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Abstract

We present a new construction of finite Gelfand pairs by looking at the action of the full automor-
phism group of a finite spherically homogeneous rooted tree of type r on the variety V(r, s) of all
spherically homogeneous subtrees of type s.

This generalizes well-known examples as the finite ultrametric space, the Hamming scheme and
the Johnson scheme.

We also present further generalizations of these classical examples. The first two are based on
Harary’s notions of composition and exponentiation of group actions. Finally, the generalized John-
son scheme provides the inductive step for the harmonic analysis of our main construction.
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1. Introduction

Let T be a finite rooted tree of depth m and let r = (r1, r2, . . . , rm) be an m-tuple of inte-
gers � 2. We say that T is of type r when each vertex at distance k from the root has exactly
rk+1 sons, for k = 0,1, . . . ,m−1. If s = (s1, s2, . . . , sm) is another m-tuple of integers with
1 � sk � rk , then we can consider the variety V(r, s) of all subtrees of T of type s. The
group Aut(T ) of all automorphisms of the tree acts transitively on V(r, s), i.e. V(r, s) =
Aut(T )/K(r, s), where K(r, s) is the stabilizer of a fixed T ′ ∈ V(r, s). In this paper we
show that the decomposition into irreducibles of the permutation representation of Aut(T )

on V(r, s) is multiplicity-free. In other words (Aut(T ),K(r, s)) is a finite Gelfand pair.
This is a new example that includes several other examples of finite Gelfand pairs pre-

viously studied (which indeed are particular cases of this construction):

• For m = 1 we find the pair (Sr , Sr−s × Ss), the so called Johnson scheme, consid-
ered, among the others, by Delsarte [12,13], Dunkl [17–19], Stanton [40–42] and by
Diaconis and Shahshahani [15].

• For m = 2, s1 = r1 and s2 = 1 one obtains the so called Hamming scheme, namely the
pair (Sr2 �Sr1, Sr2−1 �Sr1), again considered by Delsarte, Dunkl, Stanton, Letac [31] and
many others (in particular, the case r2 = 2 yields the hypercube as homogeneous space,
and the literature on it and the associated diffusion problem, the Ehrenfest diffusion
model, is vast; see, for instance, the paper by Diaconis, Graham and Morrison [16]).

• For m = 2, 1 � s1 < r1 and s2 = 1 one obtains the so called nonbinary Johnson
scheme, considered by Dunkl [17] and Tarnanen, Aaltonen, Goethals [43].

• For m > 1 and s = (1,1, . . . ,1) the homogeneous space coincides with the set of
all leaves of the tree and one gets the ultrametric space, which was considered by
Letac [32], Stanton [41], Figà-Talamanca [22] and by Bekka, de la Harpe and Grig-
orchuk [8].

Further, we examine several other constructions involving wreath products and semidi-
rect products that give rise to finite Gelfand pairs.

For the general theory of finite Gelfand pairs we refer to the book by Diaconis [14]
which has been undoubtedly the most influential, especially in view of the applications,
the pioneering monograph [31] by Letac, the book by Klimyk and Vilenkin [30], and our
recent survey [11]; see also the book by Terras [44]. The papers by Dunkl [19] and Stanton
[40] are very nice surveys on several other examples involving Weyl groups or Chevalley
groups over finite fields. The paper by Saxl [35] classifies all finite Gelfand pairs in the
symmetric group and also presents some further results for linear groups over finite fields.

For the (equivalent) point of view of the theory of association schemes, started by Del-
sarte in his epochal thesis [12] and for the theory of the Bose–Mesner algebras we refer to
the beautiful book by Bannai and Ito [5]. A more recent account, with a friendly approach
and a view towards statistical applications, is [2].

The paper is organized as follows.
In Section 2 we give some preliminaries on finite Gelfand pairs and on wreath products.

In particular, we recall the notions of composition and exponentiation for group actions
(terminology due to F. Harary [26]).
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In Section 3 we present our main construction we alluded to above, namely the pair
(Aut(T ),K(r, s)).

In Section 4 we present our generalization of the ultrametric Gelfand pair [22,32,41].
This construction was already considered by Bailey, Praeger, Rowley and Speed [3] (even
in a more general setting, see also [2, Chapters 3 and 9]) and by Hanaki and Hirotsuka [25]
(this latter in the language of association schemes). More precisely, given two Gelfand
pairs (G,K) and (F,H) with homogeneous spaces X = G/K and Y = F/H , then there
is a natural action, namely the composition of F �G on X ×Y . This gives rise to a Gelfand
pair. In other words, given two permutation representations G on X and F on Y , we show
that the action of F � G on X × Y is multiplicity-free if and only if the previous actions are
both multiplicity-free. We give explicit formulas for the spherical functions and we show
how the ultrametric space is obtained by iterating this construction starting from the pair
(Sq, Sq−1).

In Section 5 we present our generalization of the Hamming scheme. Particular cases
have been studied recently (mostly from the point of view of the Theory of Special Func-
tions) by Mizukawa [33], Akazawa and Mizukawa [1]. See also Mizukawa and Tanaka
[34]. More precisely, given a Gelfand pair (F,H) with Y = F/H and a finite group G

acting on a set X, then the natural action, the exponentiation, of F � G on YX , gives rise to
a Gelfand pair, namely (F � G,H � G). We actually consider a more general construction
involving semidirect products.

In Section 6 we present our generalization of the Johnson scheme. More precisely,
given a Gelfand pair (F,H) we show that (F � Sn,F � Sn−h × H � Sh) is a Gelfand pair.
The corresponding homogeneous space may be identified with Θh = ⊔

A∈Sn/(Sn−h×Sh) Y
A,

i.e. with the set of all functions θ :A → Y where A ranges among all the h-subsets of
{1,2, . . . , n}. This generalizes a construction given by Dunkl [17] and by Tarnanen, Aalto-
nen and Goethals [43] who considered the case F = Sm and H = Sm−1. We also show that
our construction is the keypoint for an inductive analysis of (Aut(Tr),K(r, s)).

Note that for h = 1 the corresponding construction yields a particular case of the gen-
eralized ultrametric space (Section 4), while, for h = n, we have a particular case of the
generalized Hamming scheme (Section 5). In this setting, a more general construction
finds an obstruction from a classical result of Beaumont and Peterson [7] (who attribute
it to Chevalley): in general, the only nontrivial subgroup of Sn acting transitively on the
h-subsets of {1,2, . . . , n} for all h = 1,2 . . . , n is the alternating subgroup An.

2. Preliminaries

2.1. Definition and characterizations of Gelfand pairs

Let G be a finite group and K � G a subgroup of G. Denote by X = G/K =
{gK: g ∈ G} the corresponding homogeneous space and by x0 ∈ X the point stabilized
by K .

Denote by L(G) = {f :G → C} the convolution algebra of all complex-valued func-
tions on G. We then say that f ∈ L(G) is bi-K-invariant if f (kgk′) = f (g) for all g ∈ G

and k, k′ ∈ K . The subalgebra of bi-K-invariant functions on G can be identified with
L(K\G/K), the algebra of all complex-valued functions on the double-K-cosets of G.
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The permutation representation λ of G on L(X) = {f :X → C} is then defined by
[λ(g)f ](x) = f (g−1x) for g ∈ G, x ∈ X and f ∈ L(X). We also denote by 〈f1, f2〉 =∑

x∈X f1(x)f2(x) the scalar product of two functions f1, f2 ∈ L(X).
The pair (G,K) is a Gelfand pair if the algebra L(K\G/K) of bi-K-invariant func-

tions is commutative or, equivalently, the decomposition L(X) = ⊕n
i=0 Vi into irreducible

G-modules is multiplicity-free.
If this is the case, for all i = 0,1, . . . , n, there exists a (unique up to normalization)

bi-K-invariant function φi ∈ Vi whose G-translates span the whole Vi . The φi ’s are called
spherical functions and they constitute a basis for the subspace of bi-K-invariant functions;
this way, the number n + 1 of irreducible components Vi ’s equals the number of K-orbits
on X. We also observe that there is a bijection between the K-orbits on X and the G-
orbits on X × X with respect to the diagonal action g(x, x′) = (gx, gx′), g ∈ G,x,x′ ∈ X.
Indeed, denoting by 	 a disjoint union, we have that if X = ⊔n

i=0 Λi is the partition of
X into its K-orbits, with Λ0 = {x0}, and more generally for each 1 � j � n, xj ∈ Λj is
chosen so that Λj = K · {xj }, then the G-orbits of X × X are given by the sets Λ̃j :=
G · {(x0, xj )} (in particular, Λ̃0 = {(x, x): x ∈ X}): indeed, it is easy to verify that the Λ̃j ’s
partition X × X. We indicate by

Λj → Λ̃j (2.1)

this correspondence.
On L(X) we now define, for 0 � i � n, the Markov operators

[Mif ](x) =
∑

y∈gΛi

f (y) =
∑

y: (x,y)∈Λ̃i

f (y) (2.2)

where f ∈ L(X), x = gx0 and the second equality follows from the previous argument.
Observe that Mi is nothing but the convolution operator with kernel the characteristic func-
tion of Λi : in particular, M0 = IX is the identity operator.

For 0 � i, j � n set

Ξi,j (x, y) = {
z ∈ X: (x, z) ∈ Λ̃i and (z, y) ∈ Λ̃j

}
(2.3)

and observe that Ξi,j (gx, gy) = gΞi,j (x, y) for all g ∈ G, so that |Ξi,j (x, y)| =: ξi,j (s)

depends only on the G-orbit Λ̃s of (x, y). It then follows that MiMj = ∑n
s=0 ξi,j (s)Ms .

The algebra generated by the operators Mi ’s is called the Bose–Mesner algebra [2,4,12]
and it is clear that (G,K) is a Gelfand pair if and only if this algebra of operators is
commutative (orbit criterion).

In the following we shall use a criterion (Corollary 2.2) for Gelfand pairs which can be
deduced from the following lemma (Proposition 29.2 in [46]).
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Lemma 2.1. Let G be a finite group, K � G a subgroup and denote by X = G/K the
corresponding homogeneous space. Let L(X) = ⊕n

i=0 miVi be a decomposition into irre-
ducible G-subrepresentations where mi denotes the multiplicity of Vi . Then

n∑
i=0

m2
i = number of K-orbits on X (= number of G-orbits on X × X). (2.4)

Corollary 2.2. Let G be a finite group, K � G a subgroup and denote by X = G/K the
corresponding homogeneous space. Suppose we have a decomposition L(X) = ⊕h

t=0 Zt

into G-subrepresentations with h + 1 = the number of K-orbits on X. Then the Zt ’s are
irreducible and (G,K) is a Gelfand pair.

