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ÂRAYLEIGH-BENARD CONVECTION IN LIMITED
DOMAINS: PART 1 } OSCILLATORY FLOW

Fulvio Stella
Dipartimento di Meccanica e Aeronautica, Universita di Roma `̀ La Sapienza,’ ’
Via Eudossiana 18, 00184 Rome, Italy

Edoardo Bucchignani
( )CIRA, Via Maiorise, 81043 Capua CE , Italy

Transition from the steady state to an oscillatory regime in three-dimensional limited aspect

ratio boxes, filled with an incompressible fluid and heated from below, has been examined by

direct numerical simulation. Two different physical problems have been considered: the first
( )is related to a domain 3.5 = 1 = 2.1 filled with water at 70 8 C Prandtl number 2.5 ; the

( )second considers a domain 2.4 = 1 = 1.2 filled with water at 33 8 C Prandtl number 5 . The

Rayleigh number has been varied from 20,000 to 80,000. A new procedure based on a

statistical approach for evaluation of the critical Rayleigh number for transition from steady
( )state to oscillatory flow Ra has been introduced in order to reduce numerical errors andI I

estimate the error bars. A systematic study for the determination of Ra has been conductedII

as a function of the geometries considered and the different flow structures observed.

INTRODUCTION

For the past century, Rayleigh-Benard convection has been the subject ofÂ
very intensive theoretical, experimental, and numerical studies. Analysis of the

Rayleigh-Benard problem is of practical importance for many engineering applica-Â
s .tions e.g., thermal comfort, crystal growth, solar collectors . However, the main

interest to researchers for this problem is theoretical, since Rayleigh-BenardÂ
convection presents, during the evolution from the stationary state to the fully

developed turbulent regime, such a rich scenario of different structures and

sequences of bifurcations that it is widely considered a reference problem for the

w xstudy of different transition mechanisms in fluid dynamics 1 ] 3 .

It is well-known that the main parameter that drives the physical phe-
s .nomenon is the Rayleigh number Ra . In fact, when Ra is lower than a first

critical value Ra , the flow is stationary and heat transmission is only due toI

w xconduction. The value of Ra has been determined both analytically 4 andI

w x s .experimentally 5 , being independent of the Prandtl number Pr and weakly

dependent on the geometric aspect ratios of the domain: for a laterally unlimited
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NOMENCLATURE

s .b right-hand side of linear systems D t time step nondimensional

c constant D T temperature jump

C preconditioning matrix D x spatial discretization step
s .f oscillatory frequency nondimensional D y spatial discretization step

g gravitational acceleration D z spatial discretization step

H vertical size of the cavity « generic parameter
s .L horizontal size of the cavity u temperature nondimensional

L lower preconditioning matrix k thermal diffusivity

n normal to a surface m condition number

n number of grid points along x n kinematic viscosityi

n number of grid points along y s variancej

n number of grid points along z F phase of oscillationk

Nu Nusselt number v vorticity component
s . s .Pr Prandtl number s n r k v vorticity vector nondimensional

R coefficient matrix
3s .Ra Rayleigh number s g b D TH r k n

S generic surface Subscripts
s .t time nondimensional

T period of oscillation c fixed value

u component of velocity along x i counter
s .u velocity vector nondimensional max maximum value

U upper preconditioning matrix min minimum value

v component of velocity along y x spatial coordinate

w component of velocity along z y spatial coordinate

x spatial coordinate z spatial coordinate

y spatial coordinate 0 initial step

z spatial coordinate I first critical number

b coefficient of thermal expansion II second critical number

domain it is equal to 1708. As Ra becomes larger than Ra , convective flows can beI

observed. The fluid motion is regular and organized as a set of horizontal parallel
s w x.rolls quasi-two-dimensional motion 4, 6 . An increase of Ra can cause the loss of

stability of these configurations, which are replaced by fully three-dimensional

w xconfigurations. As shown by many authors 7, 8 , there are several instability

mechanisms, such as cross-roll, bimodal convection, and soft-roll, dependent on Pr

and on the wave number.
Moreover, a second transition, from steady to oscillatory flow, is observed

s .when Ra is increased beyond the second critical Rayleigh number Ra . The flowII

is characterized by a sinusoidal wave traveling along the axes of the rolls, moving

them alternately left and right.

