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Summary: In the presence of linear trend, linear systematic sampling (LSS) is less efficient than
stratified random sampling (STR) and more efficient than simple random sampling (SRS). Conse-
quently, some authors have proposed modifications to the LSS design, which have shown to yield
optimal results under certain conditions. In this paper, a further modified design, termed as balanced
modified systematic sampling (BMSS), is proposed. BMSS is compared to various well-known
modified LSS designs as well as LSS, SRS and STR. If half the sample size is an even integer, then
BMSS is optimal. To obtain linear trend free sampling results for the other cases of the sample size,
a BMSS with end corrections (BMSSEC) estimator is constructed. The results in this paper suggest
that the proposed estimator performs better than all other estimators for odd sample sizes and even
sampling intervals. Moreover, the proposed estimator is competitive for all other cases.

1. Introduction

If one wishes to draw a sample of size n from a population of size N, then a simple way to do this
would be to randomly select a unit and then to select subsequent units at equally spaced intervals,
until a sample of size n is achieved. More specifically, if one randomly selects a unit from the first

1 Corresponding author.

AMS: 62D05



188 NAIDOO, NORTH, ZEWOTIR & ARNAB

k = N/n units and every kth unit thereafter, then this sampling design is known as linear systematic
sampling (LSS), provided that k is an integer (Cochran, 1977). LSS is advantageous over simple
random sampling without replacement (SRS) and stratified random sampling (STR) (based on the
random selection of one unit per stratum from n strata, each of size k), owing to its convenience and
operational simplicity when implemented.

Consider a finite population U =(U1, ...,UN) of size N and let yq be the value of the study variable
of the qth unit of population U , for q ∈ {1, ...,N}. Accordingly, the population mean Y = ∑

N
q=1 yq/N

is estimated from the sample mean y. Suppose a population that exhibits linear trend, given by the
model A

yq = a+bq+ eq, q = 1, ...,N (1)

where a and b are constants and the eq’s denote the random errors which follows Cochran’s (1946)
super-population model, i.e. if the function E denotes the average of all potential finite populations
that can be drawn from model A, then

E (eq) = 0, E
(
e2

q
)
= σ

2, E (eqez) = 0(q 6= z) .

By using (1), the population mean is given by

Y =
1
N

N

∑
q=1

yq =
1
N

N

∑
q=1

a+
b
N

N

∑
q=1

q+
1
N

N

∑
q=1

eq = a+
b(N +1)

2
+ e,

where e = ∑
N
q=1 eq/N denotes the mean random error of the population. Now, let yLSS, ySRS, and

ySTR, denote the sample means when conducting LSS, SRS and STR, respectively. Thus, when
estimating Y under model A, we note that the expected mean square errors (MSEs) of yLSS, ySRS,
and ySTR, are respectively given by

MLSS = σ
2
e +

b2
(
k2−1

)
12

, (2)

MSRS = σ
2
e +

b2 (N +1)(k−1)
12

, (3)

and

MSTR = σ
2
e +

b2
(
k2−1

)
12n

, (4)

where σ2
e = σ2(1/n−1/N) represents the minimum expected error variance component, while the

second terms on the right hand side represent the linear trend components (Bellhouse, 1988). By
comparing Equations (2) through to (4), we obtain

MSTR ≤MLSS ≤MSRS. (5)

Accordingly, some authors have suggested modified LSS designs to remove the linear trend
component in Equation (2) and thus improve efficiency. Yates (1948) proposed a corrected estima-
tor which uses the LSS design and is termed as the Yates’ end corrections (YEC) estimator. This
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estimate is obtained by applying appropriate weights to the first and the last sampling units. Cen-
tered systematic sampling (CESS) was first discussed by Madow (1953), where the centrally located
linear systematic sample is selected and thus no randomization is required. The centered systematic
sample mean is subject to bias, since certain population units have no chance of being selected for the
sample (Murthy, 1967). A balanced arrangement reverses the order, with respect to the population
unit indices, of every alternative set of k population units. Sethi (1965) considered the application of
LSS on this arrangement and this design was later named as balanced systematic sampling (BSS) by
Murthy (1967, p. 165). Singh, Jindal and Garg (1968) suggested the application of LSS on a mod-
ified arrangement, where a subset of units from the end of the population is reversed, with respect
to their population unit indices. This sampling design is known as modified systematic sampling
(MSS). Denote yYEC, yCESS, yBSS, and yMSS, as the sample means associated with YEC, CESS, BSS
and MSS, respectively. When estimating Y under model A, the expected MSEs of these sample
means are respectively given by

MYEC = σ
2
e +

σ2
(
k2−1

)
6(n−1)2k2

,

(6)

MCESS =

{
σ2

e ,

σ2
e +b2/4,

if k is odd
if k is even

(7)

and

MBSS = MMSS =

{
σ2

e ,

σ2
e +b2(k2−1)/12n2,

if n is even
if n is odd

(8)

(Fountain and Pathak, 1989). By referring to Equations (6) to (8), we note that: (i) while there is a
complete removal of the linear trend component in MYEC, there is a larger error variance component,
owing to the uneven weighting of the sampling units; (ii) the linear trend component in MCESS is
only eliminated when k is odd; and (iii) both MBSS and MMSS are equivalent, with the linear trend
components being removed only for the case when n is even. Good reviews for these designs are
provided by Bellhouse and Rao (1975), Cochran (1977), Fountain and Pathak (1989), Singh (2003)
and the corresponding references cited therein.