Proof. Refine if necessary the decomposition with the Zt ’s into irreducibles as in the state-
ment of the previous lemma. Then h + 1 �

∑n
i=0 mi �

∑n
i=0 m2

i and the lemma force
h = n and mi = 1 for all i’s concluding the proof. �
2.2. Symmetric Gelfand pairs

Let G and K � G be finite groups and denote by X = G/K the corresponding homo-
geneous space.

Suppose that for any g ∈ G one has g−1 ∈ KgK . Then (G,K) is a Gelfand pair. This
can be shown directly by checking that any two bi-K-invariant functions commute (see,
e.g. [11]). The pair (G,K) is then called a symmetric Gelfand pair [14,32].

In [11,32] it is shown that symmetry is equivalent to the condition that (x, y) and (y, x)

belong to the same G-orbit on X × X for all x, y ∈ X.
Suppose that G acts on a metric space (X,d) isometrically (i.e. d(gx,gy) = d(x, y) for

all x, y ∈ X and g ∈ G) and that the action is 2-point homogeneous (or distance transitive),
that is, for all x1, x2, y1, y2 ∈ X such that d(x1, y1) = d(x2, y2) there exists g ∈ G such that
gx1 = x2 and gy1 = y2. Fix x0 ∈ X and denote by K = {g ∈ G: gx0 = x0} the stabilizer
of this point. Then (G,K) is a symmetric Gelfand pair: indeed d(x, y) = d(y, x) and the
previous argument applies.

In [11] we presented a short proof of the following characterization of symmetric
Gelfand pairs due to Garsia [9,23]:

Lemma 2.3 ((Garsia’s criterion)). A Gelfand pair (G,K) is symmetric if and only if the
spherical functions are real-valued.

The simplest Gelfand pair, namely (Cn, {e}), where Cn denotes the cyclic group of order
n and e is the unit element, is nonsymmetric for n � 3; note that the spherical functions
are the characters φj (x) = exp(2πijx/n).

From the point of view of the Bose–Mesner algebras, recalling that the Markov operator
Mi in (2.2) can be viewed as the convolution operator with kernel the characteristic func-
tion of the set Λi ⊆ X and observing that Mi is selfadjoint (i.e. 〈Mif1, f2〉 = 〈f1,Mif2〉,
for all f1, f2 ∈ L(X)) if and only if π−1(Λi) ⊆ G is symmetric (i.e. g ∈ π−1(Λi) implies
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g−1 ∈ π−1(Λi)), where π :G → X = G/K is the canonical projection, one easily deduces
the following criterion.

Lemma 2.4. A Gelfand pair (G,K) is symmetric if and only if the Markov operators are
selfadjoint, equivalently, if they have real spectrum.

Another example of a nonsymmetric Gelfand pair is provided by (A4,K) where A4
is the alternating group on {1,2,3,4} and K = {e, (1,2)(3,4)}. Indeed, letting A4 act on
the set X of all 2-subsets of {1,2,3,4} we have that this action is transitive and K is the
stabilizer of the point {1,2}. By simple calculations one shows that there are exactly four
K-orbits on X, namely

Λ0 = {1,2},
Λ1 = {{2,3}, {1,4}},
Λ2 = {{1,3}, {2,4}},
Λ3 = {3,4}.

By Corollary 2.2 one deduces that (G,K) is a Gelfand pair. However it is not symmetric
as ({1,2}, {1,3}) and ({1,3}, {1,2}) do not belong to the same G-orbit in X × X.

In terms of (normalized) Markov operators, we have, using group algebra notation,

M0 = 1

2

[
e + (12)(34)

]
,

M1 = 1

4

[
(124) + (234) + (132) + (143)

]
,

M2 = 1

4

[
(123) + (134) + (142) + (243)

]
,

M3 = 1

2

[
(13)(24) + (14)(23)

]
.

Then M0 acts as identity, M2
1 = M2, M2

2 = M1, M2
3 = M0, M1M3 = M1, M2M3 = M2

and M1M2 = 1
2 (M0 + M3).

Using the techniques in [2, Section 2.4], we have that the spectra of the Markov opera-
tors are as in the following character table:

M0 1 1 1 1
M1 1 0 ω ω2

M2 1 0 ω2 ω

M3 1 −1 1 1

where ω = exp(2πi/3).
Applying Lemma 2.4 we again deduce that (A4,K) is nonsymmetric.
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2.3. Composition and exponentiation of group actions

We recall that given a group G acting on a set X and another group F , the wreath
product F �G of F by G is the group whose set of elements is FX ×G = {(f, g): f :X →
F,g ∈ G} and multiplication (f, g)(f ′, g′) = (f (gf ′), gg′) where [gf ′](x) = f ′(g−1x)

and f (gf ′) is the pointwise product: [f (gf ′)](x) = f (x)f ′(g−1x), for all f,f ′ ∈ FX,g ∈
G and x ∈ X. We remind that the unit element of F � G is (1, eG), where 1(x) = eF for all
x ∈ X and eF and eG are the unit elements in F and G, respectively; moreover the inverse
of an element (f, g) ∈ F � G is

(f, g)−1 = (
f ′, g−1) where f ′(x) = f (gx)−1. (2.5)

Suppose now that F acts on a set Y .
We can define an action of F � G on X × Y by setting

(f, g)(x, y) = (
gx,f (gx)y

) ≡ (
gx,

[(
g−1f

)
(x)

]
y
)
. (2.6)

It is easy to check that (2.6) defines indeed an action; Harary [26] calls it the composition
action.

We can also define an action of F � G on YX = {η :X → Y } by setting[
(f, g)η

]
(x) = f (x)η

(
g−1x

)
. (2.7)

It is easy to check that (2.7) indeed defines an action; Harary [26] calls it the exponentiation
action.

3. The main construction: Gelfand pairs associated with subtrees

3.1. The homogeneous space V(r, s)

Let r = (r1, r2, . . . , rm) be an m-tuple of positive integers (that, as one naturally expects,
could be assumed to be � 2). Set X0 = {∅} and Xk = {1,2, . . . , rk} so that |Xk| = rk for
all 1 � k � m.

The associated r-tree is the graph Tr = (V ,E) where the set of vertices is

V = X0 	 X1 	 (X1 × X2) 	 · · · 	 (X1 × X2 × · · · × Xm)

and two vertices v = (x1, x2, . . . , xk) and w = (y1, y2, . . . , yh) are adjacent, namely
{v,w} ∈ E, if |h − k| = 1 and xi = yi for all 1 � i � min{h, k}; if h = k + 1 we say
that w is a son/successor of v and that v is the father/predecessor of w. Clearly every
vertex at level i has exactly ri+1 successors. The set Vi = Vi(Tr) = X1 × X2 × · · · × Xi

is called the ith level of the tree Tr. m is called the depth of Tr and Vm is called the set of
leaves of Tr.
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Fig. 1. A tree of type (3,3,3) with a subtree of type (2,2,1).

Suppose now that s = (s1, s2, . . . , sm) is another m-tuple such that 1 � si � ri for all i’s.
Denote by Ts the corresponding s-tree. See, for instance, Fig. 1. Note that there are exactly(

r1

s1

)
·

m∏
i=2

(
ri

si

)s1s2···si−1

distinct embeddings of Ts as a subtree of Tr. Indeed, the number of vertices at level i is
s1s2 · · · si−1 and any such subtree is uniquely determined by the m-tuple (f0, f1, . . . , fm−1)

where fi is the map that associated with each vertex v at the ith level in Ts the set of all
successors of v (note that for each i there are exactly

(
ri+1
si+1

)s1s2···si such maps fi ’s). We
denote by V(r, s) the set of all s-subtrees of Tr.

Denote by Sk the symmetric group on k elements and by Aut(Tr) the group of all au-
tomorphisms of Tr; it is well known that Aut(Tr) = Srm � Srm−1 � · · · � Sr2 � Sr1 , see, for
instance, [6,24]. Observe that if g ∈ Aut(Tr) then g stabilizes the levels Vi ’s. Moreover,
g is uniquely determined by a labelling [24], that we continue to denote by g, namely a
map g :V  v �→ g(v) ∈ ⋃m−1

i=0 Sri+1 (g(v) ∈ Sri+1 if v ∈ Vi ) such that

g(x1, x2, . . . , xk) = (
g(∅)x1, g(x1)x2, . . . , g(x1, x2, . . . , xk−1)xk

)
.

We observe that the group Aut(Tr) acts on V(r, s).
Fix an s-subtree T ∗

s and denote by K(r, s) = {g ∈ Aut(Tr): gT ∗
s = T ∗

s } its stabilizer.
This way one has the identification V(r, s) = Aut(Tr)/K(r, s).

We end this section with an explicit description of the structure of the group K(r, s).
Suppose first that the tree Tr has depth 1 so that r = r1 and s = s1; clearly Aut(Tr) = Sr1

and K(r, s) = Ss1 × Sr1−s1 .
In general, let r′ = (r2, r3, . . . , rm) and s′ = (s2, s3, . . . , sm), then, one has the recursive

expression:

StabAut(Tr)(Ts) = Aut(Tr′) � Sr −s × K(r′, s′) � Ss . (3.1)
1 1 1
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In particular, if the tree Tr has depth 2, so that r = (r1, r2), s = (s1, s2) and Aut(Tr) =
Sr2 � Sr1 , one has

K(r, s) = Sr2 � Sr1−s1 × (Ss2 × Sr2−s2) � Ss1 .

3.2. The Gelfand pair (Aut(Tr),K(r, s))

Given two rooted trees we say that they are rooted-isomorphic if there exists a graph
isomorphism exchanging the respective roots; note that, more generally, the level of the
single elements remains unchanged under such an isomorphism.

Lemma 3.1. Let T1, T2, T
′
1 and T ′

2 be s-subtrees inside Tr. Then (T1, T2) and (T ′
1, T

′
2)

belong to the same Aut(Tr)-orbit on V(r, s) × V(r, s) if and only if T1 ∩ T2 is rooted-
isomorphic to T ′

1 ∩ T ′
2 .

Remark 3.2. Note that if T1 and T2 are two s-subtrees inside Tr then their intersection
T1 ∩ T2 need not to be an u-subtree of Tr (for some u = (u1, u2, . . . , uk), with ui � si ).

