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A complete description of the lattice of all normal subgroups not contained in
the stabilizer of the fourth level of the tree and, consequently, of index ≤ 212 in
the Grigorchuk group G is given. This leads to the following sharp version of the
congruence property: a normal subgroup not contained in the stabilizer at level n+
1 contains the stabilizer at level n + 3 (in fact such a normal subgroup contains
the subgroup Nn+1), but, in general, it does not contain the stabilizer at level n+ 2.
The determination of all normal subgroups at each level n ≥ 4 is then reduced to the
analysis of certain G-modules which depend only on n and the previous description,
as for the analogous problem for the automorphism group of the regular rooted
tree.  2001 Elsevier Science
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1. INTRODUCTION

The Grigorchuk group G was introduced in [5] and deeply investigated
in [6]. We use [7, pp. 164–176; 8, Chap. VIII] as basic references for well
known elementary facts and terminology.

Each normal subgroup N �G has a level, namely the largest integer n
such that N acts trivially on the first n levels of the rooted binary tree on
which G acts naturally. In this paper we determine all normal subgroups at
levels n = 0� 1� 2, and 3 of G providing a full description of the lattice of
all normal subgroups of index ≤ 212.

It is well known [7, 8] that G satisfies the congruence property: every finite
index subgroup of G contains StG�m�, the stabilizer of level m, for some m;
indeed a normal subgroup at level n contains StG�n+ 6�. As a consequence
of this, G is just infinite, namely all its proper quotients are finite, and the
set of all its normal subgroups at a given level is finite. As a by-product of
our investigations, we show that a normal subgroup at level n contains the
subgroup Nn+1 (Theorem 5.12), where Nn+1 = N1 × · · · × N1 (2n times)
and N1 is the third term of the lower central series of G. This gives a
sharp version of the congruence property: a normal subgroup N at level
n contains StG�n + 3� (Corollary 5.13) but, in general, does not contain
StG�n+ 2� (Remark 5.14).

In Section 2 we briefly recall some notation and preliminaries on G and
on some of its normal subgroups which play a fundamental role in the
sequel (H�B�K�Kn�Nm� n�m ≥ 1). Each of the subsequent sections is
devoted to the determination of normal subgroups at levels n = 0� 1� 2,
and 3.

The strategy consists in finding, for each level n = 0� 1, a suitable nor-
mal subgroup Ln containing 	StG�n�� StG�n�
 and contained in all normal
subgroups of G at level n that we shall denote by Jn�x� x = 1� 2� 3� � � � �
these latter correspond to suitable G-submodules of StG�n�/Ln. The situa-
tion is more complicated for levels 2 and 3 where we need a finer analysis
still consisting in the determination of suitable G-submodules of different
G-modules (see Remarks 5.10 and 6.8.1). The lists of the normal subgroups
at each level (with their index in G) are then presented in the tables, where,
for each subgroup, the corresponding submodule is also included, although
this shall be defined only later, during the proofs. We also include a picture
with the complete lattice of all normal subgroups of index ≤ 28.

Regarding the analysis of the third level, the proofs of some statements
are only sketched, in the sense that elementary tedious computations lead-
ing to commutator inclusions, or description of the G-actions on very small
submodules, are omitted.

We stop this analysis at the third level because, as shown in the last
section, the determination of all normal subgroups at each level n ≥ 4 is
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reduced to the analysis of all G-submodules of certain G-modules whose
structure only depend on n and on suitable normal subgroups at level 3.
This is very close to the analogous problem for the automorphism group
of the regular rooted tree discussed in [4]: however, as remarked there,
the completion of this analysis requires a more developed theory for the
G-actions on abelian groups.

2. NOTATION AND PRELIMINARIES

2.1. We adopt the following notation for conjugacy and commutator for
elements x� y in a group �:

xy = yxy−1� 	x� y
 = xyx−1y−1�

Also, for a subset X of �, we denote by X�� its normal closure, while, for
a (normal) subgroup N ≤ ��≡N denotes congruence modulo N . Finally Cn
denotes the cyclic group of order n.

2.2. Let T be the infinite rooted binary tree and denote by Aut�T � its
automorphism group. We identify the set of vertices of T with the set �∗

of all (finite) words over the alphabet � = �0� 1�. Given σ ∈ �∗, we clearly
have Tσ �= σ�∗ ∼= T and Aut�Tσ� ∼= Aut�T �. If �Aσ � σ ∈ �n� are sub-
groups of Aut�T �, we can form their geometric product

∏

σ∈�n
Aσ = ��a0n � a0n−11� � � � � a1n� � aσ ∈ Aσ��

thinking, for every σ ∈ �n�Aσ acting on the subtree Tσ .
For instance for an element g in StAut�T ��1�, the stabilizer of the first

level of the tree, we have g = �g0� g1� ∈ Aut�T0� × Aut�T1� for unique
gi ∈ Aut�T �.

In the present paper we consider several geometric products, but we
will not introduce a specific notation for this situation; unless otherwise
specified, all the products of subgroups of Aut�T � are geometric.

2.3. The Grigorchuk group G is a finitely generated subgroup of Aut�T �.
The first generator a is the automorphism permuting the top two branches
of T , namely T0 and T1, while the remaining generators are defined recur-
sively as follows: b = �a� c�� c = �a� d�� d = �1� b�.

