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Here, noncommutative hierarchies of nonlinear equations are studied. They repre-
sent a generalization to the operator level of corresponding hierarchies of scalar
equations, which can be obtained from the operator ones via a suitable projection.
A key tool is the application of Bicklund transformations to relate different
operator-valued hierarchies. Indeed, in the case when hierarchies in
1+ 1-dimensions are considered, a “Bécklund chart” depicts links relating, in par-
ticular, the Korteweg—de Vries (KdV) to the modified KdV (mKdV) hierarchy.
Notably, analogous links connect the hierarchies of operator equations. The main
result is the construction of an operator soliton solution depending on an infinite-
dimensional parameter. To start with, the potential KdV hierarchy is considered.
Then Bécklund transformations are exploited to derive solution formulas in the
case of KdV and mKdV hierarchies. It is remarked that hierarchies of matrix
equations, of any dimension, are also incorporated in the present framework.
© 2009 American Institute of Physics. [DOI: 10.1063/1.3155080]

I. INTRODUCTION

Noncommutative integrable systems have been an area of increasing activities in recent years,
both as a topic of independent interest and as a powerful tool for the investigation of the classical
integrable systems. The present article is devoted to various noncommutative Korteweg—de Vries
(KdV)-type hierarchies, their operator solitons, and the Biécklund transformations relating them.
Here these topics are studied in their own right, but the results are formulated and established in
a way that prepares concrete application both to the classical scalar and matrix hierarchies. The
results are presented within the framework of operators on Banach spaces. This approach was
pioneered in a seminal work by Marchenko®* and placed in the context of modern Banach space
geometry by Aden and Carl.! For the further development of the theory the reader is referred to
Refs. 8, 9, 36, and 37. Alternative approaches in the same spirit may be found in Refs. 17, 11, 12,
25, 34, and 35. General references are Refs. 4, 20, 23, 38, and 39 to mention but a few.

The method this work is based on involves solution of a noncommutative (operator-valued)
system which is then used to extract information on the original integrable system via projection
methods. In general terms, the first step is of mostly algebraic character, whereas the second step
makes a link to advanced operator theory. In the development of the theory it turns out that
Bicklund transformation methods (see Refs. 2 and 3 for the original source and Refs. 31 and 32
for modern introductions) are still available within this approach. One of the principal motivations
of the present work is to exploit this key tool systematically in the noncommutative context.

Here, the focus is on the noncommutative hierarchies of the potential KdV (pKdV) equation,
the KdV equation, and the modified KdV (mKdV) equation, according to Refs. 13, 15, 27, 19, and

YElectronic mail: carillo@dmmm.uniromal.it or sandra.carillo@uniromal.it.
Electronic mail: cornelia.schiebold@miun.se.

0022-2488/2009/50(7)/073510/14/$25.00 50, 073510-1 © 2009 American Institute of Physics

Downloaded 20 Jul 2009 to 151.100.227.30. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp


http://dx.doi.org/10.1063/1.3155080
http://dx.doi.org/10.1063/1.3155080
http://dx.doi.org/10.1063/1.3155080

073510-2 S. Carillo and C. Schiebold J. Math. Phys. 50, 073510 (2009)

40. The main goal of the present article is to exhibit operator soliton solutions, depending on an
infinite-dimensional parameter, which solve the equations of a whole hierarchy (see Theorems 1,
10, and 12). In the case of the pKdV hierarchy, which still seems to be the most accessible with
respect to the relevant computations, the proof relies on an involved inductive argument (see Ref.
1 for the pKdV equation itself). Then, in the case of the KdV and mKdV hierarchies, Biacklund
transformations are applied. This choice not only shortens the proof but also provides additional
insight into the connections among the hierarchies and their operator solitons.'”

Bicklund and reciprocal transformations represent a powerful tool in the investigation of
integrable nonlinear differential equations. Indeed, they play a key role both in establishing struc-
tural properties enjoyed by a nonlinear system (Hamiltonian and/or bi-Hamiltonian structure,
symmetry properties, etc.), as well as in the generation of solutions. Since their introduction by
Biicklund®® such transformations have been applied to a variety of physically meaningful prob-
lems, and lately also the link to differential geometry has been e:xploited31 (see the
mc>n0graphies29’31’32 and references therein).