More recent optimal modified LSS designs for linear trend populations have been suggested
by Subramani (2000, 2009, 2010) and Khan, Shabbir and Gupta (in press), while Mukerjee and
Sengupta (1990) proposed optimal design-unbiased strategies to estimate Y . As in the case of the
earlier designs, these recent solutions are based on certain assumptions and/or are optimal for linear
trend populations under certain conditions.

In the present paper, a modified LSS design, termed as balanced modified systematic sampling
(BMSS), is proposed. In Section 2, a discussion on the methodology of BMSS is provided. For
Section 3, the expected MSE of the BMSS sample mean, is compared to that of MLSS, MSRS, MSTR,
MYEC, MCESS, MBSS and MMSS. As a result, BMSS is only optimal for the case when n/2 is an
even integer. A BMSS with end corrections (BMSSEC) estimator is thus constructed, so as to
remove the linear trend component in the corresponding expected MSE for the other cases of n. A
numerical example on a hypothetical population is then considered in Section 4, before carrying out
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a simulation study in Section 5. Note that k is assumed to be an integer throughout this paper, i.e.
assuming that N is an exact multiple of n, so that sampling is conducted linearly.

2. Balanced Modified Systematic Sampling (BMSS)

A modified arrangement used for BMSS is defined as follows: (a) if n is even, then the order of
every alternative set of k population units is reversed, before reversing the order of the first/last n/2
sets of k population units; and (b) if n is odd, then the order of every alternative set of k population
units is reversed, before reversing the order of the last (n− 1)/2 sets of k population units. LSS is
then applied to this modified arrangement, so as to select the required sample. Note that different
arrangements, before applying LSS, will result in different compositions of samples and this paper
deals with a specific arrangement, as explained above. By reversing the order of n/2 (or (n−1)/2)
sets of k population units, a balancing effect is obtained which is optimal for populations exhibiting
linear trend. Note that MSS reverses the order of the last n/2 (or (n− 1)/2) sets of k population
units, without alternating the order of each set, while BSS alternates the order of each set, without
reversing the order of the last n/2 (or (n− 1)/2) sets of k population units. Thus, the ordering of
BMSS is a mixture of both, the MSS and BSS orderings. Moreover, BMSS reduces to LSS when
n = 2 and we will thus assume that n > 2.

The above-mentioned design is equivalent to selecting sampling units according to the following
indices:

(A) if n/2 is an even integer, then

i+2 jk, 2( j+1)k− i+1, for j = 0, ...,(n−4)/4

and

N + i− k−2 jk, N− i− k−2 jk+1, for j = 0, ...,(n−4)/4;

(B) if n/2 is an odd integer, then

i+2 jk, N + i− k−2 jk, for j = 0, ...,(n−2)/4

and

2( j+1)k− i+1, N− i− k−2 jk+1, for j = 0, ...,(n−6)/4;

(C) if n = 3, then

i, 2k− i+1 and N− i+1;

(D) if n 6= 3 and (n+1)/2 is an even integer, then

i+2 jk, 2( j+1)k− i+1, N− i−2 jk+1, for j = 0, ...,(n−3)/4

and

N + i−2( j+1)k, for j = 0, ...,(n−7)/4;
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(E) if (n+1)/2 is an odd integer, then

i+2 jk, 2( j+1)k− i+1, N− i−2 jk+1, N + i−2( j+1)k,

for j = 0, ...,(n−5)/4 and i+(n−1)k/2.

Note that Cases (A) and (B) are sub-cases of n being even, while Cases (C) to (E) are sub-cases of
n > 1 being odd.

The ith (i ∈ {1, ...,k}) sample mean, denoted by yBMSS, is obtained by using the above sampling
unit indices for the respective cases, e.g. if we consider Case (A), then the sample mean is given as

yBMSS =
1
n

(n−4)/4

∑
j=0

(yi+2 jk + y2( j+1)k−i+1 + yN+i−k−2 jk + yN−i−k−2 jk+1).

Note that yBMSS is design-unbiased, since BMSS is viewed as an arrangement of units before apply-
ing LSS.

3. Expected Mean Square Error (MSE) Comparisons

To compare the expected MSE of the BMSS estimator, to that of MLSS, MSRS, MSTR, MYEC, MCESS,
MBSS and MMSS, we first need to consider the following theorem.

