D₄-Magic Graphs

Anusha Chappokkil* Anil Kumar Vasu[†]

Abstract

Consider the set $X = \{1, 2, 3, 4\}$ with 4 elements. A permutation of X is a function from X to itself that is both one one and on to. The permutations of X with the composition of functions as a binary operation is a nonabelian group, called the symmetric group S_4 . Now consider the collection of all permutations corresponding to the ways that two copies of a square with vertices 1, 2, 3 and 4 can be placed one covering the other with vertices on the top of vertices. This collection form a nonabelian subgroup of S_4 , called the dihedral group D_4 . In this paper, we introduce A-magic labelings of graphs, where A is a finite nonabelian group and investigate graphs that are D_4 -magic. This did not attract much attention in the literature. **Keywords**: A-magic labeling; Dihedral group D_4 ; D_4 -magic.

2020 AMS subject classifications: 05C25, 05C78.¹

^{*}Department of Mathematics, University of Calicut, Malappuram, Kerala, India 673 635.; canusha235@gmail.com.

[†]Department of Mathematics, University of Calicut, Malappuram, Kerala, India 673 635.; anil@uoc.ac.in

¹Received on March 22th, 2022. Accepted on June 12th, 2022. Published on June 30th 2022. doi: 10.23755/rm.v41i0.738. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

1 Introduction

A graph G is an ordered pair (V(G), E(G)), where V(G) is a finite nonempty set whose elements are called vertices and E(G) is a binary irreflexive and symmetric relation on V(G) whose elements are called edges. For any abelian group A, written additively, any mapping $\ell : E(G) \to A \setminus \{0\}$ is called a labeling. Given a labeling on the edge set E(G), one can introduce a vertex set labeling $\ell^+ : V(G) \to A$ as follows:

$$\ell^+(v) = \sum_{uv \in E(G)} l(uv)$$

A graph G is said to be A-magic if there is a labeling $\ell : E(G) \to A \setminus \{0\}$ such that for each vertex v, the sum of the labels of the edges incident with v are all equal to the same constant, that is, $\ell^+(v) = a$ for some fixed $a \in A$. The original concept of A-magic graph was introduced by Sedláček[1]. According to him, a graph G is A-magic if there exists an edge labeling on G such that (i) distinct edges have distinct non-negative labels; and (ii) the sum of the labels of the edges incident to a particular vertex is same for all vertices. When $A = \mathbb{Z}$, the \mathbb{Z} -magic graphs are considered in Stanley[7]. Doob [5, 4] also considered A-magic graphs where A is an abelian group. Also he determined which wheels are \mathbb{Z} -magic. Observe that several authors studied V_4 -magic graphs[8, 6]. It is natural to ask does there exist graphs which admits A-magic labeling, when A is nonabelian? In this paper, we address this question and investigate graphs that are D_4 -magic.

2 Main results

Let G = (V(G), E(G)) be a finite (p, q) graph and let (A, *) be a finite nonabelain group with identity element 1. Let $f : E(G) \to N_q = \{1, 2, ..., q\}$ and let $g : E(G) \to A \setminus \{1\}$ be two edge labelings of G such that f is bijective. Define an edge labeling $\ell : E(G) \to N_q \times A \setminus \{1\}$ by

$$l(e) := (f(e), g(e)), e \in E(G).$$

Define a relation \leq on the range of ℓ by:

$$(f(e), g(e)) \le (f(e'), g(e'))$$
 if and only if $f(e) \le f(e')$.

Then obviously the relation \leq is a partial order on the range of ℓ . Let $\{(f(e_1), g(e_1)), (f(e_2), g(e_2)), \dots, (f(e_k), g(e_k))\}$ be a chain in the range of ℓ . We define the product of elements of this chain as follows:

$$\prod_{i=1}^{k} (f(e_i), g(e_i)) := ((((g(e_1) * g(e_2)) * g(e_3)) * g(e_4)) * \dots) * g(e_k).$$

Let $u \in V$ and let $N^*(u)$ be the set of all edges incident with u. Note that the range of $\ell|_{N^*(u)}$ is a chain, say $(f(e_1), g(e_1)) \leq (f(e_2), g(e_2)) \leq \cdots \leq (f(e_n), g(e_n))$. We define,

$$\ell^*(u) = \prod_{i=1}^n (f(e_i), g(e_i)).$$
(1)

If $\ell^*(u)$ is a constant, say *a* for all $u \in V(G)$, we say that the graph *G* is *A*-magic. The map ℓ^* is called an *A*-magic labeling of *G* and the corresponding constant *a* is called the magic constant. For example, consider the cycle graph $C_4 = (uv, vw, wx, xu)$ and the permutation group D_4 . Note that the group D_4 is a non abelian group of order 8 and its elements are given by

$$\rho_{0} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \quad \mu_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix},
\rho_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, \quad \mu_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix},
\rho_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \quad \delta_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix},
\rho_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}, \quad \delta_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}.$$

