D_{4}-Magic Graphs

Anusha Chappokkil*
Anil Kumar Vasu ${ }^{\dagger}$

Abstract

Consider the set $X=\{1,2,3,4\}$ with 4 elements. A permutation of X is a function from X to itself that is both one one and on to. The permutations of X with the composition of functions as a binary operation is a nonabelian group, called the symmetric group S_{4}. Now consider the collection of all permutations corresponding to the ways that two copies of a square with vertices $1,2,3$ and 4 can be placed one covering the other with vertices on the top of vertices. This collection form a nonabelian subgroup of S_{4}, called the dihedral group D_{4}. In this paper, we introduce A-magic labelings of graphs, where A is a finite nonabelian group and investigate graphs that are D_{4}-magic. This did not attract much attention in the literature.

Keywords: A-magic labeling; Dihedral group $D_{4} ; D_{4}$-magic. 2020 AMS subject classifications: $05 \mathrm{C} 25,05 \mathrm{C} 78 .{ }^{1}$

[^0]
C. Anusha and V. Anil Kumar

1 Introduction

A graph G is an ordered pair $(V(G), E(G))$, where $V(G)$ is a finite nonempty set whose elements are called vertices and $E(G)$ is a binary irreflexive and symmetric relation on $V(G)$ whose elements are called edges. For any abelian group A, written additively, any mapping $\ell: E(G) \rightarrow A \backslash\{0\}$ is called a labeling. Given a labeling on the edge set $E(G)$, one can introduce a vertex set labeling $\ell^{+}: V(G) \rightarrow A$ as follows:

$$
\ell^{+}(v)=\sum_{u v \in E(G)} l(u v)
$$

A graph G is said to be A-magic if there is a labeling $\ell: E(G) \rightarrow A \backslash\{0\}$ such that for each vertex v, the sum of the labels of the edges incident with v are all equal to the same constant, that is, $\ell^{+}(v)=a$ for some fixed $a \in A$. The original concept of A-magic graph was introduced by Sedláček[1]. According to him, a graph G is A-magic if there exists an edge labeling on G such that (i) distinct edges have distinct non-negative labels; and (ii) the sum of the labels of the edges incident to a particular vertex is same for all vertices. When $A=\mathbb{Z}$, the \mathbb{Z}-magic graphs are considered in Stanley[7]. Doob [5, 4] also considered A-magic graphs where A is an abelian group. Also he determined which wheels are \mathbb{Z}-magic. Observe that several authors studied V_{4}-magic graphs[8, 6]. It is natural to ask does there exist graphs which admits A-magic labeling, when A is nonabelian? In this paper, we address this question and investigate graphs that are D_{4}-magic.

2 Main results

Let $G=(V(G), E(G))$ be a finite (p, q) graph and let $(A, *)$ be a finite nonabelain group with identity element 1 . Let $f: E(G) \rightarrow N_{q}=\{1,2, \ldots, q\}$ and let $g: E(G) \rightarrow A \backslash\{1\}$ be two edge labelings of G such that f is bijective. Define an edge labeling $\ell: E(G) \rightarrow N_{q} \times A \backslash\{1\}$ by

$$
l(e):=(f(e), g(e)), e \in E(G)
$$

Define a relation \leq on the range of ℓ by:

$$
(f(e), g(e)) \leq\left(f\left(e^{\prime}\right), g\left(e^{\prime}\right)\right) \text { if and only if } f(e) \leq f\left(e^{\prime}\right)
$$

Then obviously the relation \leq is a partial order on the range of ℓ.
Let $\left\{\left(f\left(e_{1}\right), g\left(e_{1}\right)\right),\left(f\left(e_{2}\right), g\left(e_{2}\right)\right), \ldots,\left(f\left(e_{k}\right), g\left(e_{k}\right)\right)\right\}$ be a chain in the range of ℓ. We define the product of elements of this chain as follows:

$$
\prod_{i=1}^{k}\left(f\left(e_{i}\right), g\left(e_{i}\right)\right):=\left(\left(\left(\left(g\left(e_{1}\right) * g\left(e_{2}\right)\right) * g\left(e_{3}\right)\right) * g\left(e_{4}\right)\right) * \ldots\right) * g\left(e_{k}\right) .
$$

Let $u \in V$ and let $N^{*}(u)$ be the set of all edges incident with u. Note that the range of $\left.\ell\right|_{N^{*}(u)}$ is a chain, say $\left(f\left(e_{1}\right), g\left(e_{1}\right)\right) \leq\left(f\left(e_{2}\right), g\left(e_{2}\right)\right) \leq \cdots \leq\left(f\left(e_{n}\right), g\left(e_{n}\right)\right)$. We define,

$$
\begin{equation*}
\ell^{*}(u)=\prod_{i=1}^{n}\left(f\left(e_{i}\right), g\left(e_{i}\right)\right) . \tag{1}
\end{equation*}
$$

If $\ell^{*}(u)$ is a constant, say a for all $u \in V(G)$, we say that the graph G is A magic. The map ℓ^{*} is called an A-magic labeling of G and the corresponding constant a is called the magic constant. For example, consider the cycle graph $C_{4}=(u v, v w, w x, x u)$ and the permutation group D_{4}. Note that the group D_{4} is a non abelian group of order 8 and its elements are given by

$$
\begin{array}{lll}
\rho_{0}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right), & \mu_{1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right), \\
\rho_{1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right), & \mu_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right), \\
\rho_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right), & \delta_{1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2
\end{array}\right), \\
\rho_{3}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right), & \delta_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right) .
\end{array}
$$