2.3.1. For a G-moduleM , we denote byM ×M (interpreted as a geomet-
ric product) the G-module with the action �m1�m2�a = �m2�m1�� �m1�m2�b
= �ma1�mc2�, etc., mi ∈ M . Similarly one defines the G-action on
M × · · · ×M�2n factors), n ≥ 0. In particular, if M = C2, with the trivial
G-action, P�n� �= C2 × · · · × C2�2n factors) is the C2−valued nth permuta-
tion G-module (see [3]).
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If M1 and M2 are G-modules, we define their direct sum M1 ⊕ M2
as the module M1 × M2 with the diagonal action of G: �m1�m2�g =
�mg1�mg2�� mi ∈Mi� g ∈ G.

2.4. The subgroup H = b� c� d�G has index 	G � H
 = 2, it is generated
(as a subgroup) by the elements b� c� d� ba� ca and da, and it is also the
G-stabilizer of the first level of the tree: H = StG�1�. We denote by

φ = φ0 ×φ1 � H � g �→ φ�g� = �g0� g1� ∈ G×G
the monomorphism of H into G×G. Note that φ0 and φ1 are surjective.

2.5. Setting

x = 	a� b
 = abab� y = 	b� ada
 = badabada = �x� 1��(1)

z = 	aba� d
 = abadabad = �1� x��
one has the following relations which will be widely used ([8, p. 230], where
different notations are used).

Lemma.

axa = x−1

bxb = x−1

dxd = z−1x

aya = z
byb = y−1

dyd = y

aza = y
bzb = x−1z−1x
dzd = z−1�

2.6. Lemma. �ca�4 = �z−1x� y−1x−1�x2�

Proof. Straightforward verification using �ca�4 = ��ad�2� �da�2� and
x2 = �ab�4 = ��ca�2� �ac�2��

2.7. We recall that B �= b�G denotes the normal closure of b and D �=
c� ca� denotes the subgroup generated by c and ca, which is isomorphic
to the dihedral group of order 8. Also K �= x�G is generated by elements
x� y, and z, K1 �= K ×K, and recursively Kn �= Kn−1 ×Kn−1 (see [7, 8] for
more details).

2.8. Following [2, 7], we set N1 �= K1� x
2� and Nm �= Nm−1 ×

Nm−1� m = 2� 3� � � � � Using Lemma 2.5 it is easy to check that N1
(and thus every Nm) is normal in G (actually they belong to the
lower central series of G; see [2, 7, 9]). By Lemma 2.6 we have
x2 ≡K1

�ca�4 so that N1 = K1��ca�4� ∼= K1�C2. Moreover it is clear
that 	N1 � K1
 = 	K � N1
 = 2 and 	G � N1
 = 25.

2.9. Lemma. Let N be a normal subgroup of G contained in H and M =
φ0�N�. Then

	M�B
 × 	M�B
 ≤ N ≤M ×M�
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Proof. It is obvious that N ≤M ×M . For the other inclusion note that
∀ v ∈M� ∃w ∈M � �v�w� ∈ N� Then, since N �G and B×B ≤ G, we have,
∀ g ∈ B,

N � 	�v�w�� �g� 1�
 = �	v� g
� 1�
so that 	M�B
 × �1� ≤ N; since N is a-invariant, 	M�B
 × 	M�B
 ⊆ N .

3. THE NORMAL SUBGROUPS OF G
NOT CONTAINED IN H

3.1. We have the following structure decomposition: G = �B × B���D�
a��, where D = c� ca�. Indeed, from G = H�a� and H = �B × B��D
[7, p. 167; 8, p. 229] we have G = �B×B�Da�. Moreover B×B is normal
in G, D and a� form a semidirect product, and �B× B� ∩ �D�a�� = �1�.

3.2. The easy proof of the following lemma is omitted.

Lemma. The following is the list of all normal subgroups of Q = D�a�
not contained in D:

Q� caca��a� ∼= C4�C2 and ca� ∼= C8�

3.3. Lemma. Let N be a normal subgroup of G not in H. Then 	G � N
 ≤
4. In particular N ≥ 	G�G
.
Proof.
Step 1: N ≥ 	N�B × B
 ≥ 	B × B�B × B
. Let g = ha� with h ∈ H, be

an element of N not in H. If h = �g0� g1�, ξ ∈ B, and f = �ξ−1� 1� we have

	g� f 
 = �ξ� g1ξ
−1g−1

1 ��
Now let η ∈ B and set l = �η� 1�. Then we have

		g� f 
� l
 = �	ξ�η
� 1��
This shows that 	B�B
 × �1� ≤ 	N�B×B
. Since N is a-invariant we obtain
the proof of Step 1.
Step 2: N ≥ K1� �b� b��. Denote by P the projection of N into Q =

D�a�, i.e., P = �q ∈ Q � ∃γ ∈ B×B s.t. γq ∈ N�. P is normal in Q and is
not contained in D. By Lemma 3.2 there exists h ∈ �1� c� s.t. ah ∈ P and
thus ∃γ ∈ B × B s.t. β �= γah ∈ N . Then, by Step 1,

	ah� �b� 1�
 = 	γ−1β� �b� 1�
 = 	β� �b� 1�
γ−1	γ−1� �b� 1�

∈ N	B × B�B × B
 = N�
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Now 	ah� �b� 1�
 = �b� th�, where th = b if h = 1 and th = aba if h = c.
Then

N � �c� a��b� th��c� a��b� th� = �1� x±1��
where we have +1 if h = 1 and −1 if h = c. Finally

�1� x−1�� �b� aba��G = �1� x�� �b� b��G = K1� �b� b��
and this proves Step 2.
Step 3: Conclusion. From the previous step it follows that N corre-

sponds to a submodule �N �= N/K1� �b� b�� of �B × B��P/K1� �b� b�� =
C2 × P . But �N projects onto P , so that 	�B × B��P � N
 ≤ 2. Moreover
from 3.1 and Lemma 3.2 it follows that 	G � �B× B��P
 ≤ 2. The proof of
the lemma is now complete.

