerable section of cable-stayed bridge under transverse 
earthquake is greater than that under longitudinal earthquake, the damage exceedance probability 
of vulnerable stay cables under transverse seismic action is less than that under longitudinal seismic 
action. On the premise of the same damage probability, the required ground motion intensity of the 
system can be reduced by 0.35g at most compared with the component. Under the same seismic 
intensity, the system damage probability is 6.60 % higher than the component damage probability at 
most. The research results have reference significance for the construction of rotating cable-stayed 
bridges in areas lacking seismic records. 
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INTRODUCTION 

Earthquakes are accidental loads and may occur at all stages of bridge construction. The 
unfinished Mingshi Strait Bridge in Japan in 1995 was struck by an earthquake of magnitude 7.2, 
which resulted in displacement of the main tower foundation and the anchor ingot of the main cable, 
and the mid-span elevation of the stiffening girder by 1.27 meters [1]. In 1999, a strong earthquake 
with magnitude 7.3 occurred in Jixian County, Taiwan, which resulted in the main tower damage, 
cable damage and shear failure of the anti-seismic pin and tie of the Jilu Bridge under construction 
near the epicentre [2]. In the 2008 Wenchuan earthquake, the main girder of the Miaoziping Minjiang 
Bridge under construction was dropped [3]. The possibility of seismic damage in bridge construction. 
For the rotating cable-stayed bridge, in the construction process, it not only shows the characteristics 
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of its flexible bridge, but also has the characteristics of architecture, when the earthquake comes, 
the redundancy is extremely low and the vulnerability is strong. Through seismic vulnerability 
analysis of swivel cable-stayed bridge during construction, corresponding theoretical support is 
provided for design and construction in order to effectively reduce or avoid structural damage caused 
by earthquake during bridge construction. 

Seismic vulnerability analysis of cable-stayed bridge is based on continuous beam and rigid 
frame bridge. With the continuous construction of long-span cable-stayed bridge, near-field seismic 
cable-stayed bridge and fault zone cable-stayed bridge in China, the seismic damage of cable-
stayed bridge in operation stage reminds us to pay attention to the seismic analysis of cable-stayed 
bridge, for cable-stayed bridges in potential seismic areas without relevant seismic records, the 
theoretical analysis method of vulnerability becomes particularly important. 