Define $f : E(G) \to N_4 = \{1, 2, 3, 4\}$ as f(uv) = 1, f(wx) = 2, f(vw) = 3, f(xu) = 4 and $g : E(G) \to D_4 \setminus \{\rho_0\}$ as $g(uv) = g(wx) = \rho_1, g(vw) = g(xu) = \delta_1$. Thus

$$\ell^*(u) = (1, \rho_1)(4, \delta_1) = \rho_1 \delta_1 = \mu_2,$$

 $\ell^*(v) = (1, \rho_1)(3, \delta_1) = \rho_1 \delta_1 = \mu_2$. Similarly, $\ell^*(w) = \mu_2$ and $\ell^*(x) = \mu_2$. Thus C_4 is D_4 -magic with magic constant μ_2 .

Figure 1: D_4 -magic labeling of C_4 .

In this paper, we will consider the symmetric group D_4 and investigate graphs that are D_4 -magic.

C. Anusha and V. Anil Kumar

Theorem 2.1. Let A be a non abelian group having an element of order 2 and let G be a graph. If either the degree of the vertices of G are all even or odd. Then G is A-magic.

Proof. Let G be a (p,q) graph and A be a nonabelian group having an element of order 2. Let $a \in G$ is of order 2. Let $g : E(G) \to A \setminus \{1\}$ be the constant map g(e) = a, $\forall e \in E(G)$ and let f be any bijection from $E(G) \to N_q$. First assume that all the vertices of G are of even degree then $l^*(u) = 1$, $\forall u \in V(G)$. Similarly, if all the vertices of G are of odd degree then $l^*(u) = a$, $\forall u \in V(G)$. Hence the proof.

Corolary 2.1. All Eulerian graphs are D_4 -magic.

Theorem 2.2. Any regular graph is D_4 -magic.

Proof. Let G = (V(G), E(G)) be a regular graph with |E(G)| = q. Let $f : E(G) \to N_q$ be any bijection and g be any constant map from $E(G) \to D_4 \setminus \{\rho_0\}$. Obviously, f and g will determine a D_4 -magic labeling of G. This completes the proof of the theorem.

Corolary 2.2. For any $n \ge 3$, the cycle graph C_n is D_4 -magic.

Corolary 2.3. For any $n \ge 2$, the complete graph K_n is D_4 -magic.

Corolary 2.4. *The Peterson graph is* D_4 *-magic.*

Theorem 2.3. The star graph $K_{1,n}$, $n \ge 2$ is D_4 -magic iff n is odd.

Proof. Let $G = K_{1,n}$. Suppose that n is odd. Let $f : E(G) \to N_{n+1}$ be a bijection. Define $g : E(G) \to D_4 \setminus \{\rho_0\}$ by $g(e) = \mu_1$. Then clearly it is D_4 -magic with magic constant μ_1 .

Conversely, suppose $K_{1,n}$ is D_4 -magic with magic constant, say 'a'. So every pendent edge of $K_{1,n}$ should be mapped to a under g. Let u be the vertex of $K_{1,n}$ with degree n. Then

$$\ell^*(u) = \underbrace{aa\cdots a}_{n \text{ times}} = a.$$

This implies that $a^{n-1} = \rho_0$. If *n* is odd, the equation $a^{n-1} = \rho_0$ has five non trivial solutions in D_4 viz. $\mu_1, \mu_2, \delta_1, \delta_2$ and ρ_2 . On the other hand, if *n* is even there are no element in D_4 such that $a^{n-1} = \rho_0$. This completes the proof.

A bistar graph B_n is the graph obtained by connecting the apex vertices of two copies of star $K_{1,n}$ by a bridge.

Theorem 2.4. The bistar graph B_n , n > 1 is D_4 -magic when $n \not\equiv 1 \pmod{4}$.

Proof. First, observe that there are 2n pendant edges and one bridge in B_n . Here we consider the following cases:

Case (i): n is even $(n \equiv 2 \pmod{4} \text{ or } n \equiv 0 \pmod{4})$.

If n is even, define $g : E(B_n) \to D_4 \setminus \{\rho_0\}$ by $g(e) = \mu_1, \forall e \in E(B_n)$. Let f be any bijective map from $E(B_n) \to N_{2n+1}$. Then obviously, B_n is D_4 -magic with magic constant μ_1 .

Case (ii): $n \equiv 3 \pmod{4}$.

