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The Action-Angle Transformation for Interacting
Solitons and the Dynamics of Eigenfunctions

for Soliton Equations

B. FUCHSSTEINER - B. KONOPELCHENKO - S. CARILLO

RIASSUNTO — Si propone un melodo che permetle la costruzione esplicita det gra-
dienti di variabilt azione ed angolo relative alla dinamica di equazioni di evoluzione per
autofunzion: solitoniche. Equazioni di inlerazione solilonica, al part di autofunzioni
dclla coppia di Lax, relative a numerosi ben noli sistemi inlegrabili sono prese ad e-
sempio per illustrare il metodo. Tra di essi vi sono le equazioni di Korteweg-de Vrics,
Korteweg-deVries modificata, Schrédinger non lineare ed il sistema di Zakharov-Shabat.

ABSTRACT — A method is presented which allows the explicit construction of the
gradients of action and angle variables related to the dynamics of solilon eigenfunction
equations. The inleracting soliton equatlions, as well as the Laz-pair cigenfunctions,
related to a number of known complelely inlcgrable systems arc taken as eramples to
tllustrate the method. Among these are the Korteweg-dcVries, the modified Korteweg-
de Viries, the nonlinear Schrodinger equation and a ZS-system.

Key Worbps - Nonlinear evolution equalions - Completely inlegrable systems -
Multi-soliton manifold - Aclion-angle transformation - Laz Pair.
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1 — Introduction

Completely integrable flows on infinite dimensional manifolds are
generally called soliton equations because, under suitable boundary con-
ditions at infinity, solutions often decompose asymptotically into soli-
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tary traveling waves. These asymptotically emerging traveling waves are
termed solifons and if a solution decomposes completely into solitons, it
is termed a multisoliton. Here, by complete decomposition we mean that
there is some suitable energy-norm such that all the energy is carried by
the asymptotic solitons.

Interaction of these solitons was widely studied and, indeed, the name
soliton was chosen essentially because reductions of these systems to finite
dimensional invariant submanifolds (i.e. to multisoliton-manifolds) often
behave like interacting single particles.

Thus, for motivation, let us consider, as an example, the analogy
between the multisoliton solutions of a well known integrable system,
say the Korteweg-deVries (KdV) equation u, = u,., + 6uu., and a field
consisting of several particles. A plot of a typical two soliton solution
u(z,t) of the KdV equation is given by Fig. 1(1).

Fig. 1 Two-soliton solution of the KdV equation

(U'We are indebted to Thorsten Schulze for plotting these figures.
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Certainly, to study the interaction of these particles one would rather
like to be able to look at the individual particle during the interaction
instead of considering the superposition of all particles. Since the multi-
soliton solution represents a superposition one easily gets the idea that
consideration of the individual soliton should give a better understanding
of soliton interaction. The only problem which remains is how to isolate
the interacting soliton because examination of the complete solution only
gives asymptotic solitons, or particles.

In fact, picking out the individual soliton, even during its interaction,
is possible by the use of group theoretical methods (see [7]). The method
consists in the identification of the eigenvectors of the so called recursion
operator with the z-derivatives of the interacting solitons. These eigen-
vectors are called interacting solitons and the group theoretical meaning
of the recursion operator induces a nonlinear evolution equation govern-
ing the time evolution of these interacting solitons. One of the interacting
solitons in the case of the two soliton solution (Fig.l) is represented in

Fig. 2 Interacting soliton of the KdV equaltion

One should observe that the only field-variable entering in these in-
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teracting soliton equations is the soliton itself, not the variable corre-
sponding to the superposition of solitons. The interaction is reflected by
the nonlinear terms of this equation. Thus, each interacting soliton is
described by a nonlinear flow where only self-interaction appears, and
the information about the existence of other solitons in the superposed
field is hidden in the initial data. Thus small variations of initial data
characterize different states of these interacting solitons.