According to the statistics of 30 highway bridges damaged by earthquake by Japanese 
scholar Kubo [4], the seismic performance of bridges is analyzed by numerical evaluation method. 
The influence factors such as foundation type, pier height, main beam form and anti-falling beam 
structure are considered respectively, the vulnerability degree of bridges is judged by designing 
damage index. Shinozuka [5] obtained a simplified formula by counting the vulnerability of several 
typical reinforced concrete bridges. Using this formula, the vulnerability curve of similar bridges can 
be obtained without pushover analysis and dynamic time history analysis. Jong-Su [6] and other 
scholars used the idea of parameter analysis in the study of seismic vulnerability analysis of urban 
curved box girder viaducts, and obtained that piers and bearings were vulnerable components, and 
the damage probability of bearings was higher than that of piers. Karthik et al. [7] considered the 
influence of the change of seismic design concept on the seismic performance of bridges, and 
discussed the change of vulnerability curve of the same bridge in the three seismic concepts. Do-
Eun [8] analyzes the seismic vulnerability of piers under the premise of corrosion of steel bars in 
piers. It is concluded that the corrosion of steel bars affects the constitutive relationship of steel bars 
and core confined concrete in piers, affects the probabilistic demand model, and then affects the 
change of vulnerability curve. Wu Shaofeng and Shang Guanping [9] studied the vulnerability of 
longitudinal and transverse ground motions of some single-pylon cable-stayed bridges. The finite 
element model was established by MIDAS software, and plastic hinge was set up at the weak 
position of each member. The vulnerability curves of the members and the whole bridge are 
obtained. Feng Qinghai [10] takes an extra-large cable-stayed bridge as the research object, only 
the geometric nonlinear factors of the structure are considered, the vulnerable section of the main 
tower is the bottom section of the main tower and the cross-section of the main tower above and 
below the cross-beam. GuYin [11] and other scholars studied the seismic vulnerability of low-pylon 
cable-stayed bridge based on performance. Aiming at the vertical and horizontal seismic input and 
considering the vertical seismic, incremental dynamic analysis was carried out on the finite element 
model of cable-stayed bridge, and the vulnerability curve was drawn by calculating the damage 
probability, the IDA method is feasible and the analysis idea is clear. Shen Guoyu [12] used the 
“Artificial neural network-orthogonal design method” to calculate the structural capacity, which not 
only improves the analysis efficiency, but also simplifies the calculation method. Huang Shengnan 
[13] adjusted the amplitude of the ground motion records and did a nonlinear dynamic analysis of 
the structure, with the gradual increase of the seismic intensity, the seismic response of the key 
components is obtained, the IDA curve is drawn, and the vulnerability curve is further obtained. Wang 
Chongchong [14] did not consider the vulnerability of the main girder and stay cable in the 
vulnerability analysis of long-span cable-stayed bridge for highway and railway as Ji Zhengdi did. 
After the time history analysis along the tower height and pier height under the action of multiple 
seismic waves, the weak section can be clearly located and IDA analysis can be carried out in a 
directional manner, which reduces the workload of finite element calculation. In the seismic 
vulnerability analysis of offshore cable-stayed bridge, Gu Qiong [15] considered the influence of 
chloride ions on the time-varying deterioration of materials. After determining the constitutive 
relationship of deteriorated materials, the finite element model was established for theoretical 
analysis, which was consistent with the analysis conclusions of Wu Shaofeng and other scholars, 
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the damage probability of the system was greater than any single component. Thus, the seismic 
vulnerability analysis of cable-stayed bridge system is necessary. Fabio et al. [16] considered the 
structural uncertainties by defining a random variable, and used the time-history analysis method to 
analyze the seismic vulnerability of cable-stayed bridges. Chao [17] and other scholars put forward 
the vulnerability of offshore cable-stayed bridge under the combined action of marine environment 
and earthquake, and put forward the change of the overall vulnerability of cable-stayed bridge when 
considering the pile-soil interaction, the propagation of ground motion in different sand, the erosion 
of seawater on pile foundation and the change of pile depth. In order to obtain the most suitable 
ground motion evaluation parameters, Jun [18] and other scholars established a calculation model 
based on general linear regression. The analysis showed that the prediction ability of peak ground 
motion velocity on transverse seismic response was poor, and the analysis method was suitable for 
cable-stayed bridges and continuous girder bridges. 

At present, bridge seismic vulnerability analysis has become an important part of bridge 
seismic theory research. From a large number of research results of the above scholars, most 
scholars study the vulnerability of cable-stayed bridge from the operation stage, mainly for the 
vulnerability analysis of key components, the acquisition of seismic parameters, the improvement of 
mathematical calculation model, the definition of time-varying damage state, and how to improve the 
calculation efficiency. However, few scholars have carried out research on the seismic vulnerability 
of cable-stayed bridges during the construction phase. Inspired by the research methods and ideas 
of the above scholars, this paper will take the large tonnage rotating cable-stayed bridge in northeast 
China as an example to analyze the seismic vulnerability of the cable-stayed bridge during the 
rotation process. The number of swivel cable-stayed bridge in our country is more and more, the 
span is more and more big, and the construction technology is more and more complex. Therefore, 
the safety performance of swivel cable-stayed bridge under seismic load including construction stage 
should be fully considered. By analyzing the seismic vulnerability of the rotating cable-stayed bridge 
in the construction stage, the exceeding probability of the earthquake to the various components of 
the bridge and the overall damage of the bridge in the construction process of the rotating cable-
stayed bridge can be judged, which can play a guiding role in the design, prevention and 
maintenance of the cable-stayed bridge before construction. 

 

RESEARCH OVERVIEW AND METHODS 

Overview of bridges 

The span of Haxi cable-stayed bridge is 118m+198m+118m, the span arrangement diagram 
of cable-stayed bridge is shown in Figure 1. The main beam adopts prestressed concrete π type 
main beam, concrete C60, according to A type prestressed system design. The stay cables are fan-
shaped with double cable planes, and there are 112 stay cables in the whole bridge. The stay cable 
is anchored on the outer side of the π type rib plate of the main beam through the anchor block, and 
the longitudinal standard cable distance is 7 m. The standard strength of stay cable with steel strand 
is 1860 MPa. 