Theorem 1 If we suppose model B, which is related to model A, given by

yq = a+bq, q = 1, ...,N (9)

such that

Y B =
1
N

N

∑
q=1

yq =
1
N
[(a+b)+ ...+(a+Nb)] = a+

b(N +1)
2

,

then by assuming equal weights (1/n) applied to all the sampling units, the expected MSE of any
sample mean, when estimating Y , is given by

MA = E MSE(yA)
∆
= E

{
E
[(

yA−Y
)2
]}

= σ
2
e +Var(yB) , (10)

where yB denotes a linear unbiased estimator of Y B, using the sampling design associated with yA.

Proof. By using Equations (1) and (9), we obtain Y = Y B + e and yA = yB + ei, where ei = ∑ei/n
denotes the mean random error of the sample and ∑ denotes the sum over the sample. Using these
expressions, it follows that

MA
∆
= E

{
E
[(

yA−Y
)2
]}

= E
{

E
[(

yB−Y B
)2

+
(
ei− e

)2
]}

= E Var(yB)+E Var(ei) = Var(yB)+σ
2
e .

�
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If we let P = 2i− k−1, then applying Equation (9) to yBMSS results in

yBMSS = a+b(N +1)/2, for Case (A)

= a+b [N +1+2P/n]/2, for Case (B)

= a+b [N +1−P/n]/2, for Cases (C) to (E).

Hence, the corresponding variance expression, when using yBMSS to estimate Y B, is given by

Var(yBMSS) = 0, for Case (A)

= b2(k2−1)/3n2, for Case (B)

= b2(k2−1)/12n2, for Cases (C) to (E), (11)

which follows since

E
(
P2)= 1

k

k

∑
i=1

P2 =

(
k2−1

)
3

.

Thus, if we assume model A, then by substituting Equation (11) into Equation (10), we obtain

MBMSS = σ
2
e , for Case (A)

= σ
2
e +b2(k2−1)/3n2, for Case (B)

= σ
2
e +b2(k2−1)/12n2, for Cases (C) to (E). (12)

By comparing Equations (12) and (4), we note that MBMSS < MSTR for all the cases. Thus, by
using Equation (5), we conclude that BMSS is more efficient than LSS, SRS and STR. Also, by
comparing Equations (12) and (6), we see that MBMSS < MYEC, for (i) Case (A); (ii) Case (B) (if and
only if σ2 > 2b2(n−1)2k2/n2); and (iii) Cases (C) to (E) (if and only if σ2 > b2(n−1)2k2/2n2). In
addition, the comparison of Equations (12) and (7) results in:

(i) MBMSS = MCESS for Case (A) and if k is odd;

(ii) MBMSS < MCESS for Case (A) and if k is even;

(iii) MBMSS > MCESS for Cases (B) to (E) and if k is odd;

(iv) MBMSS < MCESS for Case (B), if k is even and 4k2−4 < 3n2;

(v) MBMSS < MCESS for Cases (C) to (E), if k is even and k2−1 < 3n2.

Finally, by comparing Equations (12) and (8), we see that MBMSS > MBSS = MMSS for Case (B),
while all other cases result in MBMSS = MBSS = MMSS.

Clearly, we only obtain a complete removal of the linear trend component in Equation (12) for
Case (A). To remove the linear trend component for the other cases, we next consider the appli-
cation of weights to the first and last sampling units. Accordingly, the resulting estimator and the
corresponding expected MSE are respectively given in the next two theorems.
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Theorem 2 The BMSSEC estimator of Y with random start i, for i ∈ {1, ...,k}, is given as

yBMSSEC = yBMSS +P(yi− yN+i−k)/[n(N− k)], for Case (B)

= yBMSS−P(yi− yN−i+1)/[2n(N−2i+1)], for Cases (C) and (D)

= yBMSS +P(yi− yN−i+1)/[2n(N−2i+1)], for Case (E).

Proof. See Appendix. �

Theorem 3 Under model A, the expected MSE of yBMSSEC is given as

MBMSSEC = σ
2
e +2σ

2(k2−1)/3n2(N− k)2, for Case (B)

= σ
2
e +

k

∑
i=1

{
P2

σ
2/[2(N−2i+1)2n2k]

}
, for Cases (C) to (E).

Proof. See Appendix. �
If we compare MBMSSEC to all previous expected MSE expressions, then we note that simple

theoretical comparisons are difficult to obtain and we will thus resort to some numerical comparisons
in the next two sections. However, one can easily verify that MBSS = MMSS < MBMSSEC < MYEC for
Case (B), while MCESS < MBMSSEC if k is odd. Furthermore, just as in the case of the YEC estimator
being slightly biased under the assumption of a rough linear trend, owing to the uneven weighting
of the sampling units (Murthy, 1967), we obtain the same result for estimator yBMSSEC.