Although oscillatory flow in the Rayleigh-Benard problem has been observedÂ
by many authors, the determination of Ra has not yet been approached in aII

systematic way. In the present paper the authors intend to partially fill this gap,

and the values of Ra found for the different geometries and flow structures underII

study are presented. In order to reduce procedural errors and obtain an a

posteriori estimation of the numerical uncertainty, a statistical approach is applied

w xin conjunction with the procedure introduced by LeQuere 9 . This approach has
been preferred, in the present paper, to the one proposed by Griewank and
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w xReddien 10 because the latter is more complex from the computational point of

view and is more sensitive to the initial approximations.

The physical system considered is a three-dimensional box, bounded by rigid

and impermeable walls, filled with an incompressible Newtonian fluid, and heated

from below. Vertical walls are adiabatic, while horizontal walls are isothermal and
held at different temperatures. Two cases have been selected, which have already

been the subject of experimental and numerical investigations. The first involves a
s . s .domain 3.5 = 1 = 2.1 case A , filled with water at 70 8 C Pr s 2.5 . In order to

compare and validate the numerical results, a configuration made up of two rolls

orthogonal to the longest side wall of the box has been considered, similar to the

w xexperiments of Gollub and Benson 2 and the numerical simulations of Mukut-

w xmoni and Yang 11 . Further, an atypical configuration, made up of two rolls whose
s .axes are not parallel soft-roll , has been investigated.

s .The second case is a domain 2.4 = 1 = 1.2 case B , filled with water at 33 8 C
s .Pr s 5 . For this problem, only the configuration with two rolls orthogonal to the

longest horizontal side of the box has been considered.

The numerical code used in this work is based on the vorticity-velocity

w xformulation of the Navier-Stoke s equations 12 integrated in time by means of a

w xfully implicit approach 13 , with a preconditioned Bi-CGSTAB as linear system

solver. The detection of types of instability and the study of their evolution in time

are very sensitive to physical as well as numerical perturbations. For this reason a

high accuracy has been achieved, and particular attention has been paid to reduce

numerical noise and integration errors. The required accuracy has been obtained
by using a large number of mesh points and a very small time step. Moreover, the

numerical method adopted is critical in order to fully exploit, in terms of accuracy,

the fine mesh and small time step used. All the numerical simulations have been

conducted on the Convex Exemplar supercomputer with 16 processors.

MATHEMATICAL FORMULATION

Governing Equations

The governing equations for an incompressible Newtonian fluid with the

Boussinesq approximation are formulated in terms of vorticity v , velocity u, and
temperature u :

1  v 1 g
2s . s .q = ===== v ===== u s = v y Ra = ===== u 1t /< <Pr  t Pr g

2 s .= u s y = ===== v 2

 u
2s . s .q u ? = u s = u 3

 t

The nondimensional parameters Ra and Pr are defined as

g b D TH 3 n
Ra s Pr s

k n k
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in which g is the gravitational acceleration, b is the coefficient of thermal

expansion, D T is the temperature difference between hot and cold walls, H is the
height of the box, k is the thermal diffusivity, and n is the kinematic viscosity. The

nondimensional scheme is based on a reference velocity u* defined as k rH, a

reference time t* defined as H 2 r k , and in consequence, a reference frequency
s . 2f * s 1 rt* defined as k rH . The vorticity v is defined as usual:

s .v s = ===== u 4

Boundary Conditions

s .The physical system considered is a three-dimensional box L , 1, L boundedx z

by rigid, impermeable walls and heated from below. The vertical direction has been
assumed to be coincident with the y axis. The horizontal walls are isothermal and

