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Abstract

This paper presents a critical and analytical description of an ongoing research program aimed at the
implementation of an expert system capable of monitoring, through an Intelligent Health Control pro-
cedure, the instantaneous performance of a cogeneration plant. An application has been tested on a real
plant, located on the grounds of the ENEA-Casaccia Energy Laboratories. The expert system, denomi-
nated PROMISE as the Italian acronym for PROgnostic and Intelligent Monitoring Expert System, gen-
erates, in real time and in a form directly useful to the plant manager, information on the existence and
severity of faults, forecasts on the future time history of both detected and likely faults, and suggestions
on how to control the problem.
The expert procedure, working where and if necessary with the support of a process simulator, derives

from real-time data a list of selected performance indicators for each plant component. For a set of
faults, pre-defined with the help of the plant operator, proper rules are defined in order to establish
whether the component is working correctly; in several instances, since one single failure (symptom) can
originate from more than one fault (cause), complex sets of rules expressing the combination of multiple
indices have been introduced in the knowledge base as well.
Creeping faults are detected by analyzing the trend of the variation of an indicator in a pre-assigned

interval of time. Whenever the value of this ‘‘discrete time derivative’’ becomes ‘‘high’’ with respect to a
specified limit value, a ‘‘latent creeping fault’’ condition is prognosed.
The expert system architecture is based on an object-oriented paradigm. The knowledge base (facts and

rules) is clustered: the chunks of knowledge pertain to individual components. A graphic user interface
(GUI) allows the user to interrogate PROMISE about its rules, procedures, classes and objects, and
about its inference path. The paper also presents the results of some tests conducted on the real plant.
# 2004 Elsevier Ltd. All rights reserved.
1, ‘‘La Sapienza’’, via



Nomenclature

p pressure, Pa
T temperature, K
m mass flow rate, kg/s
x molar concentration
U heat exchange coefficient, W/(m2 K)
a vibration amplitude, m
wcompr compressor work
x angular velocity (rad/s)
g efficiency
b compression ratio
( )d design conditions
Rms root mean square norm
cp specific heat, J/(kg K)
fl (fuzzy) degree of belonging
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1. Introduction

The process of designing, constructing and operating energy conversion systems is a very
complex task. If any part of this process breaks down, the plant fails to deliver its benefits. The
monetary losses originated by such failures are indeed important, but even more important is
the resource destruction that constitutes the end result of the fault (because the reduced pro-
ductivity must be ‘‘made up’’ by some alternative generation system). All modern design meth-
ods contain procedures that take into due account variable load conditions (off-design
operation), availability losses due to scheduled and unscheduled maintenance and performance
degradation due to wear and fouling of the equipment. The ‘‘self-diagnosis’’ enacted by current
control systems is though very rudimentary, and actually they are intentionally designed so that
the ‘‘intelligence’’ in their responses is zero: the design concept being that a control system must
act fast, safely and deterministically, and that its logic must be ‘‘linear’’, to facilitate the
interpretation of its response by human plant operators [3].
Intelligent process management tools (IPMTs) have been conceived to go two steps further

[9,12]: they are not only by definition capable of producing an intelligent diagnosis of the present
state of the plant (such systems are sometimes called ‘‘Health Monitoring Systems’’), but also to
enact a prognostic action, making intelligent estimates of the future state of the plant under the
foreseen boundary conditions [7]. Finally, they can use design, operation and load-scheduling
data, together with other relevant external information (like for instance local weather forecasts
or projected operating load curves of similar plants in the same ‘‘fleet’’) to provide operators
with valuable information about the ‘‘optimal’’ operating curve of the plant in some future
period T [8]. The practical implementation of IPMTs will no doubt require some modifications
in the present design procedures, especially for what sizing and physical assembly of equipment
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are concerned. The present paper describes the development and the actual field implementation
of a diagnostic and prognostic tool, specifically designed for a gas turbine-based cogeneration
system; its development constitutes though a useful paradigm for different applications.
Let us define the plant availability factor PF as the ratio of the total equivalent full load

operating hours in a year and the total number of hours in the year. It is apparent that no
energy conversion plant can operate with PF equal to 1, due to three orders of reasons:
(a) p
lant shutdowns due to scheduled maintenance;

(b) p
lant shutdowns due to unscheduled maintenance;

(c) p
lant shutdowns due to sudden failures.
It is useful for our purposes to separately account for events of type ‘‘b’’, that imply the
replacement of a component for which an early failure has been prognosed, and events of type
‘‘c’’, in which the replacement is done after the failure has forced a plant shutdown.
Our study specifically concentrates on plant shutdowns due to sudden failures. Strictly speaking,

‘‘sudden catastrophic failures’’ rarely happen as such, and when they do, they are obviously by
definition unforeseeable. But extensive field studies have conclusively shown that most of the fail-
ures we call ‘‘sudden’’ are in reality caused by a series of component-localised phenomena that
lead to a (usually very small but still significant) deterioration of its performance. Our efforts may
thus be redirected to the early detection of these ‘‘performance degradation’’-warning signals. The
method to follow is in principle straightforward: a sufficient number of ‘‘critical points’’ in the
process are monitored in real time, and a specific series of performance decay indicators are com-
puted. As soon as one of these ‘‘creeping faults’’ has been detected, the operator, working under
tight co-operation with the designer and the plant manager decides whether to execute an
immediate shutdown to fix the fault, or to wait until the next scheduled maintenance intervention.
2. The general conceptual layout of a diagnostic/prognostic system

In the language of artificial intelligence (AI), we say that a procedure is enacted by an
‘‘Agent’’. In the following description, the agent is our expert system: but it is easy to recognise
a high degree of similarity between the individual steps of the procedure and the actions that a
human operator would take when executing the same task. An interesting and explicit compari-
son is made in [10]: our scope here is to show that both the procedures in its entirety and each
one of its single steps is feasible at the present level of AI technology. We shall separately
describe the diagnostic and the prognostic procedures, but will show later (Section 3.3.5 here
below) that they both admit a meta-procedure, i.e., they can be embedded in a single code.

