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de Vric3, th e nonlinear Sehrodingcr equation and a ZS-!lyslem. 
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1 - Introduction 

Completely integrable nows on infinite dimensional manifolds a re 
generally called soliton equations because, under suitable boundary con­
ditions at infini ty, solutions often decompose asymptotically into soli· 
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tary traveling waves. These asymptotically emerging traveling waves are 
termed solitons and if a solution decomposes completely into solitons, it 
is termed a mullisoliton. Here, by complete decomposition we mean that 
there is some suitable energy-norm such that all the energy is carried by 
the asymptotic solitons . 

Interaction of these solitons was widely studied and, indeed, the name 
soliton was chosen essentially because reductions of these systems to finite 
dimensional invariant submanifolds (i.e. to multisoliton-manifolds) often 
behave like interacting single particles. 

Thus, for motivation, let us consider, as an example, the analogy 
between the multisoliton solutions of a well known integrable system, 
say the Korteweg-deVries (KdV) equation u, = Uur + 6uu" and a field 
consisting of several particles. A plot of a typical two soliton solution 
u(x,t) of the KdV equation is given by Fig. 1(1). 

Fig. 1 Two-soliton solution of the KdV equation 

(i)We are indebted to Thorsten Schulze for plotting these figures. 
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Certainly, to study the interaction of these particles one would rather 
like to be able to look at the individual particle during the interaction 
instead of considering the superposition of all particles . Since the multi­
soliton solution represents a superposition one easily gets the idea that 
consideration of the individual soliton should give a better understanding 
of soliton interaction . The only problem which remains is how to isolate 
the interacting soliton because examination of the complete solution only 
gives asymptotic solitons, or particles. 

In fact, picking out the individual soliton, even during its interaction, 
is possible by the use of group theoretical methods (see [7]). The method 
consists in the identification of the eigenvectors of the so called recursion 
operator with the x-derivatives of the interacting solitons. These eigen­
vectors are called interacting solitons and the group theoretical meaning 
of the recursion operator induces a nonlinear evolution equation govern­
ing the time evolution of these interacting solitons. One of the interacting 
solitons in the case of the two soliton solution (Fig.l) is represented in 
Fig. 2. 

Fig. 2 Illtera.cting soliton of the KdV equation 

One should observe that the only field-variable entering in these in-
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t.cracting soliton equations is the soliton itself, not the variable corre­
sponding to the superposition of solitons. The interaction is reflected by 
the nonlinear terms of this equation. Thus, each interacting soliton is 
described by a nonlinear flow where only self-interaction appears, and 
the information about the existence of other solitons in the superposed 
field is hidden in the initial data. Thus small variations of initial data 
characterize different states of these interacting solitons. 

In addition, via this procedure, nonlinear equations governing the 
evolution of the interacting soliton are obtained in such a way that all 
parts of the remarkable structure (Hamiltonian formulation, complete in­
tegrability, [hereditary] recursion operator, angle variable, auto Backlund 
transformation, etc.) admitted by the original evolution are carried over 
to the evolution of the interacting soliton. Other advantages of this view­
point are: 

• The analysis of the evolution of the interacting soliton leads to a 
simple qualitative description of the interaction. 

• This analysis gives a simple way to define trajectories described by 
the moving solitons. 

• One is able to find new completely integrable systems and obtains 
new insight into the complete integrability of flows on infinite dimen­
sional man ifolds. 

However, an important problem still remains to be investigated, na­
mely the complete construction of the action-angle parametrization rc­
latcd to the flow given by the interacting solitons . In principle, given 
a finite dimensional flow such an action-angle representation is the most 
important consequence of complete integrability. Therefore, the complete 
integrability in the Liouville sense [2] is the most important feature of the 
dynamics of the mu ltisoliton systems (see e.g. [1 ], [3], [18], [13]). The 
inverse spectral transform (1ST) method allows to construct the action­
angle variables via the corresponding inverse problem data. Another, 
more algebraic method to construct the action-angle variahles (in multi­
soliton sector) has been recently proposed ([8], [9], [19]) . Within such an 
algebraic approach the gradients of the action and angle variables arc the 
different eigenvectors of the transposed hereditary [.5] recursion operator 
[20]. However, a direct transfer of these methods to the cases given by the 
flows of interacting solitons is difficult from the computational viewpoint 
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since the recursion operators are usually of a very complicated nature. 
On the other hand, in most cases, it is possible to construct a trans­

