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THE DISCRETE SINE TRANSFORM AND THE SPECTRUM OF
THE FINITE q-ARY TREE∗

FABIO SCARABOTTI†

Abstract. Recently, He, Liu, and Strang [Stud. Appl. Math., 110 (2003), pp. 123–138] have
computed the spectrum of the adjacency matrix of a class of finite trees. In this paper, we propose
a different method and apply it to the slightly different class of finite q-ary trees.
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1. Introduction. In [6], He, Liu, and Strang computed the spectrum of the finite
trees that can be obtained by taking a ball of finite radius in an infinite homogeneous
tree. These trees are rooted, all the leaves (end points) have the same distance from
the root, and all the internal vertices have the same degree. Their method is based
on a factorization of the characteristic polynomial obtained through a recursion on
the diameter of the tree.

In the present paper, we deal with a slightly different kind of tree: the q-ary tree
of height n. This means that we have a root which has q sons, q2 grandsons, etc., for
n generations; in this case the root has degree q, while all other internal vertices have
degree q + 1. For these trees we propose a method that is based on a preliminary
decomposition of the space of all complex valued functions defined on the vertex set
of the tree.

On each level of the tree, we use the decomposition into irreducible representations
of the group of automorphisms of the tree Aut(T ) [5], [7]. But note that our proof
is very elementary: no knowledge of representation theory is required, only some
elementary linear algebra. We obtain a decomposition by means of suitable Radon
transforms that intertwine the representations on the various levels of the tree. They
are strictly connected with the adjacency operator and the geometry of the tree. To
get the spectrum, we apply the discrete sine transform to the action of the adjacency
operator on such a decomposition.

Our method has a close resemblance to the proof of a theorem of Stanley [9,
Theorem 4.14].

2. The tree and its adjacency operator. A tree T is a connected graph
without circuits. We say that T is rooted if it has a distinguished vertex x0, called the
root. We say that T is q-ary of height n if it satisfies the following three conditions:
the root has degree q; a vertex is a leaf (i.e., it has degree 1) if and only if its distance
from the root is equal to n; all the remaining vertices have degree q + 1. Figure 1 is
the ternary tree of height 3. In what follows, T will be a q-ary tree of height n. We
will identify T with the set of all its vertices, and we will write x ∼ y to denote that
x, y ∈ T are adjacent, i.e., they are connected by an edge. We will denote by Ωk the set
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Fig. 1.

of vertices whose distance from the root is equal to k, k = 0, 1, . . . , n (the k-level of the
tree). When x ∼ y and x belongs to a higher level than y, e.g., x ∈ Ωk and y ∈ Ωk+1,
we will say that x is the father of y and that y is a son of x, and we will write x � y.
The space {f : T → C} of all complex valued functions defined on T will be denoted
by L(T ); it will be endowed with the scalar product 〈f1, f2〉 =

∑
x∈T f1(x)f2(x). The

adjacency operator A of T is defined by setting (Af)(x) =
∑

y∈T :x∼y f(y) for all x ∈ T
and f ∈ L(T ). By definition [2], the spectrum of the tree coincides with the spectrum
of its adjacency operator A.

3. The discrete sine transform and the spectrum of the path. Let Bn

be the n× n tridiagonal matrix

Bn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1
1 0 1

1 0 1
. . .

. . .
. . .

1 0 1
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Set α = π
n+1 . Then the n× n matrix

Sn =

√
2

n + 1

⎛
⎜⎜⎜⎜⎜⎝

sinα sin 2α . . . sin(n− 1)α sinnα
sin 2α sin 4α . . . sin 2(n− 1)α sin 2nα

...
...

...
...

sin(n− 1)α sin 2(n− 1)α . . . sin(n− 1)2α sinn(n− 1)α
sinnα sin 2nα . . . sin(n− 1)nα sinn2α

⎞
⎟⎟⎟⎟⎟⎠
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is symmetric and orthogonal and diagonalizes Bn:

SnBnSn =

⎛
⎜⎜⎜⎝

2 cosα
2 cos 2α

. . .