Application of reciprocal transformations concerning interconnection of nonlinear evolution
equations has its origin in the work of Rogers and Wong.33 Since then links among nonlinear
evolution equations, as well as among the hierarchies of the related symmetry generators, have
been extensively studied.>" Specifically, nonlinear evolution equations connected to each other
via Bicklund charts admit a symmetry, as well as the bi-Hamiltonian structure and recursion
operators, which are again related. The link relating the KdV, mKdV, and Harry Dym22 (HD)
equations is analogous to that one which relates the Caudrey-Dodd-Gibbon-Sawada-Kotera
(CDGSK), Kaup-Kupershmidt (KK), and Kawamoto equation,s’m’lg’zl’30 to mention only work
more related to the present one. Here the attention focuses on links between KdV-type equations,
but an extension to further related noncommutative equations is suggested.

The proof that the “operator soliton” indeed is a solution of the KdV hierarchy follows
directly from the pKdV result. By contrast, the mKdV hierarchy requires subtle use of the Miura
transformation. As a preparation, a factorization of the Miura transformation is obtained locally on
operator functions contained in the image of the Miura transformation. As an immediate corollary,
solutions of some equation in the noncommutative mKdV hierarchy are mapped to solutions of the
corresponding equation in the KdV hierarchy. These results on the Miura transformation, pre-
sented in Sec. IV, may be of independent interest. Then, connections among the operator solitons
are established. Combination of the previous results now leads to a conceptual proof in the mKdV
case.

The material is organized as follows. In Sec. II, the pKdV hierarchy in operator form is
introduced, then it is proved to admit soliton solutions in Theorem 1. In Sec. III, the KdV and
mKdV hierarchies are introduced, and the main results on their operator solitons are stated [see
Theorem 10 (KdV case) and Theorem 12 (mKdV case)]. The proof of Theorem 10 is then given.
Section IV explores crucial general properties on the noncommutative Miura transformation.
Section V explains how operator solitons are connected to each other. In Sec. VI, all the previous
results are combined to establish Theorem 12.

Il. THE NONCOMMUTATIVE pKdV HIERARCHY AND ITS SOLITON SOLUTION

This section treats solutions of the noncommutative pKdV hierarchy. Theorem 1 provides the
formula for the operator soliton, which depends on two operator-valued parameters. The solution
property is proved for the pKdV hierarchy by an inductive argument. In Sec. III, corresponding
results for the noncommutative KdV and mKdV hierarchies will be deduced by Bécklund trans-

formations.
Consider the noncommutative pKdV hierarchy, which, in recursion operator formulation,
reads as
Vi, =YWV, (Eyy)

with n=1, where the recursion operator is defined by
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\If(V):D2+AVX+D‘1AVXD+D‘1CVXD“CVX, (1)

and V is a function whose values are bounded linear operators on some Banach space. D denotes
the derivative with respect to x, while C; and A7 denote the commutator and anticommutator,
namely,

Cr(8)=[T.S], A(S)=A{T.S}.

The choice of the recursion operator is inspired by related recursion operators admitted by the
KdV and mKdV equations.13’15’27’19’40 Actually the relation W(V)=D~'®(U)D with U=DV is
valid, where ® is the recursion operator of the KdV hierarchy27 (see also Sec. III). In particular,
this shows that W indeed is a recursion operator in the sense of Ref. 26.

The lowest members n=1,2,3 of the hierarchy (E,,_;) read as

(El) th = Vx:
(E3) Vt3 = Vxxx + 3V)2c’

(ES) V[S = VXXXXX + S{Vx’ VX}CX} + SV)ZC)C + IOVi,

where, as usual, #,=x, t3=t. In general (E,,_;) explicitly depends on ¢, t,,_;. The equations
(Ey,-1), L =n=N, are regarded as a system of partial differential equations where the unknown V
depends on the variables 7,15, ...,ty_;. In literature, it is customary to consider {(E5,_;)},=; as a
system for formal functions in infinitely many variables #{,73,.... Since construction of explicit
solutions by analytical methods is intended, it is preferable to work with truncated expressions in
finitely many variables.