formation from gradients of action variables to gradients of angle variables 
explicitly [10]. This action-angle transformation is an important ingredi­
ent to obtain the soliton dynamics as well as for the spectral resolution of 
the recursion operator. Since the symmetry groups corresponding to an­
gIe variables are the prototypes of mastersymmetries, this transformation 
is closely connected with the mastersymmetry approach [6]. 

In this paper, in the context of the inverse scattering transform (1ST), 
we exploit a method which is based on the fact that the recursion oper­
ators deliver an isospectral formulation of the flows under consideration. 
Thus, a generalization of the problem of constructing the action-angle 
transformation in case of the interacting soliton is the construction of the 
action-angle transformation in the case of the dynamics of the eigenvec­
tors of isospectral operators for completely integrable flows. This problem 
is solved in this paper by considering a sequence of Backlund transfor­
mations. 

Within the framework of the 1ST method, soliton equations are as­
sociated with the system of linear equations 

(1.1) 

( 1.2) 

L,(u; >')11> = 0, 

L,(u,>')1I> = o. 

where LI and L2 usuaIly are differential operators and A is a spectral 
parameter (see e.g. [1], [3], [18], [13]). Elimination of the eigenfunction 
t/J gives rise to the integrable soliton equation for u. Thus a flow on 
an infinite dimensional manifold, here throughout termed u-manifold, is 
defined. 

Recently it was shown that the eigenfunctions II> also obey nonlinear 
equations which are again solvable by the 1ST method ([14], [15], [16]). 
Eigenfunction equations have been constructed for many 1 + 1 and 2 + 1-
dimensional soliton equation ([14], [15], [16]). These equations possess a 
number of interesting properties, in particular , the analysis of the related 
Hamiltonian structure is an interesting problem. 

In this paper we propose a method for constructing explicitly the 
action-angle transformation of the II>-dynamics. Such a method is based 
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on the knowledge of the action-angle transformation for the u-manifold 
and uses the explicit transformation from the u-manifold to the ""-man­
ifold. The general scheme can be illustrated by the following figures 3 to 
5. Expressing u by .p and writing the latter as u = F(.p) we obtain the 
following transformation scheme: 

u-manifold 
u-dynam.ic8 

tangent spa.ce 
tt-vector fields 

cotangent space 
u-covect.or fields 

u = F(IJr) 

(F'tl 

(F'l 

Fig. 3 

, 

W-manifold 
~-dyna.mics 

tangent space 
W-veclor fields 

cotangent space 
'II-covcctor fields 

Here, F' denotes the variational derivative of F and F,T its transpose. 
The map F,T yields the transformation formula for covector fields . Hence 
this map transforms gradients of scalar fields on the u-manifold into COT­

responding gradients of scalar fields on the .p-manifold, in particular it 
transforms u-gradients \7 u into 1jI-gradients "V.p _ 

Linear problem for the 
U = F(W) 

Linear problem for the 
u-dynamic!'l Ilt-dynamics 

</> = W.p 
eigenfunction ,p , eigenfunction 1lr 

Fig. 4 
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Figure 4 represents the interrelation between the auxiliary linear 
problems for the u-dynamics and .p-dynamics as it can be deduced from 
[14], [15J and [16J . Figure 4 is the central one since it gives explicitly the 
relation between the eigenfunctions for the Lax representations for the 
flows on the u- and .p-manifolds. Let us show briefly how this fundamen­
tal relation is explained. 