4. Numerical Example

Consider the hypothetical linear trend population given by Murthy and Rao (1988, p. 161), which
is presented in Table 1. All the possible samples for various values of n when conducting BMSS,
which are obtained by using the sampling unit indices in Section 2 for the corresponding cases, are
presented in Table 2. The associated MSEs for the various sampling designs mentioned in this paper
are given in Table 3. The results suggest that BMSS offers a strict improvement over LSS, SRS
and STR, regardless of the sample size. Moreover, if n/2 is not a even integer, then we obtain a
reduction in estimation error by using the BMSSEC estimator, as opposed to the BMSS estimator.
Comparisons amongst the modified LSS designs to either BMSS or the BMSSEC estimator requires
further analysis, since we are only considering a single finite population, whereas our theoretical
results obtained earlier are based on an infinite super-population. However, we note that in most
cases, there is a significant reduction in error when applying any one of the modified LSS designs,
as opposed to LSS, SRS and STR.

5. Empirical Comparisons

Three independent simulation studies are carried out to further evaluate the estimator yBMSSEC.
Monte Carlo simulations are used with the statistical software package R, where 10 000 finite
populations are simulated. The expected MSE of each estimator is obtained by averaging the
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Table 1: A population of 40 units exhibiting a steady linear trend in the value of a variable y.

Uq yq Uq yq Uq yq Uq yq

U1 0 U11 10 U21 23 U31 41
U2 1 U12 11 U22 25 U32 43
U3 2 U13 12 U23 29 U33 46
U4 3 U14 12 U24 30 U34 50
U5 4 U15 13 U25 32 U35 52
U6 5 U16 14 U26 33 U36 53
U7 7 U17 15 U27 35 U37 57
U8 7 U18 17 U28 38 U38 59
U9 8 U19 20 U29 39 U39 62
U10 9 U20 22 U30 40 U40 63

Table 2: For various values of n, the k possible samples (for i ∈ {1, ...,k}) using BMSS.

Case n k Possible Samples
A 4 10 Si = {Ui,U21−i,U31−i,U30+i}
E 5 8 Si = {Ui,U17−i,U41−i,U24+i}∪{U16+i}
A 8 5 Si = {Ui,U11−i,U36−i,U35+i,U10+i,U21−i,U25+i,U26−i}
B 10 4 Si = {Ui,U36+i,U8+i,U28+i,U16+i,U20+i,U9−i,U37−i,U17−i,U29−i}
A 20 2 Si = {Ui,U5−i,U38+i,U39−i,U4+i,U9−i,U34+i,U35−i,U8+i,U13−i,U30+i}

∪{U31−i,U12+i,U17−i,U26+i,U27−i,U16+i,U21−i,U22+i,U23−i}

Table 3: Mean square errors for a hypothetical population exhibiting a linear trend.

n
4 5 8 10 20

LSS 23.1600 13.6475 6.3288 3.3825 0.4900
SRS 83.2264 64.7316 36.9895 27.7421 9.2474
STR 6.6350 3.1700 0.9625 0.4063 0.0350
YEC 0.4116 0.1887 0.1140 0.0240 0.0134
CESS 0.6400 0.4225 0.0400 0.9025 0.4900
BSS 0.4350 2.2475 0.0288 0.0275 0.0025
MSS 2.4725 0.0575 0.7538 0.2025 0.0400

BMSS 0.1475 0.5775 0.1788 0.2275 0.0025
BMSSEC N/A 0.0730 N/A 0.0187 N/A

MSEs over the 10 000 populations. The relative expected MSEs of each comparative estimator,
with respect to that of estimator yBMSSEC, is denoted by Rα = 100×MBMSSEC/Mα(%), where
α ∈ {LSS,SRS,STR,YEC,CESS,BSS,MSS,BMSS}. Without loss of generality, we suppose that
the eq’s are iid N(0,1) random variables and let a = 5.

In the first simulation study, Case (B) is examined and arbitrary values of b = 0.5,1,2 and 4, are
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assigned while varying n and k. The associated relative expected MSEs are presented in Tables 4 to
7. From Tables 4 to 7, we note that only estimators yBSS and yMSS, are marginally subjected to less
error than that of estimator yBMSSEC. Also, estimator yBMSSEC is always favourable over estimators
yLSS, ySRS and yCESS, with greater discrepancies as n, k and/or b increases. Similarly, we see that
estimator yBMSSEC is always preferred over estimator ySTR, with greater discrepancies as k and/or b
increases, while results remain constant as n varies. Finally, we note that estimator yBMSSEC always
performs better than estimator yBMSS, with greater discrepancies as k and/or b increases and smaller
discrepancies as n increases. Thus, MBMSS→MBMSSEC as n→∞, provided that k and b are relatively
small.