In this case we define $g: E(B_n) \to D_4 \setminus \{\rho_0\}$ by

 $g(e) = \begin{cases} \rho_1, \text{ if e is a pendant edge,} \\ \rho_2, \text{ if e is the bridge.} \end{cases}$

Let f be any bijective map from $E(B_n)$ to N_{2n+1} . Then obviously B_n is D_4 -magic with the magic constant ρ_1 .

Case (iii): $n \equiv 1 \pmod{4}$.

Suppose that $n \equiv 1 \pmod{4}$. Let k_1 and k_2 be the apex vertices of the bistar graph. Assume that B_n is D_4 -magic with magic constant μ_1 . Therefore, $g(e) = \mu_1$ for all pendant edges e. Assume that $g(k_1k_2) = a$, where $a \in D_4 \setminus \{\rho_0\}$. Without loss of generality assume that $f(k_1k_2) > f(b)$, $\forall b \in E(G)$, where b denotes the pendant edge with one end point k_1 . Then

$$\ell^*(k_1) = \underbrace{\mu_1 \mu_1 \dots \mu_1}_{(n \ times)} a = \mu_1.$$

The above equation tells us that $a = \rho_0$, which is a contradiction. This contradiction shows that B_n is not D_4 -magic with magic constant μ_1 . In a similar manner, we can prove that B_n is not D_4 -magic with magic constants μ_2 , ρ_1 , ρ_2 , ρ_3 , δ_1 or δ_2 . Thus the bistar graph B_n is not D_4 -magic when $n \equiv 1 \pmod{4}$. This completes the proof of the theorem.

Theorem 2.5. The complete bipartite graph $K_{m,n}$ is D_4 -magic, m, n > 1.

Proof. Let $G = K_{m,n}$. Suppose $U = \{u_1, u_2, \ldots, u_n\}$, and $V = \{v_1, v_2, \ldots, v_m\}$. be the two partite sets of $K_{m,n}$. If m and n are both even or odd then the theorem is obvious by taking any constant map $g : E(G) \to \{\rho_2, \mu_1, \mu_2, \delta_1, \delta_2\}$.

Case (i): $n \equiv 0 \pmod{2}$ and $m \equiv 1 \pmod{4}$.

Let $U = \{u_1, u_2, \dots, u_{2l}\}$ and $V = \{v_1, v_2, \dots, v_{4r+1}\}$ where n = 2l, m = 4r + 1, and $l, r \in \mathbb{N}$. For $1 \le i \le n$ and $1 \le j \le m$ define

$$g(u_i v_{5k+1}) = \mu_1, \text{ where } k < m, \ k = 0, 1, 2, 3, \dots$$

$$g(u_i v_{5k+2}) = \mu_2, k < m, \ k = 0, 1, 2, 3, \dots$$

$$g(u_i v_j) = \rho_2, j \neq 5k + 1, \ 5k + 2 \text{ where } k = 0, 1, 2, \dots$$

$$f(u_i v_j) = (i - 1)m + j, \ 1 \le i \le n, \ 1 \le j \le m.$$

The maps f and g will determine a D_4 -magic labeling for $K_{m,n}$ with magic constant ρ_0 .

Case (ii): $n \equiv 0 \pmod{2}$ and $m \equiv 3 \pmod{4}$. Define g as follows:

$$g(u_i v_j) = \begin{cases} \rho_1, & \text{if } i \text{ is odd } 1 \leq j < m, \\ \rho_3, & \text{if } i \text{ is even } 1 \leq j < m, \end{cases} \text{ and } \\ g(u_i v_m) = \rho_2, \forall i, \ 1 \leq i \leq n, \end{cases}$$

and let f be any bijection from E(G) to $\{1, 2, ..., mn\}$. Then clearly f and g will determine a D_4 -magic labeling of $K_{m,n}$ with magic constant ρ_0 .

This completes the proof of the theorem.

3 Cycle Generated Graphs

In this section, we consider certain graphs which are constructed from cycles. A wheel W_n of order n + 1, sometimes simply called an n wheel is a graph that contains a cycle of order n and for which every graph vertex in the cycle is connected to one other graph vertex (which is known as the hub). The edges of a wheel which include the hub are called spokes. The wheel W_n can be defined as the graph join $K_1 + C_n$, where K_1 is the singleton graph and C_n is the cycle graph.

Theorem 3.1. If $n \ge 3$, the wheel W_n is D_4 -magic.

Proof. Let the vertices of C_n be u_1, u_2, \ldots, u_n such that $u_i u_{i+1} \in E(C_n)$, $i = 1, 2, \ldots, n$ and $u_{n+1} = u_1$. Denote the vertex of K_1 by k. Now we consider the following cases:

Case (i): n is odd.