We rewrite (1.1) and (1.2) as 

( 1.3) 

(1.4 ) 

L(u).p=)".p 

(8, - B(u)).p = 0 

thus emphasizing the isospectral operator L and those parts which depend 
explicitly on the independent variable t. These equations represent a set 
of compatibility conditions; however we can change our viewpoint by 
considering (1.3) as an implicit relation between u and.p . The latter 
solved in terms of the potential u instead of the eigenfunction .p gives the 
manifold transformation we are looking for 

(1.5) u=F(.p). 

Inserting this in (1.4) produces the dynamics of.p. Now, let us find a Lax 
representation for that .p-dynamics. Since the change from u to .p can be 
understood as just a fe-parametrization of our original u-manifold, the 1/;­
dynamics can be understood as a representation of the original dynamics 
in different coordinates (on some infinite dimensional manifold, however) . 
lIence the operator A(.p) = L(F(.p)) must be an isospectral one for the 
""-dynamics. Thus, the intermediate Lax representation follows: 

(1.6) 

(1.7) 

A( .p)</> = Jl</> 

(8, - B(F(.p)))</> = 0 

where now JL is some arbitrary spectral parameter (not to be mistaken 
for the special)" used to determine .p). However, this is not yet the 
triad representation for the .p-dynamics introduced in ([15J and [16]); 
in fact this Lax pair representation is of unnecessarily high order in its 
derivatives. We can easily reduce the order of derivatives by observing 
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that for the special choice I' = >., one solution of that system is given by 
4> = 7/1. Thus, knowing one solution, the method of variation of constants 
can be applied to reduce the order of derivatives, i.e. the ansatz 

(1.8) 

leads to a lower order Lax pair representation for the .p-dynamics. This 
variation of constant method, of course, is the same as the gauge trans­

formation introduced in [15J and [16J. 
Finally, on use of all the transformations we have up to now, and, in 

addition, of the action-angle transformation on the u-manifold we obtain 
the following scheme for the construction of the action-angle transforma­
tion on the .p-manifold. 

«FY)-' 
'Q'to action variable V' oJo action variable 

(F'f 
V .. angle variable V... angle variat..lc 

Fig. 5 

Thus, a canoni cal map which gives an action-angle representation 
for the eigenfunction dynamics in terms of the spectral data of the triad 
representation for these flows is constructed. 

To illustrate this method we will consider here the Korteweg-deVrics 
(KdV), the modified Korteweg-deVries (mKdV) and the nonlinear 
Schrodinger (NLS) equation and, in addition, the ZS system. 

2 - The KdV Lax pair eigenfunctions 

The KdV equation 

(2.1 ) 
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is equi valent to the compatibility condition for the linear system (see e.g. 

[1], [3J , [18J, [13]) 

(2.2) 

(2.3) 

L,(u).p :=(0' + u(x, t) - >,).p = 0 , 

L,(u).p :=( -0, + 40" + 6uo + 3u,).p = O. 

where 0 == %x. 
An elimination of .p from (2.2)-(2.3) leads, as usual, to the KdV 

equation (2.1). Now, u can be expressed in terms of.p by 

(2.4) 

which, substituted into (2.3), gives the nonlinear equation for the eigen­

function .p (sec [1 4J and [15]) 

(2.5) - .p, + 6>'.p, + .p,u - 3.p-'.p,.pu = O. 

The u-dynamics of the KdV equation (2. 1) and the .p-dynamics, de­
scribed by the KdV-eigenfunction equation (2.5), can be considered as 
the two irreducible forms of the mixed u - .p-dynamics, given by the 

system (2.2) and (2.3). 
In the u-manifold the gradient of the action variable is the squared 

eigenfunction s and the gradient of the corresponding angle variable , then, 
is given by the action-angle transformation A(s) = so- 's-' [10J. To 
convert these formulae to the 1/J-manifold , according to figure 4 , it is 
needed to construct the auxiliary linear system for equation (2.5). This 
can be done in various ways (see [15J and [16]). Here we will use the 
well-known method of variation of constants as used in [7J . 