Proof. Observe first that if gTj = T ′
j , j = 1,2, for some g ∈ Aut(Tr), then g(T1 ∩ T2) =

T ′
1 ∩ T ′

2 so that the “only if” part follows trivially.
We prove the other implication by induction on the depth m of the tree Tr. For m = 1,

one has r = r and s = s, V(r, s) is simply the set of all s-subsets of an r-set and
Aut(Tr) = Sr ; this case is easy and well known.

Suppose that T1 ∩ T2 is rooted-isomorphic to T ′
1 ∩ T ′

2 and denote by α :V1(T1 ∩ T2) →
V1(T

′
1 ∩ T ′

2) a bijection such that if x ∈ V1(T1 ∩ T2) then the T1 ∩ T2-subtree Tx rooted at
x is (rooted-)isomorphic to the T ′

1 ∩ T ′
2-subtree T ′

α(x) rooted at α(x). Extend α to a σ ∈ Sr1

such that σ(V1(T1)) = V1(T
′

1) and σ(V1(T2)) = V1(T
′
2).

Modulo this permutation σ we now suppose that T1 ∩ T2 and T ′
1 ∩ T ′

2 coincide at the
first level.

By induction, for all x ∈ V1(T1 ∩ T2) ≡ V1(T
′

1 ∩ T ′
2) we have an x-rooted isomor-

phism gx between the T1 ∩ T2-subtree rooted at x and the corresponding T ′
1 ∩ T ′

2-subtree
with the same root x. It is then clear that the automorphism g with label g(∅) = σ ,
g(x, x2, . . . , xn) = gx(x2, . . . , xn) if x ∈ T1 ∩ T2 and the identity otherwise, is the desired
rooted automorphism. �
Corollary 3.3. Aut(Tr) acts transitively on V(r, s).

Proof. Apply the lemma to T1 = T2 and T ′
1 = T ′

2. �
Corollary 3.4. (Aut(Tr),K(r, s)) is a symmetric Gelfand pair.

Proof. Apply previous lemma to T1, T2, T
′
1, T

′
2 with T ′

1 = T2 and T ′
2 = T1 in combination

with the arguments from previous section. �
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4. Composition of Gelfand pairs: The generalized ultrametric space

This section is devoted to a particular case (namely s = (1,1, . . . ,1)) of the general
construction of previous section, because now a more general theory can be obtained.

4.1. Composition of Gelfand pairs

Let G and F be two finite groups with subgroups K � G and H � F . Denote by X =
G/K and Y = F/H the corresponding homogeneous spaces. Let x0 ∈ X and y0 ∈ Y be the
points stabilized by K and H , respectively. Consider the composition action of F � G on
X × Y (2.6) (see, for instance, Fig. 2) and denote by J the stabilizer of the point (x0, y0).
Also let X = ⊔n

i=0 Ξi and Y = ⊔m
j=0 Λj be the decompositions of X and Y into their K-

(respectively H -) orbits (with Ξ0 = {x0} and Λ0 = {y0}).
Then we have

Lemma 4.1.

(1) J = {(f, k) ∈ F � G: k ∈ K,f (x0) ∈ H }.
(2) The decomposition of X × Y into its J -orbits is given by

X × Y =
[

m⊔
j=0

(Ξ0 × Λj)

]
	
[

n⊔
i=1

(Ξi × Y)

]
. (4.1)

Proof. (1) The characterization of J follows immediately from the definition of the ac-
tion (2.6).

(2) We determine the J -orbits on X×Y . If y ∈ Λj , then J (x0, y) = {(f, k)(x0, y): k ∈ K

and f (x0) ∈ H } = {(x0, f (x0)y): f (x0) ∈ H } = Ξ0 × Λj . Analogously, if x ∈ Ξi , i � 1,
and y ∈ Y , then J (x, y) = {(f, k)(x, y): k ∈ K and f (x0) ∈ H } = {(kx,f1y): k ∈ K,

f1 ∈ F } = Ξi × Y . �

Fig. 2. Composition: F � G acts on X × Y as automorphisms of the tree {∅} 	 X 	 {X × Y }.
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Suppose that (G,K) and (F,H) are Gelfand pairs and let L(X) = ⊕n
i=0 Vi and L(Y ) =⊕m

j=0 Wj be the decomposition into G- (respectively F -) irreducible subrepresentations,
where V0 and W0 are the one-dimensional subspaces of constant functions. Also denote
by {φi}ni=0 and {φ′

j }mj=0 the spherical functions of (G,K) and (F,H), respectively with
φ0 = 1X and φ′

0 = 1Y . We then have

Theorem 4.2.

(1) (F � G,J ) is a Gelfand pair if (and only if ) (G,K) and (F,H) are Gelfand pairs.
(2) The decomposition of L(X × Y) into (F � G)-irreducibles is given by

L(X × Y) =
[

n⊕
i=0

(Vi ⊗ W0)

]
⊕

[
m⊕

j=1

(
L(X) ⊗ Wj

)]
. (4.2)

The spherical functions of (F � G,J ) are{
φi ⊗ φ′

0, δx0 ⊗ φ′
j : i = 0,1, . . . , n, j = 1,2, . . . ,m

}
(4.3)

where δx0 is the Dirac function at x0 ∈ X.

Proof. (1) We use the orbit criterion (cf. Section 2.1) that yields both implications in
an elementary fashion; alternatively, the “if” part may be deduced from the arguments
in the proof of (2). Denote, as in (2.1), by Ξ̃i , i ∈ I = {0,1, . . . , n}, and Λ̃j , j ∈ J =
{0,1, . . . ,m}, the G-orbits on X × X and Y × Y , respectively; set I∗ = I \ {0}.

In a similar way denote by Ξ̃i × Y and Ξ̃0 × Λj (i ∈ I∗ and j ∈ J ) the F �G-orbits on
(X × Y) × (X × Y).

The corresponding Markov operators are

[MiF](x1) =
∑

x2: (x1,x2)∈Ξ̃i

F(x2),

[NjG](y1) =
∑

y2: (y1,y2)∈Λ̃j

G(y2),

[MiH](x1, y1) =
∑

(x2,y2): (x1,x2,y1,y2)∈Ξ̃i×Y

H(x2, y2),

[NjH](x1, y1) =
∑

(x2,y2): (x1,x2,y1,y2)∈Ξ̃0×Λj

H(x2, y2)

where F ∈ L(X),G ∈ L(Y ) and H ∈ L(X × Y).
We need to show that the Mi ’s together with the Nj ’s generate a commutative algebra

if and only if the Mi ’s and, separately, the Nj ’s do.
If G ∈ L(X) and F ∈ L(Y ), their tensor product is given by [G ⊗F](x, y) = G(x)F(y)

for all x, y. By linearity we may assume that H = F ⊗ G.
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For i ∈ I∗ we have

[MiH](x1, y1) = [
Mi (F ⊗ G)

]
(x1, y1)

=
∑

(x2,y2): (x1,x2,y1,y2)∈Ξ̃i×Y

F(x2)G(y2)

=∗
∑

x2: (x1,x2)∈Ξ̃i
y2∈Y

F(x2)G(y2)

= ([MiF](x1)
)( ∑

j∈J
[NjG](y1)

)

=
[(

Mi ⊗
( ∑

j∈J
Nj

))
H
]
(x1, y1),

where =∗ comes from the following fact: if we identify (X × Y) × (X × Y) with (X ×
X) × (Y × Y), then Ξ̃i × Y = Ξ̃i × Ỹ and Ξ̃0 × Λj = Ξ̃0 × Λ̃j , where Ỹ = Y × Y .

One then deduces

Mi = Mi ⊗
( ∑

j∈J
Nj

)
(4.4)

and, similarly,

Nj = M0 ⊗ Nj = IL(X) ⊗ Nj . (4.5)

From (4.4) and (4.5) point (1) follows immediately.
(2) We now determine the decomposition into F � G-irreducibles of L(X × Y). We first

observe that

L(X × Y) = L(X) ⊗ L(Y ) =
(

n⊕
i=0

Vi

)
⊗

(
m⊕

j=0

Wj

)

so that (4.2) is a decomposition of L(X × Y).
If G ∈ L(X) and F ∈ L(Y ), then [G ⊗F](x, y) = G(x)F(y) for all x, y and therefore,

if (f, g) ∈ F � G, using (2.5) and (2.6)

[
(f, g)(G ⊗F)

]
(x, y) = (G ⊗F)

[
(f, g)−1(x, y)

]
= (G ⊗F)

(
g−1x,f (x)−1y

)
= (gG)(x)

[
f (x)F

]
(y). (4.6)
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We are now in position to show that the subspaces Vi ⊗ W0 and L(X) ⊗ Wj are F � G-
invariant. Let v ⊗ 1 ∈ Vi ⊗W0, δx ⊗w ∈ L(X)×Wj , where δx is the Dirac delta at x ∈ X,
and (f, g) ∈ F � G. We have (f, g)[v ⊗ 1] = gv ⊗ 1 ∈ Vi ⊗ W0 and (f, g)[δx ⊗ w] =
δgx ⊗ f (x)w ∈ L(X) ⊗ Wj .

From (4.1) we have that the number of F �G-orbits, namely n+m+1 equals the number
of F �G-invariant subspaces in (4.2) and Corollary 2.2 yields the first part of the statement.

We now determine the spherical functions. As φi ⊗ φ′
0 ∈ Vi ⊗ W0 and δx0 ⊗ φ′

j ∈
L(X) ⊗ Wj we are only left to the simple verification that these are J -invariant: for
(f, k) ∈ J we have (f, k)[φi ⊗ φ′

0] = (f, k)[φi ⊗ 1Y ] = (kφi ⊗ 1Y ) = φi ⊗ 1Y since φi

is a spherical function for (G,K) and therefore it is K-invariant. Analogously, recalling
that x0 is the point stabilized by K , one checks that (f, k)[δx0 ⊗ φ′

j ] = δx0 ⊗ φ′
j . The proof

is now complete. �
From (4.3) and using Garsia’s criterion (Lemma 2.3) one easily proves that:

Proposition 4.3. (F � G,J ) is symmetric if and only if (G,K) and (F,H) are symmetric.

4.2. An application: The finite ultrametric space

In this subsection we apply the results of Theorem 4.2 to the case of the ultrametric
space. These results were obtained by Letac [32]. See also [8,22,41].