Let E be a Banach space and A,B bounded linear operators on E. Consider the operator-
valued function

Vy=(I+Ly) "(ALy+ LyA), (2)

where

N
Ly=Ly(t,, ---JzN—l)=GXP(2A2k_lfzk—1)B (3)
k=1

and 7 denotes the identity operator on E. It is known' that V, provides a solution of the noncom-
mutative pKdV, which can be understood as an operator analog of the 1-soliton. A direct proof of
the corresponding fact that V3 solves the noncommutative potential fifth order KdV (Ref. 9) is
already very involved.

Here, relying on recursion methods, it is proved that (2), henceforth termed operator soliton,
represents a solution of all the equations in the pKdV hierarchy. Specifically, the following result
holds.

Theorem 1: The operator soliton Vy in (2) solves the system of noncommutative pKdV
equations {(E,,_1)}1=p=y for any N € N.

In the above statement no explicit assumptions on regularity are included at this stage since
the proof relies on purely algebraic manipulations with the operators D, O » and D' In applica-
tions of course all these operations need to be defined. As a rule this will be done by verifying that
the partial derivatives of sufficient high order are defined in the classical sense and decay suffi-
ciently fast for x——o (where D! is realized by [*_:--dx). Actually many solutions that will be
constructed in the forthcoming paper7 will belong to some generalized Schwartz space.

The theorem will be proved by induction on n. The essence of the inductive argument is
contained in the following proposition.

Proposition 2: The operator soliton (2) satisfies
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th+2 = ‘I, ( V) th

Sor all odd numbers n € N with n+2=2N-1.
To simplify the notation, the dependence of Vy on N has been suppressed. Let W,,n e N
denote the following operator functions:

W,=(I+L)"'A". (4)

The proof relies on various auxiliary lemmas as follows.
Lemma 3: The operator functions given by (4) satisfy

(Wn)tm == Wn+m + WmWn

Sor all odd numbers m e N with m=<2N-1 and all numbers n e N.
Proof: The identity

LU+L)'=(I+L)-DU+L)'=I-I+L)",
allows us to deduce
(W), =(U+L)"'A"), =(U+L)"), A"==(I+L)"'L, (I+L)7'A"
—(I+L)'A"LUI+ L) 'A" == I+ L) 'A™I - (I+ L)"HA”"
== W, (A"=W,)==W,,,, + W, W,,

where the last reformulation is obtained upon use of

W A" =((I+ L) '"AMA™ = (I+ L) 'A™" = W,,,,.

Next some results involving derivatives of the operator soliton are proved. To start with, the
subsequent lemma holds true. O
Lemma 4: The operator soliton (2) satisfies

v, =W,V,

Vt - Wn+mV + {Wm Wm}v

nfm —

for all odd numbers n,m e N with n,m=2N-1.
Proof: Lemma 3, in particular, implies that

T+, ==W,(I=(I+L)7").
The latter, together with
(I+L)" AL+ LA), =(I+ L)'"AMAL+LA) = W, (AL + LA),
gives
Vv, =+ L)‘l),n(AL +LA)+(I+L) (AL + LA), == W, (I~ (I+ L)™)AL+LA) + W,(AL + LA)
=W,(I+L)""(AL+LA)=W,V.
Taking another derivative and applying Lemma 3, one obtains
Vi, =(W,V), =(W,), V4 W,(V), = (= Wy + W WV W, W, V== W, V+{W,, W}V

O
The first step to prove Proposition 2 is the comparison of the term Vi with DZV,n [the term
comprising the highest power of D in W(V) an]'
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Lemma 5: The operator soliton V given in (2) satisfies
Vi~ DZV,n =2{W , W, JV+{W,, W}V -2(W,W, W, + W W, W, + W,W, W)V

for all odd numbers n € N with n+2=2N-1.
Proof: Substitution of 7;=x in Lemma 4 gives