2.1. A diagnostic system

A possible (non-unique) procedure for an automatic diagnostic system consists of the follow-
ing steps:
(1) T
he intelligent agent (‘‘IA’’) must identify in real time (in practice, at sufficiently small time
intervals) the operational state of the process. This requires that IA be endowed with an
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efficient interface with a process data collection system, and to possess an object-like rep-
resentation of the interconnection between the individual components of the process. Such
a representation consists for IA of a vector of length N containing an ordered set of meas-
urables, i.e., of process parameters that identify the state (mass flow rates, pressures, tem-
peratures, etc.).
(2) I
A must compare, at each time step, the detected operational state with the expected one.
To do this, IA must have access either to a pre-determined operational schedule of the pro-
cess, or to a reliable process simulator that provides it with such a ‘‘design datum’’.
(3) I
f the value of the kth measurable differs from the corresponding ‘‘design datum’’ by more
than a preset tolerance, IA activates a monitoring-and-control procedure on the compo-
nent to which this measurable pertains.
(4) I
A verifies whether the ‘‘failure’’ just detected appears in one of the ‘‘fault chains’’ con-
tained in its knowledge base. If it does, then IA proceeds to step 5 here below. If it does
not, IA activates a sub-procedure to monitor k for a prescribed period of time, and notifies
the (human) plant operator of this action.
(5) I
f the event ‘‘kth measurable out of range’’ belongs to one or more fault chains known to
IA, the agent launches a monitoring-and-control procedure on all measurables i,j,. . .,p that
appear together with k in the detected fault chains.
(6) I
f a fault chain is indeed identified as ‘‘active’’, IA will: a—notify the plant operator; b—
consult its knowledge base to search for remedial actions (e.g., adjustment of other process
parameters to compensate for the derangement in k); c—decide whether it is possible to
wait for the next scheduled maintenance intervention or a repair/substitution is immedi-
ately necessary.
2.2. A prognostic system

A possible, and also non-unique, procedure for an automatic prognostic system consists of
the following steps:
(1) T
he IA must compare at each time step (or with a pre-determined time-sampling pro-
cedure) the operational state of the process.
(2) I
A projects the detected operational state forward in time, founding this projection on the
most recent time history (2 or more previous time steps) of the process.
(3) I
f the projected value of the kth measurable at tþ Dt activates one of the known fault sig-
natures, or if it shows an undesirable trend in the time history of xk (e.g., ‘‘dxk/dt‘‘too
high’’ according to some norm), IA activates a monitoring-and-control procedure on the
component to which this measurable pertains.
(4) I
A also launches a monitoring-and-control procedure on all measurables r,s,. . .,z that are
related to k (i.e., whose values are known to be functionally linked to the value of xk).
(5) O
therwise, IA keeps monitoring xk for a pre-defined time interval, and notifies the plant
operator of this action.
6) I
f IA estimates that a fault chain may be ‘‘activated’’ by an excessive variation of xk, it
will: a—notify the plant operator; b—consult its knowledge base to search for remedial
actions (e.g., adjustment of other process parameters to compensate for the derangement in
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xk); c—decide whether it is possible to wait for the next scheduled maintenance inter-
vention or a repair/substitution is immediately necessary.
Notice the remarkable analogy between the steps of the diagnostic and those of the prognos-
tic procedure: we shall return to this point in Section 3.3.5.
3. Theoretical and practical aspects of the implementation of the intelligent agent

For the expert (or intelligent) agent to be in fact ‘‘expert’’ and ‘‘intelligent’’ in performing his
task, its knowledge base (KB) must be as ‘‘complete’’ and ‘‘exact’’ as possible. Here, these
adjectives take a meaning much more precise than in common language:

. ‘‘Complete’’ means that there must exist a one-to-one mapping of all rules and information
available to the human operator and this KB.

. ‘‘Exact’’ means that this mapping is logically consistent, i.e., that no logical chain of induc-
tion correctly derived from the KB contradicts any of the rules and information available to
the human operator.
3.1. The meta-rules of failure detection