2 cosnα

⎞
⎟⎟⎟⎠ .(1)

This is the discrete sine transform (DST) [10]. Moreover, (1) is the computation of
the spectrum of the tree T in the case q = 1 (the path): Bn is the matrix representing
the adjacency operator of the path if we take the standard basis {δx : x ∈ T} for
L(T ), where δx(y) = 1 if x = y, δx(y) = 0 if x �= y.

Remark. The characteristic polynomial det(λI −Bn) of Bn, also called the char-
acteristic polynomial of the path, may be expressed by the Chebyshev polynomials of
the second kind [2, p. 11]: det(λI−Bn) = Un(λ/2). The computation of the spectrum
of the tree in [6] is based in a factorization of the characteristic polynomial of the tree
in terms of (rescaled) Chebyshev polynomials of the second kind: in the notations of
[6], pn(λ) = (k − 1)n/2Un( λ

2
√
k−1

); see also [3, section 1.4].

4. The Radon transforms R and R∗. First note that T = 	n
k=0Ωk (where 	

denotes a disjoint union) leads to the orthogonal decomposition L(T ) = ⊕n
k=0L(Ωk).

Then we define the linear operator R : ⊕n
k=1L(Ωk) → ⊕n−1

k=0L(Ωk) by setting

(Rf)(x) =
∑

y∈T :y≺x

f(y)

for every f ∈ ⊕n
k=1L(Ωk) and x ∈ 	n−1

k=0Ωk. In other words, the value of Rf on x is
the sum of the values of f on the sons of x. The adjoint of R is the linear operator
R∗ : ⊕n−1

k=0L(Ωk) → ⊕n
k=1L(Ωk) given by

(R∗f)(x) = f(y), where y is the father of x,

for every f ∈ ⊕n−1
k=0L(Ωk) and x ∈ 	n

k=1Ωk.
Clearly R is surjective and R∗ is injective. Moreover, R maps L(Ωk) onto L(Ωk−1)

and R∗ maps L(Ωk−1) into L(Ωk), k = 1, 2, . . . , n. In particular, (R∗)k−h(L(Ωh)) is a
homomorphic image of L(Ωh) in L(Ωk): it consists of all functions in L(Ωk) that are
constant on the leaves of each q-ary subtree of T of height k − h rooted on a vertex
in Ωh.

We also define Wk = L(Ωk) ∩ kerR, k = 1, 2, . . . , n and W0 = L(Ω0) ≡ C. Note
that dimW0 = 1 and that dimWk = qk − qk−1.

The following identity is easy but important:

RR∗f = qf.(2)

Indeed, (RR∗f)(x) =
∑

y∈T :y≺x(R∗f)(y) = qf(x).
Lemma 4.1. For k = 1, 2, . . . , n we have an orthogonal decomposition of L(Ωk):

L(Ωk) = (R∗)k(W0) ⊕ (R∗)k−1(W1) ⊕ · · · ⊕ (R∗)(Wk−1) ⊕Wk.

Proof. First note that a consequence of (2) is that

〈R∗f1, R
∗f2〉 = q〈f1, f2〉,(3)
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and this is also easy to prove directly.
Using (3), we can iterate the decomposition L(Ωk) = R∗(L(Ωk−1)) ⊕ [kerR ∩

L(Ωk)] ≡ R∗(L(Ωk−1)) ⊕Wk:

L(Ωk) =R∗(L(Ωk−1)) ⊕Wk

=(R∗)2(L(Ωk−2)) ⊕R∗(Wk−1) ⊕Wk

· · ·
=(R∗)k(W0) ⊕ (R∗)k−1(W1) ⊕ · · · ⊕ (R∗)(Wk−1) ⊕Wk.

In other words, (R∗)k(W0) is the space of constant functions on Ωk and (R∗)k−h(Wh)
is the space of all functions in L(Ωk) that are constant on the leaves of each q-ary
subtree of T of height k− h rooted on a vertex in Ωh and whose sum on the leaves of
every q-ary subtree of height k − h + 1 rooted on a vertex in Ωh−1 is equal to zero.