If n is odd then every vertex of W_n is of odd degree. Thus we can take $g : E(W_n) \to D_4 \setminus \{\rho_0\}$ as any constant map from $E(W_n)$ to $\{\rho_2, \mu_1, \mu_2, \delta_1, \delta_2\}$. Since g is constant we can take f as any bijection from $E(W_n)$ to N_{2n} . Clearly this f and g will constitute a D_4 -magic labeling for W_n .

Case (ii): n is even.

Suppose n is even define $f: E(W_n) \to N_{2n}$ as

$$f(ku_i) = i, \ i = 1, 2, \dots, n,$$

$$f(u_i u_{i+1}) = n + i, \ 1 \le i \le n - 1,$$

$$f(u_1 u_n) = 2n.$$

Now we can define $g : E(W_n) \to D_4 \setminus \{\rho_0\}$ by labeling each spokes by μ_1 and all the outer edges by μ_2 and ρ_2 alternatively. Then W_n becomes D_4 -magic with magic constant ρ_0 .

This completes the proof of the theorem.

The helm H_n is a graph obtained from a wheel W_n by attaching a pendant edge at each vertex of the *n* cycle.

Theorem 3.2. The Helm graph H_n is D_4 -magic.

Proof. Let $\{k, u_i, v_i : i = 1, 2, ..., n\}$ be the vertex set of H_n , where k be the central vertex, $u_1, u_2, ..., u_n$ are the vertices of the cycle, $v_1, v_2, ..., v_n$ are the pendant vertices adjacent to $u_1, u_2, ..., u_n$. The edge set of H_n is $E(H_n) = \{u_i u_{i+1}, ku_i, u_i v_i : i = 1, 2, ..., n, u_{n+1} = u_1\}$. Now consider the following two cases:

Case(i): n is odd.

Suppose that *n* is odd. Define *f* and *g* as follows: Let $g: E(G) \to D_4 \setminus \{\rho_0\}$ be defined as $g(ku_i) = \rho_2$, $1 \le i \le n$, $g(u_ju_{j+1}) = \rho_1$, $1 \le j \le n - 1$, $g(u_1u_n) = \rho_1$, $g(u_kv_k) = \rho_2$, $1 \le k \le n$. Now let $f: E(G) \to N_{2n+1}$ be any bijection. Then clearly *f* and *g* will give a D_4 -magic labeling of H_n , where *n* is odd.

Case(ii): *n* is even.

Let f be defined as above and define $g: E(G) \to D_4 \setminus \{\rho_0\}$ by

$$g(u_i v_i) = \rho_2, \ 1 \le i \le n, \ g(v_1 v_n) = \rho_1$$
$$g(k u_j) = \begin{cases} \rho_2, \ \text{if} \ 1 \le j \le n-2, \\ \rho_1, \ \text{if} \ j = n-1, n. \end{cases},$$
$$g(u_k u_{k+1}) = \begin{cases} \rho_1, \ \text{if} \ 1 \le k \le n-2, \\ \rho_2, \ \text{if} \ k = n-1. \end{cases}$$

It follows that $l^*(u) = \rho_2, \forall u \in V(G)$. Hence H_n is D_4 -magic when n is even.

This completes the proof of the theorem.

The web graph W(2, n) is a graph obtained joining the pendant points of a helm to form a cycle and adding a single pendant edge to each vertex of this outer graph.

Theorem 3.3. The web graph $W(2, n), n \ge 3$ is D_4 -magic.

C. Anusha and V. Anil Kumar

Proof. Let $\{k, u_i, v_i, w_i : i = 1, 2, 3, ..., n\}$ be the vertex set of W(2, n), where k be the central vertex, $u_1, u_2, u_3, ..., u_n$ are the vertices of inner cycle, $v_1, v_2, v_3, ..., v_n$ are the vertices of outer cycle and $w_1, w_2, w_3, ..., w_n$ are the pendant vertices adjacent to $v_1, v_2, v_3, ..., v_n$ of W(2, n). Let E(W(2, n)) = $\{u_i u_{i+1}, v_i v_{i+1}, u_i v_i, v_i w_i : i = 1, 2, ..., n \text{ and } u_{n+1} = u_1, v_{n+1} = v_1\}$. We define a D_4 -magic labeling for W(2, n) with magic constant ρ_2 as follows:

Case (i): n is odd.

Let $f : E(G) \to N_{3n+1}$ be any bijection. Define $g : E(G) \to D_4 \setminus \{\rho_0\}$ as

$$g(ku_i) = \rho_2 = g(u_iv_i) = g(v_iw_i), \ 1 \le i \le n,$$

$$g(u_iu_{i+1}) = \rho_1 = g(v_iv_{i+1}), \ 1 \le i \le n-1,$$

$$g(u_1u_n) = \rho_1 = g(v_1v_n).$$

Case (ii): *n* is even.