It is known from AI theory [10,11] that it is convenient to re-organise, wherever possible, the
knowledge bits acquired during the knowledge acquisition phase, because such a systematisation
goes in favour of the transparency and the accessibility of the ‘‘built-in-logic’’ of the expert sys-
tem. In the case in point, we are dealing with ‘‘failures’’ of a system, and we have found it use-
ful to construct our KB on the basis of the following seven meta-rules:
(1) T
here exists a finite number of possible types of failure, and for each one of them there
exists at least one specific signature, i.e., a unique combination of the process parameters.
(2) T
here are no sudden failures: every possible failure is ‘‘forewarned’’ by a drifting of the
point representative of the operational state of the plant, on a path that leads to a specific
attractor in the state space (the failure point).
(3) E
ach one of these ‘‘drifting’’ processes has a characteristic time scale that depends both on
the component and on the type of failure.
(4) A
 convenient way to represent such a drifting is that of employing a proper set of dimen-
sionless indicators, each defined as the ratio of the instantaneous value of a measurable of
interest to its ‘‘design’’ value. Notice that such a design value is in reality a time-dependent
quantity: it is the value expected for the same instantaneous operative conditions but with-
out any derangement.
(5) T
he process of ‘‘failure formation’’ is described by at least one ‘‘fault chain’’, i.e., an
ordered list of the immediate causes of the failure. There may be more than one chain (see
point 6 here below). Each chain though has at least two fuzzy aspects: first, the ‘‘causes’’ it
contains are necessary, but not sufficient (for example, for a creep failure in a first row sta-
toric blade in a gas turbine, it is necessary that the gas temperature at turbine inlet be
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higher than a certain design limit; but once the temperature exceeds this limit, failures are
not certain). Second, even this necessity is affected by some degree of uncertainty (for
example, a blade failure may happen even if the gas temperatures are below the design
limit).
(6) S
ome of the fault chains may be concurrent. That is, the same failure stem from one or the
other or from a combination of two (or more) fault chains.
(7) M
any of the fault signatures are non-local: the values of measurables detected at locations
physically remote from the point where the failure actually takes place may be affected by
the drifting process mentioned in point (2). In this case, we say that these measurables (and
the indicators constructed on them) are correlated with the ones immediately affected by
the failure.
3.2. Formalisation of the fault signatures and choice of the fault indicators

For the monitoring of all energy conversion plants (e.g. ‘‘efficiency’’, ‘‘mechanical output’’,
‘‘thermal output’’), and especially for gas turbines and their derivates (combined and cogenerat-
ing plants), a very extended database is available. There is a body of international industrial
standards, often validated by Governmental Agencies, which regulates even the fine details of
the type and tolerance of the measurables. Our approach here is though rather different: we are
not interested in the abidance by contractual specifications, but rather in a (continuous) moni-
toring of whether the system operates within a certain number of admissible states (Fig. 1 repre-
sents a very simple case—a compressor plant—in which all the admissible states belong to one
e three-dimensional acceptable ‘‘operating field’’ for a compressor in the space (e
Fig. 1. S1,2,3 is th fficiency Ik, com-
pression ratio b, temperature T). Values outside of S1,2,3 w correspond to faulty operation.
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single continuous set). Therefore, the various sets of measurables defined by International
Standards do not suffice for our purpose: in fact, our KB complements them with other knowl-
edge bits derived from design handbooks, operators manuals and interviews with field experts.
Strictly speaking, each type of plant has its own proper ‘‘Indicators list’’: Table 1 reports the list
of the failures to be diagnosed/prognosed and Table 2 the indicators adopted in the application
discussed in Section 4 here below (the plant layout is represented in Fig. 2).
3.3. From the mathematical to the operational problem position

In this section, we describe the process that leads from the mathematical problem position to
its practical implementation into a set of AI procedures. Such a process is general, and applies
with very little modifications to a wide range of similar problems. However, because of its very
nature, it is best described not in an abstract ‘‘state space’’, but with reference to some specific
process.
Table 1
List of possible faults included in the KB
Component
 Possible fault(s) C
omponent
 Possible fault(s)
Filter
 Leakage S
econdary heat
 Fouling

Fouling E
xchanger
Compressor
 Stall P
rimary loop
 Fouling

Choking
Fouling
Excessive exit temperature
Malfunctioning
Primary
 Fouling S
econdary loop
 Fouling

Combustion
 Excessive pressure losses

Chamber
 CH4- or H2O valve failure
Primary fuel
 Fouling M
ain pump
 Cavitation

Injector
 Failure
 Malfunctioning
By-pass stack
 Secondary combustion reactions H
eat recovery boiler
 Fouling

Fouling
Leakage
Boiler stack
 Secondary combustion reactions M
ain shaft
 Near-critical vibration
frequencies
Fouling

Leakage
Turbine
 Fouling A
fterburner
 CH4 injector fouling

Choking

Excessive inlet temperature
Primary heat
exchanger
Fouling
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3.3.1. The mathematical formulation
Define the ‘‘performance function’’ PP of an energy conversion process P as the deterministic

mathematical relation between the instantaneous process output(s) and a set of N process

parameters that we call the measurables: PP can be thought of as an operator that, applied to

the vector X of measurables, generates the output vector Y (the mapping performed by the

operator on the quantity enclosed within the brackets h.i).