3.4. Remark. Step 1 is well known [7, p. 149; 8, pp. 239–240]; more
generally, one can show that if N ≤ StG�n� but N  ≤ StG�n+ 1�, n ≥ 1, then
N ≥ 	N�Kn+1
 ≥ 	Kn+1�Kn+1
 ≥ Kn+3 ≥ StG�n + 6�. This is an important
estimate which will be improved in 5.12 and 5.13.

3.5. Theorem. The following are all the normal subgroups of G not con-
tained in H:

Submodule
Subgroup Description Generators Index of Gab

J0�1 G b� c� a 1 Gab

J0�2 b� a� 	G�G
� ≡ a� b�G b� a� ac 2 b̄� × ā�
J0�3 c� a� 	G�G
� ≡ a� c�G c� a� ad 2 c̄� × ā�
J0�4 d� a� 	G�G
� ≡ a� d�G d� a� ab 2 b̄c̄� × ā�
J0�5 b� ca� 	G�G
� ≡ b� ac�G b� ac 2 b̄� × c̄ā�
J0�6 c� ba� 	G�G
� ≡ c� ab�G c� ab 2 c̄� × b̄ā�
J0�7 ba� ca� 	G�G
� ≡ d� ab�G d� ab 2 b̄ā� × c̄ā�
J0�8 a� 	G�G
� ≡ a�G a� ab� ac� ad 4 ā�
J0�9 ba� 	G�G
� ≡ ba�G ba� dac 4 b̄ā�
J0�10 ca� 	G�G
� ≡ ca�G ca� dab 4 c̄ā�
J0�11 da� 	G�G
� ≡ da�G da� bac 4 b̄c̄ā�

Proof. Set ḡ = g · 	G�G
 for g ∈ G; the subgroups are in one to one
correspondence with the submodules of Gab = b̄� × c̄� × ā� ∼= C2 ×C2 ×
C2 not contained in b̄� × c̄�, as listed above.

4. THE NORMAL SUBGROUPS OF G IN H = StG�1�
BUT NOT IN StG�2�

4.1. Lemma. Let N be a normal subgroup of G contained in H but not
in StG�2�. Then N ≥ N1.
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Proof.
Step 1: N ≥ 	B × B�B × B
. Indeed M �= φ0�N� is normal in G and

not contained in H. From Lemma 3.3. it follows that K ≤ 	G�G
 ≤ M , so
that, by Lemma 2.9,

N ≥ 	M�B
 × 	M�B
 ≥ 	K�B
 × 	K�B
 = 	B�B
 × 	B�B
�
Step 2: N ≥ K1. Recalling from 3.1 that H = �B×B��D, let P = �q ∈

D � ∃γ ∈ B×B s.t. γq ∈ N� be the projection of N into D. Then P = D or
P = caca� so that there exists γ ∈ B × B s.t. β �= γcaca ∈ N . Therefore,
by the previous step

�x� 1� = 	caca� �b� 1�
 = 	γ−1β� �b� 1�
 = 	β� �b� 1�
γ−1 · 	γ−1� �b� 1�

∈ N · 	B × B�B × B
 = N

and this proves the step.
Step 3: Conclusion. Let γ be as in the previous step. Then

γcacaγcaca = γ · γcaca�ca�4 ∈ N�
But ��B× B��D�/K1 = �C2 × C2� ×D, so that γ · γcaca ∈ K1 ⊆ N and this
ends the proof of the lemma.

4.2. Theorem. The following are all the normal subgroups of G contained
in H but not in StG�2�:

Submodule
Subgroup Description Generators Index of H/N1

J1�1 N1� c� aca� ≡ c�G c� ca� cad� cada 8 c̄� aca�
J1�2 N1� �b� 1�� �1� b�� c� aca� ≡ H c� ca� d� da 2 c̄� aca� �b� 1�� �1� b��
J1�3 N1� �b� b�� c� aca� c� ca� dda 4 c̄� aca� �b� b��
J1�4 N1� �b� 1�c� �1� b�aca� ≡ dac�G dac� dca 8 �b̄� 1�c̄� �1� b�aca�
J1�5 B� �b� b�� dac� dca� dda 4 �b� 1�c̄� �1� b�aca� �b� b��
J1�6 N1� �1� b�c� �b� 1�aca� ≡ B b� ba� bad� bada 8 �1� b�c̄� �b� 1�aca�
J1�7 N1� �b� b�c� �b� b�aca� ≡ ddac�G ddac� ddaca 8 �b� b�c̄� �b� b�aca�
J1�8 N1� caca� ≡ cca�G cca� y� z 16 c̄ · aca�
J1�9 N1� caca� �b� 1�� �1� b�� d� da� cca 4 c̄ · aca� �1� b�� �b� 1��
J1�10 N1� caca� �b� b�� ≡ 	G�G
 y� cca� dad 8 c̄ · aca� �b� b��
J1�11 N1� �b� 1�caca� �b� b�� ≡ dacca�G y� z� dacca� dda 8 �b� 1�c̄ · aca� �b� b��
J1�12 N1� �b� b�caca� ≡ K x, y, z 16 �b� b�c̄ · aca�

Proof. From the previous lemma, N corresponds to an a-invariant sub-
module of

H

N1
= �B × B��D

N1
= ��B × B��D�/K1

N1/K1
= �1� b�� �b� 1�� c� aca�

= C2 × C2 × C2 × C2
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(where ḡ �= gN1 for any g ∈ G) not contained in StG�2�/N1 = C2 × C2 ×
�1� × �1� (this equality is obvious, if one notes that N1 ≤ StG�2� ≤ H).
These submodules are listed in the statement.