Table 4: Simulated relative expected mean square errors for populations exhibiting linear trend
under Case (B) (b = 0.5).

k n RLSS RSRS RST R RCESS RBSS RMSS RBMSS

2 6 57.85 23.99 90.73 57.85 101.51 102.63 92.40
2 34 19.08 01.02 89.47 19.08 101.07 100.29 98.49
2 130 05.76 00.07 88.25 05.76 102.61 102.51 99.52
2 258 02.99 00.02 88.24 02.99 99.16 99.05 99.87
4 6 28.87 07.50 71.57 66.63 100.70 101.63 79.28
4 34 06.60 00.26 70.74 26.17 100.42 100.33 94.84
4 130 01.82 00.02 70.87 08.53 102.52 99.01 98.84
4 258 00.92 <00.01 70.81 04.45 100.31 99.04 99.18
8 6 10.06 02.01 40.24 70.84 100.66 100.10 50.14
8 34 01.93 00.06 40.08 29.27 99.81 99.85 85.14
8 130 00.51 <00.01 40.10 09.79 100.46 100.15 95.62
8 258 00.26 <00.01 39.82 05.15 100.27 100.55 97.43

For the second simulation study, Cases (C) to (E) (i.e. n is odd) are considered and arbitrary
values of b= 0.5,1,2 and 4, are assigned while varying n and k. The corresponding relative expected
MSEs are presented in Tables 8 to 11. From Tables 8 to 11, we note that estimator yBMSSEC performs
better than all the estimators considered in this study. In this simulation study, we obtain similar
results as those obtained in the previous study. However, estimator yBMSSEC now performs better
than estimators yBSS and yMSS. Moreover, we see that estimators yBSS, yMSS and yBMSS, are relatively
subject to the same amount of error. Thus, MBSS,MMSS and MBMSS→MBMSSEC as n→∞, provided
that k and b are relatively small.

Comparisons between estimators yBMSSEC and yYEC are evaluated in the third simulation study.
Because there are no trend components in the expected MSEs of both estimators, an arbitrary value
of b = 4 is assigned while varying n and k. Also, only Cases (C) to (E) are explored, as it was
theoretically shown previously that MBMSSEC < MYEC for Case (B). The simulated relative expected
MSEs are presented in Table 12. The results suggest that estimator yBMSSEC is only preferred when
n and k are small. Otherwise, there are marginal gains when choosing estimator yBMSSEC over esti-
mator yYEC.
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Table 5: Simulated relative expected mean square errors for populations exhibiting linear trend
under Case (B) (b = 1).

k n RLSS RSRS RST R RCESS RBSS RMSS RBMSS

2 6 24.95 07.16 66.55 24.95 99.00 99.53 75.38
2 34 05.59 00.25 66.74 05.59 100.84 100.51 94.65
2 130 01.54 00.02 67.78 01.54 100.91 102.35 98.60
2 258 00.80 <00.01 69.26 00.80 105.18 105.60 99.44
4 6 09.25 01.99 38.14 33.49 100.93 101.08 48.34
4 34 01.72 00.06 37.23 08.08 98.99 99.99 83.69
4 130 00.46 <00.01 37.46 02.25 99.82 101.26 95.29
4 258 00.23 <00.01 37.49 01.15 100.23 101.06 97.11
8 6 02.70 00.51 14.28 36.91 100.38 100.58 19.93
8 34 00.49 00.02 14.26 09.31 100.27 100.73 58.78
8 130 00.13 <00.01 14.16 02.61 99.12 99.41 84.22
8 258 00.06 <00.01 14.18 01.33 102.09 100.64 91.56

Table 6: Simulated relative expected mean square errors for populations exhibiting linear trend
under Case (B) (b = 2).

k n RLSS RSRS RST R RCESS RBSS RMSS RBMSS

2 6 07.68 01.90 33.33 07.68 99.73 101.68 42.20
2 34 01.44 00.06 32.99 01.44 99.04 99.59 80.93
2 130 00.38 <00.01 33.50 00.38 99.90 101.72 94.94
2 258 00.19 <00.01 33.54 00.19 101.66 101.58 96.97
4 6 02.43 00.50 13.03 11.09 100.52 99.60 18.31
4 34 00.44 00.02 13.21 02.18 100.84 99.90 56.22
4 130 00.11 <00.01 12.95 00.57 101.01 99.83 83.06
4 258 00.06 <00.01 13.07 00.29 99.54 99.92 90.80
8 6 00.68 00.13 03.99 12.77 99.65 99.86 05.86
8 34 00.12 <00.01 04.00 02.51 100.08 100.40 25.97
8 130 00.03 <00.01 04.01 00.67 99.76 99.37 57.89
8 258 00.02 <00.01 03.99 00.34 99.41 99.41 72.91
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Table 7: Simulated relative expected mean square errors for populations exhibiting linear trend
under Case (B) (b = 4).

k n RLSS RSRS RST R RCESS RBSS RMSS RBMSS

2 6 02.08 00.49 11.30 02.08 103.38 102.87 16.23
2 34 00.36 00.02 11.05 00.36 102.27 99.00 51.55
2 130 00.10 <00.01 11.16 00.10 101.55 99.06 80.80
2 258 00.05 <00.01 10.83 00.05 99.02 100.08 88.48
4 6 00.62 00.12 03.60 03.02 100.68 99.61 05.31
4 34 00.11 <00.01 03.59 00.54 99.15 99.43 23.98
4 130 00.03 <00.01 03.61 00.14 98.94 99.51 55.27
4 258 00.01 <00.01 03.59 00.07 99.13 100.16 70.01
8 6 00.17 00.03 01.03 03.54 100.02 100.92 01.54
8 34 00.03 <00.01 01.04 00.65 100.75 100.82 08.21
8 130 00.01 <00.01 01.03 00.17 100.02 100.40 25.13
8 258 <00.01 <00.01 01.03 00.08 100.62 99.91 40.06