Define $f: E(G) \rightarrow N_{4}=\{1,2,3,4\}$ as $f(u v)=1, f(w x)=2, f(v w)=$ $3, f(x u)=4$ and $g: E(G) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ as $g(u v)=g(w x)=\rho_{1}, g(v w)=$ $g(x u)=\delta_{1}$. Thus

$$
\ell^{*}(u)=\left(1, \rho_{1}\right)\left(4, \delta_{1}\right)=\rho_{1} \delta_{1}=\mu_{2},
$$

$\ell^{*}(v)=\left(1, \rho_{1}\right)\left(3, \delta_{1}\right)=\rho_{1} \delta_{1}=\mu_{2}$. Similarly, $\ell^{*}(w)=\mu_{2}$ and $\ell^{*}(x)=\mu_{2}$. Thus C_{4} is D_{4}-magic with magic constant μ_{2}.

Figure 1: D_{4}-magic labeling of C_{4}.

In this paper, we will consider the symmetric group D_{4} and investigate graphs that are D_{4}-magic.

C. Anusha and V. Anil Kumar

Theorem 2.1. Let A be a non abelian group having an element of order 2 and let G be a graph. If either the degree of the vertices of G are all even or odd. Then G is A-magic.

Proof. Let G be a (p, q) graph and A be a nonabelian group having an element of order 2. Let $a \in G$ is of order 2. Let $g: E(G) \rightarrow A \backslash\{1\}$ be the constant map $g(e)=a, \forall e \in E(G)$ and let f be any bijection from $E(G) \rightarrow N_{q}$. First assume that all the vertices of G are of even degree then $l^{*}(u)=1, \forall u \in V(G)$. Similarly, if all the vertices of G are of odd degree then $l^{*}(u)=a, \forall u \in V(G)$. Hence the proof.

Corolary 2.1. All Eulerian graphs are D_{4}-magic.
Theorem 2.2. Any regular graph is D_{4}-magic.
Proof. Let $G=(V(G), E(G))$ be a regular graph with $|E(G)|=q$. Let f : $E(G) \rightarrow N_{q}$ be any bijection and g be any constant map from $E(G) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$. Obviously, f and g will determine a D_{4}-magic labeling of G. This completes the proof of the theorem.

Corolary 2.2. For any $n \geq 3$, the cycle graph C_{n} is D_{4}-magic.
Corolary 2.3. For any $n \geq 2$, the complete graph K_{n} is D_{4}-magic.
Corolary 2.4. The Peterson graph is D_{4}-magic.
Theorem 2.3. The star graph $K_{1, n}, n \geq 2$ is D_{4}-magic iff n is odd.
Proof. Let $G=K_{1, n}$. Suppose that n is odd. Let $f: E(G) \rightarrow N_{n+1}$ be a bijection. Define $g: E(G) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ by $g(e)=\mu_{1}$. Then clearly it is $D_{4^{-}}$ magic with magic constant μ_{1}.
Conversely, suppose $K_{1, n}$ is D_{4}-magic with magic constant, say 'a'. So every pendent edge of $K_{1, n}$ should be mapped to a under g. Let u be the vertex of $K_{1, n}$ with degree n. Then

$$
\ell^{*}(u)=\underbrace{a a \cdots a}_{n \text { times }}=a .
$$

This implies that $a^{n-1}=\rho_{0}$. If n is odd, the equation $a^{n-1}=\rho_{0}$ has five non trivial solutions in D_{4} viz. $\mu_{1}, \mu_{2}, \delta_{1}, \delta_{2}$ and ρ_{2}. On the other hand, if n is even there are no element in D_{4} such that $a^{n-1}=\rho_{0}$. This completes the proof.

A bistar graph B_{n} is the graph obtained by connecting the apex vertices of two copies of star $K_{1, n}$ by a bridge.

Theorem 2.4. The bistar graph $B_{n}, n>1$ is D_{4}-magic when $n \not \equiv 1(\bmod 4)$.

Proof. First, observe that there are $2 n$ pendant edges and one bridge in B_{n}. Here we consider the following cases:

Case (i): n is even $(n \equiv 2(\bmod 4)$ or $n \equiv 0(\bmod 4))$.
If n is even, define $g: E\left(B_{n}\right) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ by $g(e)=\mu_{1}, \forall e \in E\left(B_{n}\right)$.
Let f be any bijective map from $E\left(B_{n}\right) \rightarrow N_{2 n+1}$. Then obviously, B_{n} is D_{4}-magic with magic constant μ_{1}.

Case (ii): $n \equiv 3(\bmod 4)$.
In this case we define $g: E\left(B_{n}\right) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ by
$g(e)=\left\{\begin{array}{l}\rho_{1}, \text { if e is a pendant edge }, \\ \rho_{2}, \text { if e is the bridge. }\end{array}\right.$
Let f be any bijective map from $E\left(B_{n}\right)$ to $N_{2 n+1}$. Then obviously B_{n} is D_{4}-magic with the magic constant ρ_{1}.