 
Fig. 1 – Layout diagram of span of cable-stayed bridge with rotation（m） 
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Cable-stayed bridge main tower height 73.7 m, H-shaped, C50 reinforced concrete structure. 
The main tower is set with one upper beam and one lower wall. The upper column is box section, 
the section size is 320cm (transverse)×650cm (longitudinal). The lower tower column is solid wall 
structure, the cross-sectional dimension is 2400cm~3140cm, the longitudinal dimension is 650cm, 
the main tower structure diagram is shown in Figure 2. 

 
Fig. 2 – Structure diagram of main tower of rotary cable-stayed bridge（m） 

 

      
Fig. 3 – Structure diagram of main tower of rotary cable-stayed bridge（m） 

 

Research method of seismic vulnerability of rotary cable-stayed bridge during 
construction 

In the seismic vulnerability analysis, based on the incremental dynamic analysis method, 
Hwang [19] and Wang Xuewei [20] gave the calculation cases of seismic vulnerability of reinforced 
concrete girder bridges and long-span cable-stayed bridges in the area lacking ground motion 
records, and proposed the related research steps of vulnerability analysis. It is summarized into three 
main parts, namely, the establishment of finite element model, the input of ground motion, the 
calibration of structural damage index under seismic action, the calculation of structural seismic 
response and the drawing of vulnerability curve. In this paper, the vulnerability curve is established 
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based on the incremental dynamic analysis method to analyze the seismic vulnerability of the cable-
stayed bridge during the rotation construction stage. 

Division of Construction Phases of Swivel Cable Stayed Bridge 

The construction process of the rotating cable-stayed bridge can be divided into the 
foundation construction stage, the main pier cap construction stage, the support stage, the maximum 
cantilever stage, the rotating unsealed hinge stage, and the closing stage. However, due to the great 
influence of seismic action on the high-rise structure, the construction of the first two stages is below 
the ground. The embedded effect of structure and soil makes the seismic response of the structure 
relatively small. In the closure stage, the structure is mainly close to the bridge completion stage. 
Compared with the support and cantilever stage, the structural redundancy in the rotation stage is 
the lowest and the mobility is the highest. So, this paper mainly analyzes the seismic vulnerability of 
the cable-stayed bridge in the rotation stage. 

The main components of the cable-stayed bridge in the rotation stage are the main tower, 
main beam and stay cable. Professor Ye Aijun draws a guiding conclusion in his research results. 
Under the action of seismic force, the material performance of the main beam is always maintained 
in the elastic stage and is not easy to damage [21,22]. Therefore, in the seismic vulnerability analysis 
of rotating cable-stayed bridge in this paper, the target component is the main tower and stay cable. 

 

Seismic vulnerability analysis method of rotating cable-stayed bridge based on incremental 
dynamic analysis 

The incremental dynamic analysis process is: (1) Establish a finite element model of the 
target structure; (2) Select the appropriate ground motion and amplitude modulation input; (3) 
Definition of damage indicators; (4) Time history analysis of the structure under various levels of 
earthquakes. 

In this paper, the direct regression method is used to establish the vulnerability curve. Firstly, 
it is assumed that the logarithm of the seismic capacity of the structure and the logarithm of the 
seismic demand obey the normal distribution [23]. The probability density function see Equation (1). 

      (1) 

See equation (2) for probability distribution function. 

    (2) 

Among them: x is the damage variable;  is the logarithmic mean of the random variable 

x;  is the logarithmic standard deviation of random variable x;  is the standard form of normal 

distribution function. 
The calculation result of seismic vulnerability is the probability that the structural response  

exceeds the damage degree  at all levels under different seismic intensities. Here, R is used to 
represent the resistance of structural components, and S is used to represent the seismic demand. 
Then, the functional function of components based on the reliability theory is shown in Equation (3). 

  (3) 

The failure probability (exceedance probability) of structural components is shown in 
Equation (4). 