DV, =V, , == Wy VH{W,, W}V==V, +{W, W}V
It follows from Lemmas 3 and 4 that
DV, ==V, .+ {(W,), , W}V +{W,,(W)), }V+{W,, W}V, )
=V = Wt WV + (= Wy + WW,, WV +{W,, = Wy + W, WV +{W,,, W W, V)
=V = AW, WV =AW, WV +{W\ W, Wi}V +{W,,, W W}V +{W,, W }W, V
=V, = 2{W,. WV = W, WolV + 2(W, W, W, + W W, W+ W, W W)V

O
The next step is to collect some auxiliary results on products, commutators, and anticommu-
tators.
Lemma 6: The operator soliton (2) and the operator functions given in (4) satisfy
VWm = Wm+l + AWm - 2W1 Wm

for all numbers m e N.
Proof: The crucial identity to deal with anticommutators is once again

LU+L) '=1-(I+L)",
which yields

VW, =(I+ L) AL+ LA)I+L)"'A"=(I+L)'A(LU+ L)y ™ HA" + (I+ L)"'L)A(I+ L)"'A™
=(I+L)7 A L AU+ L)'A" - 2(I+ L) A+ L)' A" =W, + AW, — 2W, W,,.

Lemma 7: The operator soliton (2) satisfies

{Vtm? Vzn} = {Wm’ Wn+l}v+ {Wm+1’ Wn}V_ 2(WmW1 Wn + WnWI Wm)v?

[Vtm’ th] = [Wm’ Wn+1]V+ [Wm+l’ Wn]v_ 2(W111W1Wn - WnWI Wm)v

for all odd numbers n,m e N with n,m=2N-1.
Proof: Since W, A=W,,,;, Lemma 6, together with Lemma 4, implies that

{V, .V, } =AW, V.W,V} =W, (VW,)V + W,(VW,)V
=W, (W,s) + AW, = 2W, W)V + W, (W, ., + AW,, - 2W,W,)V
= (W Wyt + Wit W, = 2W, W, W)V + (W, W,y + W,y W, — 2W, W, W, )V
={W, . W,, }V+{W,.... WV = 2(W, W, W, + W,W,W,)V,

and the first identity is proved. The second one follows from analogous computations (modulo
obvious sign changes). O
Lemma 8: The operator soliton (2) satisfies

[th? Vx] = D([Wl’ Wn]v)
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for all odd numbers n e N with n<2N-1.
Proof: Observe that a combination of Lemmas 3 and 4 implies that

D([WI’WH]V) = [(Wl)x’ Wn]v+ [Wl?(Wn)x]V'i' [WhWn]Vx
=[- W+ W\W W,V +[W,= W, + W W,]V+[W,W,]W,V
== [Wl’ Wn+l]v_ [WZ’ Wn]v+ 2[(Wl)2’Wn]v~

Then Lemma 7 shows that the latter coincides with [V, ,V.]. O
Now all the needed tools have been collected to prove Proposition 2.
Proof of Proposition 2: Write V=V, +WV,, where