Case (iii): $n \equiv 1(\bmod 4)$.
Suppose that $n \equiv 1(\bmod 4)$. Let k_{1} and k_{2} be the apex vertices of the bistar graph. Assume that B_{n} is D_{4}-magic with magic constant μ_{1}. Therefore, $g(e)=\mu_{1}$ for all pendant edges e. Assume that $g\left(k_{1} k_{2}\right)=a$, where $a \in$ $D_{4} \backslash\left\{\rho_{0}\right\}$. Without loss of generality assume that $f\left(k_{1} k_{2}\right)>f(b), \forall b \in$ $E(G)$, where b denotes the pendant edge with one end point k_{1}. Then

$$
\ell^{*}\left(k_{1}\right)=\underbrace{\mu_{1} \mu_{1} \ldots \mu_{1}}_{(n \text { times })} a=\mu_{1} .
$$

The above equation tells us that $a=\rho_{0}$, which is a contradiction. This contradiction shows that B_{n} is not D_{4}-magic with magic constant μ_{1}. In a similar manner, we can prove that B_{n} is not D_{4}-magic with magic constants $\mu_{2}, \rho_{1}, \rho_{2}, \rho_{3}, \delta_{1}$ or δ_{2}. Thus the bistar graph B_{n} is not D_{4}-magic when $n \equiv 1(\bmod 4)$. This completes the proof of the theorem.
Theorem 2.5. The complete bipartite graph $K_{m, n}$ is D_{4}-magic, $m, n>1$.
Proof. Let $G=K_{m, n}$. Suppose $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, and $V=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. be the two partite sets of $K_{m, n}$. If m and n are both even or odd then the theorem is obvious by taking any constant map $g: E(G) \rightarrow\left\{\rho_{2}, \mu_{1}, \mu_{2}, \delta_{1}, \delta_{2}\right\}$.
Case (i): $n \equiv 0(\bmod 2)$ and $m \equiv 1(\bmod 4)$.
Let $U=\left\{u_{1}, u_{2}, \ldots, u_{2 l}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{4 r+1}\right\}$ where $n=2 l$, $m=4 r+1$, and $l, r \in \mathbb{N}$. For $1 \leq i \leq n$ and $1 \leq j \leq m$ define

$$
\begin{aligned}
g\left(u_{i} v_{5 k+1}\right) & =\mu_{1}, \text { where } k<m, k=0,1,2,3, \ldots \\
g\left(u_{i} v_{5 k+2}\right) & =\mu_{2}, k<m, k=0,1,2,3, \ldots \\
g\left(u_{i} v_{j}\right) & =\rho_{2}, j \neq 5 k+1,5 k+2 \text { where } k=0,1,2, \ldots \\
f\left(u_{i} v_{j}\right) & =(i-1) m+j, 1 \leq i \leq n, 1 \leq j \leq m .
\end{aligned}
$$

C. Anusha and V. Anil Kumar

The maps f and g will determine a D_{4}-magic labeling for $K_{m, n}$ with magic constant ρ_{0}.

Case $(\mathbf{i i}): n \equiv 0(\bmod 2)$ and $m \equiv 3(\bmod 4)$. Define g as follows:

$$
\begin{aligned}
& g\left(u_{i} v_{j}\right)=\left\{\begin{array}{ll}
\rho_{1}, \text { if } i \text { is odd } 1 \leq j<m, \\
\rho_{3}, & \text { if } i \text { is even } 1 \leq j<m,
\end{array}\right. \text { and } \\
& g\left(u_{i} v_{m}\right)=\rho_{2}, \forall i, 1 \leq i \leq n,
\end{aligned}
$$

and let f be any bijection from $E(G)$ to $\{1,2, \ldots, m n\}$. Then clearly f and g will determine a D_{4}-magic labeling of $K_{m, n}$ with magic constant ρ_{0}.

This completes the proof of the theorem.

3 Cycle Generated Graphs

In this section, we consider certain graphs which are constructed from cycles.
A wheel W_{n} of order $n+1$, sometimes simply called an n wheel is a graph that contains a cycle of order n and for which every graph vertex in the cycle is connected to one other graph vertex (which is known as the hub). The edges of a wheel which include the hub are called spokes. The wheel W_{n} can be defined as the graph join $K_{1}+C_{n}$, where K_{1} is the singleton graph and C_{n} is the cycle graph.

Theorem 3.1. If $n \geq 3$, the wheel W_{n} is D_{4}-magic.
Proof. Let the vertices of C_{n} be $u_{1}, u_{2}, \ldots, u_{n}$ such that $u_{i} u_{i+1} \in E\left(C_{n}\right), i=$ $1,2, \ldots, n$ and $u_{n+1}=u_{1}$. Denote the vertex of K_{1} by k. Now we consider the following cases:

Case (i): n is odd.
If n is odd then every vertex of W_{n} is of odd degree. Thus we can take g : $E\left(W_{n}\right) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ as any constant map from $E\left(W_{n}\right)$ to $\left\{\rho_{2}, \mu_{1}, \mu_{2}, \delta_{1}, \delta_{2}\right\}$.
Since g is constant we can take f as any bijection from $E\left(W_{n}\right)$ to $N_{2 n}$.
Clearly this f and g will constitute a D_{4}-magic labeling for W_{n}.
Case (ii): n is even.
Suppose n is even define $f: E\left(W_{n}\right) \rightarrow N_{2 n}$ as

$$
\begin{aligned}
f\left(k u_{i}\right) & =i, i=1,2, \ldots, n, \\
f\left(u_{i} u_{i+1}\right) & =n+i, 1 \leq i \leq n-1, \\
f\left(u_{1} u_{n}\right) & =2 n
\end{aligned}
$$

D_{4} magic graphs

Now we can define $g: E\left(W_{n}\right) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ by labeling each spokes by μ_{1} and all the outer edges by μ_{2} and ρ_{2} alternatively. Then W_{n} becomes D_{4}-magic with magic constant ρ_{0}.