In addition, via this procedure, nonlinear equations governing the
evolution of the interacting soliton are obtained in such a way that all
parts of the remarkable structure (Hamiltonian formulation, complete in-
tegrability, [hereditary] recursion operator, angle variable, auto Bicklund
transformation, etc.) admitted by the original evolution are carried over
to the evolution of the interacting soliton. Other advantages of this view-
point are:

o The analysis of the evolution of the interacting soliton leads to a
simple qualitative description of the interaction.

e This analysis gives a simple way to define trajectories described by
the moving solitons.

e One is able to find new completely integrable systems and obtains

new insight into the complete integrability of flows on infinite dimen-
sional manifolds.

However, an important problem still remains to be investigated, na-
mely the complete construction of the action-angle parametrization re-
lated to the flow given by the interacting solitons. In principle, given
a finite dimensional flow such an action-angle representation is the most
important consequence of complete integrability. Therefore, the complete
integrability in the Liouville sense [2] is the most important feature of the
dynamics of the multisoliton systems (see e.g. [1], [3], [18], [13]). The
inverse spectral transform (IST) method allows to construct the action-
angle variables via the corresponding inverse problem data. Another,
more algebraic method to construct the action-angle variables (in multi-
soliton sector) has been recently proposed ([8], [9], [19]). Within such an
algebraic approach the gradients of the action and angle variables are the
different eigenvectors of the transposed hereditary [5] recursion operator
[20]. However, a direct transfer of these methods to the cases given by the
flows of interacting solitons is difficult from the computational viewpoint
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since the recursion operators are usually of a very complicated nature.

On the other hand, in most cases, it is possible to construct a trans-
formation from gradients of action variables to gradients of angle variables
explicitly [10]. This action-angle transformation is an important ingredi-
ent to obtain the soliton dynamics as well as for the spectral resolution of
the recursion operator. Since the symmetry groups corresponding to an-
gle variables are the prototypes of mastersymmetries, this transformation
is closely connected with the mastersymmetry approach [6].

In this paper, in the context of the inverse scattering transform (IST),
we exploit a method which is based on the fact that the recursion oper-
ators deliver an isospectral formulation of the flows under consideration.
Thus, 2 generalization of the problem of constructing the action-angle
transformation in case of the interacting soliton is the construction of the
action-angle transformation in the case of the dynamics of the eigenvec-
tors of isospectral operators for completely integrable flows. This problem
is solved in this paper by considering a sequence of Bécklund transfor-
mations.

Within the framework of the IST method, soliton equations are as-
sociated with the system of linear equations

(1.1) Ly(w; A = 0,
(1.2) La(u, A = 0.

where L; and L, usually are differential operators and X is a spectral
parameter (see e.g. [1], [3], [18], [13]). Elimination of the eigenfunction
1 gives rise to the integrable soliton equation for w. Thus a flow on
an infinite dimensional manifold, here throughout termed u-manifold, is

defined.

Recently it was shown that the eigenfunctions % also obey nonlinear
equations which are again solvable by the IST method ([14], [15], [16]).
Eigenfunction equations have been constructed for many 141 and 2 + 1-
dimensional soliton equation ([14], [15], [16]). These equations possess a
number of interesting properties, in particular, the analysis of the related
Hamiltonian structure is an interesting problem.

In this paper we propose a method for constructing explicitly the
action-angle transformation of the #-dynamics. Such a method is based
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on the knowledge of the action-angle transformation for the u-manifold
and uses the explicit transformation from the u-manifold to the v-man-
ifold. The general scheme can be illustrated by the following figures 3 to
5. Expressing u by 9 and writing the latter as u = F(%)) we obtain the
following transformation scheme:

o

u = F(¥) ¥-manifold

u-manifold V- disinies

u-dynamics

\___

(Ff)— 1
tangent space tangent space
u-vector fields ' U-vector fields
(F)T
cotangent space cotangent space
u-covector ficlds Y-covector ficlds
Fig. 3

Here, F' denotes the variational derivative of F' and F'7 its transpose.
The map F'7 yields the transformation formula for covector fields. Hence
this map transforms gradients of scalar fields on the u-manifold into cor-
responding gradients of scalar fields on the ¥-manifold, in particular it
transforms u-gradients V, into 3-gradients V.