Table 8: Simulated relative expected mean square errors for populations exhibiting linear trend
under Cases (C) to (E) (b = 0.5).

k n RLSS RSRS RST R RCESS RBSS RMSS RBMSS

2 3 70.39 53.54 88.52 70.39 98.00 98.41 98.72
2 35 18.35 00.94 87.75 18.35 98.16 98.51 99.57
2 125 05.92 00.08 88.00 05.92 99.01 99.66 99.88
2 255 03.08 00.02 89.77 03.08 99.89 99.99 99.96
4 3 45.40 24.17 72.16 81.30 91.01 89.63 89.99
4 35 06.41 00.24 70.49 25.65 98.96 98.54 98.78
4 125 01.89 00.02 70.82 08.74 99.29 99.36 99.59
4 255 00.93 <00.01 70.67 04.50 99.84 99.99 99.84
8 3 18.50 07.55 40.69 83.34 68.31 67.80 68.28
8 35 01.86 00.06 39.89 28.77 95.34 96.24 95.97
8 125 00.54 <00.01 40.36 10.25 98.78 99.47 98.78
8 255 00.26 <00.01 40.13 05.26 99.40 99.88 99.32

6. Conclusion

A modified LSS design (i.e. BMSS) that depends on an arrangement of population units before
applying LSS, which results in the corresponding sample mean being design-unbiased, has been
proposed. Results from Sections 3 to 5 indicate that BMSS is more efficient than LSS, SRS and STR,
in the presence of linear trend. The optimal case of BMSS is when n/2 is an even integer, which
results in linear trend free sampling and minimum expected MSE of the corresponding sample mean.
For the other cases of BMSS, a modified end corrections estimator, i.e. estimator yBMSSEC, has been
constructed. Populations exhibiting a rough linear trend result in estimator yBMSSEC being a slightly
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Table 9: Simulated relative expected mean square errors for populations exhibiting linear trend
under Cases (C) to (E) (b = 1).

k n RLSS RSRS RST R RCESS RBSS RMSS RBMSS

2 3 42.66 23.21 70.25 42.66 88.72 88.20 88.28
2 35 05.39 00.24 66.54 05.39 98.63 98.12 98.60
2 125 01.57 00.02 66.46 01.57 98.30 98.48 98.60
2 255 00.78 <00.01 66.48 00.78 99.51 99.97 99.79
4 3 17.03 07.28 38.28 50.89 65.39 66.23 65.88
4 35 01.68 00.06 37.29 07.88 94.72 94.44 95.06
4 125 00.48 <00.01 37.58 02.36 98.88 98.33 98.82
4 255 00.24 <00.01 38.00 01.18 99.99 98.97 99.51
8 3 05.42 02.02 14.71 54.98 34.36 34.26 34.36
8 35 00.48 00.02 14.39 09.24 85.56 85.21 85.64
8 125 00.13 <00.01 14.25 02.71 95.45 96.21 95.36
8 255 00.07 <00.01 14.37 01.36 96.95 97.72 97.57

Table 10: Simulated relative expected mean square errors for populations exhibiting linear trend
under Cases (C) to (E) (b = 2).

k n RLSS RSRS RST R RCESS RBSS RMSS RBMSS

2 3 14.66 06.79 34.26 14.66 61.90 62.10 61.82
2 35 01.38 00.06 32.71 01.38 95.03 94.90 94.55
2 125 00.39 <00.01 32.60 00.39 98.22 98.37 98.43
2 255 00.19 <00.01 33.09 00.19 98.94 99.75 99.25
4 3 04.88 01.92 13.36 20.68 31.62 31.83 31.91
4 35 00.42 00.02 12.99 02.08 84.01 83.59 84.05
4 125 00.12 <00.01 12.98 00.59 94.68 93.93 94.98
4 255 00.06 <00.01 13.05 00.29 98.13 97.76 97.46
8 3 01.40 00.51 04.09 22.99 11.37 11.35 11.34
8 35 00.12 <00.01 03.98 02.43 59.25 59.13 59.01
8 125 00.03 <00.01 03.99 00.69 83.52 83.49 83.69
8 255 00.02 <00.01 04.03 00.34 91.83 90.98 91.54

biased estimate of Y as well as exhibiting an inflated error variance component in the corresponding
expected MSE, owing to the uneven weighting of the sampling units.