This completes the proof of the theorem.
The helm H_{n} is a graph obtained from a wheel W_{n} by attaching a pendant edge at each vertex of the n cycle.

Theorem 3.2. The Helm graph H_{n} is D_{4}-magic.
Proof. Let $\left\{k, u_{i}, v_{i}: i=1,2, \ldots, n\right\}$ be the vertex set of H_{n}, where k be the central vertex, $u_{1}, u_{2}, \ldots, u_{n}$ are the vertices of the cycle, $v_{1}, v_{2}, \ldots, v_{n}$ are the pendant vertices adjacent to $u_{1}, u_{2}, \ldots, u_{n}$. The edge set of H_{n} is $E\left(H_{n}\right)=$ $\left\{u_{i} u_{i+1}, k u_{i}, u_{i} v_{i}: i=1,2, \ldots, n, u_{n+1}=u_{1}\right\}$. Now consider the following two cases:

Case(\mathbf{i}): n is odd.
Suppose that n is odd. Define f and g as follows: Let $g: E(G) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ be defined as $g\left(k u_{i}\right)=\rho_{2}, 1 \leq i \leq n, g\left(u_{j} u_{j+1}\right)=\rho_{1}, 1 \leq j \leq n-$ $1, g\left(u_{1} u_{n}\right)=\rho_{1}, g\left(u_{k} v_{k}\right)=\rho_{2}, 1 \leq k \leq n$. Now let $f: E(G) \rightarrow N_{2 n+1}$ be any bijection. Then clearly f and g will give a D_{4}-magic labeling of H_{n}, where n is odd.

Case(ii): n is even.
Let f be defined as above and define $g: E(G) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ by

$$
\begin{aligned}
g\left(u_{i} v_{i}\right) & =\rho_{2}, 1 \leq i \leq n, g\left(v_{1} v_{n}\right)=\rho_{1} \\
g\left(k u_{j}\right) & =\left\{\begin{array}{l}
\rho_{2}, \text { if } 1 \leq j \leq n-2, \\
\rho_{1}, \\
\text { if } j=n-1, n .
\end{array}\right. \\
g\left(u_{k} u_{k+1}\right) & =\left\{\begin{array}{l}
\rho_{1}, \text { if } 1 \leq k \leq n-2, \\
\rho_{2}, \\
\text { if } k=n-1 .
\end{array}\right.
\end{aligned}
$$

It follows that $l^{*}(u)=\rho_{2}, \forall u \in V(G)$. Hence H_{n} is D_{4}-magic when n is even.

This completes the proof of the theorem.
The web graph $W(2, n)$ is a graph obtained joining the pendant points of a helm to form a cycle and adding a single pendant edge to each vertex of this outer graph.

Theorem 3.3. The web graph $W(2, n), n \geq 3$ is D_{4}-magic.

C. Anusha and V. Anil Kumar

Proof. Let $\left\{k, u_{i}, v_{i}, w_{i}: i=1,2,3, \ldots, n\right\}$ be the vertex set of $W(2, n)$, where k be the central vertex, $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ are the vertices of inner cycle, $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the vertices of outer cycle and $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$ are the pendant vertices adjacent to $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ of $W(2, n)$. Let $E(W(2, n))=$ $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} v_{i}, v_{i} w_{i}: i=1,2, \ldots, n\right.$ and $\left.u_{n+1}=u_{1}, v_{n+1}=v_{1}\right\}$. We define a D_{4}-magic labeling for $W(2, n)$ with magic constant ρ_{2} as follows:

Case (i): n is odd.
Let $f: E(G) \rightarrow N_{3 n+1}$ be any bijection.
Define $g: E(G) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ as

$$
\begin{aligned}
g\left(k u_{i}\right) & =\rho_{2}=g\left(u_{i} v_{i}\right)=g\left(v_{i} w_{i}\right), 1 \leq i \leq n, \\
g\left(u_{i} u_{i+1}\right) & =\rho_{1}=g\left(v_{i} v_{i+1}\right), 1 \leq i \leq n-1, \\
g\left(u_{1} u_{n}\right) & =\rho_{1}=g\left(v_{1} v_{n}\right) .
\end{aligned}
$$

Case (ii): n is even.
Let $f: E(G) \rightarrow N_{3 n+1}$ be any bijection.
Define $g: E(G) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ as
$g\left(k u_{i}\right)=\rho_{2}, 1 \leq i<n-1, g\left(k u_{n}\right)=g\left(k u_{n-1}\right)=\rho_{1}, g\left(v_{i} v_{i+1}\right)=$ $\rho_{1}=g\left(u_{i} u_{i+1}\right)=\rho_{1}, 1 \leq i \leq n-1, g\left(v_{i} w_{i}\right)=\rho_{2}=g\left(u_{i} v_{i}\right), 1 \leq i \leq$ $n, g\left(v_{1} v_{n}\right)=\rho_{1}, g\left(u_{1} u_{n}\right)=\rho_{2}$.

This completes the proof of the theorem.
A shell graph $S_{n, n-3}$ of width n is a graph obtained by taking $n-3$ concurrent chords in a cycle C_{n} of n vertices. The vertex at which all chords are concurrent is called is called the apex. The two vertices adjacent to the apex have degree 2 , apex has degree $n-1$ and all other vertices have degree 3 .