. u=F
Linecar problem for the (‘I’) Linear problem for the
u-dynamics Y-dynamics
_ ' ¢ =V
eigenfunction ¢ cigenfunction ¥
Fig. 4
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Figure 4 represents the interrelation between the auxiliary linear
problems for the u-dynamics and ¥-dynamics as it can be deduced from
[14], [15] and [16]. Figure 4 is the central one since it gives explicitly the
relation between the eigenfunctions for the Lax representations for the
flows on the u- and ¥-manifolds. Let us show briefly how this fundamen-
tal relation is explained.

We rewrite (1.1) and (1.2) as

(1.3) L(u)yp = Ay
(1.4) (6 — B(u))¥p =0

thus emphasizing the isospectral operator L and those parts which depend
explicitly on the independent variable . These equations represent a set
of compatibility conditions; however we can change our viewpoint by
considering (1.3) as an implicit relation between u and 1. The latter
solved in terms of the potential u instead of the eigenfunction 9 gives the
manifold transformation we are looking for

(1.5) u=F().

Inserting this in (1.4) produces the dynamics of %. Now, let us find a Lax
representation for that ¥-dynamics. Since the change from u to i can be
understood as just a re-parametrization of our original u-manifold, the -
dynamics can be understood as a representation of the original dynamics
in different coordinates (on some infinite dimensional manifold, however).
Hence the operator A(y) = L(F(%)) must be an isospectral one for the
i-dynamics. Thus, the intermediate Laz representation follows:

(1.6) A(¥)d = po
(1.7) (0. — B(F(¥)))$ =0

where now p is some arbitrary spectral parameter (not to be mistaken
for the special A used to determine ). However, this is not yet the
triad representation for the ¥-dynamics introduced in ([15] and [16]);
in fact this Lax pair representation is of unnecessarily high order in its
derivatives. We can easily reduce the order of derivatives by observing
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that for the special choice ¢ = A, one solution of that system is given by
¢ = ¢. Thus, knowing one solution, the method of variation of constants
can be applied to reduce the order of derivatives, i.e. the ansatz

leads to a lower order Lax pair representation for the ¥-dynamics. This
variation of constant method, of course, is the same as the gauge trans-
formation introduced in [15] and [16].

Finally, on use of all the transformations we have up to now, and, in
addition, of the action-angle transformation on the u-manifold we obtain

the following scheme for the construction of the action-angle transforma-
tion on the t-manifold.

-1
((F)7)
Vu action variable V¢ action variable
()
Vu angle variable *| Vg angle variable
Fig. 5

Thus, a canonical map which gives an action-angle representation
for the eigenfunction dynamics in terms of the spectral data of the triad
representation for these flows is constructed.

To illustrate this method we will consider here the Korteweg-deVries
(KdV), the modified Korteweg-deVries (mKdV) and the nonlinear
Schrodinger (NLS) equation and, in addition, the ZS system.

2 — The KdV Lax pair eigenfunctions
The KdV equation

(21) Uy = Upzz + Bun,
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is equivalent to the compatibility condition for the linear system (see e.g.

(1], (3], (18], [13])
(2.2) Li(u)y :=(8* + u(z,t) = A)Yp =0,
(2.3) Lo(u)tp :=(—0; + 48° + 6ud + 3u. )y = 0.

where d = 9/0z.
An elimination of % from (2.2)-(2-3) leads, as usual, to the KdV
equation (2.1). Now, u can be expressed in terms of ¥ by

P==(A)
=F():=A—-
(2.4) u=F() =
which, substituted into (2.3), gives the nonlinear equation for the eigen-
function % (see [14] and [15])

(25) _wt + 6’\#’: o o ¢::‘: = 3¢_l¢:¢’:z =1

The u-dynamics of the KdV equation (2.1) and the ¥-dynamics, de-
scribed by the KdV-eigenfunction equation (2.5), can be considered as
the two irreducible forms of the mixed u — ¥-dynamics, given by the
system (2.2) and (2.3).