PP Xh i ¼ Y

X ¼ ðxiÞ ¼ ðpj;Tj;mj; bj; . . .Þ
Y ¼ ðykÞ ¼ ðP1;P2;P3; . . .Þ

(1)
Table 2
The proposed indicators
Air filter
 I1 ¼ p1 � p2ð Þ= p1 � p2ð Þd�

Compressor
 I2 ¼ cp23 T3 � T2ð Þ cp23 T3 � T2ð Þ½ 
d

I3 ¼ gC= gCð Þd
I4 ¼ bC= bCð Þd¼ p3= p3ð Þd
I5 ¼ m3= m3ð Þd
Combustion chamber
 I6 ¼ Dpcc=D pccð Þd¼ p3 � p4ð Þ= p3 � p4ð Þd
I7 ¼ m8= m8ð Þd
Fuel injector
 I8 ¼ m7= m7ð Þd� ��� �

By-pass stack
 I9 ¼ XNOX;6 XNOX;6 d

I10 ¼ XCO;6

� ��
XCO;6

� �
d

I11 ¼ T5 � T6ð Þ= T5 � T6ð Þd� ��� �

Boiler main stack
 I12 ¼ XNOX;12 XNOX;12 d

I13 ¼ XCO;12

� ��
XCO;12

� �
d

I14 ¼ T11 � T12ð Þ= T11 � T12ð Þd

Turbine
 I15 ¼ gT= gTð Þd

I16 ¼ T4= T4ð Þd

I17 ¼ m4= m4ð Þd
Electrical generator
 I18 ¼ xt= xtð Þd

Afterburner
 I19 ¼ T10 � T9ð Þ= T10 � T9ð Þd
I20 ¼ m13= m13ð Þd

H2O/H2O heat exchanger,
shell side
I21 ¼ p16 � p17ð Þ= p16 � p17ð Þd
I22 ¼ U T16 � T17ð Þ= U T16 � T17ð Þ½ 
d

H2O/H2O heat exchanger,
tube side
I23 ¼ U T23 � T22ð Þ= U T23 � T22ð Þ½ 
d
Primary hydraulic loop
 I24 ¼ p20 � p15ð Þ= p20 � p15½ 
d

Secondary hydraulic loop
 I25 ¼ p21 � p22ð Þ= p21 � p22½ 
d

Main pump
 I26 ¼ m19= m19ð Þd

I27 ¼ p19 � p18ð Þ= p19 � p18ð Þd

Heat recovery boiler
 I28 ¼ U T10 � T11ð Þ= U T10 � T11ð Þ½ 
dh i

Shaft (vibrations)
 I29 ¼ rms aið Þ=rms ai;

� �
d
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Now, denote as X0 a deranged operational state, in which some of the measurables have taken
values slightly (but detectably) different from their ‘‘design datum’’. We can formally compute
the new outputs by:
i C
1M
proc
omputing the new functional value assumed by the operator PP:

PP X0h i � PP Xh i þ dP
dX

����
����
T

X� X0h i þOðX�X0Þ2 (2)

where dP=dXj j ¼ dP=dxj
�� ��represents the term-by-term derivative of a vector and not the

total differential, and ‘‘O’’ means ‘‘of the order of’’.

ii A
pplying the modified operator to the new vector of measurables:

PP X0h i ¼ Y0 (3)
Such an exact mathematical approach is, however, not applicable in practice, because we do
not know the exact form of PP except in very few, ideal, cases, of no practical interest (the so-
called ‘‘textbook cases’’). Fortunately, there is only a very limited number of outputs that we
want to control, or, in other words, the vector Y represents a small set of length M1. Therefore,
we can proceed as follows:
usually ass
esses or in h
Fig. 2. ICARO power plant layout (from [1]).
umes values between 1 and 3 for energy conversion plants, and grows to order 10 in some chemical
eat exchangers networks.
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i s
2 E
tice,
eparately consider M ‘‘components’’ of PP, each one pertaining to one of the outputs2:

PP ¼

PP1

PP2

� � �
PPM

��������

��������
(4)

directly measure, by numerical- or field experiments, the differentials in Eq. (2)):
ii
dPk

dxj
� DPk

Dxj
(5)

substitute (4) and (5) in (3), making use of the discrete equivalents of (1) and (2), and
iii

obtain:

PP X 0h i ¼

PP1

PP2

� � �
PPM

���������

���������

T

X 0h i � PP Xh i þ dPP

dX

����
����
T

X 0 � Xh i

¼

PP1

PP2

� � �
PPM

���������

���������

T

Xh i þ

dPP1

dX
dPP2

dX
� � �
dPPM

dX

�������������

�������������

T

X 0 � Xh i ð6Þ

in which the terms dPPi
=dX are to be expanded by expressions like (5).
Notice that:
(1) T
a
i

he first term on the right-hand side of 6 is the performance function at design point, and
is therefore known (or computable, if we are performing a numerical experiment).
(2) E
ach one of the individual components of the transposed vector in the second term on the
right-hand side of 6 can be measured (or computed) by means of Eq. (5)).
(3) T
he last term in h..i brackets in 6 represents the variation in the vector of measurables, and
is provided by the process monitoring system.
ch one of these sub-matrices may span a different set of measurables. This property, which is important in prac-
s not formally exploited here to simplify the exposition.
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For all practical purposes, Eq. (6) may be therefore considered as an experimental correlation
between the derangements in the relevant measurables and the process outputs. If we define a
tolerance level on the output variation for each one of the outputs, we can then use 6 to check
whether the detected derangement in the measurables is acceptable or not, i.e., if it must be con-
sidered a failure or not. The problem seems to be deterministically solved: let us assume for the
moment that it is indeed so, and see how we can translate Eq. (6) into a logical diagnostic pro-
cedure.
3.3.2. The operational procedure
Each sub-unit of the plant is subject to certain types failures, and the number of these types is

finite (see Sections 3.1 and 3.2). These failures are identified by a derangement of certain out-
puts from their expected value, and are detected by monitoring the variations of (usually a small
number of) some of the measurables of the process. Therefore, our IA must possess a knowl-
edge of what combination of variations in the measurables leads to what kind of failure. Denot-
ing by DIk the event ‘‘variation of measurable k’’ and by Fj the jth type of failure, we call the
causal link