held at different temperatures, while the vertical walls are adiabatic . The boundary

conditions for the velocity are

u s v s w s 0

for all walls. The temperature boundary conditions are

x s 0I
 u x s Lx

ís 0
z s 0 n

Jz s Lz

u s 1 y s 0

u s 0 y s 1

The boundary condition associated with v is the use of the vorticity definition on

all the walls. So, for the vorticity components it must be

 w  v
v s yx  u  z

 u  w
v s yy  z  x

 v  u
v s yz  x  y

for all walls. This condition is essential for the conservation of the solenoidality of

the vorticity field. As explained in the section below, Numerical Method, the

governing equations, together with the boundary conditions, are solved coupled in

a unique large linear system. So, for example , the boundary condition for v isx
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solved in the following way:

 w  v
v y q s 0x  y  z

Heat Flux Evaluation

Heat flux, from the hot to the cold wall, has been evaluated using the proper

definition of the mean Nusselt number on a horizontal section:

1
s .Nu s u u y = u ? n dSHS S

It is important to point out that if the flow is periodic, the reported quantities have

been averaged over one period.

Initial Conditions

s .Two different geometries have been considered: the first case A is a domain
s .with a 3.5 = 1 = 2.1 geometry, filled with water at 70 8 C Pr s 2.5 ; the second

s .case B is a domain with a 2.4 = 1 = 1.2 geometry, filled with water at 33 8 C
s .Pr s 5 . In case A the first simulation has been executed at Ra s 20,000 starting

from rest. Successively, Ra has been increased in steps of 1000, starting from the

solution obtained at the previous value, up to Ra s 45,000. In case B the first

simulation has been executed at Ra s 40,000 starting from rest. Successively, Ra

has been increased in steps of 10,000, starting from the solution obtained at the

previous value, up to Ra s 80,000. These values of step increase in Ra correspond
to those chosen by Mukutmoni and Yang in analogous numerical simulations

w x14, 15 .

A different approach has been adopted in the iterative procedure for the

evaluation of Ra . Applying this procedure, all the solutions are oscillatory, with aII

nearly sinusoidal oscillation. Ra is decreased in small steps in order to approximate
Ra . Other details are given in the section below, Evaluation of Ra .II II

NUMERICAL METHOD

s . s .The governing equations, Eqs. 1 ] 3 , together with the appropriate bound-

ary conditions, have been discretized using a finite difference technique on a
uniform Cartesian grid with n = n = n points. Staggering of the variable loca-i j k

tions has been chosen in order to obtain not only the maximum accuracy of the

discretized terms, but also the discrete conservation of mass, vorticity, and thermal

w xenergy 12 . The location of the staggered variables is shown in Figure 1. Spatial

derivatives have been discretized through second-order central differences, while

time derivatives have been discretized through three-point second-order backward
differences. Time integration has been executed by means of a fully implicit

approach, in order to guarante e high stability to the method; such discretization
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Figure 1. Computational molecule showing the

3-D staggered mesh.

gives rise to a system of nonlinear algebraic equations for each time step. It could
s w x.be solved by decoupling the equations as in the SIMPLEX algorithm 11 ;

however, we chose a procedure that ensures good coupling between the equations
s .frozen coefficients in order to guarantee mass conservation and the definition of

w xvorticity at each time step. High accuracy in the time integration is ensured 13 .

The solenoidality of the vorticity field is identically satisfied in 2-D problems, while

w xin 3-D it has to be enforced in some way. It has been demonstrated in Ref. 12 that
s .the form of the advective term in Eq. 1 is essential for a straightforward

satisfaction of this constraint.