¥,(V) =D2+AVX,

\Pz(v) = D_1 (AVYD + C‘V‘(D_1 CVX) .
On application of Lemma 7,
{Vx’ th} = {Wl’ Wn+1}v+ {WZ’ Wn}v - 2{(W1)2’ Wn}v'
The latter, combined with Lemma 5, allows us to infer
\PI(V)V,n = DZV,H +{V,, an} = V,n+2 W, , W, JV+2W, W, W, V.
Hence, it remains to show that W,(V) Vzn={W1 W }V=2W,W,W,V. To this end, note that
‘PZ(V) th = D_l ({V)a thx} + [V)aD_l[Vx’ th]]) .
Lemma 8, again combined with Lemma 4, implies that
[V.D'[V, V, N=[W\V.[W,,W]V]= W V(W,W, - W,W,)V = (W,W, - W,W,) VW,V
= Wl{v, Wn}Wl V- {Wl VWI’ Wn}v
and
{Vx’ thx} = {Wl V?_ Wn+lv+ {Wl’ Wn}v}
=—{W, VW, V}+ W,V(W,W,+ W,W)V+ (W, W,+W,W)VW,V
=—{W, VW, V}+ W{V.W W, V+{W, VW, W, }V.
Lemma 6 allows replacing all occurrences of W, VW,, via the identity
Wn VWm = WnWm+l + Wn+l Wm - 2an‘/vl Wm
With this, a straightforward computation yields
{Vx’ thx} + [VX’D_] [Vx7 an]] == {Wl V’ Wn+lv} + ZWI{V? Wn}Wl vV
= (Wl VWn+l + Wn+1VW1)V + 2((W1 VWn) Wl + Wl(WnVWI))V
= (=AW W} = {Wo, W, } + 2{(W1)2’ WDV +2Q2W, W, W,
+ Wo,W W, + W W, W, = 2W {W,,W, W)V
== {WZ’ Wn+1}V_ {W19Wn+2}v+ 2((W1)2Wn+1 + 2‘/VI Wn+1W1
+ Wt (W)Y +2(W, W, Wy + Wi W, W)V = 4((W))° W, W
+ Wl Wn(W])z)V
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= {= Wat (W)W 3V + W= W + WiW, 3V W, W, JW,V
—2((= Wy + (W)W, WV + W (= Wy + W, W)WV
+ Wi W, (= Wot (W)2)V + Wi W, W, (W, V)
={D(W),W,,1}V
+{W.D(W, )}V +{W, W, }D(V) = 2(D(W) W, W,V
+ W, D(W,)W,V+ W, W,D(W,)V+ W, W,W,D(V))
=D{W, W}V -2W, W, W,V).

Hence, the identity

{Vx’ Vlnx} + [V)mD_l[Vx’ Vt”]] = D({Wla Wn+1}V_ 2VV] WnWI V)

is verified and the proof of Proposition 2 is complete. O
Now, on use of Proposition 2, a short proof of Theorem 1 is possible.
Proof of Theorem 1: The statement follows immediately via induction. Indeed (E,) is trivi-
ally satisfied. The induction step from n to n+1 follows from Proposition 2,

Vi = w(v) Vit = w(V)(T(V)V) =W (V)V,,
completing the proof of Theorem 1. 0

A closing result, which will be applied in the sequel, is the following one.
Corollary 9: The operator-valued function

V=—(-L)"Y(AL+LA) (5)

solves the noncommutative pKdV hierarchy.
Proof: Note that the only property the function L in (3) must satisfy to prove Theorem 1 is
that it solves the base equations,

L, =A"L

for odd numbers n € N. Hence, in (2) L can be replaced by —L. O

lll. NONCOMMUTATIVE KdV AND mKdV HIERARCHIES AND THEIR OPERATOR
SOLITONS

In this section the operator solitons of the noncommutative KdV and mKdV hierarchies are
stated. In the KdV case the relation U=V, between pKdV and KdV leads to a quick proof. In
contrast, the proof of the result in the mKdV case requires considerable work. The problem is that
the Miura transformation between KdV and mKdV is only in one direction given by an explicit
formula. However, the argument is a subtle combination of an inductive verification in the spirit of
the proof of Theorem 1 and some partial information which can nevertheless be extracted from the
Miura transformation. The latter is based on a factorization result for the recursion operator of the
KdV, which is only proved locally at those functions contained in the image of the Miura trans-
formation. These results are contained in Sec. IV. In Sec. V it is proved that the operator soliton of
the mKdV hierarchy is mapped to the operator soliton of the KdV hierarchy under the Miura
transformation (and some similar further relations). Finally combination of all these results allows
completing the proof in Sec. VL.

Consider the noncommutative KdV hierarchy,

U, =oW0)"'v, n=1

Ion—1

generated by the recursion operator
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D(U)=D*+2Ay+Ay D™ + CyD™' CyD™, (6)
see Ref. 27, Eq. (6.23). For example, the case n=3 yields the noncommutative KdV equation,

U=U,.+3{U,U}.

Actually (6) is related to the recursion operator (1) of the noncommutative pKdV hierarchy via the
simple link DV (V)=®(U)D, where U=DV. This allows the derivation of the operator soliton
simultaneously for all equations of the noncommutative KdV hierarchy. In view of later analytic
applications, the result is again formulated for truncated systems of N equations. Recall also the
remarks following Theorem 1.