  (4) 

Since the logarithm of R and S obeys the overall distribution, we can get: 
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      (5) 

According to the statistical theory,  also obeys the normal distribution, and we can 

get : 

     (6) 

Then the failure probability is shown in Equation (7) and Equation (8). 

  (7) 

    (8) 

Among them:  is the logarithmic mean of the structural capacity value;  is the 

logarithmic mean of the seismic demand value;  is the logarithmic standard deviation of the 

structural capacity;  is the logarithmic standard deviation of the seismic demand. 

When the maximum value  under the short-term combination of accidental loads acts on 

the section when calculating the bending moment-curvature curve, the mean value of the logarithm 
lnR of the structural capacity value is itself after conservatively considering the randomness of the 
structure. We only need to consider the randomness of the earthquake, namely:  

      (9) 

In this way, the calculation formula for the probability of failure (exceeding probability) is: 

  (10) 

The first-order boundary method [24] is used to study the system vulnerability of cable-stayed 
bridge in swivel stage. Regarding the shape of the cable-stayed bridge at each stage as a series 
system, according to the reliability theory and ignoring the correlation of various components, the 
upper and lower bounds of the damage probability of the system at all levels are calculated by 
Equation (11).  

    (11) 

Among them,  represents the system damage probability;  represents the component 

damage probability, which is the maximum value of the damage exceeding probability of each 
damage unit (cross section, stay cable) under the same earthquake level. 
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Damage calibration 

The research on damage degree of bridge structural members is one of the main contents of 
performance-based seismic research. At present, in order to evaluate the damage state of the 
structure, the damage of concrete members is usually divided into four grades: slight, medium, 
serious and complete damage. 

At present, most scholars use the sectional curvature corresponding to the change of material 
strain as the damage index of bridge tower structure in the seismic vulnerability analysis of cable-
stayed bridges. Various damage situations and corresponding sectional curvature levels are shown 
in Table 1 [25]. 

 
Tab. 1: Curvature damage index 

Damage status Damage feature 
Corresponding parameters of curvature 

level 

Slight damage 
The first yielding of longitudinal steel 

bars  

Moderate 
damage 

Non-linear deformation appears  

Severe damage 
The protective layer concrete is peeling 

off  

Eventual failure Confined concrete core is crushed  

Note: εs is the tensile strain of longitudinal reinforcement outside the section, εc is compressive strain 
of concrete with outer protective layer, εy is tensile yield strain of longitudinal reinforcement, εcd is the outermost 
compressive strain of cross-section core concrete, εco is the ultimate compressive strain of concrete cover with 
a value of 0.002, εsh is the initial hardening tensile strain of longitudinal reinforcement, taking 0.015, εsu is the 
fracture strain of longitudinal reinforcement, and the value is 0.09. εccu is the ultimate compressive strain at the 
outermost edge of the core concrete of the section, which depends on the stirrup structure. 

 

The cable stayed in the cantilevered state in the rotating phase is more likely to have stress 
exceeding the limit under the action of strong earthquakes. In this paper, the damage calibration 
method based on the strength and deformation criterion of Wu Shaofeng[9] is adopted, and the 
stress ratio Equation (12). 

       (12) 

Among them,  and  are the cable stress and the ultimate tensile strength of the stay 

cable under the earthquake. And using the classification method of Professor Wang Jingquan[26] to 
calibrate the damage index : αc=0.45 for mild damage, αc=0.60 for moderate damage, αc=0.75 for 
severe damage, αc=0.90 for complete damage. 

 

Establishment of finite element model 

In References [21,22], the seismic plasticity analysis of the main girder of cable-stayed bridge 
structure is not carried out. At the same time, according to the principle of capacity protection, it is 
generally expected that the pier, main tower and other components will first enter the plastic stage 
in bridge design to ensure the safety of the main girder. Therefore, the plastic stage of the main 
girder is not considered in the seismic response analysis in this paper, the π-type main girder is 
simulated by elastic beam element. The stay cable component is simulated by nonlinear truss 
element, and the elastic modulus is corrected by Ernst formula. 