Theorem 3.4. Shell graphs $S_{n, n-3}$ are D_{4}-magic.
Proof. Let us denote the vertices of the shell graph $S_{n, n-3}$ by $u_{1}, u_{2}, \ldots, u_{n}$ such that u_{i} is adjacent to u_{i+1}, where $i=1,2, \ldots, n$ and $u_{n+1}=u_{1}$. Without loss of generality let the apex be u_{1}. Now consider the following cases:

Case (i): n is even.
We will define the map $f: E\left(S_{n, n-3}\right) \rightarrow N_{2 n-3}$ as

$$
\begin{aligned}
f\left(u_{i} u_{i+1}\right) & =i, 1 \leq i \leq n-1, \\
f\left(u_{n} u_{1}\right) & =n, \\
f\left(u_{1} u_{j}\right) & =n+(j-2), 3 \leq j \leq n-1
\end{aligned}
$$

and we define $g: E\left(S_{n, n-3}\right) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ as

$$
\begin{aligned}
g\left(u_{1} u_{2}\right) & =g\left(u_{n} u_{1}\right)=\rho_{2}, \\
g\left(u_{1} u_{i}\right) & =\mu_{1}, 3 \leq i \leq n-1, \\
g\left(u_{i} u_{i+1}\right) & =\mu_{2}, 2 \leq i \leq n-1 .
\end{aligned}
$$

Clearly f and g define a D_{4}-magic labeling with magic constant μ_{1}.
Case (ii): n is odd.
Define f as

$$
\begin{aligned}
f\left(u_{i} u_{i+1}\right) & =i, 1 \leq i \leq n-1, \\
f\left(u_{1} u_{n}\right) & =n, \\
f\left(u_{1} u_{j}\right) & =n+(j-2), 3 \leq j \leq n-1
\end{aligned}
$$

and define g as

$$
\begin{aligned}
g\left(u_{1} u_{2}\right) & =g\left(u_{1} u_{n}\right)=\rho_{2}, \\
g\left(u_{1} u_{j}\right) & =\mu_{1}, 3 \leq j \leq n-1, \\
g\left(u_{i} u_{i+1}\right) & =\left\{\begin{array}{l}
\rho_{2}, \text { if } i \text { is even, } \\
\mu_{2}, \text { if } i \text { is odd, } 1<i \leq n-1 .
\end{array}\right.
\end{aligned}
$$

Obviously the functions f and g define a D_{4}-magic labeling of $S_{n, n-3}$ with magic constant ρ_{0}.

This completes the proof of the theorem.
When k copies of C_{n} share a common edge it will form the n-gon book of k pages and is denoted by $B(n, k)$.
Theorem 3.5. The graph n-gon book of k pages $B(n, k)$ is D_{4}-magic.
Proof. Let G be the graph $B(n, k)$. Denote the vertices of common edge by k_{1} and k_{n} and the edges of $i^{\text {th }}$ page other than k_{1} and k_{n} by $u_{i 2}, u_{i 3}, \ldots, u_{i n-1}$ such that $u_{i 2}$ is adjacent to k_{1} and $u_{i n-1}$ adjacent to k_{n} and $u_{i j}$ adjacent to $u_{i j+1}$ for all $2 \leq j<n-1$. Consider the following cases:

Case (i): k is even.
Define $g: E(G) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ as

$$
\begin{aligned}
g\left(k_{1} k_{n}\right) & =\rho_{2}, \\
g\left(u_{1 j} u_{1 j+1}\right) & =\mu_{1}, 2 \leq j \leq n-2, \\
g\left(u_{1 n-1} k_{n}\right) & =\mu_{1}=g\left(k_{1} u_{12}\right), \\
g\left(u_{i j} u_{i j+1}\right) & =\mu_{2}, 2 \leq i \leq k, 2 \leq j \leq n-1, \\
g\left(k_{1} u_{l 2}\right) & =g\left(u_{l n-1}\right)=\mu_{2}, 2 \leq l \leq k .
\end{aligned}
$$

C. Anusha and V. Anil Kumar

Now define f as

$$
\begin{aligned}
f\left(k_{1} k_{n}\right) & =1, f\left(k_{1} u_{12}\right)=2, f\left(u_{1 n-1} k_{n}\right)=n, \\
f\left(u_{1 j} u_{1 j+1}\right) & =j+1, \forall 2 \leq j \leq n-2, \\
f\left(k_{1} u_{i 2}\right) & =n+(i-2)(n-1)+1, i \geq 2, \\
f\left(u_{i j} u_{i j+1}\right) & =n+(i-2)(n-1)+j, 2 \leq j \leq n-2,2 \leq i \leq k, \\
f\left(u_{i(n-1)} k_{n}\right) & =n+(i-2)(n-1)+(n-1), 2 \leq i \leq k .
\end{aligned}
$$

The functions f and g determine a D_{4}-magic labeling with magic constant ρ_{0}.

Case (ii): k is odd.
Here define g as $g(e)=\rho_{2}, \forall e \in E(G)$ then g together with any bijection $f: E(G) \rightarrow N_{k n-1}$ will define a D_{4}-magic labeling of $B(n, k)$ with magic constant ρ_{0}.

This completes the proof of the theorem.
Note that, for any $n \geq 3$ the path graph of order n is not D_{4}-magic.

4 Path Generated Graphs

In this section we will consider some graphs which are constructed from Paths. We start with the Splitting graph of Path.

A splitting graph $S(G)$ of a graph G is the graph obtained from G by adding to G a new vertex z^{\prime} for each vertex z of G and joining z^{\prime} to the neighbors of z in G.