Another fundamental identity relates the adjacency operator A to the Radon
transforms R and R∗: if f ∈ L(T ) and f = f0 + f1 + · · · + fn with fh ∈ L(Ωh), then

Af = Rf1 +

n−1∑
h=1

(R∗fh−1 + Rfh+1) + R∗fn−1,(4)

where Rf1 ∈ L(Ω0), R
∗fh−1 +Rfh+1 ∈ L(Ωh), and R∗fn−1 ∈ L(Ωn). For instance, if

x ∈ Ωh with 1 ≤ h ≤ n− 1, then

(Af)(x) =
∑
y∼x

f(y) =
∑

z∈Ωh+1:z∼x

f(z) +
∑

y∈Ωh−1:y∼x

f(y)

= (Rf)(x) + (R∗f)(y) ≡ (Rfh−1)(x) + (R∗fh+1)(x).

Remarks. (1) We call R and R∗ Radon transforms because they are (natural)
operators intertwining L(Ωk) and L(Ωk+1) as permutation representations of Aut(T ),
the group of automorphisms of T ; see [8]. The decomposition in Lemma 4.1 is well
known and coincides with the decomposition of L(Ωk) into irreducible representations
of Aut(T ); see [5], [7], and also [1, pp. 152–156], which has a more algebraic form.
But in our case we are not on a homogeneous space: Aut(T ) does not act transitively
on T . Therefore we may not apply the finite Fourier transform (for which we refer to
[4]) to get the spectrum of T . Nevertheless, A is Aut(T )-invariant, and therefore the
eigenspaces of A must be direct sums of irreducible representations of Aut(T ), as we
will show in the next section.

(2) The operators R∗ and R can also be seen as instances of “up” and “down”
operators as in [9] (but note that Stanley would draw the tree with the root at the
bottom and the leaves at the top; therefore in his terminology R goes down and R∗

goes up). However, our tree is not a differential poset of Stanley: it is easy to see that
in our case

(RR∗ −R∗R)f =

{
qf if f ∈ Wk,
0 if f ∈ L(Ωk), f ⊥ Wk,

while the definition of differential poset requires that the commutator RR∗ −R∗R is
always a multiple of the identity. Nevertheless, our computation of the spectrum of
the tree in the following section has a close resemblance to the proof of Theorem 4.14
in [9].
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5. The spectrum of the tree.
Lemma 5.1. For k = 0, 1, . . . , n and l = 1, 2, . . . , n− k + 1 set

Wk,l =

{
n−k∑
h=0

1

qh/2
sin

(h + 1)lπ

n− k + 2
· f : f ∈ Wk

}
.

Then each Wk,l is an eigenspace of A. The corresponding eigenvalue is equal to
2
√
q cos πl

n−k+2 and ⊕n−k
h=0 (R∗)hWk = ⊕n−k+1

l=1 Wk,l.
Proof. If f ∈ Wk and a0, a1, . . . , an−k ∈ C, then from (2) and (4) it follows that

A(a0f + a1R
∗f + · · · + an−k(R

∗)n−kf)

= a0Rf + a1RR∗f +

n−1∑
h=k+1

[
ah−k−1R

∗(R∗)h−k−1f + ah−k+1R(R∗)h−k+1f
]

+ an−k−1R
∗(R∗)n−k−1f

= a1qf +

n−1∑
h=k+1

[ah−k−1 + qah−k+1] (R
∗)h−kf + an−k−1(R

∗)n−kf.

Therefore F = a0f + a1R
∗f + · · · + an−k(R

∗)n−kf is an eigenvector of A; i.e.,
AF = λF if and only if the coefficients a0, a1, . . . , an−k solve the eigenvalue problem{

ah−1 + qah+1 = λah for h = 1, 2, . . . , n− k − 1,
qa1 = λa0; an−k−1 = λan−k.

