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Abstract 

This manuscript analyses a queueing system with Bernoulli schedule 

feedback of customers, unreliable waiting server under differentiated 

vacations. The unsatisfied customer may again join the queue with 

probability α, following the Bernoulli schedule. The stationary 

solution is obtained for the model with aid of the Probability 

Generating function technique. Some important system performance 

measures are derived and the graphical behavior of these measures 

with some parameters is analysed. Finally, to obtain the optimal 

value of service rate for the model, cost optimization is performed 

through the quadratic fit approach. 
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1. Introduction 

Queueing system with server vacations and feedback is a powerful tool and 

is successfully applied in many real-life congestion problems such as traffic 

systems, operating systems, communication systems, manufacturing and 

production lines. Queueing systems with feedback assume that unsatisfied 

customers may join the queue again to repeat their request before leaving the 

system. This concept was first introduced by Takacs [16]. Disney and Konig [4] 

analysed Bernoulli feedback queueing system. Sharma and Kumar [14] studied 

the markovian feedback queueing model with the impatient behaviour of 

customers. Later on, Kalidass and Kasthuri [6] did the pioneering work on 

M/G/1 queueing model with immediate feedback. Sunder et al. [15] analysed 

the feedback queueing model with different service stations and vacation 

policies under reneging.  

The vacation queueing model is another remarkable and unavoidable feature 

due to its widespread applications in real-life situations. The server can go on 

vacations for many reasons like insufficient workload, server breakdown and 

some secondary tasks assigned to him, etc.  The assumption of the service 

station being a hundred percent reliable is not a feasible one. The server may 

suffer a breakdown at any instant of time. Ke, J.C. [7, 8, 9] analysed different 

queueing models with an unreliable server. Later on, Ke et al. [10] performed 

pioneer work on finite buffer M/M/C queueing system with server breakdown. 

Kim et al. [11] analysed M/G/1 queueing model with a working breakdown. 

Levy and Yechiali [12] first analysed vacation queuing systems. Later on Doshi 

[3], Tian and Zhang [17] performed a comprehensive survey on vacation 

queueing models. Researchers analysed queues with different vacation 

strategies like single vacations, multiple vacations and working vacations. Servi 

and Finn [13] first introduced the concept of working vacation in which the 

server remains engaged in some auxiliary works and thereby provides service at 

a relatively slower rate. Banik et al. [2] analysed multiple working vacation 

queueing systems. A new class of differentiated vacations is introduced by Ibe 

and Isijola [5]. Zhang and Zhou [20] studied queueing model with m kinds of 

differentiated working vacations. The transient solution of a differentiated 

vacation queueing system was carried out by Vijyashree and Janani [19]. 

Vyshna Unni and Rose Mary [18] considered multi-server queues with 

differentiated vacations. Amar Aissani et al. [1] studied differentiated vacation 

queues under general service times.  
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In this paper, a queue with waiting and unreliable servers under differentiated 

vacation policy and Bernoulli feedback of customers with different arrival rates 

in various states is considered. 

 

2.  Mathematical description of model 

The queueing model is analysed under the following assumptions: 

1. The customers arrive in accordance with the Poisson process. The 

customers are served on an FCFS basis by the server, the service time is 

assumed to be exponentially distributed with a mean of 1/μ.  

2. On getting the service, the customers may decide to leave the queue with 

probability β or unsatisfied customers may re-join the queue for another 

service with complementary probability 1-β (=α). 

3. When the system gets empty on serving all the customers, the server keeps 

on waiting for customers for a random period exponentially distributed with 

a mean 1/ w and leaves for vacation only if none arrives in that duration. 

On returning from type I vacation, if it finds customers waiting for the 

service, it resumes to active state otherwise it goes for type II vacation. In 

the same way, on returning from vacation II, it switches to Vacation I or 

resumes to active state depending on whether the system is empty or 

customers are waiting in the system respectively. This process continues in 

the same manner. The period of both the vacations are exponentially 

distributed but with different means 1/𝜃1 and 1/𝜃2 respectively. 

4. The server breaks down at any point of time in the active service state. The 

breakdowns occur according to Poisson distribution with parameter γ. The 

server is immediately sent for repair in such a situation. The repair time is 

also assumed to follow an exponential distribution with a mean of 1/δ. The 

customers have to wait for their service until the server gets repaired.  