4.2.1. Remark. From the analysis in the last proof (see also [3]), it fol-
lows that StG�2� = �B × B���ca�4�.

5. THE NORMAL SUBGROUPS OF G IN StG�2�
BUT NOT IN StG�3�

5.1. In this section N will denote a normal subgroup of G contained in
StG�2� but not in StG�3� and M will denote the subgroup φ0�N�. Clearly
M is a normal subgroup of G contained in StG�1� = H but not in StG�2�.
Moreover M = φ1�N� and N ≤M ×M , but M ×M may not be contained
in G.

5.2. Proposition. M is necessarily one of the subgroups J1�4� J1�5� J1�6�
J1�8� J1�10� J1�12.

Proof. Clearly M ≤ φ0�StG�2�� = B� adad� = J1�5. Then, using the list
given in Theorem 4.2 (see also Figure 1), the proof can be easily completed.

5.3. Lemma. We have 	B�B
 = N2� x
2� and Bab = C2 × C2 × C2 × C2�

Proof. It is easy to check that N2� x
2� is normal in G and since x4 =

��ca�4� �ca�4� ≡K2
�x2� x2� ∈ N2 (by Lemma 2.6.) we have

	B � N2� x
2�
 = 	B � N2


	N2� x
2� � N2


= 25

2
= 24�

But B is generated by the four involutions [7, p. 166; 8, p. 227] b� aba =
xb� dabad = abaz� adabada = by, and their commutators belong to
N2� x

2�, as one checks immediately; this concludes the proof.

5.4. Lemma. If M  = J1�8 then N ≥ N2.

Proof. If M = J1�4� J1�5 or J1�10, it is easy to check that 	M�B
 ≥ N1 so
that, by Lemma 2.9, N ≥ N2. Now suppose that M = J1�6 ≡ B or M =
J1�12 ≡ K. In both cases 	B�M
 = 	B�B
 and, by Lemma 2.9,

	B�B
 × 	B�B
 ≤ N ≤ B × B�
Since x2 ∈ 	B�B
, it remains to prove that �y� 1� ∈ N . But x ∈ M , so that
there exists s ∈ B s.t. �x� s� ∈ N . Denoting ḡ = g	B�B
, it follows that
�N �= N/�	B�B
 × 	B�B
� contains w �= �x̄� s̄�b�x̄� s̄�baba = �ȳ� t̄�, where
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t̄ ∈ x̄ȳ� z̄ȳ� as easily follows from Lemmas 2.5 and 5.3. If t̄ = ȳz̄, then
�N � w�wbw�a = �ȳ� 1�. If t̄ = x̄ȳ or t̄ = x̄z̄ then �N � wwabwabawba = �ȳ� 1�
so that, in all cases, �y� 1� ∈ N .

5.5. Theorem. If N contains N2 then it is equal to one of the following
subgroups:

Submodule
Subgroup Description Index of StG�2�/N2

J2�1 �B × B��C2 ≡ StG�2� 23 �C2 × C2 × C2 × C2� × C2

J2�2 K1� �b� 1��ca�4� �1� b��ca�4� 24 �α� 1�ε� �β� 1�ε� �1� α�ε� �1� β�ε�
J2�3 B × B 24 C2

2 × C2
2

J2�4 K1� �b� b�� �ca�4� 24 �α�β�� �β�α�� �β�β�� ε�
J2�5 K1� �b� b��ca�4� 25 �α�β�ε� �β�α�ε� �β�β�ε�
J2�6 K1� �b� b�� 25 �α�β�� �β�α�� �β�β��
J2�7 K1� �ca�4� ≡ N1 25 �αβ� 1�� �1� αβ�� ε�
J2�8 N2� �x� 1��ca�4� �1� x��ca�4� 26 �αβ� 1�ε� �1� αβ�ε�
J2�9 N2� �x� 1�� �1� x�� ≡ K1 26 �αβ� 1�� �1� αβ��
J2�10 N2� �x� x�� �ca�4� 26 �αβ�αβ�� ε�
J2�11 N2� �x� x��ca�4� 27 �αβ�αβ�ε�
J2�12 N2� �x� x�� 27 �αβ�αβ��

Proof. N corresponds to a G-invariant submodule of (see 2.3.1 and
Remark 4.2.1)

StG�2�/N2 = �B × B��C2

N2
(2)

= �α� 1�� �β� 1���1� α�� �1� β�� × ε�
= P�2� ⊕ P�0��

where α�β, and ε denote the images in (2) of aba, b, and �adad� dada� ≡
�ca�4, respectively.

As for the G-module structure of (2) this is a simple verification: the only
nontrivial used facts are:

• bεb = ε: it follows from the identity b�ca�4b = �1� y��ca�4 ≡
�ca�4 mod K2;

• d�1� α�d = �1� α�: it follows from the identity d�1� aba�d =
�1� x−2��1� aba� ≡ �1� aba� mod N2;

• b�1� α�b = �1� α�: it follows from the identity b�1� aba�b =
�1� bz−1bx−2��1� aba� ≡ �1� aba� mod N2.