Let $f: E(G) \to N_{3n+1}$ be any bijection. Define $g: E(G) \to D_4 \setminus \{\rho_0\}$ as $g(ku_i) = \rho_2, \ 1 \le i < n-1, \ g(ku_n) = g(ku_{n-1}) = \rho_1, \ g(v_iv_{i+1}) = \rho_1 = g(u_iu_{i+1}) = \rho_1, \ 1 \le i \le n-1, \ g(v_iw_i) = \rho_2 = g(u_iv_i), \ 1 \le i \le n, \ g(v_1v_n) = \rho_1, \ g(u_1u_n) = \rho_2.$

This completes the proof of the theorem.

A shell graph $S_{n,n-3}$ of width n is a graph obtained by taking n-3 concurrent chords in a cycle C_n of n vertices. The vertex at which all chords are concurrent is called is called the apex. The two vertices adjacent to the apex have degree 2, apex has degree n-1 and all other vertices have degree 3.

Theorem 3.4. Shell graphs $S_{n,n-3}$ are D_4 -magic.

Proof. Let us denote the vertices of the shell graph $S_{n,n-3}$ by u_1, u_2, \ldots, u_n such that u_i is adjacent to u_{i+1} , where $i = 1, 2, \ldots, n$ and $u_{n+1} = u_1$. Without loss of generality let the apex be u_1 . Now consider the following cases:

Case (i): n is even.

We will define the map $f: E(S_{n,n-3}) \to N_{2n-3}$ as

$$f(u_i u_{i+1}) = i, \ 1 \le i \le n - 1,$$

$$f(u_n u_1) = n,$$

$$f(u_1 u_j) = n + (j - 2), \ 3 \le j \le n - 1$$

and we define
$$g : E(S_{n,n-3}) \to D_4 \setminus \{\rho_0\}$$
 as
 $g(u_1u_2) = g(u_nu_1) = \rho_2,$
 $g(u_1u_i) = \mu_1, 3 \le i \le n-1,$
 $g(u_iu_{i+1}) = \mu_2, \ 2 \le i \le n-1.$

Clearly f and g define a D_4 -magic labeling with magic constant μ_1 .

Case (ii): n is odd.

Define f as

$$f(u_i u_{i+1}) = i, \ 1 \le i \le n - 1,$$

$$f(u_1 u_n) = n,$$

$$f(u_1 u_j) = n + (j - 2), \ 3 \le j \le n - 1$$

and define g as

$$g(u_1u_2) = g(u_1u_n) = \rho_2,$$

$$g(u_1u_j) = \mu_1, \ 3 \le j \le n-1,$$

$$g(u_iu_{i+1}) = \begin{cases} \rho_2, \text{ if } i \text{ is even,} \\ \mu_2, \text{ if } i \text{ is odd}, 1 < i \le n-1. \end{cases}$$

Obviously the functions f and g define a D_4 -magic labeling of $S_{n,n-3}$ with magic constant ρ_0 .

This completes the proof of the theorem.

When k copies of C_n share a common edge it will form the n-gon book of k pages and is denoted by B(n, k).

Theorem 3.5. The graph n-gon book of k pages B(n, k) is D_4 -magic.

Proof. Let G be the graph B(n, k). Denote the vertices of common edge by k_1 and k_n and the edges of i^{th} page other than k_1 and k_n by $u_{i2}, u_{i3}, \ldots, u_{in-1}$ such that u_{i2} is adjacent to k_1 and u_{in-1} adjacent to k_n and u_{ij} adjacent to u_{ij+1} for all $2 \le j < n - 1$. Consider the following cases:

Case (i): k is even.

Define
$$g: E(G) \to D_4 \setminus \{\rho_0\}$$
 as
 $g(k_1k_n) = \rho_2,$
 $g(u_{1j}u_{1j+1}) = \mu_1, \ 2 \le j \le n-2,$
 $g(u_{1n-1}k_n) = \mu_1 = g(k_1u_{12}),$
 $g(u_{ij}u_{ij+1}) = \mu_2, \ 2 \le i \le k, \ 2 \le j \le n-1,$
 $g(k_1u_{l2}) = g(u_{ln-1}) = \mu_2, \ 2 \le l \le k.$

Now define f as

$$f(k_1k_n) = 1, \ f(k_1u_{12}) = 2, \ f(u_{1n-1}k_n) = n,$$

$$f(u_{1j}u_{1j+1}) = j + 1, \ \forall \ 2 \le j \le n - 2,$$

$$f(k_1u_{i2}) = n + (i - 2)(n - 1) + 1, \ i \ge 2,$$

$$f(u_{ij}u_{ij+1}) = n + (i - 2)(n - 1) + j, \ 2 \le j \le n - 2, \ 2 \le i \le k,$$

$$f(u_{i(n-1)}k_n) = n + (i - 2)(n - 1) + (n - 1), \ 2 \le i \le k.$$

The functions f and g determine a D_4 -magic labeling with magic constant ρ_0 .