5. The arrival rates of customers in two types of vacations, downstate of server 

and active state are taken to be λ1, λ2,  λ0, 𝜆3 respectively. 

 

3.  Steady state equations  

Denoting the number of customers in the system at any time t by C(t) and the 

server state at time t by S(t), we observe that {C(t), S(t)} is a continuous Markov 

chain.  
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The different possible server states are 

S(t) = {

0, 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑛 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛 𝐼      
1, 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑛 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛 𝐼𝐼    

     2, 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑛 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑡𝑎𝑡𝑒       
3, 𝑠𝑒𝑟𝑣𝑒𝑟 𝑢𝑛𝑑𝑒𝑟 𝑟𝑒𝑝𝑎𝑖𝑟    

 

Denoting the probability of n customers in the ith state of server by 𝑝𝑛 𝑖, the 

steady-state equations governing the proposed quasi birth-death model using the 

Markov process are  

(𝜆2 + 𝜃2)𝑝0 1 =  𝜃1𝑝0 0                                                                                            (1) 

(𝜆2 + 𝜃2)𝑝𝑛 1 =  𝜆2𝑝𝑛−1 1,             𝑛 ≥ 1                                                               (2) 

(𝜆3 + 𝑤)𝑝0 2 =  𝜇𝛽𝑝1 2                                                                                              (3) 

(𝜆3 + 𝜇𝛽 + 𝛾)𝑝𝑛 2 =  𝜆3𝑝𝑛−1 2 + 𝜇𝛽𝑝𝑛+1 2 + 𝛿𝑝𝑛 3 + 𝜃1𝑝𝑛 0 + 𝜃2𝑝𝑛 1 ,   

                                                                              𝑛 ≥ 1                                                (4) 

(𝜆0 + 𝛿)𝑝1 3 =  𝛾𝑝1 2                                                                                                  (5) 

(𝜆0 + 𝛿)𝑝𝑛 3 =  𝛾𝑝𝑛 2 + 𝜆0𝑝𝑛−1 3,       𝑛 ≥ 2                                                         (6) 

(𝜆1 +  𝜃1)𝑝0 0 =  𝜃2𝑝0 1 + 𝑤𝑝0 2                                                                             (7) 

(𝜆1 +  𝜃1)𝑝𝑛 0 =  𝜆1𝑝𝑛−1 0,                 𝑛 ≥ 1                                                           (8) 

Defining probability generating functions as 

𝐻𝑖(𝑧) =  ∑ 𝑝𝑛 𝑖 𝑧
𝑛

∞

𝑛=0

,                    𝑓𝑜𝑟 𝑖 = 0, 1, 2.                                                   (9) 

𝐻3(𝑧) =  ∑ 𝑝𝑛 3 𝑧
𝑛

∞

𝑛=1

                                                                                                (10) 

Multiplying system of equations (1) and (2) by appropriate powers of z and 

summing over n from 1to ∞. 

𝐻1(𝑧) =
𝜃1

(𝜆2 +  𝜃2 − 𝜆2𝑧)
𝑝0 0                                                                              (11)  

Similarly, equations (7) and (8) yield 
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𝐻0(𝑧) =
(𝜆1 +  𝜃1)

(𝜆1 +  𝜃1 − 𝜆1𝑧)
𝑝0 0                                                                               (12) 

On similar steps from equations (5) and (6) we have 

(𝜆0 + 𝛿 −  𝜆0𝑧)𝐻3(𝑧) = 𝛾𝐻2(𝑧) − 𝛾𝑝0 2 

After some rearrangement of terms, we obtain 

𝐻3(𝑧) =
𝛾(𝐻2(𝑧) − 𝑝0 2)

𝜆0(1 − 𝑧) + 𝛿
                                                                                      (13) 

Where, 

𝑝0 2 =
1

𝑤
(𝜆1 + 𝜃1 −

𝜃1𝜃2

𝜆2+𝜃2
) 𝑝0 0,                 𝑈𝑠𝑖𝑛𝑔 (7)                         (14) 

Multiplying equations (3) and (4) by an appropriate power of z and taking 

summation over n, together with the use of equations (9) and (10) we obtain 

(𝜆3 + 𝜇𝛽 + 𝛾 − 𝜆3𝑧 −
𝜇𝛽

𝑧
) 𝐻2(𝑧)