In this way, a large, sparse linear system of equations R x s b has to be
solved at each time step. The solution of these linear systems via a direct method is

not recommended because of the size of the problem, so an iterative procedure has

w xbeen preferred. A parallel implementation of the Bi-CGSTAB algorithm 16 ,
s .associated with a block decomposition BILU of the matrix R as preconditioner

w x17 , has been employed. This approach has the advantage of allowing great

flexibility in writing the discretized form of the numerical model. The Bi-CGSTAB
algorithm is an iterative method belonging to the class of Krylov subspace methods.

It has been chosen for its good numerical stability and speed of convergence. The

use of a preconditioning technique is, in all practical applications, essential to

fulfill the stability and convergence requirements of the iterative procedure itself.

The aim of the preconditioner is to convert the original linear system to an

equivalent but better-conditioned system. This consists of finding a real matrix C
s y1 . s . ssuch that m C R - m R m is the condition number, i.e., the ratio between the

.maximum and the minimum eigenvalue . In this way, the new linear system

Cy1 R x s Cy1 b

s .has by design better convergence and stability characteristics than the original

system. One of the most widely used preconditioners is based on the Incomplete
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s .Cholesky Factorization ILU : the C matrix is defined as the product LU of a lower
s . s .L and an upper U triangular matrix generated by means of a factorization of R.

In order to perform parallel simulations, we adopted as preconditioner a modified

version of ILU, called BILU, in which each processor performs a local ILU

factorization only on the square block of its competence. Further details of the

w xnumerical method can be found in Refs. 12, 13 . All the numerical simulations

have been conducted on the Convex Exemplar supercomputer. It consists of two

hypernodes, each of which has 8 HP PA-RISC 7100 chips and up to 2 Gbytes of

physical memory. The aggregate peak performance is about 3.2 GFlops.

Mesh Accuracy Evaluation

The code has been validated with the numerical results of Mukutmoni and

w xYang 11 for case A, assuming Ra s 20,000, with a configuration made up of two

parallel rolls. Three grids have been used: 24 = 14 = 15, 36 = 21 = 22, and
54 = 31 = 32. The maximum values of the three components of velocity and the

Nusselt number in the vertical direction have been chosen for comparison. As

w xproposed by de Vahl Davis 18 , u , v , and w are computed by numericalmax max max

differentiation through a fourth-order polynomial approximation , for better evalua-

tion of the maximum values.

Results are reported in Table 1, showing good agreement with those of

w xMukutmoni and Yang 11 . The convergence analysis indicates that the method is

nearly second-order accurate in space. In addition, the 36 = 21 = 22 grid provides

a solution that is accurate enough for the purposes of the paper, and therefore it

has been used as a working grid for the other simulations related to this domain.

It is also important to provide a comparison of the numerical results with

experimental data. For this reason, we performed a comparison of our results with

w xthose of Gollub and Benson 2 for case A at Ra s 30,000, assuming a configura-
s .tion made up of two horizontal rolls 2T . Figure 2. shows the component of

velocity along x as a function of x at y s 0.875 and z s 1.65 superimposed on the

results of Gollub and Benson: good agreement is illustrated.

Table 1. Mesh sensitivity analysis: case A, configuration 2T, Ra s 20,000

Grid size

24 = 14 = 15 36 = 21 = 22 54 = 31 = 32 Reference value

s . s . s .u 42.954 0.15% 42.974 0.10% 42.975 0.10% 43.02max

x, y, z 2.587, 0.228, 0.675 2.501, 0.215, 0.650 2.443, 0.204, 0.575 }
s . s . s .v 54.420 4.02% 53.435 2.25% 52.945 1.35% 52.23max

x, y, z 1.902, 0.538, 1.124 1.850, 0.466, 1.150 1.816, 0.472, 1.117 }
s . s . s .w 8.421 2.62% 8.383 2.18% 8.364 1.96% 8.20max

x, y, z 1.902, 0.884, 0.450 1.850, 0.842, 0.400 1.816, 0.820, 0.304 }
s . s . s .Nu 2.6926 4.70% 2.6222 2.14% 2.5916 0.98% 2.566

Reference values are those by Mukutmoni and Yang. Percentage differences are shown in

parentheses.
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Figure 2. Case A, configuration 2T, Ra s 30,000.