According with the notation of Section 3 denote by Tr, r = (q, q, . . . , q), a finite
q-ary tree of depth m and by T ∗

s , s = (1,1, . . . ,1), the s-subtree given by the ray from
the root to the leftmost leaf. Notice that the set V(r, s) of all s-subtrees can be identi-
fied with the set X = {0,1, . . . , q − 1}m = Cm

q of all leaves. We know that the group
Aut(Tr) = Sq � · · · � Sq acts transitively on X and if K = K(r, s) denotes the stabilizer
of T ∗

s = z0 the pair (Aut(Tr),K) is Gelfand. In this case one can give a direct proof of
this fact by observing that the space X can be endowed with a distance d , by setting, for
x, y ∈ X, d(x, y) = m−h where h is the depth of the nearest common ancestor and check-
ing that the action of Aut(Tr) is 2-point homogeneous (see Section 2.2) with respect to this
distance [22].

For a tree of depth one Aut(Tr) coincides with Sq and the stabilizer K with the sub-
group Sq−1. The space L(Sq/Sq−1) = L(Cq) splits into two irreducible representations,
namely V0, the subspace of constant functions, and V1, the subspace of functions of mean
zero. Moreover the spherical function associated with V0 is the constant function 1 while
the spherical function associated with V1 is given by

φ(x) =
{

1, if x = 0,

− 1
q−1 , if x �= 0.

(4.7)

Setting r′ = (q, q, . . . , q) (m − 1 times) we have that Aut(Tr) = Aut(Tr′) � Sq . Applying
recursively Theorem 4.2 we obtain the following decomposition:

L(X) = L
(
Cm

q

) =
m⊕

Wj
j=0
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where

Wj =

⎧⎪⎨⎪⎩
V ⊗m

0 , if j = 0,

V1 ⊗ V ⊗m−1

0 , if j = 1,

L(C
j−1
q ) ⊗ V1 ⊗ V ⊗m−j

0 , if j � 2.

From Theorem 4.2 we deduce that the spherical function φj ∈ Wj is

φj (x1, x2, . . . xm) = δ0(x1) · · · δ0(xj−1)φ(xj ).

Since the distance of an element x = (x1, x2, . . . , xm) in X from the point z0 is m − k,
where k is the largest index such that x1 = · · · = xk = 0, taking into account (4.7) we
obtain

φj (x) =
⎧⎨⎩

1, if d(x, z0) < m − j + 1,

− 1
q−1 , if d(x, z0) = m − j + 1,

0, if d(x, z0) > m − j + 1.

(4.8)

4.3. Another application: The Kaloujnine group

Let K(q,m) = Cq � Cq � · · · � Cq , the m-iterated wreath product of the cyclic group Cq ,
be the Kaloujnine group [10]. K(q,m) can be viewed as a subgroup of Aut(Tq) where
q = (q, q, . . . , q), m times; thus it acts on the set of leaves of Tq. Denote by J (q,m) the
subgroup of K(q,m) which stabilizes the leftmost leaf.

As Cq is abelian, we have that (Cq, {e}) is a Gelfand pair. We identify the corresponding
homogeneous space X with {0,1,2, . . . , q − 1}. Clearly

L(X) =
q−1⊕
j=0

Vj ,

where Vj is the one-dimensional subspace spanned by the character φj (x) = exp(2πijx/q).
With the notation preceding Lemma 4.1, setting G = Cq , K = {e}, F = K(q,m − 1)

and H = J (q,m − 1) we clearly have

K(q,m) = F � G and

J (q,m) = J (q,m − 1) × K(q,m − 1) × · · · × K(q,m − 1)︸ ︷︷ ︸
m−1

,

so that, combining an induction argument with Theorem 4.2, one has that (K(q,m),

J (q,m)) is a (nonsymmetric) Gelfand pair.
For j = 0,1,2, . . . , q − 1 and s � 1 set

W
0,s = Vj ⊗ V ⊗s−1
j 0
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and, for j = 1,2, . . . , q − 1 and t = 0,1, . . . ,m − 1,

W
t,m
j = L(X)⊗t ⊗ W

0,m−t
j .

This way one has the decomposition into irreducible K(q,m)-representations

L
(
K(q,m)/J (q,m)

) ≡ L
(
Xm

) ≡ L(X)⊗m = W
0,m
0 ⊕

[
m−1⊕
t=0

q−1⊕
j=1

W
t,m
j

]
.

The spherical function in W
t,m
j is then given by

φ
t,m
j (x1, x2, . . . , xm) =

⎧⎨⎩
1, if j = 0, t = 0,

φj (x1) ≡ exp(2πijx1/q), if j �= 0, t = 0,

δ0(x1) · · · δ0(xt ) exp(2πijxt+1/q), otherwise.

5. Exponentiation of Gelfand pairs: The generalized Hamming scheme

This section is devoted to another particular case (namely s1 = r1) of the construction
from Section 3 because, again, more general theories can be developed.

5.1. Gelfand pairs associated with semidirect products

The general construction presented below is inspired by the classical Frobenius theory
of representations of semidirect products with abelian groups [37,38].

Let G = NH = N � H be a finite group, semidirect product of N and H . Suppose
that K � N is an H -invariant subgroup of N and that (N,K) is a Gelfand pair. Denote
by X = N/K the homogeneous space associated with (N,K), by L(X) = ⊕n

i=0 Vi the
(multiplicity-free) decomposition of L(X) into N -invariant irreducibles and by φi ∈ Vi the
corresponding spherical functions.

Observe that the map

p :N/K  nK �→ nKH ∈ G/KH

is a bijection; as a consequence, the element nK (viewed as an element in X ≡ N/K) can
be identified with the element nKH (viewed as an element in G/KH ); also observe that
nKH = nhKH for any h ∈ H .

The action of G on X ≡ G/KH is given by the rule

nh(n0KH) = nhn0h
−1KH (5.1)

and the induced action on L(X) is thus given by [gf ](x) = f (g−1x), namely

[nhf ](n0KH) = f
(
h−1n−1n0KH

) = f
(
h−1n−1n0hKH

) = f
((

n−1n0
)h

KH
)
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for f ∈ L(X), g = nh, x = n0KH ∈ X and n,n0 ∈ N , h ∈ H . In particular, [hf ](n0KH) =
f (nh

0KH). Moreover, if Vi is any irreducible N -invariant subspace in L(X), h ∈ H and
f ∈ Vi , then n[hf ] = h[(h−1nh)f ] for all n ∈ N which shows that the subspace hVi is still
N -invariant. Moreover it is also irreducible: indeed if ρi is the representation of N on Vi ,
then ρh

i (n) := ρi(h
−1nh) defines a representation of N on Vi which is equivalent to that

on hVi . As a consequence of this, H permutes the Vi ’s. Denote by Γj , j = 0,1, . . . , r , the
H -orbits on {V0,V1, . . . , Vn}. Then the L(X) subspaces

Wj =
⊕

i: Vi∈Γj

Vi (5.2)

are clearly G-invariant, G-irreducible and pairwise nonequivalent (the restrictions to
N � G of the representations Wj and Wj ′ decompose into inequivalent subrepresentations
for j �= j ′).

Thus

Theorem 5.1. L(X) = ⊕r
j=0 Wj is multiplicity-free and (G,KH) is a Gelfand pair.

The corresponding spherical functions are given by

Φj = 1

|Γj |
∑

i: Vi∈Γj

φi = 1

|H |
∑
h∈H

hφi. (5.3)

Note that hφi is the spherical function for hVi and that the dimension of Wj is given by

dim(Wj ) = |Γj |dim(V )

where V ∈ Γj .
Also, if X = ⊔n

i=0 Ξi is the partition of X into its K-orbits, observe that, as before, for
each h ∈ H the subset hΞi is still K-invariant; in other words H permutes the orbits Ξi ’s.
Denote by Λj , j = 0,1, . . . , r , the corresponding KH -orbits, i.e. each Λj is the union of
the Ξi ’s belonging to a single orbit of H on {Ξ0,Ξ1, . . . ,Ξn}.

Analogously let

X × X =
n⊔

i=0

Ξ̃i

be the partition into N -orbits of X × X (see (2.1)); observe that, given h ∈ H , hΞ̃i is
still N -invariant and thus H permutes the orbits Ξ̃i ’s. Denote by Λ̃j the corresponding
KH -orbits.

We thus have that X = ⊔r
j=0 Λj and X × X = ⊔r

j=0 Λ̃j are the partitions of X and
X × X into its KH -orbits and G-orbits, respectively. Note that the correspondence (cf.
Section 2.1) between the K-orbits on X and the N -orbits on X × X parallels the corre-
spondence between the KH -orbits on X and the G-orbits on X × X.
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From this it follows immediately that if Mi :L(X) → L(X) denote the Markov opera-
tors for (N,K), then

Mj =
∑

i: Ξ̃i⊆Λ̃j

Mi

are the Markov operators corresponding to (G,KH).
This gives another proof of the fact that (G,KH) is a Gelfand pair. Note that, by Gar-

sia’s criterion (Lemma 2.3), if (N,K) is symmetric, so is also (G,KH).

Remark 5.2. Let G be finite group and set G̃ := {(g, g): g ∈ G}. It is well known [14]
that (G × G,G̃) is a Gelfand pair (if G is ambivalent [28], i.e. g−1 is conjugate to g, for
every g ∈ G, then it is even symmetric). Set N = {e}×G, H = G̃ and K = {e}×{e}. Then
G × G, which is the semidirect product of N by H , and KH = G̃ constitute a Gelfand
pair; however (N,K) ∼= (G, {e}) is a Gelfand pair if and only if G is abelian. This shows
that in Theorem 5.1 one does not have the inverse implication.

As the symmetry is concerned we again cannot invert the implication. Indeed, if K =
{e, (1,2)(3,4)} ∼= Z2 in Section 2.2 we showed that (A4,K), is a nonsymmetric Gelfand
pair; however S4 = A4 �H , where H = {e, (1,2)} ∼= Z2 and (S4,Z2 ×Z2) is well known to
be symmetric (in general one has (Sn, Sn−h ×Sh) is symmetric for all 1 � h � n, see [11]).

5.2. An application: Gelfand pairs associated with semidirect products with abelian
groups

Let G = AH = A � H be a (finite) group, semidirect product of an abelian group A

and H . Then Theorem 5.1 implies that (G,H) is a Gelfand pair.
In this case (5.1) corresponds to the action π of G on A ∼= G/H given by π(ah)a0 =

aha0h
−1, a, a0 ∈ A, h ∈ H . Note that H is the stabilizer of the unit element e ∈ A.