In the u-manifold the gradient of the action variable is the squared
eigenfunction s and the gradient of the corresponding angle variable, then,
is given by the action-angle transformation A(s) = s0~1s~! [10]. To
convert these formulae to the ¥-manifold, according to figure 4, it is
needed to construct the auxiliary linear system for equation (2.5). This
can be done in various ways (see [15] and [16]). Here we will use the
well-known method of variation of constants as used in [7].

We select A and fix thereby a particular eigenfunction %. Further-
more, we denote by ¢ the eigenfunction appearing in (2.2)-(2.3) for arbi-
trary spectral g. Then we substitute the expression (2.4) into the linear
system (2.2)-(2.3) for ¢ and obtain:

- 2_1"’:1('\) _ =
(26)  L(F@)é= (0"~ S5sm+A-w)e =0,

(2.7) Lo(F(¥))¢ = (=8 + 48 + 6F(1)0 + 3F:(¥))¢ = 0.
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The highest order derivative %... can be eliminated from (2.6)-(2.7)
by the method of variation of constants, i.e. by the change ¢ = 9p. Sub-
stituting this expression for ¢ into (2.6), we obtain the following system

(2.8) LYy :=(¥0*+29.0 + A — up)p =0

(2.9) LYo :=(—vd; + 430> + 12¢:0” + 6(1h:z + AY)D) = 0.

The system (2.8)-(2.9) is exactly the eigenvalue problem in which
we are interested. Indeed, the compatibility condition for (2.8)-(2.9) or,
equivalently, the operator equation [LY,LY] = 1,LY + 7,L¥ where 7; and
7, are suitable operators (as described in ([14], [15] and [16]), is equivalent
to the eigenfunction equation (2.5). Here [, ] denotes the commutator
between operators. An important by-product of this derivation is the
interrelation

(2.10) ¢ =Py

between the eigenfunctions ¢ and ¢ of the Lax pair representations for
the dynamics of u and %, respectively. The formulae (2.4) and (2.10) play
a central role in our construction. Indeed, the relation (2.10) allows us to
express the gradients of actions and angles on 3-manifold in terms of the
eigenfunctions ¢. Recall that for the KdV equation the eigenfunction s
of the recursion operator is a gradient of an action variable and that the
corresponding angle variable is given by [10]

(2.11) Alg) = 285",

The well-known squared eigenfunction relation s = ¢? between Lax
pair representation and recursion operator representation induces

s =¥,
A(s) = 26707y,

Thus, the action-angle transform s — A(s) can be easily expressed in
terms of 1 and ¢. In order to represent cotangent fields in a suitable way
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by functions we fix the representation for the duality between covector
fields 4 and vector fields v to be

< 7,0 >i= -/:+m v(z)v(z)dz .

00

Then formula (2.4) for the transpose of the variational derivative of
the map from % to u yields

213) (P () = (@2 ($es — 90%)" = —97'09%0%™2

wherein the factorized expression for F'7(%) can be obtained on use of the
factorization formula for ordinary differential operators derived in [11].

Finally, combining the formulae (2.11) and (2.12) we obtain, accord-
ing to figure 5, the following expressions for the gradients of action and
angle variables of the time-evolution for the function % determined by
(2.2)-(2.3) and a fixed spectral parameter A

(2.14) V, action = —9 199 d¢?,

(2.15) V, angle = —¢~18920p*0 197,

Since these variables are parametrized by the spectral parameter p (or
rather the corresponding eigenfunction ¢) this action-angle representation
is compatible with the soliton decomposition of the ¥-dynamics, i.e. these
gradients are eigenfunctions of the transpose of the recursion operator for
the y-evolution. Hence formulae (2.14)-(2.15) give important information
about the ¥-dynamics and they will be useful for the further analysis of
the structure of the KdV-eigenfunction equation.