If n/2 is an odd integer, then estimator yBMSSEC is subject to less error than estimators yLSS,
ySRS, ySTR, yYEC and yBMSS, while marginally susceptible to more error than estimators yBSS and
yMSS, as shown in Sections 3 and 5. In addition, if n is odd, then estimator yBMSSEC is subject to
less error than all of the above-mentioned estimators. The simulation study in Section 5 indicates
that estimator yBMSSEC performs better than estimator yYEC if n is odd, provided that n and k are
small. Otherwise, there are marginal gains when opting to use estimator yBMSSEC over estimator
yYEC. Under this circumstance, one may opt to use estimator yYEC, owing to simplicity.
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Table 11: Simulated relative expected mean square errors for populations exhibiting linear trend
under Cases (C) to (E) (b = 4).

k n RLSS RSRS RST R RCESS RBSS RMSS RBMSS

2 3 04.06 01.78 11.28 04.06 27.59 27.81 27.72
2 35 00.35 00.02 11.05 00.35 81.58 81.06 81.51
2 125 00.10 <00.01 11.16 00.10 92.83 93.56 93.80
2 255 00.05 <00.01 11.13 00.05 96.56 97.40 97.06
4 3 01.27 00.49 03.71 06.02 10.41 10.31 10.38
4 35 00.11 <00.01 03.62 00.53 56.26 56.53 56.25
4 125 00.03 <00.01 03.63 00.15 82.43 82.85 82.33
4 255 00.01 <00.01 03.64 00.07 90.81 90.58 90.72
8 3 00.36 00.13 01.06 07.02 03.12 03.11 03.11
8 35 00.03 <00.01 01.04 00.62 26.93 26.93 26.89
8 125 00.01 <00.01 01.03 00.17 56.48 57.07 56.55
8 255 <00.01 <00.01 01.03 00.09 73.05 73.11 72.63

Table 12: Simulated relative expected mean square errors of the YEC sample mean, with respect to
that of the MBMSSEC sample mean, for populations exhibiting linear trend under Cases C to E.

n
3 5 7 13 15 29 63 125 255

k = 2 86.56 92.63 95.53 97.49 97.83 98.82 99.02 99.59 99.17
k = 4 89.23 94.03 96.13 97.69 98.48 98.97 99.41 99.59 99.82
k = 8 90.04 94.64 96.38 97.90 98.53 99.16 99.65 99.92 99.95

Finally, we note that estimator yBMSSEC performs better than estimator yCESS, provided that k is
even, as seen in the simulation study from Section 5. However, if k is odd, then the theoretical results
in Section 3 suggest that estimator yCESS is to be the preferred, as CESS is an optimal sampling
design for this scenario. Nevertheless, we can expect marginal gains when opting to use estimator
yCESS over estimator yBMSSEC when k is odd.

Recommendations for the most appropriate design(s) under various conditions are provided in
Table 13. Note that the third column represents a trade-off between estimators yYEC and yBMSSEC,
where preference is either given to minimum MSE or simplicity.

Note that the end corrections estimators are constructed with the assumption of a perfect linear
trend in the population, i.e. model B in Equation (9). The YEC and BMSSEC estimators are thus
most suitable under the assumption of a population exhibiting linear trend. The onus then lies on the
survey statistician to collect as much information about the population as possible, prior to sampling,
so as to estimate the population structure. This may entail the building of appropriate models, where
he/she can then use the most suitable design and/or estimator. In addition, it is common practice
for a survey statistician to apply auxiliary information for sampling. If the population is arranged in
increasing/decreasing order in accordance with an auxiliary variable, then we obtain an approximate
linear trend in the population, where the higher the degree of correlation between the auxiliary vari-
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able and the characteristic under study, the greater degree of linear trend. Under these circumstances,
the theory and results presented in this paper may then apply.

Table 13: Recommended designs for populations exhibiting linear trend.

Case(s) Condition Preference Recommended Design(s)
A k is even N/A BSS, MSS or BMSS
A k is odd N/A CESS, BSS, MSS or BMSS
B k is even N/A BSS or MSS
B k is odd N/A CESS, BSS or MSS

C to E k is even; n and k are small Minimum MSE BMSSEC
C to E k is even; n and k are small Simplicity YEC
C to E k is even; n and/or k are not small Minimum MSE YEC or BMSSEC
C to E k is even; n and/or k are not small Simplicity YEC
C to E k is odd N/A CESS
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Appendix

Theorem 2
Proof. An estimate of Y with random start i, for i ∈ {1, ...,k}, can be written as

yBMSSEC =
1
n

[
ψ1yx1 +

(n−1)

∑
j=2

yx j +ψ2yxn

]
, (13)

where ψ1 and ψ2 are the weights applied to the first and the last sampling units respectively and
x1, ...,xn are the sampling unit indices, which are arranged in ascending order. By substituting Equa-
tion (9) into Equation (13) and then equating this result to Y B, we obtain

yBMSSEC =
1
n

[
ψ1 (a+bx1)+

(n−1)

∑
j=2

(a+bx j)+ψ2 (a+bxn)

]
= a+

b(N +1)
2

. (14)

By equating the coefficients of a in Equation (14), it follows that

ψ1 = 2−ψ2. (15)

Similarly, by equating the coefficients of b in Equation (14), we obtain

1
n

[
ψ1x1 +

(n−1)

∑
j=2

x j +ψ2xn

]
=

N +1
2

. (16)



LINEAR SYSTEMATIC SAMPLING DESIGNS 201

Substituting Equation (15) into Equation (16) results in

2

[
2x1−ψ2x1 +

(n−1)

∑
j=2

x j +ψ2xn

]
= n(N +1) ,

which simplifies to

ψ2 =
K−2x1

xn− x1
, (17)

where K = n(N +1)/2−∑
n−1
j=2 x j. The weight applied to the first sampling unit is thus obtained by

substituting Equation (17) into Equation (15), i.e.