The corresponding representation of G on L(A) = {f :A → C}, the space of complex-
valued functions on A, is given by [(ah)f ](a0) = f (h−1a−1a0h). In particular, if χ ∈ Â

is a character of A, then [(ah)χ](a0) = χ(h−1a−1a0h) = χ(h−1a−1h)χ(h−1a0h).

Denote by Γ0 = {1A},Γ1, . . . ,Γk the H -orbits on Â and by Vi the subspace of L(A)

generated by the characters in Γi , i = 0,1, . . . , k; it is then clear that V0,V1, . . . , Vk are
G-invariant subspaces of L(A).

From (5.3) the spherical function φi in Vi is given by

φi(a0) = 1

|Γi |
∑
χ∈Γi

χ(a0) = 1

|H |
∑
h∈H

χi

(
h−1a−1

0 h
)

where χi denotes a fixed character in Γi .
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Suppose now that G = A � H = AX � H , where A is abelian and H acts transitively
on a set X. Then the above considerations yield that (G,H) is a Gelfand pair. The corre-
sponding spherical functions are now given by

φχ(f0) = 1

|H |
∑
h∈H

χ
(
h−1f0h

)
where f0 :X → A, h0 ∈ H and χ is a character of AX . But h−1f0h = [h−1f0] where
[h−1f0](x) = f0(hx) and χ = ∏

x∈X χx , where χx is a character of A, for all x ∈ X. Thus,
χ(h−1f0h) = ∏

x∈X χx[f0(hx)] and

φχ(f0) = 1

|H |
∑
h∈H

∏
x∈X

χx

[
f0(hx)

]
.

Example 5.3. As an application let A = Z2 and H = Sn. We identify Z2 with the multi-
plicative group {−1,+1} and we denote by 1 and by −1 the identity and the sign character,
respectively. For x = (x1, x2, . . . , xn) ∈ (Z2)

n and χ = (χ1, χ2, . . . , χn) a character of
(Z2)

n denote by w(x) the number of components xi that equal −1 and by W(χ) the num-
ber of components χj that equal −1, respectively.

The orbits of Sn on (Z2)
n are given by Ar = {x: w(x) = r}, r = 0,1, . . . , n, and those

on (Z∗
2)

n, the dual of (Z2)
n, by Ar = {χ : W(χ) = r}, r = 0,1, . . . , n.

Let fr ∈ Ar be the (unique) element in (Z2)
n for which the first n− r components equal

1 and the remaining r equal −1. Then for the spherical function φs corresponding to As

we have the following expression:

φs(fr) = 1(
n
s

) ∑
χ∈As

χ(fr) = 1(
n
s

) min{s,r}∑
j=max{0,s+r−n}

(−1)j
(

r

j

)(
n − r

s − j

)
= Ks

(
r; 1

2
;n

)

where Ks denotes the Krawtchouk polynomial [17].

More generally one might replace Z2 in the previous example by a cyclic group of
higher order (see Durbin [21], Vere-Jones [45], Dunkl and Ramirez [20] and the most
recent paper by Mizukawa [33]). In this more general setting the corresponding spherical
functions are given by the monomial symmetric functions (Theorem 3.5 in [33]) and have
(n + 1,m + 1)-hypergeometrical expressions (Theorem 4.6 in [33]).

5.3. Cartesian product of Gelfand pairs

Let X be a finite set and (F,H) a finite Gelfand pair. Set N = FX and K = HX so that
the corresponding homogeneous space is N/K = YX , where Y = F/H .

If φ0, φ1, . . . , φn ∈ L(Y ) are the spherical functions for (F,H), then

φi =
⊗

φi(x), i ∈ {0,1, . . . , n}X, (5.4)

x∈X
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are the spherical function for (N,K). This way, if Vi is the F -invariant subspace containing
the spherical function φi , then the corresponding N -invariant subspaces are

Vi =
⊗
x∈X

Vi(x)

and

L
(
YX

) =
⊕

i∈{0,1,...,n}X
Vi

is the decomposition into N -irreducibles.
Analogously, if Y = ⊔n

i=0 Ξi is the decomposition into H -orbits, then, setting Ξi =
{f ∈ YX: f (x) ∈ Ξi(x),∀x ∈ X} one has that

YX =
⊔

i∈{0,1,...,n}X
Ξi

is the decomposition into its K-orbits.

5.4. Exponentiation of Gelfand pairs: The generalized Hamming scheme

Let G be a group of permutations acting transitively on a finite set X and (F,H) be
a finite Gelfand pair. With the notation from previous section, as G leaves K invariant
(by just permuting the H ’s), we have that (F �G,H �G) ≡ (FX �G,HX �G) is a Gelfand
pair. This follows directly from Sections 5.1 and 5.3 combined together.

We only explicitly describe the spherical functions, the irreducible decomposition: again
this follows directly from Sections 5.1 and 5.3.

The corresponding spherical functions are given by (5.3) and (5.4); thus denoting by
Γj , j = 0,1, . . . , r , the G-orbits on the set of Vi’s we have

Φj = 1

|G|
∑
g∈G

gφi ≡ 1

|G|
∑
g∈G

φg−1i

where [g−1i](x) = i(gx), for g ∈ G and x ∈ X.
The corresponding invariant subspaces are

Wj =
⊕

i: Vi∈Γj

Vi.

We now particularize the construction from previous section with G = Sym(X) the
symmetric group on the set X. This specific choice will lead to the explicit determination
of all the orbits involved in the preceding arguments.
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Fig. 3. YX coincides with the space of all subtrees of type (|X|,1) of the tree of X × Y .

We first determine the Sym(X)-orbits on the set {0,1, . . . , n}X . Given i ∈ {0,1, . . . , n}X
and 0 � j � n set aj (i) = |{x ∈ X: i(x) = j}| and define the type of i as

a(i) = (
a0(i), a1(i), . . . , an(i)

)
.

It is easy to see that i1 and i2 in {0,1, . . . , n}X belong to the same (H � Sym(X))-orbit
if and only if they have the same type: a(i1) = a(i2).

Then we immediately have that two spherical functions φi1 and φi2 (equivalently two
FX-irreducible spaces Vi1 and Vi2 ) are in the same G-orbit if and only if a(i1) = a(i2).

Let now Y = ⊔n
i=0 Λi be the decomposition of X into its G-orbits.

Analogously, for θ ∈ YX and 0 � j � n set τj (θ) = |{x ∈ X: θ(x) ∈ Λj }| and define
the type of θ as

τ(θ) = (
τ0(θ), τ1(θ), . . . , τn(θ)

)
.

See, for instance, Fig. 3.
It is easy to see that θ1 and θ2 in YX belong to the same (H � Sym(X))-orbit if and only

if they have the same type: τ(θ1) = τ(θ2).
Then, again we immediately have that two HX-orbits Λi1 and Λi2 (equivalently two

FX-orbits Λ̃i1 and Λ̃i2 in YX × YX ≡ (Y × Y)X) are in the same G-orbit if and only if
τ(θ1) = τ(θ2).

Combining these last observations with the preceding sections we get the following
description for the generalized Hamming scheme; compare with [2, pp. 297–298].

Theorem 5.4. Let X be a finite set and (F,H) a finite Gelfand pair. Then:

(1) For a ∈ N{0,1,...,n} such that
∑n

j=0 aj = |X| set Wa = ⊕
i: a(i)=a Vi. Then the Wa’s are

distinct irreducible representations of F � Sym(X) and

dim(Wa) =
(|X|

a

)
dim(V1)

a1 dim(V2)
a2 · · ·dim(Vn)

an .
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(2) L(XY ) = ⊕
a∈N{0,1,...,n}:

∑n
j=0 aj =|X| Wa is the decomposition of L(YX) into its irre-

ducible components; in particular (F � Sym(X),H � Sym(X)) is a Gelfand pair.
(3) The spherical function in Wa is given by

Φa = 1(|X|
a

) ∑
i: a(i)=a

φi.

6. The generalized Johnson scheme

6.1. Induced representations and induced operators

We start by recalling the definition of induced representation [37]. Let G be a finite
group, K � G a subgroup, (ρ,V ) a representation of G and W a K-invariant subspace
of V . Suppose that S is a system of representatives for the set of left cosets G/K , that
is G = ⊔

s∈S sK . V is said to be induced by W if one has the following direct sum de-
composition: V = ⊕

s∈S ρ(s)W . The standard notation is V = IndG
K W . Note also that

dimV = |G/K| · dimW .
Suppose now that (ρ1,V1) and (ρ2,V2) are two representations of G, Vi = IndG

K(Wi),
i = 1,2, and that τ :W1 → W2 is a K-intertwining operator. We define the operator
IndG

K τ :V1 → V2 by setting, if v = ∑
s∈S ρ1(s)ws is an element of V1 (thus ws ∈ W1 for

every s ∈ S) (
IndG

K τ
)
(v) =

∑
s∈S

ρ2(s)τws. (6.1)

Lemma 6.1.

(1) IndG
K τ intertwines V1 and V2;

(2) ker IndG
K τ = IndG

K ker τ ;
(3) ran IndG

K τ = IndG
K ran τ , where ranT denotes the range of the operator T .

Proof. Suppose that v = ∑
s∈S ρ1(s)ws ∈ V1. If g ∈ G then for every s ∈ S there

exist ts ∈ S and ks ∈ K such that gs = tsks . Therefore ρ1(g)v = ∑
s∈S ρ1(gs)ws =∑

s∈S ρ1(ts)[ρ1(ks)ws] and thus[(
IndG

K τ
)
ρ1(g)

]
(v) =

∑
s∈S

ρ2(ts)τ
[
ρ1(ks)ws

]
=

∑
s∈S

ρ2(ts)ρ2(ks)τws

= ρ2(g)
∑
s∈S

ρ2(s)τws

= [
ρ2(g) IndG

K(τ)
]
(v).