Component of velocity along x as a function of x

at y s 0.875 and z s 1.65. Velocity is expressed in
y 1cm s . Comparison with the results of Gollub and

w xBenson 2 is shown.

The time step sensitivity analysis has been executed for case B assuming
Ra s 80,000. As described in the section below, case B, at this value of Ra the flow

is oscillatory periodic. The results are reported in Table 2. in terms of frequency
s .and maximum and minimum values of u and v at point 0.7, 0.7, 0.7 for three

different time steps. The analysis of results shows, surprisingly, an accuracy in time

higher than second order.

Evaluation of Ra II

Transition to unsteady convection is a key issue in the study of the Rayleigh-
Benard problem. For this reason, it is relevant to achieve a careful evaluation ofÂ
Ra for each of the geometries and flow structures under study. Assuming that theII

onset of unsteady solutions is due to Hopf bifurcations, as is also suggested by

experimental observation, different computational techniques may be adopted in

order to determine Ra . A very accurate procedure has been defined by GriewankII

w x w xand Reddien 10 , which has been successfully applied by Winters 19 to an

analogous 2-D problem. However, this procedure is impractical if applied to 3-D

problems. For this reason, in this work, another procedure, already used by

w xLeQuere 9 , has been considered and is here described.
sLet « be a parameter that drives the system for example, the Rayleigh

. s .number . If for « a fixed value of « the kind of solution changes, « is called ac c

s . s .bifurcation point. In the specific case of the Navier-Stokes equations, Eqs. 1 ] 3 ,

a bifurcation point causing the transition from the steady state to an oscillatory

Table 2. Time step sensitivity analysis: case B, configuration 2T, Ra s 80,000

y 4 y 5 y 5D t s 10 D t s 5 = 10 D t s 2.5 = 10

f 34.180 34.158 34.158

u y48.795 y48.588 y48.537max

u y54.061 y54.112 y54.116min

v 14.609 15.027 15.031max

v y4.310 y4.518 y4.524min
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regime is when Ra s Ra . As we have assumed that this is a Hopf bifurcation, as aII

s w x.consequence as shown in Ref. 20 , for Ra slightly greater than Ra , theII

amplitude of oscillation in time of the velocity, vorticity, and temperature grows as
s .1 r 2Ra y Ra :II

1 r 2
s . s . s . v 4 s .X t s X qk Ra y Ra sin 2 p ft q f X s u , v , u 5c II i i

where X is the solution at the bifurcation point. The square root assumption forc

amplitude oscillation has been numerically verified a posteriori in order to guaran-
tee the correctness of the hypothesis. In this view the solution at Ra can beII

defined as an oscillatory solution with zero amplitude of oscillation. The critical

solution and the corresponding Ra can be determined by using the amplitude ofII

soscillation of the solutions found in correspondence of two overestimations Ra a

.and Ra in Table 3 of the critical Ra and extrapolating the new critical value. Theb

procedure has to be repeated iteratively, solving at each iteration one oscillatory
flow field at a Rayleigh number intermediate between the critical Ra at the

previous iteration and the minimum of Ra and Ra . It is important to observea b

s .that in this way the critical value Ra related to the base solution X of Eq. 5 isII c

found. Since different base solutions X lead to different values of Ra , it isc II

crucial for the correct application of the procedure that at the different steps of the
method the base solution X is maintained the same for the various oscillatoryc

ssolutions evaluated. As different base solutions, they have to be considered not

only solutions with different flow patterns, e.g., 2T, SR, but also solutions having
.the same flow pattern with minor differences, such as rolls, deformations, bubbles.

s .Since the step in Ra adopted for approximating Ra is usually small see Table 3 ,II

in the present paper this result has been obtained adopting as an initial guess the
solution at Ra found at the previous approximation step.b