Theorem 4.1. Splitting graph of the path graph $P_{n}, n \geq 3$ is D_{4}-magic.
Proof. Let P_{n} be a path graph of order n, where $n \geq 3$. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of P_{n}, where $u_{i} u_{i+1} \in E\left(P_{n}\right), i=1,2, \ldots, n-1$. There are $2 n$ vertices and $3 n-3$ edges in $S\left(P_{n}\right)$. Let u_{n+i} be the vertex corresponding to the $i^{\text {th }}$ vertex in $S\left(P_{n}\right)$. Observe that there are two pendant edges in $S\left(P_{n}\right)$, one with end points u_{2} and u_{n+1} and the other with end points u_{n-1} and $u_{2 n}$.

Case (i): $n=3$.
In this case, define $f: E\left(S\left(P_{3}\right)\right) \rightarrow N_{6}$ as
$f\left(u_{1} u_{2}\right)=1, f\left(u_{2} u_{3}\right)=3, f\left(u_{3} u_{5}\right)=2, f\left(u_{1} u_{5}\right)=4, f\left(u_{2} u_{4}\right)=$ $5, f\left(u_{2} u_{6}\right)=6$. Now define $g: E(G) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ as $g\left(u_{1} u_{2}\right)=g\left(u_{3} u_{5}\right)=\rho_{1}, g\left(u_{2} u_{3}\right)=g\left(u_{1} u_{5}\right)=\delta_{2}, g\left(u_{2} u_{4}\right)=g\left(u_{2} u_{6}\right)=$ μ_{1}.

Case (ii): $n>3$.
In this case, define f and g as follows:

$$
\begin{aligned}
f\left(u_{i} u_{i+1}\right) & =i, 1 \leq i \leq n-1, \\
f\left(u_{i} u_{n+(i-1)}\right) & =n+(i-2), 2 \leq i \leq n, \\
f\left(u_{i} u_{n+(i+1)}\right) & =(2 n-2)+i, 1 \leq i \leq n-1 \text { and } \\
g\left(u_{1} u_{2}\right) & =\rho_{2}, g\left(u_{n-1} u_{n}\right)=\mu_{2}, \\
g\left(u_{2} u_{n+1}\right) & =g\left(u_{n-1} u_{2 n}\right)=\mu_{1}, \\
g\left(u_{i} u_{i+1}\right) & =\mu_{1}, 2 \leq i<n-1, \\
g\left(u_{i} u_{n+(i-1)}\right) & =\rho_{2}, 3 \leq i \leq n, \\
g\left(u_{i} u_{n+(i+1)}\right) & =\mu_{2}, 1 \leq i \leq n-2 .
\end{aligned}
$$

In all the above cases, we can prove that the functions f and g defines a D_{4}-magic labeling of $S\left(P_{n}\right)$ with magic constant μ_{1}.

This completes the proof of the theorem.
The middle graph of a connected graph G denoted by $M(G)$ is the graph whose vertex set is $V(G) \cup E(G)$ where two vertices are adjacent if
(i) They are adjacent edges of G or
(ii) One is a vertex of G and the other is an edge incident with it.

Theorem 4.2. Middle graph of the path graph P_{n} is D_{4}-magic for $n \geq 3$.
Proof. Let $M\left(P_{n}\right)$ be the middle graph of the path P_{n}. Denote the vertices of P_{n} by $u_{1}, u_{2}, \ldots, u_{n}$ and edges by $e_{1}, e_{2}, \ldots, e_{n-1}$ where e_{i} incident with u_{i} and u_{i+1}. There are $2 n-1$ vertices and $3 n-4$ edges in $M\left(P_{n}\right)$. Consider the following cases:

Case(i): $n=3$.
Define $f: E\left(M\left(P_{3}\right)\right) \rightarrow N_{3 n-4}$ as $f\left(e_{1} u_{1}\right)=1, f\left(e_{1} u_{2}\right)=2, f\left(e_{1} e_{2}\right)=$ $3, f\left(e_{2} u_{2}\right)=4$ and $f\left(e_{2} u_{3}\right)=5$ and define $g: E\left(M\left(P_{3}\right)\right) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ as $g\left(e_{1} u_{1}\right)=\rho_{2}=g\left(e_{2} u_{3}\right), g\left(e_{1} u_{2}\right)=\rho_{1}=g\left(e_{2} u_{2}\right), \quad g\left(e_{1} e_{2}\right)=\rho_{3}$. Then clearly the middle graph of the path P_{3} is D_{4}-magic with magic constant ρ_{2}.

Case(ii): $n>3$.
Define $f: E\left(M\left(P_{n}\right)\right) \rightarrow N_{3 n-4}$ as follows:
For $1 \leq i \leq n-2,1 \leq j \leq n, f\left(e_{i} u_{j}\right)=2(i-1)+j$ and $f\left(e_{i} e_{i+1}\right)=3 i$.