Case (ii): k is odd.

Here define g as $g(e) = \rho_2$, $\forall e \in E(G)$ then g together with any bijection $f : E(G) \to N_{kn-1}$ will define a D_4 -magic labeling of B(n, k) with magic constant ρ_0 .

This completes the proof of the theorem.

Note that, for any $n \ge 3$ the path graph of order n is not D_4 -magic.

4 Path Generated Graphs

In this section we will consider some graphs which are constructed from Paths. We start with the Splitting graph of Path.

A splitting graph S(G) of a graph G is the graph obtained from G by adding to G a new vertex z' for each vertex z of G and joining z' to the neighbors of z in G.

Theorem 4.1. Splitting graph of the path graph P_n , $n \ge 3$ is D_4 -magic.

Proof. Let P_n be a path graph of order n, where $n \ge 3$. Let u_1, u_2, \ldots, u_n be the vertices of P_n , where $u_i u_{i+1} \in E(P_n), i = 1, 2, \ldots, n-1$. There are 2n vertices and 3n - 3 edges in $S(P_n)$. Let u_{n+i} be the vertex corresponding to the i^{th} vertex in $S(P_n)$. Observe that there are two pendant edges in $S(P_n)$, one with end points u_2 and u_{n+1} and the other with end points u_{n-1} and u_{2n} .

Case (i): n = 3. In this case, define $f : E(S(P_3)) \to N_6$ as $f(u_1u_2) = 1$, $f(u_2u_3) = 3$, $f(u_3u_5) = 2$, $f(u_1u_5) = 4$, $f(u_2u_4) = 5$, $f(u_2u_6) = 6$. Now define $g : E(G) \to D_4 \setminus \{\rho_0\}$ as $g(u_1u_2) = g(u_3u_5) = \rho_1$, $g(u_2u_3) = g(u_1u_5) = \delta_2$, $g(u_2u_4) = g(u_2u_6) = \mu_1$.

Case (ii): n > 3.

In this case, define f and g as follows:

$$\begin{aligned} f(u_i u_{i+1}) &= i, \ 1 \leq i \leq n-1, \\ f(u_i u_{n+(i-1)}) &= n+(i-2), \ 2 \leq i \leq n, \\ f(u_i u_{n+(i+1)}) &= (2n-2)+i, \ 1 \leq i \leq n-1 \text{ and} \\ g(u_1 u_2) &= \rho_2, \ g(u_{n-1} u_n) = \mu_2, \\ g(u_2 u_{n+1}) &= g(u_{n-1} u_{2n}) = \mu_1, \\ g(u_i u_{i+1}) &= \mu_1, \ 2 \leq i < n-1, \\ g(u_i u_{n+(i-1)}) &= \rho_2, \ 3 \leq i \leq n, \\ g(u_i u_{n+(i+1)}) &= \mu_2, \ 1 \leq i \leq n-2. \end{aligned}$$

In all the above cases, we can prove that the functions f and g defines a D_4 -magic labeling of $S(P_n)$ with magic constant μ_1 .

This completes the proof of the theorem.

The middle graph of a connected graph G denoted by M(G) is the graph whose vertex set is $V(G) \cup E(G)$ where two vertices are adjacent if

- (i) They are adjacent edges of G or
- (ii) One is a vertex of G and the other is an edge incident with it.

Theorem 4.2. Middle graph of the path graph P_n is D_4 -magic for $n \ge 3$.

Proof. Let $M(P_n)$ be the middle graph of the path P_n . Denote the vertices of P_n by u_1, u_2, \ldots, u_n and edges by $e_1, e_2, \ldots, e_{n-1}$ where e_i incident with u_i and u_{i+1} . There are 2n - 1 vertices and 3n - 4 edges in $M(P_n)$. Consider the following cases:

Case(i): n = 3.

Define $f: E(M(P_3)) \to N_{3n-4}$ as $f(e_1u_1) = 1$, $f(e_1u_2) = 2$, $f(e_1e_2) = 3$, $f(e_2u_2) = 4$ and $f(e_2u_3) = 5$ and define $g: E(M(P_3)) \to D_4 \setminus \{\rho_0\}$ as $g(e_1u_1) = \rho_2 = g(e_2u_3)$, $g(e_1u_2) = \rho_1 = g(e_2u_2)$, $g(e_1e_2) = \rho_3$. Then clearly the middle graph of the path P_3 is D_4 -magic with magic constant ρ_2 .

Case(ii):
$$n > 3$$
.