= 𝜃1𝐻0(𝑧) +  𝜃2𝐻1(𝑧) + 𝛿𝐻3(𝑧) − (𝜆1 + 2𝜃1)𝑝0 0

+ (𝜇𝛽 + 𝛾 −
𝜇𝛽

𝑧
) 𝑝0 2                                                                   (15) 

Considering equations (13) and (15) simultaneously, we obtain 

𝐻2(𝑧) =
𝜃1𝐻0(𝑧) +  𝜃2𝐻1(𝑧) − (𝜆1 + 2𝜃1)𝑝0 0 + 𝑔2(𝑧)𝑝0 2

𝑔1(𝑧)
                        (16) 

Where, 

𝑔1(𝑧) = 𝜆3(1 − 𝑧) + 𝜇𝛽 (1 −
1

𝑧
) −

𝛾𝛿

𝜆0(1 − 𝑧) + 𝛿
+ 𝛾                     (17)   

𝑔2(𝑧) = 𝜇𝛽 (1 −
1

𝑧
) −

𝛾𝛿

𝜆0(1 − 𝑧) + 𝛿
+ 𝛾                                               (18) 

Taking limits 𝑧 → 1 in equation (11) and (12) the closed-form expressions for 

P.G.F’s are 

𝐻0(1) =
(𝜆1 +  𝜃1)

𝜃1
𝑝0 0                                                                                           (19) 
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𝐻1(1) =
𝜃1

𝜃2
𝑝0 0                                                                                                         (20) 

Differentiating equation (11) and (12) and taking limits 𝑧 → 1 

𝐻0
′ (1) =

𝜆1(𝜆1 + 𝜃1)

𝜃1
2 𝑝0 0                                                                                       (21) 

𝐻1
′(1) =

𝜆2𝜃1

𝜃2
2 𝑝0 0                                                                                                    (22) 

𝐻0
′′(1) =

2𝜆1
2(𝜆1 + 𝜃1)

𝜃1
3 𝑝0 0                                                                                 (23) 

𝐻1
′′(1) =

2𝜆2
2𝜃1

𝜃2
3 𝑝0 0                                                                                               (24) 

Similarly, taking limits in equation (16) and using the L-Hospital rule  

𝐻2(1) =
(

𝜆1(𝜆1 + 𝜃1)
𝜃1

+
𝜃1𝜆2

𝜃2
) 𝑝0 0 + (𝜇𝛽 −

𝜆0𝛾
𝛿

) 𝑝0 2

𝛽𝜇 − 𝜆3 −
𝜆0𝛾

𝛿

                                 (25) 

On taking limit in equation (13), 

𝐻3(1) =
𝛾(𝐻2(1) − 𝑝0 2)

𝛿
                                                                                       (26) 

Now, differentiating 𝐻2(𝑧), taking limits 𝑧 → 1 and applying L’ Hospital rule 

twice, 

𝐻2
′ (1) =

(𝜃1𝐻0
′′(1) + 𝜃2𝐻1

′′(1) + 𝑔2
′′(1)𝑝0 2)𝑔1

′ (1)

2(𝑔1
′ (1))2

 

−
(𝜃1𝐻0

′ (1) + 𝜃2𝐻1
′(1) + 𝑔2

′ (1)𝑝0 2)𝑔1
′′(1)

2(𝑔1
′ (1))2

                       (27) 

Where, 

𝑔1
′ (1) = 𝜇𝛽 −

𝜆0𝛾

𝛿
− 𝜆3 

𝑔2
′ (1) = 𝜇𝛽 −

𝜆0𝛾

𝛿
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𝑔1
′′(1) = 𝑔2

′′(1) = −2 (𝜇𝛽 + 𝛾 (
𝜆0

𝛿
)

2

) 

Similarly, after differentiating equation (11) and taking limits 𝑧 → 1, we get 

𝐻3
′ (1) =  

𝛾(𝛿𝐻2
′ (1) + 𝜆0(𝐻2(1) − 𝑝0 2))

𝛿2
                                                          (28) 

The closed-form expressions for all the P.G.F’s are implicitly expressed in terms 

of only one probability 𝑝0 0.  

To obtain  𝑝0 0 we use the following normalization condition. 