C. Anusha and V. Anil Kumar

Now define $g: E\left(M\left(P_{n}\right)\right) \rightarrow D_{4} \backslash\left\{\rho_{0}\right.$ by

$$
\begin{aligned}
g\left(e_{1} u_{1}\right) & =\rho_{2}=g\left(e_{n-1} u_{n}\right), \\
g\left(e_{1} u_{2}\right) & =\mu_{2}, g\left(e_{2} u_{2}\right)=\mu_{1}, g\left(e_{2} e_{3}\right)=\rho_{3} \\
g\left(e_{2} u_{3}\right) & =\rho_{1}=g\left(e_{3} u_{3}\right), \\
g\left(e_{i} e_{i+1}\right) & =\mu_{2}, \text { where } i \neq 2 \text { and } 1 \leq i \leq n-1, \\
g\left(e_{i} u_{j}\right) & =\left\{\begin{array}{l}
\mu_{1}, \text { if } j=i+1 \text { and } 3 \leq i<n-1, \\
\mu_{2},
\end{array} \text { if } i=j \text { and } 4 \leq i \leq n-1 .\right.
\end{aligned}
$$

The above functions f and g will define a D_{4}-magic labeling of $M\left(P_{n}\right)$ with magic constant ρ_{2}.

This completes the proof of the theorem.
A triangular snake T_{n} is obtained from the path P_{n} by replacing each edge of the path by a triangle C_{3}.

Theorem 4.3. The Triangular snake T_{n} is D_{4}-magic.
Proof. Note that every vertex of T_{n} has even degree . So the proof is indisputable from Theorem 2.1.

The alternate triangular snake $A\left(T_{n}\right)$ is obtained from the path $u_{1}, u_{2}, \ldots, u_{n}$ by joining $u_{i} u_{i+1}$ (alternatively) to a new vertex v_{i}.

Theorem 4.4. The alternate triangular graph $A\left(T_{n}\right)$ is D_{4}-magic.
Proof. Let us denote the vertices of the path P_{n} be $u_{1}, u_{2}, \ldots, u_{n}$ and the vertex which join u_{i} and u_{i+1} be denoted by v_{i}. Now consider the following cases:

Case (i): n is even and triangle starts from u_{1}.
Suppose that n is even and the triangle starts from the first vertex u_{i}, then there are $n+\frac{n}{2}$ vertices and $2 n-1$ edges.
Suppose $n=2$ then $A\left(T_{n}\right)$ is C_{3} itself. So there is nothing to prove.
Suppose $n=4$ then take f be any bijection from $E\left(A\left(T_{n}\right)\right)$ to N_{7} and define $g: E\left(A\left(T_{n}\right)\right) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ by
$g\left(u_{1} v_{1}\right)=g\left(u_{4} v_{3}\right)=\rho_{1}, g\left(u_{2} u_{3}\right)=\rho_{2}, g\left(u_{2} v_{1}\right)=g\left(u_{3} v_{3}\right)=g\left(u_{1} u_{2}\right)=$ $g\left(u_{3} u_{4}\right)=\rho_{3}$. Then $A\left(T_{4}\right)$ becomes D_{4}-magic with magic constant ρ_{0}.
Suppose $n>4$, then let $f: E\left(A\left(T_{n}\right)\right) \rightarrow N_{2 n-1}$ be any bijection and define

$$
\begin{aligned}
& g: E\left(A\left(T_{n}\right)\right) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\} \text { as } \\
& g\left(u_{1} u_{2}\right)=g\left(u_{n-1} u_{n}\right)=g\left(u_{2} v_{1}\right)=g\left(u_{n-1} v_{n-1}\right)=\rho_{3}, \\
& g\left(u_{1} v_{1}\right)=g\left(u_{n-1} v_{n-1}\right)=\rho_{1} \text {. For } 2 \leq i<n-1 \text {, define } \\
& g\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{l}
\rho_{2}, \text { if } i \text { is even, } \\
\mu_{2}, \text { if } i \text { is odd } .
\end{array}\right. \\
& g\left(u_{2 k+1} v_{2 k+1}\right)=g\left(u_{2 k+2} v_{2 k+1}\right)=\mu_{1}, k=1,2, \ldots, \frac{n-4}{2}
\end{aligned}
$$

Obviously the functions f and g will constitute a D_{4}-magic labeling for $A\left(T_{n}\right)$ with $l^{*}(u)=\rho_{0}, \forall u \in V\left(A\left(T_{n}\right)\right)$.

Case (ii): n is even and the triangle starts from the second vertex u_{2}.
We can define a magic labeling for $A\left(T_{n}\right)$, where n is even and cycle starts from u_{2} as follows:
Let f be any bijection as above and define g as

$$
\begin{aligned}
& g\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{l}
\rho_{2}, \text { if } i \text { is odd, } \\
\rho_{3}, \text { if } i \text { is even, },
\end{array}, 1 \leq i \leq n-1,\right. \\
& g\left(u_{2 k} v_{2 k}\right)=g\left(u_{2 k+1} v_{2 k}\right)=\rho_{1}, k=1,2,3, \ldots, \frac{n-2}{2} .
\end{aligned}
$$