DIk ! Fj (7)

a fault chain. There may be different types of chains, as mentioned in Section 3.1:
(a) s
imple fault chain: DIA ! FI . Failure of type ‘‘I’’ is causally linked to the variation of only
one indicator.
(b) c
omposite fault chain: ðDIa [ DIb . . .DIzÞ ! FI . Failure of type ‘‘I’’ is causally linked to the
simultaneous variation of z indicators.
(c) M
ultiple fault chain: ðDIa \ DIb \ . . .DIzÞ ! FI . Failure of type ‘‘I’’ is causally linked to
the variation of either one of z indicators.
(d) c
oncurrent fault chain: ðDIa \ DIb \ . . .DIzÞ [ ðDIa [ DIb [ . . .DIfÞ ! FI . Failure of type
‘‘I’’ is causally linked to the simultaneous appearance of the composite and multiple events
a. . .z and a. . .f.
There are obviously several possibilities for (d), irrelevant to our discussion (they are given by
the possible permutations between the [ and the \ operators).
The strategy for developing an intelligent diagnostic agent is now clear: once it is established

which types of failures we want IA to ‘‘diagnose’’, all we have to do is to insert into its KB the
following information:
(1) a
 list of failures (IA’s universe of events);

(2) a
 list of indicators, together with all of the rules necessary to acquire them, compute their

derivatives, etc. (IA’s universe of perception);

(3) a
 set of rules of the type a. . .d above, linking possible combinations of perceptions (fault

chains) with possible failure events (IA’s inferential engine).
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3.3.3. Fuzzy decisions
Both for logical and practical reasons,3 a purely deterministic diagnosis as the one outlined in

the previous section is not acceptable. As discussed at length in [1,2], a failure Fi is not certain
even if its ‘‘necessary’’ fault chains defined in Section 3.3.2 are active; by converse, the absence
of the same failure is not certain once the same chains are inactive. The failure event is therefore
devoid of a classical causal link: the arrow in Eq. (7) becomes a fuzzy arrow, and the realisation
of the event ‘‘failure’’ attains a continuous set of values of likelihood in the surrounding of the
tolerance limit for the variation of the indicators. In words, we say that our field experience
convincingly shows that:

Fig. 3. Representation of the likeliness for the value of an indicator Ij to be ‘‘too high’’ or ‘‘too low’’. ‘‘fl’’ is the
degree of fuzzy likeliness: fl ¼ 1 ) true; fl ¼ 0 ) false:
(a) O
3 Th
bilitie
nce a fault chain, consisting of a certain combination of variations in one or more of the
indicators, is detected, the corresponding failure may not happen even if the norm of such
a variation has exceeded the tolerance limit.
(b) B
y converse, a failure may happen while its corresponding fault chain is still below its tol-
erance limit.
Mathematically, we express such a multi-valued logic by means of a fuzzy representation:
while in classical logic an event A (existence of a failure) either belongs to (A�S) a set S (exist-
ence of the corresponding fault chain) or it does not (A6�S), in fuzzy logic A may belong to S
with a degree of certainty continuously varying between 0 (A certainly 6� S) to 1 (A certainly
� S). Fig. 3 shows a representation of a fuzzy function: depending on the percentual derangement
of Ik from its design value, the likelihood of failure may be ‘‘low’’ in varying degrees, LðIk=I0;kÞ,
and ‘‘high’’ in varying degrees, HðIk=Io;kÞ. A reasonable measure of the actual likelihood of
failure is provided by some properly weighted combination of L and H:

LikelihoodðFÞ ¼ wLðDIkÞ�LðDIkÞ þ wHðDIkÞ�HðDIkÞ (8)
e main practical rea
s.
son is that a controller based on a simple on/off logic is likely to generate operational insta-
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With reference to Fig. 3, fuzzy logic thus assigns a likelihood to the event ‘‘fault K ¼ true’’
that grows from Ij ¼ 0:95 to Ij ¼ 1:05. This means that higher the Ij, the higher is the likelihood
of a fault event to be realised. At the same time and in the same interval of values for Ij, there is
a decreasing likelihood that the fault is NOT realised: the final truth value of fault K is a linear
combination (in other case, the sum) of the two truth values for the given measured value of
indicator j. If the fault signature consists of more than one indicator, proper fuzzy algebra rules
[10,11] dictate how to correctly combine the individual truth values to reach a joint (or global)
truth-value for the composite signature. Notice that:
(a) T
he curves expressing the likelihood are S-shaped curves, which allow for a better field
tuning.
(b) I
n the limit case of an extremely steep S-shaped curve, we recover the binary logic formu-
lation (fault K either TRUE or FALSE).
(c) T
he method is the exact translation of the mental process that expert operators follow
when assessing the ‘‘danger’’ that a fault actually may happen.
In our implementation, we have always adopted a linear combination, in which the weights
are the very same percentual variations of DIk. With this reasoning, a failure is no longer deter-
ministically certain as soon as its fault chains are active: the diagnostic IA, after detecting the
existence of one or more fault chains, will display to the plant operator the likelihood (between
0 and 1) of an immediate failure event. To be able to intervene, IA must also be able to de-fuz-
zify its calculation. In our case, we have enacted this capability by a set of rules that assign a
threshold value to each fuzzy failure: if the failure is, say, 85% certain, it is assumed to ‘‘hap-
pen’’. Lowering this threshold makes the diagnosis more ‘‘cautious’’ (it may signal as failures
many events that are not), while increasing it makes it more precise but also more risky (it may
not signal an actually detected failure event).
3.3.4. Filters
A direct implementation of the IA endowed with the fuzzy logic protocol would result in a

failure. The reasons are of different order, and are all related to the problem of the ‘‘quality’’ of
the acquired data. In this section we provide a simplified description of the possible faults in the
data acquisition protocol and discuss some remedial actions.
(1) T
he first and most obvious problem is that the data may be non-exact, i.e., affected by sys-
tematic and/or casual errors in the data acquisition system.
(2) A
 second problem is noise, which also can be random or systematic.