TheG-submodules of StG�2�/N2 not in StG�3�/N2�= ε�, as one can check)
are those in the list.
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5.5.1. Remark. From the analysis in the last proof (see also [3]) it follows
that StG�3� = N2��ca�4�.

5.6. We are now left to the determination of the N ’s not containing N2.
In this case, by Proposition 5.2. and Lemma 5.4, M is necessarily equal to
J1�8. We start our analysis with a lemma on J1�8 × J1�8�
Lemma. With the notation of Theorems 4�2 and 5�5 we have

�J1�8×J1�8�∩G=J2�11=K2��caca�caca���1��ca�4��∼=K2��C4×C2��
Proof. Since �1� caca� /∈ G, the intersection in the statement is a

proper subgroup of J1�8 × J1�8 = K2��caca� 1�� �1� caca��. To end the
proof it then suffices to show that the second equality holds. Since
J2�11 = K2� ��ca�4� 1�� �1� �ca�4�� �ca�4�x� x�� this latter is a consequence
of the identity adadx = zadadacac ≡ acac mod K1�

5.7. Lemma. With the notation of Theorem 5�5, if M = J1�8, then N ≥
J2�8 × J2�8.
Proof. It is easy to verify that 	B� J1�8
 ≥ J2�8; then apply Lemma 2.9.

5.8. Setting γ �= �caca� acac��J2�8 × J2�8� and δ �= �1� �ca�4��J2�8 × J2�8�
we have

Lemma.
J2�11

J2�8 × J2�8
= γ� δ� = C4 × C2�

Proof. First of all, from Theorems 4.2 and 5.5 it follows that 	J1�8 �
J2�8
 = 4. Moreover, �acac�2 /∈ J2�8. Therefore J1�8/J2�8 = C4 = cacaJ2�8�.
Then the lemma follows from Lemma 5.6.

5.9. Now we complete the list of all normal subgroups in G contained in
StG�2� but not in StG�3�.
Theorem. If N does not contain N2, then N is one of the following sub-

groups (with γ and δ as in 5�8):

Submodule of

Subgroup Description Index J2�11/�J2�8 × J2�8�
J2�13 J2�8 × J2�8� �caca� acac�� 28 γ�
J2�14 J2�8 × J2�8� �caca� caca�� 28 γδ�

Proof. By Lemma 5.4, M = J1�8. Then, by virtue of Lemmas 5.6, 5.7,
and 5.8, N corresponds to a G-invariant submodule �N of γ� δ� = C4 ×C2.
But caca ∈ M , so that N contains an element of the form �caca� t� and
�N contains γ or γδ. But γ� and γδ� are of index 2 in C4 × C2 and are
G-invariant, as one easily checks.
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5.10. Remark. Note that there is no G-module from which one can
extract all the subgroups of this level. Indeed, if L�G and StG�2�/L
is commutative, then 	�ca�4� �b� 1�
 = �y−1� 1� ∈ L and L ≥ K2, but
J2�13 and J2�14 do not contain K2. (Actually one can show that 	StG�2��
StG�2�
 = N2.)

5.11. Lemma. 	K� J2�h
 ≥ N3� h = 1� 2�� � � , 14.

Proof. Simple calculations (note that �y� y�� �yz� 1� ∈ J2�h for all h’s,
	y� �y� y�
 = �z−1� 1� 1� 1� and 	x� �yz� 1�
 = �x−2� z−1� 1� 1�).
5.12. Theorem. Let N be a normal subgroup of G in StG�m� but not in

StG�m+ 1�. Then N ≥ Nm+1�

Proof. For m = 0� 1� 2� even stronger results were obtained previously.
Now suppose m ≥ 3. Clearly M �= φm−2

0 �N� is a normal subgroup of G
contained in StG�2� but not in StG�3�. Therefore M = J2�h for some h. But
if u ∈M , there exist u1� � � � � u2m−2−1 ∈ G such that �u� u1� � � � � u2m−2−1� ∈ N .
Therefore, for k ∈ K,

N � 	�u� u1� � � � � u2m−2−1�� �k� 1� � � � � 1�
 = �	u� k
� 1� � � � � 1�
and applying the previous lemma we obtain

N ≥ 	K�M
 × · · · × 	K�M
︸ ︷︷ ︸
2m−2

≥ N3 × · · · ×N3︸ ︷︷ ︸
2m−2

= Nm+1�

5.13. Corollary. If N is as in the previous theorem, then N ≥
StG�m+ 3�.
Proof. Since StG�3� ≤ N1 (see Remark 5.5.1) we have

StG�m+ 3� ≤ StG�3� × · · · × StG�3�︸ ︷︷ ︸
2m

≤ N1 × · · · ×N1︸ ︷︷ ︸
2m

= Nm+1 ≤ N�

The first inclusion is in fact an equality [3]: indeed, by the above, the second
term is contained in G.

5.14 Remark. It is not possible to replace, in the statements of Theorem
5.12 and Corollary 5.13, Km+1, Nm+1, and StG�m + 3� by Km, Nm, and
StG�m + 2�, respectively. To see this consider, for m = 2, N = J2�13 (or
J2�14), while, for m > 2 one can use

N = J2�13 × · · · × J2�13︸ ︷︷ ︸
2m−2

(which is a subgroup of G since J2�13 ≤ K): the details can be easily
checked.
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6. THE NORMAL SUBGROUPS OF G IN StG�3�
BUT NOT IN StG�4�

6.1. In this section N will denote a normal subgroup of G contained in
StG�3� but not in StG�4� and M will denote the subgroup φ0�N�.
6.2. Proposition. M is necessarily one of the groups J2�i, with i =

4� 5� � � � � 14.