The points (2) and (3) are obvious. �
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6.2. The Johnson scheme

In this subsection, we recall some basic facts on the Johnson scheme, i.e. the Gelfand
pair (Sn, Sn−h × Sh); see [17–19]. In what follows, n is a fixed positive integer and, for
0 � h � n, Ωh denotes the homogeneous space Sn/(Sn−h × Sh), i.e. the space of all h-
subsets of {1,2, . . . , n}. The permutation module L(Ωh) is denoted by Mn−h,h. We define
the intertwining operator (or Radon transform [36]) d :Mn−h,h → Mn−h+1,h−1 by setting
(dγ )(B) = ∑

A∈Ωh: B⊆A γ (A) for every B ∈ Ωh−1 and γ ∈ Mn−h,h. The adjoint of d is
the operator d∗ defined by setting (d∗β)(A) = ∑

B∈Ωh−1: B⊆A β(B). The following theo-
rem is well known (see, for instance, [11]) and gives the basic properties of the Johnson
scheme in terms of the operators d and d∗.

Theorem 6.2.

(1) For 0 � k � n/2, Mn−k,k ∩ kerd is an irreducible representation of Sn and its dimen-
sion is equal to

(
n
k

)− (
n

k−1

)
;

(2) If 0 � k � min{n − h,h} then (d∗)h−k maps Mn−k,k ∩ kerd one to one into Mn−h,h;

(3) Mn−h,h = ⊕min{n−h,h}
k=0 (d∗)h−k(Mn−k,k ∩ kerd) is the decomposition of Mn−h,h into

Sn-irreducible representations.

Using a standard notation in the representation theory of the symmetric group, the ir-
reducible representation Mn−k,k ∩ kerd will be denoted by Sn−k,k . We will also use the
following notation: if 0 � u � v � n and A ∈ Ωv then Ωu(A) will denote the space of
all u-subsets of A and Mv−u,u(A) the space L(Ωu(A)) seen as a module over the sym-
metric group Sv of all permutations of A (but note that when we write Ωh we indicate
Ωh({1,2, . . . , n})).

We recall that if we set, for A,B ∈ Ωh, δ(A,B) = h − |A ∩ B|, then δ is a metric on
Ωh and the group Sn acts two point homogeneously with respect to δ.

Thus, fixing a point A in Ωh and denoting by Sn−h ×Sh its stabilizer, then the spherical
functions may be seen as radial functions, i.e. functions of the variable δ(A,B). Setting,
for 0 � u � min{n − h,h}, σu = {A ∈ Ωh: δ(A,A) = u}, then the spherical function
ψ(n,h, k) of (Sn, Sn−h × Sh) belonging to the subspace isomorphic to Sn−k,k is given
by

ψ(n,h, k) =
min{n−h,h}∑

u=0

ψ(n,h, k;u)χσu (6.2)

where χσu denotes the characteristic function of the set σu and the coefficient ψ(n,h, k;u)

can be expressed in terms of the Hahn polynomials: ψ(n,h, k;u) = Qk(u;−(n − h) − 1,

−h − 1, h) where Qk(x;α,β,N) = ∑k (−k)i (k+α+β+1)i (−x)i .
i=0 (−N)i(α+1)i i!



T. Ceccherini-Silberstein et al. / Advances in Mathematics 206 (2006) 503–537 525
Fig. 4. An element θ ∈ Θh coincides with a subtree of type (h,1) in the tree {1,2, . . . , n} × Y .

6.3. The homogeneous space Θh

Let (F,H) be a finite Gelfand pair, Y = F/H and y0 ∈ Y the point stabilized by H .
Suppose that Y = ⊔m

i=0 Λi is the decomposition of Y into its H -orbits (with Λ0 = {y0}),
L(Y ) = ⊕m

i=0 Wi is the decomposition of L(Y ) into irreducible representations of F (with
W0 = the trivial representation) and φi is the spherical function in Wi , i = 0,1, . . . ,m.
Let Sn be the symmetric group on {1,2, . . . , n} and for 0 � h � n, let Ωh be the Sn-
homogeneous space (≡ Sn/Sn−h × Sh) consisting of all h-subsets of {1,2, . . . , n}. We
consider the wreath product F � Sn of F and Sn (with respect to the action of Sn on
{1,2, . . . , n}) and we construct a natural homogeneous space of F � Sn using the actions of
F on Y and of Sn on Ωh.

Let Θh be the set of all functions θ :A → Y whose domain is an element of Ωh (A ∈ Ωh)
and whose range is Y . See, for instance, Fig. 4. In other words

Θh =
⊔

A∈Ωh

YA. (6.3)

If θ ∈ Θh and θ :A → Y then we will write dom θ = A (the domain of definition of θ ).
The group F � Sn acts on Θh in a natural way: if (f,π) ∈ F � Sn and θ ∈ Θh then (f,π)θ

is the function, with domain π dom θ , defined by setting

[
(f,π)θ

]
(j) = f (j)θ

(
π−1j

)
(6.4)

for every j ∈ π dom θ . It is clear that this action is transitive.
If A is the element in Ωh stabilized by Sn−h × Sh and we define θ0 ∈ YA ⊆ Θh by

setting θ0(j) = y0 for every j ∈ A, then it easy to check that the stabilizer of θ0 is equal to
(H � Sh) × (F � Sn−h); therefore we can write Θh = (F � Sn)/[(H � Sh) × (F � Sn−h)].

We recall [39] that a weak (m + 1)-composition of h is an ordered sequence a =
(a0, a1, . . . am) of m + 1 nonnegative integers such that a0 + a1 + · · · + am = h. In what
follows, the set of all weak (m + 1)-compositions of h will be denoted by C(h,m + 1)

(we also recall that |C(h,m+ 1)| = (
m+h

m

)
). For a = (a0, a1, . . . , am) ∈ C(h,m+ 1) we set

�(a) = a1 + a2 + · · · + am ≡ h − a0.
If a ∈ C(h,m + 1) and A ∈ Ωh then a composition (or ordered partition) of A of type a

is an ordered sequence A = (A0,A1, . . . ,Am) of subsets of A such that A = ⊔m
i=0 Ai and

|Ai | = ai , i = 0,1, . . . ,m. The set of all compositions of A of type a will be denoted by
Ωa(A).
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Definition 6.3. For θ ∈ Θh we define the type of θ as the sequence of nonnegative integers
type(θ) = (t, b0, b1, . . . , bm) where t = |dom θ ∩ A| and bi = |{j ∈ dom θ ∩ A: θ(j) ∈
Λi}|, i = 0,1, . . . ,m.

Lemma 6.4. The orbits of (H � Sh) × (F � Sn−h) on Θh are parametrized by the set

{
(t,b): max{0,2h − n} � t � h, b ∈ C(t,m + 1)

} ≡
h⊔

t=max{0,2h−n}
C(t,m + 1).

Proof. Two points θ1, θ2 ∈ Θh belong to the same orbit of (H � Sh) × (F � Sn−h) if and
only if type(θ1) = type(θ2). Moreover, if type(θ) = (t, b0, b1, . . . , bm) then

∑m
i=0 bi = t

and t = |dom θ ∩ A| is subject (only) to the conditions max{0,2h − n} � t � h. �
Clearly, in the case 2h � n,

⊔h
t=0 C(t,m + 1) is the same thing as C(h,m + 2) and it

is bijective to the set {(i1, i2, . . . , ih): 0 � i1 � i2 � · · · � ih � m + 1}.
We end this subsection introducing two intertwining operators (or Radon transforms

[36]) between the permutation representations on Θh and Θh−1. We will use the following
notation: if θ ∈ Θh and ξ ∈ Θk , k < h, we will write ξ ⊆ θ when dom ξ ⊆ dom θ and
θ |dom ξ = ξ .

Definition 6.5. We define the intertwining operator D :L(Θh) → L(Θh−1) by setting

(DF)(ξ) =
∑

θ∈Ωh: ξ⊆θ

F(θ) for every F ∈ L(Θh), ξ ∈ Θh−1.

The adjoint D∗ :L(Θh−1) → L(Θh) of D is the operator defined by

(D∗G)(θ) =
∑

ξ∈Ωh−1: ξ⊆θ

G(ξ) for every G ∈ L(Θh−1), θ ∈ Θh.

6.4. On two kinds of tensor product

Now we introduce two kinds of tensor product. For the first one, suppose that A ∈ Ωh.
Then there is a natural isomorphism between L(YA) and L(Y )⊗h

: if we are given, for
every j ∈ A, a function F j ∈ L(Y ), then the tensor product

⊗
j∈AF j of the functions F j

(over A) coincides with the function in L(YA) defined by setting(⊗
j∈A

F j

)
(θ) =

∏
j∈A

F j
(
θ(j)

)
for every θ ∈ YA. (6.5)

For the second kind, suppose that a ∈ C(h,m + 1), B ∈ Ω�(a), (A1,A2, . . . ,Am) ∈
Ω(a ,a ,...,am)(B), F j ∈ Wi for every j ∈ Ai , i = 1,2, . . . ,m, and that γ ∈ Mn−h,a0(�B).
1 2
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Then we can define the tensor product γ ⊗ (
⊗

j∈B F j ) by setting, for every θ ∈ Θh satis-
fying the condition dom θ ⊇ B ,

[
γ ⊗

(⊗
j∈B

F j

)]
(θ) = γ (dom θ \ B) ·

∏
j∈B

F j
(
θ(j)

)
.

Clearly, a tensor product of the second kind may be expressed by means of tensor prod-
ucts of the first kind:

γ ⊗
(⊗

j∈B

F j

)
=

∑
A0∈Ωa0 (�B)

γ (A0)

[(⊗
j∈A0

φ0

)
⊗

(⊗
j∈B

F j

)]
(6.6)

where (
⊗

j∈A0
φ0) is the constant function ≡ 1 on YA0 .

Now we describe the action of the group F � Sn on such tensor products.

Lemma 6.6. An element (f,π) ∈ F � Sn acts on the above introduced tensor products
obeying the following rules:

(1) (f,π)

(⊗
j∈A

F j

)
=

⊗
t∈πA

f (t)Fπ−1t ;

(2) (f,π)

[
γ ⊗

(⊗
j∈B

F j

)]
= (πγ ) ⊗

( ⊗
t∈πB

f (t)Fπ−1t

)
.

Proof. If θ ∈ YπA then

[
(f,π)

(⊗
j∈A

F j

)]
(θ) =

(⊗
j∈A

F j

)[
(f,π)−1θ

] =
∏
j∈A

F j
{[

(f,π)−1θ
]
(j)

}
=

∏
j∈A

F j
[
f (πj)−1θ(πj)

] =
∏

t∈πA

[
f (t)Fπ−1t

](
θ(t)

)
=

[ ⊗
t∈πA

f (t)Fπ−1t

]
(θ).