We select>. and fix thereby a particular eigenfunction.p. Further­
more, we denote by 4> the eigenfunction appearing in (2.2)-(2.3) for arbi­
trary spectral JL. Then we substitute the expression (2.4) into the linear 

system (2.2)-(2.3) for 4> and obtain: 

(2.6) L,(F(.p))4> = (0' - .p;(~~) + >. -1') 4> = 0, 

(2.7) L,(F( .p))4> = (-0, + 40" + 6F( .p)o + 3F,( .p))4> = o. 
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The highest order derivative .prZ% can be eliminated from (2_6)-(2.7) 
by the method of variation of constants, i.e. by the change 4> = .p<p. Sub­
stituting this expression for 4> into (2.6), we obtain the following system 

(2_8) 

(2 .9) 

Lt<p :=(.pa' + 2.pra + >,.p - /J.p)<p = 0 

L~<p :=(- .pa, + 4.pa3 + 12.pra' + 6(.prr + >,.p)a)<p = o. 

The system (2 .8)-(2.9) is exactly the eigenvalue problem in which 
we are interested_ Indeed, the compatibility condition for (2.8)-(2.9) or, 
equivalently, the operator equation [Lt, L~] = 71 Lt + 7,L~ where 71 and 
"I, are suitable operators (as described in ([14], [15] and [16]), is equivalent 
to the eigenfunction equation (2.5) . Here [ , ] denotes the commutator 
between operators. An important by-product of this derivation is the 
interrelation 

(2.10) 

between the eigenfunctions 4> and <p of the La.x pair representations for 
the dynamics of u and .p, respectively_ The formulae (2.4) and (2 .10) play 
a central role in our construction. Indeed, the relation (2.10) allows us to 
express the gradients of actions and angles on .p-manifold in terms of the 
eigenfunctions <po Recall that for the KdV equation the eigenfunction s 
of the recursion operator is a gradient of an action variable and that the 
corresponding angle variable is given by [10] 

(2.11) A(s) = sa-Is- I . 

The well-known squared eigenfunction relation s = 4>' between Lax 
pair representation and recursion operator representation induces 

Thus, the action-angle transform s ~ A(.) can be easily expressed in 
terms of.p and 4>. In order to represent cotangent fields in a su itable way 
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by functions we fix the representation for the duality between covector 

fields 7 and vector fields v to be 

1
+~ 

< 7, v >:= _~ 7(X)v(x)dx. 

Then formula (2.4) for the transpose of the variational derivative of 

the map from .p to u yields 

(2.13) 

wherein the factorized expression for F"'(.p) can be obtained on use of the 
factorization formula for ordinary differential operators derived in [11]. 

Finally, combining the formulae (2.11) and (2.12) we obtain, accord­
ing to figure 5, the following expressions for the gradients of action and 
angle variables of the time-evolution for the function .p determined by 
(2.2)-(2 .3) and a fixed spectral parameter >. 

(2.14) 

(2.15) 

"" action = -.p-Ia .p'a<p' , 

"" angle = - .p-Ia.p'a<p'a-I .p-'<p-'. 

Since these variables are parametrized by the spectral parameter I' (or 
rather the corresponding eigenfunction 4» this action-angle representation 
is compatible with the soliton decomposition of the ",,-dynamics, i.e. these 
gradients are eigenfunctions of the transpose of the recursion operator for 
the .p-evolution. Hence formulae (2.14)-(2.15) give important information 
about the .p-dynamics and they will be useful for the further analysis of 
the structure of the KdV-eigenfunction equation. 

3 - The KdV interacting soliton equation 

It is well known ([20], [12] , [5] and [13]) that the KdV equation 
possesses also another isospectrai representation. This representation is 
closely connected with the symmetry properties of the system, and it is 
given by the hereditary recursion operator 'I>(u) = a' + 2u + 2aua- 1 
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The recursion property implies that the KdV equation is equivalent to 
the following dynamics 

(3.1) 4>, = [K',4>] 

where K( u) = U"r + 6uur is the right hand side of the KdV equation . 
Equation (3.1) is the compatibility condition for the linear system 

(3_2) 

(3.3) 

(<I>-4,\)X=0, 

(-0, + K')X = O. 