∑ 𝐻𝑖(1)

3

𝑖=0

= 1                                                                                          (29) 

After some rearrangements of terms, we get: 

𝑝0 0 (
𝜆1 + 𝜃1

𝜃1
+

𝜃1

𝜃2
+ (

𝛾 + 𝛿

𝛿
) (𝐴 + 𝐵𝐶) −

𝛾𝐶

𝛿
) = 1                                        (30) 

Where, 

𝐴 =
𝜆1𝜃2(𝜆1 + 𝜃1) + 𝜆2𝜃1

2

𝜃1𝜃2 (𝜇𝛽 − 𝜆3 −
𝜆0𝛾

𝛿
)

 

𝐵 =
𝜇𝛽𝛿 − 𝜆0𝛾

𝛿 (𝜇𝛽 − 𝜆3 −
𝜆0𝛾

𝛿
)
 

𝐶 =
𝜆1𝜆2 + 𝜆1𝜃2 + 𝜆2𝜃1

𝑤(𝜆2 + 𝜃2)
 

𝑝0 0 = (
𝜆1 + 𝜃1

𝜃1
+

𝜃1

𝜃2
+ (

𝛾 + 𝛿

𝛿
) (𝐴 + 𝐵𝐶) −

𝛾𝐶

𝛿
)

−1

                                      (31) 

 

4. System performance measures 

Expected system length = Mean number of customers in the system 

                                       = 𝐸𝐿𝑠 

= ∑ ∑ 𝑛𝑝𝑛 𝑖

∞

𝑛=1

3

𝑖=0

 

Expected system length in breakdown state = Mean number of customers in the 

system in down-state of the server 

(repair state) 

= EL[B] 



 

 

 

 

 

Study of feedback queueing system with unreliable waiting server under multiple D.V. policy 

153 

 

= ∑ 𝑛𝑝𝑛 3

∞

𝑛=1

 

Probability of server being on vacations 𝑃𝑣 =  ∑ ∑ 𝑝𝑛 𝑖

1

𝑖=0

∞

𝑛=1
 

Probability of server in the active (normal) state 𝑃𝑤 = ∑ 𝑝𝑛 2

∞

𝑛=1

 

Probability of server being under repair 𝑃𝑟 = ∑ 𝑝𝑛 3

∞

𝑛=1

 

 

5.  Numerical results 

In this section, the sensitivity of different performance measures of the queueing 

model towards the system parameters is analysed and the observed numerical 

results are graphically represented with aid of MATLAB software. For the 

purpose, the parameters are fixed as 𝜆3 = 2.4, , 𝜆1= 2, 𝜆0= 1.2,  μ = 7, w = 0.3, 

γ = 0.7, 𝜆2 = 2.2, δ = 0.6, β = 0.8,  𝜃1= 0.6, 𝜃2= 0.8 , unless they are changed in 

graphs as shown. 

 

Figure 1: Effect of service rate μ on mean system length 
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Figure 1 shows variation in mean (expected) system length with μ.  The mean 

system length decreases as μ increases. This is due to a decrease in mean service 

time with increasing μ. On increasing the probability of leaving the system β by 

unsatisfied customers on service completion, this system length goes on 

decreasing further, the reason being that with increasing β, the feedback 

probability decreases and hence the length of the system. 

 

Figure 2: Variation in mean system length versus leaving probability β 

Figure 2 illustrates how the expected system length varies with change in 

leaving probability of customers for different values of w.  As w increases, the 

mean waiting time of the server in normal state decreases and this results in a 

corresponding increase in mean system length. 

Figure 3 reveals the effect of variation in leaving probability β on the probability 

of the server being on vacation. As we observe from the figure, with an increase 

in leaving probability, the probability of the server being on vacations increases. 

This increase is more obvious with increasing values of repair rate δ; this is due 

to the reason that as δ increases, the mean repair time decreases, thereby 

increasing the probability of servers being on vacation. 
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Figure 3: Variation in the probability of server in vacations versus β for different repair rates δ 

 

Figure 4: Effect of rate of type I vacation on expected system length 

The effect of change in the rate of type I vacation on expected system length is 

depicted in figure 4. The expected system length decreases as 𝜃1 increases. This 

is due to an increase in the duration of type I vacation with decreasing 𝜃1. The 

Expected system length further increases as the parameter of waiting for the 

server w increases. The reason is that with an increase in w, the waiting time of 

the server in normal state decreases.  
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Figure 5: Variation in the probability of server in vacations versus service rate μ 

The variation in the probability of the server being on vacation with service rate 

μ is shown in figure 5. As μ increases the mean service time decreases. This 

results in faster service thereby increasing the probability of the server being on 

vacation. This increase is more obvious with increasing the waiting time 

parameter w. This is because of the corresponding decrease in the mean waiting 

time of the server in the active (normal) state. 