3— The KdV interacting soliton equation

It is well known ([20], [12], [5] and [13]) that the KdV equation
possesses also another isospectral representation. This representation is
closely connected with the symmetry properties of the system, and it is
given by the hereditary recursion operator ®(u) = 8 + 2u + 20ud~".
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The recursion property implies that the KdV equation is equivalent to
the following dynamics

(3.1) o, = [K', 9]

where A'(u) = uy.. + 6uu, is the right hand side of the KdV equation.
Equation (3.1) is the compatibility condition for the linear system

(3.2) (®—4\)x =0,
(3.3) (=8 + Ky = 0.

The integro-differential system (3.2)-(3.3) is equivalent to the follow-
ing purely differential system

(3.4) 1 (¢)s 1= (0 + 4ud + 2u, —4X9)s = 0,
P2(P)s i = (- + & + 6ud)s = 0.

The compatibility condition for the system (3.4)-(3.5), together with
the triad operator representation [®,, ®,] = 6u,®, again is equivalent to
the KdV equation (2.1).

Hence, the u-dynamics for the system (3.4)-(3.5) is the same as for
the linear system (2.2)-(2.3). But the eigenfunction dynamics, of course,
is different.

One can express u through s via (see [7]):

(3.6) b= F(s]=X- -y e 2%,

Substituting this expression for u into the second equation (3.5), one
obtains

(3‘7) § = GA‘S: + Srrr — 35_13:521 + E"S_i -
2 52
This equation describes the dynamics of the interacting KdV solitons.
To apply our method to equation (3.7) one should first find the aux-
iliary linear problem for (3.5) and the interrelation between the KdV-
eigenfunction and interacting solitons equation eigenfunction. Thus, let
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us denote by s the eigenfunction in (3.4)-(3.5) corresponding to ﬁxec:! A
and let s(y) denote this eigenfunction for variable . The eigenfunction
s(u), corresponding to p , can be obtained on application of .the procedure
already outlined; on substitution of (3.6) in (3.4)-(3.5) it gives

fiw . 8o Bgr 182 B
(38) {83+ (4A—2T+§)6” (T—53—2)2—4p5} s(;r,)_
B BT 3
(39) (HE), + 5 + (6)\ - 3T + 55—2)3)3(#)— 0.

The highest order derivatives of s are eliminated by the ansatz
(3.10) s(n) = s

which defines the new eigenfunction ¢ = ().

Fig. 6 Derivative of Angle-variable density of the KdV equation.
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As a result, one gets the following isospectral problem for equation
(3.7M):

2
B,(s)p = (333 +35.9% + {4() — p)s + s, + %’-}6 +4(A - p)s,) =0
(3.11)

2
(3.12)  Py(s)p:= (—sa, + 50° + 3s5.8% + {6/\5 + %s—;-} 6) p=0.

Again this has a quartet operator representation [®,,®,] = 1,®, +
7.®, with suitable operators 7; and 7,. Relation (3.6) gives (see [7]):

(3.13) P = -%s’lasas'l :

Now, since gradients of action variables on the u-manifold are given
by the s(u) on use of the formulae (3.10) and (3.13), one obtains the
following expression for action-angle gradients for the s-dynamics:

(3.14) V,action = —%s‘lasa(p,
(3.15) V,angle = ——;-s‘las&pa“‘s’lga"‘ ;

A plot of the z-derivative of the density of the angle variable which
corresponds to the density of the action variable given by Fig. 2 is seen in
Fig. 6. In that plot one easily observes that this quantity grows linearly
with time {. The ¥-dynamics and s-dynamics considered above are closely
related to each other via the squared eigenfunction relation. This relation,
in particular, implies V, = 1/(2¢¥)V,. A simple computation shows
that the expressions (2.13)-(2.14) and (3.14)-(3.15) are connected via this
relation.

4 — The mKdV interacting solitons

For the mKdV, as well as other integrable equations, the procedure to
be followed is the same. However, some of the formulae change consider-
ably and the necessary computations become more complicated. Thus,we
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present briefly the mKdV equation as a further example. This equation
(4.1) uy = K(u) = Upee + 6u’u;

admits the recursion operator representation

(4.2) ®, = [K', 9]

where ® = 92 + 49ud~'u is the well known recursion operator related to
that equation. Equivalently, we can consider (4.1) as the compatibility
condition of the resulting linear system

(4.3) (@—A)ds=0
(4.4) (=8, + K")ds=0.
This results in the following map from s to u (see [7])

AS — 812
2V/As? — 5.2

Inserting this into (4.4) we obtain the dynamics of s as described in (7]

(4.5) u = F(s) =

3(As — s22)° .