Then (2) may be proved by mean of the decomposition (6.6). �
We end this subsection proving a formula that relates the action of the operators D and

D∗ on a tensor product of the second kind with the action of the operators d and d∗.
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Lemma 6.7.

(1) D[γ ⊗ (
⊗

j∈B F j )] = |Y |[(dγ ) ⊗ (
⊗

j∈B F j )];
(2) D∗[γ ⊗ (

⊗
j∈B F j )] = (d∗γ ) ⊗ (

⊗
j∈B F j ).

Proof. Since [γ ⊗ (
⊗

j∈B F j )](θ) is defined for those θ such that dom θ ⊇ B , then

{D[γ ⊗ (
⊗

j∈B F j )]}(ξ) is defined for those ξ ∈ Θh−1 satisfying the condition

|B \ dom ξ | � 1,

i.e. for those ξ for which there exists θ ∈ Θh such that dom θ ⊇ B and ξ ⊆ θ . But if
|B \ dom ξ | = 0, i.e. dom ξ ⊇ B , then

{
D

[
γ ⊗

(⊗
j∈B

F j

)]}
(ξ) =

∑
θ∈Θh: θ⊇ξ,dom θ⊇B

[
γ ⊗

(⊗
j∈B

F j

)]
(θ)

=
∑

θ∈Θh: θ⊇ξ

γ (dom θ \ B) ·
∏
j∈B

F j
(
θ(j)

)
=

∑
v∈�dom ξ

∑
y∈Y

γ
[(

dom ξ 	 {v}) \ B
] ·

∏
j∈B

F j
(
θ(j)

)
= |Y |(dγ )(dom ξ \ B) ·

⊔
j∈B

F j
(
ξ(j)

)
= |Y |

[
(dγ ) ⊗

(⊗
j∈B

F j

)]
(ξ),

while if |B \ dom ξ | = 1 and u is the unique element in B \ dom ξ then{
D

[
γ ⊗

(⊗
j∈B

F j

)]}
(ξ) = γ

[(
dom ξ 	 {u}) \ B

] ·
(∑

y∈Y

Fu(y)

)
·

∏
j∈B\{u}

F j
(
ξ(j)

) = 0

since Fu /∈ W0. In particular, if a0 = 0 then D[γ ⊗ (
⊗

j∈B F j )] = 0. The proof of (2) is
similar. �
6.5. The decomposition of L(Θh) into irreducible representations

We recall that L(Y ) = ⊕m
i=0 Wi denotes the decomposition of L(Y ) into F -irreducible

representations.

Definition 6.8. If a ∈ C(h,m + 1) and A = (A0,A1, . . . ,Am) ∈ Ωa(A) then
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(1) Wa(A) will denote the subspace of L(YA) spanned by all tensor products
⊗

j∈AF j

such that F j ∈ Wi for every j ∈ Ai , i = 0,1, . . . ,m;
(2) we define

Wh,a =
⊕

A∈Ωh

⊕
A∈Ωa(A)

Wa(A).

Clearly, Wh,a coincides with the subspace of L(Θh) spanned by all the tensor products
γ ⊗ (

⊗
j∈B F j ) where B ∈ Ω�(a), γ ∈ Mn−h,a0(�B) and there exists (A1,A2, . . . ,Am) ∈

Ω(a1,a2,...,am)(B) such that F j ∈ Wi for every j ∈ Ai , i = 1,2, . . . ,m. Moreover, from
Lemma 6.6 it follows that each Wh,a is an F � Sn-invariant subspace of L(Θh).

Lemma 6.9.

Wh,a = IndF �Sn

F �Sn−h×F �Sa0×F �Sa1×···×F �Sam

(
IF �Sn−h

⊗ W⊗a0

0 ⊗ W⊗a1

1 ⊗ · · · ⊗ W⊗am

m

)
where IF �Sn−h

is the identity representation of F � Sn−h.

Proof. We first observe the following simple facts on wreath products (for the notation see
Section 2.3).

Claim 6.10. Let F and G be finite groups. Suppose that G acts on a finite set X and that
H � G is a subgroup. Then

(F � G)/(F � H) ∼= G/H. (6.7)

Proof. For g1, g2 ∈ G write g1 ∼H g2 if there exists h ∈ H such that g1 = hg2, equiva-
lently if g1 and g2 belong to the same H -lateral: Hg1 = Hg2. Analogously, for f1, f2 ∈
FX and g1, g2 ∈ G, write (f1, g2) ∼F �H (f2, g2) if there exists (f,h) ∈ F � H such that
(f1, g2) = (f,h)(f2, g2). Denoting as usual by 1 ∈ FX the constant function 1(x) = eF ,
where eF is the unit element in F , one easily shows that (f, g) ∼F �H (1, g) for all
f ∈ FX and g ∈ G and then that, for all g1, g2 ∈ G, (1, g1) ∼F �H (1, g2) if and only if
g1 ∼H g2. �
Claim 6.11. Let F , G1 and G2 be finite groups. Suppose that Gi acts on a finite set Xi for
i = 1,2. Then G1 × G2 acts on X = X1 	 X2 and

F � (G1 × G2) ∼= F � G1 × F � G2. (6.8)

Proof. One easily checks that the map

F � (G1 × G2) ≡ FX × (G1 × G2) → (
FX1 × G1

)× (
FX2 × G2

) ≡ (F � G1) × (F � G2),(
f, (g1, g2)

) �→ (
(f |X1 , g1), (f |X2 , g2)

)
is an isomorphism. �
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Applying (6.7) and (6.8) we have

F � Sn/(F � Sn−h × F � Sa0 × F � Sa1 × · · · × F � Sam)

≡ Sn/(Sn−h × Sa0 × Sa1 × · · · × Sam)

≡
⊔

A∈Ωh

⊔
A∈Ωa(A)

A.

Moreover, if A = (A0,A1, . . . ,Am) ∈ Ωa(A ) is stabilized by Sn−h × Sa0 × Sa1 × · · · ×
Sam (i.e. Sai

is the symmetric group on Ai , i = 0,1, . . . ,m) then Wa(A ), as a representation
of F � Sn−h × F � Sa0 × F � Sa1 × · · · × F � Sam , is clearly equivalent to IF �Sn−h

⊗ W⊗a0

0 ⊗
W⊗a1

1 ⊗ · · · ⊗ W⊗am

m . Then the lemma follows from the definition of Wh,a. �
The following corollary is a consequence of (6.1) and Lemmas 6.7, 6.9.

Corollary 6.12.

(1) D = |Y | · IndF �Sn

F �Sn−�(a)×F �Sa1×···×F �Sam
d ⊗ I ⊗ · · · ⊗ I ;

(2) D∗ = IndF �Sn

F �Sn−�(a)×F �Sa1×···×F �Sam
d∗ ⊗ I ⊗ · · · ⊗ I .

Definition 6.13. For 0 � k � (n − �(a))/2 we set

Wh,a,k = IndF �Sn

F �Sn−�(a)×F �Sa1×···×F �Sam
Sn−�(a)−k,k ⊗ W⊗a1

1 ⊗ · · · ⊗ W⊗am

m .

Clearly,

dimWh,a,k =
(

n

n − �(a), a1, . . . , am

)[(
n − �(a) − k

k

)
−

(
n − �(a) − k

k − 1

)]
× (dimW1)

a1(dimW2)
a2 · · · (dimWm)am.

Lemma 6.14.

Wh,a =
min{n−h,h−�(a)}⊕

k=0

Wh,a,k.

Proof. By transitivity of induction, we can write:

IndF �Sn

F �Sn−h×F �Sa0 ×F �Sa1×···×F �Sam

= IndF �Sn

F �Sn−h+a0×F �Sa1×···×F �Sam
Ind

F �Sn−h+a0×F �Sa1×···×F �Sam

F �Sn−h×F �Sa0×F �Sa1 ×···×F �Sam
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and since

Ind
F �Sn−h+a0 ×F �Sa1×···×F �Sam

F �Sn−h×F �Sa0×F �Sa1×···×F �Sam

(
IF �Sn−h

⊗ W⊗a0

0 ⊗ W⊗a1

1 ⊗ · · · ⊗ W⊗am

m

)
= Mn−h,a0 ⊗ W⊗a1

1 ⊗ · · · ⊗ W⊗am

m

(IF �Sn−h
⊗ W⊗a0

0 is the trivial representation), the lemma follows from the decomposition

Mn−h,a0 = ⊕min{n−h,a0}
k=0 Sn−h+a0−k,k (Theorem 6.2). �

The following corollary is a consequence of Lemma 6.1, Theorem 6.2, Corollary 6.12
and Lemma 6.14. It shows how to construct the representations Wh,a,k using the operators
D and D∗. We set a(−k) = (a0 − k, a1, . . . , am).

Corollary 6.15.

(1) Wk+�(a),a,k = kerD ∩ Wk+�(a),a.
(2) If 0 � k � min{n−h,h−�(a)} then (D∗)h−k−�(a) is an isomorphism of Wk+�(a),a(−k),k

onto Wh,a,k .

Theorem 6.16.

(1) {Wh,a,k: a ∈ C(h,m + 1), 0 � k � min{n − h,h − �(a)}} is a set of pairwise inequiv-
alent irreducible representations of F � Sn.

(2) (F � Sn, (H � Sh) × (F � Sn−h)) is a Gelfand pair.
(3) The decomposition of L(Θh) into irreducible representations is given by

L(Θh) =
⊕

a∈C(h,m+1)

min{n−h,h−�(a)}⊕
k=0

Wh,a,k. (6.9)

Proof. From (6.3) we obtain immediately the following decomposition of L(Θh):

L(Θh) =
⊕

A∈Ωh

L
(
YA

)
. (6.10)

Moreover, from the decomposition L(Y ) = ⊕m
i=0 Wi of L(Y ) into irreducible represen-

tations and from the definition of Wa(A) it follows that

L
(
YA

) ∼= L(Y )⊗h =
m⊕

l1=0

m⊕
l2=0

· · ·
m⊕

lh=0

Wl1 ⊗ Wl2 ⊗ · · · ⊗ Wlh

=
⊕ ⊕

Wa(A). (6.11)

a∈C(h,m+1) A∈Ωa(A)
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From (6.10), (6.11) and the definition of Wh,a it follows that L(Θh) = ⊕
a∈C(h,m+1) Wh,a

and therefore Lemma 6.14 ensures that (6.9) is an orthogonal decomposition of L(Θh) into
invariant subspaces.