Moreover, it is worth noting that, because of the nonlinearity of the problem,
s .the finite amplitude oscillations considered in Eq. 5 for each single variable lead

to slightly different values of the extrapolated Ra . For this reason, a statisticalII

procedure has been adopted, obtaining also an evaluation of the numerical error.
Several points in the grid have been randomly chosen, and the values of 100

variables have been tracked during one complete period, determining the ampli-

tude of oscillation. Ra has been evaluated for each of these variables. As anII

Table 3. Sequence of approximations obtained for

the evaluation of Ra : case B, configuration 2TII

Ra Ra Ra sa b II

58,000 55,000 46,623 1856

55,000 51,000 45,533 1603

51,000 49,000 45,158 939

49,000 47,000 44,548 484

47,000 45,500 44,202 203

45,500 44,800 44,150 80
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Table 4. Values of Ra for the selected casesII

Domain Pr Configuration Ra sII

3.5 = 1 = 2.1 2.5 2T 34,120 305

3.5 = 1 = 2.1 2.5 SR 37,960 5

2.4 = 1 = 1.2 5. 2T 44,150 80

example of the effectiveness of the method, in Table 3 the results in terms of

averaged value and variance s ,

1 r 22s .p x y xi i
s s 2t /n

are reported for different pairs of Ra and Ra . The test case considered is thea b

one described in the section below, Case B. It is evident that the error can be

reduced as required by the problem under study, by reducing iteratively the
distance of Ra and Ra from the estimated Ra . In the following, the estimateda b II

errors have been assumed to be equal to s . It is worth observing that in the first

row of Table 3 the value obtained for Ra appears very inaccurate when comparedII

s .with the final value found for Ra 44,150 . For this case, even considering theII

s .uncertainty assumed for the method equal to s 1856 , the final result is not

included in the error bar. This anomaly is due to the nonlinearity of the Navier-
Stokes equations and to the large distance, in terms of Ra, of the initial guess for

Ra and Ra .a b

A summary of all the values of Ra for the cases presented in the nextII

section is reported in Table 4.

RESULTS

Case A: 3 .5 = 1 = 2.1 , Pr = 2 .5

As discussed in above, a grid with 36 = 21 = 22 points has been used for the
s .spatial discretization D x s D z s 0.1, D y s 0.05 . The time step has been set

equal to 10y3, as a good compromise between time-accuracy and computational

w xresources. As shown by many authors 6 ] 8 , for Ra greater than the first critical

value Ra , under the same conditions, the Navier-Stokes equations may have moreI

than one solution. The several solutions can be classified following the nomencla-

w xture adopted in Ref. 7 :

1. Quasi two-dimensional pattern in the form of rectilinear rolls consisting of

v s .n transverse rolls nT , n being an integer, which are orthogonal to the

longest side wall of the box
v s .n longitudinal rolls nL , which are parallel to the longest side wall of

the box



ÂRAYLEIGH-BENARD CONVECTION: PART 1 11

Figure 3. Case A, Ra s 20,000. Isolines of the vertical

component of velocity in the horizontal middle plane.

A configuration made up of two horizontal parallel
s .rolls 2T is observed.

2. Fully three-dimensional flow caused by

v bimodal convection, consisting of a base flow superimposed with cross-

rolls of approximately the same strength as the base flow
v distortion of the original rolls into an L shape. This configuration, called

soft-roll, allows a continuous transition between different wave number
flow patterns

In fact, for Ra s 20,000 we found two different steady and stable configurations.

The first is made up of two rolls with axes orthogonal to the longest side wall of the
s .box 2T . The initial 2T flow structure has been obtained by imposing a cold

s .u s 0 rectangular narrow region in the middle of the hot wall for a short time
interval at the beginning of the numerical simulation. Isocurves of the vertical

velocity component in the horizontal middle plane are shown in Figure 3. The

second flow configuration is made up of two rolls whose axes are not parallel
s .soft-roll configuration; see Figure 5 , which has been obtained starting from rest,

s .without imposing any disturbance e.g., the cold region .