Define $f : E(M(P_n)) \to N_{3n-4}$ as follows: For $1 \le i \le n-2$, $1 \le j \le n$, $f(e_i u_j) = 2(i-1) + j$ and $f(e_i e_{i+1}) = 3i$.

C. Anusha and V. Anil Kumar

Now define $g: E(M(P_n)) \to D_4 \setminus \{\rho_0 \text{ by }$

$$\begin{split} g(e_1u_1) &= \rho_2 = g(e_{n-1}u_n),\\ g(e_1u_2) &= \mu_2, \; g(e_2u_2) = \mu_1, \; g(e_2e_3) = \rho_3\\ g(e_2u_3) &= \rho_1 = g(e_3u_3),\\ g(e_ie_{i+1}) &= \mu_2, \; \text{where} \; i \neq 2 \; \text{and} \; 1 \leq i \leq n-1,\\ g(e_iu_j) &= \begin{cases} \mu_1, \; if \; j = i+1 \; \text{and} \; 3 \leq i < n-1,\\ \mu_2, \; if \; i = j \; \text{and} \; 4 \leq i \leq n-1. \end{cases} \end{split}$$

The above functions f and g will define a D_4 -magic labeling of $M(P_n)$ with magic constant ρ_2 .

This completes the proof of the theorem.

A triangular snake T_n is obtained from the path P_n by replacing each edge of the path by a triangle C_3 .

Theorem 4.3. The Triangular snake T_n is D_4 -magic.

Proof. Note that every vertex of T_n has even degree. So the proof is indisputable from Theorem 2.1.

The alternate triangular snake $A(T_n)$ is obtained from the path u_1, u_2, \ldots, u_n by joining $u_i u_{i+1}$ (alternatively) to a new vertex v_i .

Theorem 4.4. The alternate triangular graph $A(T_n)$ is D_4 -magic.

Proof. Let us denote the vertices of the path P_n be u_1, u_2, \ldots, u_n and the vertex which join u_i and u_{i+1} be denoted by v_i . Now consider the following cases:

Case (i): n is even and triangle starts from u_1 . Suppose that n is even and the triangle starts from the first vertex u_i , then there are $n + \frac{n}{2}$ vertices and 2n - 1 edges. Suppose n = 2 then $A(T_n)$ is C_3 itself. So there is nothing to prove. Suppose n = 4 then take f be any bijection from $E(A(T_n))$ to N_7 and define $g: E(A(T_n)) \to D_4 \setminus \{\rho_0\}$ by $g(u_1v_1) = g(u_4v_3) = \rho_1, g(u_2u_3) = \rho_2, g(u_2v_1) = g(u_3v_3) = g(u_1u_2) =$ $g(u_3u_4) = \rho_3$. Then $A(T_4)$ becomes D_4 -magic with magic constant ρ_0 . Suppose n > 4, then let $f: E(A(T_n)) \to N_{2n-1}$ be any bijection and define

$$\begin{split} g: E(A(T_n)) &\to D_4 \setminus \{\rho_0\} \text{ as} \\ g(u_1u_2) &= g(u_{n-1}u_n) = g(u_2v_1) = g(u_{n-1}v_{n-1}) = \rho_3, \\ g(u_1v_1) &= g(u_{n-1}v_{n-1}) = \rho_1. \text{ For } 2 \leq i < n-1, \text{ define} \\ g(u_iu_{i+1}) &= \begin{cases} \rho_2, \text{ if } i \text{ is even}, \\ \mu_2, \text{ if } i \text{ is odd}. \end{cases} \\ g(u_{2k+1}v_{2k+1}) &= g(u_{2k+2}v_{2k+1}) = \mu_1, k = 1, 2, \dots, \frac{n-4}{2} \end{split}$$

Obviously the functions f and g will constitute a D_4 -magic labeling for $A(T_n)$ with $l^*(u) = \rho_0, \forall u \in V(A(T_n))$.

Case (ii): n is even and the triangle starts from the second vertex u_2 .

We can define a magic labeling for $A(T_n)$, where n is even and cycle starts from u_2 as follows:

Let f be any bijection as above and define g as

$$g(u_{i}u_{i+1}) = \begin{cases} \rho_{2}, \text{ if } i \text{ is odd,} \\ \rho_{3}, \text{ if } i \text{ is even,} \end{cases}, 1 \le i \le n-1, \\ g(u_{2k}v_{2k}) = g(u_{2k+1}v_{2k}) = \rho_{1}, \ k = 1, 2, 3, \dots, \frac{n-2}{2}. \end{cases}$$

Clearly l^* is a constant map, i.e., $l^*(u) = \rho_2$, $\forall u \in V(A(T_n))$.

Case (iii): *n* is odd and the triangle starts from the first vertex.