In this stage, the main beam and the main tower are temporarily anchoraged by vertical 
prestress, and the connection between the main beam and the main tower is simulated by rigid 
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connection; The beam end anchorage of stay cable is simulated by rigid master-slave connection, 
and the main node is the midline node of single beam. The tower end anchorage of stay cable is 
connected by common nodes; The inertia moment of the modified section of the tower root section 
is consistent with that of the upper cap; The connection between the upper and lower caps ( rotating 
system ) uses the relevant data of the weighing test to convert the rotational stiffness simulation of 
the elastic connection; There is a 5cm gap between the supporting foot and the slideway in the 
rotating system, Midas is used to simulate the general connection. The specific operation is as 
follows: select the spring element in the general connection characteristic value dialog box, define 
the inelastic characteristic value (clearance element), select the general link, the hysteresis model 
is "slip double polyline/compression only", and define the yield strength (The yield strength of the 
support foot is selected here), and the initial gap is 5cm, which simulates the mechanical 
characteristics of the gap between the support foot and the slide; at the same time, the pile-soil 
interaction is considered. 

 

RESEARCH RESULTS AND ANALYSIS 

Identification of vulnerable parts of rotary cable-stayed bridge 

In this paper, the swivel structure of No.9 tower of swivel cable-stayed bridge is selected for 
vulnerability analysis. Due to the uncertainty of the vulnerable section, the vulnerable section is first 
identified, which can not only reduce the complexity of the analysis process, but also accurately 
locate the vulnerable section. At this stage, the main tower and stay cable are selected for 
vulnerability analysis. According to the site characteristics of the target cable-stayed bridge, 10 
seismic waves are selected in the Pacific seismic center, as shown in Table 2, and the finite element 
model is input in longitudinal and transverse directions. 

 
Tab. 2: Seismic wave name 

Earthquake number Earthquake name Time PGA（g） 

1# seismic wave Cape Mendocino 1992 0.1191 

2# seismic wave Chi-Chi Taiwan 1999 0.1777 

3# seismic wave Chuetsu-Koi 2007 0.1920 

4# seismic wave Imperial Valley-06 1979 0.1717 

5# seismic wave Irpinia Italy-01 1980 0.1097 

6# seismic wave Iwate 2008 0.3613 

7# seismic wave Landers 1992 0.2792 

8# seismic wave Loma Prieta 1989 0.1513 

9# seismic wave San Simeon Ca 2003 0.0906 

10# seismic wave Taft Lincoln School 1952 0.1048 

 

When identifying the vulnerable section of the main tower, it mainly analyzes the changes in 
the section curvature of the main tower components along the height of the main tower under 
different earthquakes, and the analysis shows that the section with the largest curvature under the 
earthquake action is the earthquake vulnerable part of the main tower; The stress ratio is selected 
as the quantitative index for the vulnerability identification of stay cables, that is, the ratio of the stress 
of stay cables to the ultimate strength of stay cables under ground motion. The analysis shows that 
the stay cables with the largest stress ratio under seismic action are regarded as vulnerable stay 
cables. 
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The amplitude of the ground motion is modulated to 1.0g, under the action of the longitudinal 
and transverse bridge directions, the curvature envelope diagram of the main tower section of the 
cable-stayed bridge at the turning stage is shown in Figure 4~5; The stress ratio envelope diagrams 
of stay cables are shown in Figure 6~7. 

  
Fig. 4 – Curvature envelope diagram of 

longitudinal seismic main tower 
Fig. 5 – Curvature envelope diagram of 

transverse seismic main tower 

  
Fig. 6 – Envelope diagram of longitudinal 

seismic cable stress ratio 
Fig. 7 – Envelope diagram of transverse 

seismic cable stress ratio 

Under the action of 10 longitudinal bridge-directed ground motions with an intensity of 1.0g, 
the curvature of the main tower changes as follows: The section curvature of the pier from the tower 
root to the lower beam section decreases first and then increases gradually, and the peak section 
curvature of the lower column is obtained near the lower beam section; From the lower beam section 
to the upper beam section, the curvature of the tower column section decreases slowly from the 
maximum value and then drops sharply to 0. Select the lower tower column curvature peak section, 
the upper tower column curvature peak section, and the upper tower column curvature reduction 
rate change section as the longitudinal bridge seismic vulnerability analysis section. The change 
trend of the cable stress ratio is: At first, the cable stayed at the beam ends on both sides is the peak 
of the stress ratio, and then the stress ratio gradually decreases from the beam ends to the main 
tower and then gradually increases to the maximum. The third peak value of stress ratio was 
obtained in 12# cable. The 1#, 12#, 26# stay cables are selected as the longitudinal bridge seismic 
vulnerability analysis cables. 