Theorem 10: The operator soliton

Uy=(I+Ly)"A(I+ Ly) ALy + LyA), (7)

where Ly=Ly(t,, ... ,toy_1) is given by (3), solves the system of noncommutative KdV equations
. =®U)"'U, 1=n=N, for any N € \.
2n-1
Proof: The statement follows directly from

U, =DV

Iop—

=DY(V)"'V,=D¥(D™'Uy"'D™'U, = (DV(D"'U)D™)" U, = @(U)"U,.

2n—1 =
O
Combined with Corollary 9, Theorem 10 immediately yields the following.
Corollary 11: The operator function
Uy==(I-Ly)'AU = Ly (ALy + LyA) 8)
also solves the system U,Zn_l=<D(U)”_1Ux, l=n=N, for any N e N.
Consider finally the mKdV hierarchy

U,
2n-1

=W(0)" ' U.n=1,

generated by the recursion operator

W (U)=(D+CyD™'Cy)(D +AD™'Ap), (9)

see Ref. 19. When n=3, the noncommutative mKdV equation is obtained, namely,

l7t = f]xxx + 3{1723 f]x}

Theorem 12: The operator soliton

Uy=—i(l - (Ly)) ALy + LyA), (10)
where Ly=Ly(t,, ... ,tyy.1) is given by (3), solves the noncommutative system of mKdV equations
[7,2"_1=\I~f(l~])"‘ll~lx, l=n=N, for any N e N.

IV. ANONCOMMUTATIVE MIURA TRANSFORMATION

The natural analog of the Miura transformation M, in the noncommutative setting, is

MU)=0?+iU,. (11)

In Ref. 36, see also Ref. 9, it is verified that M maps solutions of the noncommutative mKdV
equation to solutions of the noncommutative KdV equation. The main goal of this section is to
extend this fact to solutions of the corresponding hierarchies. The following property of the Miura
transformation will be used.

Lemma 13: The Miura transformation satisfies the identity
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(M(0)), = (Ag+iD)U, .

To establish that the Miura transformation preserves the solution property, a crucial observation is
that the recursion operator ®(U) of the KdV hierarchy can be explicitly factorized if the argument
U lies in the image of the Miura transformation, specifically as follows.

Proposition 14: If U, U are operator functions related by the Miura transform, ie., U
=M(U), then

®(U)D =(D - iAg)(D + CiD™'CH)(D +iAp).

In operator theoretic terminology, the content of Proposition 14 is that ® and ¥ are related
operators. Recall that two operators S and 7 are said to be related if there are operators A and B
such that S=AB and T=BA. See Ref. 28 concerning results on common structural properties of
related operators.

Proof: The argument uses several auxiliary identities concerning commutators and anticom-
mutators with arbitrary operator functions S, 7, to start with

DAT=ATD +ATX, (12)
D’A7r=AD*+2A7 D + Az (13)
Next the identities
DCr=CiD+Cr, (14)
and ATCTZ CTATZ CTZ yleld
DCr—iA;Cr=CiD —iCpypy, (15)
CTD+iCTAT=DCT+ ZCM(T) (16)

Now, from AAg=(Rgr+Lyg)+(LiRg+LsRy) and CyCyp=(Ryg+Lgy)—(LyRg+LgRy), where Ly and
R denote the left and right multiplication with 7, respectively,

ATAS+ CSCT=R{S,T}+L{S,T}zA{T,S}' (17)

Note finally that
[CM(T)’ CT] = C[M(T),T] = C[T2+iTx,T] = iC[TX,T] = i[CTx’ CT] == i[CT’ Crx]- (18)
In the next calculation the identities indicated are used to replace the expressions within the

boxes,
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(D-iAp)(D+CD™'Cp)(D +iAp)

=D’ —iAGD* +iD*A + A,}+ (D - iAp)CiD™'Ci(D +iAp)
)

(12),(13
= D —iAgD’+i(AgD’+2A5 D+Ay ) +Aj(AgD +Ag)

+ (‘DC(; —iA;Ch

(15),(16)

= D*+(2iAj, +)D +(iAg +) +{CD— €D UDCH+iCy)