The integro-differential system (3.2)-(3.3) is equivalent to the follow­
ing purely differential system 

(3.4) <1>,(\1'»8: = (O' + 4UG + 2ur - 4,\0)s = 0, 

<1>,( \1'»8 : = (-0, + O' + 6uo)s = O. 

The compatibility condition for the system (3.4)-(3.5), together with 
the triad operator representation [~h ~2] = 6Ur c})1 again is equivalent to 
the KdV equation (2.1) . 

Hence, the u-dynamics for the system (3.4)-(3 .5) is the same as for 
the linear system (2.2)-(2.3). But the eigenfunction dynamics, of course, 
is different. 

One can express u through 8 via (see [7]): 

(3.6) u = F( 8) := ,\ _ ~ 8" + ~ 8~ . 
2 S 4 S2 

Substituting this expression for u into the second equation (3 .. 5), one 
obtains 

(3.7) - 6' 3-' 3s; Sf - .ll.Sr + Srrr - S SrSrr + - - . 
2 s' 

This equation describes the dynamics of the interacting KdV solitons. 
To apply our method to equation (3.7) one should first find the aux­

iliary linear problem for (3.5) and the interrelation between the KdV­
eigenfunction and interacting solitons equation eigenfunction . Thus, let 
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us denote by 8 the eigenfunction in (3.4)-(3.5) corresponding to fixed ,\ 
and let 8(1') denote this eigenfunction for variable 1'- The eigenfunction 
8(,,), corresponding to" , can be obtained on application of the procedure 
already outlined; on substitution of (3 .6) in (3.4)-(3 .5) it gives 

(3.8) { 
S 8' 8 1 s' } 03 + (4'\ - 2--= + ....!.)o - (--= - -....!.) - 4,,0 s(l') = 0 

S S2 S 2 S2 r 

(3.9) 3 S" 38~),,) ( ) (-0, + 0 + (6'\ - 3- + -- v s" = O. 
S 2 S2 

The highest order derivatives of 8 are eliminated by the ansatz 

(3.10) s(l') = s'P 

which defines the new eigenfunction I' = 1'(1')· 

Fig. 6 Derivative of Angle.variable density of the KdV equation. 



364 B. FUCHSSTElNER - B. KONOPELCHENKO - S. CARILLO [14J 

As a result , one gets the following isospectral problem for equation 
(3.7): 

~,(S)'P:= (sif + 3sra' + {4(A - Il)S + Srr + sf}a + 4(A - Il)S.) 'P = 0 

(3.11) 

(3.12) 

Again this has a quartet operator representation [~l>~,l = I'~' + 
"~, with suitable operators II and ". Relation (3.6) gives (see [7]): 

(3.13) 

Now, since gradients of action variables on the u-manifold are given 
by the S(Il) on use of the formulae (3.10) and (3.13), one obtains the 
following expression for action-angle gradients for the s-dynamics: 

(3 .14) 

(3.15) 

A plot of the x-derivative of the density of the angle variable which 
corresponds to the density of the action variable given by Fig. 2 is seen in 
Fig. 6. In that plot one easily observes that this quantity grows linearly 
with time t. The vi-dynamics and s-dynamics considered above are closely 
related to each other via the squared eigenfunction relation. This relation, 
in particular, implies \1, = 1/(2vi)\1". A simple computation shows 
that the expressions (2.13)-(2.14) and (3.14)-(3.15) are connected via this 
relation. 

4 - The mKdV interacting solitons 

For the mKdV, as well as other integrable equations, the procedure to 
be followed is the same. However, some of the formulae change consider­
ably and the necessary computations become more complicated . Thus,we 
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present briefly the mKdV equation as a further example. This equation 

(4.1 ) u, = ]{(u) = U xrr + 6u'ur 

admits the recursion operator representation 

(4.2) ~,= []{',~l 

where ~ = a' + 4aua- I u is the well known recursion operator related to 
that equation. Equivalently, we can consider (4.1) as the compatibility 

condition of the resulting linear system 

(4.3) 

(~.4 ) 

(~- A)aS =0 

(-a, + ]{')as = o. 