 

Figure 6: Probability of waiting server versus leaving probability β 
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Figure 6 represents the effect of leaving probability β of the customer after being 

served on the probability of waiting server 𝑝0 2. The probability of waiting 

server increases with an increase in the probability of leaving the system b. As 

w increases, the probability of waiting for server 𝑝0 2 decreases. This is due to a 

decrease in mean waiting time with an increase in w. 

 

6. Cost optimization 

In this section, the operating cost function is optimized relative to 𝜇. Here we 

define some cost elements as  

𝐶𝐿𝑆
 = Cost per unit time for the customer present in the system.  

𝐶𝜇 = Cost per unit time for service in the active state.  

𝐶𝜃1
= Cost per unit time in the period of type I vacation. 

𝐶𝜃2
= Cost per unit time in the period of type II vacation. 

𝐶𝛾= Cost per unit time in the breakdown state 

𝐶𝛿= Cost per unit time for repair 

The cost function per unit time is defined as  

F(μ) = 𝐸𝐿𝑆𝐶𝐿𝑆
 + μ𝐶𝜇 + 𝜃1𝐶𝜃1

 + 𝜃2𝐶𝜃2
+ 𝛾𝐶𝛾+ 𝛿𝐶𝛿 

 Fix  𝐶𝐿𝑆
= 14, 𝐶𝜇= 20, 𝐶𝜃1

= 10,𝐶𝜃2
= 8, 𝐶𝛾= 7, 𝐶𝛿  = 10 in parabolic method to 

find the optimal cost F(x) and corresponding value of x. This method starts by 

generating the quadratic function through calculated points in every iteration. 

The point at which F(x) is optimum in three-point pattern {𝑥1, 𝑥2, 𝑥3} is given 

by  

𝑥𝐿 =
0.5(𝐹(𝑥1)(𝑥2

2 − 𝑥3
2) +  𝐹(𝑥2)(𝑥3

2 − 𝑥1
2) +  𝐹(𝑥3)(𝑥1

2 − 𝑥2
2))

𝐹(𝑥1)(𝑥2 − 𝑥3) + 𝐹(𝑥2)(𝑥3 − 𝑥1) + 𝐹(𝑥3)(𝑥1 − 𝑥2)
 

This value obtained improves the current three-point pattern by replacing one of 

the three points. Optimum value up to the desired degree of accuracy is obtained 

by recursively using the process.  

Table 1 shows that optimum value 𝐹(𝜇) =310.19155 with the permissible error 

of 10−4 for μ= 7.36987. This value verifies the results of Figure 7. 
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S.No 
 

𝝁𝟏 
 

𝝁𝟐 
 

𝝁𝟑 
 

F(𝝁𝟏) 
 

F(𝝁𝟐) 
 

F(𝝁𝟑) 
 

𝝁𝑳 
 

1 7.0 7.50000 8.00000 311.66873 310.34146 313.16952 7.40971 

2 7.0 7.40971 7.50000 311.66873 310.20608 310.34146 7.38091 

3 7.0 7.38091 7.40971 311.66873 310.19268 310.20608 7.37334 

4 7.0 7.37334 7.38091 311.66873 310.19166 310.19268 7.37086 

5 7.0 7.37086 7.37334 311.66873 310.19155 310.19166 7.37016 

6 7.0 7.37016 7.37086 311.66873 310.19155 310.19155 7.36994 

7 7.0 7.36994 7.37016 311.66873 310.19154 310.19155 7.36987 

 

Table 1:  Optimal service rate for operating cost by quadratic fit approach 

 

 

 

Figure 7: Expected operating cost per unit time versus service rate μ 
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7. Conclusion 

The queueing model under differentiated vacations with an unreliable waiting 

server and Bernoulli schedule feedback of customers is considered. The impact 

of state-dependent arrival of customers is studied on the queueing model in 

steady-state. The sensitivity of some important system measures towards 

feedback probability, waiting parameter of server, service rate, and duration of 

vacations is illustrated graphically. Cost is also optimized for the model using 

the parabolic method. The model can be extended to bulk arrival, general service 

times for future research. 
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