(4.6) $¢ = Szez T mq.

Again, we denote by s(i) the eigenfunction of (4.3) for arbitrary
spectral parameter g (instead of A) and we make the ansatz s(i) = sp in
order to obtain, after some computation, the following Lax representation

for (4.6)

8430, 8 4 800 — (e oD 4D 0em g1 8 —SSee 3) =’
(35,,,: +38:0°+50° - (A= W)sd+40 =507 =50 ) ¢

(4.7)

3(As—s.0)%s _
(4.8) (—sa‘ + 0% + 35.0° + 35..0 + ima) p=0.

One finds the differential operator F(s)” given by (4.5) to be

1

pa T ds71.
2s A

(4.9) F(s)T =

(o5
z
(%] fbm
|
n
M
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Now, using the known action gradients
(4.10) V.actions = s(u)

and the corresponding angle gradients [10]

(4.11) A(s(i)) = s(m)d s (1)~ ps(p)? — s(u)’

we find the corresponding gradients of action-angles for the w-dynamics
given by (4.6) to be

y 1 s?
(4.12) V, action = ——@

25 fAs?T =52 o,

1 S2 = - ”
(4.13) V, angle =—'2—85'T2_T§3993 (s0) 7 nlsp)? = (sp)2

which again describes a set of action angles for (4.6) in terms of the

eigenfunction of the new Lax representation (4.7).

5— The NLS interacting soliton equation
The nonlinear Schrédinger equation (see e.g. [1], [3], [18], [13])

(5-1) U = —iug, + 2i|ul’u
admits the recursion operator [5]
(5.2) ®(u) = —id + 4iud~'Re(u-)
where Re(i-) denotes the following operator

w — real part of(iw) .
Hence the dynamics of (5.1) is represented by

(5.3) &, = [K',9].
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In other words (5.1) is the compatibility condition of

(5.4) (@-A)is=0
(=0:+ K")is=0

where the crucial relation between u and s is [7]
1 . =
(5.6) u= Fle) = 5()«5 +1s.)|s| 7.
Inserting this into (5.1) we find [7]
- 1 5 2 1 2 . 2
(5.7) i|s|®s, = s.-|s]° — s|[As + E”l + (As +is.)"s.
As before s(p) denotes the general eigenfunction for (5.4) (A again

replaced by p). The ansatz s(i) = sy now leads to the following Lax
pair representation of (5.7)

(® — p)is — (P — A)is=0
(=0 + K")ips — (-0, + K')is=0.

or
(5.8) [®,¢)is+ (A= p)isp =0
(5.9) — s+ [K', @lis=0.

Of course, here all quantities u occurring in @ and K’ should be
replaced by (5.6). It is well known that the s(u) are gradients of action
variables of the NLS equation. The gradients of the corresponding angle-
variables , obtained in [10] are used to write the gradients of action-angle
variables on the u-manifold in terms of the new eigenfunction ¢

(5.10) V,action =

Vangle = A(s) = z— + 50~

S
; { phaqc(e-'“ssonr}
s '
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The duality between tangent fields v and cotangent fields v can be
fixed, as usual, by

+o0
(5.12) < 7,v >= real part of / F(z)v(z)dz -
—c0

By this choice the transpose of F’ becomes

(5.13) FT= ﬁ(x B §l%Re(s-).
Application of that to (5.11) yields

(5.14) V, action = F'7sp

(5.15) V, action = F'TA(s).