Under the action of 10 cross-bridge ground motions with intensity of 1.0 g, the variation trend 
of the main tower curvature is:  The lower tower column gradually increases from the tower root to 
the lower beam, the section curvature appears two peak positions, namely the section near the lower 
beam and the section near the upper beam. The two peak curvature sections are set to the cross 
bridge seismic vulnerability analysis section; The change trend of the cable stress ratio is: From the 
beam end to the main tower direction, the peak stress ratio of stay cables is obtained at the beam 
end. The peak stress ratio of 14# cable is obtained under the action of 1# seismic wave. The 1#, 2#, 
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14#, 25# and 26# stay cables are selected as the horizontal bridge seismic vulnerability analysis 
stay cables. 

In summary, the specific vulnerable stay cables and the vulnerable main tower section are 
shown in Figure 8~Figure 9. Analysis object : L1 cable, L2 cable, L14 cable, L25 cable and L26 cable 
on the left cable plane in the forward direction of the bridge are selected for the transverse seismic 
vulnerability cable, and R1 cable, R12 cable and R26 cable on the right cable plane are selected for 
the longitudinal seismic vulnerability cable; The cross section of the seismic vulnerable main tower 
is α section and β section, and the cross section of the seismic vulnerable main tower is γ section, δ 
section and η section. 

 
Vulnerable cable in longitudinal earthquake Vulnerable cable in transverse earthquake 

Fig. 8 – Summary map of vulnerable stay cables 

 

 
Fig. 9 – Summary of vulnerable section of main tower（m） 

 

Vulnerability analysis of rotation 

Vulnerability analysis of the main tower 

The calculation of bending moment-curvature curve is to obtain the curvature of compression-
bending members under different loads, and then establish the corresponding relationship between 
the curvature change and the ultimate strain of non-confined concrete, confined concrete and 
longitudinal reinforcement. Combined with the above damage calibration, the sectional curvature 
corresponding to each damage level can be calculated to classify the damage level. The section 
curvature of the main tower section is shown in Table 3 under the seismic action of the longitudinal 
bridge direction and the transverse bridge direction. 
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Tab. 3: Calibration table of damage limits of main tower section 

Seismic direction 
Vulnerable 

section 

Damage grade (1/m) 

Slight 
damage 

Moderate 
damage 

Severe 
damage 

Complete 
damage 

Transverse 
direction 

α 9.912E-4 1.249E-3 6.943E-3 8.186E-3 

β 8.705E-4 1.169E-3 9.937E-3 12.000E-3 

Longitudinal 
direction 

γ 4.248E-4 5.380E-4 6.027E-3 11.21E-3 

δ 4.840E-4 5.936E-4 3.780E-3 4.094E-3 

η 4.554E-4 5.671E-4 4.397E-3 5.013E-3 

 

Figure 10 shows the comparison of the fragility curves of the main tower section of the rotating 
cable-stayed bridge during the rotating phase. 

（1） It can be seen from Figure 10 that under the same of the same seismic level, the damage 

exceeding probabilities at all levels of the vulnerable section of the cable-stayed bridge in the swivel 
stage under the action of earthquake are greater than those under the action of the longitudinal 
earthquake; It can also be found that the damage probabilities of β section at all levels are greater 
than those of α section under cross-bridge seismic action, within the range of PGA less than 2.5 g, 
both of them can certainly exceed slight damage, and the possibility of exceeding moderate damage 
is great, both of them have a small possibility of exceeding severe and complete damage states; It 
can also be found that the analysis section is more likely to exceed slight damage and medium 
damage under longitudinal and bridge seismic action, but there is almost no possibility of exceeding 
serious and complete damage. The exceeding probability of damage at all levels of η section is 
greater than that of the other two sections during the continuous increase of seismic intensity, and 
only the probability of exceeding slight damage of PGA in the range of 2.0g~2.5g is slightly less than 
that of γ section.  