(5)

With the substitutions bh = qh/2ah, h = 0, 1, . . . , n− k, and μ = λ√
q (5) becomes{

bh−1 + bh+1 = μbh for h = 1, 2, . . . , n− k − 1,
b1 = μb0; bn−k−1 = μbn−k,

which is the eigenvalue problem solved by the DST. Therefore from section 3 one
recovers the eigenvalues and the eigenspaces in the statement. Finally, ⊕n−k

h=0 (R∗)hWk

≡ {a0f + a1R
∗f + · · · + an−k(R

∗)n−kf : f ∈ Wk, a0, a1, . . . , an−k ∈ C} is clearly
equal to ⊕n−k+1

l=1 Wk,l, because the rows of the matrix of the DST form an orthogonal
basis.

Now we can state and prove the main theorem on the spectral analysis of A. We
will write (a, b) = 1 to indicate that the integers a and b are relatively prime.

Theorem 5.2.

1. The spectrum of A coincides with the set {2√q cos πl
n−k+2 : k = 0, 1, . . . , n; l =

1, 2, . . . , n− k + 1; (l, n− k + 2) = 1}.
2. Suppose that 0 ≤ k ≤ n, 1 ≤ l ≤ n − k + 1, and (l, n − k + 2) = 1. If

k = (n−k+2)s+r, with 0 ≤ r ≤ n−k+1, then the eigenspace corresponding
to 2

√
q cos πl

n−k+2 is

⊕s
t=0Wk−t(n−k+2),l(t+1).

3. The multiplicity of 2
√
q cos πl

n−k+2 is equal to

(qr − qr−1)
q(n−k+2)(s+1) − 1

qn−k+2 − 1
if 1 ≤ r ≤ n− k + 1,

1 + (qn−k+2 − qn−k+1)
q(n−k+2)s − 1

qn−k+2 − 1
if r = 0.
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Proof. From the decomposition L(T ) = ⊕n
k=0L(Ωk) and Lemmas 4.1 and 5.1 we

have

L(T ) = ⊕n
k=0 ⊕n−k

h=0 (R∗)hWk = ⊕n
k=0 ⊕n−k+1

l=1 Wk,l,

and therefore Lemma 5.1 yields part 1. To prove part 2, observe first that k =
s(n−k+2)+r is equivalent to n+2 = (s+1)(n−k+2)+r. Therefore (t+1)(n−k+2)
is equal to n − k1 + 2 with 0 ≤ k1 ≤ n if and only if k1 = k − t(n − k + 2) with
0 ≤ t ≤ s. Exactly for those values of t the eigenvalue 2

√
q cos lπ

n−k+2 appears again in

the form 2
√
q cos l(t+1)π

(t+1)(n−k+2) , and the corresponding eigenspace is Wk−t(n−k+2),l(t+1).

Moreover,
∑s

t=0 dimWk−t(n−k+2),l(t+1) is equal to

s∑
t=0

(qk−t(n−k+2) − qk−t(n−k+2)−1)

= (qr − qr−1)

s∑
w=0

q(n−k+2)w = (qr − qr−1)
q(n−k+2)(s+1) − 1

qn−k+2 − 1
for r ≥ 1,

1 +
s−1∑
t=0

(qk−t(n−k+2) − qk−t(n−k+2)−1) =1 + (qn−k+2 − qn−k+1)

s−1∑
w=0

q(n−k+2)w

= 1 + (qn−k+2 − qn−k+1)
q(n−k+2)s − 1

qn−k+2 − 1
for r = 0.

Our method might be applied to other classes of rooted trees. For instance,
consider a tree where each vertex at level k has qk sons, k = 0, 1, . . . , n − 1. In this
case (5) is replaced by the more general eigenvalue problem{

ah−1 + qk+hah+1 = λah for h = 1, 2, . . . , n− k − 1,
qka1 = λa0; an−k−1 = λan−k.

(6)

In general, this problem does not have an explicit elementary solution. Neverthe-
less, in particular cases some of the eigenvalues are computable. For q0 = q + 1 and
qk = q, k = 1, 2, . . . , n we obtain the trees in [6], and in this case almost all eigenvalues
are computable; those missing correspond to the subspace ⊕n

h=0(R
∗)h(W0): now for

k ≥ 1 (6) reduces to (5).
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