Suppose n = 3 and the triangle starts from the first vertex u_1 .

Let $f: E(A(T_n)) \to N_4$ be any bijection.

Now define $g: E(A(T_n)) \to D_4 \setminus \{\rho_0\}$ by

 $g(u_1u_2) = g(u_2v_1) = \delta_2$, $g(u_1v_1) = \delta_1$, $g(u_2u_3) = \rho_2$. Using these maps we can show that the graph is D_4 -magic with magic constant ρ_2 .

When n is odd and n > 3, there are $n + \frac{(n-1)}{2}$ vertices and 2(n-1) edges in $A(T_n)$. Suppose that n > 3, n is odd and the triangle of $A(T_n)$ starts from the first vertex u_1 . Here we take f as any bijection and $g : E(A(T_n)) \to D_4 \setminus \{\rho_0\}$ be defined as follows:

$$\begin{split} g(u_1 u_2) &= g(u_2 v_1) = \delta_2, \ g(u_1 v_1) = \delta_1, \\ g(u_i u_{i+1}) &= \begin{cases} \rho_2, \ \text{if} \ i \ \text{is even}, \\ \rho_3, \ \text{if} \ i \ \text{is odd}, \end{cases}, 1 < i < n. \\ g(u_i v_i) &= g(u_{i+1} v_i) = \rho_1, 1 < i < n \ \text{and} \ i \ \text{is odd}. \end{split}$$

Then clearly $l^*(u) = \rho_2, \forall v \in V(A(T_n))$

Case (iv): *n* is odd and triangle starts from the second vertex.

 $A(T_n)$ with n odd and the triangle starts from the first vertex is just the mirror image of the $A(T_n)$ in Case (iii). So we can define f and g similarly as in Case(iii) and obtain a D_4 -magic labeling for $A(T_n)$ with magic constant ρ_2 .

This completes the proof of the theorem.

A double triangular snake $D(T_n)$ consists of two triangular snakes that have a common path P_n .

Theorem 4.5. The double triangular graph is D_4 -magic.

Proof. Let u_1, u_2, \ldots, u_n be the vertices of the path P_n and let $v_1, v_2, \ldots, v_{n-1}$, $w_1, w_2, \ldots, w_{n-1}$ be the remaining vertices of $D(T_n)$ such that the vertex v_i is adjacent to u_i and u_{i+1} , where $1 \le i < n$. Similarly the vertex w_i is adjacent to u_i and u_{i+1} . Without loss of generality let $v_1, v_2, \ldots, v_{n-1}$ and $w_1, w_2, \ldots, w_{n-1}$ be the vertices of upper triangles and lower triangles respectively.

Now we define a D_4 -magic labeling for $D(T_n)$ as follows:

Let $f : E(D(T_n)) \to N_{5(n-1)}$ be any bijection and let $g : E(D(T_n)) \to D_4 \setminus \{\rho_0\}$ be defined by $g(u_i u_{i+1}) = \rho_2$, $g(u_i v_i) = g(u_i w_i) = \rho_1$, and $g(u_{i+1} v_i) = g(u_{i+1} w_i) = \rho_3$ where $1 \le i < n$. Thus we can see that $l^*(u) = \rho_0$, $\forall u \in V(D(T_n))$. This completes the proof.

5 Conclusions

In this paper, we introduced the concept of A-magic labeling of graphs, where A is a nonabelian group. Furthermore, we characterised graphs which are D_4 magic.

6 Acknowledgements

The first author acknowledges the financial support from University Grants Commission, Government of India.

References

 Sedláček, J., 1976. On magic graphs. Mathematica slovaca, 26(4), pp.329– 335.

- [2] Fraleigh, J.B., 2003. A first course in abstract algebra. Pearson Education India.
- [3] Parthasarathy, K.R., Basic Graph Theory, 1994. Tata Mc-Grawhill Publishing Company Limited.
- [4] Doob, M., 1978. Characterizations of regular magic graphs. Journal of Combinatorial Theory, Series B, 25(1), pp.94–104.
- [5] Doob, M., 1974. Generalizations of magic graphs. Journal of Combinatorial Theory, Series B, 17(3), pp.205–217.
- [6] P. T. Vandana and V. Anil Kumar, V_4 Magic Labelings of Wheel related graphs, British Journal of Mathematics and Computer Science, Vol.8, Issue 3,(2015).
- [7] Richard, P., 1973. Stanley, Linear homogeneous Diophantine equations and magic labelings of graphs, Duke Math. J., 40, pp.607–632.
- [8] Lee, S.M., Saba, F.A.R.R.O.K.H., Salehi, E. and Sun, H., 2002. On The V_4 -Magic Graphs. Congressus Numerantium, pp.59–68.