Configuration 2T. Starting from configuration 2T obtained at Ra s 20,000,
Ra has been increased in steps of 1000. Table 5 reports the main frequency and the

average Nusselt number in the vertical direction as a function of Ra. Up to 34,000,

the flow is steady, and the configuration does not change. Instead, at Ra s 35,000

an unsteady periodic flow with a fundamental frequency was found. Following the

procedure described in the previous section, Ra has been determined: in this caseII

it is equal to 34,120 " 305. This result is an overestimation of about 15% with

w x w xrespect to the results of Gollub and Benson 2 and Mukutmoni and Yang 11 . It is

Table 5. Case A, configuration 2T: Main frequency, average Nusselt

number in vertical direction as a function of Ra

Ra f Nu

20,000 steady 2.622

30,000 steady 2.905

35,000 15.136 3.020

40,000 16.601 3.236

45,000 17.578 3.340
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Figure 4. Case A, configuration 2T, Ra s 45,000. Time history of the component of velocity along x at
s . s . s .point 0.7, 0.7, 0.7 left and FFT of this signal right . A periodic flow regime with a fundamental

frequency f s 17.578 and its harmonics is illustrated.

worth observing that the results presented here were obtained by means of a very
s .accurate time integration method see section above , Numerical Method and an

ad hoc procedure for approaching Ra . Since the main goal of the above studiesII

was not a very accurate determination of Ra , these differences may be explainedII

as a consequence of the more coarse procedure adopted there and the result of the

difficulties in determining very small amplitude oscillations.

Up to Ra s 45,000 there is no qualitative change in the flow. The time
s .history of the component of velocity along x at point 0.7, 0.7, 0.7 looks sinusoidal.

s .A frequency analysis, obtained by fast Fourier transform FFT , executed on 8192
spoints frequency resolution D f s 1 rT s 0.122, 1000 samples for each unit of0

. snondimensional time , shows that the main frequency f is equal to 17.578. All the
.FFT presented in this paper have been executed on 8192 points. It is accompanied

by a harmonic frequency, equal to 2 f. Figure 4 shows the time history of the
s .component of velocity along x at point 0.7, 0.7, 0.7 and the FFT of this signal.

The further evolution of the system at higher Ra is discussed in the companion
s .paper Bucchignani and Stella, this issue .

Soft-roll configuration. The second steady solution we found in Ra s
20,000 is a soft-roll configuration. It is nonsymmetric, as the axes of the two rolls

are not parallel. Figure 5 shows the isocurves of the vertical velocity component in

Figure 5. Case A, Ra s 20,000. Isolines of the vertical

component of velocity in the horizontal middle plane.
s .A fully three-dimensional configuration soft-roll made

up of two horizontal rolls whose axes are not parallel is

observed.
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Table 6. Case A, soft-roll configuration: Main frequency, average Nusselt

number in vertical direction as a function of Ra

Ra f Nu

20,000 steady 2.632

30,000 steady 2.942

36,000 steady 3.099

38,000 4.975 3.144

45,000 5.615 3.351

the horizontal middle plane. Such a configuration has already been observed

w x w xexperimentally by Kolodner et al. 8 and numerically by Stella et al. 7 in larger

w xdomains. On the other hand, it was not observed by Mukutmoni and Yang 11, 14

w xor by Gollub and Benson 2 , so we have no results for comparison. The stability of

this solution has been verified by applying a small random perturbation to the

vorticity field. After a short time, the solution goes back to the original soft-roll

configuration, with the same numerical values. Starting from the solution obtained

at Ra s 20,000, we increased Ra in steps of 1000. Table 6 reports the main

frequency and the average Nusselt number in the vertical direction as a function of
s .Ra. An unsteady periodic flow with a fundamental frequency f s 4.975 was found

for Ra s 38,000. In this case, Ra s 37,960 " 5, which is a bit larger than theII

previous case, emphasizing that it depends on the type of configuration. Up to

Ra s 45,000, the flow remains periodic. Figure 6 shows the time history of the
s .component of velocity along x at point 0.7, 0.7, 0.7 and the FFT of this signal.