(17
=D’ + (2iAg + (2Ap - CCy))D + (iAg_+ (Ag.53— Ci.Cp))

)D“(’Cl}D +iCpA ,}‘)

+(CoD - iCy) D" (DCF+iCy)
=D+ 24,5 D + A5 3415, — CiCiD — C Cig + (CgDCy +iCiCy— iCyCi+ CyD™' Cy)
=D’ +2A52,,5 D+ A5 vt + CuD™' Cy— il Cy, C] = (Ci(CgD — DC) + Cyy Cp)

(14)

= D'+ 242,35 D +A@2 1 i), + CuD™' Cy =il Cy, C5] +[Cp Ci
(18)

=D’ +2AyD +Ay + CyD™'Cy=D(U)D.

O
Changing the sign in the Miura transformation, a similar factorization result can be obtained
by analogous arguments as follows.

Corollary 15: If U, U are operator functions related by U= ﬁz—iﬁx, then

®(U)D = (D +iAp) (D + CgD™'Cp)(D - iAp).

Proposition 14 allows to prove that, for the whole hierarchies, the solution property is pre-
served under the Miura transform.

Proposition 16: The Miura transform M maps the solutions U of some equation of the

noncommutative mKdV hierarchy to solutions M(U) of the corresponding equation of the non-
commutative KdV hierarchy.
The main concern of this paper lies in solutions to whole hierarchies. However, note that the
proposition even relates solutions of corresponding member equations in the two hierarchies.
Proof: On use of Proposition 14, observe that

(D-iAp)Y(U)=(D—iAg)(D+CgD™'Cp)(D +AgD™'Ap)
=((D—-iAp)(D+CgD™'Cy)(D +iAp)D™ (D - iAp)
= (®(M(U))D)D™(D - iAg) = D(M(U))(D - iAp).

Thus an induction argument yields

(D - iAg)V(0)" = DM(U))(D - iAp)

or

(Ag+iD)¥(0)" = D(M(U))"AG+iD).

Therefore,
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KdV hierarchy

y-Dv

V= (I+LyYAL +LA)
V = —(I —L)"Y(AL + LA)

/ =0V
potential KdV hierarchy 2

modified KdV hierarchy

G=i7-v)

FIG. 1. Noncommutative solitons and their links.

M), =UP+iU), ={0,0, }+iDU, =(Ag+iD)U, =(Ag+iD)(W(0U)"U,)

=((Ag+iD)P(U)"U, = (®M(U))"(Aj+iD))U, = D(M(U))"((Aj +iD)U,)
= O(M(0)"M(U),,

the latter on application of Lemma 13. U

V. BACKLUND LINKS BETWEEN THE OPERATOR SOLITONS

So far it has been examined how solutions of the considered hierarchies are related via
Bécklund transformations. However, it has not been discussed how the operator solitons behave
under these transformations. The following diagram (see Fig. 1) resumes what is proved in this
section.

The upper arrow in Fig. 1 is evident. The crucial link represented by the lower arrow is the
content of the following.

Lemma 17: The operator functions U given in (10) and V and 1% given in (2) and (5) are
related via

A

~ l
U==(V-V).
2( )
Proof: The assertion follows immediately from
I-L)'+U+L)'=U-L)7'U+I-L)(I+L)yY=(U-L)"(U+L)+(I-L)I+L)"
=2(I-1L»)".

O

A consequence of the above relation is the Miura link between the solitons of the noncom-

mutative KAV and mKdV hierarchies (see Ref. 36 in the case of the noncommutative KdV and
mKdV equations), which justifies the vertical arrow.

Corollary 18: The operator functions U given in (10) and U and U given in (7) and (8) are
related via
0?-iU, =0,
U*+iU,=U.