This results in the following map from S to u (see [7]) 

( 4.5) 

Inserting this into (4.4) we obtain the dynamics of S as described in [7] 

( 4.6) 

Again, we denote by still the eigenfunction of (~ . 3) for arbitrary 
spectral parameter /L (instead of A) and we make the ansat7- still = S'P in 
order to obtain, after some computation , the following Lax representation 

for (4.6) 

(. ,3 a AS-Srr a-' S.'-SSxr a) =0 
\3sxra+3s.a +sa - (A- Il)Sa+4 JAS' s.' JAS'-S.' 'P 

( 4.7) 

( 

3' 3 (AS-Szz)'Sa) -0 
(4.8) -sa, + sa + 3s.a + 3szza + "2 (AS' _ s.') 'P - . 

One finds the differential operator F(S)'T given by (4 .. 5) to be 

(4.9) 
1 S' 

F(S)ff = --2 a J>.' , s s~ - $; 
a -I 

S . 
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Now, using the known action gradients 

(4 .1 0) '17 uactions = S(Il ) 

and the correspon ding angle gradients [IOJ 

(4 .11) 

we find the corresponding gradients of action-angles for the !/I-dynamics 
given by (4.6) to be 

(4.12) '17" action 

( 4. 13) '17" angle 

I s' = - -o/'f=,===,o o<p, 
2s VAs' - s; 

which again describes a set of action angles for (4.6) in terms of the 
eigenfunction of the new Lax representation (4 .7 ). 

5 - The NLS interacting soliton equation 

The nonlinear Sch riidinger equation (see e.g. [1], [3], [18], [13]) 

(5 .1 ) 

admits the recursion operator [5J 

(.5.2) ~(u) = -iO + 4iuo-'Re(fi .) 

where Re( fi·) denotes the following operator 

w - " real part oft f£w) . 

lIence the dynami cs of (.5. 1) is represented by 

(.5 .3 ) ~, = [K', <f>J. 
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In other word s (5.1) is the compatibility condition of 

(5.4 ) (~-A)is=O 

(-0, + K')is = 0 

where the crucial rel ation between u and s is [7J 

(5.6) u = F(s) = ~(As+ is,)lsl-'· 

Inserting this into (5 .1 ) we find [7J 

(5.7) ilsl's, = s" lsi' - slAs + ~s, I' + (As + is,)'.s . 

367 

As before s(J1) denotes the general eigen functi on for (.5.4) (A again 
replaced by I'). The ansatz S(Il) = S'P now leads to the following Lax 
pai r represen tation of (5. 7) 

or 

(5 .8) 

(5.9) 

(~ -I,)i'Ps - 'P(~ - A)is = 0 

(-0, + W)i<ps - '1'( -0, + [(' l is = 0 . 

[<f> ,'PJis + (A -I');S'P = 0 

- isD,'P + IJ(', 'Plis = O. 

or course, here all quantities u occurring in 4> and [\- ' should be 

replaced by (5 .6). It is well known that the s(l') arc grad ients of a.ction 
variables o f the NLS equati on . T he gradi{'nts o f the correspond ing angle­
variables , obtained in [10] are used to write the grad ients of action-angle 
va.riables on the u-m an ifold in te rm s of the new eigenfunction IP 

(.5. 10) 



368 B. FUCHSSTElNER - B. KONOPELCIlENKO - S. CARILLO (18J 

The duality between tangent fields v and cotangent fields -y can be 
fixed, as usual, by 

(5.12) 1
+00 

< -y, v >= real part of - 00 -r(x)v(x)dx . 

By this choice the transpose of F' becomes 

( 5.13) F ,T = _1_(.>.+ ia) _ _ 1_ Re(s .). 
21s1 21s13 

Application of that to (5.11) yields 

(5.14) 

(5 .15) 

6 - A ZS-System 

'1. action = F,T sIP 

\1, action = F,T A(s). 