（2） According to the slope of the curve in the graph, in the analysis of minor damage and 

moderate damage, the slope of δ section is small, which indicates that the probability of cross-section 
damage increases slowly. The slopes of the other four sections are basically the same, and the 
probability of cross-section damage increases faster; The probability growth rates of α-section and 
β-section are roughly the same and relatively slow when they exceed severe and complete damage; 
The η section is less likely to exceed serious damage. In the severe and complete damage analysis 
of the γ section and the δ section, the slope of the curve indicates that the probability growth rate is 
the slowest, and the ultimate probability of exceeding is very low, so the two sections almost do not 
suffer from serious and complete damage. 

On the whole, the most vulnerable section of the main tower in the rotation stage is the β 
section under the cross-bridge seismic action. 

  
(a) Slight damage (b) Moderate damage 
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(c) Severe damage (d) Complete damage 

 
Fig. 10 – Comparison of section vulnerability curves of main tower in rotation stage 

 

Vulnerability analysis of stay cables 

Vulnerability curves of stay cables in swivel stage of swivel cable-stayed bridge are shown in 
Figure 11. 

（1） It can be seen from Figure 11 that the probability of the target stay cable exceeding the 

damage at all levels under the action of transverse bridge is smaller than that under the action of 
seismic longitudinal bridge. Under longitudinal bridge seismic action, except that the exceedance 
probability of R12 cable is slightly larger than that of R1 cable in complete damage analysis, the 
exceedance probability of other three-level damage is in the order of R26 cable > R1 cable > R12 
cable, indicating that the damage probability of long cable at all levels under longitudinal bridge 
seismic action is large. Under the action of cross-bridge earthquake, the probability of each stay 
cable exceeding slight damage is large, followed by the probability of exceeding moderate damage, 
and the damage in turn to almost no exceeding complete damage.  

（2） By analyzing the slope of cable vulnerability curve in longitudinal bridge direction, it can be 

seen that the slope of R26 cable is larger in all levels of damage. The slope of R1 cable and R12 
cable vulnerability curve is slightly different in slight damage, and the slope of other levels of damage 
is roughly the same. It shows that the growth rate of exceedance probability of R26 cable at all levels 
of damage is the fastest, and the other two cables are followed. It can be seen that in the turning 
stage of the construction process of the rotating cable-stayed bridge, the stay cable also has the 
possibility to exceed the damage at all levels, which cannot be ignored.  

（3） It can be seen from the analysis of the distribution of cable vulnerability curve in the cross-

bridge direction in the figure that the probability of L14 cable exceeding slight damage is slightly 
smaller than that of L26 cable, and the probability of damage at all levels is the maximum at all levels 
of seismic level. The analysis shows that the short cable near the main tower in the rotation stage is 
most likely to be damaged under the cross-bridge seismic action.  

Overall, the most vulnerable cable in the rotation stage is R26 cable under longitudinal 
earthquake. 
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(a) Slight damage (b) Moderate damage 

  
(c) Severe damage (d) Complete damage 

 
Fig. 11 – Comparison of section vulnerability curves of main tower in rotation stage 

 

System vulnerability analysis of rotary cable-stayed bridge 

The seismic vulnerability analysis of swivel cable-stayed bridge includes two types of 
components: main tower and stay cable. The vulnerability curve of cable-stayed bridge system in 
rotation stage is calculated by Equation (11), as shown in Figures 12–15. 

  
Fig. 12 – Limits of slight damage Fig. 13 – Limits of moderate damage 
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Fig. 14 – Limits of Severe damage Fig. 15 – Limits of Complete damage 

 

（1）It can be seen from Figs. 12–15 that the upper and lower bounds of the damage probability in 

the system vulnerability are greater than the damage exceeding probability at all levels of a single 
component.  According to the slope of vulnerability curve, the upper bound probability growth rate of 
system damage at all levels is the largest.  