Proof: Recall the abbreviation W,=(I+L)"'A", n e N,, and set in addition Wn=(1 —L)'am,
Note that W,, and VAVn commute.
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Then, by Lemmas 4 and 17,
~ I A I~ i
U=z(V=-V)=-(W,V-W,V)= (U~ D). (19)
2 2 2
On the other hand, since (7 —Lz)‘1=%(VAVO+ W) =W, W, and

Wo(AL+LAYWy=(I+L) (AU -L)+ I+ L)A)I-L) "' ==+ L) 'A+A(I-L)"

=— WA +AW,,

Wo(AL + LA)W, = W,A — AW,,
it follows that
0% = - WoWo(AL + LA) 2 (Wy + Wo) (AL + LA)
= — J(WoWo(AL + LA)Wy + WoWo(AL + LA)W,)(AL + LA)
= — J(Wo(AW, = WA) + Wo(WoA — AW,))(AL + LA)
= H(WoAW, - WeAW)(AL + LA) = 2(U + U). (20)
In summary, (19) and (20) show that 172—i[7x= U and l72+il7x= U. O

VI. SOLVING THE mKdV HIERARCHY

Here results of Secs. IV and V are combined to prove Theorem 12. The argument is inductive
as in the proof of Theorem 1. However, the induction step is very different in spirit. It is based
both on the link between the operator solitons and the factorization of the recursion operator
generating the noncommutative KdV hierarchy.

Proof of Theorem 12: Since the statement is trivial in the case n=1, it remains to provide the

induction step U ,M:‘f'(f]) l7,n. To this end, the link between the operator solitons given in Lemma
17 is crucial. Namely, since

-~ ~ I ~ ~ = - ~
ll}(U)UrnzE(\P(U)th_\I,(U)Vzn),
and, by Proposition 2

~ i

= _(‘7

) 2 )

i A A
th+2) = E(W(V) Vzn - W(V) Vzn) 5
it is sufficient to prove

(F(D) - (W), = (T(@D)-TV)Y, . 21)
The recursion operators, in turn, satisfy
W(U)=(D+CD™'Cy)(D+AD™'Ap) = (D + CgD™'Cp)(D — iAj) D™ (D +iAp)
and, by Proposition 14

W(V)=D"'®(U)D =D (D -iAp) (D + CiD™'Cy)(D + iAp).

Hence,
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W(U)-¥(V)=Y(U)(D +iAp),

where

Y(U)=(D+CyD™'Cy)(D - iAg)D™" = DD - iAp)(D + CgD™' Cp)
=i(D'AHD + CyD™'Cp) — (D + CD™'Cp)AFD™Y).

Analogously, the factorization D—AjD™'Aj=(D+iAj)D~'(D—-iAj) of the recursion operator
W (U) together with Corollary 15 for W (V)=D"1®(U)D leads to

W(U)-¥(V) == Y(U)(D-iAp).

In summary,
(VD) =¥ (V)V, - (F(D) - ¥(V)V, =YO)N(D +iAp)V, +(D=iAp)V,)
=Y(O)(D(V+V), +i{U.(V=-V),})

=2Y(O)(0), ~{0.0,}) =0,

where the operator links V— V=2iU and D(V+V)=U+U=20" have been used (see Lemma 17 and
Corollary 18). Hence (21) has been verified, and the proof of Theorem 12 is complete. O

VIl. CONCLUSIONS AND PERSPECTIVES

The results presented in this work show that Biacklund transformations are a powerful tool for
investigation also in the noncommutative setting. Indeed, the general idea behind this investigation
is to show that the noncommutative pKdV, KdV, and mKdV hierarchies are connected via Béck-
lund transformations. They link corresponding members in the hierarchies and, in addition, their
recursion operators are also related to each other; finally, solutions too are mapped into solutions.

Hence, comparison between the Biacklund chart here obtained and the wider one comprised in
Ref. 6 suggests that further noncommutative nonlinear hierarchies whose base member is a third
order evolution equation can be introduced and related to the hierarchies here considered. This
aspect is currently under investigation together with possible generalizations to noncommutative
hierarchies whose base member is a fifth order equation.

As mentioned in Sec. I, the operator theoretic strategy followed in this article suggests an
application to the solution theory of matrix-valued integrable systems via projection methods. The
reader may refer to Ref. 9 for a survey on known applications to the solution theory of classical
integrable systems. The forthcoming article’ will deal with applications of the above results about
hierarchies, with a certain emphasis on matrix integrable systems.
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