Further increases in Ra cause substantial changes in the temporal regime, which is
s .discussed in the companion paper Bucchignani & Stella, this issue .

Case B: 2 .4 = 1 = 1 .2, Pr = 5

w xCase B has also been investigated by Mukutmoni and Yang 15 , who
considered a fluid dynamical configuration made up of two parallel rolls. Following

Figure 6. Case A, soft-roll, Ra s 45,000. Time history of the component of velocity along x at point
s . s . s .0.7, 0.7, 0.7 left and FFT of this signal right . Periodic flow regime with a fundamental frequency

f s5.615 and its harmonics is illustrated.
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Figure 7. Case B, Ra s 40,000. Isolines of the vertical

component of velocity in the horizontal middle plane. A

configuration made up of two horizontal parallel rolls
s .2T is observed.

s .their indications, a grid with 25 = 21 = 25 points D x s 0.1, D y s D z s 0.05 has

been used, while D t has been set equal to 10y4 . The first simulation was executed
at Ra s 40,000, which gave rise to a steady and stable flow made up of two parallel

s . s .rolls 2T Figure 7 , in good qualitative agreement with that found by Mukutmoni

w xand Yang 15 . From this solution, Ra has been increased in steps of 10,000. Table

7 reports the main frequency and the average Nu in the vertical direction as a

function of Ra. At Ra s 50,000 the flow is oscillatory with a fundamental fre-

quency f s 26.855. In this case, Ra s 44,150 " 80, showing an underestimationII

w xof about 12% with respect to the numerical finding of Mukutmoni and Yang 15 .

The flow remains periodic up to Ra s 80,000. Figure 8 shows the time history of
s .the component of velocity along x at point 0.7, 0.7, 0.7 and the frequency analysis

sobtained by FFT of this signal frequency resolution D f s 1 rT s 1.22, 10,0000

.samples for each unit of nondimensional time . The further evolution of the system
s .is discussed in the companion paper Bucchignani & Stella, this issue .

CONCLUSIONS

A numerical study of transition from steady to unsteady flow in Rayleigh-

Benard convection in limited domains has been performed by means of a parallel,Â
fully implicit method. The main goal of the paper is to apply a new statistical

approach for the determination of Ra . The procedure adopted allows not onlyII

the determination of the critical value of Ra but also an evaluation of its

uncertainty. It has been shown that the uncertainty can be reduced as required in

the specific problem under investigation by applying the proposed procedure

iteratively. The method has been applied to a number of different cases, showing a

Table 7. Case B, configuration 2T: Main frequency, average Nusselt number

in vertical direction as a function of Ra

Ra f Nu

40,000 steady 3.240

50,000 26.855 3.468

60,000 29.290 3.793

80,000 34.180 4.080
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Figure 8. Case B, configuration 2T, Ra s 80,000. Time history of the component of velocity along x at
s . s . s .point 0.7, 0.7, 0.7 left and FFT of this signal right . Periodic flow regime with a fundamental

frequency f s 34.180 and its harmonics is illustrated.

s .strong dependence of Ra on the problem parameters Pr, aspect ratio and on theII

fluid flow configurations. When possible, the obtained values of Ra have beenII

compared with those available in the literature, showing non-negligible differences
of about 12% ] 15% . Because of the difficulties related to this type of investigation,

using both numerical and experimental approaches, not many results are available

in the literature for a comparison. So, although the method used in the present

paper seems very robust, it is not possible to determine the reasons for these

differences more clearly.

Other results in terms of oscillation frequencies and Nu near the critical
point have also been presented. Further interesting evolutions of the system as Ra

sis increased are presented in the companion paper Bucchignani & Stella, this
.issue .
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