(3) S
tatistical independence must also be assured: there must not be spurious (i.e., system-

induced) cross-correlations in the signals.

(4) T
he data must be statistically relevant: there must be a correlation equal (or very near) to 1

between the measurable and the generated signal.

(5) F
or rapidly varying signals, aliasing must be absent.
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These five problems pertain to the field of data acquisition system design, and we shall not
delve into them here: in other words, we shall assume that our data are exact, congruent, stat-
istically independent and relevant, noiseless and devoid of aliasing (or aliasing-corrected).
There is though a higher level at which consistency of the input signal must be checked: this

is the system (or process) level, which implies a deeper ‘‘knowledge’’ of the physical details of
the process. To better analyse this aspect of the problem, let us first construct a data influence
matrix DIM, defined as follows:

. DIMi;j ¼ 0 if a variation of the ith measurable is known not to affect the jth indicator.

. DIMi;j ¼ 1 if a variation of the ith measurable is known to affect the jth indicator.

. DIMi;j ¼ f . where f ff � R; 0 < f < 1g is the degree of correlation of the ith measurable and
the jth indicator.

A first useful filter for this higher-level monitoring action is then the following filtering rule
#1: if IA detects a variation of an indicator Ij for which DIMi,j is ‘‘high’’ (here, a threshold
f > 0.7 has been imposed) and simultaneously the ith measurable does not display a significant
variation, a data-checking procedure is activated and the plant operator is alerted of possible
data incongruency.
Let us further consider another matrix, the Indicator Correlation Matrix, ICM, defined as fol-

lows:

. ICMi;j ¼ g (rational number between 0 and 1) where g is the degree of correlation between
the ith and the jth indicator.

A second filter can then be defined, by filtering rule #2: if IA detects a simultaneous variation
of two indicators, Ii and Ij, whose correlation g in ICM is lower than a pre-set limit (again,
g < 0:7 has been chosen here), then the corresponding fault chains are disregarded, and the plant
operator is alerted of the possible mismatch.
Since both DIM and ICM are constructed on the basis of empirical knowledge (gathered

either by numerical or by physical experiments), the position of these two constraints is a rather
simple way of introducing higher-level knowledge into the IA.
3.3.5. Diagnosis vs. prognosis
If one considers the logical flowchart of the diagnostic and prognostic procedures (Sections 2.1

and 2.2 above), it appears clearly that the prognostic activity is really a projection of the diag-
nostic one: in more precise terms, one can say that the prognostic is a diagnostic action per-
formed not on the real state St of the system, but on a virtual one representing IA’s estimate of
a future state StþDt. This virtual state is constructed on the basis of the present state (as an initial
condition) and of the foreseen operative conditions (as boundary conditions and independently
imposed external constraints). Thus, there is no need to implement a separate prognostic para-
digm: the same logic can be used on the two states, the present one and the future, ‘‘virtual’’
one. This represents a substantial simplification to the structure of the IA, and makes its
implementation much easier. Examples of external constraints are the ambient T and p, the
operating load, etc.
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4. A practical application

4.1. The ‘‘ICARO’’ cogeneration plant at the ENEA-CASACCIA site

The energy conversion process for which the expert diagnostic/prognostic tool was developed
is an experimental facility on the grounds of the ENEA Laboratories of Casaccia, near Roma,
consisting of cogeneration plant called ICARO (Fig. 2) based on a GE-Nuovo Pignone PTG-2
turbogas set with 2 MW of nameplate power and on a heat recovery boiler HRB that feeds the
heating system of the compound. The thermal load is 5 MW without afterburner and 7 MW
with afterburner. The process operates on natural gas, but its adaptation to H2-operation is
underway. In 1999/2000, ICARO generated slightly over 4.5 electrical GWh and recovered a
total of about 30 thermal GJ [5]. The design electrical efficiency amounts to 0.36, but the field-
measured value was substantially lower, about 0.23 [1]. The actual first- and second law efficien-
cies of the cogeneration unit, measured over a 12-month period, amounted to 0.68 and
0.37, respectively [1,2]. After start-up, ICARO performed satisfactorily indicating that both the
monitoring and the control systems were working properly.
4.2. Definition of the reference conditions