In order to illustrate the applicability of the method in the case of 
systems with several components we consider as a final example a partic­
ular case of the well-known ZS-AKNS-system, namely (see [1), [3J, [18]) 

(6.2) i (q) = ( qrr + 2q
':) 

T t -rrr - 2qrw 

th is contains the systems considered so far as special reductions (for ex­
ample the NLS by r = - q) . Introducing the following quantities 

(6.2) A=(O q), 
-r 0 

equation (6.1) can be understood (see [1), [3J, [18]) as the compatibility 
condition of 

(6 .3) 

(6.4 ) 
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where 

(6.5) n = -2il-'<73(A + 1-'(73) + iA' - iA •. 

One easily sees that such a compatibi lity condition leads to 

(6 .6) A, = i<73[2A3 - ArrJ 

which is just an equivalent formulation of (6.1 ). Now, consider those I' 

such that there is a solution 1(/.) with rapidly vanishing boundary values 
at infinity<". Observe, that in this case that I-' is a conserved quantity 
for the dynamics of (6.1). Here we denoted by ( , ) the quantity 

+00 

(6 .7) (f, ii) := J (-r,v, + -y,v,)dx . 
- 00 

This form we also will take as representation for the canonical du­
ality between covector fields f and vector fields v. The gradient of that 
quant ity I' is easily computed as follows. 

Denote L = (<73a - <73A) and observe that <7,L is symmetric with 
respect to the scalar product given by ( , ). Here, <7, is the usual Pauli 
matrix 

Then consider the eigenvalue equation (6 .3) 

Thus, by ta.king the variational derivative In the direction 8ii. = 
(6q, 6rjT we obtain, 

(6 .9 ) 

(2)Observe that in the literature ([17], [41) those solutions with rapidly vanishing bound· 

aTY va.lues aTe sometimes denoted by ¢(p.r, dcpending on whethcr Jt is in the upper 
or lower ha.lr or the complex plane. 
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The latter multiplied with u, and then taking the scalar product with 

(;f (J1) and observing that LT u, = u, L delivers 

lIere the two remaining terms cancel because of (6.9) . We, easily find 

(6.11) u, L'[Eu] = (Er 0) 
o Eq 

hence 

(6.11) 

~ ~ 

Furthermore, we observe that {7/J (J1),u, 7/J (J1)) is also a conserved 
qnantity, therefore we can normalize it to -} (by using homogeneity of 
the eigenvector equation (6 .10)). So, 

(6.12) 

defines a set of gradients of action variables ([17], [4]). Let us first com­
pute the corresponding angle variables, or rather their gradients. By 
1$(J1)" we denote the second solution of (6.3). Of course, this solu tion 
does not satisfy the prescribed boundary condition at infinity. Dy using 

the variation of constants method (as proposed in [10]) such a 1$(I'}" can 

be easily expressed in terms of 1$(J1) . 
It proves convenient to do this computation on a morc general level. 

In the case of a two-component system 

(6.13) 

we want to express the second solution in terms of the first one. We 
assume that B has trace zero, so that 
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Then the ansatz 

I Q 

'1'; = 2<p, + "2<P' 
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inserted in (6.13) leads to two linearily dependent equations in Q. Their 
sol u tion reads 

Hence 

(6 .14) • 1 + <P'!)-'{b -, -'} 
<p, = - 2'1',"2 <p, - c'l', 

(6.15) • 1 + 'I"!)-'{b -, _'} <;)2 =- - 'Pl - Ci.p2 . 
2'1', 2 

Thus for our special case (6.3) admits a second solution 

(6.16) 7/J,(J1}" = __ 1_ + ~7/J'(I,)i!-'{q1h(I'}"-' + r7/J,(,'}"-'} 
2~',(,,} 2 

(6.17) 7/J,(J1)" = +27/J,\") + ~7/J'(I')!)-'{q.p'(I,)"-2 +r7/J,(,')"-'}' 

where the q, r can be expressed in terms of 1) (,,) by use of (6.3) 

(6.18) 

(6 .19) 

q = 7/J,(I'}- ' (7/J,(,,)x - '\7/J,(,,)) 

r = 7/J, (" )-'( -7/J,(,,)x - ,\7/J,(J1)) . 