6 — A ZS-System

In order to illustrate the applicability of the method in the case of
systems with several components we consider as a final example a partic-
ular case of the well-known ZS-AKNS-system, namely (see [1], [3], [18])

(6.2) i(9) = =t
Tl -7y — 2g7°

this contains the systems considered so far as special reductions (for ex-
ample the NLS by 7 = —§). Introducing the following quantities

(62)  F(w= (?83) A= (.E]r g) = ((1) -01)

equation (6.1) can be understood (see [1], [3], [18]) as the compatibility
condition of

(6.3) (030 — 03 A) Y (1) = 19 (1)

(6.4) a3 P (1), = QP (u)
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where
(6.5) Q= —2iuos(A + pos) +iA® —iA,.

One easily sees that such a compatibility condition leads to
(6.6) A, = i03[24° — A_.]

which is just an equivalent formulation of (6.1). Now, consider those u

such that there is a solution ?;(,u) with rapidly vanishing boundary values
at infinity®®. Observe, that in this case that p is a conserved quantity
for the dynamics of (6.1). Here we denoted by ( , ) the quantity

+o0
(6.7) 5,0 = [ (non +pava)de.

This form we also will take as representation for the canonical du-
ality between covector fields § and vector fields #. The gradient of that
quantity p is easily computed as follows.

Denote L = (038 — 03A) and observe that o, L is symmetric with
respect to the scalar product given by (, ). Here, o} is the usual Pauli

matrix
(o1
g = 10 .
Then consider the eigenvalue equation (6.3)
(6.8) LY (p) = p e (n).

Thus, by taking the variational derivative in the direction 67 =
(é6q,67)T we obtain,

—

(6.9) L[S0 % (u) + L9 (u)[67) = b (n)[67] - (Viu, ) 9 (u).

(2)Observe that in the literature ([17], [4]) those solutions with rapidly vanishing bound-

ary values are sometimes denoted by ¥ (), depending on whether p is in the upper
or lower half of the complex plane.
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The latter multiplied with ¢; and then taking the scalar product with
(¥ (1) and observing that LT¢, = o, L delivers

(T (1), L6T)F (1)) = —(Via, 62)(P (), 01 B (1)) -

Here the two remaining terms cancel because of (6.9). We, easily find

(6.11) o1 L'[64] = (%T ;L)
hence
(6.11) Vi = (B (1),01 9 ()™ (ZES)

Furthermore, we observe that (_k( ), al?ﬁ;(,u)} is also a conserved
quantity, therefore we can normalize it to —1 (by using homogeneity of
the eigenvector equation (6.10)). So,

(6.12) V= (ifgﬁgi) ;

defines a set of gradients of action variables ([17), [4]). Let us first com-
pute the corresponding angle variables, or rather their gradients. By

(,u) we denote the second solution of (6.3). Of course, this solution
does not satisfy the prescribed boundary condition at infinity. By using

the variation of constants method (as proposed in [10]) such a E:(,u)' can
be easily expressed in terms of Tf;(,u) )

It proves convenient to do this computation on a more general level.
In the case of a two-component system

(6.13) &. = Bg

we want to express the second solution in terms of the first one. We
assume that B has trace zero, so that

s=(T0).
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Then the ansatz

1 o' ; 1 e <p
—wy, =3 ey 2
9 ®1 (Pz 2(’91

i ™

inserted in (6.13) leads to two linearily dependent equations in @. Their
solution reads

b c
ar = — 4
wi @3
Hence
> 1 Y1 a1 -2 =2
(6.14) Yr== 20 * ?3 {bor® — c2 %}
P20 ) ~3
* :— —=3 b - ;
(6.15) 2 201 + 2 {be; ey}

Thus for our special case (6.3) admits a second solution

(6.16) ¥(p)" = - + ¢1(H)3 Hatn () ™2 + rpa () =2}

Qd’( 1)

+ 290 () + riha() ).

1
010 30 = 43505

where the ¢,r can be expressed in terms of ?;(,u) by use of (6.3)

(6.18) g = Pa(pe) " (W1 (1) — Mr(pe))
(6.19) r=Pi(p) (=2 (p): — Aha(pe)) .