（2）When the PGA reaches 0.95 g, the exceedance probability of the upper bound of the system 

slight damage reaches 99.22 %, and the lower bound reaches 99.19 % when the PGA reaches 1.15 
g. It is considered that the slight damage must occur at this time. Compared with the vulnerability of 
the analysis unit in the system, the PGA required earthquake is reduced by at least 0.2 g. When 
PGA reaches 1.65 g, the upper bound exceeding probability of moderate damage in the system 
reaches 99.21 %, and the lower bound reaches 97.21 % when PGA reaches 2.15 g. The increase 
of the lower bound exceeding probability is very low. It is considered that moderate damage must 
occur at this time. Compared with the vulnerability of the analysis unit in the system, the PGA 
required for the earthquake is at least 0.35 g. When the PGA reaches 2.5 g, the upper bound 
exceeding probability of the system serious damage reaches 91.64 %, and the lower bound 
exceeding probability reaches 88.48 %. It is considered that the possibility of serious damage in the 
system is very large, and the exceeding probability is increased by 3.16 % compared with the 
maximum probability of the analysis unit in the system. When PGA reaches 2.5 g, the exceedance 
probability of the upper bound of the complete damage of the system reaches 74.71 %, and the 
exceedance probability of the lower bound reaches 68.11 %. It is considered that the possibility of 
the complete damage of the system is large at this time. Compared with the maximum probability of 
the analysis unit in the system, the exceedance probability increases by 6.60 % at most. 

 

CONCLUSION 

（1）In the rotation stage of cable-stayed bridge, under the action of earthquake, the vulnerable part 

of the main tower is the section mutation of the main tower near the upper and lower beams, and 
the vulnerable cable is the long cable at the end of the beam and the short cable near the main 
tower. 

（2）Based on the incremental dynamic analysis method, the seismic fragility curve of vulnerable 

main tower section is established. When the vulnerable section of the cable-stayed bridge at the 
turning stage is under the same seismic level, the probability of damage at all levels when the 
transverse bridge is applied to the earthquake is greater than that of the longitudinal vulnerable 
section; When PGA does not change within 2.5 g, under the action of cross-bridge earthquake, the 
probability level of the vulnerable section of the main tower exceeding slight and medium damage is 
large, and there is little possibility of serious and complete damage; Under the action of the 
longitudinal bridge earthquake, the vulnerable section of the main tower has a greater probability of 
exceeding minor and moderate damage, but severe and complete damage will hardly occur; The 
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most vulnerable section of the main tower in the rotation stage is the section near the cross beam of 
the main tower under the transverse earthquake.  

（3）Based on the incremental dynamic analysis method, the seismic vulnerability curve of 

vulnerable cable is established. The probability that the vulnerable stay cables exceed the damage 
at all levels in the transverse direction of earthquake is smaller than that in the longitudinal direction 
of earthquake.  The damage probability of cables at all levels under longitudinal bridge earthquake 
is large. Under the action of cross-bridge earthquake, the probability of each stay cable exceeding 
slight damage and medium damage is large, and the probability of serious and complete damage is 
very low, and the possibility of short cable damage near the main tower in the rotation stage is the 
largest. Therefore, the cable has a high possibility of damage in the construction process, which 
cannot be ignored. The most vulnerable cable stayed in the rotation phase is the R26 cable under 
the action of the longitudinal bridge earthquake.  

（4）According to the vulnerability curve of the cable-stayed bridge system in the rotation stage, the 

upper and lower bounds of the damage probability are greater than the damage exceeding 
probability at all levels of a single component unit, and the growth rate of the upper bound probability 
of the damage at all levels of the system is the fastest. Under the same damage probability, the 
required ground motion intensity of the system can be reduced by up to 0.35 g compared with the 
component. Under the same seismic intensity, the system damage probability is 6.60 % higher than 
the component damage probability at most.  When the PGA does not change within 2.5 g, slight and 
moderate damage of the system must occur, and the possibility of serious damage and complete 
damage is large.  

To sum up, the seismic vulnerability of the cable-stayed bridge in the rotation stage should 
not be underestimated. This article has reference significance for the construction of the rotation 
cable-stayed bridge in areas lacking ground motion records. 
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