ψ1 =
2xn−K
xn− x1

. (18)

Substituting Equations (17) and (18) into Equation (13) results in

yBMSSEC =
1
n

[
(2xn−K)

(xn− x1)
yx1 +

n−1

∑
j=2

yx j +
(K−2x1)

(xn− x1)
yxn

]

= yBMSS +
1
n

[
(2xn−K)

(xn− x1)
yx1 +

(K−2x1)

(xn− x1)
yxn − yx1 − yxn

]
= yBMSS +

[(xn + x1)−K]

n(xn− x1)
(yx1 − yxn) . (19)

Now, if we consider Case (B), then x1 = i, xn = N + i− k and

K =
n(N +1)

2
−

n−1

∑
j=2

x j

=
n(N +1)

2
−

[
(n−2)/4

∑
j=1

(2i+N− k)+
(n−6)/4

∑
j=0

(k−2i+2+N)

]

=
n(N +1)

2
−

(n−2)/4

∑
j=1

(2i+N− k+ k−2i+2+N) =
(N +1)[n− (n−2)]

2
= N +1

(refer to the sampling unit indices of Case (B) in Section 2). On substituting these values into
Equation (19), we obtain

yBMSSEC = yBMSS +
P

n(N− k)
(yi− yN+i−k) . (20)

We then conclude the proof by finding the values of x1, xn and K for the other cases, as shown above,
and then substituting these values into Equation (19). �

Theorem 3
Proof. The expected MSE of yBMSSEC can be written as

MBMSSEC
∆
= E

[
E
({

yBMSSEC−Y
}2
)]

= E
{
E
[(

yBMSSEC−Y
)2
]}

=
1
k

k

∑
i=1

E
[
yBMSSEC−Y

]2
. (21)
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If we consider Case (B) for Equation (1), then

yBMSSEC−Y = a+
b
2

[
N +1+

2P
n

]
+ ei−

[
a+

b(N +1)
2

+ e
]
=

bP
n

+ ei− e. (22)

Moreover,

yi− yN+i−k = a+bi+ ei− [a+b(N + i− k)+ eN+i−k] =−b[N− k]+ ei− eN+i−k. (23)

Using Equations (20), (22) and (23), we obtain

E
[
(yBMSSEC−Y )2]= E

[(
bP
n

+ ei− e+
P[−b(N− k)+ ei− eN+i−k]

n(N− k)

)2
]

= E

[(
ei− e+

P[ei− eN+i−k]

n(N− k)

)2
]
. (24)

Applying Cochran’s (1946) super-population model assumptions, results in

E
(
e2

i
)
=

1
n2

[
∑E

(
e2

i
)
+∑∑

j 6=i
E (eie j)

]
=

σ2

n
, (25)

E
(

e2
)
=

1
N2

[
N

∑
j=1

E
(
e2

j
)
+

N

∑
i=1

N

∑
j 6=i

E (eie j)

]
=

σ2

N
, (26)

E
(
eie
)
=

1
nN ∑

N

∑
j=1

E (eie j) =
nσ2

nN
=

σ2

N
, (27)

E
[
ei
(
ei− ei+(n−1)k

)]
= E

[(
1
n

n

∑
j=1

e{i+( j−1)k}

)(
ei− ei+(n−1)k

)]
= 0, (28)

E
[
e
(
ei− ei+(n−1)k

)]
= E

[(
1
N

N

∑
j=1

e j

)(
ei− ei+(n−1)k

)]
= 0 (29)

and

E
[(

ei− ei+(n−1)k
)2
]
= E

[
e2

i −2eiei+(n−1)k + e2
i+(n−1)k

]
= 2σ

2. (30)

Expanding Equation (24) and then substituting Equations (25) through to (30) into this expression,
results in

E
[
(yBMSSEC−Y )2]= σ

2
e +

2σ2P2

n2(N− k)2 . (31)

Finally, by substituting Equation (31) into Equation (21), we obtain

MBMSSEC = σ
2
e +

2σ2

n2k(N− k)2

k

∑
i=1

P2 = σ
2
e +

2σ2(k2−1)
3n2(N− k)2 .

Similarly, we can obtain E
[
(yBMSSEC−Y )2

]
for Cases (C) to (E) and then substitute these expres-

sions into Equation (21). �
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