To construct ‘‘performance indicators’’ on which the derangement from ‘‘standard operative
conditions’’ is measured, it is necessary to accurately and completely define such reference con-
ditions. The plant operating manual and the design specifications provided by the designer and
by the constructor define only a very limited set of operating points. We must perforce recur to
some form of ‘‘logical extrapolation’’ based on an intelligent comparison between the measured
data and a set of proper theoretical operating curves. On the basis of our experimental findings
we can construct by interpolation the response of the plant to variations of the operative con-
ditions. It is possible to enhance the usefulness of this computational process, and its efficiency
in practical terms, by considering as ‘‘experimental data’’ also the results of a properly cali-
brated plant simulator. For ICARO, a dynamic simulator was available [4,6], and we treated its
output as an equivalent source of knowledge as the plant log-sheets, thus substantially expand-
ing our database. At this point, we can describe the acquisition phase of the expert system:
(a) F
rom the plant log-sheets or from the plant simulator PROMISE computes a projection of
the expected variation of performance caused by an incremental variation of each relevant
parameter.
(b) P
ROMISE constructs then a ‘‘discrete total differential’’ that represents its estimate of the
plant performance under the given operational data.
Now, this approximation becomes more accurate if we increase the number of measurables
and decrease the scanned experimental interval for each measurable. We decided to use a lim-
ited number of indicators (29 see Table 2), and to impose relatively small bounds to the varia-
tions of each indicator: this is clearly a compromise between accuracy and computational effort,
and can be modified in future applications.
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4.3. The proposed Indicators and the failure detection criteria

Table 3 lists the ‘‘failure detection criteria’’ adopted in PROMISE. The list has been complied
on the basis of a proper combination of expert advice, experimental evidence and analysis of
computational results. Table 3 represents thus already a meta-level knowledge: in fact, it is a
simple task to derive from its entries an operative flow chart for the ES. Notice that all meas-
urables listed in both Tables 2 and 3 are based on ‘‘primary’’ quantities, already monitored by
the existing PLC-based control system. PROMISE applies two different strategies for the detec-
tion of ‘‘sudden failures’’ and of ‘‘creeping failures, as described here below.

4.3.1. ‘‘Sudden’’ failures
In this case, the meta-rule is straightforward: if one fault chain is detected (third column of

Table 3), a message is immediately sent to the operator, with an appropriate warning message
and, if possible, with some suggestions on the strategy to take. The fault chain is ‘‘interpreted’’
Table 3
Failure detection criteria (for the interpretation of the attributions ‘‘high’’ and ‘‘low’’, see Sections 3.3.3 and 3.3.4)
Component
 Type of failure
 Indicator-based causal chain
Filter
 Fouling
 I1 high [m2 low

Compressor
 Fouling
 I3 low [ I4 lowð Þ \ I3 low [ I2 highð Þ
Malfunctioning
 I2 high [Wcompr high
Choking
 I4 low [ I5 highð Þ \ I4 low [ T3 lowð Þ

Excessive T3
 I2 high

Stall
 I4 low [ I5 low
Combustion chamber
 Fouling
 I6 high

CH4/H2O valve
malfunctioning
I7 high [ I8 constantð Þ \ I7 constant [ I8 highð Þ
CH4 injector
 Fouling
 I8 high

Electrical generator
 Balance fault
 I18 6¼ 1

By-pass stack
 Emissions
 I9 > 1 [ I10 > 1
Heat losses
 I11 high

Boiler stack
 Emissions
 I12 > 1 [ I13 > 1
Heat losses
 I14 high

Turbine
 Excessive T4
 I16 high
Fouling
 I15 low [ T5 highð Þ \ I15 low [ p5 highð Þ

Choking
 I17 high [ p4 high
Afterburner
 Fouling
 I19 low [ I20 low

Losses
 I19 low
Primary heat exchanger
 Fouling
 I21 high [ I22 low

Mass leakage
 I21 high
Secondary heat exchanger
 Fouling
 I23 low

Primary loop
 Fouling
 I24 high

Secondary loop
 Fouling
 I25 high

Main pump
 Cavitation
 I26 low [ I27 low
Malfunctioning
 I26 high [ I27 lowð Þ \ I26 low [ I27 highð Þ

Heat recovery boiler
 Fouling
 I28 low

Shaft (vibrations)
 Unbalance, wear
 I29;i 6¼ 1
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in a fuzzy sense (Section 3.3.3): a ‘‘fault signature’’ is assumed to exist not when the values of
the indicators are exactly within the respective fault range, but when there is a (fuzzy) likelihood
that they are ‘‘near’’ that range.

4.3.2. Creeping failures
We talk of a ‘‘creeping fault’’ when the instantaneous signature Sj shows a clear tendency to

approach the failure range. In other words, if single indicator varies in time in such a way that at
a time t0 þ s in the future its value will exceed its threshold value, then PROMISE assumes that
there is the possibility that, at time t0 þ s a fault event will be realised (the same applies for a

chain consisting of more than one indicator). In mathematical terms, if for a certain Sj, dSj=dt
�� ��

appears to be ‘‘abnormally growing’’ with respect to a limit value, then a warning is displayed.
Obviously, we need a higher-level knowledge to establish both the limit value of the signature and
the ‘‘excessive’’ value of its time derivative. In either case, we again adopt a fuzzy approach. It is
important to remark that the results of each prognostic step are used by the IA to ‘‘re-assess’’ its
diagnostics at the successive time step: the idea being that, if the trend displayed by a certain indi-
cator Ik is ‘‘ safe’’, then the fuzzy likelihood of a sudden fault is decreased by a heuristic factor
depending on that trend. This criterion is obviously not theoretically justifiable, and its implemen-
tation requires some prior knowledge of the probability statistics of each fault chain, but its
implementation for the simple cases examined here gave encouraging results (Fig. 4).
4.4. Some remarks on shell-dependency