Proof. It is an immediate consequence of the fact that (see Remark
5.5.1)

φ0�StG�3�� = N1�adad� = K1� �ca�4� �b� b�� = J2�4�
6.3. Proposition. For i = 1� 2� � � � � 14 we have 	B� J2�i
 ≥ J2�12 × J2�12.

Proof. Easy computations: compare with 5.11.

6.4. The determination of the set of these N ’s will be achieved by parti-
tioning it into three families.

The first family consists of those subgroups whose M is equal to either
J2�4� J2�5, or J2�6; equivalently, it consists of all N ’s that have a nontrivial
projection onto the C2 in StG�3� = N2�C2.

Lemma. If M = J2�i� i = 4� 5� 6� then N ≥ K2.

Proof. One can check directly that 	M�B
 ≥ K1, so that, by Lemma 2.9,
N ≥ K2.

6.5. Proposition. StG�3�/K2 = �x̄2� 1�� �1� x̄2�� ε� = �C2 × C2� × C2 =
P�1� ⊕ P�0�, where �x̄2� 1�� �1� x̄2�, and ε are the images of �x2� 1�� �1� x2�,
and �ca�4� respectively.

Proof. Having in mind Remark 5.5.1, this statement follows from
N1/K1 = x2K1� = C2 and the fact that ε acts trivially on �C2 × C2�:
indeed, by Lemma 2.5., adadx2dada ≡ x2 mod N2. As for the G-module
structure, these are simple verifications: the only nontrivial relation used is
b�ac�4b = �1� y��ac�4 ≡ �ac�4 mod K2�

6.6. Theorem. If M = J2�i� i = 4� 5 or 6 (i.e., if N �N2), then N is one
of the following subgroups:

Submodule
Subgroup Description Index of StG�3�/K2

J3�1 StG�3� = N2��ca�4� 27 �C2 × C2� × C2

J3�2 K2� �x2� 1��ca�4� �1� x2��ca�4� 28 �x̄2� 1�ε� �1� x̄2�ε�
J3�3 K2� �ca�4� �x2� x2�� 28 ε� �x̄2� x̄2��
J3�4 K2� �x2� x2��ca�4� 29 �x̄2� x̄2�ε�
J3�5 K2� �ca�4� 29 ε�
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Proof. The subgroups N as in the statement correspond bijectively to
the G-invariant submodules of StG�3�/K2 = �C2 ×C2� ×C2 = P�1� ⊕ P�0�
not contained in �C2 × C2� = P�1�, as listed in the above table.

6.7. Proposition [7, p. 172; 9].

N1/N2=�x�1�N2��1�x�N2�×�ca�4N2�=�C2×C2�×C2=P�1�⊕P�0��

6.8. The normal subgroups of the second family consist of all N ’s such
that N3 ≤ N ≤ N2.

Theorem. If N3 ≤ N ≤ N2� then N is one of the subgroups in the fol-
lowing list:

Subgroup Description Index

J3�6 N3��x2�x2�� 213

J3�7 N3��x�x�x�x�� 213

J3�8 N3��x�x�x�x���x2�x2�� 212

J3�9 N3��x�x�1�1���1�1�x�x�� 212

J3�10 N3��x�x�1�1��x2�x2���1�1�x�x��x2�x2�� 212

J3�11 N3��x�x�1�1���1�1�x�x���x2�x2�� 211

J3�12 N3��x�1�x�1���x�1�1�x���1�x�x�1�� 211

J3�13 N3��x�1�x�1��x2�x2���x�1�1�x��x2�x2���1�x�x�1��x2�x2�� 211

J3�14 N3��x�1�x�1���x�1�1�x���1�x�x�1���x2�x2�� 210

J3�15 K2 210

J3�16 N3��x�1�1�1��x2�x2���1�x�1�1��x2�x2���1�1�x�1��x2�x2���1�1�1�x��x2�x2�� 210

J3�17 K2��x2�x2�� 29

J3�18 N3��x2�1���1�x2�� 212

J3�19 N3��x�x�x�x��x2�1���x�x�x�x��1�x2�� 212

J3�20 N3��x�x�x�x���x2�1���1�x2�� 211

J3�21 N3��x�x�1�1��1�x2���1�1�x�x��x2�1�� 212

J3�22 N3��x�x�x�x���x2�x2���1�1�x�x��1�x2�� 211

J3�23 N3��x�x�1�1���1�x2���1�1�x�x���x2�1�� 210

J3�24 N3��x�1�x�1���x�1�1�x���1�x�x�1���x2�1���1�x2�� 29

J3�25 N3��x�x�1�1���1�1�x�x���x2�x2���x�1�x�1��x2�1�� 210

J3�26 N2 28

J3�27 N3��x�x�1�1���1�1�x�x���x�1�x�1���x2�x2���1�1�1�x��1�x2�� 29

J3�28 N3��x�x�1�1���1�1�x�x���x�1�1�1��1�x2���1�1�1�x��x2�1�� 210

J3�29 N3��x�x�1�1���1�1�x�x���x�1�1�1��x2�1���1�1�1�x��1�x2�� 210

Sketch of proof. From Proposition 6.7 it follows that

N2/N3 = 	�C2 × C2� × �C2 × C2�
 × �C2 × C2� = P�2� ⊕ P�1��

We recall that (see the proof of 5.13) StG�4� = StG�3� × StG�3� = N3�
�C2 × C2� where C2 × C2 = ��ca�4� 1�� �1� �ca�4��. But from Lemma 2.6,
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�ca�4 ≡N2
�x� x�x2 so that

StG�4�/N3 = �x� x� 1� 1��x2� 1�N3� �1� 1� x� x��1� x2�N3��(3)

Thus one is left to determine all the G-invariant submodules of N2/N3 not
contained in (3): these correspond to the subgroups in the list. The details
are left to the reader.