Clearly l^{*} is a constant map, i.e., $l^{*}(u)=\rho_{2}, \forall u \in V\left(A\left(T_{n}\right)\right)$.
Case (iii): n is odd and the triangle starts from the first vertex.
Suppose $n=3$ and the triangle starts from the first vertex u_{1}.
Let $f: E\left(A\left(T_{n}\right)\right) \rightarrow N_{4}$ be any bijection.
Now define $g: E\left(A\left(T_{n}\right)\right) \rightarrow D_{4} \backslash\left\{\rho_{0}\right\}$ by
$g\left(u_{1} u_{2}\right)=g\left(u_{2} v_{1}\right)=\delta_{2}, g\left(u_{1} v_{1}\right)=\delta_{1}, g\left(u_{2} u_{3}\right)=\rho_{2}$. Using these maps we can show that the graph is D_{4}-magic with magic constant ρ_{2}.
When n is odd and $n>3$, there are $n+\frac{(n-1)}{2}$ vertices and $2(n-1)$ edges in $A\left(T_{n}\right)$. Suppose that $n>3, n$ is odd and the triangle of $A\left(T_{n}\right)$ starts from the first vertex u_{1}. Here we take f as any bijection and $g: E\left(A\left(T_{n}\right)\right) \rightarrow$ $D_{4} \backslash\left\{\rho_{0}\right\}$ be defined as follows:

$$
\begin{aligned}
g\left(u_{1} u_{2}\right) & =g\left(u_{2} v_{1}\right)=\delta_{2}, g\left(u_{1} v_{1}\right)=\delta_{1}, \\
g\left(u_{i} u_{i+1}\right) & =\left\{\begin{array}{l}
\rho_{2}, \text { if } i \text { is even, } \\
\rho_{3}, \text { if } i \text { is odd, },
\end{array}, 1<i<n .\right. \\
g\left(u_{i} v_{i}\right) & =g\left(u_{i+1} v_{i}\right)=\rho_{1}, 1<i<n \text { and } i \text { is odd. }
\end{aligned}
$$

Then clearly $l^{*}(u)=\rho_{2}, \forall v \in V\left(A\left(T_{n}\right)\right)$

C. Anusha and V. Anil Kumar

Case (iv): n is odd and triangle starts from the second vertex.
$A\left(T_{n}\right)$ with n odd and the triangle starts from the first vertex is just the mirror image of the $A\left(T_{n}\right)$ in Case (iii). So we can define f and g similarly as in Case(iii) and obtain a D_{4}-magic labeling for $A\left(T_{n}\right)$ with magic constant ρ_{2}.

This completes the proof of the theorem.
A double triangular snake $D\left(T_{n}\right)$ consists of two triangular snakes that have a common path P_{n}.

Theorem 4.5. The double triangular graph is D_{4}-magic.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path P_{n} and let $v_{1}, v_{2}, \ldots, v_{n-1}$, $w_{1}, w_{2}, \ldots, w_{n-1}$ be the remaining vertices of $D\left(T_{n}\right)$ such that the vertex v_{i} is adjacent to u_{i} and u_{i+1}, where $1 \leq i<n$. Similarly the vertex w_{i} is adjacent to u_{i} and u_{i+1}. Without loss of generality let $v_{1}, v_{2}, \ldots, v_{n-1}$ and $w_{1}, w_{2}, \ldots, w_{n-1}$ be the vertices of upper triangles and lower triangles respectively.
Now we define a D_{4}-magic labeling for $D\left(T_{n}\right)$ as follows:
Let $f: E\left(D\left(T_{n}\right)\right) \rightarrow N_{5(n-1)}$ be any bijection and let $g: E\left(D\left(T_{n}\right)\right) \rightarrow D_{4} \backslash$ $\left\{\rho_{0}\right\}$ be defined by $g\left(u_{i} u_{i+1}\right)=\rho_{2}, g\left(u_{i} v_{i}\right)=g\left(u_{i} w_{i}\right)=\rho_{1}$, and $g\left(u_{i+1} v_{i}\right)=$ $g\left(u_{i+1} w_{i}\right)=\rho_{3}$ where $1 \leq i<n$. Thus we can see that $l^{*}(u)=\rho_{0}, \forall u \in$ $V\left(D\left(T_{n}\right)\right)$. This completes the proof.

5 Conclusions

In this paper, we introduced the concept of A-magic labeling of graphs, where A is a nonabelian group. Furthermore, we characterised graphs which are D_{4} magic.

6 Acknowledgements

The first author acknowledges the financial support from University Grants Commission, Government of India.

References

[1] Sedláček, J., 1976. On magic graphs. Mathematica slovaca, 26(4), pp.329335.

D_{4} magic graphs

[2] Fraleigh, J.B., 2003. A first course in abstract algebra. Pearson Education India.
[3] Parthasarathy, K.R., Basic Graph Theory, 1994. Tata Mc-Grawhill Publishing Company Limited.
[4] Doob, M., 1978. Characterizations of regular magic graphs. Journal of Combinatorial Theory, Series B, 25(1), pp.94-104.
[5] Doob, M., 1974. Generalizations of magic graphs. Journal of Combinatorial Theory, Series B, 17(3), pp.205-217.
[6] P. T. Vandana and V. Anil Kumar, V_{4} Magic Labelings of Wheel related graphs, British Journal of Mathematics and Computer Science, Vol.8, Issue 3,(2015).
[7] Richard, P., 1973. Stanley, Linear homogeneous Diophantine equations and magic labelings of graphs, Duke Math. J., 40, pp.607-632.
[8] Lee, S.M., Saba, F.A.R.R.O.K.H., Salehi, E. and Sun, H., 2002. On The V_{4}-Magic Graphs. Congressus Numerantium, pp.59-68.

[^0]: *Department of Mathematics, University of Calicut, Malappuram, Kerala, India 673 635.; canusha235@gmail.com.
 ${ }^{\dagger}$ Department of Mathematics, University of Calicut, Malappuram, Kerala, India 673 635.; anil@uoc.ac.in
 ${ }^{1}$ Received on March 22th, 2022. Accepted on June 12th, 2022. Published on June 30th 2022. doi: $10.23755 / \mathrm{rm} . \mathrm{v} 41 \mathrm{i} 0.738$. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