But the map

T (t, b0, b1, . . . , bm) =
{

(t + n − 2h,b0 + h − t, b1, . . . , bm), if n − h < h − �(b),

(b0, b0 + h − t, b1, . . . , bm), if n − h � h − �(b),

is a bijection between the set in Lemma 6.4 and the set {(k, a0, a1, . . . , am): 0 � k �
min{n − h,h − �(a)},a ∈ C(h,m + 1)} that parametrizes the representations in (6.9). In-
deed, its inverse is given by

T −1(k, a0, a1, . . . , am)

=
{

(k − n + 2h,a0 + k − n + h,a1, . . . , am), if n − h < h − �(a),

(k + h − a0, k, a1, . . . , am), if n − h � h − �(a).

Therefore we can end the proof by invoking Corollary 2.2. �
Remark 6.17. The point (1) may be also obtained from the general representation theory of
wreath products applied to F � Sn. Using the terminology (but not the notation) in [27,28],
V = W⊗a1

1 ⊗· · ·⊗W⊗am

m is an irreducible representation of the base group F×n
, the inertia

group of V is F � (Sn−h+a0 ×Sa1 ⊗· · ·⊗Sam), Sn−h+a0−k,k is an irreducible representation
of Sn−h+a0 × Sa1 × · · · × Sam (trivial on Sa1 × · · · × Sam ) and Wh,a,k is obtained inducing
up Sn−h+a0−k,k ⊗ V from the inertia group to F � Sn. An interesting paper on permutation
representations of wreath products that might be translated into the framework of group
actions on subtrees is [29].

6.6. The spherical functions

For a = (a0, a1, . . . , am) ∈ C(h,m + 1) we set ã = (a1, a2, . . . , am) which clearly is an
element of C(�(a),m). Moreover, for 0 � u � min{n−h,h− �(a)} we define the function

Φ(h,a, u)

=
∑

(A1,A2,...,Am)∈Ωã(A )

×
∑

A0∈Ωa0 (�(A1∪···∪Am)): |A0\A|=u

[(⊗
j∈A0

φ0

)
⊗

(⊗
j∈A1

φ1

)
⊗ · · · ⊗

(⊗
j∈Am

φm

)]
(6.12)
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where (
⊗

j∈Ai
φi) indicates the tensor product of ai times the function φi over Ai . From

Lemma 6.6 it follows that each Φ(h,a, u) is (H �Sh)× (F �Sn−h)-invariant. It is also easy
to show that the set {

Φ(h,a, u): 0 � u � min
{
n − h,h − �(a)

}}
(6.13)

constitutes an orthogonal basis for the (H � Sh) × (F � Sn−h)-invariant functions in the
module Wh,a. Indeed, Φ(h,a, u) belongs to

⊕
B1∈Ωh−u(A), B2∈Ωu(�A) L(YB1	B2) and these

spaces are orthogonal for different values of u. Now we want to express the spherical
functions as linear combinations of the Φ(h,a, u)’s. We will use the notation in (6.2).

Theorem 6.18. The spherical function Ψ (n,h,a, k) in Wh,a,k is given by

Ψ (n,h,a, k) = 1(
h

a0,a1,...,am

) min{n−h,h−�(a)}∑
u=0

ψ
(
n − �(a), h − �(a), k;u)Φ(h,a, u).

Proof. The function Ψ (n,h,a, k) defined above is (H �Sh)× (F �Sn−h)-invariant because
it is a linear combination of invariant functions and its value on θ0, the point stabilized by
(H � Sh) × (F � Sn−h), is equal to 1. Moreover, from (6.12) it follows that

min{n−h,a0}∑
u=0

ψ(n − h + a0, a0, k;u)Φ(h,a, u)

=
∑

(A1,A2,...,Am)∈Ωã(A)

min{n−h,a0}∑
u=0

ψ(n − h + a0, a0, k;u)

×
∑

A0∈Ωa0 (�(A1∪···∪Am)): |A0\A|=u

[(⊗
j∈A0

φ0

)
⊗

(⊗
j∈A1

φ1

)
⊗ · · · ⊗

( ⊗
j∈Am

φm

)]

=
∑

(A1,A2,...,Am)∈Ωã(A)

[
ψ(n − h + a0, a0, k) ⊗

(⊗
j∈A1

φ1

)
⊗ · · · ⊗

(⊗
j∈Am

φm

)]

since

min{n−h,a0}∑
u=0

ψ(n − h + a0, a0, k;u)
∑

A0∈Ωa0 (�(A1∪···∪Am)): |A0\A|=u

(⊗
j∈A0

φ0

)

coincides with the spherical function of the Gelfand pair (Sn−h+a0 , Sn−h × Sa0) (where
Sn−h+a0 is the symmetric group on �(A1 ∪ · · · ∪ Am) and Sn−h × Sa0 is the stabilizer of
A \ (A1 ∪ A2 ∪ · · · ∪ Am)) belonging to the irreducible representation Sn−h+a0−k,k .
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Therefore ψ(n − h + a0, a0, k) ⊗ (
⊗

j∈A1
φ1) ⊗ · · · ⊗ (

⊗
j∈Am

φm) belongs to

Sn−h+a0−k,k ⊗ W
⊗a

1
1 ⊗ · · · ⊗ W⊗am

m and the theorem follows from Definition 6.13. �
6.7. More explicit formulas for the spherical functions

In what follows, φi(j) will denote the value of the spherical function φi on the orbit Λj .
The value of Φ(h,a, u) on a θ with type(θ) = (t,b) clearly equals 0 if t = |dom θ ∩ A| �=
h − u while, if t = h − u, it equals

Φ(h,a, u;b) =
∑
α

m∏
j=0

(
bj

α0j , α1j , . . . , αmj

) m∏
i=0

[
φi(j)

]αij (6.14)

where the sum is over all nonnegative integer-valued matrices α = (αij )i=0,1,...,m, j=0,1,...,m

such that
∑m

i=0 αij = bj , j = 0,1, . . . ,m,
∑m

j=0 αij = ai , i = 1,2, . . . ,m, and
∑m

j=0 α0j =
a0 − t . Indeed, if A0 ∪ A1 ∪ · · · ∪ Am = dom θ and Bj = {r ∈ dom θ ∩ A: θ(r) ∈ Λj } then[( ⊗

w∈A0

φ0

)
⊗

( ⊗
w∈A1

φ1

)
⊗ · · · ⊗

( ⊗
w∈Am

φm

)]
(θ) =

m∏
i=0

m∏
j=0

[
φi(j)

]αij

where

αij = |Ai ∩ Bj | (6.15)

and, for a fixed intersection matrix (αij ) we have
∏m

j=0

(
bj

α0j ,α1j ,...,αmj

)
ways to chose the

subsets Ai ∩ Bj inside Bj , and

A0 = [
dom θ \ A

]∩
[

m⋃
j=0

(A0 ∩ Bj )

]
.

Therefore, the value of Ψ (n,h,a, k) on a θ of type(θ) = (t,b) is given by

Ψ (n,h,a, k; t,b) = 1(
h

a0,a1,...,am

)ψ(
n − �(a), h − �(a), k;h − t

)
Φ(h,a, h − t;b).

6.8. The end of the story

To end the section and the paper we indicate the relations between the construction of
this section, namely the generalized Johnson scheme, and the Gelfand pairs associated with
subtrees from Section 3.2.

The classical Johnson scheme (Sn, Sh × Sn−h) clearly corresponds to the Gelfand pair
(Aut(Tr, Ts),K(r, s)) where r = n and s = h.

More generally, given the Gelfand pair (F,H) where F = Aut(Tr′) and H = K(r′, s′),
r′ = (r2, r3, . . . , rm) and s′ = (s2, s3, . . . , sm), the homogeneous space Θh in Section 6.3 is
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nothing but V(r, s), where now r = (n, r2, r3, . . . , rm) and s = (h, s2, s3, . . . , sm). Indeed,
the subgroup (H � Sh) × (F � Sn−h) coincides with K(r, s) since its expression coincides
with that given in (3.1). The point that it stabilizes, namely θ0 ∈ Θh (which corresponds
to an h-subset A ⊂ {1,2, . . . , n}) is given by θ0(j) = y0 for all j ∈ A where y0 is the
s′-subtree stabilized by H ≡ K(r′, s′).

Example 6.19. We end this subsection by giving an example in which formula (6.14)
becomes more simple. Suppose that (F,H) is the Gelfand pair of the ultrametric space
(see Section 4.2) and (to simplify notation) that 2h � n. The homogeneous space Θh now
coincides with the space of all h-subsets {z1, z2, . . . , zh} of the ultrametric space such that
d(zi, zj ) = m (maximum distance) for i �= j . It coincides also with the homogeneous space
V(r, s), with r = (n, q, . . . , q) (m times), and s = (h,1, . . . ,1).

First observe that from (4.8) it follows that in this case in (6.14)

m∏
i=0

[
φi(j)

]αij =
{ (− 1

q−1

)αm,1+αm−1,2+···+α1,m , if αi,j = 0 for i + j > m + 1,

0, otherwise

that is in (6.15) we must have Ai ⊆ B0 ∪ B1 ∪ · · · ∪ Bm−i+1, i = 1,2, . . . ,m, and the value
of

∏m
i=0[φi(j)]αij is determined by the cardinalities γj = |Am−j+1 ∩Bj |, j = 1,2, . . . ,m.

Therefore we have:

Φ(h,a, u;b) =
∑
γ

m∏
j=1

(
bj

γj

)(∑j−1
w=0 bw −∑j−1

v=1 am−v+1

am−j+1 − γj

)(
− 1

q − 1

)γ1+···+γm

where the sum is over all the γ = (γ1, γ2, . . . , γm) such that

max

{
0,

j∑
v=1

am−v+1 −
j−1∑
w=0

bw

}
� γj � min{bj , am−j+1}

(in particular, we have Φ(h,a, t;b) = 0 when the conditions
∑j

v=1 am−v+1 �
∑j

w=0 bw ,
j = 1,2, . . . ,m− 1, are not satisfied). Indeed, to compute Φ(h,a, u; k) we have to choose,
in all possible ways,

• the subset Am−j+1 ∩ Bj in Bj , for j = 1,2, . . . ,m,

• the subset Am−j+1 \ Bj in (
⋃j−1

w=0 Bw \⋃j−1
v=1 Am−v+1), for j = 1,2, . . . ,m,

and then necessarily A0 = [⋃m
w=0 Bw \⋃m

v=1 Am−v+1] ∪ [dom θ \ A ].
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