Now, we find the gradient of the corresponding angle variable by
using the method which was presented in [10]:

N . ==
Consider the linear combination of the Laz-operator eigenfunction v (u)
and £ times the sccond solution 1_[;(;1)‘ of the same eigenfunction equa-

— : ,
tion. Then inscrt this new function, instead of ¥ (u), in the expression
for the gradient of the corresponding speciral value u. The linear term in
€ therein represents the gradient of the corresponding angle variable.
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This procedure, in the case here considered, delivers the following
angle-gradients

60 vewnge (= (GUNN)

where @ = (7).
Now, we concentrate on the dynamics for the eigenfunction itself. We
fix a special spectral value, denoted by A and we define

(6.21) T =P
=),
Let

(6.22) W(n)=(f;;§ﬁ§ ffﬁ;) W'“‘“(%ﬁ) _i’((;f))')

then

(6.23) (Vg action (u), Vg angle (r)) = o, (!1’1(()#) %(()ﬂ)) W ().

where (@, I_J-) denotes the matrix whose columns are given by the vectors
@ and b. Rewriting the dynamics and the Lax representation for E’ we

abbreviate

(6.24) W:=WQ) , W' =Ww()).

The following relations are easily verified by direct computation:

(6.25) det(W) = 1
(6.26) W =w-!
(6.27) (A+ Aoz) = W, W™ .

Relation (6.27) is an immediate consequence of the fact that W is
a fundamental solution of (6.3), i.e. W, = (A + Agz)W. Now, inserting

[23] The Action-Angle Transformation for Interacting etc. 373

(6.27) into (6.4) and (6.5), respectively we obtain the nonlinear equation
describing the % -dynamics (see [14], [15], [16])®

(6.28) o3, ={ — 2iAasW.W* + i(W,.W" — Aos)? — i(W.W*),} ¥ .

The Lax-representation for TL: is obtained from (6.3) by substitution
Tb}(,u) = W@ and on use of (6.26) and (6.27) in the following way

(6.29) (W@): =0 (1), = (A +0o3p) 9 (1)
=(A+ 03)) ¥ (1) + o3(p — N) ¥ (1)
(6.30) =W W' W@+ as(uu - A)W@

=W. 5+ o3(u - YW@

Hence [16]

(6.31) G = (= AW 05 W@
or

(6.32) W@, = (1 — N)osW@

Analogously, the dynamics of @ follows according to
(6.33) W@, — 20sW @, — 203W. 5, — 2A\W @, = 0.

Now, to obtain the action-angle gradients for (6.28) we proceed as

—. -
before. First we write these quantities in terms of ¥ and @ on the
t-manifold and then we transform them via a pullback. For sake of

simplicity, let us introduce @* such that E(,u) = W@ represents a second

f one defines W*o3 W = S and expands W' gy W = 3. 0:S: then $ satisfies ([14],
(15]) §; = § x S.= which is the dynamics of the Landau-Lifshitz equation. Thus our
method also yiclds the action-angle transformation for that equation.
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solution of (6.30). The latter follows on direct use of (6.14)-(6.15):

p 1

(6.34) ¢} = ~35; t (1 = X0~ H{eT* %193 + 0329132}
. 1

(6.35) ;= tog (1= Np20~ {07291 3 + w3 24hy1ha} .

Then the action-angle gradients on the #-manifold are

(2001 + ¢;992)2

(6.36) Vi action () =
(o1 + Y1 2)?

(Y201 + P302) (%207 + ¥3603)

(6.37) Va angle (i) =
(191 + Y1 02) (Y10} + V1 03)

They can be transformed into the action-angle gradients on the -
manifold by means of the map F'7 where 7@ = F(?b"). This follows, fixing

the duality between tangent and cotangent space of the % -manifold as
before, from the variational derivatives of (6.18) and (6.19). A detailed
computation yields

(6.38) FT = ( —0%y" — Ay VP + w;?wg)
927 %1 + A% YTt — Ay

This finally gives
(6.39) Vo action (1) = F'TV; action (u)
(6.40) V2 angle (1) = F'TV; angle (1).

These quantities can be obtained in explicit form on substitution of
the previous formulae.
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