6.8.1. Remark. StG�3�/N3 is commutative, but it is not the direct sum
of permutation G-modules, since C2 = �ca�4N2� is not G-invariant. For
the sake of clarity we have preferred to split the analysis in two theorems,
whose proof depends on the analysis of permutation modules as in the
previous levels.

6.9. Now we consider the last family consisting of all N ’s which do not
contain N3. The following lemma, together with Lemma 6.4, restricts the
possibilities for the groups M = φ0�N� with N belonging to this family.

Lemma. If M = J2�i� for i = 7� 8� 9� 10� 12� then N ≥ N3.

Sketch of proof. We have a case-by-case analysis (keeping in mind
Proposition 6.3).

• M = J2�7� J2�8, or J2�9. In these cases direct computations show that
	M�B
 ≥ N2 and we can conclude by Lemma 2.9

• M = J2�10. First show that 	M�B
 ≥ J3�17, so that N ≥ J3�17 × J3�17.
Conclude by analyzing �M × �M , where

�M �=M/J3�17 = M/K2

J3�17/K2
= C2 × C2 × C2 = x2J3�17� y

2J3�17� x
2yzJ3�17��

• M = J2�12. First show that 	M�B
 ≥ J3�16 and that �M �= M/J3�16 =
C4 × C2 = �x� x�J3�16� × �x2� 1�J3�16�. Conclude by analyzing �M × �M .

6.10.1. In what follows we denote by ḡ the coset g · J2�12� ∀ g ∈ G. In
order to prove the next theorem, which concludes the classification of all
normal subgroups at level 3, we need some further results. The next lemma
is an immediate consequence of Lemma 2.6.

Lemma. �ca�4 ≡ x2 mod J2�12, i.e., �c̄ā�4 = x̄2.

6.10.2. Set A1 = J2�11/J3�27 and A2 = J2�11/�J2�12 × J2�12�; one easily
shows that

A2 = �ȳ�1���1�ȳ���1��c̄ā�4���āc̄āc̄�āc̄āc̄��=�C2×C2�×�C2×C4��(4)

Lemma. IfM = J2�11� J2�13, or J2�14, then N contains the normal subgroup
J3�27 × J3�27.
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Sketch of proof. By Proposition 6.3 and Lemma 2.9,

J2�12 × J2�12 × J2�12 × J2�12 ≤ N ≤M ×M ≤ J2�11 × J2�11�

The proof can be achieved by analyzing the G-module A2 ×A2 and taking
into account (4).

6.11. Theorem. If N �N3 then N is one of the following subgroups
(where A1 is as in 6.10.2):

Submodule
Subgroup Description Index of A1 ×A1

J3�30 J3�27 × J3�27� �y� 1� y� 1�� �x2� x2�� 214 �ζ� ζ�� �ψ�ψ��
J3�31 J3�27 × J3�27� �x2� x2�� 215 �ψ�ψ��
J3�32 J3�27 × J3�27� �y� 1� y� 1��x2� x2�� 215 �ζψ� ζψ��
J3�33 J3�27 × J3�27� �y� 1� 1� 1��x2� x2�� �1� 1� y� 1��x2� x2�� 214 �ζψ�ψ�� �ψ� ζψ��
J3�34 J3�27 × J3�27� �y� 1� y� 1�� �x2� 1�� �1� x2�� 213 �ζ� ζ�� �ψ� 1�� �1� ψ��
J3�35 J3�27 × J3�27� �y� 1� y� 1��x2� 1�� �y� 1� y� 1��1� x2�� 214 �ζψ� ζ�� �ζ� ζψ��
J3�36 J3�27 × J3�27� �x2� 1�� �1� x2�� 214 �ψ� 1�� �1� ψ��
J3�37 J3�27 × J3�27� �y� 1� 1� 1��1� x2�� �1� 1� y� 1��x2� 1�� 214 �ζ�ψ�� �ψ� ζ��
J3�38 J3�27 × J3�27� �1� 1� y� 1��1� x2�� �y� 1� 1� 1��x2� 1�� 214 �1� ζψ�� �ζψ� 1��
J3�39 J3�27 × J3�27� �y� 1� 1� 1��1� x2�� 213 �ζ�ψ�� �ψ� ζ�� �ζψ� 1��

�1� 1� y� 1��x2� 1�� �y� 1� 1� 1��x2� 1��

Proof. By Lemmas 6.4 and 6.9, M equals J2�11� J2�13, or J2�14. Since
J2�13� J2�14 ≤ J2�11, by Lemma 6.10.2, we have to analyze �J2�11 ×
J2�11�/�J3�27 × J3�27�. Setting ζ = �y� 1�J3�27 and ψ = x2J3�27, observing
that x2 = �caca� acac�, and recalling Lemma 6.10.1. and (4), we have