The present version of PROMISE has been implemented under the G21 shell, and it is cur-
rently available only in this format. To extend its portability, we are working on an ACCESS1

version of the code. As all AI codes, PROMISE is of quite limited portability, and its syntacti-
Fig. 4. Logical flow-chart of the PROMISE package.
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cal structure (its source-code) is strongly dependent on the environment within which it has
been developed. Even the graphical interface is at present hard-linked to the G2 shell, but this is
inessential, as the appearance of the screen displays can be reproduced under any commercial
operative system.
5. Conclusions

When we undertook the development of a diagnostic and prognostic tool for plant intelligent
health monitoring [1], we had four goals in mind:

1. To acquire a sufficient amount of knowledge (in the design-, operation- and plant manage-
ment domain) to compile a list of design-, operation- and management rules an artificial
plant manager could use to control the plant under a broad operative range.

2. To classify the acquired knowledge, possibly clustering it in separate but interrelated knowl-
edge areas.

3. To implement, test and train a prototype knowledge-based IA working under the rules
defined above.

4. To field test an a-version of such an IA on a proper set of actual plant data.

All goals have been achieved. Broadly (even if not exactly) speaking, we can classify the
activities performed in the course of the study into: knowledge acquisition and codification,
training and calibrating of the code, and field validation: this classification is rather sharp and
does not capture the vast amount of overlapping that characterised the single tasks, but pro-
vides a good global framework that encompasses the entire activity.
5.1. Training and calibration

PROMISE was field-tested on the very same plant for which it was designed. This testing
started with a series of calibration runs, in each one of which the value of one of the indicators
(or more, if requested by the specific fault chain) was (were) varied manually, so that the IA
would ‘‘read’’ a time-series of ‘‘measured data’’ which we knew would lead to a failure in one or
more components. The code performed satisfactorily, always diagnosing the correct fault and
never misdiagnosing. Additionally, in few cases it was possible to insert artificial time-sequences
that would indicate a slow derangement of one or more measurables from their nominal values:
in all cases, PROMISE predicted the correct ‘‘creeping fault’’, thus performing its prognostics
correctly. Once the code had been thus satisfactorily tested, three fault conditions were chosen
and the respective ‘‘logs’’ were submitted to the IA:
(A)
 A
bnormal increase of the air filter pressure drop. The increase amounted to 30% of the
nominal value within two successive days (48 h) with a linear behaviour (‘‘ramp’’).
(B)
 A
bnormal increase of the gas temperature at combustion chamber outlet. The increase
amounted to about 10% of the nominal value within 10 min, again with a linear
behaviour.
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(C)
 A
bnormal decrease of the main pump flow rate. The decrease amounted to 30% of the
nominal value within 10 min. A linear behaviour was again specified.
For all of these ‘‘faults’’ there were no experimental data: the ‘‘artificial’’ process log was cre-
ated using the plant simulator. The results are presented in [1,2] and can be synthetically
described as follows:
Fault (A)
 E
xpected action: starting from nominal conditions, the prognosis of ‘‘filter fouling’’
ought to be activated as soon as the measured value in input reaches 105% of the
design value.

Actual action: during the first 2 min of the run, both diagnosis and prognosis of the
filter were active. Starting from the third minute, PROMISE calculated the indica-
tors’ trend using the previous values. After 480 min the prognosis was interrupted,
and a ‘‘filter fouling’’ warning message was activated.
Fault (B)
 E
xpected action: starting from nominal condition, the prognosis of ‘‘turbine excess-
ive inlet temperature’’ ought to be activated as soon as the measured value in input
reaches 105% of the design value.

Actual action: during the first 2 min of the run, both diagnosis and prognosis of the
turbine were active. Starting from the third minute, the indicators’ trends were
computed. After 5 min the prognosis was interrupted, and a ‘‘turbine excessive tem-
perature’’ warning message was activated.
Fault (C)
 E
xpected action: starting from nominal condition, either the prognosis of ‘‘main
pump cavitation’’ or that of ‘‘primary loop fouling’’ ought to be activated (because
PROMISE also has access to additional information that allows it to distinguish
between the two failures) as soon as the measured value in input decreases below
70% of the design value.

Actual action: during the first 2 min of the run, both diagnosis and prognosis of the
turbine were active. Starting from the third minute, the indicators’ trends were
computed. After 11.7 min, the prognosis was interrupted, and a ‘‘main pump cavi-
tation’’ warning message was activated.
5.2. Future developments

Though entirely satisfactory, these results must be considered as preliminary. The knowledge
imparted to the code is, in fact, quite elementary, and most, if not all, of the complications
related to signal acquisition and processing have been by-passed by proper choice of the operat-
ive situations the code has been called to work on. No data analysis has been included: all data
have been assumed to be exact, congruent, statistically relevant and independent, and physically
relevant (Section 3.3.4). A real Intelligent Health Monitor must possess some capability to
screen the data and perform a preliminary data congruency analysis. This is at present negated
by the very structure of our IA: it is likely that an independent expert system must be specifi-
cally implemented for this task, and that its ‘‘filtered’’ data must then be analysed by PROM-
ISE. To this extent, new (logically and hierarchically different) knowledge must be acquired,
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classified and imparted to the expert assistant. This is a lengthy and complex task, which

requires a substantial investment of resources for its completion.
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