Now, we find the gradient of the corresponding angle variable by 
using the method which was presented in [10]: 

~ 

Consider the linEar combination of the Lax-opemtor eigenfunction 7/J (J1) 
~ 

and [ times the second solution 7/J (J1)" of the same eigenfunction equa-
~ 

tion. Then insert this new function, instead oj 1j; (Jt), in the expression 
JOT the gradient oj lhe corresponding spectral value Jl . The linear term in 
[ therein represents the gradient of the corresponding angle variable. 
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This procedure, in the case here considered , delivers the following 
angle-gradients 

(6 .20) 

where ii = (;) . 
Now, we concentrate on the dynamics for the eigenfunction itself. We 

fix a special spectral value, denoted by >. and we define 

(6.21) 

Let 

then 

¢' = ¢'(>') 

¢'" = ¢'"(>.). 

where (ii, b) denotes the matrix whose columns are given by the vectors 

ii and b. Rewrit ing the dynamics and the Lax representation for ¢' we 
abbreviate 

(6.24) W := W(>.) , W " = W"(>'). 

The following relations are easily verified by direct computation: 

(6.25) 

(6.26) 

(6.27) 

det(W) = 1 

W " = W- 1 

(A + >'''3) = Wr W " . 

Relation (6.27) is an immediate consequence of the fact that W is 
a fundamental solu t ion of (6.3), i.e. Wr = (A + >'''3)W . Now, inserting 
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(6.27) into (6.4) and (6.5), respectively we obtain the nonlinear equation 

describing the ¢'-dynamics (see [14J, [1.5J, [16J)<') 

(6.28) "3 ¢" = { - 2i>'''3Wr W " + i(Wr W" - >'''3)' - i(Wr W"),} ¢' . 

The Lax-representation for ¢' is obtained from (6.3) by substitution 

¢'(p,) = W" and on use of (6.26) and (6.27) in the following way 

(6.29) 

(6.30) 

Hence [16] 

(6.31) 

or 

(6.32) 

(W"')r = ¢'(P,)r = (A + "3P,)¢'(P,) 

=(A + "3>') ¢' (p,) + "3(P, - >.) ¢' (p,) 

=WrW"W" + "3(P, - >')W", 

= Wr", + "3(p, - >')W", 

"'r = (p, - >')W""3W", 

Analogously, the dynamics of" follows according to 

(6.33) 

Now, to obtain the action-angle gradients for (6.28) we proceed as 

before. First we write these quantities in terms of 1$ and rp on the 
u-manifold and then we transform them via a pullback. For sake of 

simplicity, let us introduce i' such that ¢' (1') = Wi' represents a second 

(3)If one defines W · 0"3 W = S and expands W· 0"3 W = 2: O"iSi then 5 satisfies ([14], 

[15]) 5! = S x 5zr which is the dynamics of th~ Landau-Lifshitz. equation. Thus our 
method also yields the action-angle transrormatlOn for that equation. 
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solution of (6.30). T he latter follows on direct use of (6. 14)-(6.15): 

(6.34) 

(6.35) 

1 
<p; = - 21", + (,.,. - >')l"la-I{<p~'>p;>p; + <P;'>PI>P,) 

I 
<P; = +-2 + (,.,. - >')I",a-I{I"~'>p;>p; + I";'>PI>P,) . 

<PI 

Then the action-angle gradients on the it-manifold are 

(6.36) V J action (,.,.) = 

(6.37) 

[24] 

They can be transformed into the action-angle gradients on the >P­
manifold by means of the map F,T where it = F(7$). This follows, fixing 

the duality between tangent and cotangent space of the -;,;;'-man ifold as 
before, from the variational derivatives of (6.18) and (6 .19). A detailed 
computation yields 

(6 .38) 

This finally gives 

(6.39) v -;; action (I') = Fa-V;; action (I'l 

(6.40) 

These quantities can be obtained in explicit form on substitution of 
the previous form lilac. 

I 

-I 

I 
·1 

I 
I 
I 
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