A1 ≡ J2�11/J3�27 = J2�11/�J2�12 × J2�12�
J3�27/�J2�12 × J2�12�

= �ȳ� 1�� �1� ȳ�� �1� �c̄ā�4�� �c̄āc̄ā� āc̄āc̄��
��c̄ā�4� �c̄ā�4�� �ȳ� ȳ�� ��c̄ā�4� ȳ��

= ζ�ψ� = C2 × C2�

The action of G on

A1 ×A1 = �ζ� 1�� �ψ� 1�� �1� ζ�� �1� ψ�� = �C2 × C2� × �C2 × C2�(5)

is simply the action of a that exchanges the coordinates (thus, theG-module
(5) is P�1� ⊕P�1�). Note that N3/�J3�27 × J3�27� ≡ �ζ� 1�� �1� ζ�� and a sub-
group of �J2�11 × J2�11�/�J3�27 × J3�27� is contained in StG�4�/�J3�27 × J3�27�
if and only if it contained in �ζ� 1�� �1� ζ��. Thus, to end the proof, we are
only left to determine all the G-invariant (actually a�-invariant) submod-
ules of (5) which do not contain nor are contained in �ζ� 1�� �1� ζ��: their
list is as in the statement.



lattice of normal subgroups 307

FIG. 1. The top of the lattice of normal subgroups of G.
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6.12. Observing that 	G � StG�4�
 = 212, all normal subgroups N of G of
index 	G � N
 ≤ 212 have been determined in Sections 3–6. Here below we
present a table which counts all of them including StG�4�.
Index 1 2 22 23 24 25 26 27 28 29 210 211 212

Subgroups 1 7 7 7 5 3 3 3 5 5 7 5 7

7. NORMAL SUBGROUPS AT LEVEL m ≥ 4: REDUCTION
TO AN ABELIAN PROBLEM

7.1. In the last chapter of [4], the determination of the closed normal
subgroups of the infinite iterated wreath product � = · · · " Sd " · · · " Sd " Sd,
of the symmetric group Sd, is reduced to an abelian problem, namely to the
determination of all �-submodules of certain �-modules.

We now give, in two steps, a similar reduction for the Grigorchuk group
G: as in [4], the complete solution of such a reduced problem requires a
deeper analysis of the corresponding G-modules.

Denote by �m the set of all normal subgroups of G contained in StG�m�
but not contained in StG�m+ 1�.
Step 1. For N ∈ �m, φm−3

0 �N� is normal in G, contained in StG�3�, but
not contained in StG�4�. It follows that �m can be partitionned into the
disjoint union

⋃39
h=1 �m�h where �m�h = �N ∈ �m � φm−3

0 �N� = J3�h�.
Step 2. For each h = 1� � � � � 39, by Remark 5.5.1, J3�h ≤ StG�3� ≤ N1,

so that J3�h × · · · × J3�h (2m−3 times) is a subgroup of G (this is no longer
true, in general, if we use φm−i

0 for i = 0� 1� 2). Then, as in Lemma 2.9 and
Theorem 5.12, for N ∈ �m�h,

	J3�h�K
 × · · · × 	J3�h�K

︸ ︷︷ ︸

2m−3

≤ N ≤ J3�h × · · · × J3�h︸ ︷︷ ︸
2m−3

�

The quotient Mh �= J3�h/	J3�h�K
 is abelian, as J3�h ≤ K: we call it a fun-
damental G-module; setting

�m�h =Mh × · · · ×Mh︸ ︷︷ ︸
2m−3

we clearly have a bijection between �m�h and the set of all G-submodules
of �m�h with surjective projection on each factor.

7.2. As a consequence, we are left with the following problems:

(i) classification of all the fundamental G-modules Mh and their G-
submodules;

(ii) determination of all G-submodules of the �m�h’s.
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7.3. With a slight variation of the arguments in 7.1 (namely consid-
ering also the projections φm−1

0 �N� and φm−2
0 �N� at levels 1 and 2: we

omit the details) one can show that in 7.2 the number of fundamental G-
modules can be reduced to 12: the set �J3�1� � � � � J3�39� may be replaced by
�J1�12�

⋃�J2�h � h = 7� 8� 10� 11� 13� 14�⋃�J3�h � h = 1� 2� 3� 4� 5�.
The analysis of the third level in Section 6 and the congruence property

in 5.12 suggest that an even further reduction of the number of modules
is possible, namely that the determination of all normal subgroups of level
m ≥ 4 can be achieved by analyzing (as in 7.2) only three fundamental G-
modules. We believe that two of these are Nm−1/Nm and StG�m�/Km−1 as
in Section 6 (m = 3). Observe that

Nm−1/Nm ∼= StG�m+ 1�
Km

∼= P�m− 1� ⊕ P�m− 2�� m ≥ 3�(6)

7.4. Recall from [2] that the G-modules P�m� are uniserial. In virtue of
this and (6) we pose the following general:

Problem. Let � be a group and et P1 and let P2 be uniserial �-modules.
Determine all the �-subspaces of their direct sum P1 ⊕P2, that is, of P1 ×P2
with the diagonal action of �� �v� u�g = �vg� ug�� v ∈ P1� u ∈ P2.

7.5. After a preliminary version of this paper was circulated, we received
from L. Bartholdi his preprint [1] where, among other things, close cal-
culations and results are obtained with Lie-algebraic methods [2] leading
to a description of all normal subgroups and computation of the normal
subgroup growth of G.
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